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Abstract We present an effective framework for segment-
ing 3D shapes into meaningful components using the curve
skeleton. Our algorithm identifies a number of critical points
on the efficiently-computed curve-skeleton, either fully au-
tomatically as the junctions of the curve skeleton, or based
on user input. We use these points to construct a partitioning
of the object surface using geodesics. Because the segmen-
tation is based on the curve skeleton, it intrinsically reflects
the shape symmetry and articulation, and can handle shapes
with tunnels. We describe a voxel-based implementation of
our method which is robust and noise resistant, able to han-
dle shapes of complex articulation and topology, produces
smooth segment borders, and delivers hierarchical level-of-
detail segmentations. We demonstrate the framework on var-
ious real-world 3D shapes. Additionally, we discuss the use
of both curve and surface skeletons to produce part-type, re-
spectively patch-type, segmentations of 3D shapes.

Keywords shape segmentation, curve skeletons

1 Introduction

Shape segmentation is the task of decomposing a 3D shape
into its meaningful components. In this context, meaning-
ful components are those that a human being intuitively
perceives as distinct, logical parts of the shape. Segmenta-
tions are useful in shape analysis, shape matching, medical
imaging, collision detection, and other geometric processing
methods employing divide-and-conquer strategies.

In defining what characterizes meaningful components,
several directions have been pursued in the past. One of
these is to use curve skeletons. The curve skeleton is a com-
pact shape descriptor, much like a stick-figure representa-
tion. The curve skeleton of a 3D shape is a 1D connected

D. Reniers
Department of Mathematics and Computer Science, EindhovenUni-
versity of Technology, The Netherlands, E-mail: d.reniers@tue.nl

A. Telea
Institute for Mathematics and Computing Science, University of
Groningen, The Netherlands, E-mail: a.c.telea@rug.nl

structure that is centered within the shape, reflects its cir-
cular symmetries, and efficiently captures the topology and
articulation of the shape [3]. The structure of the curve skele-
ton, consisting of branches and junctions, reflects the hierar-
chy of the meaningful components. The branches are associ-
ated with the components, whereas the junctions reflect the
relationship between components.

In this paper we present a new framework for hierarchi-
cal shape segmentation using the curve skeleton. The curve
skeleton is formally defined in terms of geodesics on the
object’s surface [20]. For each curve skeleton point these
geodesics divide the boundary into a set of connected com-
ponents, providing a natural skeleton-to-boundary mapping
that is intrinsic to the definition of the curve skeleton. Being
geodesics, segment borders are smooth and minimally twist-
ing. After computing the meaningful components, we com-
bine them into a hierarchical level-of-detail segmentation.
Although we use the curve skeleton junctions to provide the
meaningful components, other points can be used as well,
depending on the target application. Besides the segmenta-
tion framework, this paper contributes a robust algorithm for
computing the curve skeleton of voxelized objects which en-
hances the method in [20], and a method to robustly detect
junctions.

Figure 1 provides an overview of our approach, con-
sisting of four stages. First, the curve skeleton is computed
from the voxelized input shape. Second, thecritical points
are chosen either automatically as the junctions of the curve
skeleton, or manually by the user. Third, we compute the
component sets of the critical points. Finally, a level-of-
detail segmentation is created from the component sets.

The outline of this paper is as follows. In the next section
we review related work. In Section 3 we present some pre-
liminary definitions. In Section 4 we provide the details of
the curve skeleton definition and computation. In Section 5
we elaborate on the computation of the component sets, and
how based on them junctions can be detected robustly. Sec-
tion 6 deals with creating the hierarchical segmentation from
the component sets. In Section 7 we present the results of the
algorithm. Section 8 presents a discussion and we conclude
in Section 9.
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Fig. 1 Overview of our segmentation framework

This paper extends our previous work on curve-skeleton-
based shape segmentation [17] in a number of directions:
1) we present an optimized curve-skeleton computation
which speeds up the overall segmentation process, 2) we
propose an improved junction-detection method to handle
objects with tunnels, and 3) we compare our curve-skeleton-
based segmentation method, which produces part-type seg-
mentations, with a new surface segmentation method pro-
ducing patch-type segmentations, and discuss the relative
specifications of the two skeleton-based segmentations.

2 Related work

Shapes can be segmented by considering their boundary or
interior. Approaches that are based on the boundary usually
define segment borders at object-surface concavities. Katz
and Tal [10] use fuzzy clustering on geodesic and angular
distances between surface elements to obtain a hierarchi-
cal mesh decomposition with non-jaggy borders. They show
that their segmentation can be used to compute a (control)
curve skeleton. In [9], pose-invariant segmentations are pro-
duced by extracting feature points and cores. In [2], a fuzzy
clustering on quasi-flat surface features separated by curva-
ture extrema is used to obtain a multiscale segmentation of
point sets. In [13], an automatic scissoring scheme is pro-
posed based on 3D snakes.

