
Software Visual Analytics for Maintenance

Example Solutions

prof. dr. Alexandru (Alex) Telea

www.cs.rug.nl/svcg

Department of Mathematics and Computer Science
University of Groningen, the Netherlands

www.cs.rug.nl/svcg

My PhD students…

My MSc students…
Avdo Hanjalic, Tijmen Klein, Johan v/d Geest, Mark Ettema, Daniel Kok, Karsten Westra, Yuri Meiburg, Hessel Hoogendorp,
Liewe Kwakman, Madalina Florean, Bertjan Broeksema, Mark Stoetzer, Sergio Moreta, Kees van Koten, Frans Boerboom,
Arjan Janssen, Freek Nossin, Matthijs van Eede, Martijn van Dortmont, Maurice Termeer, Iwan Vosloo, Gerard Lommerse,
Dennie Reniers, Milan Pastrnak, …

Introduction

Data Visualization: Principles and Practice A. K. Peters, 2008

www.solidsourceit.com

www.cs.rug.nl/~alext

Professor of Computer Science (Multiscale Visual Analytics),
University of Groningen, the Netherlands

www.cs.rug.nl/svcg

Software Visualization?

More examples: visualcomplexity.com

root

root

source code code quality code dependencies design and metrics

text duplication P2P networks program behavior program dynamics

code repositories evolution metrics team analysis structure evolution

www.cs.rug.nl/svcg

Software Visualization!

How should we deal with scale?

•  simplified visualizations?
•  continuous simplification?
•  what to simplify exactly?
•  reinvent wheel for each app?

www.cs.rug.nl/svcg

Software Visual Analytics – Process View

P. Wong, J. Thomas, Visual analytics, IEEE Comp. Graphics & Applications, 24(5), 2004
J. Thomas, K. Cook, Illuminating the Path: The R&D Agenda for Visual Analytics, NVAC, 2005

The Sensemaking Loop
•  going from raw data to meaning (semantics) to insight to decisions
•  data → hypothesis → (in)validation → conclusions → presentation
•  put simply: combine analysis and visualization

“The science of analytical reasoning facilitated by interactive visual interfaces”

Software Visualization

www.cs.rug.nl/svcg

Definition:
•  “The static or animated 2D or 3D visual representation of information about software systems

based on their structure, history, or behavior in order to help software engineering
tasks” [Diehl, 2006]

Goals: reduce cost/time, increase quality and productivity!

Surveys:
•  IT industry: 457 billion $ (2013), 50% larger than in 2008 [www.infoedge.com]

•  comparison: total US health care spending 2.5 trillion $ (2009) [www.usatoday.com/news/health]
•  80% of development costs spent on maintenance [Standish’84, Corbi’99]

•  50% of this is spent for understanding the software!

Practice:
•  40% engineers find SoftVis indispensable, 42% find it not critical [Koschke ’02]

Visual Analytics in Software Maintenance

change
management

impact
analysis

release
planning

design
changes

code
changes

test
changes

system
release

change
request

change
management

tracking
system

bugs,
improvements,

features, …

end users

developers

find affected
code

estimate
needed effort

estimate cost
vs benefit

describe
changes

revise current
system

write change
plan

system is used in
real life…

environment and
requirements

evolve…

new bug

new
requirement

standard development pipeline

analysis / decision-making
(focus of evolution SoftVis)

Techniques

www.cs.rug.nl/svcg

Software Visual Analytics – Technical View

Many types of data and questions → many types of visualizations

1. Assessing system modularity

•  blue = caller, red = called
•  all functions in the yellow file
 call the purple class
•  green file has many self-calls

•  blue = virtual, green = static functions
•  red class has many virtual calls
 (possible interface class)

•  many intra-module calls
•  few inter-module calls
•  typical for library software

Modular system Monolithic system Decoupled system

www.cs.rug.nl/svcg More information: www.cs.rug.nl/svcg/SoftVis/Dependencies

2. Structure, dependencies, metrics

SolidSX analytics tool (www.solidsourceit.com)

Test results

Dependencies

Structure

Detail metrics

www.cs.rug.nl/svcg

Code view

More information: www.cs.rug.nl/svcg/SoftVis/Dependencies

3. Code duplication SolidSDD tool (www.solidsourceit.com)

4. Clone evolution

Evolution of clones in Mozilla Firefox (~55K clone relations, 3.5 MLOC C/C++)

Questions
•  how does code duplication change in time?
•  which clones are added, removed, merged, or split? And why?

