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Introduction 

Data Visualization: Principles and Practice A. K. Peters, 2008 

www.solidsourceit.com 

www.cs.rug.nl/~alext 

Professor of Computer Science (Multiscale Visual Analytics),  
University of Groningen, the Netherlands 
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Software Visualization? 

More examples: visualcomplexity.com 

  

root 

root 



source code code quality code dependencies design and metrics 

text duplication P2P networks program behavior program dynamics 

code repositories evolution metrics team analysis structure evolution 
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Software Visualization! 

How should we deal with scale? 

•  simplified visualizations? 
•  continuous simplification? 
•  what to simplify exactly? 
•  reinvent wheel for each app? 



www.cs.rug.nl/svcg 

Software Visual Analytics – Process View 

P. Wong, J. Thomas, Visual analytics, IEEE Comp. Graphics & Applications, 24(5), 2004 
J. Thomas, K. Cook, Illuminating the Path: The R&D Agenda for Visual Analytics, NVAC, 2005  

 
 
The Sensemaking Loop 
•  going from raw data to meaning (semantics) to insight to decisions 
•  data → hypothesis → (in)validation → conclusions → presentation 
•  put simply: combine analysis and visualization 

“The science of analytical reasoning facilitated by interactive visual interfaces” 



Software Visualization 
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Definition:  
•  “The static or animated 2D or 3D visual representation of information about software systems 

based on their structure, history, or behavior in order to help software engineering 
tasks” [Diehl, 2006] 

Goals: reduce cost/time, increase quality and productivity! 

 
Surveys: 
•  IT industry: 457 billion $ (2013), 50% larger than in 2008 [www.infoedge.com] 

•  comparison: total US health care spending 2.5 trillion $ (2009) [www.usatoday.com/news/health] 
•  80% of development costs spent on maintenance [Standish’84, Corbi’99] 

•  50% of this is spent for understanding the software! 
 
 
Practice: 
•  40% engineers find SoftVis indispensable, 42% find it not critical [Koschke ’02] 
 
 
 



Visual Analytics in Software Maintenance 
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Techniques 
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Software Visual Analytics – Technical View 

Many types of data and questions → many types of visualizations 



1. Assessing system modularity 

•  blue = caller, red = called 
•  all functions in the yellow file 
  call the purple class 
•  green file has many self-calls 

•  blue = virtual, green = static functions 
•  red class has many virtual calls 
  (possible interface class) 

•  many intra-module calls 
•  few inter-module calls 
•  typical for library software 

Modular system Monolithic system Decoupled system 

www.cs.rug.nl/svcg More information: www.cs.rug.nl/svcg/SoftVis/Dependencies 



2. Structure, dependencies, metrics 

SolidSX analytics tool (www.solidsourceit.com) 

Test results 

Dependencies 

Structure 

Detail metrics 
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Code view 

More information: www.cs.rug.nl/svcg/SoftVis/Dependencies 



3. Code duplication SolidSDD tool (www.solidsourceit.com) 



4. Clone evolution 

Evolution of clones in Mozilla Firefox (~55K clone relations, 3.5 MLOC C/C++) 

Questions 
•  how does code duplication change in time? 
•  which clones are added, removed, merged, or split? And why? 

 



5. Program trace and structure 

Questions 
•  where (in the program structure) are the calls executed now? 
•  when (during execution) are calls to this subsystem done? 

 

www.cs.rug.nl/svcg More details: www.cs.rug.nl/svcg/SoftVis/ViewFusion 
Tool implementation: www.softwarediagnostics.com 

Code:   Chrome browser (2.7 MLOC C/C++, 8900 files+folders) 
Trace:   9000 calls to 914 functions 



6. Comparing program traces 

www.cs.rug.nl/svcg More details: www.cs.rug.nl/svcg/SoftVis/TraceDiff 
Tool implementation: www.softwarediagnostics.com 

Code:   1MLOC C#, 45 developers, 8 years  
Traces: 2x150K calls to 1500 functions 

Questions 
•  given 2 traces, where are similar and where are different call-blocks? 
•  how to spot differences in call moment, duration, and called functions? 