Segmentation methods using the curve skeleton consider
the shape’s interior. Our approach falls into this category.
To obtain meaningful components, these methods require
a mapping from the curve skeleton to the object boundary.
Various mappings have been proposed. In [14] for example,
a combination of planar cross-sections and space sweeping
is used. The approach in [4] uses force-following of bound-
ary particles onto the curve skeleton. A comparative study of
some of the latest segmentation methods can be found in [1].

Our segmentation approach is similar to that of Li et
al. [14], in which the segmentation is also based on curve
skeletons. However, there are some important differences.
Our curve skeleton algorithm has a more fundamental un-
derpinning (see [20] for details), is more noise resistant,and
is connected by default. Li et al. use a planar cross-section
sweeping along the curve skeleton between critical points
to obtain components. The definition of our curve skeleton
is such that it provides a natural skeleton-to-boundary map-
ping. Instead of taking the planar cross-section as borders
between components, we use the actual curve skeleton defi-

Fig. 2 The surface skeleton with rainbow color map indicating
geodesic length (blue is short, red is long) (a). The curve skeletonC , a
selected pointp∈ C , andΓ (p) = {γ1,γ2,γ3} (b)

nition and take the shortest geodesics between feature points
as borders. This makes for more natural borders between
segments (compare e.g. the Hand object in Fig. 11 with [14,
Fig.13]). Furthermore, our framework provides a hierarchi-
cal segmentation.

3 Definitions

The surface skeletonS of a 3D objectΩ with boundary∂ Ω
is defined as those points inΩ having at least two boundary
points at minimum distance:

S ={p∈Ω |∃a,b∈ ∂ Ω ,a 6= b,

dist(p,a) = dist(p,b) = min
k∈∂ Ω

dist(p,k)}, (1)

wheredist is the Euclidean distance inR3. Pointsa,b are the
points at minimum distance ofp and are called thefeature
pointsof p. Let F : Ω →P(∂ Ω ) be thefeature transform
which assigns to each object point its set of feature points,
whereP denotes the power set. The surface skeleton con-
sists of 2D manifolds, calledsheets, and of 1D curves [7].
The sheets intersect insheet-intersection curves. Points on
these intersection curves have at least three feature points.
The algorithms we present in this paper all work in binary
voxel space [12]. When used in a discrete-space context,Ω
denotes the set of foreground, or object voxels.
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4 Curve skeleton computation

4.1 Definition

First, we define the curve skeletonC for the generic case,
namely when the curve skeleton is not (partly) incident
with a sheet-intersection curve, so that there are exactly
two feature points for each pointp ∈ C . The curve skele-
ton is defined as those points having at least two shortest
geodesicsγi ,γ j between their two feature pointsF(p):

p∈ C ⇔∃ two shortest geodesicsγi 6= γ j betweenF(p) (2)

A similar definition was first presented in [6], and in [20].
This definition ensures that the curve skeleton is centered in
two ways. First, the curve skeleton is included in the surface
skeleton, as the surface skeleton is defined as those points
having at least two feature points. Second, it is also cen-
tered within the surface skeleton structure, as the two short-
est geodesicsγi ,γ j necessarily have the same length.

In the non-generic case, the curve skeleton is partly inci-
dent with a sheet-intersection curve, and there are more than
two feature points for a pointp∈ C . For example, Figure 2a
depicts the surface skeleton of a box with a vertical ridge.
Figure 2b depicts the curve skeleton of the same object.
Pointp lies on the sheet-intersection curve of the box’s sheet
and the ridge’s sheet, and has three feature points. Pointp
clearly is a curve skeleton point, but the definition Eq. 2 does
not detect this. Consequently, this definition cannot be used
to detect all curve skeleton points, so we modify it as fol-
lows. With each intersecting sheet a feature-point paira,b is
associated and thus a shortest geodesicγi betweena,b. For
example, for three intersecting sheets there are three shortest
geodesics (Fig. 2b), not necessarily of the same length. We
call the combination of these shortest geodesics for a surface
skeleton pointp∈S theshortest-geodesic setΓ (p):

Γ (p) = {γi}i , (3)

whereγi is a shortest geodesic between the feature-point pair
a,b∈ F(p) associated with a sheet.

Both in the generic and non-generic case, the union of
shortest geodesics form a Jordan curve on the object surface
∂ Ω . Hence, detecting a curve skeleton pointp comes down
to detecting whetherΓ (p) contains a ring, i.e. computing the
genus ofΓ (p). By the genus ofΓ , we mean the genus of the
surface that is obtained by taking a infinitesimal dilation of
Γ on ∂ Ω . The new definition of the curve skeleton replaces
Eq. 2 and becomes:

p∈ C ⇔ genus
(

Γ (p)
)

≥ 1 (4)

Additionally, the genus ofΓ can be used to differenti-
ate between junction and non-junction points, calledregular
points. A junction is a point on the curve skeleton where
at least three branches come together. The shortest-geodesic
set of such a junction is the union of the Jordan curves of the

neighboring regular points. Hence, if the genus ofΓ (p) is
larger than 1,p is a junction:

p∈ junctions(C )⇔ genus
(

Γ (p)
)

≥ 2 (5)

As mentioned, a similar curve skeleton definition was
first presented by Dey and Sun [6], namely as the set of sin-
gular points of the the so-called medial geodesic function,
which assigns to each surface skeleton point the length of the
geodesic between its two feature points, and they show that
this curve skeleton is homotopy equivalent to the original
shape. In contrast, we detect the curve skeleton by perform-
ing a topological analysis of the shortest geodesic set. This
definition allows us to compute the curve skeleton without
first detecting the surface skeleton, and readily allows junc-
tion detection. At an implementation level, whereas [6] uses
polygonal representations, our implementation of the curve
skeleton detection is voxel-based, as detailed in the next sec-
tion.

