

AIM
Softw
their
are i
and
chan
land
evol
spee
iden
topic
appr
proje
calle
resea
with
more
gene
both
ratio

1
C
E

1.1 B
Soft
[IEE

The
corre
or to

A si
stres
Software Maintenance and Evolution: a Roadmap

K. H. Bennett V.T Rajlich
Research Institute for Software Evolution Department of Computer Science

University of Durham Wayne State University
UK Detroit, MI 48202

DH1 3LE USA
+44 191 3742632 +1 313 577 5423

keith.bennett@durham.ac.uk rajlich@cs.wayne.edu

S AND OBJECTIVES
are maintenance and evolution are characterised by

 huge cost and slow speed of implementation. Yet they
nevitable activities – almost all software that is useful
successful stimulates user-generated requests for

ge and improvements. Our aim is to describe a
scape for research in software maintenance and
ution over the next ten years, in order to improve the
d and accuracy of change while reducing costs, by
tifying key problems, promising solution strategies and
s of importance. The aims are met, by taking two
oaches. Firstly current trends and practices are
cted forward using a new model of software evolution
d the staged model. Both strategic problems and
rch to solve particular tactical problems are described

in this framework. Secondly, a longer term, and much
 radical vision of software evolution is presented. Both
ral principles and specific research topics are provided,
 within an overall strategy of engineering research and
nale.

STATE OF THE ART AND INDUSTRIAL
ONTEXT IN MAINTENANCE AND
VOLUTION
asic definitions

ware maintenance is defined in IEEE Standard 1219
E93] as:

modification of a software product after delivery to
ct faults, to improve performance or other attributes,
 adapt the product to a modified environment.

milar definition is given by ISO/IEC [ISO95], again
sing the post-delivery nature:

The software product undergoes modification to code and
associated documentation due to a problem or the need for
improvement. The objective is to modify the existing
software product while preserving its integrity.

The term software evolution lacks a standard definition, but
some researchers and practitioners use it as a preferable
substitute for maintenance. In this chapter, we shall use
maintenance to refer to general post-delivery activities, and
evolution to refer to a particular phase in the staged model
described in Section 2.

Pioneering work (that is still relevant to basic
understanding) was undertaken by Lehman, who carried
out empirical experiments on OS360 using a sequence of
releases [LEHM80]. This has set a good precedent for the
field: very small programs do not have maintenance
problems, and research results must scale up to industrial
applications for them to be useful [McDER99], so that
research in maintenance needs to be undertaken in
collaboration with industry. Some of the practical
consequences of approaches that work in the realities of an
industrial context are reported by Sneed [SNEE95].
Research in software maintenance has been undertaken in
seven broad areas:

System dynamics, to model the software as it changes over
time, in order better to understand the underlying
mechanisms.

Maintenance processes; defining, measuring, improving,
risk analysis, quality assurance.

Studies of software change; impact analysis, change
propagation.

Products, linking software attributes to maintainability
(from architecture to identifier naming conventions); higher
levels of software abstraction.

Program comprehension methods and tools, to link
attributes to better cognitive understanding.

High level management, business and people issues;
business models such as outsourcing and applications
management.

Taken From:
"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000
Order number is 592000-1, ISBN 1-58113-253-0.
ACM E-Store: http://store.acm.org/acmstore

Legacy and reverse engineering, to recover a software asset
that has become very hard (expensive) to maintain.

Validation, ensuring that the software changes work as
required, and the unchanged parts have not become less
dependable.

In this chapter, two approaches to developing a ‘road-map’
of research and of developments in the field are used. The
first approach projects and extrapolates from current trends
and problems. The map is facilitated by a novel staged
model of software development that is based on empirical
observation. This helps an analysis of maintenance and
evolution for the modern environment for software
development that stresses components, the internet and
distributed systems.

The second approach represents the outcome of a process
that has involved experts from a range of disciplines
brainstorming the problem, over a period of years.
Thinking ‘outside the box’ was positively welcomed. The
intention has been that a radical improvement in software
maintenance will need a radical new way of thinking about
it. Both the process and its outcome are described in detail
in [BRER99].

Other very different approaches may of course increase in
importance. One such approach is the ‘open source’
movement, initiated in the UNIX world. Maintenance as a
collaborative, cultural activity has shown major benefits,
certainly in terms of software reliability (e.g. LINUX) and
performance.

Revalidation and testing are required after changes are
made to software. These activities can be very time
consuming and are an integral part of maintenance; they are
considered further elsewhere in this book.

The term maintenance is also currently being applied to the
problem of keeping web pages up to date and consistent.
There will surely be a range of such problems, to which
generic research solutions can be applied in addition to
domain specific issues.

1.2 Importance of maintenance
A very widely cited survey study by Lientz and Swanson in
the late 1970s [LIEN80], and repeated by others in different
domains, exposed the very high fraction of life-cycle costs
that were being expended on maintenance. Lientz and
Swanson categorised maintenance activities into four
classes:

• Adaptive – changes in the software environment

• Perfective – new user requirements

• Corrective – fixing errors

• Preventive – prevent problems in the future.

Of these, the survey showed that around 75% of the

maintenance effort was on the first two types, and error
correction consumed about 21%. Many subsequent studies
suggest a similar magnitude of the problem. These studies
show that the incorporation of new user requirements is the
core problem for software evolution and maintenance.

If changes can be anticipated at design time, they can be
built in by some form of parameterisation. The fundamental
problem, supported by 40 years of hard experience, is that
many changes actually required are those that the original
designers cannot even conceive of. So software
maintenance is important because (i) it consumes a large
part of the overall lifecycle costs (ii) the inability to change
software quickly and reliably means that business
opportunities are lost. These are enduring problems, so that
the profile of maintenance research is likely to increase
over the next ten years.

