
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002)
D. Ebert, P. Brunet, I. Navazo (Editors)

An Augmented Fast Marching Method for Computing
Skeletons and Centerlines

Alexandru Telea, Jarke J. van Wijk

Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

alext|vanwijk@win.tue.nl

Abstract
We present a simple and robust method for computing skeletons for arbitrary planar objects and centerlines for 3D
objects. We augment the Fast Marching Method (FMM) widely used in level set applications 11 by computing the
paramterized boundary location every pixel came from during the boundary evolution. The resulting parameter
field is then thresholded to produce the skeleton branches created by boundary features of a given size. The
presented algorithm is straightforward to implement, has low memory costs and short execution times, and is
robust with respect to the used threshold and initial shape noisiness. The produced skeletons are very similar to
the ones delivered by more complex algorithms. Various 2D and 3D applications are presented.

1. Introduction

Skeletons and medial axes are of significant interest in many
application areas such as object representation 9, flow vi-
sualization 8, path planning, medical visualization 16, com-
puter vision 13� 3, and computer animation. Skeletons provide
a simple and compact representation of 2D or 3D shapes that
preserves many of the topological and size characteristics of
the original. Skeletons can be defined in several ways. One
of the first definitions was given by Blum 1� 2 as the locus of
the centers of maximal disks contained in the original ob-
ject. If the skeleton points are attributed with their distances
to the original object’s boundary, the skeleton can be used to
exactly reconstruct the shape it originates from 9.

Skeletons and medial axes can be produced in three main
ways. Morphological thinning methods iteratively peel off
the boundary layer by layer, identifying points whose re-
moval does not affect the object’s topology 17. However
relatively straightforward, thinning methods need intricate
heuristics to ensure the skeletal connectivity. Moreover, sev-
eral thinning methods do not produce a true skeleton in the
maximal disc sense mentioned above 1� 2. Geometric meth-
ods compute the Voronoi diagram of a discrete polyline-
like sampling of the boundary. The Voronoi diagram is the
boundary’s medial axis 9� 10. Such methods produce an ac-
curate connected skeleton, but are fairly complex to imple-

ment, require a robust boundary discretization, and are com-
putationally expensive.

A third class of methods computes the distance transform
(DT) of the object’s boundary. Recent approaches for com-
puting the DT use the robust and simple to implement Fast
Marching Method (FMM) introduced by Sethian 11 for evo-
lution of boundaries in normal direction with constant speed
(see Fig. 1). The skeleton lies along the singularities (i.e.
creases or curvature discontinuities) in the DT. These points
coincide with the points where the moving boundary col-
lapses onto itself, as the moving front coincides with the
DT’s isolines, or level sets 5.

The detection of the singularities of the DT (the evolving
front shock points) is however difficult. Direct computation
of the singularities is a numerically unstable and delicate
process 7� 3� 13, which usually cannot guarantee connected
and one-pixel-wide skeletons 17� 8. Kimmel et al. present a
DT-based method 5 which uses the observation that skele-
ton points are generated by compact boundary segments de-
limited by curvature maxima along the boundary. However,
this method relies on accurate detection of curvature ex-
trema along a possibly noisy boundary. Moreover, shapes
with holes need to be treated in a rather complex manner.
Siddiqi et al. 13 present another method which simulates
the front evolution by tracking marker particles. The shock

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

d) e)

c)a) b)

Figure 1: Object (a), distance transform DT (b), boundary
evolution (level sets) (c), skeleton (d), and DT elevation plot
(e)

points defining the skeleton are detected by finding loca-
tions where an energy conservation principle is violated. The
method is claimed to be more numerically stable than detect-
ing the DT singularities, but is considerably more difficult to
implement and computationally more expensive: A fine cov-
erage of the boundary with particles is needed, and particles
must be inserted and removed to preserve a constant particle
density.