4.2 Algorithm

Based on the above definitions, we now present our algo-
rithm for computing the curve skeleton of a voxelized object
Ω . The algorithm consists of several steps that can be exe-
cuted in parallel for each object voxel. The different stages
are depicted in Figure 3. In the first step, we compute the
feature transformF (using [15]) and extended feature trans-
form F of Ω . The extended feature transformmerges the
feature set of each voxelp with that of its first octant 26-
neighbors:F =

⋃

x,y,z∈{0,1} F(px + x, py + y, pz+ z). The re-
sult is that a regular curve skeleton point has two (compact)
groups of feature voxels (Fig. 3a), one on each side of the
surface skeleton. The extended feature transform solves two
problems. First, it solves the well-known problem that in dis-
crete space the feature set of a surface skeleton voxel might
contain only one feature voxel, since there might be no voxel
exactly in the center of the voxelized boundary [5,19]. Sec-
ond, it solves the related problem that on a voxelized object
surface, there is typically only one shortest path between the
two feature voxels of a curve skeleton voxel, although there
are two on the underlying continuous surface.

After computingF , we compute the shortest-geodesic
setΓ (p). Because we perform our computations in discrete
voxel space, we compute the shortest geodesics as short-
est paths in theboundary graphin which the surface vox-
els are the nodes and their neighborhood relations repre-
sent the edges. The shortest paths are represented as 3D
chain codes [11] in the boundary graph. For computing a
shortest path we use the A* algorithm [8], a modification of
Dijkstra’s algorithm, with Euclidean distance as the search
heuristic. We compute a shortest path between each two fea-
ture voxels inF(p). BecauseF(p) contains groups of vox-
els, we will find numerous shortest paths for a regular point
having only two feature points. Together, they form a dis-
crete (noisy) Jordan curve on the object surface (Fig. 3b).
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Fig. 3 Curve skeleton computation and junction detection

Fig. 4 The boundaries of two dilated path-sets

After computing the path setΓ (p), we determine its
genus on∂ Ω , as follows. First we dilateΓ (p) so that we
obtain a surface bandΓ ′(p) centered at the 1D structure
Γ (p) (Fig. 3c). Conveniently, small holes from the path set
that are caused by the discrete nature of the shortest paths
(Fig. 3b) are removed by the dilation. The dilation is per-
formed by propagating the voxels inΓ (p) a short distance
outward using a distance-ordered flood fill. Next, we de-
termine the number of compact boundary pieces that the
areaΓ ′(p) has. If two or more boundaries are found,p is
concluded to be a curve skeleton voxel (Fig. 3d). When
only one boundary is found, the voxel is concluded to be
a non-curve skeleton voxel (Figure 4a). Empirical studies
on an extensive family of real-world 3D shapes show that a
(geodesic) dilation distance of 5.0 is enough to obtain two
connected boundaries ifΓ (p) is the discrete representation
of a Jordan curve. In principle, when three or more bound-
aries forΓ ′(p) are found,p is a junction. In Figure 4b for
example, three boundaries are found for the junction voxel.
However, due to the discrete nature of the shortest paths,
curve skeleton voxels might be incorrectly classified as
junctions, i.e., junction detection by analyzing the genusof
Γ is conservative. This is problematic if we want to use the
junctions in segmentation (Sec. 6). We address this problem
in Section 5.4.

The steps described above (Fig. 3a-d) can be executed
for all object voxels in parallel, resulting in the curve skele-
tonC (Fig. 3e). Figure 5 shows four curve skeletons as com-
puted by our algorithm. We stress that these results are ob-
tained without any post-processing, and that our algorithm
does not perform any thinning or erosion step. The curve
skeletons, and consequently their junctions, are up to 2 vox-

Fig. 5 The curve skeletonC of several objects

els thick, due to the extended feature transform. We observe
that the computed curve-skeleton is homotopic to the object,
and is connected, although some noise is present which rep-
resents insignificant parts of the shape. In Section 5.3 we
present an importance measure forC that can be used to
obtain noise-resistant, simplified skeletons. This measure is
based on the component sets that are associated with each
point p∈ C , as explained in Sec. 5.

