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Data is everywhere
Social: every second, on average, around 6,000 tweets are 
tweeted on Twitter, which corresponds to over 350,000 
tweets sent per minute, 500 million tweets per day and 
around 200 billion tweets per year. 

Urban: NYC Taxi, Metro and Bike data, San Francisco 
open data, etc. 

Sensor: various types 

fitness (Garmin, Nike, Polar, Fitbit, GPS trackers, etc) 

health (Withings, phone apps, etc) 

Scientific: simulation, medicine, etc
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source: http://www.internetlivestats.com



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 4

Data



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 5

Data

Transformation



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 6

Data

Models

Transformation

Data 
Mining



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 7

Data

Models

Transformation

Data 
Mining

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 8

Data Knowledge

Models

Transformation

Data 
Mining

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 9

Data

Visualization

Knowledge

Models

Transformation
Mapping

Data 
Mining

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 10

Data

Visualization

Knowledge

Models

Transformation

Interaction

Mapping

Data 
Mining

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 11

Data

Visualization

Knowledge

Models

Transformation

Interaction

Mapping

Data 
Mining

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 12

Data

Visualization

Knowledge

Models

Transformation

Interaction

Mapping

Data 
Mining

Model 
Building

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 13

Data

Visualization

Knowledge

Models

Transformation

Interaction

Mapping

Data 
Mining

Model 
Visualization

Model 
Building

Parameter 
Refinement



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 14

Data

Visualization

Knowledge

Models

Transformation

Interaction

Mapping

Parameter 
Refinement

Data 
Mining

Feedback Loop

Model 
Visualization

Model 
Building



Visual Data Analysis: The role of Data Analysis 
Data is big, unstructured, and often complex.  
Finding patterns, associations, or relationships in data using 
visualization, mining and analytical tools 

João Comba 15

Data

Visualization

Knowledge

Models

Transformation

Interaction

Mapping

Data 
Mining

Feedback Loop

Model 
Visualization

Model 
Building

Thomas,	J.,	Cook,	
K.:	Illuminating	the	
Path:	Research	and	
Development	
Agenda	for	Visual	
Analytics.		
IEEE-Press	(2005)

Parameter 
Refinement



Visualization Reveals Data
show the data 
induce the viewer to think about the substance rather about 
methodology, graphic design … 
avoid distorting what the data have to say 
present many numbers in small space 
make large data sets coherent 
encourage the eye to compare different pieces of data 
reveal the data at several levels of detail, from broad view to the fine 
structure 
serve a reasonably clear purpose: description, exploration, tabulation 
or decoration 
be closely integrated with the statistical and verbal descriptions of a 
data set
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Edward	Tufte.	The	Visual	Display	of	Quantitative	Information.	1983	(p.	13)



Examples of Interesting Problems
Published Work 

1.Visualization of Running Races 

2.Environmental Phenological 
Analysis (Biology) 

3.Traffic Analysis in Urban 
Environments 

4.Visual Analysis of Bike Sharing 
Systems 

5.Real-Time Visual Exploration of 
Big Data 

6.Visual Exploration of Software 
Repositories
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Visualizing Running Races Through the Multivariate Time-
Series of Multiple Runners 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Visualizing Running Races Through the Multivariate Time-Series of Multiple Runners  
Guilherme Oliveira, João Comba, Rafael Torchelsen, Claudio Silva, Maristela Padilha 
Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI 2013). 
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GPS and Heart-Rate Monitors 
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João Comba 22

1
2
3
4
5
6
7
8
9
10

12
11



João Comba

Phenological Analysis Using Chronological Percentage Maps  
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PhenoVis – A Tool for Visual Phenological Analysis of Digital Camera Images Using 
Chronological Percentage Maps  
Guilherme Oliveira, Lucas Schnorr, Jurandy Almeida, Bruna Alberton, Leonor Patricia 
Morellato, Ricardo Torres,  João Comba 
Information Sciences 372 (2016) 181–195  
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Phenology
Study of periodic plant and animal life cycle events and 
how these are influenced by seasonal and inter-annual 
variations in climate
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DATA: Continuous, Long Term and Multi-ecosystem 
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Check for the criterion of the timing of defoliation 
by using NDVI in a deciduous broad-leaved forest

Criterion of
  defoliation: 

    No NDVI 
 values!