Although attractive from a mathematical point of view,
virtually all methods based on singularity detection fail to
provide a detailed implementation, performance analysis,
and discussion on how to set their various parameters to
achieve the desired results. In most cases, such methods are
complex to implement, slow, and sensitive to their param-
eters’ choice (e.g. for numerical differentiation or skeleton
pruning), thus not directly usable by non experts in the field.

In this paper, we present a new skeletonization algorithm
which:

� is simple to implement (the detailed pseudocode is in-
cluded in this paper);

� produces skeletons that are very similar to the ones pro-
duced by several of the methods cited above, according to
our tests on the same datasets (see Sec. 4);

� delivers connected skeletons as well as distance data from
which the original object can be reconstructed;

� runs in real time on large 2D datasets;

� behaves robustly with respect to noisy boundaries (the
skeletons are not affected by spurious branches due to the
noise);

� has a single threshold which is simple to set by an unex-
perienced end user.

Overall, our method can be readily used e.g. by visualization
and computer graphics practitioners who need a robust, sim-
ple to code technique for producing skeletons, without the
need to get involved in the technical details of the process. In
Section 2, we present the Fast Marching Method (FMM) that
is at the core of our algorithm. Section 3 introduces our aug-
mentation to the FMM for computing skeletons. Section 4
presents several 2D and 3D applications. Finally, Section 6
concludes the paper.

2. Fast Marching Method

The key to our method is to integrate the observation that
skeleton points are generated by the collapse of compact
boundary segments 5 during the FMM algorithm’s front evo-
lution. In this section we describe the FMM algorithm. For a
full mathematical description, see 11� 12. The FMM algorithm
calculates a scalar field T by solving the so called Eikonal
equation:

��T �� 1 (1)

with T � 0 on the object’s boundary. The field T is a good
approximation of the distance to the boundary. The FMM
algorithm builds the solution T outwards from the smallest
known T values. This is done by maintaining a so called
narrow band of grid points around the evolving front and by
marching this narrow band forward, freezing the computed
T values of some points and bringing new ones into the nar-
row band. The FMM is easiest to explain algorithmically, as
follows. For every 2D grid point or pixel with coordinates
�i� j�, we store its DT floating-point value Ti j and a flag fi j.
The flag may have three values:

� BAND: the point belongs to the current position of the
moving front or narrow band. Its T value is undergoing
update.

� INSIDE: the point is inside the moving front. Its T value
is not yet known.

� KNOW N: the point is behind the moving front. Its T value
is already known.

The FMM algorithm has an initialization and a propagation
phase, as follows.

2.1. Initialization

T and f are initialized for all grid points by the code in
Fig. 2. Here MAX_VALUEdenotes a value larger than any
practically reachable T , e.g. 106.

Here NarrowBand is a heap container holding all BAND
points in ascending order of their T value. The C++ STL

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

for all points (i,j)
 if ((i,j) on initial boundary)
 {
 f(i,j)=BAND; T(i,j)=0;
 add (i,j) to NarrowBand;
 }
 else if ((i,j) inside boundary)
 {
 f(i,j)=INSIDE; T(i,j)=MAX_VALUE;
 }
 else /* (i,j) outside boundary */
 {
 f(i,j)=KNOWN; T(i,j)=0;
 }

Figure 2: FMM initialization code

multimap container 6 provides the desired implementa-
tion.

2.2. Propagation

After initialization, the FMM propagates the T and f infor-
mation by iterating the code shown in Fig. 3. Step 1 extracts
the first element from the heap, i.e. the point in the band
with the smallest T . Step 2 marches the evolving front in-
wards by adding new points to it. Step 3 computes T �k� l� by
solving equation 1 in point �k� l�. Finally, step 4 inserts point
�k� l� with its recomputed T in NarrowBand . This brings
new points in the narrow band and reorders existing narrow
band points whose T values have been recomputed, to main-
tain the narrow band sorted on increasing T . Equation 1 is
solved by finite difference discretization on a Cartesian grid.
Following 11� 12, the discretization of Eqn. 1 yields

max�D�xT��D�xT�0�2�max�D�yT��D�yT�0�2 � 1
(2)