4.3 Skeleton computation speed-up

The fact that the curve skeleton is a connected structure al-
lows us to make the following optimization in its computa-
tion. Instead of parallel processing ofall object voxels, we
stop when we encounter a curve-skeleton voxelp, called the
seedvoxel. We classify the 26-neighboring voxels ofp, and
recursively continue the curve-skeleton detection only for
those neighbors classified as curve-skeleton voxels. Because
we have seen in Fig. 5 that there may be some small parts
of the curve skeleton that are disconnected from the main
part, we search for a new seed voxel if the number of curve-
skeleton voxels detected so far is smaller than a threshold,
which we set to an empirically determined value of 10 voxels
for all shapes shown in this paper. This simple modification
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Fig. 6 The component sets (bottom) of two selected pointsp,q (top)

of the algorithm means that we no longer have to visit all
object voxels, typically giving a speed-up of a factor 8. For
example, the time needed for computing the curve skeletons
for the Horse and Armadillo objects from Fig. 5 goes down
from 200 and 86 seconds to 25 and 9 seconds respectively.
An overview of the performance obtained with our speed-up
is given in Table 1.

5 Component sets

In the previous section we described the detection of a curve
skeleton pointp by analyzing the genus of its associated
geodesic setΓ (p). In this definition of the curve skeleton
lies a natural skeleton-to-boundary mapping. For objects of
genus 0, the Jordan curve theorem states that the Jordan
curveΓ associated with a regular point divides the object
surface∂ Ω into two connected components. For a junction
point,Γ is the union of Jordan curves of neighboring regular
points, dividing the boundary into multiple components. The
component setof a pointp is denotedC(p). Let thek compo-
nents inC be ordered by their areas:∀1≤i<k |Ci | ≤ |Ci+1|. The
area of a componentCi(p) is determined simply by count-
ing its voxels: the cardinality of the setCi(p). Although we
could use a more sophisticated surface estimator, the cardi-
nality is sufficient for our purposes. In our voxel space repre-
sentation, the component setC(p) for a voxelp is computed
by labeling the connected components in the boundary graph
from which the voxels from the path setΓ (p) are removed.
The labeling is sped up using a simple spatial-subdivision
scheme.

Figure 6 shows the component sets for two selected
curve skeleton pointsp,q, where p and q are a junction
and regular point respectively. The component sets of the
junctions are used to obtain a segmentation in Section 6.

5.1 Topological Properties

It is important to note that the number of components|C(p)|
for a point p ∈ C is related to whether the shapeΩ has
tunnels, as this will affect the final segmentation. For shapes
without tunnels or holes (genus 0), the curve skeleton has
a tree structure. For objects with tunnels (genus≥ 1),

Fig. 7 An object with two tunnels andΓ of four selected points

the curve skeleton is a graph that contains aloop around
each tunnel. Since there is a skeleton-to-boundary mapping
through the use ofΓ , whetherΓ (p) divides the boundary
into multiple components is equivalent to whetherp divides
the graph into multiple components. In graph theory, a point
p dividing the graph into multiple connected components is
called acut vertex[24]. The number of components|C(p)|
is related to the genus ofΓ (p) and the amount of loopsL(p)
that p is on:

|C(p)|= max
(

genus(Γ (p))+1−L(p),1
)

. (6)

Figure 7 shows an example shape with two tunnels and four
selected points. Pointsp,q are regular (non-junction) points
(genus(Γ (p)) = 1, genus(Γ (q)) = 1), whereasr,s are junc-
tions of three branches (genus(Γ (r)) = 2, genus(Γ (s)) = 2).
Pointp is not on a loop, pointsq, r are both on one loop, and
s is on two loops. Indeed, we verify that the cardinality of
the component sets generated byp,q, r,s is 2,1,2,1 respec-
tively. Pointsp, r are cut vertices in the curve skeleton graph,
whereasq,s are not.

5.2 Inclusion Property

An important property of the component sets for the pur-
pose of hierarchical segmentation is that any two compo-
nentsCi(p),Cj(q) for two pointsp,q∈C cannot partly over-
lap:

Ci(p)∩Cj (q) ∈ { /0,Ci(p)} if |Ci(p)| ≤ |Cj(q)| (7)

In order to prove Eq. 7 for two regular pointsp,q, we have
to prove that the Jordan curvesΓ (p) andΓ (q) cannot in-
tersect. The proof can be roughly sketched as follows. Take
that subsetCpq ⊂ C that is betweenp andq. It is reason-
able to assume that the feature pointsF(Cpq) generate two
curvesL1,L2 on ∂ Ω , one on each side of the surface skele-
ton. Each geodesicγ ∈ Γ has one endpoint onL1 and the
other endpoint onL2. Such a geodesicγ does not intersectL1
or L2 in any other point as it would no longer be the shortest
geodesic. Now, if a geodesicγp ∈Γ (p) intersectsγq ∈Γ (q),
it needs to have (a multiple of) two intersection points. But
if γp intersectsγq in two pointsa,b, the shortest geodesic
betweena,b would not be unique, which is impossible.
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5.3 Importance Measure

The component sets can be used to define an importance
measure for computing simplified curve skeletons that are
robust to noise, as follows. Theimportance measureρ(p)
for a point p∈ C is defined as the importance ofp in rep-
resenting the original shape. One way of expressingρ(p) is
in terms of the component areas associated withp. Recall
that the components inC are ordered by their areas, or voxel
count:∀1≤i<k |Ci | ≤ |Ci+1|. We call the largest component
Ck the background component. The others are calledfore-
ground components. The importance measureρ for a point
p is defined as the total area of the foreground components:

ρ(p) =
1
|∂ Ω |

∣

∣

∣

⋃

1≤i<k

Ci(p)
∣

∣

∣
(8)

We normalizeρ by the total object surface area|∂ Ω |. Note
that this importance measure can only be computed for non-
loop points. A regular loop-point has only one component
and no foreground components (e.g. Fig. 7, pointq), so that
ρ is undefined.Simplified curve skeletonscan be computed
from a noisy curve skeletonC by discarding all points with
an importance below a certain thresholdτ:

Cτ = {p∈ C | ρ(p) ≥ τ} (9)

The thresholdτ is a user-parameter which controls what is
considered noise. The meaning of this parameter is intu-
itive: all C -points representing a smaller surface area than
τ are discarded. Furthermore,Cτ can be considered a mul-
tiscale representation of the curve skeleton. The simplified
skeletons are connected by default at all scales, becauseρ is
monotonic, which follows from Eq. 7. The simplified curve
skeletonsCτ of several shapes are shown in Figure 11, with
τ = 0.01. Thus, curve skeleton points representing an area
less than 1% of the object surface are discarded.

This definition ofρ has been presented in [20]. There,
the curve skeleton detection was integrated with the compu-
tation ofρ. In contrast, the skeletonization method presented
here computes a curve skeleton by analyzing the genus of
Γ , making it much faster to compute, and making it possi-
ble to handle objects with tunnels. Furthermore, in this paper
we also present a method to robustly detect curve-skeleton
junctions, as detailed in the next section.

5.4 Robust Junction Detection

As indicated in Section 4.2, the genus ofΓ (p) is a conserva-
tive criterion for detecting junctions. The computed genus
may be higher than in the original object, due to bound-
ary noise or discretization artifacts. This is problematicif
we want to use the detected junctions for segmentation. In-
spired by the importance measure from the previous section,
we want to discard junctions which have small components
among their components, as they likely result from noise.
One could simply filter out small components inC(p) and

Fig. 8 Conservative junctionsJ0 (a,c). Robust junctionsJτ (b,d)

count the remaining components: If at least three compo-
nents remain, pointp is a junction. However, junctions on
C -loops cannot be detected in this manner, as these junc-
tions have only two components (Sec. 5.1).

The key idea here is to associate each connected bound-
ary piece of the dilated path-setΓ ′(p) (Sec. 4.2) with the
component inC(p) it bounds, and then filter and count the
boundary pieces instead of the components. Concisely put,
a pointp is a junction-point if and only if its dilated path-set
Γ ′ has at least three connected boundary pieces, that bound
large enough components. We denote the set of robust junc-
tionsJτ :

Jτ =
{

p∈ J0
∣

∣ |Γ ′τ (p)| ≥ 3
}

, (10)

whereJ0 is the set of conservatively detected junctions from
Section 4.2, andΓ ′τ (p) are the filtered boundary pieces in the
dilated path-setΓ ′(p):

Γ ′τ (p) =
{

b∈Γ ′(p)
∣

∣ c∈C(p)∧b⊆ ∂c⇒
c
|∂ Ω |

> τ
}

, (11)

whereb is a connected boundary piece fromΓ ′(p) and∂c is
the boundary of componentc with respect to∂ Ω . Although
related to the computation ofρ, we do not have to computeρ
to computeJτ : We only have to compute the component sets
for the conservative junctionsJ0. Equivalent to the computa-
tion of Cτ , the scaleτ is a user parameter used to distinguish
between small-scale noise and signal.

Figure 8 shows the effect of using Eq. 10. Figs. 8a and c
show the noisy Dino and Genus1 objects with conservatively
detected junctionsJ0 depicted as black balls. Figs. 8b and d
show the robust junctions computed by Eq. 10 withτ = 0.05.

6 Segmentation

We now present two methods for computing a shape seg-
mentation from the critical points. By segmentation we
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mean the final segmentationS of the object into disjoint
and connected segmentsSi . In order to obtain a segmenta-
tion into meaningful components, the junctions of the curve
skeleton are detected and used as critical points. Alterna-
tively, we can pick critical points by some other (semi)
automatic process. The first segmentation method (Sec. 6.1)
we present is the most straightforward. It is based on the
geodesic sets of the critical points, and produces a flat (non-
hierarchical) segmentation at the finest scale. The second
method (Sec. 6.2) is based on the component sets generated
by the critical points, and produces a hierarchical, level-of-
detail segmentation.

6.1 Flat Segmentation

We produce a simple, flat segmentation by considering the
shortest-path setsΓ of all critical pointsP at once. The con-
nected components in the boundary graph due to all these
shortest paths are labeled. A segmentation that is obtained
in this way is shown in Figure 10b, using the shortest-path
sets of the critical points shown in Fig. 10a. One property of
this segmentation is that it splits tunnel-parts of the object
into multiple segments.

