

Visual Data Analysis of Unstructured and Big Data João Comba

Outline

- Basic Visual Data Analysis Concepts
- 12 Examples of Interesting Problems
 - High-level problem description
 - Data
 - Important questions to answer
 - Video illustrating solution

Data is everywhere

- Social: every second, on average, around 6,000 tweets are tweeted on Twitter, which corresponds to over 350,000 tweets sent per minute, 500 million tweets per day and around 200 billion tweets per year.
- Urban: NYC Taxi, Metro and Bike data, San Francisco open data, etc.
- Sensor: various types
 - fitness (Garmin, Nike, Polar, Fitbit, GPS trackers, etc)
 - health (Withings, phone apps, etc)
 - Scientific: simulation, medicine, etc

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

Data

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

UFRG

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

UFRGS

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

INF

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

Data is big, unstructured, and often complex.

INF

Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

14

- Data is big, unstructured, and often complex.
- Finding patterns, associations, or relationships in data using visualization, mining and analytical tools

João Comba

Inf

Visualization Reveals Data

- show the data
- induce the viewer to think about the substance rather about methodology, graphic design ...
- avoid distorting what the data have to say
- present many numbers in small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from broad view to the fine structure
- serve a reasonably clear purpose: description, exploration, tabulation or decoration
- be closely integrated with the statistical and verbal descriptions of a data set

Edward Tufte. The Visual Display of Quantitative Information. 1983 (p. 13)

Examples of Interesting Problems

Published Work

1. Visualization of Running Races

- 2.Environmental Phenological Analysis (Biology)
- 3.Traffic Analysis in Urban Environments
- 4.Visual Analysis of Bike Sharing Systems
- 5.Real-Time Visual Exploration of Big Data
- 6.Visual Exploration of Software Repositories

Published Work

Visualizing Running Races Through the Multivariate Time-Series of Multiple Runners

Visualizing Running Races Through the Multivariate Time-Series of Multiple Runners Guilherme Oliveira, João Comba, Rafael Torchelsen, Claudio Silva, Maristela Padilha Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI 2013).

8:03 min/km

145 bpm Avy. 134 bpm

0,0 -

25:00

50:00

Heart Rate

200

150

100

50

GPS and Heart-Rate Monitors

Ac	tivi	ties							
			Keyword:	(Search			
				Show Filters					
Quic	Edit	Delute Co	mpare Activities	Favorites	Assign PR			+ Manual Activ	ity Import
a:		Activity Name	Activity Type	Course	Start -	Time	Distance	Elevation Gain	Avg Speed(Av
0	*	Saire-Martin-le-Vn	Running	-	Mon, 26 Sep 2016 17:49	1;44;19	12,09	105	
	*	Running	Running	4	Tue, 20 Sep 2016 17:10	23.50	0,04	-	
1	*	Porto Alegre Running	Running	-	Mon, 12 Sep 2016 18:02	1:11:51	6,58	24	
6	*	Ports Alegre Running	Running	-	Sun, 11 Sep 2016 10:55	1:20:15	5,05	103	
0	*	Porto Alegre Hunning	Running	2	Fri, 9 Sep 2016 17:39	1:24:49	8,04	35	
B.	*	Porto Alegre Running	Bunning	4	Mon, 5 Sep 2016 18:13	51:35	5,84	-	
	*	Porto Alegne Running	Punning	÷	Mon, 5 Sep 2016 17:38	21:25	2,92	11	
0	*	Porto Alegne Running	Running	-	Fri, 2 Sep 2016 17:35	1:35:16	12,01	54	
0	*	Porto Alegre Running	Running	-	Mon, 29 Aug 2016 18:16	1:10:28	10,03	46	
	$\frac{1}{2}$	Porto Alegre Running	Running	-	Wed, 24 Aug 2016 18:06	1:31:15	9,85	56	
	*	Porto Alegre Running	Running	-	Mon, 22 Aug 2016 18:08	1:29:16	11,13	49	
0	*	Porto Alegre Running	Running	-	Wed, 17 Aug 2016 18:08	1:22:38	8,72	46	
	*	Porto Alegre Running	Running	-	Mon, 15 Aug 2016 18:10	1:13:13	8,53	44	
	*	Porto Alegre Running	Punning	-	Fri, 12 Aug 2016 16:13	1:07:34	5,92	20	
0	*	Porto Alegre Running	Running	-	Wed, 10 Aug 2018 17:43	1:35:48	12,01	54	
	*	Porto Alegre Running	Running	-	Mon, 8 Aug 2016 19:33	7:30	0,82	4	
0	*	Porto Alegre Running	Running		Mon, 8 Aug 2016 18:11	1:20:18	8,52	27	
0	*	Porto Alegni Running	Running	-	Wed, 3 Aug 2016 18:15	1:09:03	7,39	35	
0	*	Via Veha Running	Running	÷	Thu, 28 Jul 2016 17:33	1:24:35	10,01	143	
	4	Via Veha Running	Running	-	Wed, 27 Jul 2016 17:23	49.22	6,01	32	