5. Program trace and structure

Questions
•  where (in the program structure) are the calls executed now?
•  when (during execution) are calls to this subsystem done?

www.cs.rug.nl/svcg More details: www.cs.rug.nl/svcg/SoftVis/ViewFusion
Tool implementation: www.softwarediagnostics.com

Code: Chrome browser (2.7 MLOC C/C++, 8900 files+folders)
Trace: 9000 calls to 914 functions

6. Comparing program traces

www.cs.rug.nl/svcg More details: www.cs.rug.nl/svcg/SoftVis/TraceDiff
Tool implementation: www.softwarediagnostics.com

Code: 1MLOC C#, 45 developers, 8 years
Traces: 2x150K calls to 1500 functions

Questions
•  given 2 traces, where are similar and where are different call-blocks?
•  how to spot differences in call moment, duration, and called functions?

files sorted
by activity

most
active
files

7. Software Evolution

time (revision)

Tool implementation: www.cs.rug.nl/svcg/SoftVis/EvolVis

Questions
•  how to correlate metrics over large software repositories (>10K files, >100K commits?)
•  how to detect trends to predict the future (cost, effort, risk)?

Project B (commercial)
•  software grows in time at about the same rate
•  but one developer owns most of the code
•  what if this person leaves the team?!

Project A (open-source)
•  software grows in time
•  impact: balanced over most developers

Analyzing developer effort

Show aggregated developer impact (#files modified by each developer) over time

Tool implementation: www.cs.rug.nl/svcg/SoftVis/EvolVis

Correlating quality metrics

Tool implementation:
www.cs.rug.nl/svcg/SoftVis/EvolVis

•  C# code base
•  4 years, 190 KLOC

•  Permanent quality

monitoring dashboard
solution

Total code size 190K

0

Applications

Application: Post-Mortem Assessment

Questions
•  automotive project: 8 years, 3.5 MLOC embedded C, 15 releases, 60 developers
•  project failed to deliver. Why?

R1.3	 -‐	 start	

+me	
files	

Li2le	 increase	 in	 the	 file	 curve	 –	 most	 ac+vity	 in	 old	 files	
suggests	 too	 long	 maintenance	 &	 closure	 of	 requirements	

MR	 related	 check-‐in	 	

Analysis 1: Modification Request (MR) Lifetime

+me	

MR	 ids	 (1	 bar=100	 MRs)	

graph:	 #	 commits	 referring	 to	 MRs	
within	 a	 given	 id	 range	

In	 mid	 2008,	 ac+vity	 related	 to	
MRs	 from	 2006	 s+ll	 takes	 place	

Requirements: MR Duration

1	 >8	
#developers	

package	
m
odule	

#modifica+on	 requests	 (MRs)	
1	 >30	

team	 A	 team	 B	 team	 C	

Large	 part	 of	 soTware	 affected	 by	 long	 open-‐standing	 MRs	
Most	 of	 these	 are	 assigned	 to	 team	 A	 (largest	 team)…	
…and	 this	 team	 was	 reported	 to	 have	 communica+on	 problems!	
	

1	 >90	
MR	 closure	 (days)	

file	

Analysis 2: Team Code Ownership

Most	 dependencies	 occur	 via	 the	 iface,	 basicfunc+ons	
and	 plaYorm	 	 packages	
	
	
	
	
Filter	 out	 these	 allowed	 dependencies…	
…to	 discover	 unwanted	 dependencies	
	

These	 are	 accesses	 that	 bypass	 established	 interfaces	
There	 are	 several	 such	 accesses	 (bad)	

uses

is used

=	 call,	 type,	 variable,	 macro,	 …	

iface	

package
module

file

package
module

file

package
module

file

Analysis 3: Code Dependencies

High	 coupling	 at	 package	 level	
This	 image	 does	 not	 tell	 us	 very	 much	

Not	 a	 strict	 layering	 in	 the	 system	 (as	 it	 should	 be)	
Thus,	 the	 architecture	 is	 violated.	

