
Faculty of Mathematics and Natural Sciences
Department of Computing Science

Software Maintenance and Evolution

The Blender Project
A Software Evolution Analysis

Authors:
Thomas Hoeksema (S2349639)

Michel Medema (S2396009)

Supervisor:
prof. dr. Alexandru Telea

November 15, 2015

Contents

Contents I

List of Figures II

List of Tables IV

1 Introduction 1
1.1 Assignment . 1
1.2 Software Repository . 1
1.3 Tools . 3
1.4 Overview . 5

2 Basic Repository Investigation 6
2.1 Versions and commits . 6
2.2 Folders and files . 8
2.3 Developers . 14

3 Initial Visual Overview 18
3.1 Choice of views . 18
3.2 Stable development periods . 20
3.3 Unstable development periods . 20
3.4 Current state . 24

4 Author Analysis 25
4.1 Main contributors . 25
4.2 Replacing chief developer . 28
4.3 Type correlation . 31
4.4 Location correlation . 33

5 Code Size Analysis 37
5.1 Size evolution . 37
5.2 Most turbulent files . 43
5.3 Source code fraction . 45

6 Complexity Analysis 47
6.1 Most complex files . 48
6.2 Changes in complexity . 49
6.3 Activity correlation . 53
6.4 Size correlation . 56

7 Dependency Analysis 59
7.1 Data modelling . 59
7.2 Data visualisation . 62
7.3 Conclusion . 65

I

8 Evaluation 66
8.1 Summary . 66
8.2 Tools . 67
8.3 Analysis . 68
8.4 Conclusion . 68

9 Acknowledgements 69

10 References 69

11 Appendices 70
11.1 Time Tracking . 70
11.2 File extensions . 71
11.3 Revisions of potential replacements for chief developer 74
11.4 Details of authors metric per file type . 77
11.5 Details of authors metric per (sub-)directory 79
11.6 Relevant file views . 81

List of Figures

1 Version velocity of the Blender Project . 6
2 Filelight overview of repository . 9
3 Filelight overview of repository without the .git folder 9
4 Filelight overview of repository without non-source files 12
5 Filelight overview of /blender/source, without non-source files 13
6 Filelight overview of /blender/source/blender, without non-source files . . . 13
7 File view of Lines of Text (LOT) metric . 19
8 File view of Lines of Code (LOC) metric (code size) 19
9 Evolution view of file count (including code size metric) 19
10 Views for determining (un)stable periods . 21
11 Stable development periods . 22
12 Unstable development periods . 23
13 View of all files including authors metric . 25
14 Legend of authors for entire repository . 26
15 Contributions of the top 20% authors . 26
16 Evolution view of all authors . 27
17 Evolution view of top 20 authors . 27
18 Evolution view of top 10 authors . 27
19 View of all files including authors metric (without Campbell Barton) 29
20 Evolution view of top 10 authors (excluding Campbell Barton) 29
21 View of all files including authors metric (detail) 30
22 Legend of file types . 31
23 File view of entire project including file types metric 32
24 File view of authors correlated with file types 32
25 Legend for the folder metric (top-level directories) 34
26 File view of the entire project including folders metric 34
27 File view of authors correlated with folders 34
28 Legend for the folder metric (/source/blender sub-directories) 35

II

29 File view of /source/blender files including folders metric 36
30 File view of authors correlated with folders (in /source/blender) 36
31 Legend for Code Size metric . 37
32 Code size metric for all files . 38
33 Code size metric for all source files . 38
34 Code size metric for all source files (excluding header files) 39
35 Code size metric for all source files (sorted by creation without headers) . . 39
36 Trend view of code size metric for all source files (excluding header files) . . 39
37 Periods for evaluation the code size evolution 40
38 Evolution view of code size for S1. 41
39 Evolution view of code size for S2. 41
40 Evolution view of code size for S3. 41
41 Evolution view of code size for S4. 42
42 Evolution view of code size for S5. 42
43 Evolution view of code size for S6. 42
44 Evolution view of code size for S7. 43
45 First step to obtain growing/shrinking files 44
46 Second step to obtain growing/shrinking files 44
47 Most growing and/or shrinking files . 45
48 Fraction of files with a code size metric . 46
49 Legend for the Total Complexity metric (under Complexity) 47
50 Evolution view of Total Complexity for all files 47
51 All source files, highlighting highest complexity category 48
54 Files with lowest complexity . 50
55 Files with lowest complexity in current revision 50
56 Files that increase most in complexity . 51
57 Files that decrease most in complexity . 51
58 Files increasing most in complexity (folder metric) 52
59 Files decreasing most in complexity (folder metric) 52
60 Files increasing in complexity (sorted by activity) 53
61 Files decreasing in complexity (sorted by activity) 53
62 Currently most complex files (sorted on activity) 54
63 Currently least complex files (sorted on activity) 54
64 Complexity of all source files (sorted on activity) 55
65 Complexity of all source files (highest complexity and activity) 55
66 Complexity of all source files (lowest complexity and activity) 56
67 Source files grouped by lowest complexity 56
68 Source files grouped by lowest complexity (code size metric) 57
69 Source files grouped by highest complexity 58
70 Source files grouped by highest complexity (code size metric) 58
71 Proposed data model for the visualisation tool 60
72 Visualisation of a call graph for the proposed visualisation technique 63
73 Revisions of Campbell Barton . 74
74 Revisions of Sergey Sharybin . 74
75 Revisions of Bastien Montagne . 74
76 Revisions of Lukas Toenne . 75
77 Revisions of Brecht van Lommel . 75
78 Revisions of Tamito Kajiyama . 75

III

79 Revisions of Antony Riakiotakis . 76
80 Revisions of Ton Roosendaal . 76
81 Revisions of Joshua Leung . 76
82 Detail of authors metric for .cmake files . 77
83 Detail of authors metric for .jpg files . 77
84 Detail of authors metric for .png files . 77
85 Detail of authors metric for .rst files . 78
86 Detail of authors metric for .spi1d files . 78
87 Detail of authors metric for .osl files . 78
88 Detail of authors metric for /doc folder . 79
89 Detail of authors metric for /extern folder 79
90 Detail of authors metric for /intern folder 80
91 Detail of authors metric for /source/blender folder 80

List of Tables

1 Distribution of files and sizes . 10
2 Distribution of files and sizes (only source code files) 12
3 Distribution of files and sizes (only source code files) 70
4 File extensions in entire repository . 71
5 File extensions in the source folder . 72
6 File extensions in the extern folder . 72
7 File extensions in the intern folder . 72
8 File extensions in the release folder . 73

Listings

1 Git installation and pulling the Blender project 6
2 Fetching amount of commits . 7
3 Fetching the initial commit . 7
4 Fetching the most recent commit . 8
5 Bash script for counting file extensions . 10
6 Commands for deleting non-source files . 11
7 Fetching the commit in the middle of the project 14
8 Fetching the date-based middle commit . 14
9 Obtaining amount of commits in date-based halves 15
10 Counting developers in halves and entire project 15
11 Obtaining activity per author in commit-based halves 16
12 Obtaining activity per author in date-based halves 17
13 Files that grow/shrink the most in terms of LOC (60 files) 81
14 Files that increase most in complexity (63 files) 82
15 Files that decrease most in complexity (30 files) 83

IV

1 Introduction

This report was created as part of the final assignment for the course of Software Main-
tenance and Evolution at the University of Groningen, in the course year of 2015/2016.
The course serves as an introduction to the main principles and techniques behind software
maintenance and evolution. In the course, several topics are described such as the theory of
software evolution and various maintenance types and techniques, as well as the tools that
are involved in software maintenance, such as tools that measure quality metrics, detect
evolution trends, or analyse various types of artifacts involved in large software repositories.

As part of the course, a practical assignment is given in which the students analyse an
Open Source repository of their choice with the tools, techniques and theory that have
been introduced during the lectures. Several questions are to be answered concerning the
structure and evolution trends of the maintenance activities performed in the repository.
This report will contain the answers to the questions that are set in the description of the
assignment.

1.1 Assignment

We have chosen Assignment A, since we were more interested in applying the techniques
and theory that we have seen during the lectures on a large Open Source repository rather
than programming (part of) an application that applied software analysis techniques or
provided visual overviews of the maintenance and evolution of a repository.

The assignment consist of the task, given a software repository, to perform several analyses
in order to assess the maintainability, modularity, complexity, and quality of the software
in the repository, as well as the development process. To reach this conclusion, the as-
signment is divided in five distinct steps of increasing difficulty. Before these steps are
elaborated upon, we must first elaborate on our choice for the repository, on the tools that
we have used, and finally we will give an overview of this document.

1.2 Software Repository

In this section we will describe the process of choosing a repository for this assignment.
First of all, there are some requirements that are applicable to the repository that indicate
its suitability for this assignment. In particular:

• The repository should be written in C or C++, since the metric calculators of the
tools that are provided accept these files when calculating metrics.

• The revisions to the repository should be performed by a many developers, so that
the analysis w.r.t. authors is not trivial.

• The repository should contain more than 5,000 files, and no more than 10,000 (ap-
proximately).

• The repository should contain more than 10,000 revisions, and no more than 100,000
(approximately).

• We should be able to contact the repository without the need of creating an account,
or creating an account and acquiring read-only access should be relatively simple.

1

• The repository software should not randomly block connections when requesting the
content of a large amount of files in a short time period, since the contents of the
files are needed for some analysis methods in the tools that are provided.

1.2.1 Proposals

Before coming to our final choice for the repository to analyse, we considered various
options. The following is a list of alternatives that we considered:

• Mozilla Thunderbird: a free, open source, cross-platform email, news, and chat
client developed by the Mozilla Foundation. The software is written mostly in C-
based languages, which is suitable for the project. Furthermore, the project has a
large amount of developers and a very active release cycle, but may be even too big
to analyse for this assignment.

• VirtualBox: a hypervisor for x86 computers from Oracle Corporation. The project
is mostly in C with a fraction of C++. The downside of this repository is that it has
not existed for a very long time yet.

• KeePass: a free, open source, cross-platform and light-weight password management
utility. Unfortunately, it seems that a large amount of the repository is in C#, which
we do not think is supported very well by the metric calculators used in SolidTA.

1.2.2 Blender

We established that the Blender project, by the Blender Foundation, would be the repos-
itory that is the subject of the first five steps of this assignment. Blender is a free and
Open Source 3D creation suite, which supports rigging, animation, simulation, rendering,
compositing and motion tracking, as well as video editing and game creation, which is
basically the entirety of the 3D pipeline-modelling. Blender also gives advanced users the
possibility to use their API for Python scripting to customise the application and write
specialised tools. [1] [6]

Blender is cross-platform and interfaces with OpenGL to provide a consistent experience.
The project guarantees extensive testing by the development team for the list of supported
platforms and drivers. The project is listed under the GNU General Public License. [1] [6]
We both think that the Blender project is a particularly interesting software application
that one of us has used quite a bit in the past, and therefore we were interested in analysing
this repository for this assignment.

From a more technical side of view related to the assignment, we have determined that the
Blender project has around 60,000 commits, around 250 to 300 unique developers who have
submitted revisions, and consists of around 8500 files in the latest version of the project.
The majority of the source base is written in C, another large fraction in C++, and finally
there is a minority of source code that is written in Python, particularly for plug-ins and
for the API for advanced users as described above. All of these observations lead to our
belief that the repository is suitable for the assignment.

2

Furthermore, the Git repository of the project, listed further on in this introduction, sup-
ports anonymous access and we have experienced no connectivity issues that were related
to the repository software rejecting our requests for data. This simplified the process of
obtaining the files, revisions, and content of those files and revisions greatly.

1.3 Tools

This section will describe the tools that will be used for the elaboration of the first five
steps of the assignment.

1.3.1 Repository access

The Blender project has an active repository, which is Git-based, and also has a web in-
terface at https://git.blender.org/gitweb/gitweb.cgi/blender.git while
the repository itself can be pulled from https://git.blender.org/blender.git.

To get access to the repository via command in Linux, which is necessary for the first
step of this assignment, we have used the Git command line tool that is available in the
repositories of all major Linux distributions. In Basic Repository Investigation, the instal-
lation procedure of this tool will be described.

SolidTA does not come with Git supported integrated, instead the Git functionality needs
to be manually installed by the user and SolidTA must be able to find this tool via the
PATH variable on Windows. We installed msysgit, a Git implementation for Windows-
based machines, for which we put the path in the PATH variable. After installing this tool
and restarting SolidTA, the latter was able to access the former and we could access the
Blender project repository through SolidTA.

1.3.2 Repository analysis

We will make use of SolidTA, or Solid Trend Analyzer, which is a software application that
helps understanding, analysing and managing the evolution of software projects recorded
in software repositories such as Subversion or CVS, but is also capable of communicating
with Git repositories, provided the correct tools are installed as indicated above.

Due to the fact that we have made heavy use of the selections feature in SolidTA, and
these selections are also delivered as part of this assignment, we will elaborate on the
contents of each selection here:

• blender : Contains all files in the entire project.

• blender/source : Contains all files in the /source top-level directory.

• blender/source/blender : Contains all files in the /source/blender directory.

• blender/release : Contains all files in the /release top-level directory.

• blender/extern : Contains all files in the /extern top-level directory.

• blender/intern : Contains all files in the /intern top-level directory.

3

https://git.blender.org/gitweb/gitweb.cgi/blender.git
https://git.blender.org/blender.git

• blender/doc : Contains all files in the /doc top-level directory.

• blender/build_files : Contains all files in the /build_files top-level directory.

• Lines of Text : Contains all files for which the "Lines of Text" (LOT) metric could
be calculated.

• Code Size : Contains all files for which the "Code Size" (measured by Lines of
Code, LOC) metric could be calculated.

• Code Size (without headers) : The same as Code Size, without all header files.
(.h, .hpp, .hh, etc.)