8 9 10

10 10 10

6

Results 1 - 20 of 421

Export to CSV

1

GPS and Heart-Rate Monitors

Phenological Analysis Using Chronological Percentage Maps

	Information Sciences 172 (2016) 381-189	
	Contents lass available at ScienceOnect	COLUMN .
12.0	information sciences	- second second
ELSEVIER	journal homepage: www.alsevier.com/locata/ins	
3a		
PhenoVis - A to	ool for visual phenological analysis of digital	
	using chronological percentage maps	Coestian
	as Mello Schnorr ⁴ , Jurandy Almeida ^{5,d} , Bruna Alberton ⁴ , forellato ⁴ , Ricardo da S. Torres ⁴ , João L.D. Comba ^{4,4}	
	Internatio *, Ricardo da S. Torres *, Joan LLN, Corrida **	
* Institute of Science and Dechnolo * Dept. of Botany, São Paulo State	gg, Robend University of Silo Paulo – UNIPOSE Silo Juni dua Compos, SP-1520P-014 Breat University – UNISP, Kie Clans, SP-15006-800 Breat y of Complexe – UNICHAR Complexe, SP-15082-852 Breat	
ARTICLE INFO		
Article katory:		
Received 18 January 2018 Revised 3 August 2018		
Accepted 15 August 2016 Available online 16 August 2016		
Keywords		
Photology Revisite service		
Vegetation index Visual analytics		
Similarity ranking		
1. Introduction		
Phenology studies the	periodic phenomena of plants and their relationship to environmental conditi	ana (39). This analy
	the impact on vegetation and ecosystem processes [20,32,39,42]. Examples of iting in plants and the breeding season of birds and frogs, among others. The	
	ming in plants and the preeding season of birds and mogs, among others, ins mas has proved to be a promising approach to the study of plant phenolog	
scenario, cameras capture	daily pictures from a specific viewpoint at a specific time of the day. By co	mparing a sequence
ages that have a high nur	possible to identify changes that are associated with phenological events [3] mber of pixels with dominant shades of green are often associated with area	
leaves.	has all increase for front WE increase one court the ideal and all increase of front	destant of lance
becomes too complex to b	ber of images (at least 365 images per year), the visual analysis of large o be performed interactively. Instead, a single chromatic value is computed to in	present the averag
	ng several chromatic coefficients described in the literature, the green chrom	
	mology community to understand periodic leafing patterns extracted from dig ated in the period of interest (usually one year) is displayed as a 2D line plot	
* Corresponding author. Fax. *	AN OLD TRUE. THUS	
E-mail addreses: Ingensivov	A province (RA, Letter), echnoretiferitatysche (LM, Schnotz), jurandy-atmediathundersphe (J. Alm unterphe (LPC, Moreilato), recentific antisampler (R.65, Torret), controlifici attypcie, juan zwebeilt	nda), brouthercooligne priet.com (JLD: Cembe
have been deal and the best of the second		

PhenoVis – A Tool for Visual Phenological Analysis of Digital Camera Images Using Chronological Percentage Maps

Guilherme Oliveira, Lucas Schnorr, Jurandy Almeida, Bruna Alberton, Leonor Patricia Morellato, Ricardo Torres, João Comba Information Sciences 372 (2016) 181–195

Phenology

Study of periodic plant and animal life cycle events and how these are influenced by seasonal and inter-annual variations in climate

DATA: Continuous, Long Term and Multi-ecosystem

UFRGS UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Phenological phases

Average used to evaluate phenological variations in a year

 $hacksymbol{harder} hacksymbol{harder} \% b = b / (r+g+b)$

Time: 1 year

João Comba

Percentage Maps

Chronological Percentage Maps (CPMs)

Stacks of percentage maps in chronological order

Chronological Percentage Maps (CPMs)

Stacks of percentage maps in chronological order

Using Probabilistic Vector-Valued Functions to Explore Traffic Dynamics in Urban Environments

Using Probabilistic Vector-Valued Functions to Explore Traffic Dynamics in Urban Environments

Jorge Poco, Harish Doraiswamy, Huy Vo, João Comba, Juliana Freire, Cláudio Silva Computer Graphics Forum, Volume 34 (2015), Number 3

Visual Analysis of Bike-Sharing Systems

Visualizing the Dynamics of Bike-Sharing Systems Guilherme Oliveira, Jose L. Sotomayor, Rafael Torchelsen, João Comba Computers&Graphics, 2016 (available online)

Bike-Sharing Systems

Bike-Sharing Systems

Full

Empty

Bike-Sharing Systems

Full

Empty

Rebalancing

Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data

Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data Cicero Pahins, Sean, Carlos Scheidegger, João Comba IEEE Transaction on Visualization 2016 (to appear), Proceedings of IEEE InfoVis 2016

