
A Visual Analytics Toolset for Program Structure, Metrics, and Evolution
Comprehension

Dennie Reniersa, Lucian Voineaa, Ozan Ersoyb, Alexandru Teleab,∗

aSolidSource BV, Eindhoven, the Netherlands
bInstitute Johann Bernoulli, University of Groningen, the Netherlands

Abstract

Software visual analytics (SVA) tools combine static program analysis and repository mining with information visualization
to support program comprehension. However, building efficient and effective SVA tools is highly challenging, as it involves
software development in program analysis, graphics, information visualization, and interaction. We present a SVA toolset for
software maintenance, and detail two of its components which target software structure, metrics and code duplication.We
illustrate the toolkit’s application with several use cases, discuss the design evolution of our toolset from a set of research
prototypes to an integrated, scalable, and easy-to-use product, and argue how these can serve as guidelines for the development
of future software visual analytics solutions.

Keywords: Software visualization, static analysis, visual tool design

1. Introduction

Software maintenance covers 80% of the cost of modern software systems, of which over 40% represent software under-
standing [1, 2]. Although many visual tools for software understanding exist, most know very limited acceptance in the IT
industry. Key reasons for this are limited scalability of visualizations and/or size of datasets, long learning curves, and poor
integration with established software analysis or development toolchains [3, 4, 5].

Visual analytics(VA) integrates graphics, visualization, interaction, data analysis, and data mining to support reasoning and
sensemaking for complex problem solving in engineering, finances, security, and geosciences [6, 7]. These fields share many
similarities with software maintenance in terms ofdata(large databases, highly structured text, and graphs),tasks(sensemaking
by hypothesis creation, refinement, and validation), andtools (combined analysis and visualization). VA explicitly addresses
tool scalability and integration, as opposed to pure data mining (whose main focus is scalability) or information visualization
(InfoVis, mainly focusing on presentation). As such, VA is apromising model for building effective and efficient software visual
analysis (SVA) tools. However, building VA solutions for software comprehension is particularly challenging, as developers
have to master technologies as varied as static analysis, data mining, graphics, information visualization, and user interaction
design.

In this paper, we present our experience in building SVA tools for software maintenance. We outline the evolution path
from a set of research prototypes to a commercial toolset which is used by many end-users in the IT industry. Our toolset
supports static analysis, quality metrics computation, clone detection, and research-grade InfoVis techniques suchas table
lenses, bundled graph layouts, cushion treemaps, and densepixel charts. The toolset contains several end-user applications, of
which we focus here on two: visual analysis of program structure and code duplication. These applications share elements at
both design and implementation level, and can be used separately or combined to support tasks such as detecting correlations
of structure, dependencies, and quality metrics; assessing system modularity; and planning refactoring.

∗Corresponding author
Email addresses:dennie.reniers@solidsource.nl (Dennie Reniers),lucian.voinea@solidsource.nl (Lucian Voinea),

o.ersoy@rug.nl (Ozan Ersoy),a.c.telea@rug.nl (Alexandru Telea)
URL: www.solidsource.nl (Dennie Reniers),www.solidsource.nl (Lucian Voinea),www.cs.rug.nl/˜alext (Alexandru Telea)

1

The contributions of this paper are as follows:

• present the design decisions and evolution path of a SVA toolset for program comprehension from research prototypes
into an actual product;

• present the lessons learned in developing our toolset in both research and industrial contexts, with a focus on efficiency,
effectiveness, and acceptance;

• present supporting evidence for our design decisions basedon actual usage in practice.

Section 2 introduces software visual analytics. Section 3 details the general architecture of our toolset. Section 4 details the
toolset’s components for data mining and visualization of software structure, metrics, and code duplicates. Section 5illustrates
the usage of our toolset in a real-world industrial softwareassessment case. Section 6 discusses the challenges of developing
efficient, effective, and accepted SVA tools from our toolset’s experience. Finally, section 7 concludes the paper.

2. Related Work

Software visual analytics can be roughly divided into data mining and visualization, as follows.
Data miningcovers the extraction of raw data from source code, binaries, and source control management (SCM) systems

such as CVS, Subversion, Git, CM/Synergy, or ClearCase. Rawdata delivered by static syntax and semantic analysis is refined
into structures such as call graphs, control flow graphs, program slices, code duplicates (clones), software quality metrics such
as complexity, cohesion, and coupling, and change patterns. Static analyzers can be divided intolightweight ones, which
use a subset of the target language grammar and semantics andtypically trade fact completeness and accuracy for speed and
memory; andheavyweightones, which do full syntactic and semantic analysis at higher cost. Well-known static analyzers
include LLVM, Cppx, Columbus, Eclipse CDT, and Elsa (for C/C++), Recoder (for Java), and ASF+SDF (a meta-framework
usable with different language-specific front-ends) [8]. Metric tools include CodeCrawler [9], Understand, and Visual Studio
Test Suite (VSTS). An overview of static analysis tools witha focus on C/C++ is given in [10]. Practical insights in software
evolution and software quality metrics are given in [11, 12,13].

Software visualization(SoftVis) uses information visualization (InfoVis) techniques to create interactive displays of soft-
ware structure, behavior, and evolution. Recent trends in SoftVis include scalable InfoVis techniques such as treemaps, icicle
plots, bundled graph layouts, table lenses, parallel coordinates, multidimensional scaling, and dense pixel charts to increase the
amount of data shown to the user at a single time. An excellentoverview of software visualization is given in [14]. Well-known
software visualization systems include Rigi, VCG, aiSee, and sv3D (for structure and metrics); and CodeCity and SeeSoft (for
software evolution).

Although tens of new software analysis and visualization tools emerge every year from research, as shown by the proceed-
ings of e.g. ACM SOFTVIS, IEEE VISSOFT, MSR, ICPC, WCRE, and CSMR, building usefulandusedtools is difficult.
Reasons cited for this include the small return-on-investment and recognition of tools in academia (as opposed to papers), high
maintenance cost, and high ratio of infrastructure-to-novelty (truly usable tools need fine-tuned implementations, help modules,
and platform-independence, while research prototypes canfocus on novelty) [5, 15]. Combining analysis and visualization in
the same tool makes development only more complex, so good design patterns and guidelines are essential.