1.3 What is software maintenance?
Despite the large expenditure, little is known about the
empirical nature of software maintenance, in terms of its
effect on the artefact, on the process and on the software
engineers and users. The first vista in the research
landscape is therefore:

• To gain more empirical information about the nature of
software maintenance, in terms of its effect on the
software itself, on processes, on organisations and
people. What actually happens from release to release?
For example, in Cusumano and Selby it was reported
that a feature set during each iteration may change by
30% or more, as a direct result of the team learning
process during the iteration [CUSU97]. Lehner
[LEHN91] described yearly variations in the frequency
of the changes of a long lived system. Is it possible to
describe the changes in terms of a set of basic
operations? More empirical work is crucial to inform
progress on better maintenance processes.

• To express such understanding in terms of predictive
models which can be validated through experiment.
The models may inform both the technical and
business facets of maintenance (e.g. risk models). For
example, Lehman is using feedback control models in
the FEAST project [LEHM98].

• To explore and formalise the relationships between
technology and business models (for example, the
implications of outsourcing and applications
management, or the technical and business views of
legacy software management).

• To understand how such models may be exploited in
an industrial context (for example, in cost estimation).
This work should lead to better metrics.

• To establish accepted evaluation procedures for
assessing new developments and processes, in terms of
the implications for maintenance, especially in an

industrial context on large scale applications.

The final point can be generalised: often, new technologies
are proposed and introduced without consideration of what
happens when the software has to be changed. If such
innovations are to be exploited successfully, the full
lifecycle needs to be addressed, not just the initial
development. For example, object oriented technology was
considered to be ‘the solution to software maintenance’;
empirical evidence is now showing that OO is creating its
own new maintenance problems, and has to be used with
care (e.g. by keeping inheritance under control) to ensure
that maintenance is not even more difficult than for
traditional systems. Recent technologies such as agents,
components, graphical user interfaces, and modern ideas of
logical, constraint, real-time and concurrent programming
and so on need to be explored from a maintenance
perspective.

Better understanding via such models should help
researchers devise a much better definition of
maintainability; currently this is a very poorly defined term
of very limited use in industry.

A major challenge for the research community is to
develop a good theoretical understanding and underpinning
for maintenance and evolution, which scales to industrial
applications. Most computer science research has been of
benefit to the initial development of software. Type theory
and configuration management have in different ways
made major contributions to maintenance. Many others
claim to do so, but reliable empirical evidence is lacking.

1.4 Structure of the chapter
Section 2 of the chapter explains the staged model of the
software lifecycle. Section 3 explores software change in
more detail. Section 4 deals with the problems of legacy
systems. Section 5 deals with emergent organisations and
the challenges they represent. Section 6 contains the
conclusions.

2 RESEARCH FRAMEWORK: A STAGED
MODEL FOR SOFTWARE LIFECYCLE

2.1 Introduction
The conventional analysis (of Lientz and Swanson) is no
longer useful for modern software development. It does not
help with reasoning about component-based systems,
distributed systems etc. and does not help with planning
software evolution. In [BENN99], it is argued, based on
empirical observation, that the activities undertaken during
software evolution vary greatly. This is in contrast to the
standard definitions offered in section 1, where
maintenance was seen as a single post-delivery activity. A
novel staged model is therefore now introduced,
comprising five distinct stages. The model is summarised
below and is seen as an essential framework in which to
identify research needs and areas.

2.2 Model outline
The staged model of software lifecycle was introduced in
[BENN99] and is summarized in Figure 1. It represents the
software lifecycle as a sequence of stages, with initial
development being the first stage. Its key contribution is to
separate the ‘maintenance’ phase into an evolution stage
followed by a servicing and phase out stages.

During the initial development, the first version of the
software system is developed. That first version may be
lacking some features, but it already possesses the
architecture that will persist thought the rest of the life of
the program. In one documented instance, we studied a
program that underwent substantial changes during its 20
years of existence [HOLT94], but it still possesses the
architecture of the original first version.

Another important outcome of the initial development is
the knowledge that the programming team acquires: the
knowledge of the application domain, user requirements,
role of the application in the business process, solutions and
algorithms, data formats, strengths and weaknesses of the
program architecture, operating environment, etc. This
knowledge is a crucial prerequisite for the subsequent
phase of evolution.

Software evolution takes place only when the initial
development was successful. The goal is to adapt the
application to the ever-changing user requirements and
operating environment. The evolution stage also corrects
the faults in the application and responds to both developer
and user learning, where more accurate requirements are
based on the past experience with the application. The
inevitability of evolution is documented in [LEHM85]. In
business terms, the software is being evolved because it is
successful in the marketplace; revenue streams are buoyant,
user demand is strong, the development atmosphere is
vibrant and positive, and the organization is supportive.
Return on investment is excellent.

Both software architecture and software team knowledge
make evolution possible. They allow the team to make
substantial changes in the software without damaging the
architectural integrity. Once one or the other aspect
disappears, the program is no longer evolvable and enters
the stage of servicing (also called software maturity
[LEHN91]). During the servicing stage, only small tactical
changes (patches, code changes and wrappers) are possible.

For the business, the software is likely to be no longer a
core product, and the cost-benefit of changes are much
more marginal.

There is a positive feedback between the loss of software
architecture coherence, and the loss of the software
knowledge. Less coherent architecture requires more
extensive knowledge in order to evolve it. However if the
knowledge necessary for evolution is lost, the changes in
the software will lead to a faster deterioration of the

architecture. Very often on software projects, the loss of
knowledge is triggered by loss of key personnel, and the
project slips into the servicing stage. We call this process
code decay.