Select	 only	 modules	 which	 are	 mutually	 call	 dependent…	
…to	 discover	 layering	 viola3ons	

Analysis 4: Code Call graph

Moderate	 code	 +	 dependency	 growth	
• 	 does	 not	 explain	 products	 problems	
	
	
	
Average	 complexity/func+on	 >	 20	
Total	 complexity:	 up	 20%	 in	 R1.3	
• 	 tes+ng	 can	 be	 hard!	
• 	 possible	 cause	 of	 product’s	 problems	

Analysis 5: Code Quality Metrics

External	 duplica+on	 	
• 	 show	 modules	 having	 similar	 code	 blocks	 	 	
	 	 	 of	 >25	 LOC	

1	 60	
#	 duplicated	 blocks	

Internal	 duplica+on	 	
• 	 color:	 #duplicated	 blocks	 within	 a	 file	

Li2le	 external/internal	 duplica+on	
Arguably	 not	 a	 problem	 for	 tes+ng	

Analysis 6: Code Duplication

85
4	
do

c	
+	

ht
m
l	

16
88
	 o
th
er
	 fi
le
s	

+me	

Code	 is	 well	 documented…	
…so	 refactoring	 likely	 doable	
Start	 from	 up-‐to-‐date	 docs	

• 	 30%	 of	 files	 are	 documenta+on	
• 	 updated	 regularly	
• 	 grow	 in	 sync	 with	 rest	 of	 code	 base	

delay	

+me	

Do
cs
	 (s
or
te
d	
on

	 a
c+
vi
ty
)	

• 	 40%	 of	 docs	 frequently	 updated	
• 	 rest	 seem	 to	 be	 stale	

Analysis 7: Documentation

www.cs.rug.nl/svcg

Application: Database reverse engineering

Context
•  clients: top-3 Swiss bank
•  product: reporting system (2004-2012)

–  Oracle/SQL/MS Access databases
–  ~5000 tables, 60000 fields,
–  mix of TS-SQL, Visual Basic, MS Access
–  code needs 24-hour uptime

•  system was unmaintainable, at end

Questions
•  how can we understand the business logic?
•  how can we refactor the database design for better maintenance?

www.cs.rug.nl/svcg

Stakeholders

Technical
personnel

Business
experts

Final
stakeholders

Reporting requests
- business-level specifications
- tight deadlines

Business logic (BL) specifications
- how to efficiently translate BL
 Into technical details?

New report implementations
- how to efficiently communicate
changes to business layer?

New report implementations
- how to efficiently validate new
reports?

3

Source code
(Access, SQL, Toad, Oracle, VB, …)

Business logic
(rules, conditions, limits, …)

Business reports
(the final facts & figures)

2

4 1

www.cs.rug.nl/svcg

Problem Modeling

More details on SolidAA: www.soursourceit.com

Data and control dependencies

www.cs.rug.nl/svcg

Problem Modeling

More details on SolidAA: www.soursourceit.com

Data and control dependencies

•  one output to many input, one input to many output relations
•  hard to find all relations purely statically – dependence on control flow
 (execution paths)

www.cs.rug.nl/svcg

Problem Dimension

More details on SolidAA: www.soursourceit.com

Input parameters
•  35709 input fields
•  5..10 processing steps per path
•  assume input fan-out of 4 – very conservative
•  total: 4*35709 = 142836 output-to-input field paths

Manual effort needed for impact analysis
•  10 mins/path needed – very conservative
•  result: 23806 hours ~ 15 person years!

www.cs.rug.nl/svcg

Solution – step 1

More details on SolidAA: www.soursourceit.com

SQL analysis

SQL analysis
•  extract all SQL code (TS-SQL, Oracle, MS Access scripts)
•  perform a syntax analysis on SQL (parsing)
•  find all read table names and fields (columns)
 - use control flow analysis of SQL

www.cs.rug.nl/svcg

Solution – step 2

More details on SolidAA: www.soursourceit.com

Access analysis

MS Access analysis
•  extract all MS Access form (report) definitions
•  identify fields of interest
•  find SQL or VB code that these fields call (if any)

