I'ij l{Sl]_n iVGI‘ S it eit faculteit wiskunde en informatica
groningen / natuurwetenschappen /

Software Maintenance & Evolution
Evolution analysis of The GIMP

Avdo Hanjalic / 51553623
Erik Bakker / s2074893

November 24, 2011

Contents

[1__Introduction|

2 Basic repository investigation
2.1 evision history|

[2.2 Source-tree analysis|

2.2.1 argest folders| L
222 Folder containing most source-code|,
2.2.3 Source directory (/app) statistics|.

[2.3 Most active developers| L
[2.3.1 Top 3 active developers |

[3__Getting a first visual overview|

3.1 table development periods|
3.2 Intense changes| L
33 Currentlystablel

[4 __Authors analysis|

4.2 Main developers quit| L
43 Correlation between type of files and developers|
4.4 Correlation between location of files and developers|

|5 Code size analysis|

[6 Complexity analysis|
6.1 Most complex files].

6.2 Complexity fluctuations]
[6.37 Complexity correlations]

[T_Conclusion|

8 Evaluation
[8.1 Discarded repositories|

8.1.3 Octavel

8.1.5 XBMC

[8.2.2 Stability & reliability]

8.3 Software evolution analysis|

9.1 Time consumption|.

w

—
O wvwooovgo b~ bp

[y

e e
B wWwww

— e e e
coO oo o1

NN
A~ = O

NNNN
co o o1

w
-

WWWWWWwWwWwwwww
b, pOODNMDDNDN

w
(=]

1 Introduction

For the course Software Maintenance and Evolution we were requested to write a report on the evolution
analysis of some (open source) project repository. The assignment was summarized as follows:

"Given a software repository, perform several analyses in order to assess the maintainability, modu-
larity, complexity, and quality of the software in the repository, as well as the development process."

Some software projects were proposed, however these were not ideal for analysis, as they did not
satisfy all relevance and/or workability requirements. It took us quite some time to find a workable
project; we discarded 6 projects before finding a workable one. For a repository to be relevant for
analysis it had to satisfy these properties:

e It contains more than a few thousands of files

e It contains more than a few thousands of revisions
e It has to be written in C or C++

e It was developed (and committed) by many users.

For a repository to be workable with our tools, the complete history of (a subset of) the (SVN) repository
must be retrievable within an acceptable amount of time. Therefore the following must hold:

e The repository server is not overloaded
e The amount of revisions is less than 30,000 (approximately)
e The amount of files (of the subset) is less than 15,000 (approximately)

We limited the amount of files and revisions, because the amount of data to be retrieved is of order
files x revisions.

It took us quite some time to find a repository meeting all these properties: after discarding 6
projects we eventually found The GIMP, which appeared to have a workable repository. The problems
of finding a workable repository are discussed in the evaluation section.

2 Basic repository investigation

The first thing to do was to check out the trunk directory of GIMP using TortoiseSVN. The checkout
took about 30 minutes to complete, resulting in a code-base of approximately 100MB. In this report
we will review the project from its initial commit up to the last SVN commit on 16.04.2009 (r28296).
The GIMP moved to a Git before that, but the last 'back-sync’ took place then.

2.1 Revision history
2.1.1 Revision count

"How many versions are in the repository?"

To find out the amount of 'versions’ (commits), we go to the directory where the repository was
checked out with SVN, e.g. D:\Dev\gimptrunk. On this directory we call the (Tortoise) SVN log. The
repository contains 28296 commits until 16.04.2009, however the amount of commits for this particu-
lar directory (/trunk) are 25041, as shown in figure 2.1.1. Once the repository was checked out, the
retrieval of this information took an insignificant amount of time, compared with the amount of time
needed for reporting.

From: 24-11-1997 -~ To 15- 4-2009 - >, Messages, authors and paths

Revision Actions Authar Date Message -
28269 O 4 sprasad 9:04:54, donderdag 16 april 2009 added kn.po and updated Changel og and LINGUAS [
2268 O tobiasmue 22:14:49, maandag 13 april 2009 Remove the ICC profile when image will be converted fromfto grayscale made,
2266 O aronxu 13:11:05, zondag 12 april 2009 Fixed nplural error of zh_CM.po
28265 O martinn 12:23:02, zondag 12 april 2009 Improve Debug -> Show Image Graph output
28264 O aronxu 8:07:51, zondag 12 april 2002 Updated Simplified Chinese translations by kappa8086.
28263 O aronxu :04:12, zondag 12 april 2009 Updated Simplified Chinese translations by kappa8086.
28262 O arom :01:02, zondag 12 april 2009 Updated Simplified Chinese translations by kappa8086.
28261 O aronxu 125, zondag 12 april 2009 Updated Simplified Chinese translations by kappa80g6.
2260 O mitch 18:57:42, zaterdag 11 april 2009 2009-04-11 Michael Natterer <mitch@gimp.org>
8236 O mitch 16:03:38, vrijdag 3 april 2009 2003-04-03 Michael Natterer <mitch@gimp.org>
23235 5] neo 21:07:12, dinsdag 31 maart 2009 2003-03-31 Sven Meumann <sven@gimp.org>
28234 O neo 11:52:58, dinsdag 31 maart 2003 2009-03-31 Sven Neumann <sven@gimp.org>
28230 O mitch 22:18:40, zaterdag 28 maart 2009 2005-03-28 Michael Natterer <mitch@gimp.org>
28229 O mitch 22:13:20, zaterdag 28 maart 2009 2009-03-28 Michael Natterer <mitch@gimp.org>
28227 6] neo 17:42:50, zaterdag 28 maart 2009 2009-03-28 Sven Meumann <sven@gimp.org>
8225 O mitch 16:20:18, zaterdag 28 maart 2009 2003-03-28 Michael Natterer <mitch@gimp.org>
8224 O mitch 14:19:53, zaterdag 23 maart 2009 2009-03-28 Michael Natterer <mitch@gimp.org>
23223 5] neo 20:25:12, vrijdag 27 maart 2009 2003-03-27 Sven Meumann <sven@gimp.org>
28222 O plaes 7:33:01, vrijdag 27 maart 2009 2003-03-27 Priit Laes <plaes at svn dot gnome dot org> N

T = cemmm 4 A P e e Lo ;
Action Path Copy frompath Revision

Showing 25041 revision(s), from revision 1 to revision 28259 - 0 revision(s) selected.

Hide unrelated changed paths

D Stop an copy/rename
I [] Include merged revisions
[Show all '] [Mext 100] [Refresh]

Figure 2.1.1: Last commit

2.1.2 First commit

"When was the first one committed?"

To find out when the first commit was, we scroll down to the beginning of the log by selecting a
random revision record and pressing the END button. Here we see that the initial commit took place
Monday November 24th 1997 at 23:05:25. Once the repository was checked out, the retrieval of
this information took an insignificant amount of time, compared with the amount of time needed for

reporting.

From: 24-11-1997 -~ To 18- 4-2009 - . Messages, authors and paths
Revision Actions Author Date Message
22 5] yosh 4:06:57, maandag 8 december 1997 Got rid of those extra tabs in Makefile.am so it wouldn't be confused
21 @ yash 2:13:10, maandag 8 december 1997 Added Sven's patch for the scale and resize dialogs Added Raph's patch for the transperancy blur problem
0 8 adrian 1:25:51, maandag 8 december 1997 === empty log message *==
1 o adrian 1:25:31, maandag 8 december 1997 Forgot to add the cheat_sheet and keybindings. txt to the makefile, fixed it now...
B & adrian 1:24:32, maandag 8 december 1997 added a check in channels_dialog. ¢ to mirror the one in layers_dialog.c
17 & adrian 1:22:45, maandag & december 1997 Removed a dangling parenthesis from the alien-glow-= scripts
15 O adrian 22:53:21, zaterdag 6 december 1997 =% empty log message ***
15 O adrian 22:53:02, zaterdag & december 1997 fixed "aspect-ratio” bug, and a workaround for the palette dislog rezing weirdness
14 X adrian 21:18:21, zaterdag & december 1997 Got all the .h files too this time....
13 X adrian 21:14:46, zaterdag 6 december 1397 Removed all the old plugin files from the plugins dir. they should all be in sub dirs now.
12 4 x erich 20:49:08, maandag 1 december 1997 (erich) lots of changes to gimptd
11 G sopwith 4:47:29, zaterdag 29 november 1957 a few more .cvsignores
0 & gnomecvs 22:34:17, vrijdag 28 november 1997 (erich) add <sysftypes.h>
9 g sopwith 23:01:52, donderdag 27 november 1997 more . cvsignores
8 ¥ sopwith 22:58:02, donderdag 27 november 1997 bunch of cvsignores added
7 & gnomecvs 20:36:57, woensdag 26 november 1997 Update Changelog to reflect my last commit
& O gnomecvs 20:30:17, woensdag 26 november 1997 Several fixes, most notably a bug in undo when drawing outside an image, and the “out of paint bug™.
2 + sopwith 23:05:25, maandag 24 november 1397 Initial revision
1 23:05:25, maandag 24 november 1997 New repository initialized by cvs2svn,
< [ame]
Wew repository initizlized by cvsisva.
Action Path Copy frompath Revision
Added ftrunk
Added jbranches
Added [tags

Showing 25041 revision(s), from revision 1 to revision 28259 - 1revision(s) selected.
Hide unrelated changed paths

D Stop an copy/rename

[] Include merged revisions

l Show All '][Next 100]l Refresh]

Figure 2.1.2: First commit

2.1.3 Last commit

"When was the last one committed?"

This information can be derived from figure 2.1.1: the last visible commit was Thursday April 16th
2009 at 09:04:54. This information is retrieved together with the amount of versions, therefore taking
insignificant amount of time.

2.2 Source-tree analysis
2.2.1 Largest folders

"Which are the top-level largest folders in the repository (i.e. containing the most files)?"