Given all these, how to bridge the gap between SVA tool prototypes and actual efficient and effective products? And how
to combine analysis and visualization software in maintainable tool designs?

3. Toolset Architecture

In the past decade, we have built over 20 SVA tools for software requirements, architecture, behavior, source code, structure,
dependencies, and evolution. We used these tools in academic classes, research, and industry, in groups from a few to tens of
users. Latest versions of our tools have formed the basis of SolidSource, a company specialized in software visual analytics [16].
Table 1 outlines our most important tools (for a full list andthe actual tools, see [17]). We next present the latest version of our
toolset, discuss the design decisions and lessons learned during the several years of its evolution, and illustrate itsworking with
two of its most recent tools.

2

Tool Targeted data types Visual techniques Analysis techniques
SoftVision software architecture node-link layouts none (visualization tool only)
(2002) [18] (2D and 3D)
CSV source code syntax pixel text, cushions C++ static analysis
(2004) [19] and metrics (gcc based parser)
CVSscan [20] file-level evolution dense pixel charts CVS data mining
(2005) annotated text (authors and line-level changes)
CVSgrab project-level evolution dense pixel charts, CVS/SVN data mining
(2006) [21] cushions (project-level changes)
MetricView UML diagrams and node-link layouts (2D), C++ lightweight static analysis
(2006) [22] quality metrics table lenses (class diagram extraction)
MemoView software dynamic logs table lenses, timelines, C runtime instrumentation
(2007) [23] (memory allocations) cushions (libc malloc/free interception)
SolidBA build dependencies table lenses, C/C++ build dependency mining
(2007) [24] and build cost metrics node-link layouts (2D) and automated refactoring
SolidFX reverse engineering pixel text, table lenses, C/C++ heavyweight error-tolerant
(2008) [25] annotated text static static analysis
SolidSTA file and project-level dense pixel charts, CVS/SVN/Git data mining
(2008) [16] evolution cushions, timelines and source code metrics
SolidSX structure, associations, HEB layouts, treemaps, .NET, C++, Java
(2009) [16] metrics table lenses, cushions lightweight static analysis
SolidSDD code duplicates, HEB layouts, treemaps, C, C++, Java, C# parameterizable
(2010) [16] code structure, metrics table lenses, pixel text syntax-aware clone detection

Table 1: Software visual analytics tools - evolution history. Tools discussed in this paper are in bold (Sec. 4)

Our toolset uses a simple dataflow architecture (Fig. 1). Rawinput data comes in two forms: non-versioned source code
or binaries, and versioned files stored software repositories. From raw data, we extract severalfacts: syntactic and semantic
structure, static dependency graphs, and source code duplication. Relational data is stored into a SQLite database whose entries
point to flat text files (for actual source code content) and binary files (for complete syntax trees, see 4.1.1). Fact extraction
is implemented by specific tools: parsers and semantic analyzers for source code, binary analyzers for binary code, and clone
detectors for code duplication (see Sec. 4).

Besides facts, our database stores two other key elements: selections and metrics.Selectionsare sets of facts (or other
selections) and support the iterative data refinement in theso-called visual sensemaking cycle of VA [6, 7]. They are created
either by tools,e.g. extraction of class hierarchies or call graphs from annotated syntax graphs (ASGs), or by users during
interactive data analysis. Selections have unique names bywhich they are referred by their clients (tools) and also persistently
saved.Metricsare numerical, ordinal, or categorical attributes which can be associated to facts or selections, and are computed
either by tools (e.g. complexity, fan-in, fan-out, cohesion, and coupling) or added as annotations by users. Each selection is
stored as a separate SQL table, whose rows are its facts, and columns are the fact attributes (unique ID, type, location incode
or binary, and metrics). This model is simple and scales wellto fact databases of hundreds of thousands of facts with tens
of metrics. Trees and graphs can also be stored as SQL tables in terms of adjacency matrices. Simple queries and filters can
directly be implemented in SQL. More complex queries have the same interface as the other components: they read one or
more selections and create an output selection.

Selections are the glue that allows composing multiple analysis and visualization tools. All analysis and visualization
components in our toolkit are weakly typed: They all read selections, and optionally create selections (see Fig. 1). In this way,
existing or new tools can be flexibly composed, either statically or at run-time, with virtually no configuration costs. To ensure
consistency, each component decides internally whether (and how) it can execute its function on a given input selection.

Visualizationsdisplay selections and allow users to interactively navigate, pick elements, and customize the visual aspect.
Since they only receive selections as inputs, they ’pull’ their required data on demand as needed,e.g. a source code viewer
opens the files referred by its input selection to get the textto render. Hence, data can be efficiently handled by reference
(selections referred to by name), but tools can also decide to cache data internally to minimize traffic with the fact database, if
so desired. However, this decision is completely transparent at the toolkit level.

After lengthy experimentation with many types of visualizations, we limited ourselves to a small subset hereof, as follows.
Table lensesshow large tables by zooming out the table layout and displaying cells as pixel bars scaled and colored by data

3

Source code
- C, C++

- Java

- .NET/C#/VB

Static analysis
- code parsing

- binary analysis

- code duplication

Visualizations
- edge bundles

- treemaps

- table lenses

- annotated text

- dense pixel charts

- SQLite database

- XML & plain text files

- 3rd party formats

Persistent storage

Facts and metrics
- compound graphs

 - hierarchy

 - association

 - node/edge attributes

- metrics

 - string, numericalEvolution data
- Subversion

- CM/Synergy

- CVS, Git

- IDs of facts in the

 fact database

Selections

refer to

Repository mining

- changes

- authors

- commit logs
readwrite

Queries & filters
- call graphs

- code patterns

- metric engines

Fact database

Graphics engines

- OpenGL

- GLUT, FTGL

- wxWidgets

Applications

Scripting engines

- Python

- Tcl/Tk

- makefiles

SolidFX

SolidSX

SolidSDD

SolidSTA

Legend

data flow

implemented using

refers to

Figure 1: Toolset architecture (see Section 3)

values [26]. Subpixel sampling techniques enhance this idea allowing to visualize tables up to hundreds of thousands of
rows on a single screen [27].Hierarchically bundled edges(HEBs) compactly show compound (structure and association)
software graphs,e.g. contaninment and call relations, by bundling association edges with structure data [28].Squarified
cushion treemapsshow software structure and metrics scalably for up to tens of thousands of elements on a single screen [29].