where D�xT �i� j� � T �i� j�� T �i� 1� j� and D�xT �i� j� �
T �i� 1� j��T�i� j� and similarly for the y direction. Equa-
tion 1 can be directly solved by iteratively solving Eqn 2 at
every grid point, which leads to O�N2� computations for N
grid points. We use the more efficient upwind scheme intro-
duced by Sethian in 11. In detail, for every neighbor �k� l� of
the current point �i� j�, we solve the restriction of Eqn 2 over
each of the four 2D quadrants around �k� l� and retain the so-
lution that produces the smallest T value at �k� l�. Since im-
plementing the above is not straightforward to be done from
the mathematical description given in 11� 12, we provide the
full implementation of the above in the function solve()
in Fig. 3.

3. Augmented Fast Matching Method

The FMM presented in Sec. 2 computes the distance T from
the object’s boundary. In this section, we introduce our aug-
mentation to the FMM that produces the skeleton. Figure 4
shows an overview of the whole process, applied to a jagged
rectangle (see also color plate).

We exploit the observation that the skeleton points are al-
ways generated by compact boundary segments that ’col-
lapse’ as the front advances 5� 9� 10. As pointed by several
authors, the importance of a skeleton point is given by the
length of the boundary segment that collapsed into that point.
The idea behind our method is to determine, for every point
in the advancing front, the boundary point it came from. To
do this, we augment the FMM algorithm by one real value
U per grid point. Initially, we set U to zero in an arbitrary
boundary point. Starting from the U � 0 pixel, we assign a
monothonically increasing U to every boundary pixel, equal
to the distance, along the boundary, from that pixel to the
U � 0 pixel. U is thus a boundary parameterization with the
property that the distance between any two boundary points,
measured along the boundary, is equal to the points’ U dif-
ference. An exception to this are the points from which U
starts being propagated on each connected boundary seg-
ment, e.g. the point with U � 1 in Fig. 5 b and the points
U � 1 and U � 33 in Fig. 5 d. The treatment of these points
is described in Sec. 3.2.

1

2

3

4

5

6 7

8 9

10

11

12

13

14

1516

17181920

b)a)

1

2

3

4

5 6

7

8 9 10 11

12

13

14

15

16

17

18

19

20

21

222324252627

2829

30

31

32

33

34 35

36

37

38

39

40

4142

4344

45

46

47

48

49

d)c)

Figure 5: Objects (a,c) and the order in which U is assigned
to their boundaries (b,d)

After initialization, U is propagated along with T
(Fig. 4 c). To do this, we add a few statements to step 2 of the
propagation code (Sec. 2.2), as shown in Fig. 6 a. The prop-
agation of U marks every pixel inside the initial boundary
with the U value of the boundary point that arrived at that
location, due to the front evolution. U values are interpo-
lated, via averaging, to account for boundary points located
between the initial boundary pixels. Averaging takes place
on concave boundary segments which expand (get longer)

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

while (NarrowBand not empty)
{
 P(i,j)=head(NarrowBand); /* STEP 1 */
 remove P from NarrowBand;
 f(i,j)=KNOWN;
 for point (k,l) in {(i−1,j),(i,j−1),(i+1,j),(i,j+1)}
 if (f(k,l)!=KNOWN)
 {
 if (f(k,l)==INSIDE) f(k,l)=BAND; /* STEP 2 */
 sol=MAX_VALUE; /* STEP 3 */
 solve(k−1,l,k,l−1,sol);
 solve(k+1,l,k,l−1,sol);
 solve(k−1,l,k,l+1,sol);
 solve(k+1,l,k,l+1,sol);
 T(k,l)=sol;
 insert (k,l) in NarrowBand; /* STEP 4 */
 }
}

solve(int i1,int j1,int i2,int j2,float& sol)
{
 float r,s;
 if (f(i1,j1)==KNOWN)
 if (f(i2,j2)==KNOWN)
 {
 r = sqrt((2−(T(i1,j1)−T(i2,j2))*(T(i1,j1)−T(i2,j2)));
 s = (T(i1,j1)+T(i2,j2)−r)/2;
 if (s>=T(i1,j1) && s>=T(i2,j2)) sol=min(sol,s);
 else
 {
 s += r;
 if (s>=T(i1,j1) && s>=T(i2,j2)) sol=min(sol,s);
 }
 }
 else sol=min(sol,1+T(i1,j1));
 else if (f(i2,j2)==KNOWN) sol=min(sol,1+T(i1,j2));
}