 



files sorted 
by activity 

most 
active 
files 

7. Software Evolution 

time (revision) 

Tool implementation: www.cs.rug.nl/svcg/SoftVis/EvolVis 

Questions 
•  how to correlate metrics over large software repositories (>10K files, >100K commits?) 
•  how to detect trends to predict the future (cost, effort, risk)? 

 



Project B (commercial)  
•  software grows in time at about the same rate 
•  but one developer owns most of the code 
•  what if this person leaves the team?! 

Project A (open-source)  
•  software grows in time 
•  impact: balanced over most developers 

Analyzing developer effort 

Show aggregated developer impact (#files modified by each developer) over time 

Tool implementation: www.cs.rug.nl/svcg/SoftVis/EvolVis 



Correlating quality metrics 

Tool implementation:  
www.cs.rug.nl/svcg/SoftVis/EvolVis 

•  C# code base 
•  4 years, 190 KLOC 
 
•  Permanent quality  

monitoring dashboard 
solution 

Total code size 190K 

0 



Applications 



Application: Post-Mortem Assessment 

Questions 
•  automotive project: 8 years, 3.5 MLOC embedded C, 15 releases, 60 developers 
•  project failed to deliver. Why? 

 



R1.3	  -‐	  start	  

+me	  
files	  

Li2le	  increase	  in	  the	  file	  curve	  –	  most	  ac+vity	  in	  old	  files	  
suggests	  too	  long	  maintenance	  &	  closure	  of	  requirements	  

MR	  related	  check-‐in	  	  

Analysis 1: Modification Request (MR) Lifetime 



+me	  

MR	  ids	  (1	  bar=100	  MRs)	  

graph:	  #	  commits	  referring	  to	  MRs	  
within	  a	  given	  id	  range	  

In	  mid	  2008,	  ac+vity	  related	  to	  
MRs	  from	  2006	  s+ll	  takes	  place	  

Requirements: MR Duration 



1	   >8	  
#developers	  

package	  
m
odule	  

#modifica+on	  requests	  (MRs)	  
1	   >30	  

team	  A	   team	  B	   team	  C	  

Large	  part	  of	  soTware	  affected	  by	  long	  open-‐standing	  MRs	  
Most	  of	  these	  are	  assigned	  to	  team	  A	  (largest	  team)…	  
…and	  this	  team	  was	  reported	  to	  have	  communica+on	  problems!	  
	  

1	   >90	  
MR	  closure	  (days)	  

file	  

Analysis 2: Team Code Ownership 



Most	  dependencies	  occur	  via	  the	  iface,	  basicfunc+ons	  
and	  plaYorm	  	  packages	  
	  
	  
	  
	  
Filter	  out	  these	  allowed	  dependencies…	  
…to	  discover	  unwanted	  dependencies	  
	  

These	  are	  accesses	  that	  bypass	  established	  interfaces	  
There	  are	  several	  such	  accesses	  (bad)	  

uses 

is used 

=	  call,	  type,	  variable,	  macro,	  …	  

iface	  

package 
module 

file 

package 
module 

file 

package 
module 

file 

Analysis 3: Code Dependencies 



High	  coupling	  at	  package	  level	  
This	  image	  does	  not	  tell	  us	  very	  much	  

Not	  a	  strict	  layering	  in	  the	  system	  (as	  it	  should	  be)	  
Thus,	  the	  architecture	  is	  violated.	  