6.2 Hierarchical Segmentation

In order to produce a hierarchical, level-of-detail segmenta-
tion, we consider the component setsC of the critical points
P. In Section 5.3 we distinguished between foreground and
background components. In a component setC consisting of
k componentsC1..k, the largest componentCk is called the
background component, the remaining ones are called fore-
ground components. The foreground components are those
that one would consider meaningful and intuitively asso-
ciate with the critical point. The background component is
merely the remaining surface area. In Figure 6 for example,
the background components are light gray. Furthermore, we
observe that the foreground components combined also form
a meaningful component. We denote this compound compo-
nent byC′(p) = ∪1≤i<k Ci(p).

Let F be the set of meaningful components of all critical
points combined. The segmentationSshould be based onF ,
but the components inF are not disjoint. We now present an
algorithm for creating a segmentationS from F consisting
of disjoint segmentsSi at a certain scaleτ. The pseudo code
of the algorithm is shown in Figure 9.

The idea is that we consider all componentsf ∈ F in
ascending order of their area (line 5), but only those com-
ponents that are larger than the specified scaleτ (line 6).
The potential segments is computed as the set difference be-
tweenf and the existing segments inS: s= f \S(line 7). Be-
fore adding the potential segments to S, we check whether
f overlaps any existing segments fromS. If not, s is added
without restriction. If f overlaps, we only adds if it con-
tributes enough to the segmentation, that is, if it adds at least

1: F ←{Ci(p)|p∈ P,1≤ i < k}∪{C′(p)|p∈ P}
2: F ← F ∪{∂ Ω}
3: procedurecomputeS(τ)
4: S← /0
5: for eachf ∈ F in ascending order of| f | do
6: if 1

|∂Ω | | f | ≥ τ then
7: s← f \S
8: if f ∩S 6= /0⇒ |s|> 0.1· | f ∩S| then
9: S← S∪{s}

10: end if
11: end if
12: end for
13: end procedure
14: procedure computeLevelsOfDetail()
15: for eachfi , fi+1 in F in ascending order of| f | do
16: if | fi+1|− | fi |> 0.1· | fi | then
17: computeS(1

|∂Ω | | fi |)
18: end if
19: end for
20: end procedure

Fig. 9 Algorithm for computing a level-of-detail segmentation

Fig. 10 Critical points and their path sets (a). Flat segmentation (b).
Finest level of the hierarchical segmentation (c)

10% of the area that it overlaps (line 8). This is to prevent
tiny segments due to different junctions having similar com-
ponents among their component sets. This occurs for exam-
ple due to the fact that junctions computed by the algorithm
in Section 4 may consist of multiple voxels, having almost
the same component sets. After processing all components
in F , because the background components have been left out
in the segmentation, the object surface might not be fully
covered. Therefore, we add toF the whole boundary as the
largest component (line 2), which ends up as a single seg-
ment filling up the remaining part.

In order to compute multiple segmentations from fine
to coarse (line 14), we can simply consider all components
from F in ascending order of area, and produce a segmen-
tation for each of those areas. To limit the amount of gener-
ated hierarchy levels, in our implementation we only com-
pute a hierarchy if two consecutive areas differ by at least
10% from the smaller areafi (line 16). The different seg-
mentations produced at the various scales actually form a
hierarchy, because every segment is included in a segment
from a coarser scale, by Eq. 7. Besides being hierarchical,
another difference between this segmentation method and
the flat one is that tunnel-parts are not segmented and are
left intact (see Fig. 10c).
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7 Results

We have implemented our framework in C++ and have run
it on a Pentium 4, 3GHZ with 1GB of RAM. In comput-
ing the shortest paths we used a cache to prevent comput-
ing the same shortest path twice. As input we used several
polygonal meshes voxelized using binvox (http://www.cs.
princeton.edu/∼min/binvox/), for various resolutions rang-
ing up to 384 voxels. We used both organic and geomet-
ric objects. Figure 11 shows for four objects the simplified
curve skeletonCτ and robust junctionsJτ , both with τ =
0.01, and three selected levels from the hierarchical segmen-
tation. Figure 12 shows the segmentations of the Tree object
for all levels. Figure 13 shows for several objects the seg-
mentation at the finest scale. We observe that our method
is able to extract fine details, such as the toes and fingers
of the Armadillo and Dinopet objects, and it does not suffer
from over-segmentation. The use of geodesics as borders of
the surface segments has the very beneficial effect of pro-
ducing sharp, non-jagged separations, since geodesics are
minimally twisting curves on the surface. Finally, our ap-
proach can handle objects with tunnels, as exemplified by
the Genus1 object.