To get an answer to this question, we have decided to first do a SVN export of the repository check-out
and run a TreeSizeEl tool on it. The reason for the export was to prevent the TreeSize tool counting the
files (Tortoise)SVN creates for its administration. After 1 minute to export the repository and about 5
minutes of getting familiar with the tool, we managed to plot the directory sizes, as shown below:

[D:\Devigimptrunk-28296\ on [Stuff] |

po-plug-ins
18,5 MB
180 %

app
16,1 MB
163 %

plug-ins
124 MB
126%

| po-script-fu
[Files] 52 MB
5,3 MB 53%
59%

Figure 2.2.1: Contents of /

To get these results we started TreeSize Personal, chose the directory of the SVN export, selected
the directory and finally disabled the showing of free (disk) space.
From figure 2.2.1 we can conclude that the top 4 largest directories are:

1. /po (24.2% of the whole source)
2. /po-plug-ins (18.9% of whole source)
3. /app (16.3% of whole source)

4. /plug-ins (12.6% of whole source)

2.2.2 Folder containing most source-code
"Which, of these folders, are the ones where the most source code is located?"
Finding the answer to this question required some more time than for the previous one as we were

not familiar with the tool, which appeared the tool was able to filter on file types. In this case we are
interested in 'Software Development Files’.

thttp:/ /www .jam-software.com/treesize/

Finally we check the contents of the 4 sub-directories separately,

Development Files'. The results are shown below:

to see the amount

of 'Software

File Edit Branch View

Sort FileSearch Tools

| DADengimptunk 2296\ ~ @ 2 P 25| QO 2 S| BB L B w=[%& B I | we[mEs 4

| DA\Devigimptrunk-2523 Size: 57 MB Allocated: 110.6 MB Files: 5185 Folders: 141

Help

>BUY NOW<

Last Change: 13-10-2011

Last Access: 19-11-2011

Owner: Administrators

4 | 1000% DADev\gimptrunk-28296\ on [Stuff]
| 242% po
|, 189% po-plug-ins
|, 163% app
J. 126% plug-ins
[9] 59 % [35 Files]
|, 53% po-script-fu
3] 33% data
") 31% themes
J. 26% po-libgimp
J 16% libgimp
L 14% libgimpwidgets
bl 12% devel-docs
J. 09% po-tips
bl 08% tools
|, 04% po-python
J. 03% libgimpbase
. 03% cursors
J. 02% modules
J. 02% libgimpeonfig
J. 01% libgimpeolor
. 01% docs
l. 01% libgimpthumb
J. 01% libgimpmath

@ Chalrl Dﬂa\\sl 4t Exensions \B Users | (i) Age of Files | Top 100 Files History
YTXE BsHREIER
Extension Size Allocated Percent Files Description
£ Miscellaneous Files 23.8MB 240 MB 75 Unknown file types
[1po 236MB 233MB 68 PO File
B[] trone) 02MB 02MB[03% 2 Nofile extension
Oy in 00MB 0oMB [01% 2 INFile
B[skip 00MB 0oMB [00% 1 SKIP File
O | gitignore 0,0 MB 00ME [00% 1 TextDocument
[teels 0,0 ME 0,0 ME 00% 1 TOOLS File

I
I L 01% menus
| . 00% libgimpmodule |
I I 00% etc i
Neme Size Free %Free
G A 13278 14368 I 1%
GEB\ 13278 14368 J| 1%
o 99968 16208 W 16%
caDA 91668 435GB |G % K
I 13478 %768 W%
Free Space: 436 GB (of 916 GB) 75 Files 0 Excluded D:\Devgimptrunk-28296\themes.
— —
’:] N . [=[E8] =]|
Fle Edit Branch View Sont FileSearch Tools Help =>BUY NOW<=
| D\Dengimptrunk 8206\ ~ A X S E G| QO RSB DL B m w0 8| I | ke[3
| D:\Devigimptrunk-26296 Size: 95,7 MB Allocated: 110,6 MB Files: 5185 Folders: 141 Last Change: 13-10-2011 Last Access: 19-11-2011 Owner: Administrators
4 (i [100.0:% ED-\Devhimyrin kR Rl S ~ | [@ chart [£= Detaie| % Extensions | g users | (i Age of Files | @] Top100 Files
242% po
- Y SHE
| 189% poplins x# =@ &=
v) 163% app Extension Size + Allocated Percent Files Description
b) 126% plug-ins = Miscellaneous Files 18,6 MB 188MB 100,0% | 64 Unknown file types.
[59% [35Files] L] po 185MB 186Mme [9935 58 POFile
| 53% po-script-fu W) trone) 0.1 MB 0iME [07% 2 Nofile extension \
b 33% dat [0,0MB 0oMe | 01% 2 INFile i
b0 31% themes [0,0MB 00Me | 00% 1 SKIP File
| 26% po-libgimp O gitignore 0,0MB 00Me | 00% 1 Text Document
I 16% libgimp
I 14% libgimpwidgets
bl 12% devel-docs L
| 09% potips 3
bl 08% tools

|, 04% po-python
J. 03% libgimpbase
bl 03% cursors
J. 02% modules
J. 02% libgimpeonfig
J. 01% libgimpeolor
. 01% docs
l. 01% libgimpthumb
J. 01% libgimpmath

I
I . 01% menus
| |, 00% libgimpmodule 7
I I 00% etc i
Size Free %Free
13278 14368 | 1%
13278 14368 | 1%
%9968 16268 W 16%
916GB 435GB x
13478 36768 W%
Free Space: 436 GB (of 916 GB) 64 Files 0 Excluded 4095 Bytes per Cluster (NTFS)

Figure 2.2.2.2: /po-plug-ins

file Edit Bronch View Sort FileSearch Tools Help =»BUY NO
DADevgimptrunk-28206\ ~ @ % i = B | Q O @ | 3| || w (%S | EE) | s &
Di\Dev\gimptrunk-28296 Size: 93,7 MB Allocated: 1106 MB Files: 5,188 Folders: 141 Last Change: 13-10-2011 Last Access: 19-11-2011 Owner: Administrators
41/ 1000% DADev\gimptrunk-28296\ on [Stuff] | [@ Chert [E= Details| 5 Extensions | g8 Users | (i Age o Files | 2] Top 100 Files | [History
242% po ®
=
189% po-plug-ins EELICE
> 163% app Extension Size v Allocated Percent Files Description
. 126% plug-ins = Software Development Files 15,9 MB. 192MB 988% 1.658 Source and project files ...
599% (35 Files] [|5 13,7 MB 153me [sagEl 840 CSourcefile
1 53% po-script-fu 1SR 22MB 3ome [l 136% 813 HFile
. 33% dote ISP 0.0 MB 00MB [02% 2 PYFile
. 31% themes g e 00MB ooMB[02% 1 Export Definition File
26% po-libgimp O & 00MB ooMB[00% 1 KSLT Stylesheet
16% libgimp & 00 MB ooMB[00% 1 Resource Script
14% lbgimpuidgets) Miscellancous Files 01MB 02MB | 04% 44 Unknown file types
. 12% devel-docs i] am 01MB 0imB[04% 2 AMFile
09% po-tips 3 W[st 00MB 0oMB [00% 1 LSTFile
. 08% tools E [gitignore 0.0MB oimB[00% 21 Text Document
04% po-python W[trone) 0,0 MB oomB [00% 1 Nofile extension
03% libgimpbase = Graphic Files 01MB 01MB | 04% 2 Files containing pictures....
. 03% cursors O ico 01 MB 0iMB [04% 2 Icon
02% modules = Program Files 01MB 01MB | 03% 21 Program Files, Librariesa...
02% libgimpeonfig 01 M8 0iMB[03% 2 Microsoft Common Cons.
01% libgimpeolor =] 0,0 MB 0,0 ME 0,0% 1 Files containing data of v...
01% docs 0,0 ME 0,0 MB 0,0 % 1 XML Document
01% libgimpthumb
01% libgimpmath
I 01% menus
| 00% libgimpmadule I
I 00% et
Name size Free %Free
=T 13278 14368 I 11%
=10 13278 14368 W 11%
& 99968 16268 M 16%
=10 o668 43ce |NINEE % x
GV 13478 36768 WM %
Free Space: 436 GB (of 316 GB) 1726 Files 0 Excluded 4096 Bytes per Cluster (NTFS)

Figure 2.2.2.3: /app

FEile Edit Branch View Sort FileSearch Tools Help =>BUY NOW<=
DADevgimptrunk-28206\ ~ A % W = B | Q © @ | 3| || m e [%)@ 8| 82000 | xs[me)es 4
Di\Dev\gimptrunk-28296 Size: 93,7 MB Allocated: 1106 MB Files: 5,188 Folders: 141 Last Change: 13-10-2011 Last Access: 19-11-2011 Owner: Administrators
4 1/ 1000% D:\Dev\gimptrunk-26296\ on [Stuff] | [@ Chert [EE Details| 5 Extensions | g8 Users | (i Age of Files [2] Top 100 Files
242% po
189% po-plug-ins [BIHE ‘
. 163% app Extension Size ¥ Allocated Percent Files Description
> 126% plug-ins [Software Development Files 96MB 109ME 77.1% 599 Sourceand project files ...
L] 59% (35Files] e« 9,0 MB 93MB | 726% 38 CSourcefile
53% po-script-fu SR 0.5 MB ooMe | 39% 190 HFile
b 33% dats | INEY 01MB 02MB | 10% 20 PYFile
> 31% themes a0« 00 MB 00MB| 01% 2 PLFile
26% po-libgimp & 00 MB 00MB | 00% 1 Resource Script
16% libgimp = Graphic Files 15MB 18mB 11.9% 125 Files containing pictures,...
14% libgimpwidgets B pgm 13M8 14M8 [105% 62 PGMFile
. 12% devel-docs Q0 pem 01MB 01MB[05% 7 PPMFile
09% po-tips 3 W= g 01MB 02MB[05% 48 PNGFile
b 08% tools Om jpg 01MB 01MB[04% 5 JPGFile
04% po-python [] ico 00MB 00MB[00% 2 lcon
03% libgimpbase W 0,0 MB 00MB | 00% 1 CursorFile
b 03% cursors # Miscellaneous Files 10MB 13MB 8.5% 319 Unknown file types
02% modules = Internet Files 0.2MB 0.2 MB 1.2% 7 Filesrelated to the WW...
02% libgimpeonfig Oe hmi 02 MB 02MB | 12% 7 Chrome HTML Document
01% libgimpeolor = Text Files 0,1 MB 0,1 MB 04 % 8 Plain text files, log files
01% docs B o 01 MB 0iMe | 04% & Notepac+ Document
01% libgimpthumb =/ Program Files 0,0 MB 0,0 MB 02% 2 Program Files, Libraries a...
01% libgimpmath 0,0 ME 0,0 MB 0,2% 2 Microsoft Common Cons..
M 01% menus i~ Temporary and Backup Files 0.0 MB 0.0 MB 0.1% 1 Temporary files and bac...
I 00% libgimpmodule m [otd 00 MB 00ME| 01% 1 OLDFile
I 00% etc 5
Size Free % Free
13278 14368 M_11%
13278 14368 W 11%
999GB 16268 M 16%
916 GB 436 GB ﬂ x
1347TB 36768 27 %
Free Space: 436 GB (of 916 GB) 1.061 Files 0 Excluded D:\Dev\gimptrunk-28296\libgimpwidgets\

Figure 2.2.2.4: /plug-ins

Files placed in the po* directories are translation files:

"The PO file type is primarily associated with 'GNU Gettext' by Free Software Foundation. The
GNU gettext utilities are a set of tools that provides a framework to help other GNU packages produce
multi-lingual messages. PO files are meant to be read and edited by humans, and associate each
original, translatable string of a given package with its translation in a particular target language. ’E|

Depending on the interpretation of 'source files’ one could interpret the directories '/po’ or '/app’
to contain most source files. Even though translation files certainly are part of the source-code, we
prefer to interpret the C-files, containing program logic, as actual source files.

2 http://filext.com/file-extension/PO

2.2.3 Source directory (/app) statistics

As the previous analysis did not generate exciting results we have decided to look deeper into the /app
directory. An overview of this folder is shown below:

[D:\Dev\gimptrunk-28296\app |

core

3,0 MB
18,7 %
widgets
31 MB
19.2 %
ok
22MB
137 %
Cther
M2%
tools
1.9 MB
M38% baze
04 MB
dialogs plug 3
actions 04 MB
0.5MB ¢
0.8 KB 5 31 9% 24 %
58% display composite |- pairt
03 MB 0,7 MB 05MB
4.9 % 41 % 29%

Figure 2.2.3.1: /app contents

The folders /app/core and /app/widgets appear to contain the most lines of code (expressed in
disk space utilization).