• Most Growing or Shrinking : A list of files that have the highest variety of change
regarding the Code Size (LOC) metric.

• Complexity : Contains all files for which the "Total Complexity" (part of Com-
plexity) metric could be calculated.

• Most Complex : Contains all files for which a revision falls in the highest category
of the Total Complexity metric.

• Least Complex : Contains all files for which a revision falls in the lowest category
of the Total Complexity metric.

• Most Complex - Currently Max : The same as Most Complex, without the files
that are currently not a part of the highest category of Total Complexity.

• Least Complex - Currently Min : The same as Least Complex, without the files
that are currently not a part of the lowest category of Total Complexity.

• Complexity - Max Increase : All files of "Most Complex - Currently Max" that
have ever had a revision that falls in the lowest category of Total Complexity.

• Complexity - Max Decrease : All files of "Least Complex - Currently Min" that
have ever had a revision that falls in the highest category of Total Complexity.

• S1 to S7 : File categories that are used in the analysis in the Code Size Analysis.

We used the Filelight software in the Basic Repository Investigation to display the struc-
ture, relative sizes, amount of files and contents of the directories of the repository. Filelight
is available on most Linux repositories via apt-get.

Finally, in the Basic Repository Investigation, we also made use of some bash scripts
to count the amount of files and the total file size for all extensions of a given folder.

4

1.4 Overview

The structure of the rest of this document will now be described.

• Section 2 (Basic Repository Investigation) covers the analysis of the structure of the
repository, as well as finding out the amount of revisions, authors, and the distribu-
tion of files among its top-level directories and sub-directories. Furthermore, a list
of most active developers in halves of the project will be given.

• Section 3 (Initial Visual Overview) utilises SolidTA to give an initial overview of the
stability of the repository over the entire lifetime of the project.

• Section 4 (Author Analysis) performs several analyses regarding the authors of the
revisions to the project. The main contributors, chief developer, and replacements
for the chief developer will be determined, as well as correlations between files and
developers.

• Section 5 (Code Size Analysis) gives an analysis on the evolution of the code size in the
repository. Furthermore, the fastest growing and shrinking files will be determined.

• Section 6 (Complexity Analysis) performs a complexity analysis on the repository, in
particular the most complex files will be determined and the fastest increasing/de-
creasing files w.r.t. complexity. Several correlations between activity/code size and
complexity will also be investigated.

• Section 7 (Dependency Analysis) consists of an essay that was written based on the
insight accumulated during this assignment, in which a method will be described to
model and visualise the call graphs and their evolution of a specific repository.

• Section 8 (Evaluation) gives an evaluation on the assignment, including a summary
of the obtained results, our experiences and difficulties during the assignment and
some final words.

• Sections 9, 10 and 11 (Acknowledgements, References and Appendices) includes all
of the detailed knowledge bases that were also utilised in the document, but were
not suitable to include in-line.

5

2 Basic Repository Investigation

The structure of the Blender repository will be investigated and described in this section.
The Blender repository is a git repository, so to analyse the structure of the repository,
the git client was installed which is available through the software repositories of all major
Linux distributions. On Ubuntu 14.04, the following set of commands were executed to
install the git client and to pull the contents of the Blender project repository:

Listing 1: Git installation and pulling the Blender project

> sudo apt-get install git
> git clone https://git.blender.org/blender.git

In the following sections, we will make use of this git client when answering questions about
the repository.

2.1 Versions and commits

The Blender project has been through many versions as is shown in Figure 1, which depicts
all of the official (stable, not including alpha/beta builds) releases of the Blender project.
The graph shows that the amount of time per version between versions 2.25 and 2.36, as
well as between 2.57 and onwards, is very regular and does not show major variations in
development time. However, between 2.36 and 2.57, there is a large variation in the time it
takes to advance a version. We have looked at various sources on the Blender Foundation
websites to find an explanation for this irregular behaviour and sudden stabilisation from
2.57 onwards.

Figure 1: Version velocity of the Blender project. [3] [4]

6

In fact, the reason for the stabilization of the graph is mentioned on [2], which is an "Ask
Me Anything" page for developers to the chief developers of the project. In particular,
it is stated that before 2.57, the project simply released versions of the software when it
was ready instead of having a fixed release schedule. The chief developers describe several
disadvantages of the former method which led to the choice of a fixed schedule. They claim
that the switch had to be made due to a large amount of volunteering developers in many
active areas of the project and the high degree of complexity of the Blender application,
which made it difficult to pick a moment at which all areas of the application were in a
finished state.

Furthermore, due to the long period between releases that were caused by those aspects,
bugs and broken code were allowed to exist within the stable releases for too long. Develop-
ers would also try to push changes right before the release of a new version, since otherwise
they may have to wait for another 6 months to a year to incorporate their updates into
the project, which led to improperly tested code in the release versions. Users also had to
wait a long time before they could utilize new features of a version due to the long release
times. All of these arguments led to the adoption of a new release schedule, where the
project would generate a stable version every so many months.

Now, we will look into the structure of the active git repository of the Blender Foun-
dation, which hosts the Blender project. First of all, the total number of revisions in the
software will be determined, by counting the total number of commits that have been
performed on the repository. Executing the following command results in the number of
commits:

Listing 2: Fetching amount of commits

> git rev-list HEAD --count
61918

Executing this command shows that the entire repository contains a total of 61918 commits.
It is also interesting to see when the first and last commit of the project have been made,
to determine the lifetime of the project up to this point. To fetch the first commit (which
is the last in the log), the following command is executed:

Listing 3: Fetching the initial commit

> git log --reverse | head -5
commit 12315f4d0e0ae993805f141f64cb8c73c5297311
Author: Hans Lambermont <hans@lambermont.dyndns.org>
Date: Sat Oct 12 11:37:38 2002 +0000

Initial revision

The first part of the command results in the full history of all of the commits. By default,
the history is sorted in such a way that the last commit that has been made is at the top
of the list. The option that is being passed along with this command makes sure that the
ordering is reversed, listing the first commit that has been done at the start of the project
at the top instead.

7

The result of this command is passed along to the "head" command, which takes the
first n lines from the output. Since a single commit consists of multiple output lines, the
first five lines are requested, which is sufficient to obtain the date on which the commit was
performed. The output shows that the first commit seems to have been made on Saturday,
October 12, 2002, at 11:37:38 +0000.

Besides the initial commit, the most recent commit that has been pushed must also be
identified. To obtain the last commit, the following command is used:

Listing 4: Fetching the most recent commit

> git log -n 1
commit 46f452e96baaf9424582003e87736840ccbbffca
Author: Campbell Barton <ideasman42@gmail.com>
Date: Fri Nov 13 00:03:12 2015 +1100

Fix error cutting node links

Accessing theme from outside drawing code isn’t reliable, pass space
-type.

Passing the option "-n 1" to the command ensures that only the newest commit in the
log is shown. As can be viewed in the output, the most recent commit at the time of
performing this command was on Friday, November 13, 2015, at 00:03:12 2015 +1100. To
summarise, this means that the lifespan of the repository at this point is around 13 years,
from 2002 to 2015, with 61918 commits performed during that time.

2.2 Folders and files

We will now look at the file structure, especially the top-level folders, of the Blender repos-
itory and the amount and types of the files within the project. To show an overview of
the top-level folders and their respective sizes in terms of disk space, we use Filelight to
display the contents of the repository, as seen in Figure 2. We want to find out what the
largest top-level directories are, which are defined as the top-level directories that either
contain a large amount of files respective to the other folders, or take up a large amount
of disk space respective to the other folders.

The first impression of this figure is that the ".git" folder takes up the majority of disk
space of the entire project. Since this folder contains metadata which is necessary for the
operation of git, we decided to leave this folder out of the analysis and simply to delete
it from our analysis. After deleting the ".git" folder, we obtain Figure 3 using Filelight
on the folder of the repository. This figure is much more interesting, since it only shows
the components that are actually involved in the Blender application. The data that has
been obtained through the inspection of the folders and Figure 3 can be found in Table 1.
The "Properties" window of the file explorer in Ubuntu 14.04 was used to obtain the data
in the table. The conclusion is that "source", "release", "extern" and "intern" are the
largest top-level directories both in terms of disk space and the amount of files. The other
top-level directories, namely "doc", "build_files", "tests" and "scons", are significantly
smaller in both definitions of size.

8

Figure 2: Filelight overview of repository

Figure 3: Filelight overview of repository without the .git folder

9

Folder Size Files

source 45.1MB (37%) 3659 (42%)
release 36.5MB (30%) 1612 (18%)
extern 20.3MB (17%) 1725 (19%)
intern 16.9MB (14%) 1280 (14%)
doc 1.2MB (1.0%) 201 (2%)
build_files 656KB (0.5%) 116 (1.3%)
tests 313.8KB (0.3%) 49 (0.5%)
scons 0B (0.0%) 0 (0%)

Total: 121.2MB 8654

Table 1: Distribution of files and sizes among top-level directories. The "Total" row is not
so much a summation of the data in the other rows, but is the size and number of files in
the entire repository, including loose top-level files.

To find out which of these top-level directories contain the most source code, we must
first define which files qualify as source code and which files do not. An overview of all
file extensions that occur within the repository and those of the four largest top-level
directories (as defined above) are given in Table 4, Table 5, Table 6, Table 7 and Table 8.
This data was gathered by running the following script inside of the directory that is to
be analysed, which ignores files without extension:

Listing 5: Bash script for counting file extensions

#!/bin/bash

getting all file extensions:
ftypes=$(

find . -type f
| grep -E ".*\.[a-zA-Z0-9]*$"
| sed -e ’s/.*\(\.[a-zA-Z0-9]*\)$/\1/’
| sort
| uniq

)

tab=’ ’ # \t character

loop over each file extension:
for ft in $ftypes
do

print the file extension:
echo -n "fttab"
find all the files with the extension and
sum their sizes and count them:
find . -name "*${ft}"

-exec ls -l {} \;
| awk ’{amount += 1; size += $5} END {print amount "\t" size}’

done

10

We define source code as a file that contains a list of instructions which are written using
some human-readable computer language, and can subsequently be compiled or interpreted
using an appropriate compiler or interpreter. This definition excludes files which contain
plain data, unstructured text data, image or font files, archive files, website/layout/markup
data files, makefiles (since these are often automatically generated and do not influence the
application after it has been released, while the actual source code affects the functionality
of the application itself), configuration files, and files related to git functionality. If all of
these extensions are excluded, we end up with the following list of valid source code ex-
tensions: .h (header file), .cpp (C++ source code), .c (C source code), .py (Python source
code), .cc (C++ source code), .hpp (C++ header file), .rst (reStructuredText format for
Python), .osl (Open Shading Language file), .glsl (OpenGL Shading Language file), .cl
(Common Lisp file), .inl (Inline function files for C++), .mm (Objective C++ file), .m
(Matlab source code), .hh (C++ header file), .cu (CUDA source code) and .js (JavaScript
source code). From this list of file extensions combined with the amount of files as pre-
sented in Table 4, we can conclude that the Blender project is written foremostly in C,
C++, Python and that shaders are included in both OpenGL Shading Language as well
as Open Shading Language. The Python scripts are mostly related to Blender plugins and
the Python API that is available to users and plugin developers. [5]

The commands below are used to remove all the files that are not source code:

Listing 6: Commands for deleting non-source files

When variable EXT is the file extension to remove:
> find . -type f -name "*"$EXT -exec rm {} +
Removing all files without extension:
> find . -type f ! -name ’*.*’ -exec rm {} +

Figure 4 show the distribution of size of folders after the non-source files are removed, and
Table 2 shows the corresponding data for each top-level directory. We can see that the
"release" folder accounts for a much smaller part of the total size and files now, because it
did not contain a large part of the source code. However, the "source" folder now accounts
for 50% of the project, and the "extern" and "intern" folders each account for about 20%.
We can conclude from this figure and table that these three folders contain the most source
code, with "source" containing the majority of the source code.

Figure 5 shows the source files in the blender/source top-level directory. In "source",
there are two folders that contain the majority of the source code, namely blender/-
source/gameengine and blender/source/blender, with the latter occupying over 85% of the
entire folder. Therefore, we zoom in another level to blender/source/blender, displayed
in Figure 6. This folder contains the core functionality of the Blender application. The
majority of the source code files in this folder is located in the "editors" folder, followed
by the "blenkernel", "makesrna", "freestyle" and "compositor" folders, as can be distilled
from the figure.

11

Figure 4: Filelight overview of repository without non-source files

Folder Size Files

source 44.3MB (52%) 3462 (50%)
extern 19.8MB (23%) 1575 (23%)
intern 16.6MB (20%) 1196 (17%)
release 2.9MB (3.4%) 443 (6.4%)
doc 844.4KB (1.0%) 177 (2.5%)
build_files 361.5KB (0.4%) 61 (0.9%)
tests 290.4KB (0.3%) 42 (6.0%)
scons 0B (0.0%) 0 (0.0%)

Total: 85.1MB 6964

Table 2: Distribution of files and sizes among top-level directories, including only source
code files.

12

Figure 5: Filelight overview of /blender/source, without non-source files

Figure 6: Filelight overview of /blender/source/blender, without non-source files

13

2.3 Developers

In this section we will describe the most active developers in the first and second half of
the project, as well as show the amount of commits and developers in each half of the
project, to get a better understanding of the development process of the Blender project.
We define the activity of a developer in terms of the amount of commits that have been
performed by that developer.

The midpoint of the project can be defined in two ways. First of all, it may describe
the point before and after which there are an (nearly) equal amount of commits, so the
midpoint based on the amount of commits. Secondly, it may describe the commit that
happened (based on time) exactly between the first and last commit of the project. Both
of these midpoints will be used and the similarities and differences of the results will be
described.

