
Software Maintenance & Evolution

Evolution analysis of The GIMP

Avdo Hanjalic / s1553623
Erik Bakker / s2074893

November 24, 2011



Contents

1 Introduction 3

2 Basic repository investigation 4
2.1 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Revision count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 First commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Last commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Source-tree analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Largest folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Folder containing most source-code . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Source directory (/app) statistics . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Most active developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Top 3 active developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Getting a �rst visual overview 13
3.1 Stable development periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Intense changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Currently stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Authors analysis 15
4.1 Main contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Main developers quit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Correlation between type of �les and developers . . . . . . . . . . . . . . . . . . . . . 16
4.4 Correlation between location of �les and developers . . . . . . . . . . . . . . . . . . . 18

5 Code size analysis 19
5.1 Code size evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Code size vs Total Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Complexity analysis 25
6.1 Most complex �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Complexity �uctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Complexity correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusion 31

8 Evaluation 32
8.1 Discarded repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.1.1 Chromium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.1.2 FileZilla 3 client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.1.3 Octave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.1.4 TortoiseSVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.1.5 XBMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.1.6 VirtualBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.2 SolidTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2.2 Stability & reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.3 Software evolution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9 Appendices 36
9.1 Time consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



1 Introduction

For the course Software Maintenance and Evolution we were requested to write a report on the evolution
analysis of some (open source) project repository. The assignment was summarized as follows:

"Given a software repository, perform several analyses in order to assess the maintainability, modu-
larity, complexity, and quality of the software in the repository, as well as the development process."

Some software projects were proposed, however these were not ideal for analysis, as they did not
satisfy all relevance and/or workability requirements. It took us quite some time to �nd a workable
project; we discarded 6 projects before �nding a workable one. For a repository to be relevant for
analysis it had to satisfy these properties:

• It contains more than a few thousands of �les

• It contains more than a few thousands of revisions

• It has to be written in C or C++

• It was developed (and committed) by many users.

For a repository to be workable with our tools, the complete history of (a subset of) the (SVN) repository
must be retrievable within an acceptable amount of time. Therefore the following must hold:

• The repository server is not overloaded

• The amount of revisions is less than 30,000 (approximately)

• The amount of �les (of the subset) is less than 15,000 (approximately)

We limited the amount of �les and revisions, because the amount of data to be retrieved is of order
�les x revisions.

It took us quite some time to �nd a repository meeting all these properties: after discarding 6
projects we eventually found The GIMP, which appeared to have a workable repository. The problems
of �nding a workable repository are discussed in the evaluation section.

3



2 Basic repository investigation

The �rst thing to do was to check out the trunk directory of GIMP using TortoiseSVN. The checkout
took about 30 minutes to complete, resulting in a code-base of approximately 100MB. In this report
we will review the project from its initial commit up to the last SVN commit on 16.04.2009 (r28296).
The GIMP moved to a Git before that, but the last 'back-sync' took place then.

2.1 Revision history

2.1.1 Revision count

"How many versions are in the repository?"

To �nd out the amount of 'versions' (commits), we go to the directory where the repository was
checked out with SVN, e.g. D:\Dev\gimptrunk. On this directory we call the (Tortoise) SVN log. The
repository contains 28296 commits until 16.04.2009, however the amount of commits for this particu-
lar directory (/trunk) are 25041, as shown in �gure 2.1.1. Once the repository was checked out, the
retrieval of this information took an insigni�cant amount of time, compared with the amount of time
needed for reporting.

Figure 2.1.1: Last commit

4



2.1.2 First commit

"When was the �rst one committed?"

To �nd out when the �rst commit was, we scroll down to the beginning of the log by selecting a
random revision record and pressing the END button. Here we see that the initial commit took place
Monday November 24th 1997 at 23:05:25. Once the repository was checked out, the retrieval of
this information took an insigni�cant amount of time, compared with the amount of time needed for
reporting.

Figure 2.1.2: First commit

2.1.3 Last commit

"When was the last one committed?"

This information can be derived from �gure 2.1.1: the last visible commit was Thursday April 16th
2009 at 09:04:54. This information is retrieved together with the amount of versions, therefore taking
insigni�cant amount of time.

5



2.2 Source-tree analysis

2.2.1 Largest folders

"Which are the top-level largest folders in the repository (i.e. containing the most �les)?"

To get an answer to this question, we have decided to �rst do a SVN export of the repository check-out
and run a TreeSize1 tool on it. The reason for the export was to prevent the TreeSize tool counting the
�les (Tortoise)SVN creates for its administration. After 1 minute to export the repository and about 5
minutes of getting familiar with the tool, we managed to plot the directory sizes, as shown below:

Figure 2.2.1: Contents of /

To get these results we started TreeSize Personal, chose the directory of the SVN export, selected
the directory and �nally disabled the showing of free (disk) space.

From �gure 2.2.1 we can conclude that the top 4 largest directories are:

1. /po (24.2% of the whole source)

2. /po-plug-ins (18.9% of whole source)

3. /app (16.3% of whole source)

4. /plug-ins (12.6% of whole source)

2.2.2 Folder containing most source-code

"Which, of these folders, are the ones where the most source code is located?"

Finding the answer to this question required some more time than for the previous one as we were
not familiar with the tool, which appeared the tool was able to �lter on �le types. In this case we are
interested in 'Software Development Files'.

1http://www.jam-software.com/treesize/

6



Finally we check the contents of the 4 sub-directories separately, to see the amount of 'Software
Development Files'. The results are shown below:

Figure 2.2.2.1: /po

Figure 2.2.2.2: /po-plug-ins

7



Figure 2.2.2.3: /app

Figure 2.2.2.4: /plug-ins

Files placed in the po* directories are translation �les:
"The PO �le type is primarily associated with 'GNU Gettext' by Free Software Foundation. The

GNU gettext utilities are a set of tools that provides a framework to help other GNU packages produce
multi-lingual messages. PO �les are meant to be read and edited by humans, and associate each
original, translatable string of a given package with its translation in a particular target language."2

Depending on the interpretation of 'source �les' one could interpret the directories '/po' or '/app'
to contain most source �les. Even though translation �les certainly are part of the source-code, we
prefer to interpret the C-�les, containing program logic, as actual source �les.

