A Visual Analytics Toolset for Program Structure, Metrics, and Evolution
Comprehension

Dennie Reniers Lucian Voined, Ozan ErsoY, Alexandru Tele&®

aSolidSource BV, Eindhoven, the Netherlands
bInstitute Johann Bernoulli, University of Groningen, thetherlands

Abstract

Software visual analytics (SVA) tools combine static peogranalysis and repository mining with information visgation
to support program comprehension. However, building eificand effective SVA tools is highly challenging, as it ilwes
software development in program analysis, graphics, méion visualization, and interaction. We present a SVAseiofor
software maintenance, and detail two of its components lwtdoget software structure, metrics and code duplicative.
illustrate the toolkit’s application with several use casdiscuss the design evolution of our toolset from a set sdarch
prototypes to an integrated, scalable, and easy-to-uskigi,cand argue how these can serve as guidelines for thiogavent
of future software visual analytics solutions.

Keywords: Software visualization, static analysis, visual tool desi

1. Introduction

Software maintenance covers 80% of the cost of modern sadtassstems, of which over 40% represent software under-
standing [1, 2]. Although many visual tools for software arstanding exist, most know very limited acceptance in the |
industry. Key reasons for this are limited scalability ofwalizations and/or size of datasets, long learning cuiaseds poor
integration with established software analysis or develept toolchains [3, 4, 5].

Visual analytic{VA) integrates graphics, visualization, interactiontadanalysis, and data mining to support reasoning and
sensemaking for complex problem solving in engineeringfes, security, and geosciences [6, 7]. These fields stearg m
similarities with software maintenance in termgslata(large databases, highly structured text, and graphsiis(sensemaking
by hypothesis creation, refinement, and validation), tmds (combined analysis and visualization). VA explicitly adgses
tool scalability and integration, as opposed to pure datdangi(whose main focus is scalability) or information vization
(InfoVis, mainly focusing on presentation). As such, VA jgramising model for building effective and efficient softeaisual
analysis (SVA) tools. However, building VA solutions forfseare comprehension is particularly challenging, as tgpers
have to master technologies as varied as static analys&ésndaing, graphics, information visualization, and usgeiaction
design.

In this paper, we present our experience in building SVAgdol software maintenance. We outline the evolution path
from a set of research prototypes to a commercial toolsetiwisi used by many end-users in the IT industry. Our toolset
supports static analysis, quality metrics computationpeldetection, and research-grade InfoVis techniques asichble
lenses, bundled graph layouts, cushion treemaps, and gem$eharts. The toolset contains several end-user agijgits, of
which we focus here on two: visual analysis of program stmg&cand code duplication. These applications share elesna¢nt
both design and implementation level, and can be used gefyaoa combined to support tasks such as detecting cooatat
of structure, dependencies, and quality metrics; asgpsgstem modularity; and planning refactoring.

*Corresponding author

Email addressesdennie.reniers@solidsource.nl (Dennie Reniers)jucian.voinea@solidsource.nl (Lucian Voinea),
o.ersoy@rug.nl (Ozan Ersoy)a.c.telea@rug.nl (Alexandru Telea)
URL: www.solidsource.nl (Dennie Reniersjyww.solidsource.nl (Lucian Voinea)www.cs.rug.nl/"alext (Alexandru Telea)

1

The contributions of this paper are as follows:

e present the design decisions and evolution path of a SVAs&bdbr program comprehension from research prototypes
into an actual product;

e present the lessons learned in developing our toolset miesearch and industrial contexts, with a focus on effigienc
effectiveness, and acceptance;

e present supporting evidence for our design decisions b@asedtual usage in practice.

Section 2 introduces software visual analytics. Sectioatdits the general architecture of our toolset. Sectiontdildehe
toolset’'s components for data mining and visualizationoffigare structure, metrics, and code duplicates. Sectilasirates
the usage of our toolset in a real-world industrial softwaseessment case. Section 6 discusses the challenges lopieye
efficient, effective, and accepted SVA tools from our totésexperience. Finally, section 7 concludes the paper.

2. Related Work

Software visual analytics can be roughly divided into datiaing and visualization, as follows.

Data miningcovers the extraction of raw data from source code, binaaigs source control management (SCM) systems
such as CVS, Subversion, Git, CM/Synergy, or ClearCase. dRaavdelivered by static syntax and semantic analysis isaefi
into structures such as call graphs, control flow graphgynara slices, code duplicates (clones), software qualityiozesuch
as complexity, cohesion, and coupling, and change patte®tstic analyzers can be divided intghtweight ones, which
use a subset of the target language grammar and semantitgoarally trade fact completeness and accuracy for spedd an
memory; ancheavyweighbnes, which do full syntactic and semantic analysis at higlst. Well-known static analyzers
include LLVM, Cppx, Columbus, Eclipse CDT, and Elsa (for @/}, Recoder (for Java), and ASF+SDF (a meta-framework
usable with different language-specific front-ends) [8letht tools include CodeCrawler [9], Understand, and Mistadio
Test Suite (VSTS). An overview of static analysis tools wdtfocus on C/C++ is given in [10]. Practical insights in saftes
evolution and software quality metrics are given in [11, 12,

Software visualizatior{SoftVis) uses information visualization (InfoVis) techuoes to create interactive displays of soft-
ware structure, behavior, and evolution. Recent trend®ftV$ include scalable InfoVis techniques such as treesniicle
plots, bundled graph layouts, table lenses, parallel éoates, multidimensional scaling, and dense pixel charitsdrease the
amount of data shown to the user at a single time. An exceallariview of software visualization is given in [14]. Welké&wn
software visualization systems include Rigi, VCG, aiSee, sv3D (for structure and metrics); and CodeCity and Sdd€Rof
software evolution).

Although tens of new software analysis and visualizatimissemerge every year from research, as shown by the proceed-
ings ofe.g. ACM SOFTVIS, IEEE VISSOFT, MSR, ICPC, WCRE, and CSMR, buiffliisefuland usedtools is difficult.
Reasons cited for this include the small return-on-invesitnand recognition of tools in academia (as opposed to ppegh
maintenance cost, and high ratio of infrastructure-toefig\(truly usable tools need fine-tuned implementatioe$y modules,
and platform-independence, while research prototypedamars on novelty) [5, 15]. Combining analysis and visudl@ain
the same tool makes development only more complex, so gaigrdeatterns and guidelines are essential.

Given all these, how to bridge the gap between SVA tool pypies and actual efficient and effective products? And how
to combine analysis and visualization software in mairsthia tool designs?

3. Toolset Architecture

In the past decade, we have built over 20 SVA tools for sofwaquirements, architecture, behavior, source codetsta)
dependencies, and evolution. We used these tools in acadtanses, research, and industry, in groups from a few toden
users. Latest versions of our tools have formed the basislmfurce, a company specialized in software visual dital{16].
Table 1 outlines our most important tools (for a full list ahé actual tools, see [17]). We next present the latestorcsiour
toolset, discuss the design decisions and lessons leannied the several years of its evolution, and illustratenitsking with
two of its most recent tools.