To view data over a range of commits, the hash of the commits that are the extremes
of the range should be known. The hash of the first and second commit can be found in
Listing 3 and Listing 4 respectively. To obtain the midpoint based on the amount of com-
mits, we simply divide the total amount of commits (61918) in two, which is the number of
the commit that is the midpoint (30959th commit). Obtaining the commit is demonstrated
in the following listing, which also includes the hash:

Listing 7: Fetching the commit in the middle of the project

> git log --skip=30959 -n 1
commit b07bdf367c8d3eb1a900ef85cec79c694d24afbe
Author: Campbell Barton <ideasman42@gmail.com>
Date: Sun May 22 05:36:11 2011 +0000

file had non utf8 characters.

The date-based midpoint can be obtained by looking for a commit with a date that is
exactly in the middle of the lifespan of the project. Since the project started on October
12, 2002 and lasted up to this point to November 13, 2015, the midpoint is somewhere
around April 28, 2009. We manually search for a commit between April 27, 2009 and April
29, 2009 that is in the middle based on time and date, and end up with the following
commit (and thus hash):

Listing 8: Fetching the date-based middle commit

> git log --after="2009-4-27" --before="2009-4-29"
(...)
commit 35c1b3134b60c5a2fb806fd18f50b70ee582ffe8
Author: Martin Poirier <theeth@yahoo.com>
Date: Tue Apr 28 17:55:48 2009 +0000

etch-a-ton bugfix

cut and trim didn’t set normal properly.
(...)

14

It is clear that the date-based midpoint occurred much earlier than the commit-based
midpoint. This indicates that the amount of commits in the first date-based half of the
project is much lower than in the second half, so the amount of commits per time unit has
increased during the lifespan of the project and develops erratically. We hypothesise this
and prove this hypothesis in the next section, and can (in a way) show that this is the case
here by counting the amount of commits before and after this particular commit:

Listing 9: Obtaining amount of commits in date-based halves

Amount of commits in first half of project:
> git rev-list 12315f4d0e0ae993805f141f64cb8c73c5297311..35

c1b3134b60c5a2fb806fd18f50b70ee582ffe8 --count
15268
Amount of commits in second half of project:
> git rev-list 35c1b3134b60c5a2fb806fd18f50b70ee582ffe8..46

f452e96baaf9424582003e87736840ccbbffca --count
46649

The increase in commits could be caused by a larger code base, allowing and/or requiring
more adjustments to the software to be made, or simply due to an increase in the amount of
developers. Furthermore, software needs to evolve over time to conform to increasing user
needs, which also supports the fact that the amount of activity per time unit increased as
the project advanced. In the following listing, we will determine the amount of developers
in each half for both approaches:

Listing 10: Counting developers in halves and entire project

Get amount of developers in entire project:
> git shortlog -s -n | wc -l
236
Get amount of developers in first commit-based half:
> git shortlog -s -n 12315f4d0e0ae993805f141f64cb8c73c5297311..

b07bdf367c8d3eb1a900ef85cec79c694d24afbe | wc -l
106
Get amount of developers in second commit-based half:
> git shortlog -s -n b07bdf367c8d3eb1a900ef85cec79c694d24afbe..

46f452e96baaf9424582003e87736840ccbbffca | wc -l
180
Get amount of developers in first date-based half:
> git shortlog -s -n 12315f4d0e0ae993805f141f64cb8c73c5297311..

35c1b3134b60c5a2fb806fd18f50b70ee582ffe8 | wc -l
77
Get amount of developers in second date-based half:
> git shortlog -s -n 35c1b3134b60c5a2fb806fd18f50b70ee582ffe8..

46f452e96baaf9424582003e87736840ccbbffca | wc -l
198

For both approaches, the amount of developers in the second half was larger than the first
half, but this is more dominantly the case for the date-based approach, most likely due to
the much lower amount of commits in the first half. Note also that even though in the
commit-based halves each half has the same amount of commits, the number of developers
in the first half is significantly lower. This indicates that a smaller amount of developers

15

started the project and more developers joined as the project progresses, which seems log-
ical for an Open Source project.

Lastly, it seems to be the case that only a minority of the developers who participated
in the first halves also participated in the second halves, since the sum of the two halves
does not exceed the amount of developers in the entire project greatly (286 for the commit-
based halves and 275 for the date-based halves). This could indicate that there are a small
amount of developers who performed the majority of the commits, and that there is a
larger group of developers who only performed a small amount of commits in a certain
restricted period of time within the project’s lifespan, and thus not participated in both
halves.

In the following two listings, the top developers (in terms of the amount of commits)
are listed for both approaches, commit-based and date-based halves of the project. The
first ten results are displayed for each command.

Listing 11: Obtaining activity per author in commit-based halves

List amount of commits per author in first half:
> git shortlog -s -n 12315f4d0e0ae993805f141f64cb8c73c5297311..

b07bdf367c8d3eb1a900ef85cec79c694d24afbe

6976 Campbell Barton
4415 Ton Roosendaal
2172 Brecht Van Lommel
2047 Joshua Leung
1185 Martin Poirier
1145 Matt Ebb
1012 Nathan Letwory
597 Kent Mein
516 Nicholas Bishop
501 Daniel Genrich

(...) (...)

List amount of commits per author in second half:
> git shortlog -s -n b07bdf367c8d3eb1a900ef85cec79c694d24afbe..

46f452e96baaf9424582003e87736840ccbbffca

11711 Campbell Barton
4881 Sergey Sharybin
2368 Brecht Van Lommel
1910 Bastien Montagne
1260 Antony Riakiotakis
1124 Thomas Dinges
996 Tamito Kajiyama
827 Joshua Leung
493 Lukas Toenne
450 Joseph Eagar

(...) (...)

16

Listing 12: Obtaining activity per author in date-based halves

List amount of commits per author in first half:
> git shortlog -s -n 12315f4d0e0ae993805f141f64cb8c73c5297311..

35c1b3134b60c5a2fb806fd18f50b70ee582ffe8

3437 Ton Roosendaal
2214 Campbell Barton
761 Brecht Van Lommel
723 Joshua Leung
686 Martin Poirier
546 Kent Mein
440 Ken Hughes
399 Daniel Dunbar
366 Matt Ebb
364 Nathan Letwory

(...) (...)

List amount of commits per author in second half:
> git shortlog -s -n 35c1b3134b60c5a2fb806fd18f50b70ee582ffe8..

46f452e96baaf9424582003e87736840ccbbffca

16473 Campbell Barton
5150 Sergey Sharybin
3779 Brecht Van Lommel
2151 Joshua Leung
1910 Bastien Montagne
1531 Thomas Dinges
1392 Ton Roosendaal
1260 Antony Riakiotakis
996 Tamito Kajiyama
783 Matt Ebb

(...) (...)

The top three developers, as requested by the assignment, can be found in the lists for
each approach. The results of both approaches is nearly the same, with the exception of
the order of Ton Roosendaal and Campbell Barton. In the commit-based approach, Ton
Roosendaal is listed as the second top developer, while in the time-based approach he is
listed as the first. Since the time-based first half is concentrated earlier on in the project
than the commit-based first half (2002 to 2009 and 2002 to 2011 respectively), this indi-
cates Ton Roosendaal did most of his commits in the earliest phases of the project, and
that Campbell Barton’s efforts increased substantially in the period of 2009 to 2011.

We can also conclude from the lists that Ton Roosendaal put most of his effort before
2011, since he is not listed as a top developer in the second commit-based half.

17

3 Initial Visual Overview

In this section, more advanced analyses will be performed on the repository using the Solid
Trend Analyzer (SolidTA) tool, to determine the stable and unstable development periods
of the project, as well as to come to a conclusion about the current state of the project.

3.1 Choice of views

To find the stable and unstable development periods, we must first define what is a stable
and what is an unstable development period. A development period is stable when the
code base does not change much (based on amount of commits/file accesses) or grow signif-
icantly (based on code size metric and number of files). On the other hand, a development
period is unstable when the code base does change or grow significantly.

The information that we need to determine the stable and unstable development peri-
ods are related to the total code size, the total amount of files in the project, the amount
of commits per time unit and possibly the amount of file accesses, all of which are mea-
sured for each time unit in the project’s time line. In Figure 10, the four views that we
have chosen are presented. The top view is obtained by turning on the code size metric
(which is not necessary for the top view, but was used in the second and third) on the
time view which shows all of the files in the project, and then sorting the files based on
creation time. The second view is the evolution view of the code size metric for the entire
project over time. The third view is again an evolution view of the code size metric, this
time displaying the amount of commits for all files which have a value for the code size
metric. The fourth view, which shows the amount of file accesses (categorised by author,
although this is not relevant in this step per se), was obtained by showing the evolution
view of the authors metric over all files.

Some other views were considered for this step. In Figure 7, the Lines of Text (LOT)
metric is displayed for all files which have a value for this metric, sorted on creation time.
We were considering to use this view instead of first code size view, since it also gives a
measure of the size of the files, and since the LOT metric is applicable on more files than
the code size metric (due to also applying on non-source code), we thought that this could
be relevant for this analysis. It should be noted that a stable code size metric does not
imply no development has taken place, since changes could be made without changing the
amount of LOC (Lines of Code) in a file, so other views are still needed. Similarly, we
considered in Figure 8 to display only the files which have a value for the code size metric,
sorted on creation time, for the same reasoning. For both figures, we decided in the end
that it was important to consider all files in the project when determining the stable and
unstable development periods, since files that are not source code or could not be counted
in LOT could still require development efforts to integrate into the project (think config-
uration files, data archives and formats which are used during the execution of Blender
that have to be accounted for). Finally, we also admitted that the corresponding evolution
views of these figures did not show any significant differences in structure.

18

Figure 7: View of all files that have a value for the LOT (Lines of Text) metric, sorted by
creation time. (Rejected)

Figure 8: View of all files that have a value for the code size / LOC (Lines of Code) metric,
sorted by creation time. (Rejected)

Figure 9: Trend view of the total amount of files with a value for the code size / LOC
(Lines of Code) metric. (Rejected)

19

Lastly, we considered to also show the file count of the entire project over time instead
of the total amount of file accesses, displayed in Figure 9. However, since the first view
of the chosen views already depicts the growth of files over time, and the fact that this
figure could only display the filecount for files that had a code size metric value, the fig-
ure turned out to be redundant. Instead, we now show the amount of file accesses to all
files within the project, which is closely related to the amount of commits (the third view),
although that figure only shows the amount of commits for files that have a code size metric.

Having determined the views and methodology that will be used to define stable and
unstable periods, we will now determine these periods and the current state of the project
in the next sections.

3.2 Stable development periods

In Figure 11, the stable periods of the project are depicted in green. We define these
periods as G1, G2, ..., G7, where the number indicates the period read from left to right.

These periods were first identified simply by looking at the slope of the first view, which
indicate the degree to which new files are created. If the slope is steep, many new files are
created per time unit. If it is rather flat, it means that the amount of files stayed roughly
the same. When the growth slope of files is relatively low, or at least stable over a period
of time, we hypothesise that these periods are stable. We can verify this hypothesis by
looking at the second view, which indicates the total code size of the project. Similarly to
the first view, the code size metric shows stable (and/or low) growth during the periods
that we have defined, but on its own this does not imply a little amount of development
as pointed out earlier in this section. To further establish the fact that these periods are
indeed indicated to be stable, the third and fourth view show a reduced amount of commits
and file accesses for these periods opposed to the time before and after these periods.

3.3 Unstable development periods

In Figure 12, the unstable periods of the project are depicted in red. We define these
periods as R1, R2, ..., R6, where the number indicates the period read from left to right.

Opposed to the stable periods, we identified these periods by pointing out the areas where
the slope of the first view is quite high relative to the surrounding areas, which is the hy-
pothesis for unstable periods. This hypothesis can again be verified by comparing the first
view to the other three views that are given. In the corresponding periods, we see either
an increase in commits and file accesses and/or a (sharp) increase or irregular development
of the code size metric.

In R6, we notice a steep increase in the amount of files for the project, however, these
files are not source code files, but .dat files that appear to be icons for the interface of part
of the application. Regardless, this is considered an unstable period, due to the spikes in
commit count and file accesses that can be viewed in the third and fourth view, which is
supported by a slight spike in the code size metric in the second view as well.

20

Figure 10: Views used for determining stable and unstable development periods. From top
to bottom: View of all files (including the code size metric) sorted on creation time, trend
view of total code size metric, trend view of number of commits over files with code size
metric, trend view of file accesses (i.e. where changes have been made) of all developers
over all files.

21

Figure 11: Stable development periods (depicted in green)

22

Figure 12: Unstable development periods (depicted in red)

23

3.4 Current state

The current state of the project, which we define to be the period of the last 3 months of
the project, is relatively stable. The slope of the first view seems to have stabilised since
the start of G7, similarly to the slope of the code size metric. Furthermore, the amount of
changes performed in the last year is very regular and has decreased steadily in the past
3 months, which indicate a stable state. Furthermore, the amount of file accesses also do
not indicate any rigorous changes to the code base either. Concluding these metrics, we
claim that G7 is still in process and persists until the time of this analysis.

To further support this claim, we give some circumstantial information about the Blender
project. Version 2.76b was scheduled to release on November 3, 2015, [7] so it makes sense
that we are seeing a decline in the amount of file accesses and commits performed to the
project, as well as a low growth in files and code size most recently in this data. This is
due to the fact that the Blender release cycle describes that the last 1.5-2 months of each
cycle are for stabilisation, bug fixes and code review. [8] We see similar anti-spikes of com-
mits and file accesses in other places in G7. (e.g. February/May 2015) Version 2.76b was
also a "bug-fix" and thus a secondary version, which inherently means that the amount of
commits will be lower due to less functionality being added opposed to bug fixes and code
review.

24

4 Author Analysis

In this step, we will perform several analyses that have to do with the developers/authors
(terms used interchangeably in this section) of the Blender project and their revisions that
they have performed on the various files of the project.