Figure 3: FMM iteration code

due to front evolution. However, if the U values around the
current point differ by more than 2, this means the boundary
points they came from were not neighbors, since the maxi-
mal distance between two boundary neighbor points is

�
2,

realized in case of diagonally connected pixels (Fig. 6 b).
The above happens along convex boundary segments that
shrink (collapse) during front evolution. In this case, we have
detected a skeleton point, so no averaging of U is done – we
simply propagate further the U of one of the current point’s
neighors. The augmented FMM is illustrated in Fig. 7 where
we compute the skeleton of a rectangle. The U values on
the first three fronts evolved from the boundary are shown
in Fig. 7 b. Parallel to the rectangle’s edges, where no skele-
ton branch exists, U behaves as on the boundary, i.e. the U
difference between neighbor points is 1. However, along the
skeleton’s branches, this difference increases as we get fur-
ther from the boundary, as the 3D plot of U in Fig. 7 c shows.

Once the U field is computed, we find the skeleton points
by detecting its sharp discontinuities (Fig. 4 d,e). We re-
tain all points where U differs from the neighboring U’s
by more than a given threshold. This is roughly analogous
to computing a thresholded derivative of the U field. How-

... original FMM code ...
if (f(k,l)==INSIDE) /* STEP 2 */
{
 f(k,l)=BAND;
 a = average of U over KNOWN neighbors of (k,l);
 m = min of U over KNOWN neighbors of (k,l);
 M = max of U over KNOWN neighbors of (k,l);
 if (M-m<2) U(k,l) = a; else U(k,l) = U(i,j);
}
... original FMM code ...

a)

boundary
 pixels1

2

b)

Figure 6: Augmented FMM code (a) Boundary neighbor
distances (b)

ever, an essential advantage of our method as compared to
most derivative-based methods is that we do not need a

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

original
 image

boundary
 count

evolved
 count

 count
derivative

skeletoninitialization augmented
 FMM

derivative
computation thresholding

a) b) c) d) e)

Figure 4: Overview of the skeletionzation algorithm

a) b)

boundary

skeleton

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

11 12 13 14 15 16 17

12 13 14 15 16 17

6 13

5 14

154

c)

Figure 7: Rectangle and its skeleton (a). Detail of the aug-
mented FMM result around the rectangle’s lower left corner
(b). Complete U field (c)

mathematically accurate differentiation. The discontinuities
of U are strong enough so that the simple scheme outlined
above is sufficient. Moreover, we obtain connected skeleton
branches. Indeed, once the U values U1 and U2 of two neigh-
bor points p1 and p2 differ by more than some threshold v,
there will always be another neighbor q of p1 or p2 whose
U difference with respect to its own neighbors will exceed v.
Intuitively speaking, the reason for the above statement lies
in the order in which the points are visited to compute the
continuous function T which satisfies everywhere the condi-
tion ��T � � 1.

3.1. Threshold Choice

As mentioned previously, the U difference between neigh-
bor points increases as one goes further from the boundary.
The points closer to the skeleton’s main branches, and fur-
ther from its tips, have larger U differences (see Fig. 4 d).
To retain a given fraction of the skeleton’s stem, we thresh-
old the U difference field by a given fraction of its maxi-
mum. Alternatively, to prune all skeleton branches caused
by boundary details shorter than t pixels, we set the threshold
to t (Fig. 8). The pruning threshold has thus a precise geo-
metrical meaning, which makes it simple to set and interpret
by non experienced users. We have tested and validated the
accuracy of the above threshold based pruning for figures
where an analytic skeleton was known, such as rectangles.
For all our test cases (see also Fig. 13), setting the threshold
to some value between 20 and 40 pixels has given good re-
sults. For objects with noisy boundaries (Fig. 4 and 13 j,n),
we further increased the threshold to around 100 pixels to
prune the small skeleton branches created by the boundary
jaggies.