Tool Targeted data types Visual techniques Analysistechniques

SoftVision software architecture | node-link layouts none (visualization tool only)
(2002) [18] (2D and 3D)

Csv source code syntax pixel text, cushions C++ static analysis

(2004) [19] and metrics (gcc based parser)

CVSscan [20]| file-level evolution dense pixel charts CVS data mining

(2005) annotated text (authors and line-level changes)
CVSgrab project-level evolution| dense pixel charts, CVS/SVN data mining

(2006) [21] cushions (project-level changes)
MetricView UML diagrams and node-link layouts (2D),| C++ lightweight static analysis
(2006) [22] quality metrics table lenses (class diagram extraction)
MemoView software dynamic logs table lenses, timelines,| C runtime instrumentation
(2007) [23] (memory allocations) | cushions (libc malloc/free interception)
SolidBA build dependencies table lenses, C/C++ build dependency mining
(2007) [24] and build cost metrics| node-link layouts (2D) | and automated refactoring
SolidFX reverse engineering | pixel text, table lenses,| C/C++ heavyweight error-tolerant
(2008) [25] annotated text static static analysis

SolidSTA file and project-level dense pixel charts, CVS/SVN/Git data mining
(2008) [16] evolution cushions, timelines and source code metrics
SolidSX structure, associationg, HEB layouts, treemaps| .NET, C++, Java

(2009) [16] metrics table lenses, cushions | lightweight static analysis
SolidSDD code duplicates, HEB layouts, treemaps|, C, C++, Java, C# parameterizable
(2010) [16] code structure, metrics table lenses, pixel text | syntax-aware clone detection

Table 1: Software visual analytics tools - evolution higtdrools discussed in this paper are in bold (Sec. 4)

Our toolset uses a simple dataflow architecture (Fig. 1). R@uwt data comes in two forms: non-versioned source code
or binaries, and versioned files stored software reposgori-rom raw data, we extract sevefadts syntactic and semantic
structure, static dependency graphs, and source codedtiphi. Relational data is stored into a SQLite databasese/batries
point to flat text files (for actual source code content) andhbyi files (for complete syntax trees, see 4.1.1). Fact etidra
is implemented by specific tools: parsers and semantic a@ayor source code, binary analyzers for binary code, &orec
detectors for code duplication (see Sec. 4).

Besides facts, our database stores two other key elemeasiextions and metricsSelectionsare sets of facts (or other
selections) and support the iterative data refinement isdhealled visual sensemaking cycle of VA [6, 7]. They areatzd
either by toolse.g. extraction of class hierarchies or call graphs from anedtatyntax graphs (ASGs), or by users during
interactive data analysis. Selections have unique namesioh they are referred by their clients (tools) and alssiséently

saved.Metricsare numerical, ordinal, or categorical attributes which lsa associated to facts or selections, and are computed
either by tools €.g. complexity, fan-in, fan-out, cohesion, and coupling) oded as annotations by users. Each selection is
stored as a separate SQL table, whose rows are its factspamdrts are the fact attributes (unique 1D, type, locationade

or binary, and metrics). This model is simple and scales toelhct databases of hundreds of thousands of facts with tens
of metrics. Trees and graphs can also be stored as SQL tabiesris of adjacency matrices. Simple queries and filters can
directly be implemented in SQL. More complex queries hawegame interface as the other components: they read one or
more selections and create an output selection.

Selections are the glue that allows composing multipleyesigmland visualization tools. All analysis and visualiaati
components in our toolkit are weakly typed: They all rea@stbns, and optionally create selections (see Fig. Lhigwray,
existing or new tools can be flexibly composed, either sdéitior at run-time, with virtually no configuration costs €nsure
consistency, each component decides internally whetheri{aw) it can execute its function on a given input selection

Visualizationdisplay selections and allow users to interactively naeigpick elements, and customize the visual aspect.
Since they only receive selections as inputs, they 'pulithequired data on demand as needed, a source code viewer
opens the files referred by its input selection to get the tiexender. Hence, data can be efficiently handled by referenc
(selections referred to by name), but tools can also decidadhe data internally to minimize traffic with the fact detse, if
so desired. However, this decision is completely trangparethe toolkit level.

After lengthy experimentation with many types of visualiaas, we limited ourselves to a small subset hereof, aeviall
Table lenseshow large tables by zooming out the table layout and digpdagells as pixel bars scaled and colored by data

3

Queries & filters

- call graphs
- code patterns
- metric engines

Fact database

Selections

- IDs of facts in the
fact database

lrefer to

Source code

Static analysis

Facts and metrics

Visualizations

=
o

- edge bundles

- treemaps

- table lenses

- annotated text

- dense pixel charts

Applications

SolidSDD 4

{

E

- compound graphs
- hierarchy
- association
- node/edge attributes
- metrics
- string, numerical

=

Graphics engines

- OpenGL
- GLUT, FTGL
- wxWidgets

-C, C++ - code parsing
- Java - binary analysis
- .NET/C#/VB - code duplication
Evolution data Repository mining
- Subversion - changes
- CM/Synergy - authors
- CVS, Git - commit logs
Legend
=) data flow
) implemented using
mm) refers to

write& ?read

Persistent storage

Scripting engines

- SQLite database
- XML & plain text files
- 3" party formats

- Python
- Tel/Tk
- makefiles

Figure 1: Toolset architecture (see Section 3)

values [26]. Subpixel sampling techniques enhance thia allwing to visualize tables up to hundreds of thousands of
rows on a single screen [27Hierarchically bundled edgeHEBs) compactly show compound (structure and associjation
software graphse.g. contaninment and call relations, by bundling associatidges with structure data [28]Squarified
cushion treemapshow software structure and metrics scalably for up to tétisomsands of elements on a single screen [29].

A single treemap, HEB, or table lens can show the correlaifgust a few metrics and/or relations. To augment this, we
use the well-knowmultiple correlated viewinfoVis concept. Each view can have its own user-specifipdtiselection and
visual look-and-feel. Mouse-based picking is synchrosibetween all views: selecting items in one view updates ar’us
selection’ which is monitored by other views, using an Obsepattern. Besides the above, our toolset also providesicial
visualizations: metric-annotated source code text, tregvders, customizable color maps, legends, annotationslites,
details-on-demand at the mouse cursor, and text and nietsied search facilities.

4. Toolset Components

Our toolset consists of several end-user applicationsiwstiare analysis and visualization components. We nextidlesc
two of these applications: the SolidSX structure analy3erc(4.1) and the SolidSDD duplication detector (Sec. Z18.fully
operational tools, including Windows-based installeranmals, videos, and sample datasets are freely availatiesiearchers
from [16].

4.1. SolidSX: Structural Analysis

The SolidSX (Software eXplorer) supports the task of anatysoftware structure, dependencies, and metrics. Severa
built-in parsers are provided: Recoder for Java source gtetbde files [30], Reflector for .NET/C# assemblies [311 an
Microsoft's free parser for Visual C+dscsymbol files. Built-in filters refine parsed data into a comuibattributed graph
consisting of one or several hierarchiegy. folder-file-class-method containment and namespaces-aiethod containment;
dependencie®.g.calls, symbol usage, inheritance, and package or headesioe; and basic metrice,g.code and comment
size, cyclomatic complexity, fan-in, fan-out, and symbmliisce code location.