Hashedcubes Query

Hashedcubes Query

- /brightkite
 - Dataset
- /region
 - Query type
- /region/0/0/0/1/1
 - Spatial Constraint
- /where/day_of_week=0|1|3|4
 - Categorical Constraint
- /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11|12| 13|14|15|16|17|18|19|20|21|22|23
 - Categorical Constraint

Heatmap

No constraint

- /region/0/0/0/1/1
 - Spatial Constraint
- /where/day_of_week=0|1|3|4
 - Categorical Constraint
- /where/hour_of_day=0|1|2|3|4|5|6|7|8|9| 10|11|12|13|14|15|16|17|18|19|20|21|22| 23
 - Categorical Constraint

Histogram

/region/0/0/0/1/1

- Spatial Constraint
- /where/day_of_week=0|1|3|4
 - Categorical Constraint
- /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11| 12|13|14|15|16|17|18|19|20|21|22|23
 - Categorical Constraint

Histogram

No constraint

- /region/0/0/0/1/1
 - Spatial Constraint
- /where/day_of_week=0|1|3|4
 - Categorical Constraint
- /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11| 12|13|14|15|16|17|18|19|20|21|22|23
 - Categorical Constraint

Line Chart

No constraint

- /region/0/0/0/1/1
 - Spatial Constraint
- /where/day_of_week=0|1|3|4
 - Categorical Constraint
- /where/hour_of_day=0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23
 - Categorical Constraint

Pivot Concept and Hierarchy 0 1 2 3 4 5 6 7 8 3 3 2 3 2 2 2 2 1 3 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1

UNIVERSIDADE FEDERAL DO RÍO GRANDE DO SUL

UNIVERSIDADE FEDERAL **Pivot Concept and Hierarchy** З -8' -5 З З \mathcal{D} [2-2][3-4] 15-51 16-71 8-10-[7-8] [3-3] [4-5] 1-2

INSTITUTO

João Comba

UNIVERSIDADE FEDERAL DO RÍO GRANDE DO SUL

23

Metric Evolution Maps: Multidimensional Attribute-driven **Exploration of Software Repositories**

ad E. F. Vernier³ and P. E. Rauber² and J. L. D. Comba³ and R. Minghim¹ and A. C. 1

Metric Evolution Maps: Multidimensional Attribute-driven

Metric Evolution Maps: Multidimensional Attribute-driven Exploration of Software Repositories Renato Silva, Eduardo Vernier, P. Rauber, João Comba, Rosane Minghim, Alexandru Telea

VMV 2016

Conclusions

- Visual Data analysis has several interesting problems
 - Data Mining Algorithms
 - Visualization Techniques
 - High-Performance Computing
 - Spatial Data Structures and Geometric Algorithms
 - Machine Learning Algorithms
 - Mathematical and Statistical Analysis
 - Software implementation (web, prototypes)

Questions ?

e-mail: joao.comba@gmail.com web: http://www.inf.ufrgs.br/~comba

Short Bio

I am an associate professor in the Computer Graphics Group at the "Instituto de Informática" of the Federal University at Rio Grande do Sul (UERGS), Brazil. I received a Ph.D in Computer Science from Stanford University under the supervision of Leonidas J. Guibas. Before that, I received a masters degree in Computer Science from the Federal University of Rio de Janeiro (UERD), Brazil, working with Ronaldo Marinho Persiano. My bachelor's degree in Computer Science was given by the Federal University of Rio Grande do Sul , Brazil.

Publications by type	Publications by topic	Publications by year			
Journals	Visualization	2016	2015		
Conferences	Geometric Algorithms/Data Structures	2014	2013	2012	2011
Books	High Performance and Parallel Computing	2010	2009	2008	2007
Book Chapters	Craphics Hardware and Games	2006	2005	2004	2003
Patents		2002	2001	2000	1999
Technical Reports	Supervised Ph.D. and M.Sc.	1996	1994	1993	1991
Conferences/TRs (Portuguese)	Ph.D. Advisor Co-advisor	1990	1989	1988	1987
Ph.d. Thesis	M.Sc. Advisor Co-Advisor	All Years			
M.Sc. and B.Sc. Dissertations (Portuguese)					

The copyright for most of the above papers has been transferred to a publisher. The ACM and IEEE grant permission to make digital or hard copies of part or all of the works they publish for personal or classroom use. See any copyright notices on the individual papers for details.

CV and other statistics	Funding	International Collaborations	Professional Activities
Curriculum Lattes (CNPg-Brazil)	CNPg	USA: CNPg-NSE	Conference Chair
Google Scholar		Germany: CAPES-DAAD	Program Committee
DBLP		Netherlands: CAPES-BRANETEC	Organizing Committee
			Co-Chair of CISE VizCorner