A single treemap, HEB, or table lens can show the correlationof just a few metrics and/or relations. To augment this, we
use the well-knownmultiple correlated viewsInfoVis concept. Each view can have its own user-specified input selection and
visual look-and-feel. Mouse-based picking is synchronized between all views: selecting items in one view updates a ’user
selection’ which is monitored by other views, using an Observer pattern. Besides the above, our toolset also provides classical
visualizations: metric-annotated source code text, tree browsers, customizable color maps, legends, annotations, timelines,
details-on-demand at the mouse cursor, and text and metric-based search facilities.

4. Toolset Components

Our toolset consists of several end-user applications which share analysis and visualization components. We next describe
two of these applications: the SolidSX structure analyzer (Sec. 4.1) and the SolidSDD duplication detector (Sec. 4.1).The fully
operational tools, including Windows-based installers, manuals, videos, and sample datasets are freely available for researchers
from [16].

4.1. SolidSX: Structural Analysis

The SolidSX (Software eXplorer) supports the task of analyzing software structure, dependencies, and metrics. Several
built-in parsers are provided: Recoder for Java source and bytecode files [30], Reflector for .NET/C# assemblies [31], and
Microsoft’s free parser for Visual C++.bscsymbol files. Built-in filters refine parsed data into a compound attributed graph
consisting of one or several hierarchies,e/g. folder-file-class-method containment and namespace-class-method containment;
dependencies,e.g.calls, symbol usage, inheritance, and package or header inclusion; and basic metrics,e.g.code and comment
size, cyclomatic complexity, fan-in, fan-out, and symbol source code location.

4

4.1.1. Static Analysis: Ease of Use
Setting up static code analysis is notoriously complex, error-prone, and time consuming. For .NET/VB/C#, Java, and

Visual C++, we succeeded incompletelyautomating this process. The user is only required to input aroot directory for code
and, for Java, optional class paths. C/C++ static analysis beyond Visual Studio proves highly challenging. SolidSX canread
static information created by our separate SolidFX C/C++ static analyzer [25]. Although SolidFX is scalable to millions of
lines of code, covers several dialects beyond Visual C++ (gcc, C89/99, ANSI C++), robustly handles incorrect and incomplete
code, integrates a preprocessor, provides a Visual C++ project file parser, and uses so-called compiler wrapping to emulate the
gcc and Visual C++ compilers [32], users still typically need tomanually supply many per-project defines and include paths.
Moreover, compiler wrapping requires the availability of aworking build system on the target machine. The same is true for
other heavyweight parsers such as Columbus [32] or Clang [33].

A second design choice regards performance. For Java, Recoder is close to ideal, as it delivers heavyweight information
with 100 KLOC/second parse speed on a typical PC computer. Strictly speaking, visual structure-and-metric analysis only
needs lightweight analysis (which is fast) as the information graininess typically does not go below function level. For .NET,
the Reflector lightweight analyzer is fast, robust, and simple to use. The same holds for Microsoft’s.bscsymbol file parser.

For C/C++ beyond Visual Studio, a lightweight, robust, easy-to-use analyzer is still not available. After experimenting with
many such tools,e.g.CPPX [34], gccxml, and MC++, we found that these often deliver massively incorrect information, mainly
due to simplified preprocessing and name lookup implementations. The built-in C/C++ parsers of Eclipse CDT, KDevelop,
QtCreator, and Cscope [35] are somehow better in correctness, and can also work incrementally upon code changes. However,
these parsers depend in complex ways on their host IDEs and donot have well-documented APIs. Extended discussions with
Roberto Raggi, the creator of the KDevelop and QtCreator parsers, confirmed this difficulty.

4.1.2. Structure Visualization
SolidSX offers four views (Fig. 2 top): classical tree browsers, table lenses of node and edge metrics, treemaps, and a

HEB layout for compound graphs [28]. All visualizations have carefully designedpresetswhich allow one to use them with
no additional customization. They all depict selections from the fact database created by the code analysis step. Userscan
also create selections in any view by either direct interaction or custom queries. These two mechanisms realize the linked view
concept, which enables users to easily create complex analyses of correlations of structure, dependencies, and metrics along
different viewpoints. Figure 2 top) illustrates this on a C#system of around 45000 LOC (provided with the tool distribution).
The HEB view shows function calls over system structure: caller edge ends are blue, callee edge ends are gray. Node colors
show McCabe’s code complexity metric on a green-to-red colormap, thereby enabling complexity correlation with the system
structure. We see that the most complex functions (warm colors) are in the module and classes located top-left in the HEB
layout. The table lens view shows several function-level code metrics, and is sorted on decreasing complexity. This allows one
to see how different metrics correlate with each other. Alternatively, one can selecte.g. the most complex or largest functions
and see them highlighted in the other views. The treemap viewshows a flattened system hierarchy (modules and functions
only), with functions ordered top-down and left-to-right in their parent modules on code size, and colored on complexity. The
visible ’hot spot’ indicates that complexity correlates well with size. Constructing theentire scenario, including the static
analysis, takes about 2 minutes and under 20 mouse clicks.

4.1.3. Toolchain Integration
Similarly to Koschke [5], we discovered thatintegration in accepted toolchains is a key acceptance factor. To ease this

process, we added alistenermechanism to SolidSX. The tool listens for command events sent asynchronously on a specified
TCP/IP port,e.g. load a dataset, zoom on some data subset, change view parameters, and also sends user interaction command
events to a second port (e.g.user has selected some data). This allows integrating SolidSX in any third-party tool or toolchain
by building thin wrappers which read, write, and process desired events. No access to the tool’s source code is required.
For example, we integrated SolidSX in the Visual Studio IDE by writing a thin plug-in of around 200 LOC which translates
between the IDE and SolidSX events (Fig. 2 bottom). Selecting and browsing code in the two tools is now in sync. The open
SQLite database format further simplifies integration at data level. Integrating SolidSX in Eclipse, KDevelop, and QtCreator is
under way and is relatively easy, once we finalize the data importers from these IDEs’ proprietary fact databases into ourSQL
database.

