
Practical	
  Data	
  Visualization	
  Course	
  –	
  Assignment	
  Writing	
  Guidelines	
  
	
  
	
  
1.	
  Introduction	
  
The	
   goal	
   of	
   this	
   document	
   is	
   to	
   provide	
   detailed	
   support	
   for	
   the	
   execution	
   of	
   the	
  
assignment	
   coming	
   with	
   the	
   Practical	
   Data	
   Visualization	
   graduate	
   course.	
   Before	
  
starting	
   with	
   the	
   assignment	
   (after	
   the	
   lecture	
   series	
   is	
   over),	
   read	
   this	
   document	
   in	
  
detail.	
  This	
  will	
  ensure	
  that	
  you	
  know	
  

• what	
  type	
  of	
  problem	
  you	
  should	
  select	
  for	
  the	
  assignment	
  
• which	
  are	
  all	
  aspects	
  that	
  you	
  have	
  to	
  cover	
  in	
  the	
  assignment	
  (and	
  report)	
  
• the	
  order	
  in	
  which	
  you	
  should	
  cover	
  these	
  aspects	
  (steps	
  of	
  the	
  assignment)	
  

	
  
The	
   steps	
   of	
   the	
   assignment	
   are:	
   problem	
   description,	
   data	
   description,	
   visualization	
  
design,	
   visualization	
   implementation,	
   and	
   description	
   of	
   findings.	
   They	
   are	
   detailed	
  
below.	
  
	
  
At	
  the	
  end	
  of	
  executing	
  these	
  steps,	
  you	
  should	
  have	
  produced	
  a	
  report	
  of	
  20-­‐25	
  pages,	
  
containing	
  a	
  detailed	
  coverage	
  of	
  the	
  execution	
  of	
  your	
  assignment,	
  complemented	
  by	
  a	
  
number	
   of	
   images	
   (snapshots	
   of	
   your	
   visualizations	
   and,	
   possibly,	
   also	
   schematic	
  
diagrams	
  describing	
  your	
  design).	
  
	
  
2.	
  Problem	
  description	
  (step	
  1/5)	
  
	
  
The	
  assignment	
  starts	
  by	
  selecting	
  a	
  problem	
  whose	
  solution	
  will	
  be	
  supported	
  by	
  one	
  
or	
  more	
  visualizations.	
  The	
  optimal	
  way	
  to	
  do	
  this	
  is	
  to	
  consider	
  your	
  own	
  research	
  (or	
  
the	
  research	
  of	
  a	
  colleague	
  or	
  scientist	
  with	
  whom	
  you	
  interacted).	
  This	
  ensures	
  that	
  the	
  
problem	
  you	
  will	
  next	
  treat	
   is	
  relevant	
  to	
  you;	
  you	
  know	
  the	
  problem	
  domain;	
  and,	
  by	
  
doing	
  the	
  assignment,	
  you	
  will	
  learn	
  insights	
  which	
  will	
  prove	
  directly	
  useful	
  and	
  usable	
  
in	
  your	
  direct	
  work.	
  
	
  
A	
  problem	
  can	
  be	
  of	
  many	
  types	
  and	
  extents.	
  For	
  example,	
  it	
  can	
  be	
  formulated	
  as	
  a	
  task	
  
or	
   goal	
   whose	
   resolution	
   is	
   helped	
   by	
   visualizations.	
   Instances	
   of	
   this	
   case	
   are	
   the	
  
following	
  examples:	
  
	
  
Given	
  a	
  matrix	
  whose	
  elements	
  change	
  in	
  time,	
  show	
  the	
  change	
  by	
  highlighting	
  patterns	
  
such	
  as	
  periodic	
  oscillations,	
  plateaus,	
  slowly	
  vs	
  rapidly	
  changing	
  values,	
  blocks	
  of	
  values	
  
that	
  change	
  in	
  sync,	
  and	
  stable/constant	
  values.	
  
	
  
Given	
  a	
  set	
  of	
  large	
  data	
  matrices,	
  show	
  which	
  subparts	
  of	
  these	
  matrices	
  are	
  to	
  be	
  found	
  
in	
  several	
  matrices	
  in	
  the	
  collection.	
  	
  
	
  
Given	
   a	
   network-­‐like	
   structure	
   consisting	
   of	
   a	
   large	
   number	
   of	
   hubs	
   and	
   links,	
   show	
   the	
  
core,	
  or	
  skeleton,	
  of	
  this	
  structure.	
  
	
  
Given	
  a	
  complex	
  electrical	
  circuit,	
  show	
  how	
  current	
  and	
  voltage	
  values	
  flow	
  (change)	
  over	
  
its	
  components	
  in	
  time.	
  
	
  
Given	
   several	
   thousands	
   of	
   experimental	
   measurements	
   of	
   the	
   same	
   phenomenon,	
   each	
  
consisting	
  of	
  tens	
  or	
  more	
  of	
  measured	
  variables,	
  find	
  which	
  groups	
  of	
  measurements	
  are	
  
strongly	
  similar.	
  
	
  



Given	
   several	
   thousands	
   of	
   experimental	
   measurements	
   of	
   the	
   same	
   phenomenon,	
   each	
  
consisting	
   of	
   tens	
   or	
   more	
   of	
   measured	
   variables,	
   find	
   which	
   groups	
   of	
   variables	
   are	
  
strongly	
  correlated,	
  respectively	
  inversely	
  correlated,	
  in	
  time.	
  
	
  
However,	
   you	
   can	
   formulate	
   a	
   problem	
   also	
   in	
   terms	
   of	
   a	
   question	
   that	
   your	
  
visualizations	
  should	
  next	
  aim	
  to	
  solve.	
  For	
  example:	
  
	
  
Given	
   several	
   tens	
   or	
   hundreds	
   of	
   time	
   series,	
   each	
   having	
   hundreds	
   of	
   measurements	
  
(samples),	
  how	
  to	
  show	
  the	
  most	
  similar	
  time	
  series?	
  
	
  
We	
  have	
  a	
  2D	
  image,	
  acquired	
  with	
  a	
  microscope.	
  For	
  each	
  image	
  pixel,	
  besides	
  its	
  color,	
  
we	
   also	
   know	
   the	
   measurement	
   precision	
   or	
   uncertainty	
   (which	
   can	
   vary	
   largely	
   for	
  
different	
   pixels).	
   How	
   to	
   intuitively	
   show	
   to	
   a	
   scientist	
   both	
   the	
   pixel	
   colors	
   and	
   the	
  
measurement	
  uncertainties	
  they	
  were	
  acquired	
  with?	
  
	
  
We	
  have	
  a	
  very	
  long	
  (DNA-­‐like)	
  sequence	
  of	
  ordered	
  elements,	
  where	
  each	
  element	
  has	
  a	
  
type	
  taking	
  values	
  in	
  a	
  small	
  collection	
  of	
  10	
  types	
  (e.g.,	
  is	
  of	
  type	
  A,	
  B,	
  C…,	
  J).	
  How	
  to	
  show	
  
repeating	
  structures	
  (of	
  variable	
  lengths)	
  along	
  this	
  sequence,	
  if	
  the	
  sequence	
  has	
  200000	
  
elements?	
  
	
  
We	
  have	
  a	
  table	
  of	
  values.	
  Each	
  value	
  is,	
  however,	
  not	
  a	
  single	
  number,	
  but	
  a	
  distribution.	
  
How	
  to	
  show	
  this	
  table	
  so	
  that	
  we	
  recognize	
  similar	
  distributions	
  easily?	
  
	
  
Guidelines	
  for	
  problem	
  selection:	
  
	
  
• don’t	
  make	
   the	
   problem	
   too	
   complicated;	
   it	
  will	
   take	
   too	
  much	
   effort	
   or	
   technical	
  

skills	
  to	
  solve;	
  
• don’t	
  make	
  the	
  problem	
  too	
  simple	
  or	
  not	
  related,	
  in	
  any	
  way,	
  to	
  visualization;	
  it	
  will	
  

not	
  make	
  sense	
  to	
  solve	
  that	
  problem;	
  
• the	
  problem	
  can	
  be	
  a	
  sub-­‐part	
  of	
  a	
  more	
  complex	
  problem	
  in	
  your	
  research;	
  scope	
  it	
  

so	
  that	
  its	
  size	
  and	
  level	
  of	
  detail	
  is	
  suitable;	
  
• make	
  the	
  questions	
  or	
   tasks	
  related	
  to	
  your	
  problem	
  as	
  specific	
  as	
  possible!	
   If	
  not,	
  

then	
  it	
  is	
  hard,	
  even	
  impossible,	
  to	
  justify	
  next	
  that	
  the	
  proposed	
  solution	
  is	
  indeed	
  a	
  
(good)	
  solution	
  for	
  that	
  problem.	
  

	
  
Related	
  reading:	
  Module	
  1	
  
	
  
3.	
  Data	
  description	
  (step	
  2/5)	
  
	
  
In	
   this	
   step,	
   you	
   describe	
   the	
   problem	
   in	
   terms	
   of	
   datasets	
   and	
   related	
   operations.	
   In	
  
other	
  words:	
   you	
   abstract	
   from	
   the	
   problem	
   universe	
   (e.g.	
   volts,	
   amperes,	
  molecules,	
  
bacteria,	
   chemical	
   samples,	
   reactivity,	
   biological	
   diversity,	
   …)	
   to	
   a	
   mathematical	
  
universe,	
  modeled	
  by	
  the	
  dataset	
  notion.	
  