2http://�lext.com/�le-extension/PO

8



2.2.3 Source directory (/app) statistics

As the previous analysis did not generate exciting results we have decided to look deeper into the /app
directory. An overview of this folder is shown below:

Figure 2.2.3.1: /app contents

The folders /app/core and /app/widgets appear to contain the most lines of code (expressed in
disk space utilization).

9



2.3 Most active developers

To get the result the following steps are taken:

• Download the latest version of StatSVN from http://www.statsvn.org/

• Unzip the downloaded zip �le

• Open a terminal

• Change into the svn directory and type 'svn log �xml -v > svn.log'

• Change back to the <statsvn folder>

• Type: 'java -jar statsvn.jar <repository dir>/svn.log <repository dir>'

• Wait for a couple of hours and open <statsvn folder>/index.html

Figure 2.3.1: Contribution of developers

For �nding the most active developers StatSVN is used. This tool is not yet in version 1.0, but
works very good. The output took about 6 hours to generate. The following users are the most active
users during the whole project. It is sorted on the most lines of code committed to the project. The
table header changes are the amount of commits done by a particular user. This table is based on the
whole project.

Neo and mitch are the users who contributed the most for the project. Together they are responsible
for 67% of the commits of the project. That is 41.5% lines of code of the whole project.

2.3.1 Top 3 active developers

"Which are the three most active developers in the �rst half of the project?"

The three most active developers in the �rst half of the project, that is from 1997-11-24 to 2003-
08-04, are neo, yosh and mitch. To get this information the following steps were taken.

• Download the latest version of StatSVN from http://www.statsvn.org/

• Unzip the downloaded zip �le

• Open a terminal

10



• Change into the svn directory and type 'svn log �xml -v -r {1997-11-24}:{2003-08-04}> svn.log'

• Change back to the <statsvn folder>

• Type: 'java -jar statsvn.jar <repository dir>/svn.log <repository dir>'

• Wait for a couple of hours and open <statsvn folder>/index.html

Figure 2.3.2: Contribution of developers �rst half project

As displayed in the image. The user mitch committed more often(changes), but neo and yosh
committed more lines of code

"Which are the three most active developers for the last half of the project?"

For the second part of the project do the same steps as described in chapter 2.3.1, but change the line
'svn log �xml -v -r {1997-11-24}:{2003-08-04} > svn.log' to 'svn log �xml -v -r {2003-08-04}:{2009-
04-16} > svn.log'. The following image will be created.

11



Figure 2.3.2: Contribution of the developers second half project

The amount of commits are almost the same for the users neo and mitch, but mitch committed
more then 20% more lines of code. These two users are committing a lot in respect to the other users
in the second part of the project.

12



3 Getting a �rst visual overview

In this chapter the program SolidTA will be used to get a visual overview of the subversion repository.

3.1 Stable development periods

Stable development periods can be found by looking for periods within which the code base does not
change and/or grow signi�cantly. The �les in SolidTA can be sorted by creation time. The yellow dots
are commits(changes in the code). The following image shows this.

Figure 3.1.1: Stable development periods

Stable releases can be found be looking at time periods where there are no or a few yellow dots
(changes made in the code). A stable release could be halfway 2000 (arrow 1), because in that period
there are a few dots and the amount of �les did not change. At the end of 2000 many new �les were
created and many commits took place. Maybe new features were installed or the code was refactored.

Before arrow 2 heavy development took place. At and after arrow 2 there is a period the development
almost stopped and continued when a few �les were created. At arrow 3 the license was changed
according to the SVN log. After this change there is very little development. A few dots appear. This
could be the latest stable release point.

3.2 Intense changes

The image in chapter 3.1 gives us also the periods when there were many changes committed. At the
beginning of 2000 there were intense changes taking place. There are lots of yellow dots which indicates
commits. Half way 2000 a stable release of the project was released. In that period the development
almost stopped for a month.

At 11 o'clock in the evening the users of the project committed the most. The following image
displays the amount of commits during the hours of the day. It could be that the users started heavy
developing at around 20:00 and committed the changes at 23:00.

13



Figure 3.2.1: Activity during the hours of the day

The following image shows the amount of commits during the days of the week.

Figure 3.2.2: Activity during the days of the week

As the image shows the most activity is on Monday and then decreases a little bit by day, except
Friday.

3.3 Currently stable

The image in chapter 3.1 shows us that in the beginning of 2009 a stable release could be released.
From January 2009 there are a few commits and the growth rate of the �les is stable. It does not grow
anymore. This continues for about 3 months. So there could be a stable release released. This is also
because the project moved to a GIT revision control system. The vertical yellow dots line near arrow 3
indicates that almost every �le was changed. According to the log the following was changed in every
�le:

* all �les with a GPL header and all COPYING �les:
Change license to GPLv3 (and to LGPLv3 for libgimp).
Cleaned up some copyright headers and regenerated the parsers in the ImageMap

14



4 Authors analysis

The aim of this chapter is to perform several analyses regarding the authors of GIMP, i.e. persons who
commit changes in the repository.

4.1 Main contributors

The steps taken to retrieve the following image were:

• In the Metrics tab check the authors box.

• Select all authors.

• Open the evolution trend view.

• The display type of the evolution trend view set to �ow.

• Set Commit count.

The following image will appear.

Figure 4.1.1: Contribution of developers

In the x-as the time is shown. The y-as represent the user(a color). The greater the amplitude the
more changes the user committed in that period of time.

As the above image shows there are two users who committed a lot during the project. These users
are mitch(green) and neo(blue). What is not visible in the image is in which �le/folder the users mitch
en neo are committing. The following images show where the users mitch and neo were developing:

Figure 4.1.2.1: Contribution of Mitch Figure 4.1.2.2: Contribution of Neo

Based on this information the user mitch was developing on more places in the project while neo
mainly developed in the po folder. This is why mitch can be named as the chief developer and second
neo.