NDVI=
  0.7        0.6        0.5         0.4        0.3         0.2

[Nagai et al. Agric For Met 
2010]

Phenological Eyes Network (PEN) 
http://pen.agbi.tsukuba.ac.jp/index.html
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%r = r / (r+g+b)

%g = g / (r+g+b)

%b = b / (r+g+b)

Phenological phases
Average used to evaluate phenological variations in a year 
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Time: 1 year
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The problem with the average

João Comba
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day 281

2007 
day 288

2012 
day 293

2013 
day 291

%gcc = G / (R+G+B) = 0.3905 
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Percentage Maps
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Compute for each pixel 
a value (e.g. gcc) and 
generate a percentage 
distribution

Scale it 
proportionally to 
the percentage 
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Chronological Percentage Maps (CPMs)
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Stacks of percentage maps in chronological order 
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Figure 4: Percentage maps for 12 days: original data for the respective days (row 1 and
4), recoloring of pixels using gcc and a brown-green-blue-purple color mapping (rows 2 and
5), and recoloring using the hue index and hue mapping (rows 3 and 6). The percentage
maps for the gcc (left) and hue (right) indexes are shown in the last row.
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Chronological Percentage Maps (CPMs)
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Using Probabilistic Vector-Valued Functions to Explore Traffic 
Dynamics in Urban Environments 
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Using Probabilistic Vector-Valued Functions to Explore Traffic Dynamics in Urban 
Environments 
Jorge Poco, Harish Doraiswamy, Huy Vo, João Comba, Juliana Freire, Cláudio Silva  
Computer Graphics Forum, Volume 34 (2015), Number 3 
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Visual Analysis of Bike-Sharing Systems
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Visualizing the Dynamics of Bike-Sharing Systems 
Guilherme Oliveira, Jose L. Sotomayor, Rafael Torchelsen, João Comba 
Computers&Graphics, 2016 (available online) 
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Video
Bike-Sharing Systems
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Video
Bike-Sharing Systems
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Hashedcubes: Simple, Low Memory, Real-Time Visual 
Exploration of Big Data  
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Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data  
Cicero Pahins, Sean , Carlos Scheidegger, João Comba 
IEEE Transaction on Visualization 2016 (to appear), Proceedings of IEEE InfoVis 2016 

Hashedcubes: Simple, Low Memory, Real-Time Visual
Exploration of Big Data

Cı́cero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, João L. D. Comba

Overview of USA tweets between Nov 2011 and Jun 2012 NYC Green Taxis pick-up Brightkite in Europe Brightkite temporal series

Fig. 1. Hashedcubes is a technique that enables real-time exploratory visualization using a wide range of visual encodings, such
as heatmaps, time series plots, histograms and binned scatterplots. It supports brushing and linking across spatial, categorical and
temporal dimensions. The left image shows Twitter activity during Superbowl XLVI in 2012. The central image shows pick-up locations
of NYC green taxi rides from January 2014 to June 2015. On the right, the visualizations show different aspects of checkin volume
in Brightkite, a location-based social network. The images show weekly checkin patterns in Europe, and activity over time in four
different geographic locations; we highlight the release period of BrightKite’s iOS app (green rectangle) and the release of the 2.0
version (red rectangle). Hashedcubes balances memory usage and running time allowing interactively exploration of datasets that
previously required a prohibitory amount of space on recent data cube visualization proposals.

Abstract—The proliferation of statistics, application usage records, GPS and other devices, lead to large and complex volumes of
information. The analysis and visual exploration of such big data allows discovering patterns that would hard to find via traditional
data analysis. This process often requires filtering and aggregation. Traditional tools like relational databases can fail to perform
sufficiently fast for interactive exploration, while fast, specialized tools currently have intricate implementations. In this work, we
propose Hashedcubes, a data structure that is simple to implement, has low memory requirements, and enables real-time visual
exploration of large datasets. Notably, in some instances Hashedcubes requires two orders of magnitude less space than other data
cube visualization proposals, while maintaining low query latencies. We describe the algorithms to build and query Hashedcubes, and
how it can drive well-known interactive visualizations such as binned scatterplots, linked histograms and heatmaps. We report memory
usage, startup time and query latencies for a variety of synthetic and real-world datasets. Finally, we discuss the limitations of data
structure, potential spacetime tradeoffs, and future research directions.