3.2. Special Boundary Points

As mentioned in Section 3, the property that U increases
monotonically along the boundary’s compact segments does
not hold for the points we start the parametrization from. For
the object in Fig. 9 a, there are three such points, correspond-
ing to its three disjoint boundary segments. Figure 9 b shows
the initial U values, as well as the numbering order, using
a rainbow colormap (blue denotes low values, red denotes
high values, see color plate). The obtained U field has thus
three false discontinuities corresponding to the three points
mentioned (Fig. 9 c). The skeleton (Fig. 9 d) get thus three
false branches, i.e. the vertical lines that connect it to the
boundary.

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

t=20 t=100 t=350t=200t=75

Figure 8: Feature-based skeleton pruning for different thresholds t

b)a)

1

2

3

c) d)

Figure 9: Treatment of special boundary points: original ob-
ject (a), initial U (b), computed U (c), and skeleton (d)

Removing these false branches is easy. We execute the
whole augmented FMM algorithm twice, starting the U ini-
tialization from different boundary locations, such as the
boundary pixels with the smallest, respectively largest y co-
ordinate. Next, we intersect the resulting skeletons to re-
move the false branches. This technique produced the cor-
rect skeletons in all the cases we have tested.

4. Applications

4.1. Skeletons

Figure 13 shows several applications of our method. For
comparison purposes, the input shapes a-h and j-n are taken
from 3� 13, respectively from 9. Our skeletons are visually

identical to the ones presented by the cited authors. The input
images range between 2502 and 6002 pixels. The complex-
ity of the FMM algorithm is roughly O�NlogN� for N pixels.
The skeletons are computed in subsecond time on a Pentium
II 500 MHz machine.

Figure 10: Voronoi diagrams (grey) of arbitrary 2D shapes
(black)

4.2. Voronoi Diagrams

A second application of the presented method is the compu-
tation of Voronoi diagrams of arbitrary planar objects. This
is done simply by computing the skeleton of the outer region
defined by the objects’ boundaries, which coincides with the
Voronoi diagram for the boundaries (see example in Fig. 10).
In contrast with other techniques for computing Voronoi di-
agrams 15� 4, our method handles, by definition, arbitrary 2D
objects and is, again, simple to implement. In this respect,
the technique presented here is more similar to the pixel-
based Voronoi diagram computation method presented by us
in 14. However the current method handles arbitrary bound-
ary shapes, we believe it would be difficult to extend it to
handle other distance functions besides the Euclidean dis-
tance.

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

 2D
slice

 2D
skeleton Z skeleton

 2D
slice

 2D
skeleton Y skeleton

 initial
volume

X slicing
 2D
slice

 2D
skeleton X skeleton

 3D
centerline

intersection

Y slicing

Z slicing

Figure 11: Centerline computation pipeline

4.3. 3D Centerlines

A much desired extension of the presented skeletonization
method would be to generalize it to the 3D case. The gen-
eralization of the augmented FMM algorithm to 3D is in-
deed trivial. Unfortunately, our method relies on an initial-
ization of the field U on the boundary such that the differ-
ence between the U values of two points is a measure for the
distance between them on the boundary. The 2D boundary
parametrization (Sec. 3) is, however, not straightforward to
generalize to 3D. The main reason behind the above is the
difference between the topological and ordering properties
of 2D curves and 3D surfaces.

However, we have exploited the 2D skeletonization
method for the computation of 3D centerlines. Loosely de-
fined, centerlines are curves (and not surfaces as the true 3D
skeletons). A point belongs to the centerline if there exists a
sphere, centered in this point, that touches the boundary at
opposite sides (as compared to any two points, in the case
of skeletons). Applications of centerlines include 3D path
planning and navigation 16, object recognition, and object
simplification 8.