Select	  only	  modules	  which	  are	  mutually	  call	  dependent…	  
…to	  discover	  layering	  viola3ons	  

Analysis 4: Code Call graph 



Moderate	  code	  +	  dependency	  growth	  
• 	  does	  not	  explain	  products	  problems	  
	  
	  
	  
Average	  complexity/func+on	  >	  20	  
Total	  complexity:	  up	  20%	  in	  R1.3	  
• 	  tes+ng	  can	  be	  hard!	  
• 	  possible	  cause	  of	  product’s	  problems	  

Analysis 5: Code Quality Metrics 



External	  duplica+on	  	  
• 	  show	  modules	  having	  similar	  code	  blocks	  	  	  
	  	  	  of	  >25	  LOC	  

1	   60	  
#	  duplicated	  blocks	  

Internal	  duplica+on	  	  
• 	  color:	  #duplicated	  blocks	  within	  a	  file	  

Li2le	  external/internal	  duplica+on	  
Arguably	  not	  a	  problem	  for	  tes+ng	  

Analysis 6: Code Duplication 
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Code	  is	  well	  documented…	  
…so	  refactoring	  likely	  doable	  
Start	  from	  up-‐to-‐date	  docs	  

• 	  30%	  of	  files	  are	  documenta+on	  
• 	  updated	  regularly	  
• 	  grow	  in	  sync	  with	  rest	  of	  code	  base	  

delay	  

+me	  
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)	  

• 	  40%	  of	  docs	  frequently	  updated	  
• 	  rest	  seem	  to	  be	  stale	  

Analysis 7: Documentation 
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Application: Database reverse engineering 

Context 
•  clients: top-3 Swiss bank  
•  product: reporting system (2004-2012) 

–  Oracle/SQL/MS Access databases 
–  ~5000 tables, 60000 fields,   
–  mix of TS-SQL, Visual Basic, MS Access 
–  code needs 24-hour uptime 

•  system was unmaintainable, at end 
 
 
Questions 
•  how can we understand the business logic? 
•  how can we refactor the database design for better maintenance?  
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Stakeholders 

Technical 
personnel 

Business 
experts 

Final 
stakeholders 

Reporting requests  
- business-level specifications 
- tight deadlines 

Business logic (BL) specifications 
- how to efficiently translate BL 
   Into technical details? 

New report implementations 
- how to efficiently communicate 
changes to business layer? 

New report implementations 
- how to efficiently validate new 
reports? 

3 

Source code 
(Access, SQL, Toad, Oracle, VB, …) 

Business logic 
(rules, conditions, limits, …) 

Business reports 
(the final facts & figures) 

2 

4 1 
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Problem Modeling 

More details on SolidAA: www.soursourceit.com 

Data and control dependencies 
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Problem Modeling 

More details on SolidAA: www.soursourceit.com 

Data and control dependencies 

•  one output to many input, one input to many output relations  
•  hard to find all relations purely statically – dependence on control flow   
  (execution paths)  
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Problem Dimension 

More details on SolidAA: www.soursourceit.com 

Input parameters  
•  35709 input fields 
•  5..10 processing steps per path 
•  assume input fan-out of 4 – very conservative  
•  total: 4*35709 = 142836 output-to-input field paths  
 
Manual effort needed for impact analysis  
•  10 mins/path needed – very conservative 
•  result: 23806 hours ~ 15 person years! 
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Solution – step 1 

More details on SolidAA: www.soursourceit.com 

SQL analysis 

SQL analysis 
•  extract all SQL code (TS-SQL, Oracle, MS Access scripts) 
•  perform a syntax analysis on SQL (parsing) 
•  find all read table names and fields (columns) 
   - use control flow analysis of SQL 
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Solution – step 2 

More details on SolidAA: www.soursourceit.com 

Access analysis 

MS Access analysis 
•  extract all MS Access form (report) definitions 
•  identify fields of interest 
•  find SQL or VB code that these fields call (if any) 

Access analysis 
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Solution – step 3 

More details on SolidAA: www.soursourceit.com 

VB analysis 
•  extract all VB code from the Access reports 
•  perform a full syntactic and control-flow analysis 
  -  find VB code that writes to report fields    easy 
  -  find how that code is called (call analysis)    relatively easy 
  -  trace back values of output field names to SQL field names  very complex! 
     using VB symbolic execution   

VB analysis 

VB analysis VB analysis 



www.cs.rug.nl/svcg 

Solution – putting it all together 

  

root 

root 

Access Analyzer (SolidAA) 
•  end-to-end dataflow analysis across entire reporting platform 
•  answers question: “Where does this (report) data come from?” 
•  fully handles any MS Access / SQL database 