Table 1 shows performance measurements on our frame-
work for several objects that are shown in this paper.
Columns “object”, “dim”, “|Ω |”, “ |∂ Ω |” denote object
name, voxel-grid dimensions, number of object voxels, and
number of boundary voxels respectively. Column “init t.”
denotes the time needed for initialization, including loading
the object and computing the spatial-subdivision datastruc-
ture needed for efficient computation of component sets.
Column “C t.” denotes the time in seconds to compute the
non-simplified curve skeletonC (Sec. 4.2). Column “seg t.”
denotes the time for computing all levels in the hierarchical
segmentation. This time strongly depends on the amount of
levels generated, and is non-optimized. Column “ρ t.” de-
notes the time required to computeρ onC (Sec. 5.3), that is,
to obtain simplified curve skeletons. Note that computingρ
is not needed for obtaining a segmentation. Column “mem”
gives an indication of the peak memory usage. The time
needed for computing the curve skeleton can be attributed to
the computation of the shortest paths and dilations. It takes
relatively long for the Plane, which can be explained by the
fact that the Plane has a high surface area to volume ratio,
meaning that the average shortest-path between feature vox-
els is relatively long. The time needed to compute the robust
junctionsJτ is not shown as it is negligible: up to 5 seconds
for the considered objects.

8 Discussion

8.1 Properties

The segmentations produced by our approach have the
following desirable properties. Following from the curve-
skeleton definition, the borders of the segments are piece-

Fig. 14 Robust segmentation of noisy shapes

Fig. 15 Pose-invariance of the segmentations

wise geodesic. They do not necessarily follow local surface-
concavities, but instead find the minimal-length path be-
tween feature points. Hence, the borders exhibit minimal
twist on the surface and look natural.

Using geodesics for segment borders has the additional
advantage that it yields stable and robust segments for very
noisy shapes, as shown by the Noisydino and Genus1 ob-
jects (Fig. 14). For segmentation methods based on surface
curvature (e.g. [2]), this noise could be problematic.

Segment borders are not based on boundary features but
on the curve skeleton, capturing global geometrical (e.g.
symmetrical) and topological properties. This has a num-
ber of advantages. The segmentations respect the object’s
circular symmetry and are invariant for different poses of
the same object. This is because the curve skeleton structure
in general remains stable under deformations of the object.
Figure 15 shows the segmentations for two poses of the Cat
(poses from [23]).

Borders are not necessarily found at curvature extrema.
In the H-shape object for example, borders are found on
flat parts of the surface, segmenting the tips of the H-shape.
These segments are ascribed to the fact that the tips have
sharp convex corners, which generate branches and junc-
tions in the curve skeleton. A consequence of choosing only
the junctions as critical points is that we do not find seg-
ment borders for curvature extrema in tubular-like parts of
the object. In Figure 13 for example, the Dinopet object has
no segment borders on its knees. In order to consider more
the object’s geometry in addition to its topology, we could
choose extra critical points on the curve skeleton at curvature
extrema, computed either on the curve skeleton or original
surface.
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Fig. 11 Simplified curve skeletonsCτ with detected junctions (first column), and three levels of the hierarchical segmentation (other columns)

Fig. 12 All segmentation levels for the Tree object

Fig. 13 Segmentations at the finest scale
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Table 1 Table with measurements. See the text for details

object dim |Ω | |∂ Ω | init t. (s) C t. (s) seg t. (s) ρ t. (s) mem (MB)
Armadillo 188x245x207 905k 80k 23 8.6 41 7.5 447
Dinopet 334x366x180 1,810k 136k 49 15 54 40 707
Hand 366x154x257 1,300k 94k 36 30 21 5.6 540
Horse 366x316x171 2,038k 119k 48 25 34 10 660
Noisydino 125x346x365 1,421k 114k 41 16 19 14 552
Plane 217x304x98 545k 110k 20 53 21 39 492
Octopus 366x259x335 1,860k 154k 53 14 9.5 11 600

Fig. 16 Selected critical points (a). Manual segmentations (b-d)

As mentioned, our framework supports manual selec-
tion of critical points. In Figure 16a, we manually selected
three such points on each tentacle of the Octopus. The result-
ing segmentation containing three segments per tentacle is
shown in Fig. 16b. Another interesting possibility is to pick
the “root” of the curve-skeleton as a critical point. The root
is defined as that curve-skeleton point for whichρ reaches
its maximum. In case the rootr is a non-junction point,ρ(r)
is half the object-surface area. A segmentation based on the
root thus divides the object in two in anatural manner, as
exemplified in Fig. 16c for the H-shape. In future work, this
special case could be extended to segmenting the object inn
equally sized segments, wheren is a user-parameter.

Finally, our method has the limitation that segment bor-
ders do no always tightly wrap around attached object parts,
which might be undesirable for some applications. In the
Hand object (Fig. 11) for example, the segment borders do
not wrap tightly around the thumb and fingers. The reason
for this is that the associated junctions lie deep within the
palm of the hand, so that the feature points, and thus the
ends of the geodesics that are computed between the fea-
ture points, are far from the attachment. One direction to
overcome this limitation would be to move the segment bor-
der by moving the corresponding critical point away from
the junction point along the curve-skeleton branch, until the
segment border shows less strain. A manual segmentation
exemplifying this method is shown in Fig. 16d.

8.2 Part-type and patch-type segmentations using the
skeleton: a comparison

Our curve-skeleton-based segmentation produces good re-
sults for a wide range of organic, articulated, shapes, as
shown in Fig. 13. However, for faceted shapes, such as poly-
hedral models, the obtained segmentations are less natural.
For example, one would naturally expect the H-shape in

Fig. 13 to be segmented in its planar faces. The question
arises for which shapes the proposed curve-skeleton-based
segmentation is appropriate, and for which not. Can we still
use skeletons, possibly in a different way, to segment those
shapes where our current method fails to deliver natural
results?

