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Abstract We present an effective framework for segmenstructure that is centered within the shape, reflects its cir
ing 3D shapes into meaningful components using the cursglar symmetries, and efficiently captures the topology and
skeleton. Our algorithm identifies a number of critical gsin articulation of the shape [3]. The structure of the curvdeske

on the efficiently-computed curve-skeleton, either fully a ton, consisting of branches and junctions, reflects thahier
tomatically as the junctions of the curve skeleton, or baselly of the meaningful components. The branches are associ-
on user input. We use these points to construct a partiipniated with the components, whereas the junctions reflect the
of the object surface using geodesics. Because the segnrelationship between components.

tation is based on the curve skeleton, it intrinsically ict8e In this paper we present a new framework for hierarchi-
the shape symmetry and articulation, and can handle shaggisshape segmentation using the curve skeleton. The curve
with tunnels. We describe a voxel-based implementation sifeleton is formally defined in terms of geodesics on the
our method which is robust and noise resistant, able to hamject’s surface [20]. For each curve skeleton point these
dle shapes of complex articulation and topology, producgeodesics divide the boundary into a set of connected com-
smooth segment borders, and delivers hierarchical level-ponents, providing a natural skeleton-to-boundary mappin
detail segmentations. We demonstrate the framework on viwat is intrinsic to the definition of the curve skeleton. iBgi
ious real-world 3D shapes. Additionally, we discuss the ugeodesics, segment borders are smooth and minimally twist-
of both curve and surface skeletons to produce part-type, iigg. After computing the meaningful components, we com-
spectively patch-type, segmentations of 3D shapes. bine them into a hierarchical level-of-detail segmentatio
Although we use the curve skeleton junctions to provide the
meaningful components, other points can be used as well,
depending on the target application. Besides the segmenta-
- tion framework, this paper contributes a robust algoritbm f

1 Introduction computing the curve skeleton of voxelized objects which en-

S ) hances the method in [20], and a method to robustly detect
Shape segmentation is the task of decomposing a 3D Sh}%ﬁ’ﬁ:tions.

into its meaningful components. In this context, meaning-
ful components are those that a human being intuitivegst
perceives as distinct, logical parts of the shape. Segmerﬁa
tions are useful in shape analysis, shape matching, med

imaging, coIIision_ detgc_tion, and othergeometric_: ProicEss skeleton, or manually by the user. Third, we compute the
methods gr_nploymg d|V|de—an(_:i—conquer strategies. component sets of the critical points. Finally, a level-of-
In defining what characterizes meaningful componen@eFa” segmentation is created from the component sets.
severa_ll directions have been pursued in the past. One 0 The outline of this paper is as follows. In the next section
these is to use curve skeletons. The curve skeleton is a C%vna'review related work. In Section 3 we present some pre-
Eggt 'Srrwzpc?u?\f}:gig}gibrzng?g léks shztlzki_:%urleDrig:]isein '?ﬁinary definitions. In _S_e_ction 4 we provid_e the detail_s of
' P tﬁ% curve skeleton definition and computation. In Section 5

Keywords shape segmentation, curve skeletons

Figure 1 provides an overview of our approach, con-

ing of four stages. First, the curve skeleton is congpute
the voxelized input shape. Second, thiical points

chosen either automatically as the junctions of theecurv

D. Reniers we elaborate on the computation of the component sets, and
Department of Mathematics and Computer Science, Eindhtirén  how based on them junctions can be detected robustly. Sec-
versity of Technology, The Netherlands, E-mail: d.rer@tse.nl tion 6 deals with creating the hierarchical segmentatiomfr

A. Telea the component sets. In Section 7 we present the results of the
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Fig. 1 Overview of our segmentation framework

This paper extends our previous work on curve-skeletc
based shape segmentation [17] in a number of directio
1) we present an optimized curve-skeleton computati
which speeds up the overall segmentation process, 2)
propose an improved junction-detection method to hanc
objects with tunnels, and 3) we compare our curve-skeletc
based segmentation method, which produces part-type <
mentations, with a new surface segmentation method p
ducing patch-type segmentations, and discuss the rela g

specifications of the two skeleton-based segmentations.

Fig. 2 The surface skeleton with rainbow color map indicating
geodesic length (blue is short, red is long) (a). The cureéestn®’, a
selected poinp € ¢, andl” (p) = {y, y2, 5} (b)
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2 Related work

Shapes can be segmented by considering their boundarpi@bn and take the shortest geodesics between featurespoin
interior. Approaches that are based on the boundary usuglly yorders. This makes for more natural borders between
define segment borders at object-surface concavities. Kaggments (compare e.g. the Hand object in Fig. 11 with [14,

and Tal [10] use fuzzy clustering on geodesic and angulgy 13]). Furthermore, our framework provides a hierarchi
distances between surface elements to obtain a h'erar%rsegmentation.