4

4.1.1. Static Analysis: Ease of Use

Setting up static code analysis is notoriously complexgregrone, and time consuming. For .NET/VB/C#, Java, and
Visual C++, we succeeded oompletelyautomating this process. The user is only required to inpabadirectory for code
and, for Java, optional class paths. C/C++ static analyesistd Visual Studio proves highly challenging. SolidSX caad
static information created by our separate SolidFX C/Catistanalyzer [25]. Although SolidFX is scalable to milloof
lines of code, covers several dialects beyond Visual C+¢,(@89/99, ANSI C++), robustly handles incorrect and inctatg
code, integrates a preprocessor, provides a Visual C+egrfife parser, and uses so-called compiler wrapping to amtihe
gcc and Visual C++ compilers [32], users still typically needanually supply many per-project defines and include paths.
Moreover, compiler wrapping requires the availability ofvarking build system on the target machine. The same is tue f
other heavyweight parsers such as Columbus [32] or Clarg [33

A second design choice regards performance. For Java, Reisodose to ideal, as it delivers heavyweight information
with 100 KLOC/second parse speed on a typical PC computeicti$tspeaking, visual structure-and-metric analysigyon
needs lightweight analysis (which is fast) as the inforpratjraininess typically does not go below function levelr F¢ET,
the Reflector lightweight analyzer is fast, robust, and &g use. The same holds for Microsoftscsymbol file parser.

For C/C++ beyond Visual Studio, a lightweight, robust, etisyise analyzer is still not available. After experimagtivith
many such tools.g. CPPX [34], gccxml, and MC++, we found that these often delwassively incorrect information, mainly
due to simplified preprocessing and name lookup implemientat The built-in C/C++ parsers of Eclipse CDT, KDevelop,
QtCreator, and Cscope [35] are somehow better in corrextaad can also work incrementally upon code changes. Haoweve
these parsers depend in complex ways on their host IDEs andtdwmve well-documented APIs. Extended discussions with
Roberto Raggi, the creator of the KDevelop and QtCreata@gvay confirmed this difficulty.

4.1.2. Structure Visualization

SolidSX offers four views (Fig. 2 top): classical tree brews table lenses of node and edge metrics, treemaps, and a
HEB layout for compound graphs [28]. All visualizations basarefully designeg@resetswhich allow one to use them with
no additional customization. They all depict selectiomsrfrthe fact database created by the code analysis step. tisers
also create selections in any view by either direct intémaatr custom queries. These two mechanisms realize thediniew
concept, which enables users to easily create complex segbf correlations of structure, dependencies, and raetiing
different viewpoints. Figure 2 top) illustrates this on a §#tem of around 45000 LOC (provided with the tool distriitnoi.
The HEB view shows function calls over system structuretecaldge ends are blue, callee edge ends are gray. Node colors
show McCabe’s code complexity metric on a green-to-redrowdp, thereby enabling complexity correlation with theteys
structure. We see that the most complex functions (warmrgpkre in the module and classes located top-left in the HEB
layout. The table lens view shows several function-levelecmetrics, and is sorted on decreasing complexity. Thisvalbne
to see how different metrics correlate with each other. rAliéively, one can seleetg.the most complex or largest functions
and see them highlighted in the other views. The treemap st@ws a flattened system hierarchy (modules and functions
only), with functions ordered top-down and left-to-righttheir parent modules on code size, and colored on compléiXtiie
visible 'hot spot’ indicates that complexity correlatesImeith size. Constructing thentire scenario, including the static
analysis, takes about 2 minutes and under 20 mouse clicks.

4.1.3. Toolchain Integration

Similarly to Koschke [5], we discovered thettegrationin accepted toolchains is a key acceptance factor. To e&se th
process, we addedliatenermechanism to SolidSX. The tool listens for command evenis agynchronously on a specified
TCP/IP porte.g.load a dataset, zoom on some data subset, change view parsjaeid also sends user interaction command
events to a second pok.{. user has selected some data). This allows integrating $6lid any third-party tool or toolchain
by building thin wrappers which read, write, and processrddsevents. No access to the tool's source code is required.
For example, we integrated SolidSX in the Visual Studio IBEAriting a thin plug-in of around 200 LOC which translates
between the IDE and SolidSX events (Fig. 2 bottom). Selgaimd browsing code in the two tools is how in sync. The open
SQLite database format further simplifies integration aad@vel. Integrating SolidSX in Eclipse, KDevelop, and @a&tor is
under way and is relatively easy, once we finalize the dataitaps from these IDES’ proprietary fact databases intoSfpk
database.

id Software explorer 2.05 (evaluation ver: olids5X_205'examples'Number Puzzle.exe.db

File ‘iew Tools Help
Tree browser T

Radial view (1)
Mode colorman legen

Treemap view

- mscorlib, Version=2,0.0.0, Culure=neutral, PublickeyToken=b7725c5619342089
mecorlib, dil

{} CompilerServices

“4 Intializefrray{Array, RuntimeFieldHande)

{F Text
{} Threading
Array

4y Copy(frray, Array, Int32)
4 Getlength(Ink3z)

Length —
s ﬁ"
Boolean(][,]
% 17

Byte:
Bytel,]

g byiell -
4] | 3

[Table lens | | radisiview x|

Node colormap legend Edge colormap legend

Edge selection
al exiges -

~clusion filer (1083 §
xelusion Filter (1063 1
Ordinal edg fiker
<none>» -
Ordinal edge fiker

n
Incident edge.

infout

-5 4

- i [
mﬂwarfﬁxp\mar EVHUAT\ON V“Inn Wisit http:/rwana snhdsnurcallcnmj

°8 Number Puzzle - Microsoft Visual Studio

Fie Edt Vew Projct Bud Debug Data Toos Wndow Hep
SR i - o5 b s B9 - - b b Debug = Any CPU =) PN e =

i i @ o =2 hec % (B0 g i e AT b s 2003 a3 85Q,
Puzzle.cs| puzdeContol.cs Design] | Program.cs | StartPage R
x
Gghumber_Puzde puzle | [39Clarsquares(puzzeGnd puzzecrid) = [
— = iy puzdecontol A | ¢ing antroute: type) Fiter ow o
e F B 3rane= Caption attriute:rame Ordirl fter: crore>]
13 e s Colomap: type colomap] oty)
152 /17 <summazy> & ¥ SettingsForm . et i gl
153 /17 Randomly remove squares from a puzzle to increase its d: & ¥ Utites - . Coprrenc ot
154 /// number of solutiens stays at 1. ERi - Conmmen Groared]
155 711 </summazy> & % ProcessUtls
136 /// <pazam name="puzzleGrid">PuzzleGrid with empty squares<, | | @43 <Prvatelmplementatol
157 private static BuszleGrid ClearSquares(PuzzleGrid puzzleGric ||| mscorib, Verson=20.0.0, it Lo
) 2 & ool | R\ : ; c e
e menm 3 i cllsccess B
159 const int iterations = 200; G 8 o
160 const int clearsPerlteration = 10; Bet) Cobectons -
e b e inverits
Resources
e @ HE 3
164 = new & 2
165 primery selecton x
166 for (int 3 = 0; 3 < clearsPerlteration; 3++) name e
167 39 Clearsquares(pu... Method
162 inc indexl = random.Next(PuzzleGrid.Side);
169 int index2 = random.Next(PuzzleGrid.Side); =
170
m if (newPuzzleGrid.Grid[indexl, index2] '= 0)
172 «
173 newPuzzleGrid.Grid[indexl, index2] = 0;
174)
175)
176
177 if (NumberOfSolutions (newPuzzleGrid) = 1)
e i £l m i 3
179 puzzleGrid = newPuzzleGrid; Secondary selecton x
120 » name e
= ! EXT) Property
o e VGetntz It Method
: recurn puzzleGrid; e i
e B @PuzdeGridfpuza... Construct
S @set(nts2 nt32,... Method
186 Private static booll] GetUsedDigits(Puzzlecria puzzlesrid, : ||| guoqaror e
S & a¥GeneratePuzzie) Method
188 bool[] result = new bool[10]: P &a
o Fhumberofsalut... Method
190 for (int 1= 0; 1 < PuzzleGrid.Side; i+4)
191 ¢
192 /1 Get xou digits.
193 if (1 1= index1)
190 ‘
195 result(puzzleGrid.Grid(i, index2]] = true;
136 »
197
108 // Get column digics. v ——
<) u | 3 ||« [|| System Random.Next(int32) Bleialciear
Ready -