2.3 Most active developers

To get the result the following steps are taken:

e Download the latest version of StatSVN from http://www.statsvn.org/

e Open a terminal

[]
e Change back to the <statsvn folder>
[]
[]
Author Author Id
neo neo
mitch mitch
yosh yosh
sopwith sopwith
kmaraas kmaraas
adamw adamw
marcoc marcoc
danilo danilo
Helvetix Helvetix
bcg bcg
dnloreto dnloreto
utx utx
simon simon
mitr mitr
pablo pablo
blaes bplaes
adrighem adrighem
dooteo dooteo
menthos menthos
dijihed dijihed
redfox redfox
grakic grakic
baddog baddog
minmax minmax
stano stano
simos simos
dindinx dindinx
olau olau
alt alt
iimmac jimmac
aihana aihana
zyais Zvais
jordim jordim
al_shopov al_shopov
siqurd sigurd

For finding the most active developers StatSVN is used. This tool is not yet in version 1.0, but
works very good. The output took about 6 hours to generate. The following users are the most active
users during the whole project. It is sorted on the most lines of code committed to the project. The
table header changes are the amount of commits done by a particular user. This table is based on the

whole project.

Neo and mitch are the users who contributed the most for the project. Together they are responsible
for 67% of the commits of the project. That is 41.5% lines of code of the whole project.

Unzip the downloaded zip file

2.3.1 Top 3 active developers

Changes
58268 (29.4%)
74328 (37.6%)
15775 (8.0%)
2522 (1.3%)
315 (0.2%)
519 (0.3%)
834 (0.4%)
311 (0.2%)
538 (0.3%)
3736 (1.9%)
192 (0.1%)
576 (0.3%)
1847 (0.9%)
304 (0.2%)
145 (0.1%)
109 (0.1%)
125 (0.1%)
91 (0.0%)
231 (0.1%)
106 (0.1%)
185 (0.1%)
68 (0.0%)
148 (0.1%)
41 (0.0%)
128 (0.1%)
35 (0.0%)
1590 (0.8%)
208 (0.1%)
1208 (0.6%)
1014 (0.5%)
149 (0.1%)
160 (0.1%)
46 (0.0%)

80 (0.0%)
53 (0.0%)

Lines of Code
3566987 (27.5%)
1814025 (14.0%)
1275984 (9.8%)
607420 (4.7%)
180433 (1.4%)
147980 (1.1%)
145023 (1.1%)
139042 (1.1%)
116349 (0.9%)
100790 (0.8%)
88168 (0.7%)
82869 (0.6%)
80101 (0.6%)
78226 (0.6%)
74744 (0.6%)
72674 (0.6%)
71598 (0.6%)
70305 (0.5%)
68734 (0.5%)
66861 (0.5%)
65752 (0.5%)
65282 (0.5%)
65272 (0.5%)
64809 (0.5%)
64658 (0.5%)
64153 (0.5%)
61105 (0.5%)
60086 (0.5%)
59064 (0.5%)
58910 (0.5%)
58635 (0.5%)
57536 (0.4%)
56152 (0.4%)
56130 (0.4%)
54512 (0.4%)

Change into the svn directory and type 'svn log —xml -v > svn.log’

Type: 'java -jar statsvn.jar <repository dir>/svn.log <repository dir>’

Wiait for a couple of hours and open <statsvn folder>/index.html

Lines per Change
61.2
24.4
80.8
240.8
572.8
285.1
173.8
447.0
216.2
26.9
459.2
143.8
43.2
257.3
515.4
666.7
572.7
772.5
297.5
630.7
355.4
960.0
441.0
1580.7
505.2
1832.9
384
288.8
4s.8
58.0
393.5
359.6
1220.6
701.6
1028.5

Figure 2.3.1: Contribution of developers

"Which are the three most active developers in the first half of the project?"

The three most active developers in the first half of the project, that is from 1997-11-24 to 2003-
08-04, are neo, yosh and mitch. To get this information the following steps were taken.

e Download the latest version of StatSVN from http://www.statsvn.org/

e Unzip the downloaded zip file

e Open a terminal

10

Change back to the <statsvn folder>

Change into the svn directory and type 'svn log —xml -v -r {1997-11-24}:{2003-08-04}> svn.log’

e Type: 'java -jar statsvn.jar <repository dir>/svn.log <repository dir>’

[]
Author Author Id
neo neo
yosh yosh
mitch mitch
kmaraas kmaraas
pablo pablo
pcg pcg
utx utx
menthos menthos
alt alt
sopwith sopwith
eqger eqger
baddog baddog
adrian adrian
dnloreto dnloreto
lark lark
tml tml
rockwalru rockwalru
chyla chyla
adam adam
frob frob
kabalak kabalak
nether nether
jaycox iavcox
rasta rasta
olau olau
yasuhiro yasuhiro
docsbr docsbr
minmax minmax
kenneth kenneth
jamesh jamesh
simos simos
redfox redfox
austin austin
pablodc pablodc
stric stric

Changes
24190 (21.7%)
14181 (12.7%)
43362 (39.0%)
279 (0.3%)
131 (0.1%)
3885 (3.5%)
574 (0.5%)
227 (0.2%)
1210 (1.1%)
2523 (2.3%)
559 (0.5%)
100 (0.1%)
1578 (1.4%)
91 (0.1%)

78 (0.1%)
2283 (2.1%)
762 (0.7%)
112 (0.1%)
1146 (1.0%)
197 (0.2%)
47 (0.0%)
627 (0.6%)
1343 (1.2%)
188 (0.2%)
133 (0.1%)
354 (0.3%)
63 (0.1%)
36 (0.0%)
70 (0.1%)
141 (0.1%)
18 (0.0%)
109 (0.1%)
801 (0.7%)
131 (0.1%)
300 (0.3%)

Lines of Code
1782866 (26.8%)
1321537 (19.9%)
1297726 (19.5%)
159069 (2.4%)
128758 (1.9%)
119854 (1.8%)
82639 (1.2%)
74965 (1.19%)
72864 (1.1%)
59785 (0.9%)
53912 (0.8%)
49459 (0.7%)
49205 (0.7%)
45114 (0.7%)
43610 (0.7%)
43048 (0.6%)
41809 (0.6%)
41687 (0.6%)
40522 (0.6%)
38063 (0.6%)
36533 (0.5%)
34997 (0.5%)
34961 (0.5%)
34285 (0.5%)
33238 (0.5%)
33128 (0.5%)
32144 (0.5%)
31391 (0.5%)
28790 (0.4%)
28755 (0.4%)
27144 (0.4%)
26771 (0.4%)
26607 (0.4%)
25799 (0.4%)
25409 (0.4%)

Wiait for a couple of hours and open <statsvn folder>/index.html

Lines per Change
73.7
93.1
29.9
570.1
982.8
30.8
143.9
330.2
60.2
23.6
96.4
494.5
31.1
495.7
559.1
18.8
54.8
372.2
35.3
193.2
777.2
55.8
26.0
182.3
249.9
93.5
510.2
871.9
411.2
203.9
1508.0
245.6
33.2
196.9
84.6

Figure 2.3.2: Contribution of developers first half project

As displayed in the image. The user mitch committed more often(changes), but neo and yosh

committed more lines of code

"Which are the three most active developers for the last half of the project?"

For the second part of the project do the same steps as described in chapter 2.3.1, but change the line
'svn log =xml -v -r {1997-11-24}:{2003-08-04} > svn.log’ to 'svn log —xml -v -r {2003-08-04}:{2009-
04-16} > svn.log’. The following image will be created.

11

Author Author Id Changes Lines of Code Lines per Change

neo neo 35705 (37.7%) 2450860 (35.3%) 68.6
mitch mitch 35142 (37.1%) 740208 (10.7%) 21.0
adamw adamw 525 (0.6%) 151790 (2.2%) 280.1
marcoc mMarcoc 847 (0.9%) 150770 (2.2%) 178.0
danilo danilo 297 (0.3%) 139584 (2.0%) 469.9
Helvetix Helvetix 445 (0.5%) 112126 (1.6%) 251.9
plaes plaes 114 (0.1%) 72674 (1.0%) 637.4
yosh yosh 2077 (2.2%) 71602 (1.0%) 34.4
simon simon 1519 (1.6%) 70009 (1.0%) 46.0
dooteo dooteo 97 (0.1%) 68347 (1.0%) 704.6
diihed diihed 112 (0.1%) 66861 (1.0%) 596.9
dindinx dindinx 1411 {1.5%) 66654 (1.0%) 47.2
al shopov al shopov 85 (0.1%) 64264 (0.9%) 756.0
grakic arakic 84 (0.1%) 63963 (0.9%) 761.4
mitr mitr 221 (0.2%) 63315 (0.9%) 286.4
aihana 145 (0.2%) 62993 (0.9%) 434.4
Zygis 166 (0.2%) 58781 (0.8%) 354.1
jordim 46 (0.0%) 56152 (0.8%) 1220.6
adrighem 112 (0.1%) 55610 (0.8%) 496.5

sigurd 53 (0.1%) 54296 (0.8%) 1024.4

weskaggs 2054 (2.2%) 54269 (0.8%) 26.4

stano 89 (0.1%) 52278 (0.8%) 587.3

pachimho 51 (0.1%) 51420 (0.7%) 1008.2
dnylande 172 (0.2%) 49578 (0.7%) 288.2

aman aman 45 (0.0%) 47827 (0.7%) 1062.8
serrador serrador 155 (0.2%) 46760 (0.7%) 301.6
hebra hebra 168 (0.2%) 45281 (0.7%) 269.5
jfried! jfriedl 445 (0.5%) 44736 (0.6%) 100.5
nshmyrev nshmyrev 101 (0.1%) 44202 (0.6%) 437.6
ituohela ituchela 106 (0.1%) 43954 (0.6%) 414.6
redfox redfox 85 (0.1%) 42107 (0.6%) 495.3
icq icq 61 (0.1%) 41822 (0.6%) 685.6
dnloreto dnloreto 109 (0.1%) 41062 (0.6%) 376.7
clyties clyties 82 (0.1%) 40461 (0.6%) 493.4
pgeyleq paeyleq 42 (0.0%) 40285 (0.6%) 959.1

Figure 2.3.2: Contribution of the developers second half project

The amount of commits are almost the same for the users neo and mitch, but mitch committed
more then 20% more lines of code. These two users are committing a lot in respect to the other users
in the second part of the project.

12

3 Getting a first visual overview

In this chapter the program SolidTA will be used to get a visual overview of the subversion repository.

3.1 Stable development periods

Stable development periods can be found by looking for periods within which the code base does not
change and/or grow significantly. The files in SolidTA can be sorted by creation time. The yellow dots
are commits(changes in the code). The following image shows this.

gl|HI\I\I\I\I‘I\||||\I\I\l\l\l\llll\l‘ll\l\l\HH|HHHI\I\I‘I\I\II\I\I\'HHH\I|||‘II\I\I\I\I\'HIII\IHH URARARRLEL HI\I\I\I\I'II\‘
1995 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 20097

i

3

&)1 | » =]
Figure 3.1.1: Stable development periods

Stable releases can be found be looking at time periods where there are no or a few yellow dots
(changes made in the code). A stable release could be halfway 2000 (arrow 1), because in that period
there are a few dots and the amount of files did not change. At the end of 2000 many new files were
created and many commits took place. Maybe new features were installed or the code was refactored.