cal mesh decomposition with non-jaggy borders. They show
that their segmentation can be used to compute a (control)
curve skeleton. In [9], pose-invariant segmentations eve p

duced by extracting feature points and cores. In [2], a fuzzy
clustering on quasi-flat surface features separated byaeurg
ture extrema is used to obtain a multiscale segmentation o

point sets. In [13], an automatic scissoring scheme is pro- . )
posed based on 3D snakes. The surface skeletagr’ of a 3D objectQ with boundaryd Q

Segmentation methods using the curve skeleton consitfeflefined as those points @ having at least two boundary
the shape’s interior. Our approach falls into this categoiP!Nts at minimum distance:
To obtain meaningful components, these methods require
a mapping from the curve skeleton to the object boundary.
Various mappings have been proposed. In [14] for exampl&, ={p € Q|Ja,bc dQ,a+#b,
a combination of planar cross-sections and space sweeping dist(p,a) = dist(p,b) = min dist(p,k)}, 1)
is used. The approach in [4] uses force-following of bound- kedQ
ary particles onto the curve skeleton. A comparative stidy o
some of the latest segmentation methods can be found in [1].

Our segmentation approach is similar to that of Li avheredistis the Euclidean distance &°. Pointsa, b are the
al. [14], in which the segmentation is also based on curpeints at minimum distance gf and are called thé&ature
skeletons. However, there are some important differencpsintsof p. LetF : Q — £2(9Q) be thefeature transform
Our curve skeleton algorithm has a more fundamental wwhich assigns to each object point its set of feature points,
derpinning (see [20] for details), is more noise resistami, where &2 denotes the power set. The surface skeleton con-
is connected by default. Li et al. use a planar cross-sectigigts of 2D manifolds, calledheetsand of 1D curves [7].
sweeping along the curve skeleton between critical poirtbe sheets intersect sheet-intersection curveRoints on
to obtain components. The definition of our curve skeletdhese intersection curves have at least three featurespoint
is such that it provides a natural skeleton-to-boundary-maphe algorithms we present in this paper all work in binary
ping. Instead of taking the planar cross-section as bordeoxel space [12]. When used in a discrete-space confext,
between components, we use the actual curve skeleton dédinotes the set of foreground, or object voxels.

Pefinitions
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4 Curve skeleton computation neighboring regular points. Hence, if the genud @p) is
larger than 1pis a junction:

4.1 Definition ) _

p € junction§ %) < genuz{l‘(p)) >2 (5)
First, we define the curve skeletaf for the generic case, . o o
namely when the curve skeleton is not (partly) incident As mentioned, a similar curve skeleton definition was
with a sheet-intersection curve, so that there are exadifpt presented by Dey and Sun [6], namely as the set of sin-
two feature points for each poimte ¥. The curve skele- gular points of the the so-called medial geodesic function,
ton is defined as those points having at least two short#diich assigns to each surface skeleton point the lengtteof th

geodesicy, y; between their two feature poink{ p): geodesic between its two feature points, and they show that
this curve skeleton is homotopy equivalent to the original
p € € < 3 two shortest geodesigs+ y; betweenF (p) (2) shape. In contrast, we detect the curve skeleton by perform-

ing a topological analysis of the shortest geodesic set Thi

A similar definition was first presented in [6]' and in [20]def|n|t|0n 6_1||OWS us to Compute the curve Sk-eleton W|th0ut
This definition ensures that the curve skeleton is centeredirst detecting the surface skeleton, and readily allowsun
two ways. First, the curve skeleton is included in the srfaion detection. At an implementation level, whereas [6}suse
skeleton, as the surface skeleton is defined as those poitftygonal representations, our implementation of the eurv
having at least two feature points' Second, it is also Ce?‘keleton detection is VOXeI‘based, as detailed in the mext s
tered within the surface skeleton structure, as the twatshdton.
est geodesicy, y; necessarily have the same length.

In the non-generic case, the curve skeleton is partly inci-
dent with a sheet-intersection curve, and there are more thg2 Algorithm
two feature points for a poirg € €. For example, Figure 2a

depiCtS the surface skeleton of a box with a vertical ringased on the above definitions, we now present our a|go_
Figure 2b depicts the curve skeleton of the same objegthm for computing the curve skeleton of a voxelized object
Pointp lies on the sheet-intersection curve of the box's shegt The algorithm consists of several steps that can be exe-
and the ridge’s sheet, and has three feature points. Roinfuted in parallel for each object voxel. The different stage
CIearIyls a curve skeleton point, but the definition Eqg. Zﬂjogre depicted in Figure 3. In the first step, we compute the
not detect this. Consequently, this definition cannot bel useature transforn (using [15]) and extended feature trans-
to detect all curve skeleton points, so we modify it as fotorm F of Q. The extended feature transformerges the
lows. With each intersecting sheet a feature-point @difis  feature set of each voxel with that of its first octant 26-
associated and thus a shortest geodgsietweerg, b. For nejghborsF = Usyzefoy F(Px+ X, py+Y, Pz +2). The re-
example, for three intersecting sheets there are threéeshorsyt is that a regular curve skeleton point has two (compact)
geodesics (Fig. 2b), not necessarily of the same length. W@ups of feature voxels (Fig. 3a), one on each side of the
call the combination of these shortest geodesics for acirfaurface skeleton. The extended feature transform sohes tw