The reversal from servicing stage back to evolution stage is
a worthy research goal, but at this point we are unaware of
any real-life project that have successfully accomplished
that. It is not simply a technical problem; the knowledge of
the software team must also be addressed. For all practical
reasons, the transition from evolution to servicing is
irreversible.

As mentioned above, during the servicing stage only minor
tactical program changes can be done. They usually take a
form of patches and wrappers, and they further deteriorate
the architecture.

The final stages are phase-out and close-down. During
phase-out, no more servicing is being undertaken, but the
system still may be in production. The users must work
around known deficiencies. During close-down the
software use is disconnected and the users are directed
towards a replacement.

An amplification of the staged model is the versioned
staged model of Figure 2 [BENN99]. In it, the software
team produces versions of the software during an extended

phase of evolution, but the versions are no longer evolved,
only serviced. All substantial changes in the functionality
are implemented in the future versions. If a version
becomes outdated and the users need a new functionality,
they have to replace their version with a new one. The so-
called "shrink-wrap software" sold by software companies
to large user communities often follows this versioned
staged model.

We conclude from a research perspective:

• Each stage has very different technical solutions,
processes, staff needs and management activities. We
now have the opportunity to explore and research the
best solution for each stage. It is very clear (for
example) that solutions for evolution and for servicing
are radically different.

• A key issue is the nature of the stage changes and
boundaries, and better understanding of these and their
characteristics and information flow across them will
enable managers to plan better.

• Figure 2. The versioned staged model Better
understanding of how to keep a system within a
particular stage for as long as possible is of practical
importance.

Figure 1. The simple staged model

Initial development

Evolution

first running version
evolution changes

Servicing

loss of evolvability

servicing patches

Close-down

Phase-out

servicing discontinued

Switch-off

2.3 Initial development
The key research challenge is to find ways of developing
software such that the software can be more easily and
reliably changed in subsequent phases (of course, in a
typical project, the architecture changes through initial
development as engineering alternatives are explored and
rejected; but well before the end of initial development the
architecture should be rigorously defined). This grand
research challenge is often expressed as ‘the cost of making
the change is proportional to the size of the change, not to
the size of the overall software system’. It necessarily
includes consequential re-verifying and re-validating the
software as well as implementing the changes. As already
noted, if changes can be predicted, they can be anticipated
in the design. The hard problem is coping with
unanticipated changes.

The two key outcomes of initial development are (i) the
architecture and (ii) the team’s knowledge. An area of
considerable current research activity is architecture
definition languages (ADLs), to make explicit in a formal
way the architecture. Much less research has been done on
addressing the skills of software architects themselves. It is
known that they require skills different to those of
programmers, but it is also clear that a good architect is
very highly talented, much knowledge is tacit, and attempts
to automate this via knowledge based systems should
proceed with caution. However, good practice in
architecture can be formalized, and work on patterns (i.e.
representations of standard ways of doing things) looks
very promising. This should be of particular help when the
architecture is not innovative, but is very similar to
previous cases.

Figure 2. The versioned staged model

Close-down Version 1

Initial development

Close-down Version 2

Phase-out Version 2

Phase-out Version 1

Servicing Version 1

Evolution Version 1

first running version

evolution changes

Evolution Version . . .

Evolution Version 2

evolution of new version

evolution of new version

evolution changes

servicing patches

Servicing Version 2

servicing patches

The staged model suggests that the central aim of flexible
software is to assist the next (evolution) stage, not
subsequent stages. So ‘design for change’ is predominantly
aimed at strategic evolution, not code level servicing; the
research considerations are at the same level of abstraction
in evolution and in initial development.

It is generally considered that software architecture
research will play a major part in achieving this.
Formalisation of architectures will provide explicit
representations. However, it is very interesting to note that
no current definition of software architecture includes the
time dimension (compare, for example, with the ideas in
architecture of buildings in [BRAN94]). At the other end of
the scale, benefit will be obtained from using technology
which is ‘neutral’, in the sense that the technology can be
changed easily without consequential affects on the
software design. For example, interpreted intermediate
languages (as for Java) allow platform independence; we
may expect this trend to continue.

2.4 Evolution stage
The aim is to implement (and revalidate) possibly major
changes to the system without being able a priori to predict
how user requirements will evolve. In terms of project
management, initial development and evolution are clearly
closely linked, and the key issue is to keep the senior
architects and designers in the team. If they are lost, then
the software very quickly and irreversibly moves to the
servicing stage. Outsourcing at this stage is very difficult,
unless the team also moves. The project is core to the
organisation in terms of business strategy and profit. It
seems that understanding how to cope with major changes
in user requirements and yet minimise the integrity of the
system architecture is a task at which humans are expert
and which is difficult to automate. There is a vision of
being able to add extra capabilities – both functional and
non-functional – to a software system, that do not corrupt
system invariants but add to or enhance them. This also
leads to the feature interaction problem, which is a fruitful
area for research. Equally, there is no great merit in
proposing system understanding tools and methods; such
understanding is present in the existing team.

Three research topics are identified:

1. Architectures which will allow considerable
unanticipated change in the software without
compromising system integrity and invariants.

2. Architectures which themselves can evolve in
controlled ways.

3. Managing the knowledge and expertise of the software
team.

A highly promising area of research is therefore to find
ways to raise the level of abstraction in which evolution is
expressed, reasoned about and implemented. Even where

very high level abstractions were used during design,
maintenance today is still performed in reality using source
code. Research topics therefore include:

• raising the abstraction level of the language used.

• separating declarative issues like business objects from
control issues.

• representing domain concepts in domain analysis and
domain specific languages.

• partitioning architectures into independently evolving
subsystems

Business research on the evolution stage is also needed. For
example, product evolution must start during the success of
the old product. This is not a technical imperative but an
economic one; the management and business case has been
made by researchers such as Handy [HAND94], and is not
restricted to the software industry (Handy provides a
number of non-software examples). This is the fundamental
reason why software undergoes releases and new versions.
Deeper understanding of the business imperatives for
modern software based industry is needed. The
sophistication and understanding of modern product,
marketing and service approaches used in many other
industries is largely absent in the software industry.