Figure 2: Top: SolidSX views (tree browser, treemap, tabis,leadial HEB); Bottom: Visual Studio integration of Solki8sing a socket-baset mechanism
(see Section 4.1.3) 6

4.2. SolidSDD: Clone Detection

Code duplication detection, or clone detection, is an irtgpdrstep in maintenance tasks such as refactoring, redacum
tation, architecture extraction, and test case managenfdtitough hundreds of papers on this topic exist, only feanel
detectiortoolsoffer the clone information in effective ways for assistiedactoring activities.

We addressed the above by developing SolidSDD (Softwardi¢atipn Detector). SolidSDD implements an extended
version of the CCfinder tool [36] which combines lightweiglyntax analysis and token-based detection. The detecion i
user-configurable by clone length (in statements), identiBnaming (allowed or not), size of gaps (inserted or ddlebde
fragments in a clone), and whitespace and comment filteditmyvever, the main novelty in SolidSDD is in how clones are
visualized.

Given a source code tree (C, C++, Java, or C#), SolidSDD nartsta SQL database containing a duplication graph, in
which nodes are cloned code fragments (in the same or difféles) and edges indicate clone relations. Hierarchyrméion
is added to this graph either automatically (from the codeatiory structure) or from a user-supplied dataead.from static
analysis). The result is a compound graph. Nodes and edgelsav@ metricse.g. percentage of cloned code, number of
distinct clones, and whether a clone includes identifiean@ng or not. Metrics are automatically aggregated bottgnusing
the hierarchy information.

Figure 3 shows SolidSDD in use to find code clones in the watikn Visualization Toolkit (VTK) library [37]. On VTK
version 5.4 (2420 C++ files, 668 C files, and 2660 headers, 2Q®in total), SolidSDD found 946 clones in 280 seconds on
a 3 GHz PC with 4 GB RAM. For replication ease, we simply useddéfault clone detection settings of the tool. Figure 3 a
shows the code clones atop of the system structure with &$litlierarchy shows the VTK directory structure, with files a
leaves. Edges show aggregated clone relations betweerfifdessis connected to fil whena andb share at least one clone.
Node colors show the total percentage of cloned code in tgertive subsystem with a green-to-red (0..100%) colormap
Edge colors show percentage of cloned code in the cloneéaetatiggregated in an edge. Figure 3 a already shows that VTK
has quite many intra-system clones (short edges that stdread atop of the same rectangle) but also several intézays
clones (longer edges that connect rectangles locatedferefit parts of the radial plot). Inter-system clones ageiably less
desirable.

Three subsystems have high clone percentagesmplegS;), bin (S;) andFiltering (S3). Browsing the actual files, we
saw that almost all clones Examplesandbin are in sample code files and test drivers which contain langeuats of copy-
and-paste. Clones iriltering, a core subsystem of VTK, are arguably more worth removing=i). 3 b, we use SolidSX's
zoom and filter functions to focus on this subsystem and setexof its high-clone-percentage filegmarked in black) which
has over 50% cloned code. When we seledainly its clone relations are shown. We call the set of fflewith which f shares
clones theclone partnerof f. We see that all clone partners bfire located in the sant@ltering subsystem, except ong)(
which is in theRenderingsubsystem.

Figure 3 ¢ shows additional functions offered by SolidSDBeTop light-blue table shows all system files with several
metrics: percentage of cloned code, humber of clones, agkpce of identifier renaming in clones. SolidSDD’s vieves ar
linked with SolidSX'’s views via the socket mechanism owtinn Sec. 4.1.3, so the selected fila Fig. 3 c is also highlighted
in this table in red. The table below shows the clone parties fi of f. In this table, we can identify the filg which shares
clones withf but is in another subsystem. We also see hereghanhtains about 50% of code cloned frdmWe select and
use the two text views (at the bottom of Fig. 3 b) to examineditail all clones betweeh andg. The left view shows the first
selected file) and the right view the selected clone partrgr Scrolling of these views is automatically synchronizesse
can easily follow corresponding code fragments. Text isreobded as follows: non-cloned code (white), code frbmhich
is cloned ing (light blue), renamed identifier pairs (green in left view|lgw in right view), and code froni which is cloned
but whose clones are located in some other file théight brown). The last color allows us to navigate frdnto other clone
partners: Clicking on the light brown code in the left tex¢wi(f) in Fig. 3 ¢ replaces the filg in the right view by that clone
partner off (let us call ith) with which f shares the brown code, and also selbétsthe clone partner list view. Fig. 3 d shows
this perspective. We now notice that the codd iwhich is part of the clond — g (light blue in Fig. 3 c) isincludedin the
clonef — h (light blue Fig. 3 c).

The SolidSDD-SolidSX combination offers many other pecsipes and analyses, as detailed by its manual. Fig. 3 e shows
a final example. We use SolidSX’s table lens to sort all filepérscentage of cloned code and zoom out to see a distribution
of this metric (sixth column from right). We see that arouri®@of all files contain some amount of cloning. Interactively
selecting the top 20% files in the table lens highlights akflhaving>80% cloned code in the radial system view in black - we

7

Edie m\mmai Ieien

- -
edge
cglormap

node
colormdp

e
Rendering

Solid Saftware eXplorer EVALUATION version. Visit htips/Awvr.solidsourceit.com to buy.

|c) Examine clones f-glf- = =m

Fle Toos Settngs Help

) OverVIeW Solid Sotware eXplarer EVALUATION version. Visit hitps/way.solidsourceit.com to buy

D e X 0 X c\® 8§

@/0e

|® W0 X\ (6@

|d) Examine clones f-h

Edie m\mmai \eienﬂ

b) Select file f

@0e

Coneview Pl view |Wotehis | kst | Goneviow Pl view |Watchist | kst |

D [Fe | cones [rarvout [coned | wrenaring (<[l © (i | cones | rarvowt [Cored | DRersmng 4]
2., FiteringlvtkFactoredArrayDatalgorithm, cxx file 4 e Yes. —| 2., Fitering|tkFactoredarrayDatadlgorithm.cxx f‘le " 7 97.75 Yes -
4. 2 7 93.18 Yes. 4., FieeringivtkTreealgorithm .cxx I 2 7 93.18 es