skeleton poinp € . the shortest-geodesic s&t(p): problems. First, it solves the well-known problem that is-di
crete space the feature set of a surface skeleton voxel might
r(p)={vt. (3) contain only one feature voxel, since there might be no voxel

exactly in the center of the voxelized boundary [5,19]. Sec-

wherey; is a shortest geodesic between the feature-point paid, it solves the related problem that on a voxelized object
a,b € F(p) associated with a sheet. surface, there is typically only one shortest path betwhen t

Both in the generic and non-generic case, the union wfo feature voxels of a curve skeleton voxel, although there
shortest geodesics form a Jordan curve on the object surfasetwo on the underlying continuous surface.
0Q. Hence, detecting a curve skeleton pgirtomes down After computingF, we compute the shortest-geodesic
to detecting whetheT (p) contains aring, i.e. computing thesetr™ (p). Because we perform our computations in discrete
genus of” (p). By the genus of , we mean the genus of thevoxel space, we compute the shortest geodesics as short-
surface that is obtained by taking a infinitesimal dilatién st paths in théoundary graphin which the surface vox-
I on dQ. The new definition of the curve skeleton replacesis are the nodes and their neighborhood relations repre-

Eqg. 2 and becomes: sent the edges. The shortest paths are represented as 3D
chain codes [11] in the boundary graph. For computing a
pe ¢ < genugl (p)) >1 (4) shortest path we use the A* algorithm [8], a modification of

Dijkstra’s algorithm, with Euclidean distance as the sbarc
Additionally, the genus of can be used to differenti- heuristic. We compute a shortest path between each two fea-
ate between junction and non-junction points, catégglilar ture voxels inF (p). Becausé- (p) contains groups of vox-
points. A junction is a point on the curve skeleton whergls, we will find numerous shortest paths for a regular point
at least three branches come together. The shortest-geodesving only two feature points. Together, they form a dis-
set of such a junction is the union of the Jordan curves of tbeete (noisy) Jordan curve on the object surface (Fig. 3b).
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a. Compute extended b. Compute shortest- ¢. Compute dilated d. Classify p by determining e. Classify all object voxels
feature transform path setT" path-setI” genus of I to obtain curve skeleton

Fig. 3 Curve skeleton computation and junction detection

Fig. 4 The boundaries of two dilated path-sets

A \\—"/ 1
After computing the path seff (p), we determine its | Qﬁ( >‘“’°7/
genus ondQ, as follows. First we dilaté (p) so that we 7= ~ i
obtain a surface banfi’(p) centered at the 1D structure

I (p) (Fig. 3c). Conveniently, small holes from the path st

that are caused by the discrete nature of the shortest p%B.ss The curve skeletof® of several objects

(Fig. 3b) are removed by the dilation. The dilation is per-

formed by propagating the voxels In(p) a short distance

outward using a distance-ordered flood fill. Next, we des thick, due to the extended feature transform. We observe
termine the number of compact boundary pieces that it the computed curve-skeleton is homotopic to the opject
areal”’(p) has. If two or more boundaries are fourmis and is connected, although some noise is present which rep-
concluded to be a curve skeleton voxel (Fig. 3d). Whe@sents insignificant parts of the shape. In Section 5.3 we
only one boundary is found, the voxel is concluded to htesent an importance measure #rthat can be used to

a non-curve skeleton voxel (Figure 4a). Empirical studigbtain noise-resistant, simplified skeletons. This measur

on an extensive family of real-world 3D shapes show thatiased on the component sets that are associated with each
(geodesic) dilation distance of 5.0 is enough to obtain tWint p € ¢, as explained in Sec. 5.

connected boundaries if(p) is the discrete representation

of a Jordan curve. In principle, when three or more bound-

aries forl"’(p) are found,p is a junction. In Figure 4b for 4 3 gkeleton computation speed-up

example, three boundaries are found for the junction voxel.

However, due to the discrete nature of the shortest patife fact that the curve skeleton is a connected structure al-

curve skeleton voxels might be incorrectly classified 3§ys us to make the following optimization in its computa-

junctions, i.e., junction detection by analyzing the gealis tjon |nstead of parallel processing all object voxels, we