2.5 Servicing stage
The aim is to implement and test tactical changes to the
software, undertaking this at minimum cost and within the
capabilities of the staff available. The move to servicing
involves a big change to project management:

• Only minor corrections, enhancements and
preventative work should be undertaken

• Senior designers and architects do not need (and are
unlikely) to be available

• The staff do not require the same level of domain
engineering or software engineering expertise

• Tools and processes are very different

• A typical engineer will be assigned only part of the
software to support, and thus will have partial
knowledge of the system.

• The process is (or should be) now stable, well
understood and mature. Its iterative nature means it is
well suited to process improvement, and measurement.

• Accurate cost prediction is needed.

The processes of servicing are well understood. The key
problems become:

• Mapping the change as expressed by the user (usually
in terms of behaviour) to the software.

• Understanding enough of the software to make the

change accurately.

• Making the change without introducing unexpected
additional effects.

• Revalidating the change.

Program comprehension is the central research problem
and is amenable to much better tool support; once the
change and its impact have been understood, it is relatively
simple to make it. Tool research is relevant to:

• Impact analysis and ripple effect management.

• Display of program structure (call graph, dominance
tree, class structure etc).

• Regression testing.

• Better programming language design.

• Concept identification, location and representation.

• Configuration management and version control for
large distributed systems.

In a large distributed system, the determination of which
source modules or components form part of the system is
an interesting problem; the components may be shared with
other systems. Mendonca [MEND99] has raised the issue
of the comprehension of the ‘run time architecture’ in a
multi-thread concurrent system with dynamically created
processes. In a large distributed system, it is not sensible to
try to maintain the program in a conventional way i.e. halt
it, edit the source, and re-execute it. It will be vital to be
able to replace components on the fly, as stopping a large
distributed system with many threads is not an option. A
promising area for research is the visualization of software
using non-software metaphors to aid cognitive
understanding [KNIG99].

Research on automated tool support to improve the code
(and test suites) in order to reduce the costs of servicing is
needed. Fruitful work is anticipated in:

• Migration from obsolete to modern programming
languages.

• Migration from obsolete to modern data bases.

• Restructuring code and data to remove unnecessary
complexity (particularly complexity which has been
introduced by heavy servicing).

• Metrics and evaluation methods to assess empirical
issues.

• Documentation tools to manage comments (the Java
documentation tools are a simple example).

• Delivery of service packs for shrink wrapped and
consumer software.

• Upgrading software without the need to halt it.

• Programming language health checkers for susceptible
constructs.

• Name and Identifier management.

 Associated economic models will help to justify cost-
benefit arguments for purchasing, and using such tools.

A large problem exists with software that is constructed for
a mass market. It has already been noted that a company
such as Microsoft cannot sensibly manage issuing small
increments to ‘shrink-wrapped’ software; there is no means
of ensuring that all users receive or take advantage of the
update (which Microsoft call ‘service packs’). Yet issuing a
complete new version is unsatisfactory in this market.
Similar problems are expected with consumer goods such
as software-upgradeable mobile telephones. A sequence of
upgrades (not all purchased by the consumer) may have to
be compatible and inter-work.

A further problem is posed by servicing components.
Software components are not immune from defects, and it
is already the case that new versions, which may or may
not be compatible with previous versions have to be
introduced, with the possibility of introducing new defects.
Industry has to spend resource on ‘component harnesses’
which explore the actual behaviour of components (and the
source code may not be available). Research is needed on
the best way to manage this.

It is possible to outsource the servicing. An advantage of
the staged model is that it clarifies the relationship between
software user and the vendor/service company. Research is
needed in service level agreements that have clear, ‘no-
surprise’ effects for both the customer and service
company.

2.6 Phase-out and close down stages
The aim is to manage the software towards the end of its
life. This would not seem a promising area for useful
research, but there are two important business issues:

• If the software is outsourced, and the contract is
nearing its end, how should the asset value of the
software be managed?

• Can any of the software (and software team) be re-
used?

There is a further very large migration problem that is
starting to surface with application management systems. It
appears extremely difficult to establish an ‘exit strategy’
i.e. once an organisation commits to a software-based
system of this type, changing to another is proving
extremely expensive, technically difficult, and time
consuming.

3 SOFTWARE CHANGE
Software change is the basic operation of both software
evolution and software servicing. The two stages are

separated by the difficulty of the change, allowing
substantial changes during the evolution and only limited
changes during the servicing; nevertheless the repeated
change is the basic building block from which both
evolution and servicing derive. The larger issues of
evolvable architectures, code decay, etc. profit from the
more detailed study of the properties of the individual
change. The processes and methods that are now described
are all aspects which will benefit from further research that
in turn will lead to very substantial industrial benefit.

The change is a process that either introduces new
requirements into an existing system, or modifies the
system if the requirements were not correctly implemented,
or moves the system into a new operating environment. The
change mini-cycle [YAU78] consists of the following
phases:

• Request for change

• Planning phase

• Program comprehension

• Change impact analysis

• Change implementation

• Restructuring for change

• Change propagation

• Verification and validation

• Re-documentation

A more precise definition of the mini-cycle process is still a
subject of research.

A request for change often originates from the users of the
system, and may have a form of a ‘bug report’ or a request
for additional functionality. It is usually expressed in terms
of the application domain concepts, for example: "Add a
new feature to the student registration system so that
students with hold on their record are not allowed to
register".