We compute 3D centerlines as follows (see Fig. 11). First,
we extract the 2D skeletons of each axis-parallel 2D slice
of the 3D volume dataset, using the already presented 2D
skeletonization method. This produces three sequences of
2D skeletons, or three volumes, corresponding to the three
slicing directions, called the X, Y, and Z skeletons. Next, we
intersect these volumes, voxel by voxel, and obtain the 3D
centerline of the initial object. The idea behind the above
approach is that the voxels in the intersection belong, lo-
cally, to three axis-aligned 2D skeletons. These voxels are
thus at maximal distance from the boundary, measured in
the three orthogonal slice planes. This is a simplification of
the general case where one would have to measure the dis-
tance to the boundary along any arbitrary slicing plane – we
use three orthogonal circles instead of using a sphere. How-

a)

b) c)

Figure 12: Examples of 3D centerlines

ever, the above is often a sufficient approximation for the
typical snake-like objects for which centerlines are usually
computed. A drawback related to the above observation is
that, whereas the 2D skeletons are connected, the 3D cen-
terlines are not guaranteed to be so, especially if the initial
volume dataset has a low resolution.

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

The 3D centerline computation is still an O�NlogN� pro-
cess for N voxels. Practically, processing of a 5123 dataset
takes about 10 seconds on a Pentium III 800 MHz machine.
Figure 12 shows several examples of 3D centerlines. Fig-
ure 12 a shows the centerline of a 3D spiral object (5123

voxels). Figure 12 b shows the centerline of a more com-
plex 3D structure, showing that centerlines having a more
complex topology (branching points) are correctly detected.
Finally, Fig. 12 c shows the centerline of a frog duodenum,
extracted from the VTK frog dataset 18 (resolution is about
60x70x90 voxels).

It is important to stress here that the centerline compu-
tation is not the main focus of the method presented here
but only one of its possible applications. More specialized
centerline construction methods exist, such as the one pre-
sented by Wan et al in 16. Both Wan’s and our methods are
based on the same idea, namely performing a ’thinning’ or
inwards marching of the boundary and determinimg, for ev-
ery dataset voxel, the boundary voxel it came from. How-
ever, whereas we employ Sethian’s fast marching method
for the boundary evolution, Wan et al employ a graph-based
approach and graph-based distance definition. Since the two
definitions of the distance from the boundary are different
the computed centerlines may be different too. In terms of
timing, our algorithm is O�NlogN� for N voxels which is,
we understand, the same as the complexity of the algorithm
of Wan et al. The concrete timings are difficult to compare,
since the timings of 16 exclude the computation of the dis-
tance transform. Finally, we believe that our implementation
(presented in detail in this paper) is simpler as compared to
the one of the algorithm of Wan et al.

5. Acknowledgements

For the original idea of using the FMM to compute skele-
tons, as well as for subsequent inspiring discussions on the
various applications and properties of level set methods, we
are endebted to prof. Martin Rumpf from the Department of
Mathematics, Duisburg University, Germany.

6. Discussion and Future Work

The presented 2D skeletonization algorithm has several ad-
vantages as compared to other existing methods. First and
foremost, it is simpler to implement than most similar meth-
ods we are aware of – our complete C++ implementation
of about 500 lines of code is available at http://www.win.
tue.nl/�alext/SKELETON. Secondly, it runs quickly and re-
liably on large 2D datasets. Thirdly, there is a single thresh-
old, expressing the length of boundary features creating
skeleton branches, which is intuitive even for non experi-
enced end users. Finally, the produced skeletons are very
similar to the ones delivered by more complex methods.

The main next challenge is to find a generalization of the
algorithm for the 3D case. For this, we would need a method

to initialize the U field over the boundary, which would im-
mediately allow the computation of 3D skeletons and 3D
Voronoi diagrams of arbitrary objects. Separately, the 3D
centerline method could be considerably accelerated by us-
ing an adaptive version of the FMM algorithm, as described
in detail in 11.