4.1 Main contributors

In Figure 13, the file view in SolidTA of all files of the project is given. The view is
sorted on the creation time of the files and the authors metric was enabled, which will
show the revisions that have been performed on the files per author in different colours.
The most interesting authors for the analyses are those that have relatively performed a
large amount of revisions. To find the main contributors, we perform the options "Show
Versions" and subsequently "Sort On # Versions" in the legend of authors in SolidTA.
This sorts the authors based on the amount of revisions that they have performed. The
top 20 authors in this list are given in Figure 14, and these authors are considered to be
the main contributors of the project.

The legend indicates that there are a small amount of developers who performed the
majority of the revisions, because the amount of revisions seems to develop exponentially
towards the top developer. (Campbell Barton) We hypothesise that Pareto’s principle
applies, which in this context would claim that 20% of the developers performed 80% of
the revisions. In Figure 15, we have selected the top 20% (around 45) developers based on
the sorting of the legend performed by SolidTA. When no author is selected for a revision,
it would appear in grey, and since there is no visible difference (no grey is visible) when
comparing Figure 13 and Figure 15, we can conclude that the data indicates that Pareto’s
principle is indeed in effect for the repository.

Figure 13: View of all files sorted on creation time including the authors metric in SolidTA.
See Figure 14 for legend of authors.

25

Figure 14: Legend of top 20 authors in entire repository, the blue bars in the background
indicate the amount of revisions for each author.

Figure 15: Viewing the contributions of the top 20% (≈ 45) authors for the entire reposi-
tory. See Figure 14 for legend of authors.

Figure 13 indicates that Campbell Barton could be the chief developer, since the figure
shows a large surface area of his corresponding colour in the legend. However, this could
also be an effect of certain files not being edited for a long time, which leads to a larger
surface area even though there is not much activity being performed in these files. There-
fore, we need to consult different views to come to a conclusion about who is the chief
developer of the project. In Figure 16, Figure 17 and Figure 18, the trend view of the
file count per author is given for respectively all authors, the top 20 authors (described in
Figure 14) and the top 10 authors.

26

Figure 16: Evolution view of the file count of all authors over all files in SolidTA. See
Figure 14 for legend of authors.

Figure 17: Evolution view of the file count of the top 20 authors over all files in SolidTA.
See Figure 14 for legend of authors.

Figure 18: Evolution view of the file count of the top 10 authors over all files in SolidTA.
See Figure 14 for legend of authors.

27

We define a developer as a chief developer for a certain time period, when they have per-
formed a significant and consistent number of revisions relative to the other authors in
that time period. The reason why we have provided three trend views of the file count per
author, is the fact that chief developers at the start of the project may not be represented
in the top authors anymore, so they would be obscured from a view that only listed the
top authors. Therefore, a view of all authors was included in Figure 16. The view shows
that Kent Mein, depicted in yellow, and Hans Lambermont, depicted in lavender, have
performed the initial commits and development of the repository. Kent Mein can be de-
scribed as the chief developer of the period from the start of the project to around April
2003. From this point onwards, Toon Roosendaal is the person with the most revisions
and a consistent contribution to the repository. Ton Roosendaal can be appointed as chief
developer of the period that ranges from April 2003 to February 2007, at which point
Campbell Barton joins the project.

Campbell Barton subsequently has a very high and consistent activity based on the number
of file revisions compared to other authors, often performing over half of the total amount of
revisions per month. We also showed in the Basic Repository Investigation that Campbell
Barton was by far the developer with the most commits in the repository, and this is also
clear from Figure 14. Therefore, we consider Campbell Barton to be the chief developer
of the Blender project from February 2007 up to this point. To further support our claim
that Campbell Barton is indeed the current chief developer of the project, we excluded
him from the evolution view in Figure 13, and obtained Figure 19, which clearly shows
a large amount of grey revisions in a large amount of the older and newer files of the project.

It should be noted that in the list of developers, there seem to be some developer ac-
counts who are actually the same person. (e.g. "Gaia Clary" vs "gaiaclary" listed under
the same email address) In the worst case, namely for Brecht van Lommel (a top 20 devel-
oper), there were five accounts listed that belonged to the same person. The fact that the
authors list contains duplicates could potentially throw of the process of determining the
top contributors and the chief developer. However, we have investigated the accounts and
define a single primary (the account with most revisions) and one or more secondary (less
revisions than primary) accounts. In all cases, either the sum of secondary revisions did
not weigh up against the primary revisions and would not have changed the corresponding
developer’s rank, or the total of primary and secondary was so low that it would not have
made it even close to the top of the authors list, so there is no indication that this will
affect the integrity of our analyses regarding the authors.

4.2 Replacing chief developer

Campbell Barton has been determined to be the current chief developer of the Blender
project, as he consistently performs a majority of the revisions on the project which are
located in virtually any location in the repository, as shown by Figure 13. It would be
difficult for the project to continue its release cycle if Campbell Barton were to quit the
project, as shown by Figure 19, since his presence in the project covers many old and
new files. Furthermore, the amount of revisions would drastically decline, as presented in
Figure 20. Nevertheless, if Campbell Barton were to leave the project, the files that this
chief developer was most active in will have to be maintained by another developer, so a
new chief developer or multiple chief developers will have to be chosen.

28

Figure 19: The same as Figure 13, excluding the revisions of Campbell Barton (displayed
in grey).

Figure 20: The same as Figure 18, excluding the revisions of Campbell Barton.

A developer is a suitable candidate for being the chief developer if they have performed
revisions in the same files that Campbell Barton has edited and if they are currently active
within the project (based on the amount of revisions). The SolidTA legend for authors is
biased, in a sense that it will not show developers in the top of the list who have performed
the most amount of commits in the last year, but rather in the entire project. Therefore,
we will refer to [9], which accurately lists the top developers for 2015 so far, and the list is
different from the list of top developers mentioned in Figure 14.

In Figure 21, the last two years of Figure 13 are presented, which will be used to make
claims about the current activity of developers. Not all authors with a significant revision
share in this period are displayed in previously mentioned legends, but through SolidTA we
can see that Sergey Sharybin, Bastien Montagne, Lukas Toenne, Antony Riakiotakis and
Joshua Leung have performed revisions on the same files as Campbell Barton in this time
period. Furthermore, also based on 18, we consider Brecht van Lommel, Tamito Kajiyama
and Ton Roosendaal as candidates. Section 11.3 in the Appendix of this document lists
the revisions in the file view for all files sorted on creation time, for all these authors that
were considered for taking over the work of Campbell Barton.

29

Figure 21: Detail of the last two years of Figure 13.

30

Ton Roosendaal was picked for his extensive revisions early on in the project on the older
files. However, he has not been that active in the past two years. Brecht van Lommel
has performed revisions in a large variety of locations in the repository which means they
potentially have knowledge of large parts of the application, but she has also not been
active as much recently. Tamito Kajiyama performed a large amount of revisions in earlier
years on files that Campbell Barton also worked on, however these revisions are mostly
focused on a single directory and recently his activity has dropped as well.

Therefore, Sergey Sharybin, Bastien Montagne, Lukas Toenne, Antony Riakiotakis and
Joshua Leung remain as candidates to take over the work of Campbell Barton. Joshua
Leung and Antony Riakiotakis have performed revisions on a limited amount of locations
in the repository, so these two are not very suited for becoming chief developer. Lukas
Toenne’s (who has two accounts that have both been shown for the sake of completeness)
revisions are also congregated mostly, but he has also performed revisions in other parts of
the repository. Sergey Sharybin in particular and also Bastien Montagne are very suitable
for becoming chief developer due to their sheer amount of file revisions to a large variety
of file locations in the repository. Therefore, a subset of Lukas Toenne, Sergey Sharybin
and Bastien Montagne would be most suited for taking over the work of Campbell Barton.
Sergey Sharybin would be the most suitable of the three, due to the fact that he is still
active, has a large fraction of the total revisions based on 18 (which are also performed on
Campbell Barton’s files), and has been a significant development member for many years.

4.3 Type correlation

We will now analyse if there is a correlation between the developers and the types of files
that they worked on. To investigate this, we enable the file type metric in SolidTA, and
show the amount of files per type in the legend. Figure 22 shows the contents of this
legend after this action was performed. Subsequently, the file view of all project files was
first sorted on creation time, and then sorted on file type while this metric was enabled,
obtaining Figure 23.

Figure 22: Legend of file types

31

In this figure, the files are grouped together based on their type. Due to the fact that .cc,
.c and .cpp files have seemingly the same color, we will note here that these groups are
displayed from top to bottom as: .c, .cc, .cpp. The rest of the file groups can be related
to the legend based on their colour. Now, we turn off the file type metric and turn on
the authors metric, and we obtain Figure 24, in which we can overlay our knowledge of
Figure 23 to find out which developers worked on which files. (See also Figure 14)

From the figures, we can tell that Campbell Barton is responsible for most of the revi-
sions performed on .c files, and nearly the entirety of .dat, .cmake and .png files. (See
Section 11.4 in the Appendix) This indicates that Campbell Barton is the chief of these
files. Furthermore, Sergey Sharybin seems to be mostly responsible for the .cc files of the
project and the majority of .hpp files. Ton Roosendaal performed all revisions on .jpg
files, while Brecht van Lommel and Mitchel Stokes performed most of the revisions on
respectively .spi1d and .rst files, and Brecht van Lommel and Thomas Dinges are together
responsible for .osl files. (See Section 11.4 in the Appendix) For all other files, there is no
indication of a clear correlation between developers and types of files that they worked on.

Figure 23: File view of all files, sorted by creation time and subsequently by type, with
the file type metric enabled. See the legend in Figure 22.

Figure 24: The same as Figure 23, replacing the file type metric for the authors metric.

32

4.4 Location correlation

Finally, we will analyse if there is a correlation between the developers and the locations
of files that they worked on. We enable the folder metric in SolidTA, and put the config-
uration slider on level 2, so that only top-level directories are displayed. The legend for
this metric is depicted in Figure 25. We sort the file view of all files first by creation time
and then alphabetically, which generates Figure 26, in which we can see that the files are
grouped together by the folder that they belong to. Similarly to the previous analysis,
we now turn off the folder metric and turn on the authors metric, so that we can see the
location in which the developers performed their revisions, depicted in Figure 27.

For the top-level directories, we see that Mitchel Stoke is indicated to be the chief devel-
oper of the /doc folder, in particular the /doc/python_api/rst folder. This makes sense,
since this folder contains all .rst files, of which he was also the chief developer. Sergey
Sharybin seems to have performed the most revisions in the /extern folder (particularly
in /extern/libmv and /extern/Eigen3 sub-directories), next to Erwin Coumans and Sergej
Reich (in yellow) (particularly in the /extern/bullet2 folder sub-directories). For /intern,
there are two big sub-directories that are the responsibility of one or two developers. The
/intern/audaspace folder is mostly managed by Joerg Mueller and /intern/cycles by Brecht
van Lommel and Thomas Dinges. Campbell Barton seems very present in this directory,
but his revisions are mostly related to cleanup and style of code. The release folder con-
tains mostly image and data files which are per sub-directory indeed uploaded by a single
author, but these are many smaller folders that are not worth discussing. Campbell Barton
uploaded many .dat files, but these are data files as well. /release/scripts contains Python
scripts that are managed by a large variety of developers.

Now, only the /source folder is left to analyse. Since the /source folder is the folder
that contains most of the source code files of the project, we decided to highlight this
folder by zooming in on /source/blender and performing the same approach as we did
for the top-level directories. The (shortened) folder and author legend are given in Fig-
ure 28, the folder view in Figure 29, and the corresponding authors view in Figure 30.
The configuration slider this time is set in such a way that the various sub-directories of
/blender/source can be distinguished, so the fourth level.

From these figures, we can deduce some correlations between developers and folders. First
of all, Campbell Barton seems to be present everywhere in this folder, and over the entire
folder he could be seen as the chief developer, similarly as to the entire project. Tamito
Kajiyama seems to be the chief developer of the /source/blender/freestyle folder, as he
performed most of his revisions in this folder and has the majority of the revisions there.
In the /source/blender/nodes folder, Lukas Toenne appears to be the chief developer, with
Thomas Dinges as second chief developer. Finally, Lukas Toenne has performed the last
revisions in the /source/blender/compositor folder, but these are mostly related to cleanup.

We can conclude that, for a limited amount of folders in the repository, it is indeed the case
that a chief developer can be distinguished, so there is a correlation between developers
and file locations.

33

Figure 25: Legend for the folder metric (top-level directories)

Figure 26: File view of all files sorted alphabetically, with the folder metric enabled.

Figure 27: The same as Figure 26, replacing the folders metric for the authors metric.

34

Figure 28: Legend for the folder metric (/source/blender sub-directories)

35

Figure 29: File view of all files in /source/blender, including the folders metric, sorted
alphabetically. The configuration slider was adjusted so that the sub-directories of
/source/blender can be identified.

Figure 30: The same as Figure 29, replacing the folders metric for the authors metric.

36

5 Code Size Analysis

In this step, several analyses will be performed regarding the code size of the source code
files in the Blender project. During this step, the Code Size metric in SolidTA will be
utilised, which will be set to "Lines of Code". The legend in Figure 31 displays the values
corresponding to each colour for this metric.

Figure 31: Legend for the colour-coded categories of the Code Size metric in SolidTA.

One aspect of the assignment that we would like to remark on is the fact that it is stated
that the Lines of Text calculator must be used to obtain the Code Size metric. This is
actually not the case, and the Lines of Text calculator has, in our case, not generated the
Lines of Code sub-metric in the Code Size metric. To obtain this Lines of Code (and thus
Code Size) metric, the CCCC calculator had to be used on all relevant files of the project,
which calculates both the Code Size as well as the Complexity metric, which will be used
in the next step.

5.1 Size evolution

First of all, the evolution of the file size, in terms of lines of code, throughout the project
will be investigated. We have performed two approaches to give an indication of the
evolution of file size: an initial, simple approach that turned out to be too naive for getting
an indication about the size evolution; and a secondary, more involved approach which
considered several subsets of files that were created around the same time.