Program comprehension is a prerequisite of the change and
it has been a subject of extensive research. It has been
reported that this phase consumes more than half of all
maintenance resources [FJE82]. The program
comprehension phase may be more important in the
servicing stage because the knowledge of the team is more
tactical and localised, and hence there is a greater need to
invest in program comprehension before the change is
implemented. A substantial part of program comprehension
is location of the application domain concepts in the code,
for example to find where in the code "course registration"
is implemented.

Change impact analysis [BOH96] is the activity by which
the programmers assess the extent of the change, i.e. the

components that will be impacted by the change. Change
impact analysis indicates how costly the change is going to
be and whether it is to be undertaken at all.

After the preliminary phases establish feasibility of a
change, the change is implemented. The change
implementation may consist of several steps, each visiting
one specific software component. If the visited component
is modified, it may no longer fit with the other components
because it may no longer properly interact with them. In
that case secondary changes must be made in neighbouring
components, which may trigger additional changes, etc.
This process is called change propagation
[YAU78,RAJ00]. Although each successful change starts
and ends with consistent software, during the change
propagation the software is often inconsistent.

If the current architecture does not support contemplated
change, because the concepts of the application domain
relevant to the change are delocalized in the code, the
software should be restructured first. For example, if the
concept "course registration" is widely delocalized in
different components, than the change will be difficult
because it will involve visits to all those components. The
solution is to restructure first and to localize the concept in
one location, and then to change it. The process employed
is called behaviour preserving transformation. It does not
change the behaviour of the program, but changes the
architecture. In the case of difficult changes, an advisable
strategy is to divide the change into two steps: firstly to
transform the architecture so that the change will be
localized; and then to make the change itself [FAN99]. This
division of change into two steps makes the change easier
than it would otherwise be.

The change mini-cycle ends with the update of the program
documentation. However it is possible to do more at this
point than just documentation update. If the documentation
of the program is missing or incomplete, the end of the
mini-cycle is the time to record the comprehension
acquired during the change. Since program comprehension
consumes more than 50% of resources of software
maintenance and evolution, it is a very valuable
commodity. Yet in current practice, that value is thrown
away when the programmer completes the change and turns
his/her attention to new things. In order to avoid that loss,
incremental and opportunistic redocumentation effort is
called for. After a time, substantial documentation can be
accumulated [RAJ99].

The phases of the change mini-cycle can be supported by
specialized software tools. These tools are based on
program analysis [BOH96], which extracts important and
relevant facts from the existing program, like call graph,
data flows, etc. The extracted information is usually stored
in a database and then used in the tools. The analysis can be
in specific instances difficult because an accurate answer
may be unsolvable and has to be approximated by

heuristics. An example of such a difficult problem is
pointer aliasing that may be needed in dataflow analysis
and other contexts. The algorithms in that case are subject
to research and the issues are accuracy and efficiency of the
solution.

4 SOFTWARE LEGACY AND MIGRATION
Legacy software has been defined pragmatically as
‘software which is vital to our organization, but we don’t
know what to do with it’ [BENN95]. Some years ago, this
was one of the major software problems, but it has become
less prominent recently. This is possibly because many
organizations have been obliged to replace old software to
ensure Y2K (millennium) compliance. However, it is safe
to predict that the problem will soon appear again, in a
much more severe form. Previously, legacy systems
comprised mainly monolithic software, albeit in
independent subsystems. Current software, based around
distributed components from multiple vendors with
‘middleware’ support, and possibly within an enterprise
framework is likely to be far more difficult to address. A
much better understanding of the legacy problem has been
acquired over the past few years (see, for example the
SEBPC programme of research [SEBP99]), and much of
this is likely to applicable to the next set of legacy
problems. One conclusion is that legacy software is not so
much a technological problem as an organisational and
management problem: solutions need to be addressed at a
higher level of abstraction than the software.

It is seductive to think that current technology
developments, such as components, middleware, enterprise
computing and so on will provide the ultimate answer to all
problems, and once software applications are expressed in
this form, there will be no more legacy software.
Experience acquired over the past 40 years shows this is
extremely naïve. The ‘end of history’ scenario has proved
to be entirely false on a number of occasions, and not just
in software engineering (at the end of the nineteenth
century, it was assumed that Physics had been completed,
and only a few loose ends remained to be tidied up!). It is
safe to predict that in 20 years, software engineering will
change in ways which we cannot imagine now, and we
shall have to work out how to cope with what now is the
latest technology, but will become tomorrow’s legacy. In
other words, the software legacy problem is enduring.

Much effort has been expended over the past fifteen years
in technology solutions to legacy systems. Up to now we
have avoided mentioning the terms reverse engineering, re-
engineering etc. These topics have led to much interesting
research, almost none of which has been exploited
industrially in significant ways. This is clear from the lack
of empirical and practice papers in the literature, and the
absence of a significant tools and service vendor market. It
is time to explore this in more detail.

The terminology lacks crisp definitions, and there is

confusion and overlap between the terms available (for
example, processes, behaviours and states are confused). In
the section on servicing, we carefully avoided introducing
new terminology, and concentrated on the need for better
methods for program comprehension, supported by code
improvement to help. Furthermore, the techniques are often
used to refer only to executable legacy code. For many
organizations, the data is the strategic asset, rather than the
code. Solutions to legacy software may be expensive, but
are achievable. But coping with organizational data may be
of much higher priority.

Whatever the inadequacies of the terminology, the aims of
reverse engineering would seem to be reasonable: to
recapture high level design and architectural information
about the software, so that it can be re-implemented, or at
least maintained more easily. The evidence is that the
techniques can help program comprehension, but have not
been successful at ‘re-engineering’ systems (for example,
extracting high level design and re-implementing that). The
existing legacy system may now be the only source of
information about the organisation’s business rules.
Research should make these tasks easier. But there are
several flaws to this argument:

1. It is assumed that if only we used modern technology
in place of the existing legacy, maintenance would be
much cheaper/easier. It has been argued earlier that the
maintenance implications for many new technologies
are not understood. Sneed [SNEE95] has found that
companies will not spend resource on reverse
engineering to new technology on the basis that
maintenance costs are smaller.