15



4.2 Main developers quit

In the previous chapter the users mitch and neo were considered to be the chief developers. What
happens if the chief developers quit the project. In the image the users mitch and neo are left out.
They are gray. The other users remain in color. As the image shows there is a lot of gray, except in the
beginning of the project. The user yosh(light green) is then very active.

Figure 4.2.1: Developer contribution when neo and mitch left out

If mitch and neo stop working on the project then it would be very hard to continue creating a
better application. It would take some time to get a new chief developer. Muks(dark blue) together
with martinn(pink) would be good candidates for the new chief developers. They committed about
25% of the project together. This could be a problem for further development in the other 75% of the
project.

4.3 Correlation between type of �les and developers

Almost the whole project consists of .c and .h �les. The �les in toxic-green are .po �les. This are
translation �les for the application. The �les in the image are grouped on �le type and sorted by
creation time.

Figure 4.3.1: Files (from top to bottom: .sh, .py, .txt, .po, .h, .c)

In the next image the horizontal bars are still the �le types, but the colors are di�erent authors.

16



Figure 4.3.2: Developers that worked on the �le-types

As the image shows there is no correlation between the type of �les and the developers. This is
because there are only .c and .h �les. The only thing to mention is that the .po �les are created and
changed mostly by the same user. See the following image.

Figure 4.3.3:

17



4.4 Correlation between location of �les and developers

The following steps are taken to get the following image:

• In the Metric tab select folders �lter

• Select all folders

• File arrange is sort alphabetically

Figure 4.4.1: Directories of the repository

Every di�erent color is a di�erent folder. There is no signi�cant correlation between the location of
the �les and the developers. There is a developer who did one thing in the project. The user maurits
did a lot in the /plug-ins/imagemap folder. The dark-brown color is the user maurits. See the following
screen-shot.

Figure 4.4.2: Developer contribution to directories

If we take a closer look at the two chief developers then we see that neo did a lot of work in the po
and the po-plug-ins folder. The images in chapter 4.1 show where the users were developing. Take a
look at the mitch user shows that the user was developing mostly in the app folder.

18



5 Code size analysis

"First, use the �Lines of text counter� calculator to compute the lines-of-code (LOC) metric for the
source code �les in the repository. This should generate the `Code size' metric. Be forewarned, this
plugin might take quite some time to execute, as it needs to actually access the contents of the source
�les. After the `Code size' metric is available, answer the following questions."

First thing we need to do is to get the �le contents of the �les. To prevent retrieving the contents
of �les which we are not going to use anyway, we �rst create a view called 'sources'. These �les are
needed for calculation of the lines-of-code (LOC) attribute.

1. In the metrics tab we check 'File type'.

2. We �lter on the types '.h, .c, .py, .sh, .txt', which we consider as the main source �le types.

3. In the evolution view we group by type.

4. We zoom in in the evolution view and select the colored �les.

5. Yet we have created a view, which we rename to 'sources'

Now a view is created of the �les which contents we want to retrieve. This is achieved by clicking the
'Update contents' button in the 'Projects' tab. This command is very time consuming; it took us 4
days (96hours) to retrieve the data.

When the contents of the source �les were retrieved, to analyze the size of the code, we still needed
to count the lines-of-text value for each �le. This we achieved by means of the 'Lines of text counter'
plug-in in SolidTA. We expected this to be an I/O intensive operation, however the bene�ts of a (last
generation) SSD are huge when doing this: the total run-time of the lines of text counter is about 1
minute.

However, the line of text counter generated a 'Lines of text' metric in SolidTA, when we were
expecting the 'Code size' metric. After a 7 hour lasting execution of the CCCC calculator we indeed
acquired the 'Code size' metric, where LOC (lines of code) appeared one of the selectable attributes.

Before continuing further analysis, �rst we show a comparison of 'lines of text' and the 'lines of
code' metrics.

Figure 5.0.1: Legend

19



Figure 5.0.2: Lines-of-Text Figure 5.0.3: Lines-of-Code

The CCCC calculator was able to calculate metrics for only a subset of the �les, for which we have
a LOT calculation. The 'Code Size' metric only supports a sub-set of source-code �les; *.txt and *.py
�les are not supported. Fortunately the amount of these �les is relatively small (gray lines in 5.0.3).

From the �gures 5.0.2 and 5.0.3 it becomes clear that the amount of LOT is greater than the
amount of LOC. Of course this is to be expected as LOC is a subset of LOT; from all LOT some lines
are code, while others are white-space, or other non-code lines.

The rest of the code is analyzed using a selection of this �le subset. This selection can be created
by grouping by 'Code size', zooming in and �nally selecting all colored lines. We call the selection
'sources_measurable'.

20



5.1 Code size evolution

"How is the size of code �les evolving in the project? Are source code �les growing or shrinking on the
average?"

To analyze the �le size evolution we �rst take a look at the global project evolution. For this we:

1. Select the Code Size (LOC) metric.

2. Select all attributes in the LOC menu.

3. Right-click on the selected attributes and select 'show evolution'.

4. If the trend view was not enabled already, this one has to be enabled too by pressing the 'bar'
button in the top-right area of SolidTA.

The initial view shows us the average �le size (in terms of LOC):

Figure 5.1.1: Average code size (LOC) vs Time

For a better overview of the groups we have also taken a look at the code size evolution in terms
of amount of �les per size group (groups as de�ned in 5.0.1). This was achieved by right-clicking the
evolution view, selecting the 'Flow' as display type and once again right-clicking the evolution view,
this time choosing 'File count'. The result is shown in �gure 5.1.2.

Figure 5.1.2: Amounts of �les (Code size (LOC) in colors) vs Time

From 5.1.2. it is clearly visible that the relative amount of small �les increases overtime; in the
beginning the ratio of small �les is about 40% of all �les, while this ratio increases to more than 50%.
The total amount of large �les does increase overtime, however the ratio, initially around 30%, appears
to decrease to around 10%.

Figure 5.1.1 indicates that the average code size increases over time. However, it is not possible
to say whether old source �les are growing or shrinking on the average: by adding new small �les, the

21



average code-size will be in�uenced to appear smaller. This does not indicate anything on the already
present �les though. We think the average size of old source �les will not grow in the same way as in
5.1.1. For this every �le's evolution should be analyzed separately. As an sample we take the �les from
the initial commit and analyze their evolution for a better picture.