& B 7 5073 Yes.] 2. Fitering|vAKGenercDat s5e IgorEhim. e B 7 50.73 Ves]
7.. FieringlvtkGraphalgorithm, cxx 1 7 42,15 Yes 7.. FieringvtkGraphalgorithm, cxx 1 7 42,15 Yes
4. FitrnglyiDataObjectAgorthm,oxx clone partners /.« o ®73 e 4. FitriglviOataObjectAlgorthm oxx 4 6 ®m ves
57 \metalandmark,coc C 9 6 80.56 ves | 57 \metalandmark,coc 6 8056 ves |

e 2 ¢ Cones % coned_| 10 Ranaming | #Renanings (#Fon) | #Renaned Ds 1o e [cones [% clored [10 Rensring Rensned 0s (¢10s)_|
[FRering ek Rectinear GrCAIGoNEm. o 311 Yes 7 T FilteringlvtkRectiinearGridalgorithm. coc. f | e I 1 3311 Yes 1
FiteringlutkStructuredricilgorithm. cox 1 EEXTS Yes 7 1 FikeringlytkructuredGridalgorthm.cix | 1 1 a1 ves 7 '
ierngtoatsobciigatim.ox ' e v " w0 FormshtbasobprAt o T E T i o]
eerngvtt nstrcturedardlortm.cxx 2 s e = s kg strctredar Aot o z EE I = 3
FiteringlytkyperOctrelgorithm,cxc fl |e 3 .09 Ves 4 1 FieringlytkHyperOctreeAlgorithmcxc 3 86.09 Yes 4 1

g 2 54.30 Yes 20 3 FilteringlvtkPolyDataAlgorithm .cxx 2 54.30 Yes 20 3
[Rerndering ik obetererchyAlgrtfm. i 25 Ves 5 3 | Rendering]tkebelerarchyAlgorithm.cxx 1 25 Ves s 4
| T [FeniermawiiabeerarchyAgorimom - [FierrawikGenereDwesetAIgorhment] O vkt

17 file fRT T R | ifile fETTT= {file b
128 ine rans 124 ine sl 128 tne rin 129 fne [

i tntor 126 Cime tntor 125 i veMlotsedport), vekInforaaciont infol 124 ins veklocUsadipore), vekinfornationt info)

130 X 126 (130 125 (

131 dnte->Set (vekALgorivha: s TPUT_RIQUINED DATA_TYPE(), 8 || | 127 into->Ges (vukhLgorshns upvr_nsvznao_para_teeeey, v ||l 131 snto-sar toekaicorsenn: :rupur_ssovrnen_oara_rorso. B ||| 126 into->ser (vekndgorisim: - INPUT_ReQUIRED DATA_TYRR(), v
152 revurm 15 | e]| e | ey

& = & bt | |

~—__[[= #clone i) clone

o s o

TR | R i [

137 vtkInformation® vtkNotUsed(request), 133 vtkInformation® vtkNotUsed(request], 137 [132

138 154 138 139

135 ; 135 vekIntomacionVector® oucputestor) 135 ; 14 ;

190 ¢ 16 ¢ 140 18 ¢

141 1/ do nothing 1es subelasses nandie 1o 137 for (ime 4% 0; 4 < chisoosectmmberotouspucpores(i; + 142 // to nothing tee subclasses nantis ie 15| | 17 do mothing let subclasses handie 15

162 | zeviem 1 RO ief| Er | e

i | , i e P — . ML’_I it | _"_I i | f

Clone 743 [[Seected cores 13 fone 743 T T Y | X T

[Selcted cones 112 fone 46 [

Color legend for views a-d Hlod g e
O non-cloned code M

O clone shown in both windows -
O clone partner not shown

@ identifier renamed

(shown as [in right window)

abc cloned code under mouse

Al
2

Solid Software eXplarer EVALUATION version. Visit hitp:/Avw-solidsourcett.con o buy.

ﬂleS haVing >80°A) Hods table view %

Edie (B\mmai Tna

|

repectars [Tl |

jode user selection v

lode user selection

name [eciones =]
=

GeovsCreTests. o
UnstructuredGridrastGradients. o 2
TestsontDataAmay.cxx 1
VHkTableReader.cex 2
TestTulpReader xx |
TestTranslucentLUTAhaBlending oo 1
MainFrm. cop 1

1

<

onnected nores
name [edones [4|

ikImageEucideanDistance.cxc =
GeavisCxTests.oxx

UnstructredGridFastGradents. cxc

UnstructuredGridCel Gradients. cxx
TestsortDatartay.oxx
Testplaybackiidget.cxx

=] TestTuipReader.oxx

1
4
2
instructuredGridReader oxx 6
1
1
1
1

17 v0me 1l |

- selection inspector

name #Clones #Statements Avg, Ayg, #stmts, Cloned %
cloned code —» O e —

| 4

= =
|Le) Highly-cloned files]............... e ™

Todls |
Commands; i

Settings

Colormap

[ereervelonrios

|
@ —<«—{}- table lens controls

Figure 3: SolidSDD clone detector visual analysis of the \fitle base (see Sec. 4.2)

8

see that every single subsystem in VTK contains such filemiB®n the selected files are shown in the selection inepatt
the right. This type of visualization supports refactorpignning by giving insight on where recoding activities Wbneed to
take place in order te.g.remove the largest clones.

5. Toolset Assessment in Practice

We have used our SVA toolset in many applications, both ieassh [19, 38] and the industry [24, 39, 25]. We next
briefly describe one application which outlines the addddevaf strong interplay between the two tools discussed so fa
To further outline the extensibility of our toolset, thispdipation briefly introduces one additional tool: SolidSTAvisual
analytics application for software evolution data minilgplidSTA uses the same dataflow architecture (Sec. 3) atwivied
the same development path from a research prototype [213¢alable, easy-to-use tool as SolidSX and SolidSDD. A letai
description of SolidSTA is provided in [21]. The tool is flgavailable for researchers from [16].

A major automotive company developed an embedded softwack sf 3.5 million lines of C code in 15 releases over 6
years with three developer teams in Western Europe, Easteope, and Asia. Towards the end, it was seen that the projec
could not be finished on schedule and that new features wedetbiantroduce. The management was not sure what went
wrong. The main questions were: was the failure caused bybddtecture, coding, or management; and how to follow up
- start from scratch or redesign the existing code. An exleconsultant team performed a post-mortem analysis using o
toolset (SolidSDD, SolidSTA, SolidSX). The team had oahe weeko deliver its findings and only the code repository as
information source. For full details, see [40].

The approach involved the classical VA steps: data aciprisibhypothesis creation, refinement, (in)validation, aeslilt
aggregation and presentation (Fig. 4). First, we mined gbaaguests (CRs), commit authors, static quality metaied,call
and dependency graphs from the CM/Synergy repository intdamlset's SQL fact database using SolidSTA (1). Next, we
examined the distribution of CRs over project structureve®a folders with many open CRs emerged (red treemap cells i
Fig. 4 (2)). These correlate quite well with the team streestuhe red’ team owns most CRs (3). To further see if this is a
problem, we looked at the CR distribution over files over tieFig. 4 (4), files are shown as gray lines vertically stacke
on age (oldest at bottom), and CRs are red dots (the samet iayasede.g. in [21]). The gray area’s shape shows almost no
project size increase in the second project half, but mathylogs overll files in this phase. These are CRs involving old files
that were never closed. When seeing these images, the managantly recalled that the 'red’ team (located in Asia)l ha
lasting communication problems with the European teants agknowledged that it was a mistake to assign so many CRs to
this team.

We next analyzed the evolution of various quality metrian-in, fan-out, number of functions and function calls, and
average and total McCabe complexity. Static analysis iedming our heavyweight analyzer SolidFX [25]. Since thia is
one-time analysis rather than an incremental change-@athtyze path, speed and configuration cost are not edssatiaost
of the analyzers listed in Sec. 4.1.1 could be used equally Wke graphs in (5) show that these metrics have a slow or no
increase in the second project half. Hence, the missedideadkiere not caused by code size or complexity explosiot,. Ye
the average complexity per function is high, which impligallt testing. This was further confirmed by the projecder.