Access analysis

www.cs.rug.nl/svcg

Solution – step 3

More details on SolidAA: www.soursourceit.com

VB analysis
•  extract all VB code from the Access reports
•  perform a full syntactic and control-flow analysis
 - find VB code that writes to report fields easy
 - find how that code is called (call analysis) relatively easy
 - trace back values of output field names to SQL field names very complex!
 using VB symbolic execution

VB analysis

VB analysis VB analysis

www.cs.rug.nl/svcg

Solution – putting it all together

root

root

Access Analyzer (SolidAA)
•  end-to-end dataflow analysis across entire reporting platform
•  answers question: “Where does this (report) data come from?”
•  fully handles any MS Access / SQL database

Benefits
•  reverse engineering cost: days
•  learning cost: days
•  solution cost: ~6 months
•  client estimated savings: ~920 KEUR

More details on SolidAA: www.soursourceit.com

www.cs.rug.nl/svcg

Solution refinements

Level of detail
•  show dependencies at form and table level only (overview)
•  expand to show dependencies at form-field and table-field level (detail)
•  detect “parallel paths” of data processing (desirable w.r.t. architecture)

More details on SolidAA: www.soursourceit.com

Overview

Detail

www.cs.rug.nl/svcg

Solution refinements (cont.)

Level of detail (cont.)
•  show how the data is transformed from input to output
 - copy, SQL function call, references (e.g. table links), …

More details on SolidAA: www.soursourceit.com

Transformations

www.cs.rug.nl/svcg

Solution refinements (cont.)

Links to code (cont.)
•  show which bits of code (SQL, VB, Access, …) are responsible for each data link
•  useful for fine-grained detail and understanding of the business logic

More details on SolidAA: www.soursourceit.com

Application: Build Optimization

1. Context

•  major embedded software company (NASDAQ 100)
•  industrial 17.5 MLOC code base of C code
•  modified daily by >500 developers worldwide

2. Problem

•  high build time (>9 hours)
•  modifying a header causes very long recompilations
•  testing becomes very hard; perfective maintenance (refactoring) nearly impossible

3. Questions

•  why is the build time so long?
•  what impact has a code change on the build time?
•  how is a change impact spread over the entire code base?
•  how to refactor the code to improve modularity and build time?

A. Telea, L. Voinea, Visual Software Analytics for the Build Optimization of Large-Scale Software Systems, Comp. Statistics, 2010

www.cs.rug.nl/svcg

CM/Synergy
repository

Extracted
data

TableVision tool

INavigator tool

IRefactor tool

Build process analysis
•  why is the build slow?

Dependency analysis
•  how does a code change
 affect build time?

Refactoring analysis
•  how to rewrite code to
 improve build time?

Build cost
model

Three analyses – three tools in a unified toolset

Build Optimization

www.cs.rug.nl/svcg

Question 1: Why is the build slow?

CPU time

I/O time
+
network

build time

CPU time

* assume no other CPU-intensive processes besides compilation

build is I/O bound!

preventive actions

corrective actions

•  measure build time using UNIX tools time(x)	

build time

small large

•  build time = CPU + I/O + network + paging + other processes

small small * small * large large

Question 1: First Steps

time (sec)

translation units

Build time depends significantly on the translation unit!

0

A useful build cost model must consider the per-unit build cost
and not only the number of translation units

•  simple histogram of build time

www.cs.rug.nl/svcg * assume no other CPU-intensive processes besides compilation

www.cs.rug.nl/svcg

Build cost “how much it costs to build a file”
•  sources: number of source LOC + (in)directly included headers
•  binaries: negligible (linking is cheap)
•  headers: zero (headers don’t get compiled)

Build impact: “how much it costs to rebuild the system when a file is modified”
•  sources: build cost of the source itself
•  headers: number of sources using that header

* both application and system headers are considered

h

h

h c

c

lib

lib

BC = 3
BI = 3 BI = 1

BC = 2
BI = 2 BI = 2

BI = 2 BC = 0

BC = 0

Example

Build Cost Model – First Attempt

www.cs.rug.nl/svcg

12th highest-impact header (reality)
classified as 21st (model)

Build Cost Model – Validation

model’s
impact

headers

sorted on
model’s impact

time	 build
measurements

high-impact headers

low-impact headers

•  model is close to reality but not perfect
•  deviations are important!