For this we sort all �les by their creation time, zoom in at �le level and select all �les that are
present from the beginning. This selection is called 'sources_initial'. On this selection we perform
the same steps as for 5.1.2. The result is shown below:

Figure 5.1.3: Code size (LOC) evolution of initially committed �les

Figure 5.1.3 con�rms our assumption: �les that were large initially do not decrease in size, or show
a slight size decrease at best.

In �gures 5.1.1 - 5.1.3 a sudden decrease of complexity is visible in the �rst half of 2006. The code
complexity is increasing, to decrease suddenly (the 'hitch' in light-blue to yellow layers). Combining
this with the information from the global history overview, where no signi�cant change is visible in the
amount of source-code �les, we conclude that some re-factoring took place here.

"Which are the fastest growing �les? Which are the �les that shrink the most?"

To �nd the �les that grew/shrunk the most, we take the following steps:

1. Take the 'sources_measurable' selection.

2. Now we want to �lter out the largest �les only, as these �les could show the greatest �uctuation
in size. This is done by selecting the bottom item in the selection menu (5.0.1) of Code Size
(LOC).

3. We group the evolution view by Code Size. Now the largest �les are grouped together, we create
a new selection of them called 'sources_largest_size'.

4. Continuing from this selection, we now select the smallest �les only, group these by Code Size
and make a new selection of these �les called 'sources_changed_size'.

The �les that remain in the last selection have been in both the 'largest' and smallest state at some
time. To show the changes (from small-to-large or large-to-small), we enable both the smallest and
largest LOC item. The intermediate items are left out to emphasize the changes. Finally we sort the
whole evolution by time for the clearest overview. The results are shown below in �gure 5.1.4.

22



Figure 5.1.4: Files with greatest size �uctuation.

Files that decrease in complexity start red and evolve to blue. For �les that increase in size over
time, the opposite is true: these �les start blue and end red. The less gray space (gradual evolvement)
between the red and blue, the faster the �les have grown/shrunk. We think the names of the actual �les
are not relevant for this analysis, though they can be retrieved by opening the 'sources_changed_size'
selection, contained in the SolidTA data.

To show this being just a fraction of all �les that have been large at some point, we show the result
of enabling small �le indication in the selection 'sources_largest_size':

Figure 5.1.5: Evolution of largest �les (overall)

Figure 5.1.5 con�rms our assumption again: �les that were large initially do not decrease in size, or
show a slight size decrease at best.

23



5.2 Code size vs Total Size

"Group all �les, in the evolution view, based on the `Code size' attribute (right-click in the evolution
view, and then `Group selected'). How much is source code, in terms of percents, from the total project
size (in terms of �les)?"

To show the ratio of source �les over the total amount of �les, based on the 'code size' attribute,
we perform the following steps:

1. Enabled the Code Size metric (LOC)

2. Right-click the evolution view, sorted on creation time

3. Right-click the evolution view and group by Code Size.

The result of this is shown below:

Figure 5.2.1: Code size as part of total size

Roughly a half of the amount of the repository's �les are source-code �les (as interpreted by the
CCCC calculator). This should not be confused with the amounts in section 2.2, where we talk about
total �le sizes, instead of �le counts.

24



6 Complexity analysis

6.1 Most complex �les

Which are the most complex source �les in the entire project?

To �nd the most complex �les we need to undertake the steps listed below. Assumed is that the
CCCC calculator was executed before (as in section 5).

1. Enable the sources_measurable selection.

2. Go to the Metrics tab and select Complexity.

3. Select 'Total complexity' in the drop-down menu that just appeared.

4. Move the slider to the right until the screen shows less red.

5. Select the bottom menu-item (in this case 162 - ...).

6. Sort the evolution view on creation time for better overview.

7. Group the evolution view on complexity. If the overview contains more than 10% of red lines,
repeat from step 4 until this is not the case anymore.

These steps result in �gure 6.1.1.

Figure 6.1.1: Most complex �les

As we need to look at this set of source �les in the next section, we create a selection of these �les
in the same way we did in previous sections. We call this selection 'sources_largest_complexity'.

25



6.2 Complexity �uctuations

Are there �les on which the complexity decreases signi�cantly in time? Which are these?
Are there �les in which the complexity increases signi�cantly in time? Which are these?

To �nd which �les' complexity decreases in time signi�cantly, if any, we use the same approach as
in 5.1: within the most complex �les we look for �les which at some time were not complex at all.

1. We start o� loading selection 'sources_largest_complexity'.

2. In the metric con�guration we select only the top menu item for complexity (in this case 0 - 15).
All �les that were not complex at some point show up in blue.

3. We group the evolution view by complexity.

4. From these �les we create a new view called 'sources_changed_complexity'

5. Finally selected the bottom item from the complexity menu, while keeping the top item selected
(hold CTRL). For a better overview sort the view on creation time.

These steps result in the overview shown in �gure 6.2.1.

Figure 6.2.1: Files with greatest complexity �uctuation.

For this analysis the same holds as in section 5.1: �les that decrease in complexity start red and
evolve to blue. For �les that increase in complexity over time, the opposite is true: these �les start
blue and end red. The less gray space (gradual evolvement) between the red and blue, the faster the
�les have grown/shrunk. We think the names of the actual �les are not relevant for this analysis,
though they can be retrieved by opening the 'sources_changed_complexity' selection, contained in
the SolidTA data.

To show this being just a fraction of all �les that have been highly complex at some point, we show
the result of enabling low-complexity indication in the selection 'sources_largest_complexity':

26



Figure 6.2.2: Evolution of most complex �les (overall)

27



6.3 Complexity correlations

"For the above �les (high complexity and/or complexity rate of variation), are these highly active �les
(with many changes), or not?