Finally, to identify possible refactoring problems, we lgaad the project structure using SolidSX. Fig. 4 (6) shovgsld
lowed dependenciese. modules that interact bypassing interfaces. Fig. 4 (7) showdules related by mutual calls, which
violate the product’s desired strict architectural laggri These two views suggest difficult step-by-step refangoand also
difficult unit testing. Again, these findings were confirmedthe project leaders.

6. Discussion

Based on our SVA tool building experience, we next try to agrsseveral questions of interest for our audiénde clarify
the standpoints taken, we first introduce the concept of laslae modelalong the lines of the well-known lean development
cost model [41]: We state that a SVA tool is useful if it defivdighvaluewith minimalwasteto its stakeholder user. Different
users (or stakeholders) will thus assess the same toolatitfg as they have different value and waste models [42hdderhe
answers to our questions of interest are strongly depermuietite stakeholder perspective chosen, as follows.

1as taken from the WASDeTT 2010 call for papers (www.infodprac.be/wasdett2010)
9

| Software repository |

@ C static mining) @volution minin@

| Fact database |

Change assessment Quality metric evolution assessment @ Structural assessment

Average fan-in (functionlevel) 15 Average fan-out (function level)

—t

350

o e

250 250 /—f
— 2,00

20 / /
150 1,50
[@ o I P o verage o ot eve)

a3eyoed

Land 3 L
050 0,50
0,00

000

FE PSP SESE PSSO SE S PSS S E S PSP

SELETTIEFFISFTE e e eFs S ess
Function Calls

Functions 00
1[I 30 Number of MRs oo a0 i
P D ,HW
Team assessment puso T b —
- . 300 / —=C..
o o / e o
‘ o e "l

P E S F S P SESE S S ES PSP PSES P
FELEFSEEFESSELY FEEEFIEEEES

-- @ Average complexity / function —omecave TOtal McCabe
= 70000

. . o0 e
'__/ 50000
1 40000
/ 20000 o
s 10000
o ol

& £ & EIEE SO SN ISR SRR IR IR SR SR SR IR SR

S & > PSP S P < P of S 5 s S
FEFFIFISFFESFS PSS EFFF S

Result interpretation T
Resulting

et o interpret b images FR = modify
131;;;' Stakeholders P H_ -.¢.|i,.r- Consultants

Figure 4: Data collection, hypothesis forming, and resuérpretation for product and process assessment (Sec.®w#and numbers indicate the order of
the performed steps

6.1. Should academic tools be of commercial quality?

We see two main situations here. If tools are used by reserphrely to test new algorithms or ideas,g. a new
visualization layout atop of the HEB implemented in Solid8X], then large investments in tool infrastructure (Sgdés2een
as waste. If tools are needed in case studies with exteraed og even stronger, in real-life projects, then theibilgg is key
to acceptance and success [5, 43, 39]. For example, valireigt obtained from user-testing our toolset on largéveate
projects with more than 70 students, 15 researchers, antl @8vielopers could never have been reached if our tools hiad no
been mature enough for users to accept working with theneifirtst place. Hence, we believe that academic tools intefated
other users than their immediate researcher creatorscdshoutompromise onritical usability (.g. interactivity, scalability,
robustness). However, effort required &afoptability(e.g. manuals, installers, how-to’s, support of many input/atfprmats,
rich GUIs), which is critical only in later deployment phasean be limited.

6.2. How to integrate and combine independently developald?

This is an extremely challenging question as both the iatégr degree required and the tool heterogeneity vary widel
practice. For SVA tools, we have noticed the following pieadtpatterns to provide good returns on investment, indasing
order of difficulty:

10

e dataflow: Tools communicate by reading and writing several data filestandardized formatg.g. SQL for tables,
GXL and XML (for attributed graphs) [44], and FAMIX and XMIdf design and architecture models) [45]. This easily
allows creating dataflow-like tool pipelines, like the ebeeat Cpp2Xmi UML diagram extractor involving Columbus
and Graphviz [46].

¢ shared databasestools communicate by reading and writing a single sharetddatabase which stores code, metrics,
and relations, typically as a combination of text files (fode), XML (for lightweight structured data), and proprigta
binary formats (for large datasets such as ASGs or exectrdmes). This is essentially the model used by Eclipse’s
CDT, Visual Studio’s Intellisense, and SolidSX. As opposediataflows, shared databases support the much finer-
grained data access required by interactive visualizdtiols e.g. for real-time browsing of dependencies (SolidSX) or
symbol queries (Eclipse, Visual Studio, SolidFX). Howe\atding third-party tools to such a database requiresngriti
potentially complex data converters.

e common APl Tools communicate by using a centralized ARd. for accessing shared databases but also executing
operations on-demand. This allows functionality reuse@arsiomization at a finer-grained level of ‘components’ eath
than monolithic tools. Although a common API does not neaglysenforce a shared tool implementation (code base),
the former typically implies the latter in practice. APl exples for SVA tools are the Eclipse, Visual Studio, and
CodeCrawler [9] SDKs and, at a lower level, the Prefuse anddvian toolkits for constructing InfoVis applications [47
48]. Our own toolset also offers a common C++ API for the tdétes, treemap, and HEB visualizations which allowed
us to easily embed these in a wide range of applicationse sef27, 39, 40]. Common APIs are more flexible than
shared databases, as they allow cordral data flow composition. However, they are much harder to upedatice, as
they impose coding restrictions and high learning costst@ol builders) and costly maintenance (for API providers)

In practice, most SVA toolsets use the dataflow or sharecbdatamodel which nicely balances costs with benefits. This
is the case of our toolset (see Sec. 3) and also the conclgpgimllar SQUAVISIT toolset [49]. The main difference beten
SQUAVIsSIT and our toolset is the integration level: in ousepanalysis and visualization are tighter integragegl the built-in
static analysis in SolidSX, clone detection in SolidSDDIjd&X integration in Visual Studio, and clone visualizatigsolidSX
used by SolidSDD), realized by a single fact database, thietédhased mechanism described in Sec. 4.1.3, and the sbafred
visualization components API.

6.3. What are the lessons learned and pitfalls in building<®

SVA tool building is mainly a design activity. Probably thest important element for success is striving to createalisu
and interaction models which optimally fit the 'mental map'tioe targeted users. Within space limitations, we outlime t
following points:

e 2D vs 3D:software engineers are used to 2D visualizations, so thikgedept these much easier than 3D ones [50]. We
found no single case when a 3D visualization was better &ddpan a 2D one in our work. As such, we abandoned
earlier work in 3D visualizations [18] and focused on 2D wlizations only.

e interaction: too much interaction and user interface options confusa #we most patient users. A good solution is to
offer problem-specific minimalist interaction paths or ands, and hide the complex options under an 'advanced’ tab.
This design is visible in the user interfaces of both Solid®X SolidSDD.

e scalable integratiorof analysis with visualization is absolutely crucial foethcceptance of the latter [5, 42]. However,
providing this is very costly. We estimate that over 50% af #ntire code base of our toolset (over 700 KLOC) is
dedicated to efficient data representation for smooth iatem. For datasets up to a few hundred thousand items, a
SQLite fact database performs very well (Sec. 3). Howewaayhweight parsing, such as performed by SolidFX, creates
much larger datasets (full ASGs of tens of millions of eletaeroughly 10..15 elements per line of code). To efficiently
store and query this, we opted to store such data in a custmamtfiormat which minimizes space and maximizes search
speed [25]. The same is true for plain source code, whichssdiered as separate text files. The SQL database is still
used as a 'master’ component which points to such speciagaschemes for particular datasets. Finally, we use XML
mainly as a data interchange format for lightweight dagseg. SolidSX accepts all its input either as SQL or XML.