5.1.1 Initial approach

We will first discuss the initial approach for assessing the size evolution of the source code
files in the project. In Figure 32, the file view for all files in the project is given, where
the Code Size metric has been enabled and all categories have been selected, and the file is
sorted first on creation time and subsequently on file type. We can see clearly in this figure
that there are some non-source as well as source files for which the metric could apparently
not be calculated or were skipped entirely. It is not sure what causes the CCCC calculator
to fail determining the code size metric for source files, we will discuss this further in
the Evaluation section. By sorting the view on creation time and then on the Code Size
metric, we can select only the files for which the Code Size metric is calculated, and sort
the resulting view again on creation time and file type, to create Figure 33.

37

Figure 32: File view sorted on creation time and file type, with the Code Size metric en-
abled. Revisions displayed in grey are part of a file extension that could not be interpreted
by the metric calculator, or failed due to other reasons.

Figure 33: File view sorted on creation time and file type, for all files which have a value
for the Code Size metric. (.c, .cc, .cpp, .h, .hpp and other extensions for C/C++)

In Figure 33, the only types of files that are still present are congregated in four chunks.
The first large chunk consists of .c files, the second minor chunk consists of .cc files, the
third large chunk of .cpp files, and the very large chunk at the bottom consists of header
files. The figure indicates that for the header files, there is little to no change of code size
over extended periods of time. Therefore, for these types of files the code size does not
seem to evolve positively or negatively over time, but rather tends to stay the same over
time. For the other file types, it is not clear from this figure what the evolution is, and
requires further investigation. In Figure 34, the same file view is given as in Figure 33,
apart from the fact that the header files are now excluded, so only the top three chunks
are still present. The view is again sorted first on creation time, and then on type. In
Figure 35, the same view is given sorted only on creation time.

These figures indicate that the code size is indeed very different per file and between
revisions of files, as there are file revisions in each colour-coded code size category, but it
is still not clear how the average code size of these files evolves over time.

38

Figure 34: File view similar to Figure 33, not including the header files.

Figure 35: The same as Figure 34, only sorted by creation time.

Figure 36: Trend view of the code size metric corresponding to the file views in Figure 34
and Figure 35, with display type Flow and set to display file count.

39

In an attempt to asses the evolution of the code size for this selection of files, we enabled
the evolution view of the code size metric, which is depicted in Figure 36. However, we
cannot distill any useful indications from this figure, due to the fact that this evolution view
corresponds with files that have been created throughout the entire project. Therefore, an
increase of the amount of files for a code size category is not just the result of an actual
increase of the code size of files of a lower category, but also due to the fact that new files
are continuously added which may fall in those higher categories from the start. We can
conclude that this naive approach will not give us any information about the size evolution.

5.1.2 Secondary approach

A different approach is needed to give a clear indication about the size evolution of the
Blender project. To do this, instead of showing the evolution of all files, we take the file
views in Figure 34 and Figure 35, and choose a series of periods (seven, in this case) which
consist of files that have been more or less created in the same period. By doing this, we
can show evolution views that will not be subject to continuous influx of new files into the
project. These periods and the underlying file view (same as previous figures) are given in
Figure 37, where the black rectangles indicate periods, which are identified by S1, S2, ...,
S7. These are also the names of the corresponding selections in SolidTA.

Figure 37: The seven periods, labelled from S1 to S7 from bottom to top, that will be used
to give an indication about the evolution of code size.

For each of these seven periods, the corresponding evolution views of the code size have
been depicted in this document. We can see that indications for the evolution of the code
size are much easier distilled from these figures, due to the fact that the amount of files
stays the same after a short stabilisation period (in which new files are still added, due
to the fact that these files were not created at exactly the right times). We will briefly
discuss each of these figures. From the first period, S1 depicted in Figure 38, we see that
the lowest code size category slightly decreases in file count, and that in particular the
highest category slightly increased in file count, indicating that the code size has increased
on average over time, but the indication is not very strong. Therefore, we will formulate
two hypotheses: one that suggests that source files are growing over time, and one that
suggests that the size of source files remains more or less stable on average over time.

40

Figure 38: Evolution view of code size for S1.

Figure 39: Evolution view of code size for S2.

Figure 40: Evolution view of code size for S3.

41

Figure 41: Evolution view of code size for S4.

Figure 42: Evolution view of code size for S5.

Figure 43: Evolution view of code size for S6.

42

Figure 44: Evolution view of code size for S7.

To support or challenge these hypotheses, we look at the evolution views for the other
periods. For Figure 39, the code size for the middle range categories seems to experience
some bumps where lower categories lose some files in the benefit of higher categories. On
average, however, the categories seem to remain stable in terms of file count. The same
can be observed in Figure 41, Figure 42 (which even shows a bump in 2013 where the
code size decreases on average, possibly due to refactoring activities) and Figure 43, where
the code size also seems to remain stable and does not show any significant increases or
decreases. In Figure 40 however, we can see clearly that the highest category gains in file
count while the other categories become less prevalent. Combining the results of these
seven periods, we can conclude that the most likely hypothesis is the one that argues that
source files do not shrink or grow significantly on average throughout the project, since six
of the seven evolution views seem to support this hypothesis, while only Figure 40 supports
the hypothesis that files grow in code size on average throughout the project.

5.2 Most turbulent files

We will now investigate which source files grow and shrink the most on average. There is
a strong indication that the header files are not among the files that shrink or grow the
most, as determined in the last section, so these will again not be included in the analysis.

Files that have shrunk or grown the most are respectively defined to be the files that
have once been in the highest/lowest category of code size, and have afterwards belonged
respectively to the lowest/highest category, so they have been a part of each category at a
point in their existence. To find the files that do shrink or grow the most, we first open the
file selection displayed in Figure 35, sort the view based on creation time and then enable
the code size metric. Subsequently, we select the highest code size category, and group
the files in the view based on code size. This generates the view depicted in Figure 45. In
this view, we select the top files that have been grouped together, which are semantically
speaking the files that have ever been part of the biggest files of the entire project. Now,
we sort these files again on creation time and re-enable the code size metric. We select the
lowest category of code size, and we group again based on code size. The view that is now
displayed is the one in Figure 46.

43

Figure 45: The same file view in Figure 35, sorted by creation time first and then grouped
on code size while selecting the highest category.

Figure 46: The files at the top of Figure 45, sorted by creation time and then grouped on
code size while selecting the lowest category.

44

Figure 47: The files at the top of the view in Figure 46, sorted alphabetically, which are
the most growing/shrinking files in the entire project.

Semantically, the files that are now in the top group are files that have ever belonged to
the lowest code size category, as well as the highest code size category. Therefore, these are
the files that will have shrunk or grown the most during the project, since that is the only
process that could have affected the code size metric in such a way. We select these top
files and sort them alphabetically, which generates the view in Figure 47. The same listing
of files has also been given in Section 11.6 . The majority of these files are a part of the
/source/blender folder, and then the /source/blender/blenkernel, /source/blender/editors
and /source/blender/makesrna in particular. As discussed before, the /source/blender
folder contains the source code for the main functionality of the Blender application. From
the fact that these kind of files are included in the list of most shrunk/grown files, this
indicates indeed that /source/blender is one of the folders where the most changes in terms
of file sizes are made, reflecting its purpose.

5.3 Source code fraction

Finally, we are interested in finding out the fraction of source code in the entire project in
percentage. The assignment suggests that we should use the code size metric to determine
the amount of source code files in the project. Therefore, we take the file view of all files
in the project, sort this by creation time and subsequently enable the code size metric and
select all categories. Then, we group the view by code size, the result of which is depicted
in Figure 48. This clearly separates the files with have a value for the code size metric
(which can be viewed as the source code files) opposed to the ones that do not, displayed
in grey in the bottom group. By checking in the SolidTA window how many files are in
this view, and in the view that is obtained by selecting the top files, we conclude that there
are 4628 files that have a code size metric and that the total amount of files in Figure 48
is 8119. Therefore, we could say that the percentage of source code in the entire project is
around:

4628/8119 ≈ 57%

45

Figure 48: File view of all files, with the code size metric enabled, sorted first by creation
time and then grouped by all code size categories, so that the files which have a code size
metric are displayed in the top group.

However, the code size metric has only been calculated for files that have an extension
related to C or C++, and for some of these files the calculation of the metrics failed.
Therefore, we believe that there is reasonable doubt for the accurateness of this calcula-
tion, also because the Blender project contains an amount of Python code and code for
shading languages, which we also consider to be part of the source code, even if no metrics
can be calculated for it using the calculators available in SolidTA.

If we combine the data we found in the Basic Repository Investigation in the first step,
particularly in Table 1, Table 2 and Table 4 (information on disk space and amount of files
for all files and for only source code files, which also includes other types of source code
than C/C++), we find that the entire project is about 8654 files accounting for 121.2MB,
while the source code is around 6964 files and accounts for 85.1MB.

Based on the number of files that we have found, the percentage of source code is:

6964/8654 ≈ 80.5%

And based on disk space, the percentage would be:

85.1MB/121.2MB ≈ 70.2%

As is evident, these ways of determining the percentage of source code indicate a much
larger fraction of the project and we argue that these hold more ground, given the in-depth
details of the structure of the repository in Basic Repository Investigation.

46

6 Complexity Analysis

In this section, several analyses will be performed related to the complexity of the source
files in the entire project. During this step, we will describe the complexity of the revisions
of files using the Complexity metric, which will be set to "Total Complexity". The other
sub-metrics of the Complexity metric did not seem suitable for answering the questions
of this step, as for the last question the complexity has to be compared against the code
size metric, which is not weighted, and all other complexity sub-metrics apart from Total
Complexity are in fact weighted. Therefore, we decided to use the Total Complexity
metric everywhere in this step when referring to complexity. The values that are used for
the categories of this metric can be adjusted with the configuration slider.

Figure 49: Legend for the Total Complexity metric (under Complexity)

We opted to set the configuration slider in such a way that the highest category is in the
range of "54 - ...", because this led to a good distribution of the number of files between
the different complexity categories, as can be seen in Figure 50, because the values of the
central categories are spread relatively evenly between the highest and lowest category. We
have also configured this view with higher and lower values for the configuration, which
in general only had the effect of shifting the middle categories up and down in this view
while increasing/decreasing the size of the highest/lowest category. This value was found
to provide the most stable distribution.

Figure 50: Evolution view of Total Complexity for all files

47

6.1 Most complex files

First of all, we are interested in finding the files in the project that are currently the most
complex. We define files as currently the most complex, when their latest revision has a
total complexity metric that falls in the highest complexity category. Since the complexity
metric is only available for source code files, we only use these files in the initial view. In
this initial view, which only contains source code files, we first select the highest complexity
category, which gives the view depicted in Figure 51.

Figure 51: File view of all source files in the project, sorted on creation time, with the
complexity metric enabled and the highest category selected.

In this view, we then group the files by the complexity metric, which will put the files with
revisions that are highlighted in the top of the figure. These files are then selected and put
in their own view, which is displayed in Figure 52, which contains all of the files that have
ever had a revision in the highest complexity category.

Figure 52: File view of the files that have a revision that is part of the highest complexity
category, sorted on creation time.

48

Now, all we need to do is manually deselect (using the "Inverse Selection" setting in
SolidTA) the files from this view of which the latest revision is not a part of the highest
complexity category. After this task has been performed, we find the file view in Figure 53,
which depicts the files that are currently in the highest complexity category, and are thus
considered to be the currently most complex files in the project.

Figure 53: File view of all files in Figure 52 of which the current revision is in the highest
complexity category, sorted on creation time.

6.2 Changes in complexity

Now that the most complex files have been determined, we are interested in the files that
show the biggest increases or decreases in the total complexity metric. We define files with
the largest increases in complexity to belong to the highest complexity category right now,
but have once belonged to the lowest complexity category. Inversely, we define files with
the largest decreases in complexity to belong to the lowest complexity category currently,
while having once belonged to the highest complexity category.

To find these files, the view with the most complex files of the previous section will be
utilised. Furthermore, we will also require a view with the currently least complex files in
the project. To obtain this view, we perform a similar approach as above. First of all, we
sort the view of all files based on complexity while selecting the lowest complexity category,
and then we distill the top group of this figure into a new view, given in Figure 54. In this
view, we subsequently deselect all of the files of which the latest revision does not fall in
the lowest category, and the result of this action is Figure 55, which depicts the files that
are currently in the lowest complexity category.

To obtain the list of files that increase the most in complexity, we use the view of the
currently most complex files in Figure 53, enable the complexity metric, and then select
the lowest complexity category. If the view is now grouped by complexity, the top group
will contain all of the files that are currently in the highest complexity category, while
having ever been in the lowest complexity category. These files are extracted into their
own view in Figure 56, which is in fact the list of files that undergo the biggest complexity
increase in the project.

49

Figure 54: File view of the files that have a revision that is part of the lowest complexity
category, sorted on creation time.

Figure 55: File view of all files in Figure 54 of which the current revision is in the lowest
complexity category.

To obtain the list of files that decrease the most in complexity, we perform the same ap-
proach as for the list of files with increasing complexity, except that we start with the view
of currently least complex files in Figure 55, and select the highest complexity category
instead. If the view is then grouped by complexity, the top group will contain all of the
files that are currently in the lowest complexity category, but have ever been in the highest
complexity category. According to our definition earlier on in this section, this is indeed
the list of files that have the highest decreases in complexity, and these files are extracted
into their own view in Figure 57.

These two file views of most increases and decreases in complexity show that the most
turbulent files (in terms of changes in complexity) are for a large majority .c files.

50

The files with increasing complexity are mostly related to serialisation of other object
classes and extending the functionality of the editor windows, while the files with decreasing
complexity are related to displaying nodes and mesh structures in the GUI of Blender and
for graphical operations and device interfaces (with GPU in particular).