5

Treemap view

Radial view

Tree browser

Table lens
code size complexity

Figure 2: Top: SolidSX views (tree browser, treemap, table lens, radial HEB); Bottom: Visual Studio integration of SolidSX using a socket-baset mechanism
(see Section 4.1.3) 6

4.2. SolidSDD: Clone Detection

Code duplication detection, or clone detection, is an important step in maintenance tasks such as refactoring, redocumen-
tation, architecture extraction, and test case management. Although hundreds of papers on this topic exist, only few clone
detectiontoolsoffer the clone information in effective ways for assistingrefactoring activities.

We addressed the above by developing SolidSDD (Software Duplication Detector). SolidSDD implements an extended
version of the CCfinder tool [36] which combines lightweightsyntax analysis and token-based detection. The detection is
user-configurable by clone length (in statements), identifier renaming (allowed or not), size of gaps (inserted or deleted code
fragments in a clone), and whitespace and comment filtering.However, the main novelty in SolidSDD is in how clones are
visualized.

Given a source code tree (C, C++, Java, or C#), SolidSDD constructs a SQL database containing a duplication graph, in
which nodes are cloned code fragments (in the same or different files) and edges indicate clone relations. Hierarchy information
is added to this graph either automatically (from the code directory structure) or from a user-supplied dataset (e.g. from static
analysis). The result is a compound graph. Nodes and edges can have metrics,e.g. percentage of cloned code, number of
distinct clones, and whether a clone includes identifier renaming or not. Metrics are automatically aggregated bottom-up using
the hierarchy information.

Figure 3 shows SolidSDD in use to find code clones in the well-known Visualization Toolkit (VTK) library [37]. On VTK
version 5.4 (2420 C++ files, 668 C files, and 2660 headers, 2.1 MLOC in total), SolidSDD found 946 clones in 280 seconds on
a 3 GHz PC with 4 GB RAM. For replication ease, we simply used the default clone detection settings of the tool. Figure 3 a
shows the code clones atop of the system structure with SolidSX. Hierarchy shows the VTK directory structure, with files as
leaves. Edges show aggregated clone relations between files: file a is connected to fileb whena andb share at least one clone.
Node colors show the total percentage of cloned code in the respective subsystem with a green-to-red (0..100%) colormap.
Edge colors show percentage of cloned code in the clone relations aggregated in an edge. Figure 3 a already shows that VTK
has quite many intra-system clones (short edges that start and end atop of the same rectangle) but also several inter-system
clones (longer edges that connect rectangles located in different parts of the radial plot). Inter-system clones are arguably less
desirable.

Three subsystems have high clone percentages:examples(S1), bin (S2) andFiltering (S3). Browsing the actual files, we
saw that almost all clones inexamplesandbin are in sample code files and test drivers which contain large amounts of copy-
and-paste. Clones inFiltering, a core subsystem of VTK, are arguably more worth removing. In Fig. 3 b, we use SolidSX’s
zoom and filter functions to focus on this subsystem and select one of its high-clone-percentage filesf (marked in black) which
has over 50% cloned code. When we selectf , only its clone relations are shown. We call the set of filesfc with which f shares
clones theclone partnersof f . We see that all clone partners off are located in the sameFiltering subsystem, except one (g)
which is in theRenderingsubsystem.

Figure 3 c shows additional functions offered by SolidSDD. The top light-blue table shows all system files with several
metrics: percentage of cloned code, number of clones, and presence of identifier renaming in clones. SolidSDD’s views are
linked with SolidSX’s views via the socket mechanism outlined in Sec. 4.1.3, so the selected filef in Fig. 3 c is also highlighted
in this table in red. The table below shows the clone partner files fc of f . In this table, we can identify the fileg which shares
clones withf but is in another subsystem. We also see here thatg contains about 50% of code cloned fromf . We selectg and
use the two text views (at the bottom of Fig. 3 b) to examine in detail all clones betweenf andg. The left view shows the first
selected file (f) and the right view the selected clone partner (g). Scrolling of these views is automatically synchronized so one
can easily follow corresponding code fragments. Text is color-coded as follows: non-cloned code (white), code fromf which
is cloned ing (light blue), renamed identifier pairs (green in left view, yellow in right view), and code fromf which is cloned
but whose clones are located in some other file thang (light brown). The last color allows us to navigate fromf to other clone
partners: Clicking on the light brown code in the left text view (f) in Fig. 3 c replaces the fileg in the right view by that clone
partner off (let us call ith) with which f shares the brown code, and also selectsh in the clone partner list view. Fig. 3 d shows
this perspective. We now notice that the code inf which is part of the clonef − g (light blue in Fig. 3 c) isincludedin the
clone f − h (light blue Fig. 3 c).

The SolidSDD-SolidSX combination offers many other perspectives and analyses, as detailed by its manual. Fig. 3 e shows
a final example. We use SolidSX’s table lens to sort all files bypercentage of cloned code and zoom out to see a distribution
of this metric (sixth column from right). We see that around 30% of all files contain some amount of cloning. Interactively
selecting the top 20% files in the table lens highlights all files having>80% cloned code in the radial system view in black - we

7

a) Overview b) Select file f

c) Examine clones f-g

e) Highly-cloned files

node

colormap

edge

colormap

S3

S1 S2

clone partner files f
c

file f

clone partners f
c

file g

file g

file f file g

clone clone

file f file h

file h

file f

files having >80%

cloned code

Color legend for views a-d

non-cloned code

clone shown in both windows
clone partner not shown

identifier renamed

(shown as in right window)

abc cloned code under mouse

selection inspector

table lens controls

d) Examine clones f-h

Figure 3: SolidSDD clone detector visual analysis of the VTKcode base (see Sec. 4.2)

8

see that every single subsystem in VTK contains such files. Details on the selected files are shown in the selection inspector at
the right. This type of visualization supports refactoringplanning by giving insight on where recoding activities would need to
take place in order toe.g.remove the largest clones.