To �nd out whether a correlation exists between the rate of variation (amount of commits) and com-
plexity we undertake the following steps:

1. We open the sources_measurable selection.

2. In the metrics tab we enable Complexity, choose Total complexity and �nally select the bottom
item (144 - ...).

3. Finally we sort the evolution view on activity.

In �gure 6.3.1. the result of these steps is shown. The amount of commits is shown on the left side.

Figure 6.3.1: Source �les sorted on activity, complex �les in red.

Indeed, the most complex �les are mainly on top of the image. From this we conclude a correlation
between complexity and activity exists:

1. Files with high activity are likely to be complex.

28



"Is there some correlation between the highly complex �les and the �le size (measured in lines of
code, as done in Step 4)? Can you �nd a direct correlation? Or an inverse correlation? Or is there no
visible correlation to be found?"

To �nd out whether a correlation exists between the complexity and size of �les we will �rst com-
pare the �uctuation of these aspects on the set of most size-�uctuating �les. For this we need to:

1. Open the sources_changed_size selection.

2. In the metrics tab enable Complexity and select the largest and smallest items.

3. In the metrics tab enable Code size and select the largest and smallest items.

4. Change the colors for large code size to black and small code size to yellow. This will yield a
better distinction between the two properties.

When switching observer between the two properties, it will look as if the red changes into black, while
the blue changes into yellow. This is shown in �gures 6.3.2.1 and 6.3.2.2.

To show that the same is the case for all large �les, steps 2 - 4 are performed on the selection
sources_largest_size. The results of this are shown in �gures Figure 6.3.2.3 and Figure 6.3.2.4.

Complexity File Size

Figure 6.3.2.1: Most size-�uctuating �les Figure 6.3.2.2: Most size-�uctuating �les

Figure 6.3.2.3: Largest �les Figure 6.3.2.4: Largest �les

From this it seems plausible that �le size and complexity are directly correlated. We perform a trend
check on both aspects to see whether they really evolve in the same way. This is achieved by enabling
evolution on both the Complexity and Code size metrics. The graph visible in the trend view is shown
in �gure 6.3.2.5.

Figure 6.3.2.5: Trends of complexity and �le size of most size-�uctuating �les

29



We can conclude that the complexity of �les is indeed signi�cantly correlated to the �le size,
though the reverse is not necessarily true. To �nd out whether also �le size is signi�cantly correlated
to complexity, we perform the previous steps on the selections sources_changed_complexity and
sources_largest_complexity. The results are shown in �gures 6.3.3.1 - 6.3.3.5.

Complexity File Size

6.3.3.1: Most complexity-�uctuating �les 6.3.3.2: Most complexity-�uctuating �les

6.3.3.3: Most complex �les 6.3.3.4: Most complex �les

6.3.3.5: Trends of complexity and �le size of most complexity-�uctuating �les

As the same relation appears from the other side we can conclude complexity and �le size are
correlated one-to-one;

1. If �le size increases, complexity will increase.

2. If complexity increases, �le size will increase.

30



7 Conclusion

"Given a software repository, perform several analyses in order to assess the maintainability, modularity,
complexity, and quality of the software in the repository, as well as the development process."

Complexity

From section 6 we can conclude that the complexity of the project has not increased drastically over
time. As in section 6 a one-to-one correlation was determined between complexity and �le size, we can
use �le size to say things about the complexity.

While the total amount of �les has grown, the relative amount of complex �les has decreased (�gure
5.1.2). Furthermore, the �les that were committed initially do not change in complexity, or even show
a slight decrease. This indicates that new functionality is added to the code in a well organized way.

Figures 5.1.1 - 5.1.3 all show a hitch in complexity in 2006. When we look at �gures 5.1.4 and
5.1.5 we see that at this same point many complex �les show a huge decrease in complexity. Some
thorough refactoring took place there, reducing the average complexity signi�cantly. Besides, this was
not the only point of refactoring, as small sudden decreases are visible over the whole time-line.

We conclude that the complexity of The GIMP is well maintained.

Modularity

According to the analysis in section 2, The GIMP appears to be designed for modularity as it contains an
/app and a /plug-ins directory. When looking inside the /app and /plug-ins folder, they both appear to
be split up again in many sub-folders. This and a maintainable complexity are the strongest high-level
signs that modularity is applied.

Maintainability

Maintainability is not a directly measurable aspect of the source-code. We can however derive whether
a project is well maintainable by looking at its performance in complexity and modularity. Complexity
has an inverse e�ect on the project's maintainability, while modularity should e�ect the maintainability
in positive way.

As the project has a low complexity and a high modularity, we conclude that it's maintainability is
quite good.

Overall quality of software and development

From the previous points we derive that the high-level quality of the software appears to be good.
The software development appears to be dominated by neo and mitch
It is good that the project has multiple main developers, who all are familiar with each others code

(according to �gure 4.3.2). On the other side, a few developers being responsible for the largest part
of the code-base forms a risk for the project. For example if one of them would leave, the project could
bleed to death.

Whether this happened in the beginning of 2009, when the GPL3 license was introduced, is not
entirely clear. It seems that neo - and many other developers together with him - stopped contributing
to the project once the new license was added. This is visible in the low amount of new releases over
the last 2 years. The road-map of The GIMP shows new major releases, though we assume it is still an
active project.

31



8 Evaluation

In this section we discuss our experience of carrying out the work for this report. We start with the
discarded repositories, followed by a short discussion on SolidTA, to �nish with a global evaluation.

8.1 Discarded repositories

Finding a project with workable properties (as listed in the introduction) was a tough job. In this
(sub)section we will list the repositories we have attempted to use. For every repository the source of
the (blocking) issue will be discussed.

8.1.1 Chromium

The �rst project we have given a try was Chromium. The link for this repository is http://src.chromium.org/svn/trunk.
The repository of this project was created in 2008 and has been extremely active ever since.

Naively we started with checking out the whole (/trunk) of the repository, which resulted in a code-
base of about 80,000 �les, 7.4GB in total. As retrieving this large amount of �les lasted one night,
we looked for a subset of the repository to analyze; we tried to analyze /src directory (30,000 �les,
460MB) with SolidTA, not realizing that the application would need to retrieve all revisions.