2. It may seem obvious to designers that having high
level design/architectural knowledge with traceability
through to high and low level design helps
maintenance, but there is little empirical evidence that
this helps typical maintenance staff who have
responsibility for only part of the system. To them,
tactical knowledge of (for example) impact and ripple
may be much more important (see Section 3).
Pragmatically, if several representations of software
exist (e.g. documentation, design, source code), it is
only the source code that is maintained, and the other
representations become inconsistent and are no longer
trusted.

3. It is not clear how much of the design is now relevant;
many business rules may have been superseded. So the
outcome may be of little value.

4. Reverse engineering technology (above the code
transformation level) is not fully automatable, and
often requires large amounts of time from highly
skilled software engineers and domain experts.

5. For many components, the source codes may not be
available, and determining their behaviour may be very

hard (i.e. expensive).

This may be summarized as: re-engineering is a high risk,
high cost, labour-intensive activity with business benefits
that are not clear. The staged model offers a clear
explanation: the move from initial development to
evolution is straightforward because the team knowledge is
retained by the expert staff. The move from evolution to
servicing is irreversible, because the architecture has
degraded, but especially the corresponding human skills
have been irredeemably lost. Recovering technology alone
is insufficient; and most research has ignored addressing
the staff expertise.

It is not surprising that the preferred current solution is
wrapping legacy software (the behavioural comprehension
may be ‘encapsulated’ in the form of an object interface).
Our analysis puts such software (especially large,
monolithic software) firmly within the servicing stage – the
gap between its capabilities and business needs has become
too great. This in turn provides a simple definition of
legacy software – software which is in the servicing stage.

This suggests that a new research landscape is urgently
needed in the broad field titled ‘reverse engineering’ to
address current problems of current concern, and the
problems that will surely arise for the next generation of
component-based legacy systems. A more promising
research line of attack is based on a two-pronged approach:

1. To explore multidisciplinary solutions in terms of both
a technical and a business/organisational solution
[BENN00], in which the many stakeholders in the
process have a contribution.

2. To generalize the problem to one of migration from the
current (legacy) state of affairs to the desired position.
This certainly includes data and objects, not just code.

One of the difficulties is that we do not know now what the
future software systems will look like. This means that
exploring migration solutions, when the target is not clear,
is difficult. It is to be expected that the problem is raised
from addressing code (where much existing research is
concentrated) to addressing components in distributed
systems. Input from industry to forming the landscape is
likely to be important. Research solutions which can be
taken up quickly will be required – solutions which take ten
years will be obsolete.

5 EMERGENT ORGANIZATIONS: EVOLUTION
FOR THE NEW MILLENNIUM

The research landscape that has been drawn is mainly a
projection of current trends. It has envisaged software
development remaining largely as it is now, even though
the technology may change substantially. So a system is
developed, released to the market place, is evolved though
a series of releases typically months apart, and then drops
into servicing when it is no longer a strategic product.

This will probably be valid for the tightly constrained
traditional software mentioned below. However, it is clear
that time-to-market for software has become the top
priority for many business applications. For example, a
finance house may create a new financial product; it must
be implemented and launched within 24 hours; and then
has a life of only two more days. Release intervals of years
or months need instead to be days or weeks. The aim of this
section is to propose a far more radical and far reaching
agenda for research, which will place software evolution
centre-stage. As noted in the introduction, this section is
based on the results of a process which deliberately set out
to produce long term views of the future of software. These
were certainly not restricted to technical or engineering
issues. The process [BRER99] was as follows:

• A group of senior software engineering academics and
industrialists met regularly to explore and frame
visions of the future of software in terms of a ten year
horizon

• A multidisciplinary ‘scenario planning’ workshop was
held, attended by a range of senior user discipline
experts as well as software engineers. The disciplines
included (for example) civil engineering, law,
psychology, business and medicine. The software
engineering vision was presented, but then the
discipline experts considerably amplified and extended
this from a user-oriented perspective.

In [BRER99], the ten year view of software is presented,
based on the above process; this steps back from a detailed
technology focus and incorporates the views of experts
across a wide range of disciplines. It also presents a process
for thinking about both shorter-term research (in this
chapter, section 2 and 3), and long term research (section
4). The research developed four scenarios for software; the
scenarios are grouped under four headings:

• how software and society will interact

• how software will be used

• how software will behave

• how software will be developed

This work led directly to the vision presented below.

One of the main technological conclusions reached was that
the ‘level of abstraction’ of software engineering will
continue to rise. Ten years ago, this used to be source code.
Now it is components, glue and middleware. For many
users, technology is not the main problem, and it is likely to
become a progressively smaller problem as standard
solutions are bought in from technology vendors. Instead,
the focus of research will change to the interface of the
software with business. Current software is completely
dominated by a technology-focused viewpoint. Although
technology vendors provide much baseline technology,

people have not even begun to use it effectively. This may
partly be due to the awkwardness of the technology in just
making things happen and partly because it has an IT-focus
model of operation rather than user-oriented models. Over
the next ten years, a radical shift to different, user-oriented
view of software is inevitable. Much of the foundation of
computing is now in place, and we need to explore the
empowering nature of modern computing and how this can
best be realised.