" is conservative. This is problematic if we want to use ”Etop when we encounter a curve-skeleton vgxaalled the

junctions in segmentation (Sec. 6). We address this problggbgoxel. We classify the 26-neighboring voxelsmfand

in Section 5.4. recursively continue the curve-skeleton detection only fo
The steps described above (Fig. 3a-d) can be executledse neighbors classified as curve-skeleton voxels. Becau

for all object voxels in parallel, resulting in the curve ke we have seen in Fig. 5 that there may be some small parts

ton¥ (Fig. 3e). Figure 5 shows four curve skeletons as corof the curve skeleton that are disconnected from the main

puted by our algorithm. We stress that these results are ph+t, we search for a new seed voxel if the number of curve-

tained without any post-processing, and that our algorithskeleton voxels detected so far is smaller than a threshold,

does not perform any thinning or erosion step. The curwhich we setto an empirically determined value of 10 voxels

skeletons, and consequently their junctions, are up to 2 vdar all shapes shown in this paper. This simple modification
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Fig. 7 An object with two tunnels anfi of four selected points
Fig. 6 The component sets (bottom) of two selected pomts(top)

the curve skeleton is a graph that containeap around

of the algorithm means that we no longer have to visit &ch tunnel. Since there is a skeleton-to-boundary mapping
object voxels, typically giving a speed-up of a factor 8. Fdhrough the use of, whether/"(p) divides the boundary
example, the time needed for computing the curve skeletdf® multiple components is equivalent to whetlpediivides
for the Horse and Armadillo objects from Fig. 5 goes dowt€ graph into multiple components. In graph theory, a point
from 200 and 86 seconds to 25 and 9 seconds respectivelglividing the graph into multiple connected components is
An overview of the performance obtained with our speed-@gglled acut vertex24]. The number of component€(p)|

is given in Table 1. is related to the genus 6f(p) and the amount of loofds(p)
thatpis on:
IC(p)| = max(genugr (p)) +1-L(p),1). (6)

5 Component sets

In the previous section we described the detection of a Cu‘j\:)é%ure 7 shows an example shape with two tunnels and four

skeleton pointp by analyzing the genus of its associate? ected points. Poings g are regular (non-junction) points

. , - I (p)) =1, genu$l (q)) = 1), whereas, s are junc-
geodesic sef (p). In this definition of the curve skeleton genug - -
lies a natural skeleton-to-boundary mapping. For objei:tst pns of three branches (ger(igr)) = 2, genugl (s)) =2).

genus 0, the Jordan curve theorem states that the Jor Qiptpis noton aloop, pointg, r are both on one loop, and

curve [ associated with a regular point divides the obje IS 'on two loops. Indeed, we verify that the cardinality of

surfaced Q into two connected components. For a junctio e component sets generatediy, r,sis 2 1,2, 1 respec-

point, I is the union of Jordan curves of neighboring regul p/ely. Pointsp, r are cut vertices in the curve skeleton graph,

points, dividing the boundary into multiple componentseThWhereasq’ sare not.

component saif a pointp is denotedC(p). Let thek compo-

nents inC be ordered by their areasi<j |Ci| < |Ci+1]. The

area of a componer@; (p) is determined simply by count-5.2 Inclusion Property

ing its voxels: the cardinality of the s€}f(p). Although we

could use a more sophisticated surface estimator, the-cadh important property of the component sets for the pur-
nality is sufficient for our purposes. In our voxel spaceeeprpose of hierarchical segmentation is that any two compo-
sentation, the component $&ftp) for a voxelp is computed nentsC;(p),C;(q) for two pointsp, g € € cannot partly over-
by labeling the connected components in the boundary grdab:

from which the voxels from the path s€{p) are removed.

The labeling is sped up using a simple spatial-subdivisi@)(p) NCj(q) € {0,Ci(p)} if IC(p)| <ICj(@)] (7)
scheme.

Figure 6 shows the component sets for two select@florder to prove Eq. 7 for two regular poingsg, we have
curve skeleton pointp,g, where p and g are a junction to prove that the Jordan curvégp) and [ (q) cannot in-
and regular point respectively. The component sets of thgsect. The proof can be roughly sketched as follows. Take
junctions are used to obtain a segmentation in Section 6. that subsettpq C ¢ that is betweerp andg. It is reason-

able to assume that the feature poiR{%}g) generate two

curveslLy, L, on dQ, one on each side of the surface skele-
5.1 Topological Properties ton. Each geodesig € I' has one endpoint oh; and the

other endpoint oh,. Such a geodesicdoes not intersedt;
It is important to note that the number of compond@tg)| orL; in any other point as it would no longer be the shortest
for a pointp € ¢ is related to whether the shag2 has geodesic. Now, if a geodesyg € I (p) intersectsy € I (q),
tunnels, as this will affect the final segmentation. For glsapit needs to have (a multiple of) two intersection points. But
without tunnels or holes (genus 0), the curve skeleton hidsy, intersectsy, in two pointsa,b, the shortest geodesic
a tree structure. For objects with tunnels (gernusl), betweera, b would not be unique, which is impossible.
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5.3 Importance Measure ¥

The component sets can be used to define an importa \
measure for computing simplified curve skeletons that & Q
robust to noise, as follows. Theportance measurg(p) \
for a pointp € ¥ is defined as the importance pfin rep-
resenting the original shape. One way of expresgiflg is
in terms of the component areas associated witRecall
that the components i@ are ordered by their areas, or voxe
count:Vi<j<k |G| < |Ci+1|. We call the largest component
Cx the background componenThe others are callefibre-
ground componentshe importance measugefor a point
p is defined as the total area of the foreground componen