	
  
To	
  do	
   this,	
   you	
  must	
   try	
   to	
   express	
   the	
  data	
   that	
   is	
   involved	
   in	
  your	
  problem	
  and	
   the	
  
tasks	
  that	
  address	
  that	
  data	
  in	
  terms	
  of	
  
	
  
• type	
  of	
  dataset	
  (table,	
  grid,	
  2D/3D	
  shapes,	
  time	
  series,	
  set,	
  sequence,	
  tree,	
  graph,	
  …)	
  
• type	
  of	
  attributes	
  (quantitative,	
  integral,	
  ordinal,	
  categorical,	
  text,	
  relations,	
  …)	
  
• type	
  of	
  operations	
  you	
  can	
  do	
  on	
   the	
  attributes	
  (see	
   the	
  operations	
  allowed	
  by	
   the	
  

above	
  attribute	
  types)	
  



• type	
  of	
  measurements	
  you	
  want	
  to	
  do	
  on	
  the	
  data	
  (e.g.	
  find	
  similar	
  items,	
  sort	
  items	
  
on	
  a	
  criterion,	
  highlight	
  outlier	
  values,	
  highlight	
  trends/patterns,	
  find	
  correlations	
  or	
  
lack	
  thereof,	
  …)	
  

• size	
  of	
  your	
  dataset	
  (number	
  of	
  observations,	
  number	
  of	
  variables)	
  
	
  
The	
  aim	
  of	
   this	
  reduction	
   to	
  a	
  mathematical	
   framework	
   is	
   to	
  next	
  allow	
  you	
   to	
  reason	
  
about	
  which	
  visualization	
  techniques	
  are	
  (best)	
  applicable	
  to	
  your	
  context.	
  For	
  this,	
  you	
  
will	
  compare	
  the	
  dataset	
  that	
  fits	
  your	
  problem	
  with	
  the	
  dataset	
  requirements	
  exhibited	
  
by	
  the	
  various	
  visualization	
  algorithms	
  presented	
  in	
  Module	
  2.	
  
	
  
Several	
  observations	
  are	
  important	
  in	
  this	
  process:	
  
	
  
• your	
  problem	
  may	
  not	
  be	
  captured	
  by	
  a	
  single	
  dataset,	
  but	
  a	
  collection	
  of	
  datasets	
  of	
  

several	
  kinds.	
  This	
  is	
  fine,	
  as	
  long	
  as	
  you	
  can	
  next	
  find	
  a	
  good	
  visualization	
  for	
  each	
  
such	
  dataset;	
  

• for	
   your	
   dataset,	
   there	
   will	
   be	
   (generally)	
   several	
   visualization	
   algorithms	
  
applicable.	
   To	
   further	
   select	
   among	
   them,	
   consider	
   other	
   aspects	
   such	
   as	
   dataset	
  
size,	
  availability	
  (and	
  ease	
  of	
  use)	
  of	
  the	
  respective	
  algorithms,	
  and	
  the	
  types	
  of	
  tasks	
  
they	
  support	
  vs	
  the	
  tasks	
  you	
  have	
  for	
  your	
  data;	
  

• even	
   after	
   the	
   above	
   algorithm	
   selection,	
   you	
   may	
   be	
   left	
   without	
   a	
   single	
   grand	
  
winner	
   (in	
   terms	
   of	
   visualization	
   algorithms);	
   this	
   is	
   not	
   a	
   problem	
   –	
   you	
   may	
  
propose	
   a	
   solution	
   in	
  which	
   you	
   use	
   e.g.	
   two	
   visualization	
   algorithms	
   to	
   highlight	
  
different	
  aspects	
  of	
  the	
  same	
  dataset	
  (the	
  ‘multiple	
  linked	
  views’	
  metaphor).	
  

	
  
Example:	
  Consider	
  the	
  first	
  problem	
  sketched	
  in	
  Sec.	
  1:	
  
	
  
Given	
  a	
  matrix	
  whose	
  elements	
  change	
  in	
  time,	
  show	
  the	
  change	
  by	
  highlighting	
  patterns	
  
such	
  as	
  periodic	
  oscillations,	
  plateaus,	
  slowly	
  vs	
  rapidly	
  changing	
  values,	
  blocks	
  of	
  values	
  
that	
  change	
  in	
  sync,	
  and	
  stable/constant	
  values.	
  
	
  
We	
  can	
  encode	
   the	
  data	
  of	
   this	
  problem	
  as	
  a	
  set	
  of	
  2D	
  matrices,	
  or	
   tables,	
  where	
  each	
  
table	
   gives	
   the	
   data	
   samples	
   at	
   a	
  moment	
   in	
   time.	
   Alternatively,	
  we	
   could	
   encode	
   the	
  
data	
  as	
  a	
  3D	
  ‘data	
  cube’	
  obtained	
  by	
  stacking	
  these	
  2D	
  matrices	
  in	
  their	
  temporal	
  order.	
  
Alternatively,	
  we	
   could	
   think	
   of	
   a	
   ‘generalized	
  matrix’	
   of	
   the	
   size	
   of	
   our	
   input	
  matrix,	
  
where	
  each	
  cell	
   is	
  not	
   just	
  a	
  number,	
  but	
   the	
  entire	
  evolution	
   (time	
  series)	
  describing	
  
the	
  variations	
  of	
  that	
  item	
  in	
  our	
  time-­‐dependent	
  matrix.	
  
	
  
Related	
  reading:	
  Module	
  2	
  
	
  
	
  
4.	
  Visualization	
  design	
  (step	
  3/5)	
  
	
  
In	
  this	
  step,	
  you	
  describe	
  how	
  the	
  dataset	
  and	
  tasks	
  found	
  in	
  step	
  2	
  are	
  further	
  mapped	
  
to	
  visual	
  variables.	
  In	
  other	
  words,	
  you	
  describe	
  	
  
• how	
   you	
   encode	
   your	
   data	
   into	
   elements	
   such	
   as	
   shapes,	
   sizes,	
   colors,	
   order	
   of	
  

elements,	
  layouts;	
  and	
  	
  
• how	
  you	
  next	
  propose	
  to	
  address	
  the	
  tasks	
  found	
  in	
  step	
  2	
  by	
  visually	
  inspecting	
  the	
  

produced	
  visualization(s).	
  
	
  
To	
   do	
   this,	
   consider	
   (again)	
   the	
   visualization	
   algorithms	
   that	
   best	
   match	
   the	
   type	
   of	
  
dataset	
  you	
  have	
  and	
  the	
  tasks/questions	
  you	
  have.	
  Also,	
  consider	
  the	
  attribute	
  types	
  in	
  
your	
  dataset	
  –	
  recall,	
  as	
  discussed	
  in	
  Modules	
  2	
  and	
  3,	
  that	
  not	
  all	
  attribute	
  types	
  map	
  
equally	
  well	
  to	
  all	
  visual	
  variables.	
  Finally,	
  consider	
  the	
  data	
  size:	
  some	
  visual	
  encodings	
  



work	
  well	
  for	
  small	
  datasets	
  only	
  (e.g.	
  graph	
  drawings),	
  while	
  others	
  work	
  very	
  well	
  for	
  
large	
  datasets	
  (e.g.	
  table	
  lenses	
  or	
  timelines).	
  Once	
  you	
  have	
  found	
  a	
  design	
  (or	
  several	
  
complementary	
   or	
   alternative	
   designs),	
   describe	
   and	
   defend	
   your	
   choices	
   in	
   detail,	
  
including	
  their	
  known	
  limitations.	
  	
  
	
  
Example:	
   Consider	
   our	
   running	
   example	
   problem.	
   Let’s	
   say	
   we	
   choose,	
   as	
   dataset	
  
model,	
  the	
  ‘generalized	
  matrix’	
  idea	
  (see	
  Sec.	
  3).	
  We	
  then	
  could	
  propose	
  a	
  small-­‐multiple	
  
design:	
  We	
  draw	
  the	
  matrix	
  as	
  a	
  grid,	
  and	
  within	
  each	
  grid	
  we	
  draw	
  a	
  small	
  timeline,	
  or	
  
graph,	
   showing	
   the	
  evolution	
  of	
  values	
  of	
   that	
   cell.	
  This	
   should	
  scale	
   relatively	
  well	
   to	
  
matrix	
   sizes	
   up	
   to	
   about	
   20x20.	
   Next,	
   we	
   can	
   use	
   encoding	
   redundancy	
   to	
   highlight	
  
certain	
   data	
   patterns,	
   such	
   as	
   local	
   maxima,	
   outliers,	
   or	
   trends	
   –	
   see	
   the	
   redundant	
  
encoding	
   in	
  bar	
   length	
  and	
  bar	
  coloring	
   in	
  Module	
  2	
   for	
   the	
   table	
   lens	
  example.	
  Using	
  
this	
  design	
  is	
  simple:	
  the	
  location	
  of	
  graphs	
  in	
  cells	
  tells	
  us	
  at	
  which	
  specific	
  cell	
  we	
  are	
  
looking;	
   by	
   visually	
   comparing	
   these	
   graphs,	
   we	
   can	
   find	
   e.g.	
   which	
   ones	
   are	
   highly	
  
similar,	
   which	
   ones	
   exhibit	
   outliers,	
   and	
   so	
   on.	
   One	
   challenge	
   here	
   is	
   that	
   the	
   design	
  
doesn’t	
   scale	
   too	
   well	
   –	
   already	
   comparing	
   20x20=400	
   graphs	
   visually	
   is	
   very	
   hard.	
  