Before arrow 2 heavy development took place. At and after arrow 2 there is a period the development
almost stopped and continued when a few files were created. At arrow 3 the license was changed
according to the SVN log. After this change there is very little development. A few dots appear. This
could be the latest stable release point.

3.2 Intense changes

The image in chapter 3.1 gives us also the periods when there were many changes committed. At the
beginning of 2000 there were intense changes taking place. There are lots of yellow dots which indicates
commits. Half way 2000 a stable release of the project was released. In that period the development
almost stopped for a month.

At 11 o'clock in the evening the users of the project committed the most. The following image
displays the amount of commits during the hours of the day. It could be that the users started heavy
developing at around 20:00 and committed the changes at 23:00.

13

16.000
15.000
14.000
13.000
12.000
11.000
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2

1.000

.000

/trunk: Activity by Hour of Day

0

Q\‘\/"v’bm‘:‘o”.%oﬁ,\’(\,y'\«,;v.;b,yh.@.&,\”'ﬂ.@.\sbn

<&

g

5
=)

»

Figure 3.2.1: Activity during the hours of the day

The following image shows the amount of commits during the days of the week.

Comimits

As the image shows the most activity is on Monday and then decreases a little bit by day, except
Friday.

32,500

30.000

27.500

25.000

22,500

20,000

17.500

15.000

12.500

10.000

7.500

5.000

2,500

0

/trunk: Activity by Day of Week

& o R R R & &

R & & & 5 <

3 <& &F N eb(‘ P o
-

Figure 3.2.2: Activity during the days of the week

3.3 Currently stable

The image in chapter 3.1 shows us that in the beginning of 2009 a stable release could be released.
From January 2009 there are a few commits and the growth rate of the files is stable. It does not grow
anymore. This continues for about 3 months. So there could be a stable release released. This is also
because the project moved to a GIT revision control system. The vertical yellow dots line near arrow 3
indicates that almost every file was changed. According to the log the following was changed in every

* all files with a GPL header and all COPYING files:
Change license to GPLv3 (and to LGPLv3 for libgimp).
Cleaned up some copyright headers and regenerated the parsers in the ImageMap

14

4 Authors analysis
The aim of this chapter is to perform several analyses regarding the authors of GIMP, i.e. persons who

commit changes in the repository.

4.1 Main contributors

The steps taken to retrieve the following image were:

e In the Metrics tab check the authors box.

e Select all authors.
e Open the evolution trend view.
e The display type of the evolution trend view set to flow.

e Set Commit count.

The following image will appear.

FIEEA TT T
= REC 198 2000 200 2008
= |

|
= Bttt n

Figure 4.1.1: Contribution of developers

In the x-as the time is shown. The y-as represent the user(a color). The greater the amplitude the
more changes the user committed in that period of time.

As the above image shows there are two users who committed a lot during the project. These users
are mitch(green) and neo(blue). What is not visible in the image is in which file/folder the users mitch
en neo are committing. The following images show where the users mitch and neo were developing:

Activity in Directories Activity in Directories
Directory Changes. Linesof Code Lines per Change Directory Changes. Lines of Code Lines per Change
‘plug-ins/common / 3471 (4.7%) 184285 (10.2%) 53.0 po/ 2171 (3.7%) 1200827 (36.4%) 598.7
app/widgets/ 7360 (9.9%) 171452 (9.5%) 232 po-plug-ins/ 1782 (3.1%) 956011 (26.8%) 536.4
app/core/ 7436 (10.0%) 148350 (8.2%) 10.9 L 8674 (14.9%) 171358 (4.8%) 19.7
ya 5195 (7.0%) 144681 (8.0%) 27.8 po-script-fu/, 1553 (2.7%) 120591 (3.4%) 77.6
app/ 6031 (8.1%) 123483 (6.8%) 20.4 plug-ins/common/ 3806 (6.5%) 01622 (2.6%) 24.0
po/ 315 (0.4%) 116894 (6.4%) 3710 app/pdb/ 973 (1.7%) 83229 (2.3%) 85.5
app/tools, 7431 (10.0%) 111073 (6.1%) 14.9 po-libgimp/ 1569 (2.7%) 67497 (1.9%) 43.0
app/qui/ 4732 (6.4%) 101341 (5.6%) 214 app/core/ 3363 (5.8%) 54043 (1.5%) 16.0
-app/pdb/ 3395 (4.6%) 93139 (5.1%) 274 plug-ins/imagemap/ 534 (0.9%) 44289 (1.2%) 82.9
libgimj 1984 (2.7%) 48987 (2.7%) 246 apn/ 2562 (4.4%) 42872 (1.2%) 16.7
po-plug-ins/ 122 (0.2%) 48840 (2.7%) 4003 app/widgets/ 2906 (5.0%) 42391 (1.2%) 14.5
‘app/actions/ 2678 (3.6%) 46008 (2.6%) 17.5 app/tools/ 3051 (5.2%) 41896 (1.2%) 13.7
plug-ins/print/ 138 (0.2%) 39375 (2.2%) 285.3 libgimp/. 1579 (2.7%) 36375 (1.0%) 23.0
app/display/ 2111 (2.8%) 37345 (2.1%) 17.6 libgimpwidgets/ 1285 (2.2%) 31023 (0.9%) 24.1
app/plug-in/ 2347 (3.2%) 35068 (1.9%) 14.9 po-perl/. 59 (0.1%) 27712 (0.8%) 460.6
‘app/dialogs/ 1660 (2.2%) 33689 (1.9%) 202 app/display/ 1233 (2.1%) 20139 (0.6%) 16.3
libgimpwidgets/ 1183 (1.6%) 20089 (1.6%) 24.5 app/qui/ 1487 (2.6%) 19848 (0.6%) 133
app/paint/ 1482 (2.0%) 28965 (1.6%) 195 po-tips/ 98 (0.2%) 18547 (0.5%) 189.2
po-script-fu/ 76 (0.1%) 25081 (1.4%) 330.0 app/base/ 805 (1.4%) 18168 (0.5%) 225
app/aeal/ 479 (0.6%) 12665 (0.7%) 26.4 app/confia/ 884 (1.5%) 16210 (0.5%) 18.3
app/menus/ 595 (0.8%) 12209 (0.7%) 205 devel-docs/libgimp/ 212 (0.4%) 15788 (0.4%) 74.4
modules/. 220 (0.3%) 11287 (0.6%) 513 app/paint-funcs/. 215 (0.4%) 14915 (0.4%) 60.3
plug-ins/FractalExplorer/ 112 (0.2%) 9451 (0.5%) 84.3 app/dialoas/ 1121 (1.9%) 14636 (0.4%) 13.0
devel-docs/libgimp/ 102 (0.1%) 8731 (0.5%) 855 devel-docs/libgimp/tmpl/ 396 (0.7%) 14603 (0.4%) 36.8
plug-ins/ipeq/ 191 (0.3%) 8307 (0.5%) a3.4 Dlug-ins/print/ 330 (0.6%) 13726 (0.4%) 415
devel-docs/app/ 92(0.1%) 6690 (0.4%) 727 tips/ 572 (1.0%) 13434 (0.4%) 23.4
plug-ins /script-fu/ 298 (0.4%) 6479 (0.4%) 217 plug-ins/aap/ 303 (0.5%) 12573 (0.4%) 414
devel-docs/libgimp/tmpl/ 356 (0.5%) 6103 (0.3%) 17.1 devel-docs/app/ 249 (0.4%) 12518 (0.4%) 50.2
app/xef/ 239 (0.3%) 5822 (0.3%) 243 app/plug-in/ 1059 (1.8%) 12463 (0.3%) 11.7
app/base/ 557 (0.7%) 5782 (0.3%) 103 plug-ins/ipea/ 345 (0.6%) 12390 (0.3%) 359
plug-ins/afia/ 102 (0.1%) 5596 (0.3%) sa.8 plug-ins/psd/. 31 (0.1%) 11630 (0.3%) 375.14
plug-ins/map-obiect/ 42(0.1%) 5279 (0.3%) 125.6 plug-ins/script-fu/ 494 (0.8%) 10887 (0.3%) 22.0
libgimpbase/ 269 (0.4%) 5137 (0.3%) 19.0 plug-ins/ script-fu/scripts/ 1408 (2.4%) 9836 (0.3%) 6.9

Figure 4.1.2.1: Contribution of Mitch Figure 4.1.2.2: Contribution of Neo

Based on this information the user mitch was developing on more places in the project while neo
mainly developed in the po folder. This is why mitch can be named as the chief developer and second
neo.

15

4.2 Main developers quit

In the previous chapter the users mitch and neo were considered to be the chief developers. What
happens if the chief developers quit the project. In the image the users mitch and neo are left out.
They are gray. The other users remain in color. As the image shows there is a lot of gray, except in the
beginning of the project. The user yosh(light green) is then very active.

g\l\\l\l\l\l\l‘HI\I\I\I\I‘I\I\I\I\I\I‘IIIIIII\I\IlII\I\IIIIII‘HI\I\I\I\I‘I\I\I\I\I\I‘I\IIIII\I\I‘II\I\I\I\I\II\IIIIIIIII\I\I\I\I\II\I‘
199 1999 000 001 {ill} {1} 004 Q0% 006 {il1) 003 00c =
-

Figure 4.2.1: Developer contribution when neo and mitch left out

If mitch and neo stop working on the project then it would be very hard to continue creating a
better application. It would take some time to get a new chief developer. Muks(dark blue) together
with martinn(pink) would be good candidates for the new chief developers. They committed about
25% of the project together. This could be a problem for further development in the other 75% of the
project.

4.3 Correlation between type of files and developers

Almost the whole project consists of .c and .h files. The files in toxic-green are .po files. This are
translation files for the application. The files in the image are grouped on file type and sorted by
creation time.

R B I B I L R L W I R R A R R Ao R MR A
1285 1209 2000 2001 2002 2003 2004 2005 2005 2007 2008 2009

Dle

[—]

Figure 4.3.1: Files (from top to bottom: .sh, .py, .txt, .po, .h, .c)

In the next image the horizontal bars are still the file types, but the colors are different authors.

16

P N R I B R L R L R R A R RS RN RA LR RN RSP
1208 1209 2000 2001 2002 2003 2004 2005 2005 2007 2008

o e —————

Figure 4.3.2: Developers that worked on the file-types

As the image shows there is no correlation between the type of files and the developers. This is
because there are only .c and .h files. The only thing to mention is that the .po files are created and
changed mostly by the same user. See the following image.