P(p):m U Ci(p)‘ (8)

we no.rmallzqo by the total object surface ar¢aQ|. Note Fig. 8 Conservative junctiond (a,c). Robust junctiond; (b,d)
that this importance measure can only be computed for non-

loop points. A regular loop-point has only one component

and no foreground components (e.g. Fig. 7, pg)pso that count the remaining components: If at least three compo-
p is undefinedSimplified curve skeletortsn be computed nents remain, poinp is a junction. However, junctions on
from a noisy curve skeletad by discarding all points with ¢-loops cannot be detected in this manner, as these junc-

an importance below a certain threshold tions have only two components (Sec. 5.1).
The key idea here is to associate each connected bound-
tr={pe%|p(p) >T1} (9) ary piece of the dilated path-s&t(p) (Sec. 4.2) with the

) ) .component irC(p) it bounds, and then filter and count the
The threshold is a user-parameter which controls what igongary pieces instead of the components. Concisely put,
considered noise. The meaning of this parameter is inWingintp is a junction-point if and only if its dilated path-set
itive: all ¢’-points representing a smaller surface area than o< at least three connected boundary pieces, that bound

T are discarded. Furthermorg; can be considered a mul-j5rge enough components. We denote the set of robust junc-
tiscale representation of the curve skeleton. The S'mﬂl'f'ﬁonsJT:

skeletons are connected by default at all scales, begaisse
monotonic, which follows from Eq. 7. The simplified curve ,
skeletons?, of several shapes are shown in Figure 11, with = {P€ Jo | [[{(p)| > 3}, (10)

T = 0.01. Thus, curve skeleton points representing an argfereJ, is the set of conservatively detected junctions from

less than 1% of the object surface are discarded. Section 4.2, and/ (p) are the filtered boundary pieces in the
This definition ofp has been presented in [20]. Theregjjated path-sef’(p)

the curve skeleton detection was integrated with the compu- c
tation ofp. In contrast, the skeletonization method presentéd(p) = {be "'(p) |ce C(p)AbC dc= —— >}, (11)
here computes a curve skeleton by analyzing the genus of 0Q|
I", making it much faster to compute, and making it possivhereb is a connected boundary piece fréth(p) anddcis
ble to handle objects with tunnels. Furthermore, in thisgpapthe boundary of componentwith respect ta) Q. Although
we also present a method to robustly detect curve-skeletemted to the computation pf we do not have to compupe
junctions, as detailed in the next section. to computel;: We only have to compute the component sets
for the conservative junctionls. Equivalent to the computa-
tion of ¢7, the scala is a user parameter used to distinguish
5.4 Robust Junction Detection between small-scale noise and signal.
Figure 8 shows the effect of using Eq. 10. Figs. 8aand ¢
As indicated in Section 4.2, the genusafp) is a conserva- show the noisy Dino and Genus1 objects with conservatively
tive criterion for detecting junctions. The computed genufetected junctiongy depicted as black balls. Figs. 8b and d

may be higher than in the original object, due to boun@how the robust junctions computed by Eq. 10 wita 0.05.
ary noise or discretization artifacts. This is problemaiftic

we want to use the detected junctions for segmentation. In-

spired by the importance measure from the previous sectiénSegmentation

we want to discard junctions which have small components

among their components, as they likely result from noisé/e now present two methods for computing a shape seg-
One could simply filter out small components@ip) and mentation from the critical points. By segmentation we
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mean the final segmentatid® of the object into disjoint | 1: F — {Ci(p)|pc P1<i<k}U{C(p)|pcP}
and connected segmerss In order to obtain a segmentay 2: F < FU{0Q}
tion into meaningful components, the junctions of the cury % grg’qe)d”re computeSy)
skeleton are detected and used as critical points. AlterNa- tor eachf c F in ascending order dff| do
tively, we can pick critical points by some other (semi)s: it L |f| > 7 then

: . : K [0Q]
automatic process. The first segmentation method (Sec. 6-1) s—f\S
we present is the most straightforward. It is based on the if fNS#£0=|g>0.1-/fn then
geodesic sets of the critical points, and produces a flat (no#: S« Su{s}
hierarchical) segmentation at the finest scale. The secdfd end if
method (Sec. 6.2) is based on the component sets generéﬂz’egngr]lgr'f
by the critical points, and produces a hierarchical, l@fel- [{3: eng procedure

detail segmentation. 14: procedure computeLevelsOfDetail()
15: for eachfi, fi11 in F in ascending order dff | do
16: if |fir1| —|fi| > 0.1-|fi| then