Another	
  challenge	
  is	
  data	
  normalization:	
  By	
  normalizing	
  all	
  graphs	
  to	
  the	
  same	
  size	
  (of	
  a	
  
matrix	
   cell),	
   we	
   loose	
   insight	
   in	
   the	
   absolute	
   values	
   (scale)	
   of	
   the	
   phenomena.	
   For	
  
example,	
  a	
  voltage-­‐graph	
  on	
  the	
  scale	
  of	
  millivolts	
  will	
  look	
  in	
  this	
  design	
  identical	
  to	
  a	
  
voltage-­‐graph	
   having	
   the	
   same	
   trend	
   but	
   amplified	
   thousand	
   times	
   (on	
   the	
   scale	
   of	
  
volts).	
  To	
  fix	
  this,	
  we	
  may	
  actually	
  use	
  the	
  color	
  to	
  code	
  the	
  absolute	
  data	
  values.	
  
	
  
Related	
  reading:	
  Modules	
  2,	
  3	
  and	
  4.	
  
	
  
	
  
5.	
  Visualization	
  implementation	
  (step	
  4/5)	
  
	
  
In	
  this	
  step,	
  you	
  take	
  your	
  proposed	
  design	
  and	
  realize	
  (implement)	
  it	
  using	
  one	
  or	
  more	
  
visualization	
   tools.	
   To	
   help	
  with	
   tool	
   selection,	
  we	
   provide	
   a	
   list	
   of	
  many	
  well-­‐known	
  
visualization	
  tools	
  at	
  the	
  end	
  of	
  this	
  document.	
  Most	
  these	
  tools	
  are	
  freely	
  available,	
  and	
  
several	
  of	
  them	
  can	
  be	
  (easily)	
  used	
  with	
  little	
  or	
  even	
  no	
  programming	
  experience.	
  
	
  
Since	
   each	
   of	
   you	
   is	
   free	
   to	
   come	
  with	
   their	
   own	
   visualization	
   problem,	
   dataset,	
   and	
  
tasks,	
   and	
  most	
   of	
   you	
   have	
   different	
   backgrounds,	
   it	
   is	
   virtually	
   impossible	
   to	
   come	
  
with	
  a	
  single	
  tool	
  offer	
  that	
  will	
  fit	
  you	
  all.	
  As	
  such,	
  tool	
  selection	
  is	
  a	
  critical	
  step	
  to	
  do.	
  
	
  
Tool	
   selection	
   is	
   a	
   very	
   challenging	
   task:	
   Finding	
   a	
   suitable	
   tool	
   depends	
   on	
   a	
   large	
  
number	
  of	
  factors:	
  your	
  programming	
  experience;	
  licensing	
  issues;	
  platform	
  you	
  need	
  to	
  
run	
  the	
  tool	
  on;	
  size	
  and	
  type	
  of	
  your	
  dataset	
  (not	
  all	
  tools	
  support	
  all	
  types	
  and/or	
  sizes	
  
of	
  datasets);	
  kind	
  of	
  visualization	
  you	
  want	
  to	
  generate;	
  freedom	
  you	
  need	
  to	
  configure	
  
visualization	
   parameters	
   (some	
   tools	
   allow	
   configuring	
   everything;	
   other	
   tools	
   allow	
  
only	
  a	
   limited	
  subset	
  of	
  options);	
  and,	
   last	
  but	
  not	
   least,	
   time	
  you	
  have	
  to	
  invest	
   in	
  the	
  
entire	
   tool-­‐searching,	
   tool-­‐testing,	
   and	
   tool-­‐learning	
   processes.	
   However,	
   doing	
   this	
  
search	
   is	
   a	
  very	
  good	
   learning	
  experience:	
  During	
   this,	
   you	
  will	
   learn	
  about	
  new	
   tools	
  
(maybe	
   not	
   useful	
   today,	
   but	
   really	
   useful	
   tomorrow);	
   will	
   see	
   what	
   state-­‐of-­‐the-­‐art	
  
visualization	
   tools	
   typically	
   offer	
   to,	
   and	
   require	
   from,	
   the	
   user	
   (and	
   thus	
  may	
   decide	
  
that	
  next	
  you	
  really	
  need	
  to	
  spend	
  time	
  to	
  learn	
  that	
  scripting	
  language	
  or	
  data	
  format);	
  
and	
  will	
   be	
   exposed	
   to	
  visualization	
   techniques	
  not	
  discussed	
   in	
   the	
   lecture	
   (and	
  may	
  
find	
  accidentally	
  solutions	
  to	
  other	
  of	
  your	
  long-­‐standing	
  problems).	
  
	
  
When	
  searching	
  for	
  a	
  suitable	
  tool,	
  the	
  following	
  points	
  are	
  important:	
  
	
  
• be	
   critical:	
   Do	
   not	
   spend	
   too	
   much	
   time	
   testing	
   each	
   single	
   tool.	
   Rather,	
   move	
  

quickly	
  through	
  the	
  tool	
  descriptions	
  provided	
  at	
  the	
  end	
  of	
  this	
  document,	
  focus	
  on	
  



a	
  subset	
  of	
  tools,	
  and	
  then	
  visit	
  them	
  in	
  order,	
  download	
  them,	
  and	
  decide	
  quickly	
  if	
  
they	
  have	
  a	
  chance	
   to	
   fit	
  your	
  context.	
  Eliminate	
   first,	
   so	
  you’re	
   left	
  quickly	
  with	
  a	
  
small	
  set	
  of	
  good	
  candidates.	
  

• be	
  specific:	
  a	
  tool	
  may	
  indeed	
  feature	
  a	
  certain	
  technique	
  (e.g.	
  ‘drawing	
  graphs’),	
  but	
  
is	
  that	
  precisely	
  the	
  kind	
  of	
  technique	
  you	
  need?	
  (e.g.	
  ‘drawing	
  graphs	
  of	
  about	
  1000	
  
nodes,	
  with	
  several	
  attributes	
  per	
  node,	
  that	
  I	
  want	
  to	
  easily	
  encode	
  into	
  node	
  color,	
  
size,	
  shape,	
  and	
  labels,	
  and	
  I	
  want	
  to	
  do	
  all	
  this	
  relatively	
  quickly,	
  and	
  I	
  don’t	
  know	
  
how	
  to	
  code	
  in	
  C++?’)	
  

• be	
   selective:	
   you	
  may	
   find	
   that	
  no	
   tool	
  does	
   it	
   all,	
   but	
   several	
   tools	
  provide	
  partial	
  
solutions	
  to	
  your	
  problem.	
  This	
  is	
  fine	
  –	
  use	
  then	
  each	
  tool	
  to	
  get	
  a	
  bit	
  of	
  the	
  puzzle	
  
solved.	
  Also,	
  remember,	
  this	
  course	
  is	
  about	
  visualization	
  design,	
  not	
  software-­‐tool	
  
design.	
   As	
   such,	
   it	
   is	
   absolutely	
   no	
   problem	
   to	
   e.g.	
  manually	
   perform	
  a	
   number	
   of	
  
operations	
   to	
   construct	
   your	
   final	
   visualization	
   (e.g.	
   adding	
   labels,	
   annotations,	
   or	
  
color	
   legends	
   to	
   plots,	
   assembling/arranging	
   plots	
   into	
   a	
   final	
   visual	
   design).	
  
Examples	
  of	
  this	
  way	
  of	
  working	
  are	
  presented	
  in	
  Modules	
  3	
  and	
  4.	
  

• optimize:	
   start	
   by	
   finding	
   a	
   solution	
   to	
   your	
   simplest	
   problem	
   part.	
   You	
  will	
   then	
  
arguably	
  find	
  many	
  tools	
  that	
  do	
  it.	
  This	
  is	
  good,	
  since	
  you’re	
  quickly	
  done	
  with	
  that	
  
part.	
  Then	
  you	
  have	
  more	
  time	
  to	
  focus	
  on	
  the	
  complicated	
  bits.	
  

	
  
Example:	
   Consider	
   our	
   running	
   example	
   problem.	
   Let’s	
   say	
   we	
   choose	
   the	
   ‘small	
  
multiples’	
  visual	
  design	
  outlined	
  in	
  Sec.	
  4.	
  To	
  implement	
  this,	
  we	
  can	
  use	
  a	
  multitude	
  of	
  
tools,	
   such	
   as	
   e.g.	
  Matlab,	
  Mathematica,	
  ManyEyes,	
   Prefuse,	
   or	
   similar	
   (see	
   appendix).	
  
We	
   can	
   then	
  use	
   any	
  of	
   these	
   tools	
   to	
   generate	
   the	
  data	
  plot	
   for	
   each	
  matrix	
   cell	
   –	
   of	
  
course,	
  carefully	
  tuning	
  the	
  visual	
  encoding	
  and	
  visual	
  attributes	
  to	
  best	
  map	
  the	
  data.	
  
Next,	
  we	
  can	
  assemble	
  the	
  plots	
  in	
  a	
  matrix	
  layout,	
  and	
  optionally	
  add	
  annotations	
  such	
  
as	
   labels	
   and	
   selections,	
   by	
   using	
   e.g.	
   Illustrator,	
   PowerPoint,	
   or	
   any	
   similar	
   graphics	
  
editor.	
  
	
  
Related	
  reading:	
  Module	
  4.	
  