Index Terms—Scalability, data cube, multidimensional data, interactive exploration.

1 INTRODUCTION

Data acquisition has never been so broad, diverse, and accessible.
Nowadays, almost every computer-based gadget offers a broad range
of options to collect multidimensional data. Social networking, gov-
ernment data, application records and many others generate immense
amounts of raw data. The exploration and analysis through aggregation
of these datasets is a valuable opportunity to researchers, who often
find tools such as histograms and heat maps best suited for the task.
Traditional tools such as relational databases, and business intelligence
software, have trouble supporting such visualizations in interactive, low-
latency scenarios. Current specialized solutions can take prohibitively
large amounts of memory as the number of dimensions increases. Thus,
research into specialized data structures that reduces query latency in
these scenarios remains necessary.

In this work, we introduce Hashedcubes, a novel data structure
to accelerate queries from interactive visualization applications over
large multidimensional, spatiotemporal datasets. Hashedcubes sup-

• Cı́cero A. L. Pahins and João L. D. Comba are with Instituto de Informática,
UFRGS. E-mail: {calpahins,comba}@inf.ufrgs.br.

• Sean A. Stephens and Carlos Scheidegger are with the University of
Arizona. E-mail: {seanastephens,cscheid}@email.arizona.edu.

ports spatial queries, such as counting events in a particular spatial
region; categorical queries over subsets of attribute values; and tempo-
ral queries over intervals of any granularity. Although we have observed
for a small number of queries latencies of around a second, on aver-
age queries are returned in under 30 milliseconds in single-threaded
execution. As a practical matter, Hashedcubes was designed to target
the amount of main memory of a modern desktop or laptop personal
computer (on the order of 16 to 32GB of main memory). In summary,
this paper contributes:

• a simple data structure for real-time exploratory visualization of
large multidimensional, spatiotemporal datasets, advancing the
state of the art especially with respect to memory usage,

• an experimental validation of a prototype implementation of
Hashedcubes, including a suite of experiments to assess query
time, memory usage, and build time of the data structure on
synthetic and real-world datasets, and

• an extended discussion of the trade-offs enabled by Hashedcubes,
including limitations and open research questions.

2 RELATED WORK

There is a vast literature that discusses ways to explore big data. For a
more comprehensive list of papers we refer the reader to the surveys

Table 2. Overall summary of the relevant information for building Hashedcubes.
dataset objects (N) leaf-size memory time pivots (P) schema

splom-101,2 1.0 B N/A 5 MB 38:32 m 26 K d1 (10), d2 (10), d3 (10), d4 (10), d5 (10)
splom-501,2 1.0 B N/A 349 MB 46:28 m 12.7 M d1 (50), d2 (50), d3 (50), d4 (50), d5 (50)
brightkite1 4.5 M 32 366 MB 7 s 6.7 M lat0, lon0, hour of day (24), day of week (7), time (week)
brightkite2 4.5 M 32 375 MB 10 s 6.8 M lat0, lon0, month of year (12), hour of day (24), day of month (31)
brightkite-alternative 4.5 M 32 468 MB 8 s 8.0 M lat0, lon0, time (week), hour of day (24), day of week (7)
gowalla1 6.4 M 32 743 MB 13 s 12.6 M lat0, lon0, hour of day (24), day of week (7), time (week)
flights 121.2 M 32 1.5 GB 06:55 m 61.0 M lat0, lon0, lat1, lon1, departure delay (9), carrier (29), time (4 hours)
flights1 121.2 M 32 457 MB 03:56 m 19.5 M lat0, lon0, departure delay (9), carrier (29), time (4 hours)
flights2 50.3 M N/A 18 MB 12 s 396 K day of week (7), year (21), carrier (29), arr delay (147), dep delay (147)
twitter-small1 210.6 M 64 4.9 GB 10:53 m 137 M lat0, lon0, device (5), time (4 hours)
twitter1 210.6 M 64 9.4 GB 12:04 m 203 M lat0, lon0, app (4), device (5), language (15), time (4 hours)
green-taxis-small 24.5 M 64 788 MB 01:35 m 27 M lat0, lon0, lat1, lon1, time (hour)
green taxis 24.5 M 64 3.0 GB 01:49 m 52 M lat0, lon0, lat1, lon1, day of week (7), hour of day (24), time (week)
yellow-taxis-small 224.1 M 64 7.0 GB 18:14 m 243 M lat0, lon0, lat1, lon1, time (hour)
yellow-taxis 224.1 M 64 12.6 GB 20:38 m 473 M lat0, lon0, lat1, lon1, day of week (7), hour of day (24), time (week)