) 17: compute%l—m fi])
6.1 Flat Segmentation 18:  end if
19: end for

We produce a simple, flat segmentation by considering @ end procedure
shortest-path sefs of all critical pointsP at once. The con- _
nected components in the boundary graph due to all thé&d
shortest paths are labeled. A segmentation that is obtained
in this way is shown in Figure 10b, using the shortest-path
sets of the critical points shown in Fig. 10a. One property of
this segmentation is that it splits tunnel-parts of the obje

into multiple segments. 6%/
p g c/%pmw

9 Algorithm for computing a level-of-detail segmentation

a |

6.2 Hierarchical Segmentation Fig. 10 Critical points and their path sets (a). Flat segmentatin (
Finest level of the hierarchical segmentation (c)

In order to produce a hierarchical, level-of-detail segtaen
tion, we consider the component s€tsf the critical points
P. In Section 5.3 we distinguished between foreground and
background components. In a componentsebnsisting of
k componentsC, , the largest compone is called the 10% of the area that it overlaps (line 8). This is to prevent
background component, the remaining ones are called fotiey segments due to different junctions having similar eom
ground components. The foreground components are thps@ents among their component sets. This occurs for exam-
that one would consider meaningful and intuitively assgle due to the fact that junctions computed by the algorithm
ciate with the critical point. The background component is Section 4 may consist of multiple voxels, having almost
merely the remaining surface area. In Figure 6 for examptee same component sets. After processing all components
the background components are light gray. Furthermore, iag=, because the background components have been left out
observe that the foreground components combined also fdnrthe segmentation, the object surface might not be fully
a meaningful component. We denote this compound compmvered. Therefore, we add Eothe whole boundary as the
nent byC'(p) = Ui<i<k Gi(p). largest component (line 2), which ends up as a single seg-
Let F be the set of meaningful components of all criticahent filling up the remaining part.
points combined. The segmentati®ahould be based dn,
but the components iR are not disjoint. We now presentan In order to compute multiple segmentations from fine
algorithm for creating a segmentati®@from F consisting to coarse (line 14), we can simply consider all components
of disjoint segment§ at a certain scale. The pseudo code from F in ascending order of area, and produce a segmen-
of the algorithm is shown in Figure 9. tation for each of those areas. To limit the amount of gener-
The idea is that we consider all componeiffits F in ated hierarchy levels, in our implementation we only com-
ascending order of their area (line 5), but only those comute a hierarchy if two consecutive areas differ by at least
ponents that are larger than the specified scafne 6). 10% from the smaller are§ (line 16). The different seg-
The potential segmesis computed as the set difference bementations produced at the various scales actually form a
tweenf and the existing segments®hs= f \ S(line 7). Be- hierarchy, because every segment is included in a segment
fore adding the potential segmesito S, we check whether from a coarser scale, by Eq. 7. Besides being hierarchical,
f overlaps any existing segments fré@nlf not, sis added another difference between this segmentation method and
without restriction. If f overlaps, we only add if it con- the flat one is that tunnel-parts are not segmented and are
tributes enough to the segmentation, that is, if it addsestleleft intact (see Fig. 10c).
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7 Results

We have implemented our framework in C++ and have r
it on a Pentium 4, 3GHZ with 1GB of RAM. In comput-
ing the shortest paths we used a cache to prevent comj
ing the same shortest path twice. As input we used seve
polygonal meshes voxelized using binvox (http://www.c:
princeton.edu/min/binvox/), for various resolutions rang-
ing up to 384 voxels. We used both organic and geom
ric objects. Figure 11 shows for four objects the simplifie
curve skeletoris; and robust junctiond;, both witht =
0.01, and three selected levels from the hierarchical segm&i§- 14 Robust segmentation of noisy shapes
tation. Figure 12 shows the segmentations of the Tree object

for all levels. Figure 13 shows for several objects the se
mentation at the finest scale. We observe that our mett
is able to extract fine details, such as the toes and fing
of the Armadillo and Dinopet objects, and it does not sufft
from over-segmentation. The use of geodesics as border:
the surface segments has the very beneficial effect of p
ducing sharp, non-jagged separations, since geodesics
minimally twisting curves on the surface. Finally, our ap
proach can handle objects with tunnels, as exemplified by S _
the Genus1 object. Fig. 15 Pose-invariance of the segmentations

Table 1 shows performance measurements on our frame-

work for several objects that are shown in this paper.