	
  
6.	
  Description	
  of	
  findings	
  (step	
  5/5)	
  
	
  
In	
   this	
   step,	
   you	
   describe	
   how	
   the	
   visualizations	
   realized	
   in	
   step	
   4	
   solve	
   the	
   original	
  
problem	
  –	
  that	
  is,	
  complete	
  the	
  tasks	
  and/or	
  answer	
  the	
  questions	
  distilled	
  in	
  step	
  1.	
  To	
  
do	
  this,	
  you	
  need	
  to	
  actually	
  do	
  a	
  bit	
  of	
  ‘storytelling’:	
  This	
  involves	
  walking	
  the	
  path	
  from	
  
the	
   images	
   (in	
   the	
   visualization)	
   to	
   the	
   original	
  problem	
  domain	
   –	
   or,	
   in	
   other	
  words,	
  
explain	
  the	
  ‘inverse	
  mapping’	
  you	
  propose	
  (see	
  Module	
  1).	
  This	
  may	
  sound	
  complex,	
  but	
  
is	
  actually	
  very	
  easy	
  if	
  your	
  visualizations	
  are	
  good:	
  You	
  only	
  need	
  to	
  explain	
  how	
  you	
  go	
  
from	
  seeing	
  some	
  interesting	
  patterns	
  in	
  the	
  visualizations	
  to	
  mapping	
  these	
  patterns	
  to	
  
data	
  and	
  finally	
  to	
  findings	
  related	
  to	
  your	
  problem.	
  
	
  
Several	
  points	
  are	
  important	
  here:	
  
	
  
• do	
  not	
   try	
   to	
   create	
  a	
   single	
   snapshot	
  or	
  visualization	
   that	
   ‘tells	
   it	
   all’.	
  Unless	
  your	
  

problem	
  is	
  trivial	
  and	
  the	
  dataset	
  is	
  small,	
  this	
  is	
  virtually	
  impossible.	
  You	
  will	
  likely	
  
need	
  several	
  such	
  snapshots,	
  each	
  describing	
  one	
  or	
  a	
  few	
  different	
  findings.	
  When	
  
putting	
  the	
  insight	
  from	
  all	
  these	
  findings	
  together,	
  we	
  solve	
  the	
  problem.	
  

• try	
  working	
   iteratively:	
   Generate,	
   for	
   example,	
   a	
   snapshot	
   that	
   gives	
   some	
   hint	
   or	
  
general	
  idea	
  about	
  where	
  our	
  answer	
  is.	
  Describe	
  how	
  you	
  see	
  this	
  in	
  the	
  snapshot.	
  
Then,	
  we	
  get	
  to	
  the	
  idea	
  that	
  we	
  need	
  to	
  dig	
  deeper	
  in	
  a	
  subset	
  of	
  the	
  data	
  (which	
  we	
  
saw	
  as	
  being	
  interesting	
  in	
  the	
  overview).	
  Insert	
  then	
  a	
  new	
  snapshot,	
  showing	
  that	
  
subset.	
  Repeat	
  the	
  process	
  (describe	
  what	
  you	
  see	
  in	
  this	
  2nd	
  snapshot,	
  etc).	
  Iterate	
  
the	
  process	
  until	
  you	
  have	
  found	
  all	
  answers	
  pertaining	
  to	
  your	
  original	
  questions.	
  



• be	
   generous	
   with	
   annotations:	
   A	
   bare	
   snapshot	
   may	
   require	
   half	
   a	
   page	
   of	
  
explanations	
  which	
  may	
  not	
  be	
  easy	
  to	
  give,	
  since	
  it’s	
  not	
  easy	
  to	
  refer	
  in	
  the	
  text	
  to	
  
e.g.	
   ‘that	
  peak	
   in	
   the	
   top-­‐right	
  of	
   the	
   image	
  being	
   similar	
   to	
   that	
  valley	
  behind	
   the	
  
descending	
  slope	
  half-­‐way	
  the	
  bottom	
  part	
  of	
  the	
  image’.	
  Just	
  add	
  annotations	
  to	
  the	
  
image	
   to	
  which	
   you	
   can	
   next	
   refer	
   in	
   the	
   text.	
   This	
  makes	
   the	
   textual	
   explanation	
  
much	
  clearer	
  and	
  also	
  much	
  shorter.	
  See	
  the	
  examples	
  provided	
  in	
  Modules	
  3,	
  4,	
  and	
  
5.	
  

• be	
  fair:	
  If	
  your	
  visualization	
  really	
  shows	
  some	
  finding,	
  good,	
  say	
  it.	
  If	
  it	
  doesn’t,	
  do	
  
not	
   artificially	
   increase	
   its	
   added-­‐value	
   by	
   stating	
   it	
   helps	
   you	
   find	
   things	
   that	
   it	
  
really	
   doesn’t.	
   Rather,	
   state	
   its	
   limitations	
   (with	
   respect	
   to	
   your	
   questions/tasks)	
  
explicitly.	
   Even	
  better:	
   if	
   you	
  know	
  how	
   these	
   limitations	
   could	
  be	
  overcome	
  with	
  
reasonable	
  effort	
  (e.g.	
  using	
  a	
  better	
  visualization	
  tool	
  that	
  allows	
  you	
  to	
  configure	
  
that	
  parameter	
  X	
  or	
  Y,	
  or	
  using	
  a	
  visualization	
  discussed	
  in	
  the	
  course	
  for	
  which	
  you	
  
couldn’t	
  get	
  a	
  tool	
  running	
  on	
  your	
  data),	
  state	
  this	
  explicitly.	
  This	
  means	
  you	
  have	
  
successfully	
  found	
  a	
  solution	
  –	
  you	
  just	
  miss	
  an	
  implementation	
  thereof.	
  

	
  
Example:	
   Consider	
   our	
   running	
   example	
   problem.	
   Let’s	
   say	
  we	
   implement	
   the	
   ‘small	
  
multiple’	
   solution	
   using	
   the	
   TableVision	
   tool	
   (see	
   Module	
   2).	
   We	
   then	
   could	
   use	
   bar	
  
length	
   and	
   bar	
   color	
   to	
   highlight	
   data	
   values.	
   A	
   typical	
   ‘inverse	
  mapping’	
   explanation	
  
would	
  then	
  be:	
  “In	
  cells	
  (12,13)	
  and	
  (3,1)	
  of	
  the	
  matrix,	
  we	
  see	
  two	
  very	
  similar	
  graphs	
  
in	
  terms	
  of	
  shape.	
  This	
  means	
  that	
  these	
  two	
  signals	
  show	
  the	
  same	
  trend,	
  so	
  they	
  are	
  
strongly	
   correlated.	
   Additionally,	
   we	
   see	
   that	
   all	
   cells	
   in	
   the	
   rightmost	
   column	
   have	
  
almost	
   flat	
   graphs	
   –	
   which	
   indicates	
   that	
   these	
   signals	
   are	
   nearly	
   constant	
   for	
   our	
  
simulation	
   duration.	
   As	
   such,	
  we	
  will	
   switch	
   them	
  off	
   the	
   final	
   visualization	
   (see	
   next	
  
Figure),	
  since	
  they	
  don’t	
  bring	
  any	
  additional	
  insights.	
  We	
  also	
  see	
  that	
  the	
  diagonal	
  cells	
  
(1,1)	
  up	
  to	
  (5,5)	
  exhibit	
  one	
  outlier,	
  visible	
  in	
  the	
  shape	
  of	
  the	
  narrow,	
  red,	
  peak	
  in	
  these	
  
graphs.	
  However,	
  we	
   see	
   that	
   this	
  outlier	
   is	
   shifted	
  at	
  different	
  positions	
   in	
   time.	
  This	
  
indicates	
   that	
   the	
   ‘power	
  surge’	
   that	
  our	
  experiment	
  was	
  about	
   is	
  not	
   felt	
   at	
   the	
  same	
  
precise	
  moment	
  at	
  all	
  our	
  grid	
  stations”.	
  	
  
	
  
Related	
  reading:	
  Modules	
  3,	
  4	
  and	
  5.	
  
	
  
	
   	
  



Additional	
  material	
  
	
  
To	
  support	
  your	
  assignment	
  execution,	
  the	
  additional	
  material	
  below	
  is	
  useful:	
  
	
  
• Slides	
  of	
  the	
  Practical	
  Data	
  Visualization	
  lecture.	
  These	
  are	
  available	
  online	
  at	
  

	
  
http://www.cs.rug.nl/svcg/PracticalDataVis	
  
	
  
Read	
   the	
   slides	
   carefully.	
   They	
   contain	
   additional	
   material	
   (besides	
   the	
   one	
  
discussed	
   during	
   the	
   lectures),	
   such	
   as	
   visualization	
   algorithms	
   and	
   examples	
   of	
  
visualization	
  applications.	
  Also,	
  they	
  contain	
  many	
  pointers	
  to	
  articles,	
  visualization	
  
tools	
  (available	
  for	
  free	
  to	
  download),	
  and	
  datasets	
  (available	
  for	
  free	
  to	
  download)	
  
	
  

• List	
  of	
  visualization	
  tools	
  (from	
  the	
  book	
  Data	
  Visualization	
  –	
  Principles	
  and	
  Practice	
  
(A.	
   C.	
   Telea),	
   2nd	
   edition,	
   CRS	
   Press,	
   2014).	
   This	
   gives	
   a	
   comprehensive	
   list	
   of	
  
visualization	
  tools	
   for	
  scientific/spatial	
  data,	
  non-­‐spatial/abstract	
  data,	
   image	
  data,	
  
shapes	
  data,	
  and	
  more.	
  Be	
  sue	
  you	
  study	
  this	
  list	
  to	
  find	
  the	
  candidate	
  tools	
  for	
  your	
  
assignment.	
  
	
  
	
  
	
  
	
  

	
  



Appendix

Visualization Software

ONE important element of the five-dimensional classification model for visu-

alizations presented in Section 4.3 was the medium, or type of drawing

canvas that the rendering takes place on. There are many examples of early

visualizations that use paper as the medium [Spence 07]. Modern architectural

blueprints can also be seen as visualizations that use a printed medium. Yet, by

far the largest class of visualization applications described in this book have one

thing in common: they use the computer screen as a medium.