Figure 56: File view obtained by taking the top group after grouping Figure 52 using only
the lowest complexity category, sorted on creation time, resulting in the files that have
increased most in complexity.

Figure 57: File view obtained by taking the top group after grouping Figure 54 using only
the highest complexity category, sorted on creation time, resulting in the files that have
decreased most in complexity.

We have also investigated whether there was some correlation between the location and/or
functionality of these files and the fact that there is such an increase or decrease in complex-
ity. If we sort both views alphabetically and turn on the folder metric for these views, and
set the configuration to the fourth level, we obtain Figure 58 for the files with increasing
complexity and Figure 59 for the files with decreasing complexity.

51

Figure 58: File view of all files increasing most in complexity, sorted alphabetically, with
the folder metric enabled on the fourth configuration level.

Figure 59: File view of all files decreasing most in complexity, sorted alphabetically, with
the folder metric enabled on the fourth configuration level.

For the files that are decreasing in complexity, there are some files which originate from the
same folders, but this is not a clear indication of a correlation with such a small sample size.
For the files that are increasing in complexity, we actually do see a strong indication with
the location, mainly in /source/blender/blenkernel (which contains the interfaces of the
API available for advanced users, growing in functionality over time), /source/blender/ed-
itors (code for the graphical editors that have become more complicated due to a larger
variety of operations available for users) and /source/blender/makesrna (regarding seriali-
sation of data objects, which need to become more complex if their corresponding objects
receive more methods or parameters).

52

6.3 Activity correlation

Next, having determined the files that are the most complex, most increasing and decreas-
ing in complexity, we investigate if there is any correlation between these files and the level
of activity. In SolidTA, activity is reflected by yellow vertical lines on the bars, where each
vertical line indicates a revision being performed on that file (or a set of revisions if many
revisions were performed at the same time).

For the files with increasing complexity, Figure 60, the files with decreasing complexity,
Figure 61, the files which are currently the most complex, Figure 62, and the files which
are currently the least complex, Figure 63, we have sorted the file views based on activity,
with the complexity metric enabled for all categories, and we compare these figures.

Figure 60: The same file view as in Figure 56, sorted on activity, with the complexity
metric enabled for all categories.

Figure 61: The same file view as in Figure 57, sorted on activity, with the complexity
metric enabled for all categories.

53

Figure 60 and Figure 61 indicate that files with decreasing complexity have less activity
than the files with increasing complexity, due to the difference in proportion of activity
(presented in yellow vertical lines) between these figures. There are of course some files
in the figure with decreasing files with high activity, but these do not weigh up against
the other figure where almost all files are indicated to be moderately to highly active.
We hypothesise therefore that high/increasing complexity may be directly correlated with
highly activity. This hypothesis is also supported when looking at the currently most and
least complex files in Figure 62 and Figure 63, where the former clearly indicates a much
higher activity on average compared to the latter.

Figure 62: The same file view as in Figure 52, sorted on activity, with the complexity
metric enabled for all categories.

Figure 63: The same file view as in Figure 54, sorted on activity, with the complexity
metric enabled for all categories.

54

To confirm our deny our hypothesis, we take the list of files of the entire project that have
a value for the complexity metric. Then, we sort this list of files based on activity, as
presented in Figure 64. Since the top of this view, with the highest activity, shows the
majority of the files in the higher complexity categories, this is an indication that the most
complex files are also the most active files. If we only select the highest or lowest category
of complexity, represented respectively in Figure 65 and Figure 66, we can clearly see that
the data indicates that the hypothesis that we described is supported.

Figure 64: File view of all files that have a value for the complexity metric, sorted on
activity, with the complexity metric enabled.

Figure 65: File view of all files that have a value for the complexity metric, sorted on
activity, with the complexity metric enabled for the highest category only.

55

Figure 66: File view of all files that have a value for the complexity metric, sorted on
activity, with the complexity metric enabled for the lowest category only.

6.4 Size correlation

Finally, we will establish if there is a correlation between complexity and code size, mea-
sured in Lines of Code as described in the Code Size Analysis. The same settings for the
code size metric as described in that section will be used as well, please refer there for a
legend for the different code size categories. For the complexity metric, the same settings
as elsewhere in this section will be utilised.

Figure 67: View of all source files, sorted on creation time and then grouped by the lowest
complexity category.

56

Figure 68: The same as Figure 67, with the complexity metric disabled and the code size
metric enabled.

We hypothesise that there is a direct relationship between complexity and code size, due
to the fact that in our experience, more source code gives room for an increase in total
complexity of that source file. Therefore, to see if this hypothesis is true, we will take the
file view of all files in the project for which the complexity metric is available (and thus
also the code size metric, since these are both calculated through the CCCC calculator
in SolidTA) and sort these first on creation time, then on the lowest complexity category,
obtaining the view in Figure 67, where the top group indicates files with the lowest com-
plexity adversely to the bottom group, which indicates the higher categories of complexity.

Now, we turn off the complexity metric and turn on the code size metric, as depicted
in Figure 68. Indeed, it is clearly indicated that the source code with the highest code size
is located in the bottom group, which is the group with highest complexity. Furthermore,
we have also performed the opposite operation, which consist of sorting the view of all
source files based on the highest complexity category, as depicted in Figure 69, in which
the top group contains the most complex files, and the bottom group contains the lower
categories of complexity.

If we now switch the complexity metric for the code size metric, we see again that the
files which fall in the higher code size categories also fall in the highest complexity cat-
egories, in Figure 70. Therefore, we conclude that there is a high indication that the
hypothesis of complexity being directly linked to code size is correct.

57

Figure 69: View of all source files, sorted on creation time and then grouped by the highest
complexity category.

Figure 70: The same as Figure 69, with the complexity metric disabled and the code size
metric enabled.

58

7 Dependency Analysis

In the elaboration of this assignment, we have used the Solid Trend Analyzer to draw
conclusions related to the absolute values of software metrics, the relation between software
metrics, and the correlation between these metrics and the types, authors and locations
of files. While viewing these properties of files in itself is a very powerful technique for
analysing a software repository, the source code of these repositories often refers to other
files by means of calls, inheritance, containment or build dependencies, which is a type of
analysis that is missing from tools such as the Solid Trend Analyzer. in this short essay, we
will devise a data model and visualisation strategy for displaying these kind of dependency
graphs and describe these in detail.

7.1 Data modelling

Several different dependency graphs exist in a software source code repository. To visualise
the dependency evolution of each of these graphs, a suitable data model is required first
and foremost. The first part of this essay proposes such a data model, discusses some
implementation details for efficient implementation of the model and describes the steps
necessary to include a new version of the software source code into the model. The different
types of dependency graphs that are considered here are: the call graph, the inheritance
graph, the containment graph, and the build dependency graph.

• Call graph: a graph that displays the calls that are being made between source
code components. The nodes are the function definitions, while the edges are the
function calls being made.

• Inheritance graph: a graph that shows the inheritance between one object to
another. The nodes on these graph are classes or objects, while the edges point out
the different inheritance relations between those classes or objects.

• Containment graph: a graph which focuses on the physical containment of one
object in another. The nodes could be a package, a folder, a file, a namespace,
classes or functions, and the edges are the containment relationships between these
objects/concepts.

• Build dependency graph: a graph that shows how the build time of files affects
the build time of other files that depend on the former file and vice versa. The
nodes are the files, the edges indicate the dependencies between those files related to
compilation.

7.1.1 Data model proposal

Now that the scope of the visualisation tool has been clearly defined, namely the effective
visualisation of evolution in different types of dependency graphs, we can begin constructing
a data model for these graphs. The data model is required where all the dependency graphs
can be stored in. Not only should the model store the nodes and edges of the graph itself,
it should also contain the correspondence information for all the nodes and edges which
indicates how an element of version i corresponds to an element of version i+ 1.

59

The different types of dependency graphs that are being analysed can be combined into
one large graph that shows all of the information that would otherwise be captured in each
of the separate graphs. Because of this property, the data model can be simplified, since
it does not have to store each of the graphs separately. The data model that is proposed
to store all of the information for all types of dependency graphs is shown in Figure 71.

Figure 71: Proposed data model for the visualisation tool

Since it is possible to combine all of the dependency graphs into a single graph, the data
model does not have to record each of the graphs separately and represents one large graph.
Several types of nodes are used in the model such as a node for a function, class, namespace,
file, folder and package. These types of nodes correspond to the types of nodes required
by the different dependency graphs. All of the dependency graphs show a relationship
between two nodes with an edge between the two nodes, which is also captured by the
model. However, because the relationships of several dependency graphs are combined,
the edge has a certain type that indicates from which dependency graph the relationship
is taken.

60

The parts of the model discussed so far capture all of the dependency graphs for a certain
version of a software repository. However, the model also has to capture the correspon-
dence information that connects an element from version i to the next version i + 1. To
include this information in the model, every relationship between two nodes (indicated by
an edge) is provided with the so-called correspondence information. This indicates how
the relationship between two nodes in version i relate to the next version, i + 1. This, in
turn, is linked to some information regarding the version of the software, which all belongs
to a certain repository.

The proposed data model captures the information of all of the dependency graphs into
a single graph. By doing this it is slightly more difficult to display the evolution of the
software source code based on a single dependency graph. When only the information from
a single graph is required, the entire graph has to be traversed, but only the nodes that
are connected by an edge of a specific type and the edge itself should be displayed. Since
the graph also contains the relationships from all of the other dependency graphs ,this is
computationally more expensive than when the graphs would be recorded separately.

When the information of a single dependency graph must be shown, it is also more difficult
to extract the information from the next version, since it is not possible to simply follow
the correspondence information included in the edges. This is due to the fact that not
every part of the graph is linked by the correspondence information. For example, when
a new function is inserted in the source code, none of functions in the previous version
have any correspondence to that new function. Therefore, it is also required to traverse
the entire graph of the next version and filter out any information that is not required.

However, while it is slightly more difficult to display the information of a single dependency
graph, the model gives great flexibility when the information of two or more dependency
graphs have to be combined and displayed. It is also much more efficient with respect to
the data storage required, since some dependency graphs share certain information. The
call graph and containment graph, for example, both include function nodes in the graph.
When these graphs would be constructed separately, the same function nodes would have to
be duplicated across the different graphs, and when the correspondence information must
be determined, it must be determined once for each graph. By combining the information
into a single graph, the function node only has to be recorded once and the correspon-
dence information for that node can also be used for the other dependency graphs that
also include that node.

7.1.2 Implementation decisions

Software repositories can contain a very large number of files and each of the files can po-
tentially contain many lines of code. This can also result in very large dependency graphs.
Therefore, it is very important that the data model is implemented in an efficient way.

To make the implementation efficient, it can be built on top of a graph database. Because
of the inherent feature of maintaining direct links to properties and the corresponding
nodes, it is very efficient to search for the relationships of a certain node. This can even be
used for the correspondence information, which makes it possible to link a node directly
to the node of the next version.

61

Another way in which the implementation of the data model can be made more efficient
is by parallelising the extraction of information from the source code per version. When
all of the graphs have been obtained, the graphs of successive version of the source code
can be analysed to find the correspondence information for the different data elements. It
might also be possible to extract the different dependency graphs from a single version,
however, because all of the information is captured into a single graph this might prove
more difficult.

7.1.3 Updating the model

Whenever a new version is committed, that new version must also be included in the data
model. Adding the new version to the data model happens in a two-step process. First, all
of the different types of dependency graphs must be extracted from the source code and
combined into a single graph. Once these graphs have been obtained, the correspondences
between the last version in the data model and the newly obtained graph must be deter-
mined.

Determining the correspondences between the last version and the new version is not
that straightforward for all of the dependency graphs. For example, to determine the cor-
respondence between two functions, it is possible to look at the name of the function, the
class in which it is located, the file, etc. However, if the function’s name has been changed,
or when the function has been moved to another class, this method cannot be applied. In
those cases, a more complex approach must be used. One such approach is described in [11].

It is also possible that an element that was present in the last version of the source code is
no longer present in the new version or that a new element has been introduced that was
not present in the last version. In both cases it is not possible to record any correspondence
information for those elements.

7.2 Data visualisation

Now that a data model has been proposed for the dependency analysis tool, an effective
way to perform the analysis on this model is required. One of the essential parts of the
analysis method is the ability to visualise the evolution of the dependency data set. This
is a difficult problem since the data set is very complex and can also be quite large.

7.2.1 Visualisation technique

For the visualisation of the dependency evolution, the call graph is chosen as an example.
The visualisation is built on top of the already existing 2D layout of the Solid Trend
Analyzer. In this layout, the x-axis represents the time, and the y-axis represents the files
and every file is drawn as a rectangle.

62

The layout that is used in the Solid Trend Analyzer is not very well suited to display the
call graph on, because one file can contain multiple function definitions and function calls
can also be made to functions that reside in another file. For this reason, the call graph
will not be displayed directly in the same layout as provided by the Solid Trend Analyzer,
but in a separate view. A simple, yet effective example of how the visualisation might look
like is shown in Figure 72.

Figure 72: Visualisation of a call graph for the proposed visualisation technique

The technique that is used shows all of the functions that belong to the same class or
file grouped together and also gives a colour coding per file or class. The directed edges
between the nodes show which functions call what other functions. The size of the nodes
also differ, nodes are drawn larger when many edges begin or end in that node. This way,
important functions in the software are easily identified.

The scalability of the technique is reasonable. When the graph contains a very large
amount of functions and function calls, the graph will contain many nodes and edges.
While this will decrease the readability of the graph, the difference in node size helps the
user with identifying what are probably the most important functions and the grouping of
the nodes gives the user a better understanding of how the functions relate to each other.