5. Toolset Assessment in Practice

We have used our SVA toolset in many applications, both in research [19, 38] and the industry [24, 39, 25]. We next
briefly describe one application which outlines the added value of strong interplay between the two tools discussed so far.
To further outline the extensibility of our toolset, this application briefly introduces one additional tool: SolidSTA, a visual
analytics application for software evolution data mining.SolidSTA uses the same dataflow architecture (Sec. 3) and followed
the same development path from a research prototype [21] to ascalable, easy-to-use tool as SolidSX and SolidSDD. A detailed
description of SolidSTA is provided in [21]. The tool is freely available for researchers from [16].

A major automotive company developed an embedded software stack of 3.5 million lines of C code in 15 releases over 6
years with three developer teams in Western Europe, EasternEurope, and Asia. Towards the end, it was seen that the project
could not be finished on schedule and that new features were hard to introduce. The management was not sure what went
wrong. The main questions were: was the failure caused by badarchitecture, coding, or management; and how to follow up
- start from scratch or redesign the existing code. An external consultant team performed a post-mortem analysis using our
toolset (SolidSDD, SolidSTA, SolidSX). The team had onlyone weekto deliver its findings and only the code repository as
information source. For full details, see [40].

The approach involved the classical VA steps: data acquisition, hypothesis creation, refinement, (in)validation, andresult
aggregation and presentation (Fig. 4). First, we mined change requests (CRs), commit authors, static quality metrics,and call
and dependency graphs from the CM/Synergy repository into our toolset’s SQL fact database using SolidSTA (1). Next, we
examined the distribution of CRs over project structure. Several folders with many open CRs emerged (red treemap cells in
Fig. 4 (2)). These correlate quite well with the team structure: the ’red’ team owns most CRs (3). To further see if this is a
problem, we looked at the CR distribution over files over time. In Fig. 4 (4), files are shown as gray lines vertically stacked
on age (oldest at bottom), and CRs are red dots (the same layout is usede.g. in [21]). The gray area’s shape shows almost no
project size increase in the second project half, but many red dots overall files in this phase. These are CRs involving old files
that were never closed. When seeing these images, the managers instantly recalled that the ’red’ team (located in Asia) had
lasting communication problems with the European teams, and acknowledged that it was a mistake to assign so many CRs to
this team.

We next analyzed the evolution of various quality metrics: fan-in, fan-out, number of functions and function calls, and
average and total McCabe complexity. Static analysis is done using our heavyweight analyzer SolidFX [25]. Since this isa
one-time analysis rather than an incremental change-and-reanalyze path, speed and configuration cost are not essential, so most
of the analyzers listed in Sec. 4.1.1 could be used equally well. The graphs in (5) show that these metrics have a slow or no
increase in the second project half. Hence, the missed deadlines were not caused by code size or complexity explosion. Yet,
the average complexity per function is high, which implies difficult testing. This was further confirmed by the project leader.

Finally, to identify possible refactoring problems, we analyzed the project structure using SolidSX. Fig. 4 (6) shows disal-
lowed dependencies,i.e. modules that interact bypassing interfaces. Fig. 4 (7) shows modules related by mutual calls, which
violate the product’s desired strict architectural layering. These two views suggest difficult step-by-step refactoring and also
difficult unit testing. Again, these findings were confirmed by the project leaders.

6. Discussion

Based on our SVA tool building experience, we next try to answer several questions of interest for our audience1. To clarify
the standpoints taken, we first introduce the concept of a tool value model, along the lines of the well-known lean development
cost model [41]: We state that a SVA tool is useful if it delivers highvaluewith minimalwasteto its stakeholder user. Different
users (or stakeholders) will thus assess the same tool differently as they have different value and waste models [42]. Hence, rhe
answers to our questions of interest are strongly dependenton the stakeholder perspective chosen, as follows.

1as taken from the WASDeTT 2010 call for papers (www.info.fundp.ac.be/wasdett2010)

9

Software repository

static mining evolution mining

Fact database

Stakeholders Consultants
interpret modify

Resulting

images

Change assessment

Evolution assessment

Quality metric evolution assessment Structural assessment

disallowed

dependencies

mutual

calls

1

2

3

4

5

6

7

8

Team assessment

Result interpretation

Figure 4: Data collection, hypothesis forming, and result interpretation for product and process assessment (Sec. 5). Arrows and numbers indicate the order of
the performed steps

6.1. Should academic tools be of commercial quality?

We see two main situations here. If tools are used by researchers purely to test new algorithms or ideas,e.g. a new
visualization layout atop of the HEB implemented in SolidSX[38], then large investments in tool infrastructure (Sec. 2) is seen
as waste. If tools are needed in case studies with external users or, even stronger, in real-life projects, then their usability is key
to acceptance and success [5, 43, 39]. For example, valuableinsight obtained from user-testing our toolset on large software
projects with more than 70 students, 15 researchers, and 30 IT developers could never have been reached if our tools had not
been mature enough for users to accept working with them in the first place. Hence, we believe that academic tools intendedfor
other users than their immediate researcher creators should not compromise oncritical usability (e.g. interactivity, scalability,
robustness). However, effort required foradoptability(e.g.manuals, installers, how-to’s, support of many input/output formats,
rich GUIs), which is critical only in later deployment phases, can be limited.

6.2. How to integrate and combine independently developed tools?

This is an extremely challenging question as both the integration degree required and the tool heterogeneity vary widely in
practice. For SVA tools, we have noticed the following practical patterns to provide good returns on investment, in increasing
order of difficulty:

10

• dataflow: Tools communicate by reading and writing several data files in standardized formats,e.g. SQL for tables,
GXL and XML (for attributed graphs) [44], and FAMIX and XMI (for design and architecture models) [45]. This easily
allows creating dataflow-like tool pipelines, like the excellent Cpp2Xmi UML diagram extractor involving Columbus
and Graphviz [46].