Using the computer to do data visualization is a natural choice from several

points of view. First, many visualization scenarios are, by their very nature, ex-

plorative. This makes interactive visualization tools the best instruments for such

cases. Second, the datasets to visualize usually come in electronic form. Third,

the large amounts of data, or dynamically changing datasets, make computer-

based visualization tools again the natural choice.

In this appendix, we provide an overview of a number of issues concerning

visualization software. First, we discuss how visualization software can be clas-

sified from an architectural perspective (Section A.1). Next, we provide a list

of several representative visualization systems for scientific, imaging, and infor-

mation visualization data, in order to illustrate the various flavors of systems

available to practitioners.

A.1 Taxonomies of Visualization Systems
Visualization software tools are central to creating successful visualizations. Be-

sides the provided functionality, such systems have also to cover several non-

555



556 Appendix: Visualization Software

functional requirements in order to be effective. Relevant attributes in the latter

group include the following:

• Efficiency: The software should produce visualizations quickly. This can

mean minutes for some applications, but fractions of a second for others,

such as interactive applications.

• Scalability: The software should be able to handle large datasets within

given performance and resource bounds.

• Ease of use: The software should provide an easy-to-learn-and-use interface

for its intended user group.

• Customizability: The software should allow a simple and effective way to

customize it for specific tasks, scenarios, problems, or datasets.

• Availability: The software should be available to its intended user group

under specific conditions (e.g., license and platform).

Modern visualization applications are complex software systems containing

tens or hundreds of thousands of lines of code organized on several layers. With

respect to this layered application architecture, the users can have different roles.

One such classification identifies three roles: end users, application designers, and

component developers [Ribarsky et al. 94]. End users are the final customers of a

visualization application, and use it to obtain insight into a given dataset, typi-

cally by means of customized user interfaces that support domain-specific tasks.

Such applications are also known as turnkey systems. Application designers

construct turnkey systems for the end users, typically by assembling a set of pre-

made software components and providing them with the needed configuration

and user-interface elements. Finally, component developers program software

components that implement visualization algorithms and datasets, and provide

these to application designers as ready-made visualization software packages or

libraries.

From this perspective, visualization software can be classified into three

classes: libraries, application frameworks, and turnkey systems. Libraries pro-

vide application programmer interfaces (APIs) that contain the data types and

operations that constitute the basic building blocks of a visualization applica-

tion, such as the ones presented in Chapter 3. At the other end of the spectrum,

turnkey systems provide custom user interfaces, presets, and configurations de-

signed to support specific tasks. Application frameworks fall between these two

extremes. They encode a set of fixed domain-specific rules, operations, and



A.2. Scientific Visualization Software 557

functions as a backbone to which an open set of components can be added. The

components use the backbone to interact and provide functionality at a higher

level, and in a more compact way, than bare libraries. Several mechanisms exist

for adding components to the framework and composing them in. A popular

design metaphor presents the components to the application designer in a vi-

sual, iconic form. Applications are constructed by interactively assembling these

iconic component representations. This allows nonprogrammers to quickly and

easily prototype new applications without programming. The AVS, ParaView,

and VISSION applications illustrated in Figures 4.6, 4.9, and 4.8 in Chapter 4

are examples of application frameworks.

In the next sections, we give several examples of visualization software sys-

tems used in practice. Instead of using an architectural taxonomy into libraries,

frameworks, and turnkey systems, we have opted for a domain-centered tax-

onomy into three classes: general scientific visualization systems (Section A.2),

medical and imaging systems (Section A.3), and information visualization sys-

tems (Section A.5). Given the size of the field and the rapid rate at which new

software is produced, the list of systems presented here is definitely not exhaus-

tive and limited in choice. However, we believe that this list can serve as a

useful starting point for the interested reader in search for a given visualization

software tool or component.

A.2 Scientific Visualization Software
The systems listed in this section fall in the category of general-purpose scientific

visualization software. The target of such systems is primarily the visualization

of datasets defined as two- and three-dimensional grids of various types with

scalar and vector attributes, such as created by scientific simulations or data-

acquisition processes. The main application domains targeted are engineering,

mechanics (both in research and in the industry), and weather and geosciences.

However, some of the systems provide also support for medical imaging, tensor

visualization, and information visualization.

The Visualization Toolkit (VTK)

Type: Class library (written in C++)

Availability: Open source

Address: http://www.kitware.com/vtk/



558 Appendix: Visualization Software

Description: VTK is a set of class libraries written in C++. Classes come in two main
flavors: datasets and algorithms. Dataset classes range from low-level
containers, such as lists and arrays, to full-fledged uniform, rectilinear,
structured, and unstructured grids. Several hundred algorithm classes
provide grid manipulation, slicing, interpolation, contouring, stream-
lines, image processing, polygonal and volume rendering, and informa-
tion visualization techniques for graphs and table datasets. VTK is
arguably one of the leading data visualization libraries at the moment.

Utilization: Applications are built by assembling dataset and algorithm class in-
stances into a pipeline. This is done either via the native compiled
C++ API or its wrappings in interpreted languages, such as Python,
Java, Tcl, and recently also .NET. The basic VTK building blocks offer
a wide functionality. Yet, constructing a complete visualization appli-
cation, and even more so extending VTK with one’s own algorithms,
requires a fair amount of programming effort and knowledge of the VTK
API and its programming paradigms.

MeVisLab
Type: Turnkey system/application framework

Availability: Restricted open source (written in C++)

Address: www.mevislab.de/

Description: The MeVisLab system can be used as an end-user tool for processing
and visualizing scientific datasets. Its main operation mode is very sim-
ilar to AVS/Express, IRIS Explorer, and SCIRun (described below). A
visual editor allows assembling a dataflow network from existing compo-
nents available in a number of application-specific libraries. Component
parameters can be controlled by customized GUIs or by direct interac-
tion in the available 2D and 3D viewers. One of the main strengths
of MeVisLab is the huge number of available components, provided by
the core software itself, third-party community developers, but also the
integration of VTK, ITK, and Open Inventor visualization and graphics
libraries within a single framework. As such, MeVisLab’s functionality
covers extensively scientific visualization, volume/medical visualization,
and image processing. Several components, such as volume processing
and volume rendering, benefit from optimized GPU implementations.

Utilization: MeVisLab operates mainly as an end-user system. The application de-
sign freedom is slightly smaller than in systems such as AVS/Express
or IRIS Explorer, but higher than in ParaView or MayaVi. Carefully
designed user interfaces and a comprehensive documentation make the
system easy to learn and use, and especially suited for educational, rapid
data exploration, or demonstration scenarios. Modules can be added via



A.2. Scientific Visualization Software 559

a plug-in mechanism, and are actively contributed by the open source
community. MeVisLab comes with mainly two license types. The free
license offers unrestricted use for research and academic purposes, but
a restricted set of features. The paid license is further split into a full-
feature variant for nonprofit organizations, and a full-feature variant for
commercial usage.

AVS/Express
Type: Application framework

Availability: Commercial

Address: www.avs.com/solutions/express/

Description: AVS/Express is an application framework for development of high-end
scientific visualization solutions. AVS/Express provides more than 800
visualization building bricks (algorithms) that cover scalar, vector, and
tensor visualization on several types of grids, much like VTK. Several
extensions of AVS/Express provide support for parallel processing and
high-end virtual-reality visualizations. Some extensions also target in-
formation visualization (OpenViz toolkit), operational industrial moni-
toring (the PowerViz toolkit), and scientific presentation graphics (the
Gsharp toolkit). A snapshot of the AVS tool in action is shown in Fig-
ure 4.8.

Utilization: Applications are built by assembling premade components into a pipeline,
somewhat similar to the VTK paradigm. This can be done programmat-
ically in C or C++, or interactively, via a point-and-click visual appli-
cation designer. The visual editor allows rapid application prototyping,
user interface construction, and application steering. The AVS/Express
components are less fine-grained than VTK classes, for example.

IRIS Explorer
Type: Application framework

Availability: Commercial

Address: http://www.nag.co.uk/welcome\ iec.asp

Description: IRIS Explorer is an application framework for development of high-end
scientific visualization solutions. Its user group and philosophy is quite
similar to AVS/Express. The provided visualization functionality cov-
ers application domains as varied as life sciences, chemistry, medical
imaging, geology, financial modeling, and aerospace engineering. IRIS
Explorer builds its versatility on top of several major software com-
ponents, such as the well-known Open Inventor 3D and ImageVision



560 Appendix: Visualization Software

graphics libraries and the Numerical Algorithms Group (NAG) numeri-
cal libraries. IRIS Explorer is particularly attractive for users who wish
to combine numerical simulation code with visualization facilities.

Utilization: IRIS Explorer provides a visual application builder based on a dataflow
application architecture, much like AVS/Express. Modules can be de-
veloped in C, C++, and FORTRAN, but also in a proprietary scripted
language called SHAPE, which offers an easier way to manipulate com-
plex n-dimensional datasets. Modules are next visually assembled in
so-called maps, which are essentially dataflow networks.

SCIRun
Type: Application framework

Availability: Open source

Address: http://software.sci.utah.edu/scirun.html

Description: SCIRun is an application framework developed for the creation of sci-
entific visualization applications. SCIRun is very similar in aim and
scope to AVS/Express. It provides a set of modules for scientific data
visualization that can be connected into so-called networks, following a
dataflow application architecture. SCIRun has been used to construct
visualization applications for several domains such as finite element nu-
merical simulations, (bio)medical imaging, and computational steering.