8.1.1: Log of Chromium repository /src directory

A few hours after the initiation of �le-list retrieval, we were able to see the �le-list in SolidTA.
However after a few days of updating version information, we began to wonder why it was taking so
long without any visible progress, soon to �nd out that this repository is not only huge in size, but also
in the amount of revisions (more than 100,000 in total, from which 85,000 relevant for this directory).
We had mistaken the total amount of revisions to be around 10,000 initially.

We �gured that taking a smaller subset of �les could resolve the problem. Therefore we decided to
analyze the source-code of the browser only, contained in /src/chrome/browser. This directory contains
about 6,200 �les, altogether about 55MB in size. The amount of relevant revisions was about 36,000.

32



8.1.2: Log of Chromium repository /src/chrome/browser directory

Retrieval of the �le-list took about 2 minutes, version information required 4 hours, but getting the
contents appeared impossible. SolidTA would take 2 days to retrieve about 25% of the contents, to
stall thereafter. Because we were not familiar with SolidTA and therefore did not know how to continue
this process, we repeated the content-retrieval 2 more times. As we were suspicious that this might
not work at all, we started looking for other projects. After a week of still not having workable data we
discarded the Chromium project.

8.1.2 FileZilla 3 client

A small project we have tried to obtain the data of was FileZilla 3. The link for this project is
http://svn.�lezilla-project.org/svn/FileZilla3/trunk. The repository of this project was created in 2004.

Again the �rst thing to do was checking out the repository with SVN. This did not take a long time.
The check-out resulted in a code-base of 17.8MB in size, containing 928 �les. The amount of revisions
was 4280.

We were actually successful in acquiring all data with SolidTA, which was done to test whether we
are able to retrieve the data of a small project at all.

Sadly the projects changes were only committed by three guys, of which one had 1 commit in total.
Besides that the project was to small for a relevant analysis, according to the requirements listed in the
introduction.

To satisfy all requirements we had to look further.

8.1.3 Octave

Octave is a open-source version of MatLab. The link to its repository is https://octave.svn.sourceforge.net/svnroot/octave/trunk/octave-
forge. The repository of this project was created in 2001.

Again we started o� with checking-out the repository, which progressed faster than what we had
seen before.

The trunk of Octave contains 52.1MB of data, in a little more than 9,500 �les. The amount of
revisions was about 8734, which altogether was of acceptable size for a relevant analysis.

The reason for us to drop this project were the source-�les, primarily existing of .m (MatLab) �les;
the CCCC metric calculator is not able to process for code complexity analysis in SolidTA.

33



8.1.4 TortoiseSVN

Another project we tried was TortoiseSVN. The link to its repository is http://tortoisesvn.googlecode.com/svn/trunk.
The repository was created in 2003

The project exists of 145MB of sources, contained in almost 7,000 �les. The amount of revisions
was with 22087 a bit high, but considered the speed of the check-out we would give it a try.

Sadly our hope vaporized shortly, when - for unknown reasons - SolidTA appeared unable to acquire
the �le-list.

8.1.5 XBMC

Xbox Media Center, which is the original name of the project, seemed interesting as one of us was familiar
with compiling the software. The link to the repository is https://xbmc.svn.sourceforge.net/svnroot/xbmc/trunk.
The repository was migrated to Git in the beginning of 2011.

The speed of the check-out was a bit disappointing. The repository contained 365MB of data in a
bit more than 19,000 �les. The project is subdivided in many components, enabling us to take a subset
of �les. Therefore we decided to give it a try.

Within some time SolidTA was able to retrieve the �le-list. However, retrieving the version info
would make SolidTA crash for unknown reasons, rendering XBMC unworkable.

8.1.6 VirtualBox

The last project that we tried before we came to The GIMP was VirtualBox. The link to its repository
is http://www.virtualbox.org/svn/vbox/trunk/src.

The project was started in 2007, and has had an active development as it reached almost 40,000
commits in those years. The speed of this repository was amazing, resulting in excitement on our side.
The total size of the data was 209MB in 13,350 �les.

After the check-out, which took a very small amount of time, we were very disappointed when it
appeared that the only 'user' that had ever committed was 'vboxsync'. This led us again to discard a
project that almost quali�ed all requirements.

8.2 SolidTA

The opinions about SolidTA are divided. Some really like the tool, while others hate it. We think
SolidTA is a powerful tool for gathering insight into a project's evolution. However, it does have some
serious performance and stability issues, which we discuss next.

8.2.1 Performance

First thing we noticed is that the speed, with which data is retrieved, is simply horrible. Where a simple
SVN tool, like TortoiseSVN, takes seconds to retrieve the whole �le-list, SolidTA can take up to tens
of minutes. The reason for this is not evident, but the consequences are.

Sadlyu, the minutes lost for �le-list retrieval are acceptable compared with the time it takes to
retrieve version info and/or �le contents.

We are not completely aware of the way this is implemented, as we do not have access to the source-
code of SolidTA. Though it is very clear that SolidTA retrieves the information �le-by-�le, instead of
doing this in the same way as TortoiseSVN. The latter requests a complete revision log, which usually
contains changes on multiple �les. This results in TortoiseSVN showing the full revision history within
minutes in worst case, where this takes hours in SolidTA. As far as we have been able to determine,
there is no di�erence between information of the revision history and the version info.

Finally, the implementation of the last step - the retrieval of all contents in SolidTA - is questionable.
For this information SolidTA requests the contents per �le and per revision. We assume that an SVN
server orders its �les as received; �les of revision 1 are written together, followed by �les of revision 2,
etc. By requesting each revision for each �le it is likely that the server will have to search the hard-disk
on every request. This could be prevented by requesting all �les of a whole revision at a time. Although
we do not have proof for this, we are convinced a lot of performance can be gained here.

34



8.2.2 Stability & reliability

SolidTA for some reason it skips the retrieval of some �les every now and then. The reason for this
could be a server-time out on the speci�c request, however it is not corrected by sending the request
again.

SolidTA also has some strange stability bugs. We have not been able to �nd the exact reason
for SolidTA refusing to retrieve the �le-list and/or �le-contents for some projects, or even crashing at
this point. However, as these issues occurred on more than one machine, while the repositories were
checked-out properly with TortoiseSVN, we think that the issue lies within SolidTA.