• shared databases:Tools communicate by reading and writing a single shared fact database which stores code, metrics,
and relations, typically as a combination of text files (for code), XML (for lightweight structured data), and proprietary
binary formats (for large datasets such as ASGs or executiontraces). This is essentially the model used by Eclipse’s
CDT, Visual Studio’s Intellisense, and SolidSX. As opposedto dataflows, shared databases support the much finer-
grained data access required by interactive visualizationtoolse.g. for real-time browsing of dependencies (SolidSX) or
symbol queries (Eclipse, Visual Studio, SolidFX). However, adding third-party tools to such a database requires writing
potentially complex data converters.

• common API:Tools communicate by using a centralized APIe.g. for accessing shared databases but also executing
operations on-demand. This allows functionality reuse andcustomization at a finer-grained level of ’components’ rather
than monolithic tools. Although a common API does not necessarily enforce a shared tool implementation (code base),
the former typically implies the latter in practice. API examples for SVA tools are the Eclipse, Visual Studio, and
CodeCrawler [9] SDKs and, at a lower level, the Prefuse and Mondrian toolkits for constructing InfoVis applications [47,
48]. Our own toolset also offers a common C++ API for the tablelens, treemap, and HEB visualizations which allowed
us to easily embed these in a wide range of applications, seee.g. [27, 39, 40]. Common APIs are more flexible than
shared databases, as they allow controlanddata flow composition. However, they are much harder to use inpractice, as
they impose coding restrictions and high learning costs (for tool builders) and costly maintenance (for API providers).

In practice, most SVA toolsets use the dataflow or shared database model which nicely balances costs with benefits. This
is the case of our toolset (see Sec. 3) and also the conceptually similar SQuAVisiT toolset [49]. The main difference between
SQuAVisiT and our toolset is the integration level: in our case, analysis and visualization are tighter integrated,e.g.the built-in
static analysis in SolidSX, clone detection in SolidSDD, SolidSX integration in Visual Studio, and clone visualization (SolidSX
used by SolidSDD), realized by a single fact database, the event-based mechanism described in Sec. 4.1.3, and the sharedC++
visualization components API.

6.3. What are the lessons learned and pitfalls in building tools?

SVA tool building is mainly a design activity. Probably the most important element for success is striving to create visual
and interaction models which optimally fit the ’mental map’ of the targeted users. Within space limitations, we outline the
following points:

• 2D vs 3D:software engineers are used to 2D visualizations, so they will accept these much easier than 3D ones [50]. We
found no single case when a 3D visualization was better accepted than a 2D one in our work. As such, we abandoned
earlier work in 3D visualizations [18] and focused on 2D visualizations only.

• interaction: too much interaction and user interface options confuse even the most patient users. A good solution is to
offer problem-specific minimalist interaction paths or wizards, and hide the complex options under an ’advanced’ tab.
This design is visible in the user interfaces of both SolidSXand SolidSDD.

• scalable integrationof analysis with visualization is absolutely crucial for the acceptance of the latter [5, 42]. However,
providing this is very costly. We estimate that over 50% of the entire code base of our toolset (over 700 KLOC) is
dedicated to efficient data representation for smooth integration. For datasets up to a few hundred thousand items, a
SQLite fact database performs very well (Sec. 3). However, heavyweight parsing, such as performed by SolidFX, creates
much larger datasets (full ASGs of tens of millions of elements, roughly 10..15 elements per line of code). To efficiently
store and query this, we opted to store such data in a custom binary format which minimizes space and maximizes search
speed [25]. The same is true for plain source code, which is best stored as separate text files. The SQL database is still
used as a ’master’ component which points to such special storage schemes for particular datasets. Finally, we use XML
mainly as a data interchange format for lightweight datasets, e.g. SolidSX accepts all its input either as SQL or XML.

11

However, our experience is that XML does not lend itself wellfor storing arbitrary relational data for large datasets and
efficiently implementing complex queries.

6.4. What are effective techniques to improve the quality ofacademic tools?

For VA tools, quality strongly depends on usability. Research tools aimed at quickly testing new visual algorithms should
maximize API simplicity; here, Prefuse and Mondrian are good examples. Tools aimed at real-world software engineering
problems should maximize end-user effectiveness. For SVA tools, this is further reflected into uncluttered, scalable,and
responsive displays, and tight integration for short analysis-visualization sensemaking loops. Recent InfoVis advances have
significantly improved the first points. However, integration remains hard, especially given that the academic ’value model’
give tool-related studies relatively lesser credit than technical papers.

6.5. Are there any useful tool building patterns for software engineering tools?

For SVA tools, we see the following elements as present in most such tools we are aware of:

• architecture:the dataflow and shared database models are probably the widest used composition patterns.

• visualizations:2D visualizations using dense pixel layouts like the table lens, HEBs, treemaps, and annotated text offer
high scalability and ease of use, so are suitable for large datasets created from static analysis; node-link layouts generate
too much clutter for graphs over about 1000 nodes and/or edges, but are better when position and shape encode specific
meaning, like for (UML) diagrams (see further 6.6). Shaded cushions, originally promoted by treemaps [29], are a simple
to implement, fast, visually scalable, and effective instrument of conveying structure atop of complex layouts.

• integration: tightly integrating independently developed analysis andvisualization tools is still an open challenge. Al-
though the socket-based mechanism outlined in Sec. 4.1.3 has its limitations,e.g. it cannot communicate shared state, it
strikes a good balance between simplicity and keeping the software stacks of the several tools to integrate independent.

• heavyweight vs lightweight analysis:Lightweight static analyzers are considerably simpler to implement, deploy, and
use, deliver faster performance, and may produce sufficientinformation for visualization (see Sec. 4.1.1). However, once
visualization requirements increase, as it typically happens with a successful tool, so do the requirements on its input
analyzer. Extending static analyzers is, however, not a simple process, and typically requires switching to a completely
new analyzer tool. As such, keeping the fact database model simple and weakly typed offers more flexibility in switching
analysis (and visualization) tool combinations.

