Visual Analytics for Opening the Black Box of Classifier Design

prof. dr. Alexandru (Alex) Telea

Department of Mathematics and Computer Science University of Groningen, the Netherlands

Introduction

Who am I?

- professor in computer science / multiscale analytics @ RuG (since 2007)
- chair/steering committee ACM SOFTVIS / IEEE VISSOFT (since 2007)
- 14 PhD students, 60+ MSc students
- 200 international publications in visual data analytics
- co-founder SolidSource BV

www.cs.rug.nl/~alext

Data Visualization: Principles and Practice A. K. Peters, 2008 / 2014

Why is Visualization Needed for Big Data?

The 'four V' challenges of big data

Volume: in 2010-2012, the humanity has created more data than it has previously in its history*
Velocity: the speed of generating data already exceeds storage capacities and processing power
Variety: data is numbers, text, images, maps, sounds, video, networks, relations, ... anything
Veracity: more data = more noise = more trouble: How do we know we found all is in it?

If data is the modern-age oil**... visualization is an exploitation engine

* www.emc.com/leadership/programs/digital-universe.htm

** A. Kirk, Visualization: A success design story, Packt Publ., 2012

Why is Visualization Needed for Classifier Design?

1. Domain exploration

- how do we know which features we can extract?
- how to tell the quality of the data?

2. Classifier diagnosis

- typical aggregate metrics (accuracy / area under ROC curve / discriminative power)
- if this value is high, all good
- but what if not? What has gone wrong?

3. Classifier comparison

- typical: compare aggregate metrics
- how to tell where and why behave classifiers differently?

4. Classifier improvement

- typical: black art (change some parameters, hope for the best, ...)
- how to tell what and why causes problems?
- how to find best/cheapest direction for improvement?

1. Domain exploration

Question

1000 samples x 1 attribute 100 samples x 100 attributes

And why?

* www.emc.com/leadership/programs/digital-universe.htm ** A. Kirk, Visualization: A success design story, Packt Publ., 2012

1. Domain exploration

Problem: We deal with multivariate, non-spatial, abstract data

- univariate data: typically we compare a pair of patterns
- *m*-variate data: we have *m²/2* pairs to compare!

1000 samples x 1 attribute

1D graphs/charts work pretty well ©

100 samples x 10 attributes

many chart kinds, many problems (not scalable, cluttered, abstract, ...)

1. Domain exploration

Current solutions: Very limited!

Projections

Table

- extremely compact: one *n*-dimensional point = 1 pixel
- fast to compute (on GPU: 500K 100-dim points: <1 second)
- show underlying data grouping in classes
- can be shown by well-known scatterplot visualization

Projections

How to construct them?

- 1. Principal component analysis
- compute *n* eigenvectors e_i and eigenvalues w_i of the *m n*D points (table rows)
- select the two eigenvectors e_i for the two largest eigenvalues w_i
- project the nD points on the 2D plane spanned by the two largest eigenvectors
- pro's: simple to compute, many tools support this (linear) method
- con's: 2D distances typically **do not accurately reflect** *n*D distances

2. Nonlinear/local methods

- find *n*'<<*n* most representative points from the total of *m n*D points
- use a linear method to project the *n*' points in 2D
- fit remaining *n*-*n*' points around the projected points so they best preserve distances
- pro's: accurately preserve distances from *n*D to 2D
- con's: much more complex to implement, few(er) packages support such methods
- examples: MDS, t-SNE, LAMP, LSP, Glimmer, PLMP

Projection Challenges (1/4)

How to understand their veracity?

- false positives: points close in 2D but far in *n*D
- false negatives: points close in nD but far in 2D

[Martins et al'14]

Projection Challenges (2/4)

How to see the *n*D variables?

two viewpoints for a 3D projection showing usefulness of **axis legends**

[Coimbra et al'15]

Projection Challenges (3/4)

How to see why observations are similar?

visually detect and explain groups in a projection

Data: 2400 wine samples, 12 attributes/sample Goal: see why wine sorts resemble each other

Projection Challenges (4/4)

How to project time-dependent multivariate data?

extend t-SNE to handle time-dependent data

CNN 512-dim activations (2000 images, 10 classes), SVHN dataset

2. Feature selection for medical classifier design

- want to build an efficient and effective classifier for skin lesion images
- to be used for automatic melanoma (skin cancer) pre-detection
- skin cancer: most common worldwide; survival rate=25% if diagnosed late

Automated diagnosis pipeline

www.cs.rug.nl/svcg

groningen

Challenges

- classifier design is a **black-box**, magic-art science
- we can extract an infinite number of features which are the good ones?
- how to design an effective classifier of skin images?

Visual analytics pipeline for classifier design

Application

- want to build an efficient and effective classifier for skin lesion images
- to be used for automatic melanoma (skin cancer) detection

Proposed automated pipeline

Advantages

- we see why classifier works (or not)
- we see which features are good (or not)
- visual analytics guides us towards improvement
- open the 'black box magic' of classifier design

www.cs.rug.nl/svcg

Visual analytics for classifier design

Visual tool design

- linked views showing
 - all images (acquired with dermatoscopes)
 - all features (extracted from images)
 - selected features for classifier construction
 - feature-vector similarities (using 2D multidimensional projection)
 - feature relevance (scoring) for image similarity

[Rauber et al'15]

Way of working (1/7): Start with 346 features...

c) Feature ranking using decision trees (DT)

d) Effect of keeping the 30 top-ranked features

Way of working (2/7): Reduce to 150 features...

c) Feature ranking using decision trees (DT)

d) Effect of keeping the 30 top-ranked features

Way of working (3/7): Select most relevant 30 features...