1Schema used by Nanocubes. 2Schema used by imMens.

Fig. 7. Visual exploration of the twitter dataset during Super Bowl 2012. In addition to enabling real-time exploration using a wide range of visual
encodings, with support to brushing & linking in any dimension, Hashedcubes allows the access to the text of tweets from an external SQL server.

4 IMPLEMENTATION

A client-server architecture is used for the current implementation of
Hashedcubes. The server reads the data from a file (e.g. CSV tabular
files), builds the data structure and enters an event loop that waits
for queries from the client. The server is implemented in C++. Since
Hashedcubes uses linear-based memory structures such as sorted arrays,
it preallocates chunks of memory to avoid the overhead of repeated
memory allocations and deallocations, which are common operations
in tree-based data structures. Besides the sorting of the index arrays,
Hashedcubes does not require any data precomputation prior to building
its data structure. Construction time is dominated by the sorting phases,
as discussed in Section 6.2.

The server is easily parallelizable since the data structure does not
change after building. It exposes the querying API via HTTP through a
web service implementation that handles concurrent requests in multi-
ple threads. In the front-end, the prototype client is written in Javascript,
SVG, and HTML5; notable libraries include D3 [8] and Leaflet [1], as
shown in Figure 7.

5 DATASETS AND SCHEMAS

We evaluated Hashedcubes using a collection of publicly-available
datasets. We collected seven datasets that range from 4.7 million to 1
billion records, including some used in other data cube visualization
proposals, as well as the schema they used. In addition, we introduced
schema variations and datasets that up to now required a prohibitively
large amount of space, specifically those with multiple spatial dimen-
sions. Table 2 summarizes all the schema variations and datasets.

5.1 Location-Based Social Networks

Brightkite and Gowalla are two location-based social networks that
let users share their locations by check-ins. Both datasets are publicly
available at the Stanford Large Network Dataset Collection [31]. They
consist of time and location information of user check-ins, collected by
Cho et al. [12]. Brightkite check-ins range from April 2008 to October
2010, and Gowalla from February 2009 to October 2010. We built
Hashedcubes using two different schemas for these datasets. The first
one replicates the schema used by Nanocubes and encodes latitude
and longitude as spatial information, hour of the day and day of the
week as categorical variables, and check-in time as temporal variables.
The second one replicates the imMens schema and encodes latitude
and longitude as spatial information, hour of the day, and day of the
month as categorical information. In Figure 1, we use Hashedcubes
to visualize Brightkite check-ins in Europe and to highlight Brightkite
releases of its iOS app and its 2.0 platform version.

5.2 Airline On-Time Performance

The U.S. Department of Transportation tracks the on-time performance
of domestic flights by U.S. air carriers. This dataset was made publicly
available in [4, 44], and covers over 121 million flights in a 20 year
period, from 1987 to 2008. Records include over 29 fields. We used
three different schemas for this dataset. The first one encodes the origin
airport as spatial information, departure delay and carrier delay as
categorical information, and departure delay as temporal information.
This is the same schema used in Nanocubes. The second schema is the
one used by imMens, and encodes only categorical information. The
day of the week, year, carrier, arrival delay and departure delay are
the categorical information. Note that the arrival delay and departure
delay are encoded as 15 minutes interval bins, and were designed to be
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Hashedcubes	Query
/region/0/0/0/0/1/1	