6.6. How to compare or benchmark such tools?

Benchmarking SVA tools can be done by lab, class, or field userstudies, or using the tool in actual IT projects, either by
comparing several tools against each other [40] or by comparing a tool with a predefined set of desirable requirements [15, 43].
Measuringtechnicalaspectse.g. speed, visual scalability, or analysis accuracy can be doneusing de facto standard datasets
in the SoftVis community,e.g. the Mozilla Firefox, Azureus, or JHotDraw source code bases, which have been used in the
ACM SoftVis, IEEE Vissoft, and IEEE MSR conference ’challenges’. Measuring a SVA tool’s end-to-endusefulnessis harder
as it depends on task and context specific details; ’insight’and ’comprehension’ are hard to quantify. Still, side-by-side tool
comparison can be used. For example, Figure 5 shows four SVA tools (Ispace, CodePro Analytix, SonarJ, and SolidSX)
whose effectiveness in supporting an industrial corrective maintenance task we compared [51, 42]. This, and similar, studies
confirmed our supposition that node-link layouts are effective in program comprehension only for relatively small graphs (up
to a few hundred nodes), which is the main reason why our current toolset focuses on the more scalable HEB layout. Other
useful instruments in gathering qualitative feedback are ’piggybacking’ the tool atop of an accepted toolchain (e.g. Eclipse or
Visual Studio) and using established community blogs for getting user sentiment and success (or failure) stories. Fromour
experience, we noticed that this technique works for both academic and commercial tools.

12

b) Ispacea) CodePro Analytix c) SonarJ d) SolidSX

Figure 5: Four structure-and-dependency SVA tools comparedfor solving a corrective maintenance problem

6.7. What particular languages and paradigms are suited to build tools?

For SVA tools, our experience strongly converges to a minimal set of technologies, as follows:

• graphics: OpenGL, possibly augmented with simple pixel shader extensions, is by far the best solution in terms of porta-
bility, ease of coding, deployment, and performance; the same experience is shared by other researchers,e.g.Holten [28].

• core: scalability to millions of data items, relations, and attributes can only be achieved in programming languages like
C, C++, or Delphi. Over 80% of all our analysis and application code is C++; Although Java is a good candidate, its
performance and memory footprint are, from our experience,still not on par with compiled languages.

• scripting: Flexible configuration can be achieved in lightweight interpreted languages. The best candidate we found in
terms of robustness, speed, portability, and ease of use wasPython. Tcl/Tk (which we used earlier in [18] or Smalltalk
(used by [9]) are also possible, but in our view require more effort for learning, deploying, and optimization.

7. Conclusions

In this paper, we have presented our experience in developing software visual analysis (SVA) tools, starting from research
prototypes and ending with a commercial toolset. During this evolution and iterative design process, our toolset has converged
from a wide variety of techniques to a relatively small set ofproven concepts: the usage of a single shared weakly-typed fact
database, implemented in SQL, which allows tool composition by means of shared fact selections; the usage of a small number
of scalable InfoVis techniques such as table lenses, hierarchically bundled edge layouts, annotated text, timelines,and dense
pixel charts; control flow composition by means of lightweight socket-based adapters as multiple linked-views in one orseveral
independently developed tools; tool customization by means of Python scripts; and efficient core tool implementation using
C/C++ and OpenGL.

We illustrated our toolset by means of two of its most recent applications: SolidSX for visualization of program structure,
dependencies, and metrics, and SolidSDD for extraction andvisualization of code clones. We outlined the added value of
combining several tools in typical visual analysis scenarios by means of simple examples and a more complex industrial post-
mortem software assessment case. Finally, from the experience gained in this development process, we addressed several
questions relevant to the wider audience of academic tool builders.

Ongoing work targets the extension of our toolset at severallevels: New static analyzers to supportgcc binary analysis
and lightweight zero-configuration C/C++ parsing; dynamicanalysis for code coverage and execution metrics; and integration
with the Eclipse IDE. Finally, we consider extending our visualizations with new metaphors which allow an easier navigation
from source code to structural level by combining HEB layouts and annotated code text in a single scalable view.

References

[1] T. A. Standish, An Essay on Software Reuse, IEEE TSE 10 (5)(1984) 494–497.
[2] T. Corbi, Program Understanding: Challenge for the 1990s, IBM Systems Journal 28 (2) (1999) 294–306.
[3] S. Reiss, The paradox of software visualization, in: Proc. IEEE Vissoft, 59–63, 2005.

13

[4] S. Charters, N. Thomas, M. Munro, The end of the line for Software Visualisation?, in: Proc. IEEE Vissoft, 27–35, 2003.
[5] R. Koschke, Software visualization in software maintenance, reverse engineering, and re-engineering: a research survey, J. Soft. Maint. and Evol. 15 (2)

(2003) 87–109.
[6] P. C. Wong, J. J. Thomas, Visual Analytics, IEEE CG&A 24 (5) (2004) 20–21.
[7] J. J. Thomas, K. A. Cook, Illuminating the Path: The Research and Development Agenda for Visual Analytics, National Visualization and Analytics

Center, 2005.
[8] M. van den Brand, J. Heering, P. Klint, P. Olivier, Compiling language definitions: the ASF+SDF compiler, ACM TOPLAS 24 (4) (2002) 334–368.
[9] M. Lanza,CodeCrawler- Polymetric Views in Action, in: Proc. ASE, 394–395, 2004.

[10] F. Boerboom, A. Janssen, Fact Extraction, Querying and Visualization of Large C++ Code Bases, in: MSc thesis, Faculty of Math. and Computer Science,
Eindhoven Univ. of Technology, 2006.