63

The technique is only scalable if it is indeed possible to visualise the call graph in the
way that was previously described. If the source code is structured in such a way that
only a relatively small part of the functions is called by many of the other functions and
that functions that reside within the same class or file mostly call each other, then it is
believed that it is indeed possible to obtain a reasonable visualisation using this technique.
However, when many functions in different files or classes call many other functions in
other files or classes then there might be too many edges between the nodes to obtain a
reasonable visualisation.

With a very large number of functions, the visualisation becomes somewhat cluttered.
The functions are grouped per file or class, but when there are too many, the nodes are
drawn quite close too the other nodes. This can make it somewhat hard to understand the
graph. However, this problem can be somewhat mitigated by dynamically scaling the node
size. When the number of nodes is very high, the size of the nodes can be decreased. This
will then trade some of the readability for a decrease in the amount of cluttering, since
a smaller node size results in more space that is available for spreading the nodes. The
readability problem that arises from this can be solved by giving the user the possibility
to zoom in on a certain part of the graph.

One improvement that could be implemented on top of this approach is the one shown
in [10] where the nodes and edges are colour-coded based on the number of versions that
a certain function remains untouched. This could also be used for the shown technique, to
draw the attention of the user away from parts of the code that were not modified for a
larger amount of time. Instead, the attention is drawn to the functions and calls that were
recently introduced or modified.

7.2.2 Graph types

Several different types of dependency graphs are considered for the analysis of a source code
repository. These graphs can be grouped into the following three categories: a cyclic graph,
an acyclic graph and a tree. For the given dependency graphs, the following categorisation
is made:

• The call graph shows which functions a particular function calls. Because a function
can call other functions, can call itself and a function A that is called by a function
B can also call that function A, the call graph is a cyclic graph.

• The class inheritance graph is an acyclic graph. The graph cannot contain cycles,
since a class cannot inherit properties from a class that already inherits from that
class. However, any class can inherit from any other class, therefore it is not a tree.

• The containment graph is a tree, because when an element A is contained in
another element B, it is automatically contained into the elements that contain the
element B. Also, element A cannot also be contained in another element that does
not contain B.

• The build dependency graph is an acyclic graph. A file A can depend on a file
B, but then B cannot depend on A. A file can also not depend on itself. And, as was
the case with the inheritance graph, any file can depend on any other file.

64

When the type of the dependency graph is known, it is possible to use this knowledge for
the visualisation of the software evolution. It is also possible to create a data model that
takes advantage of the properties of that type of graph.

Knowing that the dependency graph that needs to be visualised is a tree has some advan-
tages. A tree has a much clearer structure than the other graph types that were mentioned
above. A tree has no cycles and a child node can have only one parent node. It is also
possible to group nodes together when they have the same parent node.

7.3 Conclusion

In this short essay, we have described the importance of the analysis of evolutions in depen-
dency graphs next to the file-based software quality (and other) metrics provided by tools
such as Solid Trend Analyzer. It is clear that both kind of analysis methods complement
each other very well for the analysis of the maintainability, modularity, complexity and
quality of software and development processes.

A data model was presented that attempts to capture the four types of dependency graphs,
call graphs, inheritance graphs, containment graphs, and build dependency graphs, as well
as their evolution between versions. Subsequently, we have described the advantages and
disadvantages of this model and the design decisions that were taken.

Finally, we suggested a method for the visualisation of our proposed data model. This
method displays nodes as dots which are coloured based on their membership to a class,
file or package, and are varied in size based on their importance. Edges between these
nodes indicate directed function calls. Although, it was difficult to visualise this type of
graph on top of the view in Solid Trend Analyzer.

65

8 Evaluation

For this assignment, we have analysed the repository of the Blender project using several
analyses in order to assess the maintainability, modularity, complexity and quality of the
software, as well as the development process. We will now conclude this report.

8.1 Summary

In the first step, we have looked into the structure of the repository, defined the locations
where most source code was located, showed the main contributors to the project for two
definitions for midpoints of the project, and hypothesised that the amount of commits for
the project develops erratically, with the majority lying in the second half of the project,
rather than being evenly spread.

This hypothesis was confirmed in the second step, where we provided an initial visual
overview of the project. The stable and unstable development periods where identified
based on the hypothesis that these occurred when the sorted file view of the project shows
respectively a low slope and a steeper slope. Other views seemed to indicate that this
hypothesis was right, based on our definition of stable and unstable development periods.
Furthermore, the data indicated that the code is currently in a reasonably stable state.

In the third step, analyses were performed regarding the authors/developers of the Blender
project. We identified that there was indeed a chief developer for the project, but that
in the past there have been different chief developers for limited periods of time. Several
potential candidates for replacing the chief developer if need be have been determined
through the evolution views of the commit count and the file views with the authors met-
ric enabled. We have also shown that for some file types and a limited amount of folders,
there seems to be a correlation between respectively file types and authors, and folders and
authors.

The code size of the project was discussed in the fourth step. In particular, the evolu-
tion of the code size was thoroughly discussed. A naive approach was performed that did
not give any valid insights in the size evolution, however, a secondary approach did. We
hypothesised that the code size of files, on average, stays approximately the same over time
in the project, which was highly supported by the obtained evolution views of groups of
files. The files which shrink and grow the most have been identified in this section as well,
and several methods were given for determining the fraction of source code in the entire
project, for different definitions of both source code and what property defines that fraction.

In the fifth and last step regarding the Blender project, we analysed the complexity met-
rics. The currently most complex files, the files with the most increase and decrease in
complexity, and the currently least complex files were determined in this section. Two
hypotheses were formed in this section, namely that complexity and code size are directly
related, and that activity and complexity are also largely directly related to each other. A
number of figures were constructed that show support for these hypotheses, which indicates
a high acceptance of these hypotheses.

66

In the last part of the document, we have described in an essay how we would propose to
model various types of dependency graphs and how to visualise so that they may be used
in the software analysis procedures. Advantages and disadvantages of our design decisions
have been described, and we have argued why the visualisation method is suitable and
applicable for displaying these kind of graphs.

8.2 Tools

In general, the tools that were provided and have been obtained and installed by ourselves
proved to be easy to use, and we did not encounter any major problems. However, the
CCCC calculator in SolidTA would often fail to complete within a reasonable time for
certain revisions for certain files or just refuse to calculate the complexity/code size at
all, seemingly at random. This could be due to the fact that the CCCC calculator uses a
slightly older specification of the C and C++ language, which means that newer constructs
may not be recognised and may cause failures or hangs of the calculator.

Furthermore, SolidTA lacks proper functionality for exporting views into images, which
had to be done through screenshots. At the start of the course, in some occasions we also
noticed that SolidTA would shutdown at random moments which led to a loss of data, since
SolidTA is apparently not capable of retrieving calculated metrics that it has performed
during execution runs after which the application is not properly closed. This did not seem
to happen at all later on in the course, we are unsure what the reason for this behaviour was.

For a new version, pulling the file and revision list in SolidTA is fairly quick. However,
when trying to obtain the contents of revisions in the new version, SolidTA may attempt
to loop over all files to check if it has fetched the content of those files. This leads to a
longer execution time of simply fetching the new files than is necessary.

Finally, SolidTA has some bugs related to the user interface. When the application is
left in a minimised state for extended periods of time, errors will be displayed routinely in
the log window, and functionality of the interface will fail or lag. When the configuration
slider for a metric is adjusted while the trend view for that metric is open, errors will be
displayed and the trend view will seize updating, which can be fixed by disabling the trend
view and reopening it, but is still rather annoying. Scrolling through the file list can be
very laggy in the application as well.

67

8.3 Analysis

The analysis of the software took more time than we initially planned it would, due to the
fact that we wanted to give a very detailed analysis in all of the different steps. We hope
that this effort is observed and appreciated by the reader of this document.

During the lectures, Alexandru Telea remarked on the fact that it would be infeasible
to fetch all of the contents and calculate all of the metrics for a specific repository. How-
ever, now that we have performed this assignment, we can say that this was not a problem
for us personally, since (apart from the issues described above) we could let SolidTA do
the calculation and file fetching over extended periods of time in the background while
performing other tasks.

Regarding the analysis of metrics itself, it was relatively easy to use the metrics in SolidTA
and the corresponding file, evolution and trend views to come to conclusions on the ques-
tions that were given for the assignment.

8.4 Conclusion

We experienced this assignment as very insightful and enjoyable, due to the fact that it is
very practical, that we can pick our own, real-life software repository to investigate, and to
actually draw conclusions on this real-life data based on the various quality metrics, devel-
opers and other metrics such as activity and file types/locations. It was interesting to play
around with the different settings in SolidTA, and to see how SolidTA has indeed widened
and deepened our understanding of the repository while using it for this assignment.

All in all, we hope that the reader appreciates the effort put in this assignment and this
document, and appreciates the level of detail that we have tried to maintain throughout
the assignment.

68

9 Acknowledgements

We would like to extend our gratitude to Alexandru Telea for his teaching efforts in the
course of Software Maintenance and Evolution that we attended, and for reviewing this
report.

10 References

[1] Blender Foundation and the Blender Project: http://www.blender.org/

[2] "Developers: Ask Us Anything!", an article on the Blender wiki:

http://wiki.blender.org/index.php/Dev:Doc/AskUsAnything

[3] Index of /source/, on Blender Project sitemap:

http://download.blender.org/source/

[4] "Blender Dokumentation: Die Geschichte von Blender" on WikiBooks:

https://de.wikibooks.org/wiki/Blender_Dokumentation:_Die_
Geschichte_von_Blender

[5] "Blender 2.76.2 8d9c7e6 - API documentation", available on:

http://www.blender.org/api/blender_python_api_2_76_2

[6] "Blender (software)", an article on Wikipedia:

https://en.wikipedia.org/wiki/Blender_(software)

[7] Blender 2.76b Release Notes: http://www.blender.org/features/2-76/

[8] Release Cycle of Blender project: http://wiki.blender.org/index.php/Dev:
Doc/Process/Release_Cycle

[9] Top developers of 2015 of the Blender project:

https://www.miikahweb.com/en/blender/git-statistics/year/2015

[10] Collberg C., Kobourov S., Nagra J., Pitts J., Wampler K. (2003), A System for Graph-
Based Visualization of the Evolution of Software, Proceedings of the 2003 ACM sym-
posium on Software visualization, ACM, p. 77-ff.

[11] Chevalier F., Auber D., Telea A. (2007), Structural analysis and visualization of C++
code evolution using syntax trees, Ninth international workshop on Principles of software
evolution: in conjunction with the 6th ESEC/FSE joint meeting, ACM, 2007. p. 90-97.

69

http://www.blender.org/
http://wiki.blender.org/index.php/Dev:Doc/AskUsAnything
http://download.blender.org/source/
https://de.wikibooks.org/wiki/Blender_Dokumentation:_Die_Geschichte_von_Blender
https://de.wikibooks.org/wiki/Blender_Dokumentation:_Die_Geschichte_von_Blender
http://www.blender.org/api/blender_python_api_2_76_2
https://en.wikipedia.org/wiki/Blender_(software)
http://www.blender.org/features/2-76/
http://wiki.blender.org/index.php/Dev:Doc/Process/Release_Cycle
http://wiki.blender.org/index.php/Dev:Doc/Process/Release_Cycle
https://www.miikahweb.com/en/blender/git-statistics/year/2015

11 Appendices

The following is a set of listings and images that were provided as further clarification on
the content of this document and the steps that were performed. Please refer to the text
of the document for references and explanation on these items.

11.1 Time Tracking

We each spent around the following amount of hours on each activity item: (excluding
passive items)

Activity Time spent

Installing SolidTA 30m
Picking repository 4h
Installing git command line tool 5m
Installing Filelight 10m
Getting familiar with SolidTA 2h
Getting familiar with Filelight 15m
Refreshing git command knowledge 1h
Downloading file revisions and contents 10h (passive)
Calculating Lines of Text for all revisions 2h (passive)
Performing CCCC calculator on all revisions 20h (mostly passive)
Performing step 1 8h
Performing step 2 5h
Performing step 3 9h
Performing step 4 7h
Performing step 5 8h
Performing step 6 10h
Documenting 25h

Total: 80h

Table 3: Distribution of files and sizes among top-level directories, including only source
code files.

70

11.2 File extensions

Extension Files Size (B) Extension Files Size (B)

.h 2866 20121023 .cpp 1224 20283612

.c 1203 34664636 .dat 962 2485808

.py 500 3309310 .cc 272 2595935

.txt 212 975956 .hpp 116 725040

.rst 95 563089 .osl 86 121949

.spi1d 73 8640162 .png 45 973353

.cmake 35 133868 .jpg 24 768388

.glsl 23 108853 .patch 20 35031

.sh 19 181997 .cl 13 61496

.inl 12 86516 .xml 10 495966

.mm 7 127153 .spimtx 6 589

.spi3d 5 4510443 .html 5 48589

.svg 4 5361844 .icns 4 669866

.ico 4 347184 .blend 3 2271140

.bmp 3 182970 .libmv 3 978

.map 3 615 .gz 2 5109341

.ttf 2 501120 .cfg 2 41641

.m 2 40452 .css 2 5588

.plist 2 3058 .conf 2 873

.xcf 1 1274820 .bz2 1 182524

.3dl 1 78736 .GPL3 1 35147

.ocio 1 27109 .pfb 1 25181

.GPL2 1 19049 .nsi 1 8599

.hh 1 6299 .cu 1 6181

.desktop 1 5589 .LZO 1 4003

.in 1 3106 .rc 1 1057

.mac 1 1003 .js 1 918

.linux 1 625 .cygwin 1 596

.FFT 1 509 .gitmodules 1 435

.gitignore 1 406 .manifest 1 395

.org 1 391 .install 1 306

.arcconfig 1 170

Table 4: List of file extensions in the entire repository, sorted primarily on Files and
secondarily on Size, read from left to right from top to bottom. Files without an extension
are not included in this list. Source code extensions are depicted in bold.