Furthermore, at some point one of us was not able to start SolidTA anymore, after installing SVN
(command line executable), and adding its directory to the PATH system variable. Removing this
directory from PATH rendered SolidTA functional again.

8.3 Software evolution analysis

Despite the problems we encountered when choosing a project and retrieving its data, we found the
analysis quite interesting. Though SolidTA provides just some of the techniques discussed in the
Software Maintenance and Evolution course, these techniques provide a powerful method to analyze
and learn from the evolution of a project.

The assignment was set up to be completed using SolidTA, which provides primarily �le-level analysis
of a project. Other tools exist that can analyze on syntax-level, line-level, dependencies and many more.
Though, for analysis of an unfamiliar project, this approach is probably best, as other analyses would
require one to have far-going knowledge of the source-code.

Altogether the course and assignment have raised our interest in the relatively new �eld of software
evolution analysis.

35



9 Appendices

9.1 Time consumption

In this section the time consumption of the most time consuming tasks are set out. We have not
measured the time for reporting as this requires a complete hour registration, e.g. for checking and
improving of section. Furthermore the main responsible persons are noted for every section/task.

Activity Time spent Author
Finding a project

Investigating3 Chromium repository 2 days Avdo & Erik
Retrieving Chromium contents (aborted)s 2 weeks Avdo
Investigating FileZilla repository 3 hours Avdo
Retrieving & Processing FileZilla contents 2 days Avdo
Investigating Octave repository 2 hours Avdo
Retrieving Octave contents 1.5 days Avdo
Investigating TortoiseSVN repository 2 hours Avdo
Investigating XBMC repository 2 hours Avdo
Investigating VirtualBox repository 2 hours Avdo

Investigating GIMP repository
SVN check-out 30 minutes Avdo
SolidTA �le list 1 minute Avdo
SolidTA version info 2 hours Avdo

Retrieving & Processing GIMP contents
SolidTA retrieve contents 4 days Avdo
Compute CCCC metrics 2 x 7 hours Avdo
Compute StatSVN statistics 6 hours Erik

Reporting
Report Section 1 Avdo
Report Section 2 on Chromium (discarded) Avdo & Erik
Report Section 2.1, 2.2 Avdo
Report Section 2.3 Erik
Report Section 3 Erik
Report Section 4 Erik
Report Section 5 Avdo
Report Section 6 Avdo
Report Section 7 Avdo
Report Section 8 Avdo
Report Section 9 Avdo
Essay Erik

36



Software Maintenance & Evolution Essay

Dependency Evolution Analysis

Avdo Hanjalic / s1553623
Erik Bakker / s2074893

November 24, 2011



Contents

1 Introduction 3

2 Data modeling 3

2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Dependency data visualization 6

3.1 Mockup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Graph types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Advantage knowing particular graph structure . . . . . . . . . . . . . . . . . . . . . . 8

2



1 Introduction

Almost every software project nowadays uses a revision control system such as subversion. Project
leaders are more and more interested in what kind of information the revision control systems can give
them. By default the revision control system subversion give no more information then the commit
logs. When analyzing the revisions it can give more detailed information about the development of the
project. Here is where the visualization program comes in place. With dependency evolution analysis
the information of the revisions can be used to display relevant information about the project.

2 Data modeling

2.1 Assumptions

Before making the data model, we made a assumption that the programming language of the code
should be java. The revision control system should be subversion.

2.2 Graphs

The structure of a data model depends on what kind of data has to be stored and what kind of output
has to be created. In this case the output are graphs. The following graphs are taken into account
when creating the data model:

• A call graph
This graph shows the calls between functions in the entire project.

• A class inheritance graph
The inheritance graph displays the inheritance relations between di�erent classes.

• A containment graph
A containment graph shows the relations between methods, classes, �les, folder. E.g. method-
in-class-in-�le-in-folder.

• A build dependency graph
This graph is responsible for showing the dependencies between �les. E.g. when �le X is changed,
then �les Y and Z need to be rebuilt.

3



2.3 Data model

Figure 1: UML diagram data model

Figure 1.1 is the representation of the data model. First of all the content of the nodes (Revision,
Folder, File, etc.) will be discussed and then the relations (edges) between the nodes.

2.3.1 Nodes

Content of node Revision:

• Revision number

Content of node Changes:

• Output 'svn di�'. Di�erence between current and previous revision.

• Changes of correspondences number

Content of node Folder:

• Folder name

• Correspondences number

Content of node File:

• File name

• LOC (Lines of Code in the �le)

• Correspondences number

Content of node Class:

• Class name

• Correspondences number

Content of node Function:

4



• Function name

• Correspondences number

Every node except for the revision node has a Correspondences number. This number is equal for
the function in all di�erent revisions. Function getName() in revision 23 gets correspondences number
F546346, then the same function in revision 24 gets the same correspondences number. It is possible
that during the development the name of the function changes. When the function name changes the
correspondences number will not change. To determine if the function name is changed the changed
node can be used. Every change compared to the previous revision of the project code is stored in this
node. This way changing the function name will be noticed and the same Correspondences number will
be given to the function.

2.3.2 Edges

Every edge (relation) can be accessed from the corresponding nodes. Node Revision 2 can go to Node
Revision 1 and Node revision 3. Every Revision node has a relation with the Changes node and the
several Folder nodes. Every Folder node is linked with File nodes.
Every File node can have two di�erent relations. A File node has a class inside it and a File node can
import another �le Node. There can be several relations between di�erent �les and a �le can have
several classes in it.
Every Class node can have several has function relations. A class can also have a inherit relation with
another class.
The Function nodes can only have call relations. This call relations can be with another Function node
or with itself (recursion).

2.4 Optimization

To optimise the performance of the visualization program an implementation of a data model per graph
is required. This way only the �rst time the visualization program starts it takes a long time to generate
the data information. Once this is complete, the graphs can be easily and quickly created.
A call graph only needs the function calls. The following data-model would be implemented to optimise
the visualization program:

Figure 2: data model call graph

All functions will be inserted in this table:

• correspondencesNumber: this is the number of the function.