Utilization: Similar to AVS/Express, SCIRun allows applications to be constructed
visually, by editing the dataflow network, or programmatically. Once
constructed, applications can be packaged into so-called PowerApps.
These are dataflow networks provided with custom user interfaces into
turnkey applications that facilitate specific exploration scenarios. Sev-
eral such PowerApps are available for different domains, such as segmen-
tation (Seg3D), tensor visualization (BioTensor), volume visualization
(BioImage), and finite element problems (BioFEM). All in all, SCIRun
is a mature environment that covers most needs and requirements of the
users of a scientific visualization framework.

ParaView
Type: Turnkey system/application framework

Availability: Open source

Address: http://www.paraview.org/

Description: The ParaView system can be used as an end-user tool for visualiz-
ing scientific datasets. The main operations for data filtering, selec-
tion, mapping, and rendering are provided, such as slicing, isosurfaces,



A.3. Imaging Software 561

streamlines, and interactive viewing. ParaView provides an intuitive
and simple graphical user interface that allows one to both prototype
a visualization application and set its various parameters interactively.
ParaView is built on top of the VTK class library. The user interface
layer is written in the Tcl/Tk scripted languages. Most of the illustra-
tions used in this book were created using ParaView, unless otherwise
specified in the text.

Utilization: ParaView operates mainly as an end-user system. The application de-
sign freedom is considerably less involved, but also easier to learn, than
AVS/Express, for example. ParaView makes an excellent system for
learning the basics of scientific visualization without having to be a
programmer. Only the core VTK functionality is exposed in the user
interface. However, developers can add new modules to the ParaView
user interface using a mix of Tcl, C++, and XML wrappers.

MayaVi
Type: Turnkey system/application framework

Availability: Open source

Address: http://mayavi.sourceforge.net/

Description: The MayaVi system is an end-user tool for visualizing scientific datasets.
Its architecture, provided functionality, and intended user group are very
similar to ParaView’s. MayaVi is also built as an interactive front-end
on top of the VTK class library. However, in contrast to ParaView,
MayaVi uses Python as a scripted (interpreted) language to bind user
interface functions to the compiled C++ libraries.

Utilization: MayaVi operates mainly as an end-user system, similar to ParaView.
The user interface is structured differently. A relatively greater emphasis
is put on executing operations by writing Python commands at a user
prompt than via the user interface itself. The user interface exposes
more of the VTK implementation details and is relatively lower-level
than the one of ParaView. Overall, although MayaVi and ParaView are
quite similar in intention, we find ParaView easier to learn and use and
more mature than MayaVi.

A.3 Imaging Software
In this section, we list a number of imaging software systems. By “imaging,” we

refer to several functionalities related to the manipulation and visualization of

2D and 3D image datasets. Such datasets occur frequently in medical practice



562 Appendix: Visualization Software

as the output of the various scanning technologies, such as computed tomogra-

phy (CT) and magnetic resonance imaging (MRI). Image datasets can contain

scalar, vector, and tensor data. Imaging operations cover a wide range of tasks,

such as basic data handling and manipulation, basic image processing, image

segmentation and registration, shape recognition, image visualization, and vol-

ume rendering. Just as for the other types of software systems listed in this

appendix, it is not possible to cover all aspects and variants of such systems, so

we limit ourselves to a small selection of representative systems.

The Insight Toolkit (ITK)
Type: Class library (written in C++)

Availability: Open source

Address: http://www.itk.org/

Description: ITK is a set of class libraries written in C++. The main functionality
targeted by the ITK toolkit is divided into three categories: image pro-
cessing, segmentation, and registration. As such, ITK does not provide
visualization (rendering) and user interface facilities. However, ITK can
be combined with other toolkits, such as VTK, in order to construct
complete visualization applications.

Utilization: The software structure of ITK bears a number of similarities to VTK,
which is not surprising given the fact that a large number of common or-
ganizations and people have been jointly involved in the development of
both toolkits. ITK comes with a considerable amount of documentation
in the form of books, courses, online material, examples, and demos.
Also, the source code of several medical imaging applications built on
top of ITK is available for downloading from the ITK site. However,
just as for its older cousin VTK, using ITK to construct an imaging ap-
plication requires a nonnegligible amount of effort, given the sheer size
and complexity of the toolkit APIs.

3D Slicer
Type: Turnkey system/application framework

Availability: Open source

Address: http://www.slicer.org/

Description: 3D Slicer is a freely available, open-source application framework for
visualization, registration, segmentation, and quantification of medical
data. 3D Slicer supports a wide array of tasks, ranging from the in-
vestigation and segmentation of volumetric CT and MRI datasets to



A.3. Imaging Software 563

providing the basic mechanisms for more complex applications, such as
guiding biopsies and craniotomies in the operating room and diagnostic
visualizations. 3D Slicer can handle scalar, vector, and tensor data at-
tributes. In particular, several functions for visualizing diffusion tensor
images, such as principal component analysis, tensor color coding, ten-
sor glyphs, and hyperstreamlines are supported. 3D Slicer is supported
by a large number of organizations, and is used in a large number of
research projects, as well as in clinical studies and actual applications
in the medical practice. Several images created with the 3D Slicer tool
are shown in Section 7.6.

Utilization: 3D Slicer has an architecture consisting of an end-user front end and a
framework that manages a set of application libraries. The front end pro-
vides user interfaces and direct mouse-based manipulation of the data,
such as picking, probing, and interactive streamline seed placement.
The application framework allows one to add new plug-ins in order to
provide custom-developed functionality. The 3D Slicer architecture was
designed to facilitate adding a wide variety of plug-ins, ranging from
standalone binaries (executables and shared libraries) to modules based
on the VTK and ITK toolkits and even shell, Tcl, and Python scripts.
Although this makes learning the software architecture of 3D Slicer more
complex than that of other toolkits such as VTK or ITK, it also makes
3D Slicer more flexible in interfacing with a broad spectrum of third-
party software components.

Teem

Type: Turnkey/libraries

Availability: Open source (written in C)

Address: http://teem.sourceforge.net/

Description: Teem is a set of coordinated libraries representing, processing, and vi-
sualizing scientific raster data. Teem provides functions that support a
wide range of operations on n-dimensional raster data (uniform grids)
of m-dimensional attributes. The functions of Teem are provided as a
set of standalone executables designed much like UNIX filters, which
are parameterized by command-line options. The generic data model of
Teem, together with the modular decomposition of operations in terms
of several filters, allows many complex operations on image volumes to
be specified easily and compactly. The set of basic operations provided
by Teem include convolution, slicing, resampling, interpolation, statis-
tics, principal component analysis for tensors, color mapping, volume
rendering, and tensor glyph visualizations. Several images created us-
ing the Teem software are shown in Section 7.5.



564 Appendix: Visualization Software

Utilization: Data-processing and visualization tasks are typically written as shell
scripts that construct and execute a dataflow pipeline by cascading the
Teem basic filters. This is the easiest and most rapid way to use Teem
to produce visualizations. If desired, Teem can be also used in terms of
libraries providing APIs. Teem is not end-user software. As such, it does
not provide user interface or interaction functions present in complete
visualization applications. However, its generic, modular, and coherent
API design allow such applications to be built on top of it. For example,
the SCIRun and 3D Slicer applications integrate the functionality of
Teem to provide high-level imaging capabilities.

ImageJ

Type: Turnkey

Availability: Open source (written in Java)

Address: http://rsbweb.nih.gov/ij/

Description: ImageJ is an application conceived for the easy processing of 2D images.
Inspired by classical 2D image manipulation programs, ImageJ offers a
wide set of basic image processing operations, such as contrast enhance-
ment, smoothing, sharpening, denoising, edge detection; advanced im-
age processing such as segmentation and manipulating stacks of 2D im-
ages, image sequences, or separate channels of the same image; and com-
puting various image statistics and measurements, such as histograms
and image calibration. Written in Java, ImageJ is optimized for the
efficient processing of large images, using multithreading.

Utilization: In typical end-user mode, ImageJ offers its processing capabilities via
GUIs and a range of direct selection and manipulation tools. Basic func-
tionality is extendable via a relatively easy-to-use plug-in Java interface.
As such, hundreds of third-party plug-ins has been developed for ImageJ
for both general-purpose image processing but also for specialized ma-
nipulation of various types of microscopy, biology, and medical images.
Basic operations can be composed in so-called macros by using a built-in
scripting language. Given the rich set of available plug-ins, ImageJ is a
very competitive alternative to MATLAB for 2D image processing.

Binvox

Type: Turnkey utilities

Availability: Open source (written in C/C++)

Address: http://www.cs.princeton.edu/∼min/binvox



A.3. Imaging Software 565

Description: Binvox is a set of command-line utilities for the conversion of 3D polyg-
onal meshes to volumetric formats. The main utility of this toolset
is binvox, a program for converting polygonal meshes in a variety of
formats (such as Stereo Lithography (STL), Stanford Polygonal File
Format (PLY), Object File Format (OFF), Virtual Reality Modeling
Language (VRML), and Drawing Interchange Format (DXF)) to 3D bi-
nary uniform voxel volumes. Conversion works best for closed orientable
meshes. The output volumes are available in several formats, such as
raw binary, VTK, Heritable Image Processing Format (HIPS), and Mim-
icking Intelligent Read Assembly (MIRA). Apart from voxelization, the
toolset also provides a tool for extracting curve skeletons from binary
volumes (thinvox) and a tool for converting between a number of pop-
ular mesh formats (meshconv). While the mesh conversion features are
less powerful than those provided in related software such as MeshLab,
the voxelizer binvox offers a very easy to use, robust, and efficiently im-
plemented, way to convert a wide range of 3D meshes to binary volumes
up to 10243 voxels.