R I PR B L R L I L L TR L L I L U L R L R R RN R R
1999 2000 2001 2002 2003 2004 2005 2008 2007 2008 200s ¢

Nl EE e 1

Figure 4.3.3:

17

4.4 Correlation between location of files and developers
The following steps are taken to get the following image:

e In the Metric tab select folders filter

e Select all folders

e File arrange is sort alphabetically

g\lul\l\l\l\ll||\I\I\I\I\l\llll\l\l\l‘ll||||||\|\|H|\|\|\|\| R AR RN R R RN AR RN NN R R R EANRR R R RN
1998 1989 2000 2001 2002 2003 2004 2005 2008 2007 2008 2008 =

fapplactionsipalettes —commands o =]

Figure 4.4.1: Directories of the repository

Every different color is a different folder. There is no significant correlation between the location of
the files and the developers. There is a developer who did one thing in the project. The user maurits
did a lot in the /plug-ins/imagemap folder. The dark-brown color is the user maurits. See the following
screen-shot.

g\lul\l\l\l\ll||\I\I\I\I\l\llll\l\l\l‘ll||||||\|\|H|\|\|\|\| TIOO T T T T[T T T T [T T T A T T[T T T T [I rrrrrirs \I\I\II\I\I‘I\I‘
1995 1999 2000 2001 2002 2003 2004 2005 2008 2007 2008 2008 =

palug-ir crnd_cut.c

#)4] | v [
Figure 4.4.2: Developer contribution to directories

If we take a closer look at the two chief developers then we see that neo did a lot of work in the po
and the po-plug-ins folder. The images in chapter 4.1 show where the users were developing. Take a
look at the mitch user shows that the user was developing mostly in the app folder.

18

5 Code size analysis

"First, use the “Lines of text counter” calculator to compute the lines-of-code (LOC) metric for the
source code files in the repository. This should generate the ‘Code size’ metric. Be forewarned, this
plugin might take quite some time to execute, as it needs to actually access the contents of the source
files. After the ‘Code size' metric is available, answer the following questions."

First thing we need to do is to get the file contents of the files. To prevent retrieving the contents
of files which we are not going to use anyway, we first create a view called 'sources’. These files are
needed for calculation of the lines-of-code (LOC) attribute.

1. In the metrics tab we check 'File type’.

2. We filter on the types ".h, .c, .py, .sh, .txt’, which we consider as the main source file types.
3. In the evolution view we group by type.

4. We zoom in in the evolution view and select the colored files.

5. Yet we have created a view, which we rename to 'sources’

Now a view is created of the files which contents we want to retrieve. This is achieved by clicking the
'Update contents’ button in the 'Projects’ tab. This command is very time consuming; it took us 4
days (96hours) to retrieve the data.

When the contents of the source files were retrieved, to analyze the size of the code, we still needed
to count the lines-of-text value for each file. This we achieved by means of the 'Lines of text counter’
plug-in in SolidTA. We expected this to be an 1/0 intensive operation, however the benefits of a (last
generation) SSD are huge when doing this: the total run-time of the lines of text counter is about 1
minute.

However, the line of text counter generated a 'Lines of text’ metric in SolidTA, when we were
expecting the 'Code size' metric. After a 7 hour lasting execution of the CCCC calculator we indeed
acquired the 'Code size’ metric, where LOC (lines of code) appeared one of the selectable attributes.

Before continuing further analysis, first we show a comparison of ’lines of text” and the ’lines of
code’ metrics.

Lines of text Code Size

Lot ~||oc |
Hlo-s1 - [l 0-51 i
W 52-123 W 52-123

I 124- 185 O 124-1a5

W 186 -247 W 185 -247

W 243 -309 = [248 - 309 =
O 310- 371 [310- 371

[] 372 -433 [] 372-433

[434 -4as5 [434-4a5

W 495 -557 - | Il 4%5-557 -

J | cfa | J | cfa |

Figure 5.0.1: Legend

19

|

A

Figure 5.0.2: Lines-of-Text Figure 5.0.3: Lines-of-Code

The CCCC calculator was able to calculate metrics for only a subset of the files, for which we have
a LOT calculation. The 'Code Size” metric only supports a sub-set of source-code files; *.txt and *.py
files are not supported. Fortunately the amount of these files is relatively small (gray lines in 5.0.3).

From the figures 5.0.2 and 5.0.3 it becomes clear that the amount of LOT is greater than the
amount of LOC. Of course this is to be expected as LOC is a subset of LOT; from all LOT some lines
are code, while others are white-space, or other non-code lines.

The rest of the code is analyzed using a selection of this file subset. This selection can be created
by grouping by 'Code size’, zooming in and finally selecting all colored lines. We call the selection
'sources _measurable’.

20

5.1 Code size evolution

"How is the size of code files evolving in the project? Are source code files growing or shrinking on the
average?"

To analyze the file size evolution we first take a look at the global project evolution. For this we:
1. Select the Code Size (LOC) metric.
2. Select all attributes in the LOC menu.

Right-click on the selected attributes and select 'show evolution’.

~ w

If the trend view was not enabled already, this one has to be enabled too by pressing the 'bar’
button in the top-right area of SolidTA.

The initial view shows us the average file size (in terms of LOC):

EETIEERT T T T
FETEES ihel o 4o e it

Figure 5.1.1: Average code size (LOC) vs Time

For a better overview of the groups we have also taken a look at the code size evolution in terms
of amount of files per size group (groups as defined in 5.0.1). This was achieved by right-clicking the
evolution view, selecting the 'Flow' as display type and once again right-clicking the evolution view,
this time choosing 'File count’. The result is shown in figure 5.1.2.

T T T
S ERs Any

ot

CRp

£

Figure 5.1.2: Amounts of files (Code size (LOC) in colors) vs Time

From 5.1.2. it is clearly visible that the relative amount of small files increases overtime; in the
beginning the ratio of small files is about 40% of all files, while this ratio increases to more than 50%.
The total amount of large files does increase overtime, however the ratio, initially around 30%, appears
to decrease to around 10%.

Figure 5.1.1 indicates that the average code size increases over time. However, it is not possible
to say whether old source files are growing or shrinking on the average: by adding new small files, the

21

average code-size will be influenced to appear smaller. This does not indicate anything on the already
present files though. We think the average size of old source files will not grow in the same way as in
5.1.1. For this every file’s evolution should be analyzed separately. As an sample we take the files from
the initial commit and analyze their evolution for a better picture.

For this we sort all files by their creation time, zoom in at file level and select all files that are
present from the beginning. This selection is called 'sources _initial’. On this selection we perform
the same steps as for 5.1.2. The result is shown below:

=D

-

icuoticadl

Ilﬁﬁigy|lll|lln-/~il|““

LTI
Figure 5.1.3: Code size (LOC) evolution of initially committed files

Figure 5.1.3 confirms our assumption: files that were large initially do not decrease in size, or show
a slight size decrease at best.

In figures 5.1.1 - 5.1.3 a sudden decrease of complexity is visible in the first half of 2006. The code
complexity is increasing, to decrease suddenly (the 'hitch’ in light-blue to yellow layers). Combining
this with the information from the global history overview, where no significant change is visible in the
amount of source-code files, we conclude that some re-factoring took place here.

"Which are the fastest growing files? Which are the files that shrink the most?"

To find the files that grew/shrunk the most, we take the following steps:
1. Take the 'sources measurable’ selection.

2. Now we want to filter out the largest files only, as these files could show the greatest fluctuation
in size. This is done by selecting the bottom item in the selection menu (5.0.1) of Code Size

(LOC).

3. We group the evolution view by Code Size. Now the largest files are grouped together, we create
a new selection of them called 'sources _largest _size'.

4. Continuing from this selection, we now select the smallest files only, group these by Code Size
and make a new selection of these files called 'sources _changed _size’.

The files that remain in the last selection have been in both the 'largest’ and smallest state at some
time. To show the changes (from small-to-large or large-to-small), we enable both the smallest and
largest LOC item. The intermediate items are left out to emphasize the changes. Finally we sort the
whole evolution by time for the clearest overview. The results are shown below in figure 5.1.4.

22

PR R R A A R R L R N R RN RN RN AN R R NA R LR AR
1088 1209 2000 2001 2002 2003 2004 2005 2008 2007 \ 2008 2000 |

Figure 5.1.4: Files with greatest size fluctuation.

Files that decrease in complexity start red and evolve to blue. For files that increase in size over
time, the opposite is true: these files start blue and end red. The less gray space (gradual evolvement)
between the red and blue, the faster the files have grown/shrunk. We think the names of the actual files
are not relevant for this analysis, though they can be retrieved by opening the 'sources _changed _size’
selection, contained in the SolidTA data.

To show this being just a fraction of all files that have been large at some point, we show the result
of enabling small file indication in the selection 'sources largest size"

P B R L P A R R R R L R MR AR
1008 1209 2000 2001 2002 2003 2004 2005

Figure 5.1.5: Evolution of largest files (overall)

Figure 5.1.5 confirms our assumption again: files that were large initially do not decrease in size, or
show a slight size decrease at best.

23

5.2 Code size vs Total Size

"Group all files, in the evolution view, based on the ‘Code size’ attribute (right-click in the evolution
view, and then ‘Group selected’). How much is source code, in terms of percents, from the total project
size (in terms of files)?"

To show the ratio of source files over the total amount of files, based on the 'code size' attribute,
we perform the following steps:

1. Enabled the Code Size metric (LOC)
2. Right-click the evolution view, sorted on creation time

3. Right-click the evolution view and group by Code Size.

The result of this is shown below:

pKll [[
Figure 5.2.1: Code size as part of total size

Roughly a half of the amount of the repository’s files are source-code files (as interpreted by the
CCCC calculator). This should not be confused with the amounts in section 2.2, where we talk about
total file sizes, instead of file counts.

24

6 Complexity analysis

6.1 Most complex files

Which are the most complex source files in the entire project?

To find the most complex files we need to undertake the steps listed below. Assumed is that the
CCCC calculator was executed before (as in section 5).

1. Enable the sources measurable selection.

2. Go to the Metrics tab and select Complexity.

w

Select "Total complexity’ in the drop-down menu that just appeared.

&

Move the slider to the right until the screen shows less red.
5. Select the bottom menu-item (in this case 162 - ...).
6. Sort the evolution view on creation time for better overview.

7. Group the evolution view on complexity. If the overview contains more than 10% of red lines,
repeat from step 4 until this is not the case anymore.

These steps result in figure 6.1.1.

o
8l Jioop

8]

o[« |

Figure 6.1.1: Most complex files

As we need to look at this set of source files in the next section, we create a selection of these files
in the same way we did in previous sections. We call this selection 'sources _largest _complexity'.

25

6.2 Complexity fluctuations

Are there files on which the complexity decreases significantly in time? Which are these?
Are there files in which the complexity increases significantly in time? Which are these?

To find which files’ complexity decreases in time significantly, if any, we use the same approach as
in 5.1: within the most complex files we look for files which at some time were not complex at all.

1. We start off loading selection 'sources _largest complexity'.

2. In the metric configuration we select only the top menu item for complexity (in this case 0 - 15).
All files that were not complex at some point show up in blue.

3. We group the evolution view by complexity.
4. From these files we create a new view called 'sources changed complexity’

5. Finally selected the bottom item from the complexity menu, while keeping the top item selected
(hold CTRL). For a better overview sort the view on creation time.

These steps result in the overview shown in figure 6.2.1.