Benefits 
•  reverse engineering cost: days 
•  learning cost: days 
•  solution cost: ~6 months 
•  client estimated savings: ~920 KEUR 

More details on SolidAA: www.soursourceit.com 
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Solution refinements 

Level of detail 
•  show dependencies at form and table level only (overview) 
•  expand to show dependencies at form-field and table-field level (detail) 
•  detect “parallel paths” of data processing (desirable w.r.t. architecture) 

More details on SolidAA: www.soursourceit.com 

Overview 

Detail 
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Solution refinements (cont.) 

Level of detail (cont.) 
•  show how the data is transformed from input to output 
  -  copy, SQL function call, references (e.g. table links), … 

More details on SolidAA: www.soursourceit.com 

Transformations 
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Solution refinements (cont.) 

Links to code (cont.) 
•  show which bits of code (SQL, VB, Access, …) are responsible for each data link 
•  useful for fine-grained detail and understanding of the business logic 

More details on SolidAA: www.soursourceit.com 



Application: Build Optimization 

1. Context 

•  major embedded software company (NASDAQ 100)  
•  industrial 17.5 MLOC code base of C code 
•  modified daily by >500 developers worldwide 

2. Problem 

•  high build time (>9 hours) 
•  modifying a header causes very long recompilations 
•  testing becomes very hard; perfective maintenance (refactoring) nearly impossible 

3. Questions 

•  why is the build time so long? 
•  what impact has a code change on the build time? 
•  how is a change impact spread over the entire code base? 
•  how to refactor the code to improve modularity and build time? 

A. Telea, L. Voinea, Visual Software Analytics for the Build Optimization of Large-Scale Software Systems, Comp. Statistics, 2010 
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CM/Synergy  
repository 

Extracted 
data 

TableVision tool 

INavigator tool 

IRefactor tool 

Build process analysis 
•  why is the build slow? 

Dependency analysis 
•  how does a code change 
  affect build time? 

Refactoring analysis 
•  how to rewrite code to 
  improve build time? 

Build cost 
model 

Three analyses – three tools in a unified toolset 

Build Optimization 
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Question 1: Why is the build slow? 

CPU time 

I/O time 
+ 
network 

build time 

CPU time 

* assume no other CPU-intensive processes besides compilation 

build is I/O bound!  

preventive actions 

corrective actions 

•  measure build time using UNIX tools time(x)	  

build time 

small large 

•  build time = CPU + I/O + network + paging + other processes 

small small * small * large large 



Question 1: First Steps 

time (sec) 

translation units 

Build time depends significantly on the translation unit!  

0 

A useful build cost model must consider the per-unit build cost 
and not only the number of translation units 

 
•  simple histogram of build time 

www.cs.rug.nl/svcg * assume no other CPU-intensive processes besides compilation 
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Build cost  “how much it costs to build a file” 
•  sources:         number of source LOC + (in)directly included headers 
•  binaries:         negligible (linking is cheap) 
•  headers:         zero (headers don’t get compiled) 

 
Build impact:       “how much it costs to rebuild the system when a file is modified” 
•  sources:  build cost of the source itself 
•  headers:  number of sources using that header 

  

*  both application and system headers are considered 

h 

h 

h c 

c 

lib 

lib 

BC = 3 
BI = 3 BI = 1 

BC = 2 
BI = 2 BI = 2 

BI = 2 BC = 0 

BC = 0 

Example 

Build Cost Model – First Attempt 
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12th highest-impact header (reality) 
classified as 21st (model)  

Build Cost Model – Validation 

model’s 
impact 

headers 

sorted on 
model’s impact 

time	  build 
measurements 

high-impact headers 

low-impact headers 

•  model is close to reality but not perfect 
•  deviations are important! 