Utilization: binvox is offered as a set of command-line, UNIX-style, utilities that
read, process, and write mesh and voxel files. Command-line options
are simple and easy to learn and use. As such, these tools can be easily
integrated in third-party visualization applications or pipelines. The
source code of the toolkit is quite compact, platform independent, and
easy to read. This allows one to easily add extra input or output formats
and/or integrate it in more complex applications, if needed.

OpenVDB
Type: Class library

Availability: Open source (written in C++)

Address: http://www.openvdb.org/

Description: Open Volumes with Dynamic Topology, or OpenVDB, is a class library
that supports the efficient representation and manipulation of very large
voxel volumes. Designed in mind for handling very high resolution sparse
volumes, OpenVDB provides a set of sophisticated data storage, index-
ing, and manipulation operations that allow the processing of 3D voxel
volumes of thousands of voxels cubed or more. Operations are provided
for creating volumes from a variety of mesh and point cloud formats,
reading voxel volumes from third-party file formats, and processing vol-
umes via level set operations, computational solid geometry (CSG) op-
erations, mathematical morphology, and surface advection and track-
ing. Apart from these, operations are also provided for procedurally
compositing volumes and computing various differential quantities on
volumes (divergence, Laplacian, curl, and distance transforms). Results



566 Appendix: Visualization Software

can be exported to both voxel, point cloud, and mesh representations.
Support is also included for processing time-dependent volumes, which
allows coding various physical simulations that require volumetric do-
main representations.

Utilization: The main operation mode of OpenVDB is similar to VTK (described
above): Users write the intended volume processing scenario in as a
C++ program that calls the required functionality provided by Open-
VDB classes. Results can be visualized by a number of viewer compo-
nents provided in OpenVDB itself, or exported to various point cloud
file formats. Similar to VTK, this offers a large freedom in building spe-
cialized scenarios, but also requires a non-trivial learning curve. While
the current focus of OpenVDB is to provide the lower-lever infrastruc-
ture required to build end-user applications for volume processing with
a focus on volumetric simulations, and less so for interactive volume
visualization and exploration, the evolution of OpenVDB will arguably
make it easier to use for more general volume processing and volume
visualization tasks.

A.4 Grid Processing Software
In this section, we overview several software systems that address the general

task of processing grids. Under the grid denomination, we include all discrete

representations of spatial domains which are formed by vertices connected by

various cell types. Following the domain modeling terminology introduced in

Chapter 3, we consider here software tools that process discrete representations

of 2D curved surfaces (mesh processing tools), unorganized point sets, and uni-

formly sampled 3D volumes (voxel processing tools). Given the wide variety of

such tools, the focus is here on tools which implement a comprehensive set of

typical operations present in grid processing such as resampling, reconstruction,

and filtering, rather than on more specialized tools that focus on a narrower set

of operations and/or grid types.

MeshLab
Type: Turnkey system

Availability: Open source (written in C and C++)

Address: http://meshlab.sourceforge.net/

Description: MeshLab is a general-purpose turnkey system for the analysis, process-
ing, and visualization of 3D polygonal meshes. Data can be imported
from mesh files in a variety of formats (such as Stanford (PLY), 3D



A.4. Grid Processing Software 567

Studio (3DS), Alias/Wavefront (OBJ), OFF, X3D, and VRML). Both
meshes including vertex and cell data, and unorganized point clouds
with no connectivity information can be processed. MeshLab includes a
large variety of processing operations, including but not limited to mesh
cleaning, repairing, simplification, refinement, smoothing and fairing,
and computing quality metrics. For point clouds, several algorithms are
provided for normals estimation, surface reconstruction, filtering, and
registration. MeshLab is continuously extended with recent reseach-
grade algorithms via a plug-in mechanism. This makes MeshLab one
of the best starting points for applying and/or comparing recent mesh
processing algorithms. However, given the rapid pace of development
of such algorithms, not all algorithms included in MeshLab have fully
optimized or entirely robust implementations. Also, a certain amount
of literature study and training is needed to understand the various
parameters of the included algorithms.

Utilization: MeshLab can be used much like a traditional image editor. After load-
ing mesh data from files, users can apply any of the provided algorithms
in immediate mode, examine the results in a built-in viewer, and re-
peat the process if desired. MeshLab does not offer the concept of a
computational pipeline, such as present in visualization tools such as
MayaVi or ParaView. However, this operation mode fits well the highly
interactive nature of many mesh processing scenarios, where the user
wants to carefully examine the results of each processing step before de-
ciding how and where (on the mesh) to apply the next step, and which
this step should be. The final results can be saved in a variety of mesh
file formats, compatible with the largest majority of mesh processing or
data visualization software tools.

PCL

Type: Class library

Availability: Open source (written in C++)

Address: http://pointclouds.org

Description: PCL (the Point Cloud Library) is a class library dedicated to the acquisi-
tion, processing, and visualization of point cloud datasets. Its core focus
is on supporting point cloud operations related to typical computer vi-
sion use-cases, such as the analysis of, and information extraction from,
point clouds acquired with 3D scanning devices such as laser scanners
or range cameras. However, PCL components can be also very useful
for a variety of operations on (large) point clouds in the context of data
visualization, such as point cloud cleaning and filtering, normal estima-
tion, spatial search, registration, segmentation, surface reconstruction,



568 Appendix: Visualization Software

and visualization. Similarly to MeshLab (described above), PCL con-
tains a large set of recent research-grade algorithms, which makes it a
valuable resource for the researcher or practitioner interested in testing
and/or comparing such algorithms. PCL is designed with scalability in
mind, and most of its components can efficiently process point clouds of
millions of data points.

Utilization: PCL is a class library, which implies that its users need to program
their applications using the provided APIs. Although these are very
flexible, learning PCL has a steep curve. The extensive use of non-
trivial C++ features and design patterns, and its design that relies on
fine-grained components, makes it suitable only for the versed C++
programmer, much like, for example, the Boost C++ library. As its
documentation uses a relatively more mathematical presentation angle
than typical class libraries, PCL developers should be at least familiar
with the main computational geometry concepts and terminology.

CGAL
Type: Class library

Availability: Open source (written in C++)

Address: http://www.cgal.org

Description: CGAL (the Computational Geometry Algorithms Library) is a class li-
brary that includes a wide set of algorithms dedicated to the processing
of point clouds and polygonal and volumetric meshes. In contrast to
MeshLab, for example, CGAL focuses on providing lower-level func-
tionality, or building blocks, that can be used in the development of
applications that need to process grids. Included components cover vir-
tually all well-known computational geometry algorithms, ranging from
simple spatial searches and intersection computations, Delaunay and
Voronoi diagram construction in 2D and 3D, alpha shapes, surface re-
construction, up to complex polygon and polyhedral decompositions,
mesh refinement, and surface parameterization. The design of the li-
brary makes extensive use of advanced C++ features such as templates
and traits. This makes it possible to parameterize the provided algo-
rithms in a variety of directions, such as choosing the space to work in,
interpolation type, or numerical approximations to use. CGAL comes
with high-quality documentation and an extensive example set, and is
actively maintained and used by a sizeable community. As such, it is ar-
guably the tool of choice for application developers requiring non-trivial
computational geometry functionality.

Utilization: The main operation mode of PCL is similar to VTK (described above):
Users write the intended point cloud processing scenario in as a C++



A.5. Information Visualization Software 569

program that calls the required functionality provided by PCL classes.
Results can be visualized by a number of viewer components provided
in PCL itself, or exported to various point cloud file formats. Similar
to VTK, this offers a large freedom in customizing specialized scenarios,
but also requires a non-trivial learning curve.

A.5 Information Visualization Software
Compared to scientific visualization systems, information visualization systems

come in a larger variety. There are fewer “generic” systems in this category that

can be compared to frameworks such as AVS/Express, SCIRun, or IRIS Explorer.

One reason is arguably the higher diversity of the application domains, data

types, and end user groups for information visualization systems. Consequently,

the selection of information-visualization systems presented next has even fewer

pretensions to be exhaustive than our selection of scientific-visualization systems.

The considered domains for this selection are graphs and trees, multivariate data,

and table data.

The Infovis Toolkit (IVTK)
Type: Class library/application framework

Availability: Open source (written in Java)

Address: http://ivtk.sourceforge.net/

Description: IVTK is a general-purpose toolkit for developing information-visualiza-
tion end-user applications and components. IVTK comes as a set of Java
class libraries implementing a number of core infovis methods, such as
scatter plots, time series, parallel coordinates, matrix plots, and several
types of graph and tree layouts.

Utilization: Developing applications with IVTK and VTK is quite similar. Both
are class libraries, so building an application requires programmatically
combining instances of the necessary datasets and visualization algo-
rithms. One of the features of IVTK is that it uses a generic dataset
model. All datasets (including relational ones) are represented as tables.
IVTK provides efficient representations for these tables both in terms
of memory and access time. However, just as for VTK, constructing
a full-fledged end-user application with IVTK requires a fair amount
of work and understanding of the toolkit design. Moreover, compared
to VTK, IVTK is relatively newer and less developed toolkit, which
provides only a small number of basic versions of the many infovis al-
gorithms that exist for the supported data types (e.g., tree and graph
layouts).



570 Appendix: Visualization Software

Prefuse
Type: Class library/application framework

Availability: Open source (written in Java)

Address: http://prefuse.org/

Description: Prefuse is a toolkit for constructing information-visualization applica-
tions, and is quite similar to IVTK. The toolkit comes as a set of Java
class libraries that provides support for representing the main types of
datasets used in information visualization, such as trees, graphs, and
tables. Together with these, a number of fundamental algorithms for
constructing infovis applications are provided, such as graph and tree
layouts, glyphs, dynamic queries, brushing, search, database connectiv-
ity, and animation.