More details on SolidBA: www.soursourceit.com

www.cs.rug.nl/svcg

Build Cost Model – Refinement

Build cost “how much it costs to build a file”
•  sources: number of (in)directly included headers
•  binaries: negligible (linking is cheap)
•  headers: zero (headers don’t get compiled)

Build impact: “how much it costs to rebuild the system when a file is modified”
•  sources: the build cost of the source itself
•  headers: sum of build costs of all sources including header (in)directly

h

h

h c

c

lib

lib

BC = 3
BI = 3 BI = 3

BC = 2
BI = 2 BI = 5

BI = 5 BC = 0

BC = 0

Example

More details on SolidBA: www.soursourceit.com

Build Cost Model 2 – Validation

first
model’s
impact

headers

sorted on
first model’s impact

time	 build
measurements

high-impact headers

low-impact headers

refined
model’s
impact

refined model classifies
outlier correctly

www.cs.rug.nl/svcg

•  refined model delivers same header-order (in terms of impact) as actual measurements

More details on SolidBA: www.soursourceit.com

www.cs.rug.nl/svcg

Build Cost Model 2 – Validation

header files

actual time
measurements

Let’s look at the whole picture

first model

refined model

•  refined model nicely matches reality, including subtle ‘outliers’
•  why is this so? (see next slide)

More details on SolidBA: www.soursourceit.com

www.cs.rug.nl/svcg

Build Cost Model 2 – Validation

Analyze deeper:
•  compilation cost dominated by I/O (preprocessing headers)
•  I/O cost dominated by file opening/closing on this platform
•  hence the justification of impact = # totally opened headers

Conclusions

To reduce build time, we should:
•  either massively accelerate network highly costly / complex
•  reduce per-header build impact header impact analysis
•  reduce impact of change on build time header refactoring

More details on SolidBA: www.soursourceit.com

www.cs.rug.nl/svcg

Question 2: System-wide impact analysis

2

3

4

5 6

1. Find subsystems are expensive to build
2. For a subsystem, find headers have high build impact
3. Zoom in to highest impact headers
4,5. For a high-impact header, see how its impact spreads over sources
6. For a header, see its cost breakdown over its include-set

1

More details on SolidBA: www.soursourceit.com

www.cs.rug.nl/svcg

Method
•  color system tree by cost (blue=low, red=high)
•  select desired subsystem
•  right panel shows build impact for each
 header / source in that subsystem

Findings
•  most headers have a low build impact
•  however, a few have a very high impact
•  touching those incurs a high build cost!

 because they are used in many sources
 because they include many headers

!

Subsystem-level impact analysis

More details on SolidBA: www.soursourceit.com

Question 3: How to reduce the build cost?

•  OK, we have a high-impact header h: how easy it to reduce that impact?
•  visualize the build cost distribution of h over the sources which use it

Case 1: easy refactoring
•  build cost spread unevenly over the targets including selected header h	

•  to decrease cost due to h, we only need to change a few targets

build impact of h is located mainly
in one single place!

Refactoring analysis

selected high-impact
header

Case 1: difficult refactoring
•  build cost spread evenly over the targets including selected header h	

•  to decrease cost due to h, we need to change almost all targets

build impact of h

www.cs.rug.nl/svcg
More details on SolidBA: www.soursourceit.com

•  not all headers change equally often (e.g. system headers)
•  new metrics:

•  build impact * change frequency
•  impact distribution: impact (%) of a header contained in the 10% most expensive of its targets

•  easy & quick to use

sorted by
impact*change

flat, low distribution (~15%): impact is
spread uniformly over all targets. Hence, we
cannot improve by refactoring a few targets

skewed distribution (50%): half of impact is
concentrated in 10% most expensive targets.
Hence, refactoring these is an interesting option