11

However, our experience is that XML does not lend itself vi@llstoring arbitrary relational data for large datasetd an
efficiently implementing complex queries.

6.4. What are effective techniques to improve the qualigcafiemic tools?

For VA tools, quality strongly depends on usability. Resbaools aimed at quickly testing new visual algorithms stiou
maximize API simplicity; here, Prefuse and Mondrian aredjegamples. Tools aimed at real-world software engineering
problems should maximize end-user effectiveness. For st this is further reflected into uncluttered, scalabled
responsive displays, and tight integration for short asiatyisualization sensemaking loops. Recent InfoVis adea have
significantly improved the first points. However, integoatiremains hard, especially given that the academic 'valadeth
give tool-related studies relatively lesser credit tharmtécal papers.

6.5. Are there any useful tool building patterns for softevangineering tools?
For SVA tools, we see the following elements as present irt suash tools we are aware of:

e architecture:the dataflow and shared database models are probably thetwikrl composition patterns.

e visualizations:2D visualizations using dense pixel layouts like the tables| HEBs, treemaps, and annotated text offer
high scalability and ease of use, so are suitable for lartgsdts created from static analysis; node-link layoutegea
too much clutter for graphs over about 1000 nodes and/orsethge are better when position and shape encode specific
meaning, like for (UML) diagrams (see further 6.6). Shadeshions, originally promoted by treemaps [29], are a simple
to implement, fast, visually scalable, and effective imstent of conveying structure atop of complex layouts.

e integration: tightly integrating independently developed analysis aisdalization tools is still an open challenge. Al-
though the socket-based mechanism outlined in Sec. 4.%.Bshiamitations,e.g.it cannot communicate shared state, it
strikes a good balance between simplicity and keeping thieaie stacks of the several tools to integrate independent

¢ heavyweight vs lightweight analysikightweight static analyzers are considerably simplemtplement, deploy, and
use, deliver faster performance, and may produce suffizi@rmation for visualization (see Sec. 4.1.1). Howevec®
visualization requirements increase, as it typically leaggpwith a successful tool, so do the requirements on itsinpu
analyzer. Extending static analyzers is, however, not lsiprocess, and typically requires switching to a compfete
new analyzer tool. As such, keeping the fact database mimdelesand weakly typed offers more flexibility in switching
analysis (and visualization) tool combinations.

6.6. How to compare or benchmark such tools?

Benchmarking SVA tools can be done by lab, class, or field siegties, or using the tool in actual IT projects, either by
comparing several tools against each other [40] or by comgartool with a predefined set of desirable requirements43b
Measuringtechnicalaspects.g. speed, visual scalability, or analysis accuracy can be dsimg de facto standard datasets
in the SoftVis communitye.g. the Mozilla Firefox, Azureus, or JHotDraw source code basdsch have been used in the
ACM SoftVis, IEEE Vissoft, and IEEE MSR conference 'chalieis’. Measuring a SVA tool’s end-to-endefulnesss harder
as it depends on task and context specific details; 'insaid ‘comprehension’ are hard to quantify. Still, side-ijesool
comparison can be used. For example, Figure 5 shows four 8M& (Ispace, CodePro Analytix, SonarJ, and SolidSX)
whose effectiveness in supporting an industrial correatiaintenance task we compared [51, 42]. This, and simtlajes
confirmed our supposition that node-link layouts are eiffedh program comprehension only for relatively small drsyfup
to a few hundred nodes), which is the main reason why our sutoelset focuses on the more scalable HEB layout. Other
useful instruments in gathering qualitative feedback piggybacking’ the tool atop of an accepted toolchag(Eclipse or
Visual Studio) and using established community blogs fdtimg user sentiment and success (or failure) stories. Fsom
experience, we noticed that this technique works for botdamic and commercial tools.

12

|d) SolidSX

m et

=
= %; »
0 S

i

Figure 5: Four structure-and-dependency SVA tools compiarezblving a corrective maintenance problem

6.7. What particular languages and paradigms are suiteduitdtiools?
For SVA tools, our experience strongly converges to a mihgatof technologies, as follows:

e graphics OpenGL, possibly augmented with simple pixel shader esitas, is by far the best solution in terms of porta-
bility, ease of coding, deployment, and performance; theesaxperience is shared by other researcleegstolten [28].

e core: scalability to millions of data items, relations, and &ifites can only be achieved in programming languages like
C, C++, or Delphi. Over 80% of all our analysis and applicatimde is C++; Although Java is a good candidate, its
performance and memory footprint are, from our experiesiiknot on par with compiled languages.

e scripting: Flexible configuration can be achieved in lightweight ipteted languages. The best candidate we found in
terms of robustness, speed, portability, and ease of us@®ythen. Tcl/Tk (which we used earlier in [18] or Smalltalk
(used by [9]) are also possible, but in our view require mdi@refor learning, deploying, and optimization.

7. Conclusions

In this paper, we have presented our experience in devgauifiware visual analysis (SVA) tools, starting from resba
prototypes and ending with a commercial toolset. During &volution and iterative design process, our toolset hagrged
from a wide variety of techniques to a relatively small sepadven concepts: the usage of a single shared weakly-tygmd f
database, implemented in SQL, which allows tool compasibyp means of shared fact selections; the usage of a smallerTumb
of scalable InfoVis techniques such as table lenses, loieically bundled edge layouts, annotated text, timelia@s, dense
pixel charts; control flow composition by means of lightweigocket-based adapters as multiple linked-views in oseeral
independently developed tools; tool customization by mezrPython scripts; and efficient core tool implementatising
C/C++ and OpenGL.

We illustrated our toolset by means of two of its most rec@mpliaations: SolidSX for visualization of program structu
dependencies, and metrics, and SolidSDD for extractionviswalization of code clones. We outlined the added value of
combining several tools in typical visual analysis scesgbly means of simple examples and a more complex industrsal p
mortem software assessment case. Finally, from the exmerigained in this development process, we addressed kevera
questions relevant to the wider audience of academic tatudrs.

Ongoing work targets the extension of our toolset at sevevals: New static analyzers to suppgdc binary analysis
and lightweight zero-configuration C/C++ parsing; dynaamelysis for code coverage and execution metrics; andratieg
with the Eclipse IDE. Finally, we consider extending ourugbzations with new metaphors which allow an easier ndigga
from source code to structural level by combining HEB lagaanid annotated code text in a single scalable view.

References

[1] T. A. Standish, An Essay on Software Reuse, IEEE TSE 101®34) 494-497.
[2] T. Corbi, Program Understanding: Challenge for the)9BM Systems Journal 28 (2) (1999) 294-306.
[3] S. Reiss, The paradox of software visualization, in:PH&EE Vissoft, 59-63, 2005.