L R R B A RS L R R AR LR R R
2000 2001 2002 2003 2004 2005 2006 2007 o
|1l N |

Figure 6.2.1: Files with greatest complexity fluctuation.

For this analysis the same holds as in section 5.1: files that decrease in complexity start red and
evolve to blue. For files that increase in complexity over time, the opposite is true: these files start
blue and end red. The less gray space (gradual evolvement) between the red and blue, the faster the
files have grown/shrunk. We think the names of the actual files are not relevant for this analysis,
though they can be retrieved by opening the 'sources changed complexity' selection, contained in
the SolidTA data.

To show this being just a fraction of all files that have been highly complex at some point, we show
the result of enabling low-complexity indication in the selection 'sources_largest _complexity:

26

PR RN R R L N R R N A RN Rl A R RN AN RN RN R
1098 1209 2000 2001 2002 2003 2004 2005 2008 2007 2008

Figure 6.2.2: Evolution of most complex files (overall)

27

6.3 Complexity correlations

"For the above files (high complexity and/or complexity rate of variation), are these highly active files
(with many changes), or not?

To find out whether a correlation exists between the rate of variation (amount of commits) and com-
plexity we undertake the following steps:

1. We open the sources measurable selection.

2. In the metrics tab we enable Complexity, choose Total complexity and finally select the bottom
item (144 - ..).

3. Finally we sort the evolution view on activity.

In figure 6.3.1. the result of these steps is shown. The amount of commits is shown on the left side.

R R R Rl B L RN AN L RN R
2004 2005 200 2007 2008 2o0s#|

Jao

AR S S A e AR R RS AR RRR S
al [iz [0 [0
e

ols o]
Figure 6.3.1: Source files sorted on activity, complex files in red.

Indeed, the most complex files are mainly on top of the image. From this we conclude a correlation
between complexity and activity exists:

1. Files with high activity are likely to be complex.

28

"Is there some correlation between the highly complex files and the file size (measured in lines of
code, as done in Step 4)? Can you find a direct correlation? Or an inverse correlation? Or is there no
visible correlation to be found?"

To find out whether a correlation exists between the complexity and size of files we will first com-
pare the fluctuation of these aspects on the set of most size-fluctuating files. For this we need to:

1. Open the sources _changed _size selection.

2. In the metrics tab enable Complexity and select the largest and smallest items.

3. In the metrics tab enable Code size and select the largest and smallest items.

4. Change the colors for large code size to black and small code size to yellow. This will yield a
better distinction between the two properties.

When switching observer between the two properties, it will look as if the red changes into black, while
the blue changes into yellow. This is shown in figures 6.3.2.1 and 6.3.2.2.

To show that the same is the case for all large files, steps 2 - 4 are performed on the selection
sources largest size. The results of this are shown in figures Figure 6.3.2.3 and Figure 6.3.2.4.

Complexity File Size

uating files

Figure 6.3.2.3: Largest files Figure 6.3.2.4: Largest files

From this it seems plausible that file size and complexity are directly correlated. We perform a trend
check on both aspects to see whether they really evolve in the same way. This is achieved by enabling
evolution on both the Complexity and Code size metrics. The graph visible in the trend view is shown
in figure 6.3.2.5.

7 T TT

IIIII 1339
018

T T T T T] T e

T i 5
2006 200 25 2009

Figure 6.3.2.5: Trends of complexity and file size of most size-fluctuating files

29

We can conclude that the complexity of files is indeed significantly correlated to the file size,
though the reverse is not necessarily true. To find out whether also file size is significantly correlated
to complexity, we perform the previous steps on the selections sources changed complexity and
sources largest complexity. The results are shown in figures 6.3.3.1 - 6.3.3.5.

Complexity v File Size _ S

27 TS,

o

26 Fie

Imum

6.3.3.5: Trends of complexity and file size of most complexity-fluctuating files

As the same relation appears from the other side we can conclude complexity and file size are
correlated one-to-one;

1. If file size increases, complexity will increase.

2. If complexity increases, file size will increase.

30

7 Conclusion

"Given a software repository, perform several analyses in order to assess the maintainability, modularity,
complexity, and quality of the software in the repository, as well as the development process."

Complexity

From section 6 we can conclude that the complexity of the project has not increased drastically over
time. As in section 6 a one-to-one correlation was determined between complexity and file size, we can
use file size to say things about the complexity.

While the total amount of files has grown, the relative amount of complex files has decreased (figure
5.1.2). Furthermore, the files that were committed initially do not change in complexity, or even show
a slight decrease. This indicates that new functionality is added to the code in a well organized way.

Figures 5.1.1 - 5.1.3 all show a hitch in complexity in 2006. When we look at figures 5.1.4 and
5.1.5 we see that at this same point many complex files show a huge decrease in complexity. Some
thorough refactoring took place there, reducing the average complexity significantly. Besides, this was
not the only point of refactoring, as small sudden decreases are visible over the whole time-line.

We conclude that the complexity of The GIMP is well maintained.

Modularity

According to the analysis in section 2, The GIMP appears to be designed for modularity as it contains an
/app and a /plug-ins directory. When looking inside the /app and /plug-ins folder, they both appear to
be split up again in many sub-folders. This and a maintainable complexity are the strongest high-level
signs that modularity is applied.

Maintainability

Maintainability is not a directly measurable aspect of the source-code. We can however derive whether
a project is well maintainable by looking at its performance in complexity and modularity. Complexity
has an inverse effect on the project’s maintainability, while modularity should effect the maintainability
in positive way.

As the project has a low complexity and a high modularity, we conclude that it's maintainability is
quite good.

Overall quality of software and development

From the previous points we derive that the high-level quality of the software appears to be good.

The software development appears to be dominated by neo and mitch

It is good that the project has multiple main developers, who all are familiar with each others code
(according to figure 4.3.2). On the other side, a few developers being responsible for the largest part
of the code-base forms a risk for the project. For example if one of them would leave, the project could
bleed to death.

Whether this happened in the beginning of 2009, when the GPL3 license was introduced, is not
entirely clear. It seems that neo - and many other developers together with him - stopped contributing
to the project once the new license was added. This is visible in the low amount of new releases over
the last 2 years. The road-map of The GIMP shows new major releases, though we assume it is still an
active project.

31

8 Evaluation

In this section we discuss our experience of carrying out the work for this report. We start with the
discarded repositories, followed by a short discussion on SolidTA, to finish with a global evaluation.

8.1 Discarded repositories

Finding a project with workable properties (as listed in the introduction) was a tough job. In this
(sub)section we will list the repositories we have attempted to use. For every repository the source of
the (blocking) issue will be discussed.

8.1.1 Chromium

The first project we have given a try was Chromium. The link for this repository is http://src.chromium.org/svn/trunk.
The repository of this project was created in 2008 and has been extremely active ever since.
Naively we started with checking out the whole (/trunk) of the repository, which resulted in a code-
base of about 80,000 files, 7.4GB in total. As retrieving this large amount of files lasted one night,
we looked for a subset of the repository to analyze; we tried to analyze /src directory (30,000 files,
460MB) with SolidTA, not realizing that the application would need to retrieve all revisions.

|2 Log Messages - D\Devichromiumtrunkisre o|B] =
From: 26-7-2008 ~ To: FERt - s ¥ Messages, authors and paths
Revision Actions Author Date Message =
A 111352 G4 bauerb@chromium.arg 16:18:06, woensdag 23 november 2011 Add sample extension that allows setting plugin-specific content settings.
111351 & tfarina@chromium.org 15:32:09, woensdag 23 november 2011 gtk: Move DonnloadShelfGtk data member to private section of BrowserWindowGtk,
11350 & torne@chromium.org 15:01:13, woensdag 23 november 2011 Remove useless use of pref from unit test.
11349 @ chrome-adnmin@google. com 14:39:13, noensdag 23 november 2011 Update .CEPS.git
11348 @ reed@google.com 14:38:43, woensdag 23 november 2011 revert skia back to 2730 - two win-dayout images faled, need to rebaselin Review URL: http: fcodereview, chromium, ara/36 76006
I 111347 & chrome-admin @google.com 13:36:13, woensdag 23 november 2011 Update .DEPS.git
1113% & reed@google.com 13:33:44, noensdag 23 november 2011 roll skia to 2735 Review URL: http:/fcodereview. chromium, org/8636022
111345 @ kalman@chromium.org 13:13:31, woensdag 23 november 2011 Convert extensions code Using DictionaryValue: ey _iterator and GetWithoutPathExpansion to DicbonaryValue: Iterator.
1132 & jingzhao @chromium.org woensdag 23 november 2011 Allow POST method when converting file protocol to htp protocol for layout tests
111341 @ jeremy @chromium.org nsdag 23 november 2011 reland r110861 reverted after fixing ChromeGS failure.
11390 @ chrome-release@gaogle.com nsdag 23 november 2011 Updating trunk VERSION from 548.0 to 942.0
11335 & rsleevi@chromivm.org censdag 23 november 2011 Revert 111320 - Disable PipelineImplTest. AudioStream on 05 X
11334 @ thestig@chromium.org voensdag 23 november 2011 Print preview: Bo a bit more logging when enumerating printers.
11333 @I jaiveli@chromium.org yoensdag 23 november 2011 Adding base URL to the frame committed message.
11332 @ thestig @chromium.crg oensdag 23 november 2011 Print Preview: Properly handle window.print0.
m3s @ rsleevi@chromivm.org oensdag 23 november 2011 Disable Inspec ed acoss al platforms, due to tineouts
11330 & satorux@chromium.org oensdag 23 november 2011 chromeos: Pulliberos v182 and the latest system_api.
111329 & akalin@chromium.org 8:55:20, woensdag 23 november 2011 [Sync] Made some sync session member functions const
11328 & jdveli@chromium.org 8:53:03, woensdag 23 november 2011 Switch MHTML GenerationManager to use a Callback.
11327 @ oshima @google.com 8:38:02, woensdag 23 november 2011 Disable Inspect edWorker that times out.
11133 @ releevi@chromium.ra :20:56. woensdaa 23 november 2011 Disable DeviceOr iderTest, Obser d on Linux 2
« I »
|Add sample extension that allows setting plugin-specific content secttings. -
Action Path Copy frompath Revision =
Added [trunkfsrc/chrome}c / fdocs/ / ons/plugin_settings
added [trunk/erc/chrame/c e Jdocs/ y s /plugin_settings/_locales
Added [trunkfsrc/chrome/c g ionsfplugin_settings/_locales/en il
Showing 85912 revision(s), from revision 3 to revision 111352 - 1 revision(s) selected.
Hide unrelated changed paths Statistics
[] Stop on copyjrename
[Tlindude merged revisions
[Show Al - [mextmo | [Refiesh |

8.1.1: Log of Chromium repository /src directory

A few hours after the initiation of file-list retrieval, we were able to see the file-list in SolidTA.
However after a few days of updating version information, we began to wonder why it was taking so
long without any visible progress, soon to find out that this repository is not only huge in size, but also
in the amount of revisions (more than 100,000 in total, from which 85,000 relevant for this directory).
We had mistaken the total amount of revisions to be around 10,000 initially.

We figured that taking a smaller subset of files could resolve the problem. Therefore we decided to
analyze the source-code of the browser only, contained in /src/chrome/browser. This directory contains
about 6,200 files, altogether about 55MB in size. The amount of relevant revisions was about 36,000.