Refactoring analysis - Refinement

•  OK, we found a high-impact header; how to decide a refactoring plan?
•  show dependencies header → clients using hierarchical DAG layout

Example 1: MIXTmet.h, used by 38 sources, high impact

Example 2: WS_support.h, used by 48 sources, high impact

MIXTmet.h

WS_support.h

•  build impact due to direct header
 inclusion
•  hard to decrease via refactoring

•  build impact channeled via one
 intermediate header:
 WS_sim1_support.h (*)
•  simpler refactoring may be
 possible

*

Refactoring support

•  say we want to include a header: is this potentially expensive?
•  show header’s own include graph colored by build impact

Refactoring support (2)

Example: TDMD_types.h, used by 30 sources
•  not a high-impact header itself
•  but it includes high-impact headers!
•  hence using this header introduces potentially expensive changes

TDMD_types.h

cdefs.h

pyconfig.h

More details on SolidBA: www.soursourceit.com

How much costlier becomes the system build if we add an #include?
•  select a “source” header – the one in which we want to #include
•  select a “destination” header – the one to be #included
•  show the build cost increase

Example: What if we #include DNCHUI_chset.h in TDMD_types.h?

source

target

build impact increases from
9633 to 9783, i.e. 1.5%

Visual Tool: INavigator
Refactoring support (3)

Refactoring support (4)

•  previous methods OK for manual header-by-header refactoring only

How to refactor a large system?

•  system S = {fi}i, S = Headers U Sources
•  header hi ∈ Headers = {sj}j , sj ∈ Symbols (function declarations, variables, types, macros, …)
•  include relations

inc : S → P(Headers), inc(f) = {hi} ↔ f includes hi
•  symbol use relations

use : Symbols → P(Headers), use(s) = {hi} ↔ s is used by hi	

•  in typical systems, not all symbols sj ∈ h in a header are used together

Automatic refactoring idea

•  find high-impact header h (see last slides)
•  split h into h1 , h2 ; h1U h2 = h by putting symbols used together in same hi
•  recursively split h1 , h2	

•  replace inc(h) by inc(h1) and/or inc(h2)

www.cs.rug.nl/svcg
More details on SolidBA: www.soursourceit.com

•  intuitively: put symbols often used together in same header
•  include newly created headers instead of original ‘monolithic’ ones
•  why is this good

•  decrease build costs (by decreasing the included code size)
•  decrease build impact (by decreasing the number of included headers)

The IRefactor analysis tool

•  suggests refactoring possibilities and shows gained build impact

Refactoring support (4)

header

symbols 2 colors

Refactoring cost

(how many files must
include both headers
after refactoring)

Build impact

(how much we saved
In build time)

0 ≥5

min max

Best refactoring candidates:

•  low refactoring cost
•  high build impact parents
•  low build impact children

Build impact

Refactoring cost

Refactoring visualization

header under analysis suggested decomposition levels

Color: refactoring
 cost

 (how many additional
headers)

Color: refactoring
 benefit

(% build impact
reduction)

decomposition details:
(how to split symbols in smaller
headers and how to #include
these headers)

Refactoring visualization

More details on SolidBA: www.soursourceit.com

Example of bad candidate for header refactoring

As we gain benefits, we also
increase costs

refactoring cost

refactoring gain

Refactoring visualization

Collaborations & Customers

OpenCV

Laboratoire Bordelais de	

Recherche en Informatique	

The Industry… Research/Academia… …Open Source

www.cs.rug.nl/svcg

Conclusions – Software Visual Analytics

Thank you for your interest!

Alex Telea
a.c.telea@rug.nl

•  Provide insight in multidimensional correlations

•  Program architecture, dependencies, metrics, development/testing effort, requirements,
documentation, databases

•  Evolution of all these aspects in time

•  Added value
•  Make the entire chain requirements..design..code visible and accountable
•  Assess software quality
•  Pinpoint hot-spots (where to invest effort)
•  Make sense of all that ‘big data’