Software engineering and evolution research and practice
are still largely influenced by an era when the boundaries of
a problem domain were well-defined and subject to
relatively little change. Software production models
predominate and have been extremely successful where the
application system is tightly defined (e.g. real-time
systems, embedded systems, core database managers, etc.).
Complexity in these systems is usually in algorithms and
real-time control. Thus through careful process design and
attention to these bounded areas of complexity, software
changes can be regarded as relatively straightforward, even
though they may require deep domain-specific knowledge.
Evolution, through discrete system releases, occurs at
relatively widely spaced intervals, typically many months,
representing discontinuity between versions. A good
example is the space shuttle on-board flight system. In
strategic terms, research is aimed at producing better
(cheaper, more dependable, scaleable) solutions to well
understood processes. Many of these activities have
reached maturity, such that standards are now being
defined [ISO95, IEEE93].

A long-standing problem with software is the supply-
industry dominated view of "software as a product" in
which software components are engineered into system
solutions. Whilst this approach works well for systems
with well-defined boundaries of concern, such as embedded
systems, it breaks down for applications where system
boundaries are not fixed and are subject to constant urgent
change. These applications are typically found in emergent
organisations- "organisations in a state of continual process
change, never arriving, always in transition"- such as the
new e-businesses or traditional companies who continually
need to reinvent themselves to maintain competitive
advantage. For emergent organisations, software is often
difficult to change at the required rate and has high costs of
ownership (such as extra unwanted facilities, steep learning
curve, frequent upgrades).

In future, a user-demand led view of software will
predominate which will result in software being provided
as a service. Already some suppliers are making software
available on central servers on a pay-per-use basis, but this
is only a change to the delivery mechanism. More
fundamental will be a change in the way the software itself
is constructed. In future, rather than software components
being developed and 'bound' together to form a single, rigid

solution, systems will be developed as a 'federation' of
services which are only bound together at the point of
execution. This will enable alternative software
components to be substituted between each use of a system,
allowing much finer-grained flexibility.

An analogy is making an international telephone call. The
caller does own the means of production, but simply pays
for the use of a range of third party facilities. Furthermore,
when a call is made to the same number over a period of
time, the telecommunications operator will route the call in
different ways on each occasion in order to optimise cost,
network traffic and performance. The caller gets the same
service, i.e. is connected to the dialled number, but the
provision of the service may change on each call
[SERV99].

There is clearly a shift in the software engineering
discipline. With the advent of the PC, IT has moved from
an exciting ‘new’ technology to one which is all pervasive,
‘a PC on every desk’. The grand research challenges are
also now much larger and more complex.

The central research problem to be tackled is the inability
to change software easily and quickly, and the consequent
cost of ownership. This problem constrains business
enterprise and is the predominant cause of user
dissatisfaction with IT. The problem arises because
software is product-oriented, irrespective of whether it is
purchased, leased or outsourced. Beyond relatively simple
configurability, at the point of delivery software is
monolithic, which brings many undesirable features such as
unwanted functionality, upgrades and difficulty in
responding to rapid business change. The Y2K problem is
a recent, but by no means final example.

Fundamentally, many organisations now buy in standard
technology solutions from suppliers, and technology
research is not a central business issue. The ‘level of
concern’ has risen considerably, to the interaction between
IT and the business. This necessarily includes many non-
technological aspects such as organisational theory,
psychology, legal implications, socio-technical aspects etc.
Software evolution is set to become much more
interdisciplinary, and much more concerned with end-user
domains in business.

It may be that so called ‘emergent models’ based on
complexity theory may offer an explanation for the
phenomenon of software evolution. In these models,
relatively simple and small sets of rules can generate highly
complex behaviours. There is plenty of scope for highly
speculative research in this area. Research is already in
progress based on the concepts of self-modifying systems,
self-testing systems and highly adaptive architectures.

6 CONCLUSIONS
We started by expressing the view that much more
empirical knowledge about software maintenance and

evolution is needed, including process, organization and
human aspects. A novel model of the complete software
life-cycle, called the staged model, has been presented.
This has been a good vehicle for describing the research
landscape in the field. During initial development, the main
need is to ensure that subsequent evolution can be achieved
easily. This is as much an organizational issue as a
technological problem, since much of the expertise to
design good architecture is a property of human ability and
flair, as well as understanding and representing the
architectures themselves, even when the application is not
really innovative. In other words, the foundations are laid
for a successful evolution phase. The service stage tends to
operate at a lower level of abstraction, and there is much
scope for improvement to program comprehension and
program improvement technologies, especially for
component-based distributed systems.

We have identified the area of reverse engineering as one
which has not been widely exploited industrially (except in
the narrow interpretation of program comprehension), and
it now needs a new landscape for research. The field needs
to take a broader perspective, of migration, in particular to
anticipate the next phase of legacy problems, which are
expected to be much greater than those experienced so far.
Migration must have a destination, and there is much scope
for research to address this.

Finally, we have summarized a long-term radical view of
software evolution, based on a service model not a product
model. Such a radical view is designed to meet the
expected needs of emergent organizations, who are
predominantly the type found in e-business and for whom
rapid, urgent change is a fact of life. This is motivated by
the recognition that currently software has a very strong
technology focus for users, and has to become far more
responsive to user needs and requirements.

Several major themes have thus emerged. Software
evolution needs to be addressed as a business issue as well
as a technology issue, and therefore is fundamentally
interdisciplinary. To make progress we need to understand
what evolution is as well as how to undertake it.
Strategically, progress in software architectures is crucial,
so that we can extend and adapt functional and non-
functional behaviour without destroying the integrity of the
architecture in order to respond to unexpected new user
requirements.

The ability to change and evolve software easily, quickly
and reliably is a ‘grand challenge’ within software
engineering. Change is intrinsic to software; it is one of the
benefits, and it is naïve to expect that evolution will not be
needed in the future. Incremental improvements are likely
to bring general modest industrial benefit in a number of
areas. However, improvements of orders of magnitude are
going to need radically different ways of thinking about the
problem. Too much focus at present is on the technology,

not on the end-user. Solutions are going to be essential to
meet the needs of businesses where change is constant and
urgent. So we can expect software evolution is be
positioned at the centre of software engineering.