• name: this is the name of the function.

• functionCalls: this is a comma separate string with the correspondencesNumber of the functions
which the current function calls.

• classCorrespondencesNumber: correspondencesNumber of the class where the function belongs
to.

• �leCorrespondencesNumber: correspondencesNumber of the �le where the function belongs to.

• folderCorrespondencesNumber: correspondencesNumber of the �le where the function belongs
to.

• revision: revision number.

For optimising the class inheritance graph the following table will be used:

5



Figure 3: data model inheritance class

All classes will be inserted in this table:

• correspondencesNumber: this is the correspondences number of the class.

• name: the name of the class.

• inheritCorrespondencesNumber: this the correspondencesNumber of the class that is inherited.

• �leCorrespondencesNumber: the correspondencesNumber of the �le the class belongs to.

• folderCorrespondencesNumber: the correspondencesNumber of the folder the class belongs to.

• revision: number of the revision.

For the containment graph the data model from �gure 1 can be used. The hierarchy is clear in this
data model.
Last but not least the build dependency graph. The table in �gure 2 can be used to calculate depen-
dencies on function level. The table in �gure 3 can be used to calculate dependencies on class level.
The last dependency is on �le level. The following table will be created for this.

Figure 4: data model dependency graph

Al �les will be inserted in this table:

• correspondencesNumber: this is the number of the �le.

• name: this is the name of the �le.

• importCorrespondencesNumber: comma separated �le which �les are imported.

• folderCorrespondencesNumber: number of the folder this �le belongs to.

• revision: number of the revision this �le belongs to.

What happens if a new revision is committed?
All the �les in the new revision will be analyzed and inserted in the data model in �gure 1. The output
of 'svn di�' will be inserted in the Changes node. Where needed the correspondences numbers will be
altered. When the user once to see the graphs then the Changes node will be read and the changes
will be executed on the relevant tables.

A disadvantage of this model is that it consumes a lot of diskspace, but nowadays diskspace is very
cheap. A other disadvantage is that it consumes a lot of time the �rst time it has to check out all the
revisions at the same time.

3 Dependency data visualization

Visualizing the dependency data is a challenging problem. The dataset can be highly complex, inter-
twined and quite large.

6



3.1 Mockup

The following image is a mockup of the interface it could look like.

Figure 5: mockup user interface

Before getting this popup with a call graph the user has to select an amount of �les which the user
wants to use in the call graph. Once the user selected the �les a right mouse click and then press 'gen
call graph' is enough to create the popup shown in the mockup in �gure 5. Every line between the
circles are function calls. The blue and purple shading is a marking for all the functions within one
single �le or class. The name of the �le or class is included in the legend (not implemented in the
mockup) The function calls start at the left side in the popup.
With the use of the popup and selecting �les the user can limit the amount of functions and function
calls in the popup. The user can for example select all the �les in one folder to see the dependencies
in that particular folder. This way the visualization is easier to follow. A downside of this method is if
the user selects all �les with hundreds maybe thousand of functions and function calls the graph will
be in the worst case unreadable for the human eye.
There is also a zoom function to zoom out to class level. This way the user is able to see the
dependencies between the di�erent classes.

3.2 Graph types

The graphs discussed (call, inheritance, containment and build) are di�erent in respect to each other.
The graphs can be categorized in three di�erent types: a tree, a directed acyclic graph and a general
(cyclic) graph.
The call graph could be a general graph. It is not a general cyclic graph, because it can have an edge
with degree other than 2. A function does not by default call another function.
The inheritance graph could be a directed acyclic graph. It is not possible to inherit the class from the
same class. A class inherit another class. The direction of the inherit must be clear in the graph.
The containment graph could be a tree. A function is always part of a class, a class is part of a �le, a
�le is part of a folder.
The build dependency graph could be a general graph. File A can be imported by �le B in such a way

7



that File B has to be rebuild if �le A changes. The same applies to the inheriting of classes and the
function calls.

3.3 Advantage knowing particular graph structure

The advantage in visualization design of a tree rather than a general graph is that a tree can be created
from top to bottom. The structure of a tree is far more clear than the structure of a general graph. A
tree is a connected graph and has no cycles. A general graph is a more complex graph then the tree.
The advantage of knowing the dependency visualization graph is that the data model can be created
according to the graph. A data model for a tree is very di�erent then a data model for a general graph.

8


	report
	1 Introduction
	2 Basic repository investigation
	2.1 Revision history
	2.1.1 Revision count
	2.1.2 First commit
	2.1.3 Last commit

	2.2 Source-tree analysis
	2.2.1 Largest folders
	2.2.2 Folder containing most source-code
	2.2.3 Source directory (/app) statistics

	2.3 Most active developers
	2.3.1 Top 3 active developers 


	3 Getting a first visual overview
	3.1 Stable development periods
	3.2 Intense changes
	3.3 Currently stable

	4 Authors analysis
	4.1 Main contributors
	4.2 Main developers quit
	4.3 Correlation between type of files and developers
	4.4 Correlation between location of files and developers

	5 Code size analysis
	5.1 Code size evolution
	5.2 Code size vs Total Size

	6 Complexity analysis
	6.1 Most complex files
	6.2 Complexity fluctuations
	6.3 Complexity correlations

	7 Conclusion
	8 Evaluation
	8.1 Discarded repositories
	8.1.1 Chromium
	8.1.2 FileZilla 3 client
	8.1.3 Octave
	8.1.4 TortoiseSVN
	8.1.5 XBMC
	8.1.6 VirtualBox

	8.2 SolidTA
	8.2.1 Performance
	8.2.2 Stability & reliability

	8.3 Software evolution analysis

	9 Appendices
	9.1 Time consumption


	essay.pdf
	1 Introduction
	2 Data modeling
	2.1 Assumptions
	2.2 Graphs
	2.3 Data model
	2.3.1 Nodes
	2.3.2 Edges

	2.4 Optimization

	3 Dependency data visualization
	3.1 Mockup
	3.2 Graph types
	3.3 Advantage knowing particular graph structure