71

Extension Files Size (B) Extension Files Size (B)

.h 1396 5982124 .c 1111 31130875

.cpp 729 6006631 .txt 98 288715

.glsl 21 96015 .cc 16 240596

.py 7 34012 .ico 2 320820

.m 2 40452 .map 2 582

.cl 1 11530 .rc 1 1057

.sh 1 672 .manifest 1 395

.conf 1 41

Table 5: List of file extensions in the source folder, sorted primarily on Files and secondarily
on Size, read from left to right from top to bottom. Files without an extension are not
included in this list. Source code extensions are depicted in bold.

Extension Files Size (B) Extension Files Size (B)

.h 888 10769847 .cc 230 2139536

.cpp 185 2636876 .hpp 78 550238

.c 42 3060367 .txt 38 182301

.patch 18 34082 .sh 11 35514

.py 5 38925 .libmv 3 978

.GPL3 1 35147 .GPL2 1 19049

.hh 1 6299 .LZO 1 4003

.org 1 391 .map 1 33

Table 6: List of file extensions in the extern folder, sorted primarily on Files and secondarily
on Size, read from left to right from top to bottom. Files without an extension are not
included in this list. Source code extensions are depicted in bold.

Extension Files Size (B) Extension Files Size (B)

.h 576 3288276 .cpp 310 11640105

.osl 80 114496 .c 49 464781

.txt 49 180935 .hpp 38 174802

.cc 12 149420 .inl 12 86516

.cl 12 49966 .py 8 115201

.mm 7 127153 .glsl 2 12838

.cfg 1 28173 .cu 1 6181

.cmake 1 4189 .mac 1 1003

.linux 1 625 .cygwin 1 596

.FFT 1 509

Table 7: List of file extensions in the intern folder, sorted primarily on Files and secondarily
on Size, read from left to right from top to bottom. Files without an extension are not
included in this list. Source code extensions are depicted in bold.

72

Extension Files Size (B) Extension Files Size (B)

.dat 962 2485808 .py 354 2499242

.spi1d 73 8640162 .png 41 916962

.jpg 24 768388 .xml 10 495966

.txt 10 75626 .osl 6 7453

.spimtx 6 589 .spi3d 5 4510443

.svg 4 5361844 .icns 4 669866

.blend 3 2271140 .bmp 3 182970

.gz 2 5109341 .ttf 2 501120

.plist 2 3058 .xcf 1 1274820

.bz2 1 182524 .3dl 1 78736

.ocio 1 27109 .ico 1 25214

.pfb 1 25181 .c 1 8613

.nsi 1 8599 .html 1 6223

.desktop 1 5589

Table 8: List of file extensions in the release folder, sorted primarily on Files and secondarily
on Size, read from left to right from top to bottom. Files without an extension are not
included in this list. Source code extensions are depicted in bold.

73

11.3 Revisions of potential replacements for chief developer

Figure 73: Revisions of Campbell Barton (current chief developer)

Figure 74: Revisions of Sergey Sharybin

Figure 75: Revisions of Bastien Montagne

74

Figure 76: Revisions of Lukas Toenne

Figure 77: Revisions of Brecht van Lommel

Figure 78: Revisions of Tamito Kajiyama

75

Figure 79: Revisions of Antony Riakiotakis

Figure 80: Revisions of Ton Roosendaal

Figure 81: Revisions of Joshua Leung

76

11.4 Details of authors metric per file type

Figure 82: Detail of authors metric for .cmake files, with Campbell Barton highlighted as
the only author.

Figure 83: Detail of authors metric for .jpg files, with Ton Roosendaal highlighted as the
only author.

Figure 84: Detail of authors metric for .png files, with Campbell Barton highlighted as the
only author.

77

Figure 85: Detail of authors metric for .rst files, with Mitchel Stokes highlighted as the
only author.

Figure 86: Detail of authors metric for .spi1d files, with Brecht van Lommel highlighted
as the only author.

Figure 87: Detail of authors metric for .osl files, with Brecht van Lommel and Thomas
Dinges highlighted as authors.

78

11.5 Details of authors metric per (sub-)directory

Figure 88: Detail of authors metric for /doc folder.

Figure 89: Detail of authors metric for /extern folder.

79

Figure 90: Detail of authors metric for /intern folder.

Figure 91: Detail of authors metric for the /source/blender folder.

80

11.6 Relevant file views

Listing 13: Files that grow/shrink the most in terms of LOC (60 files)

/intern/guardedalloc/intern/mallocn.c
/source/blender/blenkernel/intern/deform.c
/source/blender/blenkernel/intern/mball.c
/source/blender/blenkernel/intern/nla.c
/source/blender/blenkernel/intern/subsurf_ccg.c
/source/blender/blenkernel/intern/node.c
/extern/bullet2/src/BulletCollision/CollisionDispatch/btCollisionWorld.

cpp
/extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.

cpp
/extern/bullet2/src/BulletDynamics/ConstraintSolver/

btSequentialImpulseConstraintSolver.cpp
/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
/extern/bullet2/src/BulletDynamics/ConstraintSolver/

btConeTwistConstraint.cpp
/source/blender/blenkernel/intern/shrinkwrap.c
/source/blender/blenlib/intern/BLI_kdopbvh.c
/source/blender/blenkernel/intern/bvhutils.c
/source/blender/makesrna/intern/rna_object.c
/source/blender/makesrna/intern/rna_scene.c
/source/blender/makesrna/intern/rna_ID.c
/source/blender/makesrna/intern/rna_mesh.c
/source/blender/makesrna/intern/rna_wm.c
/source/blender/makesrna/intern/rna_material.c
/source/blender/makesrna/intern/rna_nodetree.c
/source/blender/makesrna/intern/rna_sensor.c
/source/blender/makesrna/intern/rna_color.c
/source/blender/makesrna/intern/rna_actuator.c
/source/blender/makesrna/intern/rna_brush.c
/source/blender/makesrna/intern/rna_modifier.c
/source/blender/editors/interface/interface_handlers.c
/source/blender/editors/space_view3d/view3d_header.c
/source/blender/makesrna/intern/rna_constraint.c
/source/blender/editors/space_view3d/drawobject.c
/source/blender/editors/animation/anim_filter.c
/source/blender/editors/mesh/editmesh_add.c
/source/blender/editors/mesh/editmesh_tools.c
/source/blender/makesrna/intern/rna_object_force.c
/source/blender/makesrna/intern/rna_particle.c
/source/blender/makesrna/intern/rna_userdef.c
/source/blender/makesrna/intern/rna_texture.c
/source/blender/blenkernel/intern/fcurve.c
/source/blender/editors/sculpt_paint/paint_ops.c
/source/blender/makesrna/intern/rna_ui.c
/source/blender/editors/gpencil/gpencil_edit.c
/source/blender/editors/object/object_modifier.c
/source/blender/editors/space_image/image_buttons.c
/source/blender/editors/space_nla/nla_edit.c
/source/blender/editors/space_buttons/buttons_ops.c
/source/blender/makesrna/intern/rna_main_api.c

81

/source/blender/modifiers/intern/MOD_edgesplit.c
/source/blender/blenkernel/intern/linestyle.c
/source/blender/makesrna/intern/rna_linestyle.c
/source/blender/modifiers/intern/MOD_skin.c
/intern/audaspace/intern/AUD_JOSResampleReader.cpp
/source/blender/nodes/composite/node_composite_util.c
/extern/libmv/third_party/gflags/gflags.cc
/source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c
/source/blender/bmesh/operators/bmo_bevel.c
/source/blender/bmesh/operators/bmo_create.c
/source/blender/python/bmesh/bmesh_py_types_customdata.c
/source/blender/blenkernel/intern/mask.c
/source/blender/blenkernel/intern/mask_rasterize.c
/source/blender/physics/intern/implicit_eigen.cpp

Listing 14: Files that increase most in complexity (63 files)

/source/blender/blenkernel/intern/mball.c
/source/blender/blenkernel/intern/screen.c
/source/blender/blenkernel/intern/subsurf_ccg.c
/intern/elbeem/intern/ntl_vector3dim.h
/source/blender/blenkernel/intern/node.c
/extern/bullet2/src/BulletCollision/CollisionDispatch/btCollisionWorld.

cpp
/extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.

cpp
/source/blender/blenkernel/intern/bvhutils.c
/source/blender/makesrna/intern/rna_object.c
/source/blender/makesrna/intern/rna_ID.c
/source/blender/makesrna/intern/rna_mesh.c
/source/blender/makesrna/intern/rna_wm.c
/source/blender/makesrna/intern/rna_material.c
/source/blender/makesrna/intern/rna_nodetree.c
/source/blender/python/intern/bpy_interface.c
/source/blender/makesrna/intern/rna_color.c
/source/blender/makesrna/intern/rna_actuator.c
/source/blender/makesrna/intern/rna_brush.c
/source/blender/makesrna/intern/rna_modifier.c
/source/blender/makesrna/intern/rna_curve.c
/source/blender/makesrna/intern/rna_armature.c
/source/blender/editors/space_view3d/view3d_header.c
/source/blender/makesrna/intern/rna_constraint.c
/source/blender/editors/space_image/space_image.c
/source/blender/editors/space_node/space_node.c
/source/blender/editors/space_buttons/space_buttons.c
/source/blender/editors/space_file/space_file.c
/source/blender/editors/space_file/filesel.c
/source/blender/editors/space_action/space_action.c
/source/blender/editors/space_nla/space_nla.c
/source/blender/editors/space_sequencer/space_sequencer.c
/source/blender/editors/animation/anim_deps.c
/source/blender/editors/mesh/editmesh_tools.c
/source/blender/makesrna/intern/rna_object_force.c
/source/blender/makesrna/intern/rna_particle.c

82

/source/blender/makesrna/intern/rna_userdef.c
/source/blender/makesrna/intern/rna_texture.c
/source/blender/makesrna/intern/rna_pose.c
/source/blender/makesrna/intern/rna_space.c
/source/blender/editors/sculpt_paint/paint_ops.c
/source/blender/makesrna/intern/rna_ui.c
/source/blender/editors/object/object_modifier.c
/source/blender/editors/space_nla/nla_edit.c
/source/blender/makesrna/intern/rna_main_api.c
/source/blender/makesrna/intern/rna_object_api.c
/source/blender/makesrna/intern/rna_ui_api.c
/source/blender/makesrna/intern/rna_sculpt_paint.c
/source/blender/blenkernel/intern/paint.c
/source/blender/modifiers/intern/MOD_smoke.c
/source/blender/blenkernel/intern/linestyle.c
/source/blender/makesrna/intern/rna_linestyle.c
/intern/cycles/kernel/svm/svm_tex_coord.h
/intern/cycles/render/film.cpp
/source/blender/modifiers/intern/MOD_skin.c
/extern/Eigen3/Eigen/src/Core/PlainObjectBase.h
/extern/libmv/third_party/gflags/gflags.cc
/source/blender/python/mathutils/mathutils_noise.c
/source/blender/python/bmesh/bmesh_py_types_customdata.c
/source/blender/blenkernel/intern/mask_rasterize.c
/source/blender/editors/space_node/node_view.c
/source/blender/python/bmesh/bmesh_py_ops_call.c
/source/blender/bmesh/operators/bmo_edgenet.c
/source/blender/physics/intern/BPH_mass_spring.cpp

Listing 15: Files that decrease most in complexity (30 files)

/intern/guardedalloc/intern/mallocn.c
/intern/string/STR_String.h
/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
/extern/bullet2/src/BulletDynamics/ConstraintSolver/

btConeTwistConstraint.cpp
/source/blender/blenlib/intern/BLI_kdopbvh.c
/source/blender/blenlib/intern/BLI_mempool.c
/source/blender/blenkernel/intern/fluidsim.c
/source/blender/makesrna/intern/rna_scene.c
/source/blender/editors/interface/interface_handlers.c
/source/blenderplayer/bad_level_call_stubs/stubs.c
/source/blender/render/intern/raytrace/rayobject.cpp
/source/blender/freestyle/intern/view_map/BoxGrid.h
/intern/cycles/device/device.cpp
/intern/cycles/device/device_cuda.cpp
/intern/cycles/kernel/svm/svm_math.h
/source/blender/nodes/composite/node_composite_util.c
/source/blender/nodes/composite/nodes/node_composite_blur.c
/source/blender/nodes/composite/nodes/node_composite_defocus.c
/source/blender/nodes/composite/nodes/node_composite_glare.c
/intern/dualcon/intern/Projections.h
/source/blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c
/source/blender/bmesh/operators/bmo_bevel.c

83

/source/blender/bmesh/operators/bmo_mesh_conv.c
/source/blender/blenkernel/intern/mask.c
/extern/libmv/third_party/ceres/include/ceres/jet.h
/source/blender/bmesh/operators/bmo_symmetrize.c
/source/blender/bmesh/operators/bmo_unsubdivide.c
/source/blender/bmesh/operators/bmo_beautify.c
/extern/libmv/third_party/ceres/internal/ceres/blas.h
/source/blender/physics/intern/implicit_eigen.cpp

84

	Contents
	List of Figures
	List of Tables
	Introduction
	Assignment
	Software Repository
	Tools
	Overview

	Basic Repository Investigation
	Versions and commits
	Folders and files
	Developers

	Initial Visual Overview
	Choice of views
	Stable development periods
	Unstable development periods
	Current state

	Author Analysis
	Main contributors
	Replacing chief developer
	Type correlation
	Location correlation

	Code Size Analysis
	Size evolution
	Most turbulent files
	Source code fraction

	Complexity Analysis
	Most complex files
	Changes in complexity
	Activity correlation
	Size correlation

	Dependency Analysis
	Data modelling
	Data visualisation
	Conclusion

	Evaluation
	Summary
	Tools
	Analysis
	Conclusion

	Acknowledgements
	References
	Appendices
	Time Tracking
	File extensions
	Revisions of potential replacements for chief developer
	Details of authors metric per file type
	Details of authors metric per (sub-)directory
	Relevant file views