More details on SolidBA: www.soursourceit.com 
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Build Cost Model – Refinement 
 
Build cost  “how much it costs to build a file” 
•  sources:         number of (in)directly included headers 
•  binaries:         negligible (linking is cheap) 
•  headers:         zero (headers don’t get compiled) 

 
Build impact:       “how much it costs to rebuild the system when a file is modified” 
•  sources:  the build cost of the source itself 
•  headers:  sum of build costs of all sources including header (in)directly 

h 

h 

h c 

c 

lib 

lib 

BC = 3 
BI = 3 BI = 3 

BC = 2 
BI = 2 BI = 5 

BI = 5 BC = 0 

BC = 0 

Example 

More details on SolidBA: www.soursourceit.com 



Build Cost Model 2 – Validation 

first  
model’s 
impact 

headers 

sorted on 
first model’s impact 

time	  build 
measurements 

high-impact headers 

low-impact headers 

refined  
model’s 
impact 

refined model classifies  
outlier correctly 

www.cs.rug.nl/svcg 

•  refined model delivers same header-order (in terms of impact) as actual measurements 

More details on SolidBA: www.soursourceit.com 
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Build Cost Model 2 – Validation 

header files 

actual time 
measurements 

Let’s look at the whole picture 

first model 

refined model 

•  refined model nicely matches reality, including subtle ‘outliers’ 
•  why is this so? (see next slide) 

More details on SolidBA: www.soursourceit.com 
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Build Cost Model 2 – Validation 

 
Analyze deeper: 
•  compilation cost dominated by I/O (preprocessing headers) 
•  I/O cost dominated by file opening/closing on this platform 
•  hence the justification of impact = # totally opened headers 

Conclusions 

To reduce build time, we should: 
•  either massively accelerate network          highly costly / complex 
•  reduce per-header build impact   header impact analysis 
•  reduce impact of change on build time  header refactoring 

More details on SolidBA: www.soursourceit.com 
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Question 2: System-wide impact analysis 

2 

3 

4 

5 6 

 
1.     Find subsystems are expensive to build 
2.     For a subsystem, find headers have high build impact 
3.     Zoom in to highest impact headers 
4,5.  For a high-impact header, see how its impact spreads over sources 
6.     For a header, see its cost breakdown over its include-set 

1 

More details on SolidBA: www.soursourceit.com 
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Method 
•  color system tree by cost (blue=low, red=high) 
•  select desired subsystem 
•  right panel shows build impact for each 
  header / source in that subsystem 
 

Findings 
•  most headers have a low build impact 
•  however, a few have a very high impact 
•  touching those incurs a high build cost! 
 
      because they are used in many sources 
      because they include many headers 
 

! 

Subsystem-level impact analysis 

More details on SolidBA: www.soursourceit.com 



Question 3: How to reduce the build cost? 
 
•  OK, we have a high-impact header h: how easy it to reduce that impact? 
•  visualize the build cost distribution of h over the sources which use it  
 
Case 1: easy refactoring 
•  build cost spread unevenly over the targets including selected header h	

•  to decrease cost due to h, we only need to change a few targets 

build impact of h is located mainly 
in one single place! 



Refactoring analysis 

selected high-impact 
header 

Case 1: difficult refactoring 
•  build cost spread evenly over the targets including selected header h	

•  to decrease cost due to h, we need to change almost all targets 

build impact of h 

www.cs.rug.nl/svcg 
More details on SolidBA: www.soursourceit.com 



•  not all headers change equally often (e.g. system headers) 
•  new metrics:  

•  build impact * change frequency 
•  impact distribution: impact (%) of a header contained in the 10% most expensive of its targets 

•  easy & quick to use 

sorted by  
impact*change 

flat, low distribution (~15%): impact is 
spread uniformly over all targets. Hence, we 
cannot improve by refactoring a few targets  

skewed distribution (50%): half of impact is 
concentrated in 10% most expensive targets. 
Hence, refactoring these is an interesting option 

Refactoring analysis - Refinement 



 
•  OK, we found a high-impact header; how to decide a refactoring plan? 
•  show dependencies header → clients using hierarchical DAG layout 

Example 1: MIXTmet.h, used by 38 sources, high impact 

Example 2: WS_support.h, used by 48 sources, high impact 

MIXTmet.h 

WS_support.h 

 
•  build impact due to direct header 
  inclusion 
•  hard to decrease via refactoring 