32

4" Log Messages - D:\Devichromiumtrunkisrc\chrome\browser

|l= 3| = |

Messages, authors and paths

From: 27- 7-2008 - To: FERt - s ¥
Revision Actions Author Date Message a
83 & beng@google.com 2:41:01, woensdag 30 juli 2008 I screwed this one up, and had my index munging wrong.
82 & ojan@gaogle. com 1:47:55, woensdag 30 juli 2008 Fix hang detection when dosing a tab to not fire when a modal dislag is open.
81 & ojan@google. com 1:32:47, woensdag 30 juii 2008 Fix not dlosing the browser with hung, crashed and interstitial tabs, Adds a 1 second hang monitor for the beforeunload/unload events to fire,
74 & nsylvain@google. com 23:54:26, dinsdag 29 juli 2008 Revert revision 73 because it was checked in when the tree was dosed,
73 @ stanguturi@google. com 23:45:28, dinsdag 29 juli 2008 Made changes to display the tooltip window when user navigates through the icons in the toolbar using keyboard arrow keys.
71 & nsylvain @google. com 22:57:35, dinsdag 29 juii 2008 Reverting revision 70, 86 and 65 to fix crashes.
68 & evanm@google.com 18:33:56, dinsdag 29 juli 2008 Make the new tab thumbniai sighly less confusing - laid out properly, but uncicksble - when something goes wrong and the page s fed garbage
66 & brettw@goagle.com 18:36:36, dinsdag 29 jul 2008 Puts back the optional unescaping of control characters and URL parse-affecting characters, That patch was reverted due to buid problems.
65 & creis@google.com 18:35:45, dinsdag 29 juli 2008 Makes the process model heuristic for generated searches only apply in —process-per-site, since it isn't relevant otherwise. (This matters now the
63 & beng@google.com 7:52:57, dinsdag 2 juli 2008 Add a return value to InternalCloseTabContentsAt, indicating whether or not the TabContents was dosed immediately or if we're waiting for an u
57 & beng@google.com 5:00:37, dinsdag 2 jull 2008 Ugh. Tt turs oLt we were never properly removing the dragged tab from the source tabstrip when a drag was completed, This was causing varia
5 & pkasting@google.com 2:46:43, dinsdag 29 jull 2008 Save a few lines since I dor't need a test fixture, This was just sily oversight on my part due to not having written a new unittestin a while.
54 & tc@google.com 2:28:30, dinsdag 29 juli 2008 Fix the buid. T meant to incluce this in the chrome side of the previous change.
47 % timsteele@google.com 0:51:47, dinsdag 23 juli 2008 Delete empty, unused avatar folder.
% & deanm@goagle.com 20:47:39, maandag 28 jul 2008 Fixca few incorrect #endif's in indude guards.
35 & beng @google.com 18:36:13, maandag 28 jull 2008 Fix some gitches dragging tabs
34 & nsylvain@google. com 17:45:13, maandag 28 juli 2008 Fix comple errors due to missing includes.
3 @ deanm@google.com 16:49:35, maandag 28 juli 2008 Try to cut down on some unnecessary dependendes, Remove any unused indudes of gurl.h in header files, and forward declare GURL where pos
15 initial.commit 1:55:29, zondag 27 jul 2008 Add chrome to the repository e
« m v
|gck: Move DownloadShelfGtk data member to private section of BrowserWindowGtk. i
Action Path Capy frompath Revision
Modified ftrunk/src/chrome browserfuijgtk/browser_window_gtk.h

Showing 36729 revision(s), from revision 15 to revision 111351 - 1 revision(s) selected.
] Hide unrelat=d changed paths

[] stop on copy/rename

[include merged revisions

Statistics

) G

'l Show al -] [Mextioo

8.1.2: Log of Chromium repository /src/chrome/browser directory

Retrieval of the file-list took about 2 minutes, version information required 4 hours, but getting the
contents appeared impossible. SolidTA would take 2 days to retrieve about 25% of the contents, to
stall thereafter. Because we were not familiar with SolidTA and therefore did not know how to continue
this process, we repeated the content-retrieval 2 more times. As we were suspicious that this might
not work at all, we started looking for other projects. After a week of still not having workable data we
discarded the Chromium project.

8.1.2 FileZilla 3 client

A small project we have tried to obtain the data of was FileZilla 3. The link for this project is
http://svn filezilla-project.org/svn /FileZilla3/trunk. The repository of this project was created in 2004.

Again the first thing to do was checking out the repository with SVN. This did not take a long time.
The check-out resulted in a code-base of 17.8MB in size, containing 928 files. The amount of revisions
was 4280.

We were actually successful in acquiring all data with SolidTA, which was done to test whether we
are able to retrieve the data of a small project at all.

Sadly the projects changes were only committed by three guys, of which one had 1 commit in total.
Besides that the project was to small for a relevant analysis, according to the requirements listed in the
introduction.

To satisfy all requirements we had to look further.

8.1.3 Octave

Octave is a open-source version of MatLab. The link to its repository is https://octave.svn.sourceforge.net/svnroot/octave/t

forge. The repository of this project was created in 2001.

Again we started off with checking-out the repository, which progressed faster than what we had
seen before.

The trunk of Octave contains 52.1MB of data, in a little more than 9,500 files. The amount of
revisions was about 8734, which altogether was of acceptable size for a relevant analysis.

The reason for us to drop this project were the source-files, primarily existing of .m (MatLab) files;
the CCCC metric calculator is not able to process for code complexity analysis in SolidTA.

33

8.1.4 TortoiseSVN

Another project we tried was TortoiseSVN. The link to its repository is http://tortoisesvn.googlecode.com/svn /trunk.
The repository was created in 2003
The project exists of 145MB of sources, contained in almost 7,000 files. The amount of revisions
was with 22087 a bit high, but considered the speed of the check-out we would give it a try.
Sadly our hope vaporized shortly, when - for unknown reasons - SolidTA appeared unable to acquire
the file-list.

8.1.5 XBMC

Xbox Media Center, which is the original name of the project, seemed interesting as one of us was familiar
with compiling the software. The link to the repository is https://xbmc.svn.sourceforge.net/svnroot /xbmc/trunk.
The repository was migrated to Git in the beginning of 2011.
The speed of the check-out was a bit disappointing. The repository contained 365MB of data in a
bit more than 19,000 files. The project is subdivided in many components, enabling us to take a subset
of files. Therefore we decided to give it a try.
Within some time SolidTA was able to retrieve the file-list. However, retrieving the version info
would make SolidTA crash for unknown reasons, rendering XBMC unworkable.

8.1.6 VirtualBox

The last project that we tried before we came to The GIMP was VirtualBox. The link to its repository
is http://www.virtualbox.org/svn/vbox/trunk/src.

The project was started in 2007, and has had an active development as it reached almost 40,000
commits in those years. The speed of this repository was amazing, resulting in excitement on our side.
The total size of the data was 209MB in 13,350 files.

After the check-out, which took a very small amount of time, we were very disappointed when it
appeared that the only 'user’ that had ever committed was 'vboxsync'. This led us again to discard a
project that almost qualified all requirements.

8.2 SolidTA

The opinions about SolidTA are divided. Some really like the tool, while others hate it. We think
SolidTA is a powerful tool for gathering insight into a project’s evolution. However, it does have some
serious performance and stability issues, which we discuss next.

8.2.1 Performance

First thing we noticed is that the speed, with which data is retrieved, is simply horrible. Where a simple
SVN tool, like TortoiseSVN, takes seconds to retrieve the whole file-list, SolidTA can take up to tens
of minutes. The reason for this is not evident, but the consequences are.

Sadlyu, the minutes lost for file-list retrieval are acceptable compared with the time it takes to
retrieve version info and/or file contents.

We are not completely aware of the way this is implemented, as we do not have access to the source-
code of SolidTA. Though it is very clear that SolidTA retrieves the information file-by-file, instead of
doing this in the same way as TortoiseSVN. The latter requests a complete revision log, which usually
contains changes on multiple files. This results in TortoiseSVN showing the full revision history within
minutes in worst case, where this takes hours in SolidTA. As far as we have been able to determine,
there is no difference between information of the revision history and the version info.

Finally, the implementation of the last step - the retrieval of all contents in SolidTA - is questionable.
For this information SolidTA requests the contents per file and per revision. We assume that an SVN
server orders its files as received; files of revision 1 are written together, followed by files of revision 2,
etc. By requesting each revision for each file it is likely that the server will have to search the hard-disk
on every request. This could be prevented by requesting all files of a whole revision at a time. Although
we do not have proof for this, we are convinced a lot of performance can be gained here.

34

8.2.2 Stability & reliability

SolidTA for some reason it skips the retrieval of some files every now and then. The reason for this
could be a server-time out on the specific request, however it is not corrected by sending the request
again.

SolidTA also has some strange stability bugs. We have not been able to find the exact reason
for SolidTA refusing to retrieve the file-list and/or file-contents for some projects, or even crashing at
this point. However, as these issues occurred on more than one machine, while the repositories were
checked-out properly with TortoiseSVN, we think that the issue lies within Solid TA.

Furthermore, at some point one of us was not able to start SolidTA anymore, after installing SVN
(command line executable), and adding its directory to the PATH system variable. Removing this
directory from PATH rendered SolidTA functional again.

8.3 Software evolution analysis

Despite the problems we encountered when choosing a project and retrieving its data, we found the
analysis quite interesting. Though SolidTA provides just some of the techniques discussed in the
Software Maintenance and Evolution course, these techniques provide a powerful method to analyze
and learn from the evolution of a project.

The assignment was set up to be completed using SolidTA, which provides primarily file-level analysis
of a project. Other tools exist that can analyze on syntax-level, line-level, dependencies and many more.
Though, for analysis of an unfamiliar project, this approach is probably best, as other analyses would
require one to have far-going knowledge of the source-code.

Altogether the course and assignment have raised our interest in the relatively new field of software
evolution analysis.

35

9 Appendices

9.1 Time consumption

In this section the time consumption of the most time consuming tasks are set out. We have not
measured the time for reporting as this requires a complete hour registration, e.g. for checking and
improving of section. Furthermore the main responsible persons are noted for every section/task.

| Activity | Time spent | Author |
Finding a project
Investigating?| Chromium repository 2 days Avdo & Erik
Retrieving Chromium contents (aborted)s 2 weeks Avdo
Investigating FileZilla repository 3 hours Avdo
Retrieving & Processing FileZilla contents 2 days Avdo
Investigating Octave repository 2 hours Avdo
Retrieving Octave contents 1.5 days Avdo
Investigating TortoiseSVN repository 2 hours Avdo
Investigating XBMC repository 2 hours Avdo
Investigating VirtualBox repository 2 hours Avdo
Investigating GIMP repository
SVN check-out 30 minutes Avdo
SolidTA file list 1 minute Avdo
SolidTA version info 2 hours Avdo
Retrieving & Processing GIMP contents
SolidTA retrieve contents 4 days Avdo
Compute CCCC metrics 2 x 7 hours Avdo
Compute StatSVN statistics 6 hours Erik
Reporting
Report Section 1 Avdo
Report Section 2 on Chromium (discarded) Avdo & Erik
Report Section 2.1, 2.2 Avdo
Report Section 2.3 Erik
Report Section 3 Erik
Report Section 4 Erik
Report Section 5 Avdo
Report Section 6 Avdo
Report Section 7 Avdo
Report Section 8 Avdo
Report Section 9 Avdo
Essay Erik

36

I'ij l{Sl]_n iVGI‘ S it eit faculteit wiskunde en informatica
groningen / natuurwetenschappen /

Software Maintenance & Evolution Essay
Dependency Evolution Analysis

Avdo Hanjalic / 51553623
Erik Bakker / s2074893

November 24, 2011

Contents

[1__Introduction|

|2 Data modeling|

2.1 Assumptions|
2.2 raphs|

.......................................