ACKNOWLEDGEMENTS
K H Bennett would like to thank the EPSRC and
Leverhulme Trust for financial support, particularly
through the Systems Engineering for Business Process
Change programme. Thanks are due to many colleagues,
especially Magnus Ramage and Paul Layzell (who
collaborated on parts of section 4), as well as Malcolm
Munro, David Budgen, Pearl Brereton, Linda Macaulay,
David Griffiths and Peter Henderson. Many ideas for the
long term scenario were formed in the British Telecom
funded DICE project.

V T Rajlich would like to acknowledge the support from
Ford Motor Co. and also NSF research grant # 9803876.
These research issues were discussed with Norman Wilde,
Franz Lehner, and many others.

REFERENCES
BENN95 Bennett K. H. Legacy Systems: Coping with
success. IEEE Software vol. 12, no. 1, pp. 19 – 23, Jan.
1995.

BENN99 Bennett, K.H., Rajlich, V.T., A new perspective
on software evolution: the staged model, submitted for
publication to IEEE.

BENN00 Ramage M., Brooke C., Bennett K. H. and Munro
M. Combining organisational and technical change in
finding solutions to legacy systems. In P. Henderson (ed.),
Systems Engineering for Business Process Change,
London: Springer-Verlag, 2000, forthcoming.

BRAN94 Brand S. How Buildings learn. Phoenix Ltd.
ISBN 0 75380 0500, 1994

BRER99 Brereton O. P., Budgen D., Bennett K. H., Munro
M., Layzell P. J., Macauley L. A., Griffiths D. & Stannett
C. The future of software: defining the research agenda.
Comm. ACM. Vol. 42, no. 12, Dec. 1999. pp. 78 - 84

CUSU97 Cusumano M. A. & Selby R. W. Microsoft
Secrets HarperCollins, ISBN: 0006387780, 1997.

HAND94 Handy C. . The empty raincoat. Arrow Books,
ISBN 0099301253, 1994.

HOLT94 Holt N. The architecture of Open VME. ICL
publication ref. 55480001, from ICL, Cavendish Rd.,
Stevenage, Herts, UK SG1 2DY, 1994

IEEE93 IEEE Std. 1219: Standard for Software
Maintenance. Los Alamitos CA., USA. IEEE Computer
Society Press, 1993.

ISO95 Int. Standards Organisation. ISO12207 Information
technology – Software life cycle processes. Geneva,
Switzerland, 1995

KNIG99 Knight C., Munro M. Comprehension with[in]
Virtual Environment Visualisations. Proceedings of the
IEEE 7th International Workshop on Program
Comprehension, Pittsburgh, PA, May 5-7, pp. 4-11, 1999,

LEHM80 Lehman M. M. On understanding Laws,
evolution and conversation in the large program lifecycle.
Journal of Software & Systems, vol. 1, pp. 213 – 221,
1980.

LEHM85 Lehman M. M. Program evolution. Academic
Press, London. 1985.

LEHM98 Lehman MM and Ramil JF, Feedback, Evolution
And Software Technology - Some Results from the FEAST
Project, Keynote Lecture, Proc. 11th Int. Conf. on Software
Engineering and its Application, Vol. 1, Paris, 8 -10, pp. 1
– 12, Dec. 1998.

LEHN91 Lehner F. Software lifecycle management based
on a phase distinction method. Microprocessing and
Microprogramming, vol. 32 (North Holland), pp. 603 –
608, 1991.

LIEN80 Lientz B. P., Swanson E. B. Software Maintenance
Management. Addison Wesley, Reading, MA, 1980.

MEND99 Mendonca N. Software Architecture Recovery
for Distributed Systems. Ph. D. thesis, Imperial College,
London, 1999.

McDER99 McDermid J. and Bennett K. H. Software
Engineering research in the UK: a critical appraisal. IEE
Proceedings – Software, vol. 146, no. 4, pp. 179 – 186,
August 1999.

SEBP99. Systems Engineering for Business Process
Change. UK EPSRC (Dec. 1999). URL at
http://www.staff.ecs.soton.ac.uk/~ph/sebpc. 1999.

SERV99 Further information available at
http://www.service-oriented.com 1999.

BOH96 Bohner S.A., Arnold R.S., eds., Software Change
Impact Analysis, IEEE Computer Soc. Press, Los Alamitos,
CA, 1996

FAN99 Fanta R., Rajlich V., Removing Clones from the
Code, J. of Software Maintenance, vol. 11, pp. 223 - 243,
1999.

FJE82 Fjeldstad, R.K., Hamlen W.T., Application Program
Maintenance Study: Report to Our Respondents, in G.
Parikh, N. Zvegintzov, (eds.), Tutorial on Software
Maintenance, IEEE Computer Society Press, Los Alamitos,
CA, pp. 13 – 30, 1982.

RAJ99 Rajlich V., Varadajan S., Using the Web for
Software Annotations, Int. Journal of Software Engineering
and Knowledge Engineering vol. 9, pp. 55 – 72, 1999.

RAJ00 Rajlich V., Modeling Software Evolution by

Evolving Interoperation Graphs, to be published in Annals
of Software Engineering, Vol. 9, 2000.

SNEE95 Sneed H. Planning the Re-engineering of Legacy
Systems IEEE Software, vol. 12, no. 1, pp. 24 – 34, Jan.
1995.

YAU78 Yau, S.S., Collofello J.S., MacGregor T., Ripple
effect analysis of software maintenance, In Proceedings of
Compsac, IEEE Computer Society Press, Los Alamitos,
CA, pp. 60 – 65, 1978.40