 
•  build impact channeled via one 
  intermediate header: 
  WS_sim1_support.h (*) 
•  simpler refactoring may be  
  possible 

* 

Refactoring support 



 
•  say we want to include a header: is this potentially expensive? 
•  show header’s own include graph colored by build impact 

Refactoring support (2) 

Example: TDMD_types.h, used by 30 sources 
•  not a high-impact header itself 
•  but it includes high-impact headers! 
•  hence using this header introduces potentially expensive changes 

TDMD_types.h 

cdefs.h 

pyconfig.h 

More details on SolidBA: www.soursourceit.com 



 
How much costlier becomes the system build if we add an #include? 
•  select a “source” header  – the one in which we want to #include 
•  select a “destination” header – the one to be #included 
•  show the build cost increase 

Example: What if we #include DNCHUI_chset.h in TDMD_types.h? 

source 

target 

build impact increases from 
9633 to 9783, i.e. 1.5% 

Visual Tool: INavigator 
Refactoring support (3) 



Refactoring support (4) 
 
•  previous methods OK for manual header-by-header refactoring only 

How to refactor a large system? 
 
•  system S = {fi}i, S = Headers U Sources 
•  header hi ∈ Headers = {sj}j , sj ∈ Symbols (function declarations, variables, types, macros, …) 
•  include relations 

inc : S → P(Headers), inc( f ) = {hi} ↔ f  includes hi 
•  symbol use relations 

use : Symbols → P(Headers), use(s) = {hi} ↔ s is used by hi	

•  in typical systems, not all symbols sj ∈ h  in a header are used together 

Automatic refactoring idea 
 
•  find high-impact header h (see last slides) 
•  split h into h1 , h2 ; h1U h2 = h by putting symbols used together in same hi 
•  recursively split h1 , h2	

•   replace inc(h) by inc(h1) and/or inc(h2) 

www.cs.rug.nl/svcg 
More details on SolidBA: www.soursourceit.com 



 
•  intuitively: put symbols often used together in same header 
•  include newly created headers instead of original ‘monolithic’ ones 
•  why is this good  

•  decrease build costs (by decreasing the included code size)  
•  decrease build impact (by decreasing the number of included headers) 

The IRefactor analysis tool 

•  suggests refactoring possibilities and shows gained build impact  

Refactoring support (4) 



header 

symbols 2 colors 

Refactoring cost 
 

(how many files must 
include both headers 
after refactoring) 

Build impact 
 

(how much we saved 
In build time) 

0 ≥5 

min max 

Best refactoring candidates: 
 
•  low refactoring cost 
•  high build impact parents 
•  low build impact children   

Build impact 

Refactoring cost 

Refactoring visualization 



header under analysis suggested decomposition levels 

Color: refactoring 
 cost 

 (how many additional 
headers) 

Color: refactoring 
 benefit 

(% build impact 
reduction) 

decomposition details: 
(how to split symbols in smaller 
headers and how to #include 
these headers) 

Refactoring visualization 

More details on SolidBA: www.soursourceit.com 



Example of bad candidate for header refactoring  

As we gain benefits, we also 
increase costs 

refactoring cost 
 

refactoring gain 
 

Refactoring visualization 



Collaborations & Customers 

OpenCV 

Laboratoire Bordelais de	

Recherche en Informatique	


The Industry… Research/Academia… …Open Source 



www.cs.rug.nl/svcg 

Conclusions – Software Visual Analytics 

Thank you for your interest! 
 

Alex Telea 
a.c.telea@rug.nl 

 

 
•  Provide insight in multidimensional correlations 

•  Program architecture, dependencies, metrics, development/testing effort, requirements, 
documentation, databases 

•  Evolution of all these aspects in time 
 

•  Added value 
•  Make the entire chain requirements..design..code visible and accountable 
•  Assess software quality 
•  Pinpoint hot-spots (where to invest effort) 
•  Make sense of all that ‘big data’ 