To answer the above questions, let us recall the classifi-
cation of segmentation methods into two classes: part-type
and patch-type [21,1]. Part-type segmentation methods de-
compose an object into its “meaningful components”, such
as the fingers and palm of a hand, or limbs, head and torso of
a body. A part is not necessarily (quasi)flat, but is of a vol-
umetric nature and is for the larger part separated from the
other parts of an object by concavities. Patch-type segmen-
tation methods on the other hand, decompose an object into
quasi-flat regions, such as the six faces of a box. Parts are
separated by regions of high positive or negative curvature,
i.e. edges.

Our curve-skeleton based method is apart-typesegmen-
tation method by excellence. This method works well for ob-
jects which have a representative curve skeleton. By this, we
mean a curve skeleton whose branches correspond logically
to the parts, or segments, of the shape. Box-like objects, e.g.
the H-shape in Fig. 13, do not fall in this category. Hence,
we obtain the unexpected segmentation of the corners.

We can use the skeleton to produce a more precise
classification of objects into part-segmentable and patch-
segmentable. For this, we consider not only the curve-
skeleton, but also thesurface skeletonof a shape (for an
explanation of the differences see Eqs. 1 and 2). Figure 17
shows a comparison between two shapes. The left col-
umn shows an organic shape, the perfect candidate for the
part-type segmentation. We see that its curve skeleton is
quite similar to its surface skeleton, i.e., the curve skele-
ton is just a thin version of the surface skeleton. The right
column shows a polyhedral shape, the perfect candidate
for a patch-type segmentation. Here we see that its curve
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Fig. 17 A part-segmentable object (left column) versus a patch-
segmentable object (right). Rows show curve skeletons, surface skele-
tons, and the corresponding segmentations respectively

Fig. 18 Patch-type segmentations using the surface skeleton

skeleton differs strongly from its surface skeleton: It has
a different structure. In other words, shapes whose curve
and surface skeletons do not differ significantly are well
described by their curve skeleton only, and are good can-
didates for part-type segmentations. Shapes where the two
skeletons differ significantly have extra information which
cannot be captured in the curve skeleton. For these shapes,
a curve-skeleton-based segmentation might not characterize
the object adequately for the application at hand.

Table 2 Comparison of skeleton uses for shape segmentation

curve skeleton surface skeleton
segmentation type part-type patch-type
segment correspondenceskeleton branch skeleton sheet
segment type volume surface
multiscale yes yes
noise robust yes yes

In view of patch-segmentable objects, remark that the
surface skeleton consists of a set of medial sheets [7]. The
boundary of the surface skeleton corresponds and reaches
into curvature maxima, i.e. edges, of the shape [16]. Hence,
the skeleton sheets which share these borders correspond to
quasi-flat shape regions separated by an edge. This obser-
vation permits us to use the surface skeleton as a possible
tool to produce patch-type segmentations of shapes. One
possible approach is to segment the surface skeleton into
its sheets, using e.g. [18], and to segment the shape into
areas corresponding to these sheets. Preliminary results
of this approach yield good patch-type segmentations, see
e.g. Fig. 18. Using surface skeletons to produce patch-type
segmentations preserves several advantages of the curve-
skeleton-based method presented in this work: It produces
segmentations which reflect the object’s symmetry, is robust
to small-scale surface noise, and delivers multiscale segmen-
tations by changing the skeleton simplification level [20].

Concluding, both curve and surface skeletons can be
used to produce shape segmentations with a number of
properties, as summarized in Table 2.

9 Conclusion

We have presented a novel framework for hierarchical seg-
mentation of 3D shapes. Being based on the formally de-
fined curve skeleton, our framework has a solid underpin-
ning. The produced segmentations inherit several desirable
properties, such as pose-invariance, from the curve skele-
ton and reflect the symmetry of the object. The definition of
the curve skeleton in terms of shortest geodesics gives rise
to a natural skeleton-to-boundary mapping. The meaning-
ful components are found using the curve skeleton junctions
and are combined into a hierarchical, level-of-detail segmen-
tation. Being piecewise geodesic, the segment borders are
smooth and non-twisting. Interestingly, because our method
is based on the curve skeleton representing the object’s inte-
rior, our method produces both a surface segmentation and
a corresponding volumetric segmentation. The framework
supports segmentations based on the critical points defined
as the curve skeleton junctions, but also defined in other
ways. A voxel-based implementation is provided. Besides
the segmentations, it computes multiscale curve skeletons
that are robust to boundary noise, and performs robust junc-
tion detection. We showed that our framework delivers good
results on a wide range of (noisy) objects. Finally, we dis-
cuss the limitations of curve-skeleton-based segmentations
for shapes which have a patch-type structure, and show how
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the surface skeleton can be used to produce patch-type seg-
mentations for such objects. In future work, we would like
to detect additional critical points to obtain segment borders
at curvature extrema of the object surface.
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