Utilization: Prefuse is both a class library and an application framework. Function-
ality and data representation are provided in terms of classes. Program-
ming interaction, correlation between multiple views, and application
execution is provided by means of framework services. In this respect,
prefuse is similar to the VTK and IVTK toolkits. However, the archi-
tectures and internals of the two toolkits are quite different. A VTK
application is structured like a dataflow pipeline. In prefuse, the ac-
cent is laid more on connecting data and processing items via actions
and events. All in all, prefuse is a good start to learn experimenting
with information-visualization concepts and algorithms via prototyping.
However, the toolkit does not yet have a wide palette of implemented
algorithms, which is similar to IVTK. Also, the scalability and efficiency
of the implemented algorithms cannot yet cope with truly large datasets.

GraphViz
Type: Library and turnkey system

Availability: Open source (written in C)

Address: http://www.graphviz.org/

Description: GraphViz is a high-quality library for computing and displaying graph
layouts. GraphViz implements several popular graph-layout algorithms
such as rooted and radial trees, hierarchical directed acyclic graph lay-
outs, and force-directed layouts. In addition to layout, GraphViz of-
fers advanced control of the mapping and rendering of graph nodes and
edges, including annotations, spline edges, and nested graphs. An exten-
sive set of options allows one to specify the finest details of the layout
and mapping. Its robustness, scalability, simplicity of use, and avail-
ability have made GraphViz one of the best-known toolkits for laying



A.5. Information Visualization Software 571

out graphs and quickly producing quality graph visualizations. Several
graph visualizations created with the GraphViz software are shown in
Section 11.4.2.

Utilization: GraphViz is structured as a set of separate executables. These read and
write graph specification files in various formats. These executables can
be easily used as turnkey systems to load, lay out, and draw graphs. In
addition to these, GraphViz also provides an API that allows more flexi-
ble access to the layout functionalities. This allows one to use GraphViz
as a layout library on behalf of other applications.

Tulip
Type: Library and turnkey system

Availability: Open source (written in Java)

Address: http://www.tulip-software.org/

Description: Tulip is a framework for the manipulation and visualization of large
graphs. At the core of the Tulip system is an efficient data represen-
tation that allows manipulation of graphs with more than one million
elements. The Tulip framework contains a core library and an end-
user visualization tool. The library provides graph data representation
and so-called algorithms. The algorithms include several layout engines
(rooted, radial and bubble trees, treemaps, and force-directed) and ren-
dering engines that allow one to parameterize the node and edge glyphs
by graph data attributes. Apart from these, several graph data manip-
ulation algorithms are provided, such as editing, clustering, decompo-
sition, and computing statistics on graphs. Several tree visualizations
created with the Tulip system are shown in Section 11.4.1.

Utilization: Tulip can be used either as a C++ class library or as a turnkey sys-
tem. In the first case, developers build their application on top of the
core Tulip graph data and algorithm classes. In the second case, end
users can use the Tulip visualization front-end to interactively import,
navigate, edit, lay out, and render graphs in a variety of ways. The
functionality of the Tulip front-end, although not covering all the func-
tions of the core library, is rich and customizable enough to allow one to
use this application as a full-fledged viewer for complex graphs in real
applications. Similar to ParaView and MayaVi, the Tulip front-end can
be customized via a plug-in mechanism to load additional functionality
developed on top of the core libraries.

Gephi
Type: Library and turnkey system

Availability: Open source (written in C++)



572 Appendix: Visualization Software

Address: http://gephi.org/

Description: Gephi is a framework for the visual analysis of medium to large graphs.
In terms of features and utilization mode, Gephi is very similar to Tulip.
However, Gephi targets a slightly different user group, and poses the
focus more on ease of learn and use than on computational scalability,
fine-grained APIs, and algorithm customizability. As such, Gephi offers
more plug-ins for importing both static and dynamic graphs from a
variety of file formats and live data sources and widgets for interactive
graph exploration. However, Tulip offers more research-grade graph
layout and analysis algorithms. Also, Tulip is scalable to graphs larger
than the ones that Gephi can handle at interactive frame rates.

Utilization: Gephi can be used either as a set of Java class library or as a turnkey
system. In the first case, developers build their application on top of the
core Gephi APIs (graph, layout, attributes, statistics, import, export,
tools, filters, and generators). In the second case, end users can use
the Gephi visual front-end to interactively import, navigate, edit, lay
out, and render graphs in a variety of ways. The Gephi front-end is
very similar (albeit easier to learn but slightly less flexible) than its
counterpart in Tulip. The front-end can be directly used to generate
a wide palette of graph and network visualization and visual analytics
applications. Similar to ParaView, MayaVi, and Tulip, Gephi can be
customized via a plug-in mechanism to load additional functionality
developed on top of its core APIs.

ManyEyes
Type: Web-based front-end

Availability: Available online as a web application

Address: http://www-958.ibm.com/

Description: ManyEyes is a web front-end for a set of information visualization tech-
niques for interactive exploration of moderately-sized information visu-
alization datasets [Viegas et al. 07]. Provided visualization metaphors
include treemaps, node-link graph and tree layouts, bar and line charts,
scatter plots, timelines, tag clouds, and data-annotated geographical
maps. Each visualization offers a few customization options, such as
parameterizing the size, color, annotation, and shape of elements in a
node-link layout or treemap; or specifying the columns of a table used
to create a 2D scatter plot or bar chart. Customization options can be
either explicitly specified by the user, or linked to reflect the value of a
data attribute. The created visualizations are displayed online, and can
be explored by means of a standard web browser. Interaction features,
apart from configuring the visualization parameters, cover interactive



A.5. Information Visualization Software 573

zooming, panning, and brushing to reveal data values. The provided
visualizations are kept on purpose simpler than the equivalent ones of-
fered by toolkits such as Tulip or Prefuse. However, their built-in default
values and presets make them suitable for visualizing a wide range of
datasets. Also, the data model is kept very simple: All datasets are ba-
sically text documents or two-dimensional data tables. While this offers
arguably less freedom to model complex relational datasets, it allows for
a very short, easy-to-learn, and error-tolerant path from generating the
datasets to creating the actual visualizations.

Utilization: In contrast to most other toolkits, that run as local applications on the
user’s machine, ManyEyes offers a web-based model: Users format their
datasets in a simple, typically text-based tabular model, and upload the
resulting data file to the ManyEyes site. Next, visualizations can be cre-
ated online from the uploaded dataset, both by the user who uploaded
data, but also by other users. This model allows for an easy sharing of
datasets, constructed visualizations, and insights generated from these
visualizations—hence the application’s name. The main advantage of
this model is the ease by which any user can create a (simple) visual-
ization from tabular data, with zero software installation requirements,
and with all the software development and maintenance effort located at
the site’s provider. Disadvantages involve the need to format the data
in the template demanded by ManyEyes; having to share potentially
confidential data; and the dependence of a third-party service “in the
cloud.”

Treemap

Type: Turnkey system

Availability: Open source for nonprofit uses (written in Java)

Address: http://www.cs.umd.edu/hcil/treemap/

Description: Treemap is a customizable turnkey system for the visualization of large
multivariate datasets using the treemap layout. Treemap implements
several layout algorithms (slice and dice, squarified, and strip) and al-
lows one to parameterize several elements of the mapping process, such
as size, color, borders, and labels of the treemap nodes by the data
attributes of the underlying tree. Several interactive navigation and fil-
tering mechanisms support a wide range of structure and attribute-based
user queries. Treemap also allows one to construct tree hierarchies from
data dynamically using a mechanism called flexible hierarchies. Given
a set of multivariate data points, trees can be built level-by-level by
successively grouping the points by different user-defined criteria on the
data attributes.



574 Appendix: Visualization Software

Utilization: Treemap comes as a turnkey system that can be customized by means of
its user interface. Treemap accepts many data formats as input. Also,
Treemap can be configured to monitor “live” data that changes dynam-
ically in time. Its many options can be saved as presets, called feature
sets, which allows relatively easy customization without the need for
programming. All in all, Treemap is quite easy to use as a customizable
turnkey system, but an important limitation is that it cannot be used
as a library via an API, e.g., for developing third-party applications.

XmdvTool
Type: Turnkey system

Availability: Open source (written in C/C++)

Address: http://davis.wpi.edu/xmdv/

Description: XmdvTool is a general-purpose visualization tool for the interactive
exploration of multivariate datasets. As such, XmdvTool implements
several visualization methods: scatter plots, star glyphs, parallel coor-
dinates, and dimensional stacking. These visualization methods come
in a “flat” and a hierarchical variant. The flat variant visualizes all
data points separately. The hierarchical variant first groups the data
points in a tree, based on some similarity metric defined on the data at-
tributes. Next, tree nodes, which represent data clusters, are visualized
using color and shading to map different cluster attributes. XmdvTool
is implemented in C++ using OpenGL for the graphics and Tcl/Tk for
the user interface functionality.

Utilization: XmdvTool comes as a turnkey system that can be directly used to vi-
sualize multivariate data coming in a number of different formats. The
user interface is relatively easy to learn. A strong feature of Xmdv-
Tool is the provision of many interaction mechanisms that allow several
types of brushing in screen, data, and structure spaces; zooming and
panning; display distortion techniques; and masking and reordering of
the axes (dimensions). All these mechanisms make XmdvTool a ver-
satile tool that can be used relatively easily to get a first look into a
given multivariate dataset. However, just as Treemap, the functional-
ity of XmdvTool is not available as an API or library, which makes its
applicability limited in some contexts.


	PracticalDataVis.pdf
	PracticalDataVis_appendix