References

1. H. BLUM, A transformation for extracting new descrip-
tors of shape, In W. Walthen-Dunn, editor, Models for
the Perception of Speech and Visual Form, MIT Press,
1967.

2. H. BLUM, R. N. NAGEL, Shape description using
weighted symmetric axis features, Pattern Recognition,
nr. 10, 1978, pp. 167-180.

3. S. BOUIX, K. SIDDIQI, Divergence-based Medial Sur-
faces, Proc. ECCV 2000, pp. 603-618, 2000.

4. K. HOFF, T. CULVER, J. KEYSER, M, LIN, D.
MANOCHA, Fast Computation of Generalized Voronoi
Diagrams Using Graphics Hardware, Proc. SIG-
GRAPH ’99, ACM Press, 1999, pp. 277-286.

5. R. KIMMEL, D. SHAKED, N. KIRYATI, A. M.
BRUCKSTEIN, Skeletonization vis Distance Maps and
Level Sets, Computer Vision and Image Understanding,
vol. 62, no. 3, pp. 382-391, 1995.

6. D. R. MUSSER, A. SAINI, STL Tutorial and Reference
Guide: C++ Programming with the Standard Template
Library, Addison-Wesley Professional Computing Se-
ries, 1996.

7. C.W. NIBLACK, P.B. GIBBONS, D.W. CAPSON, Gen-
erating skeletons and centerlines from the distance
transform, CVGIP: Graphical Models and Image Pro-
cessing, nr. 54, 1992, pp. 420-437.

8. F. REINDERS, M. E. D. JACOBSON, F. H. POST,
Skeleton Graph Generation for Feature Shape Descrip-
tion, Proc. IEEE VisSym 2000, Springer, 2000, pp. 73-
82.

9. R. L. OGNIEWICZ, Automatic Medial Axis Pruning by
Mapping Characteristics of Boundaries Evolving un-
der the Euclidean Geometric Heat Flow onto Voronoi
Skeletons, Harvard Robotics Laboratory, Technical Re-
port 95-4, 1995.

10. R. L. OGNIEWICZ, O. KUBLER, Hierarchic Voronoi
Skeletons, Pattern Recognition, nr. 28, 1995, pp. 343-
359.

11. J. A. SETHIAN, A Fast Marching Level Set Method for
Monotonically Advancing Fronts, Proc. Nat. Acad. Sci.
vol. 93, nr. 4, pp. 1591-1595, 1996.

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

12. J. A. SETHIAN, Level Set Methods and Fast March-
ing Methods, Cambridge University Press, 2nd edition,
1999.

13. K. SIDDIQI, S. BOUIX, A. TANNENBAUM, S. W.
ZUCKER, The Hamilton-Jacobi Skeleton, Intl. Conf. on
Computer Vision ICCV ’99, p. 828-834, 1999.

14. A. TELEA, J. J. VAN WIJK, Visualization of Gener-
alized Voronoi Diagrams, Proc. IEEE VisSym ’01, p.
165-174, Springer, 2001.

15. J. VLEUGELS, M. OVERMARS, Approximating Gener-
alized Voronoi Diagrams in Any Dimension, Technical
Report UU-CS-1995-14, Utrecht University, 1995.

16. M. WAN, F. DACHILLE, A. KAUFMAN, Distance-
Field Based Skeletons for Virtual Navigation, Proc.
IEEE Visualization ’01, pp. 239–246, IEEE CS Press,
2001.

17. Y. ZHOU, A. W. TOGA, Efficient Skeletonization of
Volumetric Objects, IEEE TVCG, vol. 5, no. 3, 1999,
pp. 210-225.

18. VTK Homepage, http://www/kitware.com .

c� The Eurographics Association 2002.

Telea, Van Wijk / Augmented Fast Marching Method

h) i)g)

n)

e) f)

j) k)
l) m)

1

2

3

o)

p

q r rs t u

a) b) c) d)

Figure 13: Skeletonization examples

c� The Eurographics Association 2002.