2.4 Optimization|.

[3__Dependency data visualization|
3.1 Mockup|
3.2 raph types|
[3.37 Advantage knowing particular graph structure]

o b wWwowWw w

oo ~N~NOS

1 Introduction

Almost every software project nowadays uses a revision control system such as subversion. Project
leaders are more and more interested in what kind of information the revision control systems can give
them. By default the revision control system subversion give no more information then the commit
logs. When analyzing the revisions it can give more detailed information about the development of the
project. Here is where the visualization program comes in place. With dependency evolution analysis
the information of the revisions can be used to display relevant information about the project.

2 Data modeling

2.1 Assumptions

Before making the data model, we made a assumption that the programming language of the code
should be java. The revision control system should be subversion.

2.2 Graphs

The structure of a data model depends on what kind of data has to be stored and what kind of output
has to be created. In this case the output are graphs. The following graphs are taken into account
when creating the data model:

e A call graph
This graph shows the calls between functions in the entire project.

e A class inheritance graph
The inheritance graph displays the inheritance relations between different classes.

e A containment graph
A containment graph shows the relations between methods, classes, files, folder. E.g. method-
in-class-in-file-in-folder.

e A build dependency graph
This graph is responsible for showing the dependencies between files. E.g. when file X is changed,
then files Y and Z need to be rebuilt.

2.3 Data model

[Changes] [Changes] Changes layer

Reivision layer

Revision

Folder layer -

File layer

has
inherit mj Class layer
"""""" Y N T-C- I i S A B
has\ has cali

[Functlcn } cal {Functlon J Function J[Functlcn]F&

unction layer :

Figure 1: UML diagram data model

Figure 1.1 is the representation of the data model. First of all the content of the nodes (Revision,
Folder, File, etc.) will be discussed and then the relations (edges) between the nodes.

2.3.1 Nodes

Content of node Revision:
e Revision number
Content of node Changes:
e Output 'svn diff'. Difference between current and previous revision.
e Changes of correspondences number
Content of node Folder:
e Folder name
e Correspondences number
Content of node File:
e File name
e LOC (Lines of Code in the file)
e Correspondences number
Content of node Class:
e Class name
e Correspondences number

Content of node Function:

e Function name
e Correspondences number

Every node except for the revision node has a Correspondences number. This number is equal for
the function in all different revisions. Function getName() in revision 23 gets correspondences number
F546346, then the same function in revision 24 gets the same correspondences number. It is possible
that during the development the name of the function changes. When the function name changes the
correspondences number will not change. To determine if the function name is changed the changed
node can be used. Every change compared to the previous revision of the project code is stored in this
node. This way changing the function name will be noticed and the same Correspondences number will
be given to the function.

2.3.2 Edges

Every edge (relation) can be accessed from the corresponding nodes. Node Revision 2 can go to Node
Revision 1 and Node revision 3. Every Revision node has a relation with the Changes node and the
several Folder nodes. Every Folder node is linked with File nodes.

Every File node can have two different relations. A File node has a class inside it and a File node can
import another file Node. There can be several relations between different files and a file can have
several classes in it.

Every Class node can have several has function relations. A class can also have a inherit relation with
another class.

The Function nodes can only have call relations. This call relations can be with another Function node
or with itself (recursion).

2.4 Optimization

To optimise the performance of the visualization program an implementation of a data model per graph
is required. This way only the first time the visualization program starts it takes a long time to generate
the data information. Once this is complete, the graphs can be easily and quickly created.

A call graph only needs the function calls. The following data-model would be implemented to optimise
the visualization program:

(Function \
[] correspondencesNumber varchar(255)
[name varchar(255)
[] functionCalls varchar(99999999)
[] classCorrespondencesNumber varchar(255)
[] fileCorrespondencesNumber varchar(255)

[] folderCorrespondencesNumber varchar(255)
[] revision integer(10)

Figure 2: data model call graph

All functions will be inserted in this table:
e correspondencesNumber: this is the number of the function.
e name: this is the name of the function.

e functionCalls: this is a comma separate string with the correspondencesNumber of the functions
which the current function calls.

e classCorrespondencesNumber: correspondencesNumber of the class where the function belongs
to.

o fileCorrespondencesNumber: correspondencesNumber of the file where the function belongs to.

e folderCorrespondencesNumber: correspondencesNumber of the file where the function belongs
to.

e revision: revision number.

For optimising the class inheritance graph the following table will be used:

(Class
D correspondencesNumber varchar(255)
name varchar(255)
D inheritCorrespondencesNumber varchar(255)
D fileCorrespondencesNumber varchar(255)
D folderCorrespondencesNumber varchar(255)
D revision integer(10)

Figure 3: data model inheritance class
All classes will be inserted in this table:
e correspondencesNumber: this is the correspondences number of the class.

e name: the name of the class.

inheritCorrespondencesNumber: this the correspondencesNumber of the class that is inherited.

fileCorrespondencesNumber: the correspondencesNumber of the file the class belongs to.

folderCorrespondencesNumber: the correspondencesNumber of the folder the class belongs to.

revision: number of the revision.

For the containment graph the data model from figure 1 can be used. The hierarchy is clear in this
data model.

Last but not least the build dependency graph. The table in figure 2 can be used to calculate depen-
dencies on function level. The table in figure 3 can be used to calculate dependencies on class level.
The last dependency is on file level. The following table will be created for this.

File
' D correspondencesNumber varchar(255) l
[J name varchar(255)
D importCorrespondencesNumber varchar(255)
D folderCorrespondencesNumber varchar(255)
D revision integer(10)

Figure 4: data model dependency graph
Al files will be inserted in this table:
e correspondencesNumber: this is the number of the file.

e name: this is the name of the file.

importCorrespondencesNumber: comma separated file which files are imported.

folderCorrespondencesNumber: number of the folder this file belongs to.
e revision: number of the revision this file belongs to.

What happens if a new revision is committed?

All the files in the new revision will be analyzed and inserted in the data model in figure 1. The output
of 'svn diff” will be inserted in the Changes node. Where needed the correspondences numbers will be
altered. When the user once to see the graphs then the Changes node will be read and the changes
will be executed on the relevant tables.

A disadvantage of this model is that it consumes a lot of diskspace, but nowadays diskspace is very

cheap. A other disadvantage is that it consumes a lot of time the first time it has to check out all the
revisions at the same time.

3 Dependency data visualization

Visualizing the dependency data is a challenging problem. The dataset can be highly complex, inter-
twined and quite large.

3.1 Mockup

The following image is a mockup of the interface it could look like.

o 1 ooy R Y]
*Untitled-2.0 (RGB, 3 layers) 800x600 - @
e — [
o = =2 =
— N —— = o
et &= | | 1
[— P P
e " -
apc =
s f""—“ =
) G
| —_— —
rmﬂn
Comward g e
rwnder p in

Figure 5: mockup user interface

Before getting this popup with a call graph the user has to select an amount of files which the user
wants to use in the call graph. Once the user selected the files a right mouse click and then press 'gen
call graph’ is enough to create the popup shown in the mockup in figure 5. Every line between the
circles are function calls. The blue and purple shading is a marking for all the functions within one
single file or class. The name of the file or class is included in the legend (not implemented in the
mockup) The function calls start at the left side in the popup.

With the use of the popup and selecting files the user can limit the amount of functions and function
calls in the popup. The user can for example select all the files in one folder to see the dependencies
in that particular folder. This way the visualization is easier to follow. A downside of this method is if
the user selects all files with hundreds maybe thousand of functions and function calls the graph will
be in the worst case unreadable for the human eye.

There is also a zoom function to zoom out to class level. This way the user is able to see the
dependencies between the different classes.

3.2 Graph types

The graphs discussed (call, inheritance, containment and build) are different in respect to each other.
The graphs can be categorized in three different types: a tree, a directed acyclic graph and a general
(cyclic) graph.

The call graph could be a general graph. It is not a general cyclic graph, because it can have an edge
with degree other than 2. A function does not by default call another function.

The inheritance graph could be a directed acyclic graph. It is not possible to inherit the class from the
same class. A class inherit another class. The direction of the inherit must be clear in the graph.

The containment graph could be a tree. A function is always part of a class, a class is part of a file, a
file is part of a folder.

The build dependency graph could be a general graph. File A can be imported by file B in such a way

that File B has to be rebuild if file A changes. The same applies to the inheriting of classes and the
function calls.

3.3 Advantage knowing particular graph structure

The advantage in visualization design of a tree rather than a general graph is that a tree can be created
from top to bottom. The structure of a tree is far more clear than the structure of a general graph. A
tree is a connected graph and has no cycles. A general graph is a more complex graph then the tree.
The advantage of knowing the dependency visualization graph is that the data model can be created
according to the graph. A data model for a tree is very different then a data model for a general graph.

	report
	1 Introduction
	2 Basic repository investigation
	2.1 Revision history
	2.1.1 Revision count
	2.1.2 First commit
	2.1.3 Last commit

	2.2 Source-tree analysis
	2.2.1 Largest folders
	2.2.2 Folder containing most source-code
	2.2.3 Source directory (/app) statistics

	2.3 Most active developers
	2.3.1 Top 3 active developers

	3 Getting a first visual overview
	3.1 Stable development periods
	3.2 Intense changes
	3.3 Currently stable

	4 Authors analysis
	4.1 Main contributors
	4.2 Main developers quit
	4.3 Correlation between type of files and developers
	4.4 Correlation between location of files and developers

	5 Code size analysis
	5.1 Code size evolution
	5.2 Code size vs Total Size

	6 Complexity analysis
	6.1 Most complex files
	6.2 Complexity fluctuations
	6.3 Complexity correlations

	7 Conclusion
	8 Evaluation
	8.1 Discarded repositories
	8.1.1 Chromium
	8.1.2 FileZilla 3 client
	8.1.3 Octave
	8.1.4 TortoiseSVN
	8.1.5 XBMC
	8.1.6 VirtualBox

	8.2 SolidTA
	8.2.1 Performance
	8.2.2 Stability & reliability

	8.3 Software evolution analysis

	9 Appendices
	9.1 Time consumption

	essay.pdf
	1 Introduction
	2 Data modeling
	2.1 Assumptions
	2.2 Graphs
	2.3 Data model
	2.3.1 Nodes
	2.3.2 Edges

	2.4 Optimization

	3 Dependency data visualization
	3.1 Mockup
	3.2 Graph types
	3.3 Advantage knowing particular graph structure