Columns *“object”, “dim”, Q/”, “|dQ|" denote object wise geodesic. They do not necessarily follow local suHace
name, voxel-grid dimensions, number of object voxels, ag@ncavities, but instead find the minimal-length path be-
number of boundary voxels respectively. Column “init ttween feature points. Hence, the borders exhibit minimal
denotes the time needed for initialization, including liogd twist on the surface and look natural.

the object and computing the spatial-subdivision datastru  Using geodesics for segment borders has the additional
ture needed for efficient computation of component setsivantage that it yields stable and robust segments for very
Column “¢ t.” denotes the time in seconds to compute theoisy shapes, as shown by the Noisydino and Genusl ob-
non-simplified curve skeletdd (Sec. 4.2). Column “seg t.” jects (Fig. 14). For segmentation methods based on surface
denotes the time for computing all levels in the hierarchiceurvature (e.g. [2]), this noise could be problematic.

segmentation. This time strongly depends on the amount of Segment borders are not based on boundary features but
levels generated, and is non-optimized. Colurpnt® de- on the curve skeleton, capturing global geometrical (e.g.
notes the time required to comp®n ¢ (Sec. 5.3), that s, symmetrical) and topological properties. This has a hum-
to obtain simplified curve skeletons. Note that compupng per of advantages. The segmentations respect the object's
is not needed for obtaining a segmentation. Column “mergjrcular symmetry and are invariant for different poses of
gives an indication of the peak memory usage. The tini¢e same object. This is because the curve skeleton steuctur
needed for computing the curve skeleton can be attributedi@yeneral remains stable under deformations of the object.
the computation of the shortest paths and dilations. ltdakgigyre 15 shows the segmentations for two poses of the Cat
relatively long for the Plane, which can be explained by thgoses from [23]).

fact that the Plane has a high surface area to volume ratio, g, qers are not necessarily found at curvature extrema.
meaning that the average shortest-path between feature R%the H-shape object for example, borders are found on

_els iS. relativ_ely long. The tim.e_neede.d to compute the robq% parts of the surface, segmenting the tips of the H-shape.
junctionsJy is not shown as itis negligible: up to 5 secondgase segments are ascribed to the fact that the tips have
for the considered objects. sharp convex corners, which generate branches and junc-
tions in the curve skeleton. A consequence of choosing only
the junctions as critical points is that we do not find seg-

Noisydino Genus1

8 Discussion ment borders for curvature extrema in tubular-like parts of
the object. In Figure 13 for example, the Dinopet object has
8.1 Properties no segment borders on its knees. In order to consider more

the object’s geometry in addition to its topology, we could
The segmentations produced by our approach have thwose extra critical points on the curve skeleton at cureat
following desirable properties. Following from the curveextrema, computed either on the curve skeleton or original
skeleton definition, the borders of the segments are pieserface.
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15 segments 11 segments 5 segments 3 segments 2 segments

Fig. 12 All segmentation levels for the Tree object

H-shape
Armadillo

Fig. 13 Segmentations at the finest scale
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Table 1 Table with measurements. See the text for details

object dim [Q] [0Q] [ initt.(s) ¥ t.(s) segt.(s) pt. (s) | mem (MB)
Armadillo  188x245x207 905k 80K 23 8.6 41 75 447
Dinopet 334x366x180 1,810k 136k 49 15 54 40 707
Hand 366x154x257 1,300k 94k 36 30 21 5.6 540
Horse 366x316x171 2,038k 119k 48 25 34 10 660
Noisydino  125x346x365 1,421k 114k 41 16 19 14 552
Plane 217x304x98 545k 110k 20 53 21 39 492
Octopus 366x259x335 1,860k 154k 53 14 9.5 11 600

Fig. 16 Selected critical points (a). Manual segmentations (b-d)

As mentioned, our framework supports manual sele€ig. 13 to be segmented in its planar faces. The question
tion of critical points. In Figure 16a, we manually selectedrises for which shapes the proposed curve-skeleton-based
three such points on each tentacle of the Octopus. Theressktgmentation is appropriate, and for which not. Can we still
ing segmentation containing three segments per tentacleise skeletons, possibly in a different way, to segment those
shown in Fig. 16b. Another interesting possibility is tolpic shapes where our current method fails to deliver natural
the “root” of the curve-skeleton as a critical point. Thetroaesults?
is defined as that curve-skeleton point for whizleaches To answer the above questions, let us recall the classifi-
its maximum. In case the roofis a non-junction pointp(r) cation of segmentation methods into two classes: part-type
is half the object-surface area. A segmentation based on &mal patch-type [21,1]. Part-type segmentation methods de-
root thus divides the object in two inrgatural manner, as compose an object into its “meaningful components”, such
exemplified in Fig. 16c for the H-shape. In future work, thias the fingers and palm of a hand, or limbs, head and torso of
special case could be extended to segmenting the objact imbody. A part is not necessarily (quasi)flat, but is of a vol-
equally sized segments, wherés a user-parameter. umetric nature and is for the larger part separated from the