[11] T. Mens, S. Demeyer, Software Evolution, Springer, 2008.
[12] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer, 2006.
[13] N. Fenton, S. Pfleeger, Software Metrics: A Rigorous andPracical Approach, Chapman & Hall, 1998.
[14] S. Diehl, Software Visualization Visualizing the Structure, Behaviour, and Evolution of Software, Springer, 2007.
[15] H. Kienle, H. A. Müller, Requirements of Software Visualization Tools: A Literature Survey, in: Proc. IEEE Vissoft, 92–100, 2007.
[16] SolidSource BV, SolidSX, SolidSDD, SolidSTA, and SolidFX tool distributions,www.solidsourceit.com , 2010.
[17] SVCG, Scientific Visualization and Computer Graphics Group, Univ. of Groningen, Software Visualization and Analysis, www.cs.rug.nl/svcg/

SoftVis , 2010.
[18] A. Telea, A. Maccari, C. Riva, An Open Toolkit for Prototyping Reverse Engineering Visualizations, in: Proc. Data Visualization (IEEE VisSym), IEEE,

67–75, 2002.
[19] G. Lommerse, F. Nossin, L. Voinea, A. Telea, TheVisual Code Navigator: An Interactive Toolset for Source Code Investigation, in:Proc. InfoVis, IEEE,

24–31, 2005.
[20] L. Voinea, A. Telea, J. J. van Wijk, CVSscan: visualization of code evolution, in: Proc. ACM SOFTVIS, 47–56, 2005.
[21] L. Voinea, A. Telea, Visual Querying and Analysis of Large Software Repositories, Empirical Software Engineering 14 (3) (2009) 316–340.
[22] M. Termeer, C. Lange, A. Telea, M. Chaudron, Visual exploration of combined architectural and metric information, in: Proc. IEEE Vissoft, 21–26,

2005.
[23] S. Moreta, A. Telea, Multiscale Visualization of Dynamic Software Logs, in: Proc. EuroVis, 11–18, 2007.
[24] A. Telea, L. Voinea, Visual Software Analytics for the Build Optimization of Large-scale Software Systems, Computational Statistics (in print), see also

www.cs.rug.nl/ ˜ alext/PAPERS .
[25] A. Telea, L. Voinea, An Interactive Reverse-Engineering Environment for Large-Scale C++ Code, in: Proc. ACM SOFTVIS, 67–76, 2008.
[26] R. Rao, S. Card, The table lens: Merging graphical and symbolic representations in an interactive focus+context visualization for tabular information, in:

Proc. CHI, ACM, 222–230, 1994.
[27] A. Telea, Combining extended table lens and treemap techniques for visualizing tabular data, in: Proc. EuroVis, 51–58, 2006.
[28] D. Holten, Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data, in: Proc. IEEE InfoVis, 741–748, 2006.
[29] B. Shneiderman, Treemaps for space-constrained visualization of hierarchies,www.cs.umd.edu/hcil/treemap-history , 2010.
[30] A. Ludwig, Recoder Java analyzer,recoder.sourceforge.net , 2010.
[31] Redgate Inc., Reflector .NET API,www.red-gate.com/products/reflector , 2010.
[32] R. Ferenc, A. Besźedes, M. Tarkiainen, T. Gyiḿothy, Columbus – Reverse Engineering Tool and Schema for C++, in: Proc. ICSM, IEEE, 172–181,

2002.
[33] LLVM Team, Clang C/C++ analyzer home page,clang.llvm.org , 2010.
[34] Y. Lin, R. C. Holt, A. J. Malton, Completeness of a Fact Extractor, in: Proc. WCRE, IEEE, 196–204, 2003.
[35] Bell Labs, CScope, cscope.sourceforge.net, 2007.
[36] T. Kamiya, CCfinder clone detector home page,www.ccfinder.net , 2010.
[37] VTK Team, The Visualization Toolkit (VTK) home page,www.vtk.org , 2010.
[38] A. Telea, O. Ersoy, Image-based Edge Bundles: Simplified Visualization of Large Graphs, Comp. Graph. Forum 29 (3) (2010) 65–74.
[39] A. Telea, L. Voinea, A Tool for Optimizing the Build Performance of Large Software Code Bases, in: Proc. IEEE CSMR, 153–156, 2008.
[40] L. Voinea, A. Telea, Case Study: Visual Analytics in Software Product Assessments, in: Proc. IEEE Vissoft, 57–45, 2009.
[41] M. Poppendieck, T. Poppendieck, Lean Software Development: An Agile Toolkit for Software Development Managers, Addison-Wesley, 2006.
[42] A. Telea, L. Voinea, O. Ersoy, Visual Analytics in Software Maintenance: Challenges and Opportunities, in: Proc. EuroVAST, Eurographics, 65–70,

2010.
[43] M. Sensalire, P. Ogao, A. Telea, Classifying desirablefeatures of software visualization tools for corrective maintenance, in: Proc. ACM SOFTVIS,

87–90, 2008.
[44] R. Holt, A. Winter, A. Schurr, GXL: Towards a standard Exchange Format, in: Proc. WCRE, 162–171, 2000.
[45] S. Tichelaar, S. Ducasse, S. Demeyer, FAMIX and XMI, in: Proc. WCRE, 296–300, 2000.
[46] E. Korshunova, M. Petkovic, M. van den Brand, M. Mousavi, Cpp2XMI: Reverse Engineering for UML Class, Sequence and Activity Diagrams from

C++ Source Code, in: Proc. WCRE, 297–298, 2006.
[47] Prefuse, The Prefuse Information Visualization Toolkit, prefuse.org , 2010.
[48] A. Lienhardt, A. Kuhn, O. Greevy, Rapid Prototyping of Visualizations using Mondrian, in: Proc. IEEE Vissoft, 67–70, 2007.
[49] M. van den Brand, S. Roubtsov, A. Serebrenik, SQuAVisiT: A Flexible Tool for Visual Software Analytics, in: Proc. CSMR, 331–332, 2009.
[50] A. Teyseyre, M. Campo, An Overview of 3D Software Visualization, IEEE TVCG 15 (1) (2009) 87–105.
[51] M. Sensalire, P. Ogao, A. Telea, Model-Based Analysis of Adoption Factors for Software Visualization Tools in Corrective Maintenance, Univ. of

Groningen, the Netherlands, Tech. Report SVCG-RUG-10-2010, www.cs.rug.nl/ ˜ alext/PAPERS/Sen10.pdf , 2010.

14