Way of working (4/7): Reduce to 30 features...

Way of working (5/7): Reduce to 15 features...

Way of working (6/7): Solve confusions by adding 1 feature...

Way of working (7/7): Explain remaining confusion zones

Results

- reduced 346 features to 16, keeping good classification accuracy (~75%)
- found which images are wrongly classified, got insights in what **new features** we need
- our tool: classification accuracy **82%**, better than state-of-the-art commercial tools

3. Projections for improving classifier-construction

Problem

- say we want to construct a classifier for some problem/data
- typical way of working
 - select a classifier technique
 - find an implementation
 - fine-tune implementation
 - run/test implementation
 - assess accuracy
 - repeat from step 3 until satisfaction
- this is very costly!

Proposal

- shorten cycle by assessing
 - discriminative power of computed features
 - types of problems they will induce

before selecting/building/testing classifier!

Advantages

- get feedback on problem complexity and feature quality early on and cheaply
- improve input of classifier is easier than improving a classifier itself

Projections: Central tools in our solution

T1: Predict classification efficacyT2: Improve classification efficacy

T1: Predict classification efficacy

Extensive set of experiments proved that separation in a (good) projection *predicts* accuracy of a (good) classifier

Bottom row: Easy classification (after feature selection)

Validation: few misclassifications

Bottom row: Select 20 of 550 features on their discriminative power on training set, using extremely randomized trees **Dataset:** Madelon (200 points, 500 dims, 2 classes)

T2: Improve classification efficacy

Visually analyze and reason about observations and features to improve classifier efficacy

T1: Predict classification efficacy

- projections help designing very high-quality more specific classifiers
- confusion zones indicate type and extent of classification problems

Dataset: Corel (1000 points, 150 SIFT features, 10 classes)

T2: Improve classifier

4. Projections for understanding deep neural networks

Artificial Neural Networks (ANNs)

- increasingly popular for classification, pattern recognition
- good results in cases where other methods are suboptimal (e.g. feature selection)
- different types (multilayer perceptrons (MLPs), convolutional neural networks (CNNs))

Problems

- way of working of an ANN is a true 'black box'
- when results are not optimal, how to
 - understand what has gone wrong, and where?
 - improve the classifier?

T1: Explore learned representations (activations)

Method

- project input observations (images) having all activations in a layer as dimensions
- we see how the learned info is created by training and the layer structure

T2: Explore learned representations to improve classification

First step

try another network (CNN instead of MLP)

- reasonable visual separation
- AC: 77.3%

- much better visual separation
- AC: 93.8%

T2: Explore learned representations to improve classification

- reasonable visual separation
- AC: 77.3%

- much better visual separation
- AC: 93.8%

T2: Explore learned representations to improve classification

What is going on?

- visually explore clusters by brushing
- we find that each cluster-pair contains
 - a cluster for light images on dark background
 - a cluster for dark images on light background

Let's use this insight to improve the classification:

T2: Explore evolution of learned representations

Context

- activation in an ANN change in time in two ways
 - as data flows from the 1st to the last network, during operation (**inter-layer** evolution)
 - as different datasets are used, during training (inter-epoch evolution)
- we want to explore both so as to
 - understand how different layers contribute to learning
 - understand if training is effective

Inter-layer evolution

Bundled observation paths (built using our dynamic t-SNE)

We observe how

- group separation increases
- group size decreases
- groups increasingly diverge
- few trails connect different groups (classification decisions are stable)

Conclusions

Network performs (very) well in practice!

MNIST dataset, MLP classifier

T2: Explore evolution of learned representations

Inter-epoch evolution

MNIST dataset, last CNN hidden layer, 100 training epochs

Bundled observation paths

We observe how

- group separation increases (from complete clutter to perfect separation)
- groups increasingly diverge
- paths are quite straight/smooth (no canceling of learning)
- paths don't link different-color groups

Conclusions

- Learning is very effective
- Knowledge accumulates as desired
- Few/no 'hesitations' during learning

T3: Explore neuron specializations

Context

- choosing an ANN architecture is (often) a kind of black magic
- help this by explaining roles of neurons (in a layer)
- use two projections (one for activations, one for neurons)

Neuron projection shows similarities of neuron activations (in a layer) for all observations

Training increases neuron *specialization* for the different classes

T3: Explore neuron specializations

Discriminative neuron map

- summarizes role and power of all neurons in a layer for a task
 - position: similarity of correlations of neuron activations
 - color: most important class the neuron is responsible for
 - saturation: how important the neuron is for that class vs other classes

Conclusions

Classifier design

- the main (and toughest) challenge in machine learning
- we open the black-box of 'design magic' by visual analytics
 - extend multivariate projections to be useful and usable in practice
 - use these for classifier prediction, understanding, and improvement
 - interactive feature scoring/selection
 - predict classification accuracy from projection separability
 - prune feature space to reduce computation cost
 - explain the training and working of deep neural networks

Lots of applications are now possible!

Thank you for the interest!

a.c.telea@rug.nl