Finally, our method has the limitation that segment boother parts of an object by concavities. Patch-type segmen-
ders do no always tightly wrap around attached object paration methods on the other hand, decompose an object into
which might be undesirable for some applications. In thgasi-flat regions, such as the six faces of a box. Parts are
Hand object (Fig. 11) for example, the segment borders deparated by regions of high positive or negative curvature
not wrap tightly around the thumb and fingers. The reason. edges.
for this is that the associated junctions lie deep within the Our curve-skeleton based method isaat-typesegmen-
palm of the hand, so that the feature points, and thus tfa¢éion method by excellence. This method works well for ob-
ends of the geodesics that are computed between the feats which have a representative curve skeleton. By thés, w
ture points, are far from the attachment. One direction mean a curve skeleton whose branches correspond logically
overcome this limitation would be to move the segment bdie the parts, or segments, of the shape. Box-like objeds, e.
der by moving the corresponding critical point away frorthe H-shape in Fig. 13, do not fall in this category. Hence,
the junction point along the curve-skeleton branch, uh#l t we obtain the unexpected segmentation of the corners.
segment border shows less strain. A manual segmentationWe can use the skeleton to produce a more precise
exemplifying this method is shown in Fig. 16d. classification of objects into part-segmentable and patch-

segmentable. For this, we consider not only the curve-

skeleton, but also theurface skeletof a shape (for an
8.2 Part-type and patch-type segmentations using the  explanation of the differences see Eqgs. 1 and 2). Figure 17
skeleton: a comparison shows a comparison between two shapes. The left col-

umn shows an organic shape, the perfect candidate for the
Our curve-skeleton-based segmentation produces goodpart-type segmentation. We see that its curve skeleton is
sults for a wide range of organic, articulated, shapes, @site similar to its surface skeleton, i.e., the curve skele
shown in Fig. 13. However, for faceted shapes, such as pdign is just a thin version of the surface skeleton. The right
hedral models, the obtained segmentations are less natwalumn shows a polyhedral shape, the perfect candidate
For example, one would naturally expect the H-shape for a patch-type segmentation. Here we see that its curve
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Table 2 Comparison of skeleton uses for shape segmentation
curve skeleton | surface skeletor
segmentation type part-type patch-type
segment correspondencgeskeleton branch skeleton sheet
segment type volume surface
] multiscale yes yes
= noise robust yes yes

Y; In view of patch-segmentable objects, remark that the
cuve skeletons / surface skeleton consists of a set of medial sheets [7]. The
boundary of the surface skeleton corresponds and reaches
into curvature maxima, i.e. edges, of the shape [16]. Hence,
the skeleton sheets which share these borders correspond to
quasi-flat shape regions separated by an edge. This obser-
vation permits us to use the surface skeleton as a possible
tool to produce patch-type segmentations of shapes. One
possible approach is to segment the surface skeleton into
its sheets, using e.g. [18], and to segment the shape into
areas corresponding to these sheets. Preliminary results
of this approach yield good patch-type segmentations, see
e.g. Fig. 18. Using surface skeletons to produce patch-type
segmentations preserves several advantages of the curve-
skeleton-based method presented in this work: It produces
segmentations which reflect the object’'s symmetry, is robus
to small-scale surface noise, and delivers multiscale sagm
tations by changing the skeleton simplification level [20].

Concluding, both curve and surface skeletons can be
used to produce shape segmentations with a number of
properties, as summarized in Table 2.

surface skeletons

shape segmentations

Fig. 17 A part-segmentable object (left column) versus a patci® Conclusion
segmentable object (right). Rows show curve skeletonfaseiskele-

tons, and the corresponding segmentations respectively We have presented a novel framework for hierarchical seg-
mentation of 3D shapes. Being based on the formally de-
fined curve skeleton, our framework has a solid underpin-
ning. The produced segmentations inherit several desirabl
properties, such as pose-invariance, from the curve skele-
ton and reflect the symmetry of the object. The definition of
the curve skeleton in terms of shortest geodesics gives rise
to a natural skeleton-to-boundary mapping. The meaning-
ful components are found using the curve skeleton junctions
and are combined into a hierarchical, level-of-detail segim
tation. Being piecewise geodesic, the segment borders are
smooth and non-twisting. Interestingly, because our ntktho
is based on the curve skeleton representing the objeat's int
rior, our method produces both a surface segmentation and
a corresponding volumetric segmentation. The framework
skeleton differs strongly from its surface skeleton: It hasupports segmentations based on the critical points defined
a different structure. In other words, shapes whose curas the curve skeleton junctions, but also defined in other
and surface skeletons do not differ significantly are wellays. A voxel-based implementation is provided. Besides
described by their curve skeleton only, and are good cahe segmentations, it computes multiscale curve skeletons
didates for part-type segmentations. Shapes where the tat are robust to boundary noise, and performs robust junc-
skeletons differ significantly have extra information whiction detection. We showed that our framework delivers good
cannot be captured in the curve skeleton. For these shapesults on a wide range of (noisy) objects. Finally, we dis-
a curve-skeleton-based segmentation might not charaeteduss the limitations of curve-skeleton-based segmenmntatio
the object adequately for the application at hand. for shapes which have a patch-type structure, and show how

Fig. 18 Patch-type segmentations using the surface skeleton
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the surface skeleton can be used to produce patch-type 9@g-Reniers, D., Telea, A.: Tolerance-based feature tamsf In:

mentations for such objects. In future work, we would like
to detect additional critical points to obtain segment leosd 20
at curvature extrema of the object surface.
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