13

(4]
(5]

(6]
(7]

(8]
(9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]
[19]

[20]
[21]
[22]

[23]
[24]

[25]
[26]

[27]
(28]
[29]
[30]
[31]
(32]

[33]
[34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]

[44]
[45]
[46]

[47]
(48]
[49]
[50]
[51]

S. Charters, N. Thomas, M. Munro, The end of the line fort8afe Visualisation?, in: Proc. IEEE Vissoft, 27-35, 2003.

R. Koschke, Software visualization in software maintee reverse engineering, and re-engineering: a reseangdysJ. Soft. Maint. and Evol. 15 (2)
(2003) 87-109.

P. C. Wong, J. J. Thomas, Visual Analytics, IEEE CG&A 24 (3)Q4) 20-21.

J. J. Thomas, K. A. Cook, llluminating the Path: The Redeansd Development Agenda for Visual Analytics, National \dization and Analytics
Center, 2005.

M. van den Brand, J. Heering, P. Klint, P. Olivier, Compdilanguage definitions: the ASF+SDF compiler, ACM TOPLAS £24(2002) 334—368.

M. Lanza,CodeCrawler- Polymetric Views in Action, in: Proc. ASE, 394-395, 2004.

F. Boerboom, A. Janssen, Fact Extraction, Querying dadalization of Large C++ Code Bases, in: MSc thesis, FaailMath. and Computer Science,
Eindhoven Univ. of Technology, 2006.

T. Mens, S. Demeyer, Software Evolution, Springer, 2008

M. Lanza, R. Marinescu, Object-Oriented Metrics in®iee, Springer, 2006.

N. Fenton, S. Pfleeger, Software Metrics: A Rigorous Bratical Approach, Chapman & Hall, 1998.

S. Diehl, Software Visualization Visualizing the Stture, Behaviour, and Evolution of Software, Springer, 200

H. Kienle, H. A. Muller, Requirements of Software Visualization Tools: A k#teire Survey, in: Proc. IEEE Vissoft, 92—-100, 2007.

SolidSource BV, SolidSX, SolidSDD, SolidSTA, and $i51X tool distributionsyww.solidsourceit.com , 2010.

SVCG, Scientific Visualization and Computer Graphic®@r, Univ. of Groningen, Software Visualization and Anays/ww.cs.rug.nl/svcg/
SoftVis , 2010.

A. Telea, A. Maccari, C. Riva, An Open Toolkit for Progping Reverse Engineering Visualizations, in: Proc. Dasu#lization (IEEE VisSym), IEEE,
67-75, 2002.

G. Lommerse, F. Nossin, L. Voinea, A. Telea, TWisual Code NavigatorAn Interactive Toolset for Source Code Investigation,Rnoc. InfoVis, IEEE,
24-31, 2005.

L. Voinea, A. Telea, J. J. van Wijk, CVSscan: visualiaatof code evolution, in: Proc. ACM SOFTVIS, 47-56, 2005.

L. Voinea, A. Telea, Visual Querying and Analysis of arSoftware Repositories, Empirical Software Engineerh¢3) (2009) 316—340.

M. Termeer, C. Lange, A. Telea, M. Chaudron, Visual exgiion of combined architectural and metric information, imod? IEEE Vissoft, 21-26,
2005.

S. Moreta, A. Telea, Multiscale Visualization of Dynan8oftware Logs, in: Proc. EuroVis, 11-18, 2007.

A. Telea, L. Voinea, Visual Software Analytics for theil8l Optimization of Large-scale Software Systems, Componadi Statistics (in print), see also
www.cs.rug.nl/ ~ alext/PAPERS

A. Telea, L. Voinea, An Interactive Reverse-EnginegrEnvironment for Large-Scale C++ Code, in: Proc. ACM SOFS\G7-76, 2008.

R. Rao, S. Card, The table lens: Merging graphical ama®ylic representations in an interactive focus+contextaligation for tabular information, in:
Proc. CHI, ACM, 222-230, 1994.

A. Telea, Combining extended table lens and treemap tguhba for visualizing tabular data, in: Proc. EuroVis, 53,-3006.

D. Holten, Hierarchical edge bundles: Visualizatidradjacency relations in hierarchical data, in: Proc. IEB®VYis, 741-748, 2006.

B. Shneiderman, Treemaps for space-constrained vistian of hierarchiesyww.cs.umd.edu/hcil/treemap-history , 2010.
A. Ludwig, Recoder Java analyzeecoder.sourceforge.net , 2010.
Redgate Inc., Reflector .NET ARiww.red-gate.com/products/reflector , 2010.

R. Ferenc, A. Begmes, M. Tarkiainen, T. Gyiathy, Columbus — Reverse Engineering Tool and Schema for Gw+Rrioc. ICSM, IEEE, 172-181,
2002.

LLVM Team, Clang C/C++ analyzer home pag&ng.llvm.org , 2010.

Y. Lin, R. C. Holt, A. J. Malton, Completeness of a Fact faxtor, in: Proc. WCRE, IEEE, 196-204, 2003.

Bell Labs, CScope, cscope.sourceforge.net, 2007.

T. Kamiya, CCfinder clone detector home pagew.ccfinder.net , 2010.

VTK Team, The Visualization Toolkit (VTK) home pageww.vtk.org , 2010.

A. Telea, O. Ersoy, Image-based Edge Bundles: Simplifisdalization of Large Graphs, Comp. Graph. Forum 29 (3) (2656-74.

A. Telea, L. Voinea, A Tool for Optimizing the Build Perfbance of Large Software Code Bases, in: Proc. IEEE CSMR,1E3-2008.

L. Voinea, A. Telea, Case Study: Visual Analytics in 8edre Product Assessments, in: Proc. |IEEE Vissoft, 57-489 20

M. Poppendieck, T. Poppendieck, Lean Software Develqt: An Agile Toolkit for Software Development Managers, fsieh-Wesley, 2006.

A. Telea, L. Voinea, O. Ersoy, Visual Analytics in Sotive Maintenance: Challenges and Opportunities, in: Prom\RST, Eurographics, 65-70,
2010.

M. Sensalire, P. Ogao, A. Telea, Classifying desirdbures of software visualization tools for corrective manance, in: Proc. ACM SOFTVIS,
87-90, 2008.

R. Holt, A. Winter, A. Schurr, GXL: Towards a standarddbange Format, in: Proc. WCRE, 162-171, 2000.

S. Tichelaar, S. Ducasse, S. Demeyer, FAMIX and XMI, irod® WCRE, 296-300, 2000.

E. Korshunova, M. Petkovic, M. van den Brand, M. Mous&pp2XMI: Reverse Engineering for UML Class, Sequence aciividy Diagrams from
C++ Source Code, in: Proc. WCRE, 297-298, 2006.

Prefuse, The Prefuse Information Visualization Toplarefuse.org , 2010.

A. Lienhardt, A. Kuhn, O. Greevy, Rapid Prototyping asWalizations using Mondrian, in: Proc. IEEE Vissoft, 6@--2007.

M. van den Brand, S. Roubtsov, A. Serebrenik, SQuAVigiFlexible Tool for Visual Software Analytics, in: Proc. @R, 331-332, 2009.

A. Teyseyre, M. Campo, An Overview of 3D Software Visaalion, IEEE TVCG 15 (1) (2009) 87-105.

M. Sensalire, P. Ogao, A. Telea, Model-Based Analysis\doption Factors for Software Visualization Tools in Geetive Maintenance, Univ. of
Groningen, the Netherlands, Tech. Report SVCG-RUG-1®20tvw.cs.rug.nl/ ~ alext/PAPERS/Sen10.pdf , 2010.

14