Spatial	Constraint

/where/
day_of_week=0|
1|3|4

/where/hour_of_day=0|1|
2|3|4|5|6|7|8|9|10|11|
12|13|14|15|16|17|18|
19|20|21|22|23



Hashedcubes	Query

• /brightkite	
• Dataset	

• /region	
• Query	type	

• /region/0/0/0/0/1/1	
• Spatial	Constraint	

• /where/day_of_week=0|1|3|4	
• Categorical	Constraint	

• /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11|12|
13|14|15|16|17|18|19|20|21|22|23	
• Categorical	Constraint



Heatmap
▪ /region/0/0/0/0/1/1	

• Spatial	Constraint	
▪ /where/day_of_week=0|1|3|4	

• Categorical	Constraint	
▪ /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|

10|11|12|13|14|15|16|17|18|19|20|21|22|
23	
• Categorical	Constraint	

▪ No	constraint



Histogram

▪ /region/0/0/0/0/1/1	
• Spatial	Constraint	

▪ /where/day_of_week=0|1|3|4	
• Categorical	Constraint	

▪ /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11|
12|13|14|15|16|17|18|19|20|21|22|23	
• Categorical	Constraint	

▪ No	constraint



Histogram

▪ /region/0/0/0/0/1/1	
• Spatial	Constraint	

▪ /where/day_of_week=0|1|3|4	
• Categorical	Constraint	

▪ /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11|
12|13|14|15|16|17|18|19|20|21|22|23	
• Categorical	Constraint	

▪ No	constraint



Line	Chart

▪ /region/0/0/0/0/1/1	
• Spatial	Constraint	

▪ /where/day_of_week=0|1|3|4	
• Categorical	Constraint	

▪ /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23	
• Categorical	Constraint	

▪ No	constraint



Pivot Concept and Hierarchy
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Pivot Concept and Hierarchy
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c) Evolution
    detail (time)
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Figure 4: Evolution visualization. (a) Overview showing changes of all classes in all revisions. (b) Evolution of selected classes color-coded
by top-ranked metrics. (c) Evolution of all classes around a selected revision.

a) revision 1 b) revision 2 c) revision 3 d) revision 4

e) revision 1 f ) revision 100

...evolution from revision 1 to revision 100...

note the similarity of the 
top-ranked metrics in
revision 1 and 100
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outlier

class
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Figure 5: Metric Evolution Maps for four revisions of the JUnit project. See Sec. 4.1.

the color legends, blue can map the metrics count of coupled classes
or average number of lines of code, so we decided to refine the anal-
ysis. By showing the windowed trails (see Sec. 3.3), we found that
the blue fragments appear around revision 24. Brushing the metric
values, we confirmed that the most similar metric values in revision
24 are, indeed, count of coupled classes and average number of lines
of code.

5. Discussion

We next discuss the main aspects of our method.

Advantages: Our method is easy to use; runs in real-time for

datasets up to 10K entities on a modern PC with a recent NVidia
card for a C++ CPU single-threaded implementation; and is generic,
i.e., can be used on any set of entities having n metrics. MEMs ex-
plain projections of the data entities in terms of groups of entities
that are most similar from the perspective of any of the underlying
metrics. Users do not have to select which these metrics are – they
are determined automatically by the visualization. The found groups
are explained both implicitly, i.e., as a colored image consisting of
several same-color zones; or explicitly, i.e., as disjoint clusters.

MEMs extend naturally to time-dependent data by using a dy-
namic projection technique (dt-SNE). This allows explaining how

c� 2016 The Author(s)
Eurographics Proceedings c� 2016 The Eurographics Association.
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Conclusions
Visual Data analysis has several interesting problems 

Data Mining Algorithms 

Visualization Techniques 

High-Performance Computing 

Spatial Data Structures and Geometric Algorithms 

Machine Learning Algorithms 

Mathematical and Statistical Analysis 

Software implementation (web, prototypes)
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Questions ?
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e-mail:	joao.comba@gmail.com	

web:	http://www.inf.ufrgs.br/~comba


