
Automatic segmentation and visualization of skin lesions
Jurgen Jans1 Ralph Kiers1 Alexandru Telea1,2

Technical Report TR-13-06-2013
1 Institute Johann Bernoulli, University of Groningen, the Netherlands

2 University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania

1 Introduction

The diagnosis and prognosis of skin tumors is
an important problem. A key part of tumor im-
age analysis is the segmentation of the tumor
from the surrounding skin. This means detect-
ing which part of the skin belongs to the tumor
and which part is just normal healthy skin. A
typical example of such a skin tumor image and
a possible segmentation of the tumor is shown
in Figure 1. Recognizing the tumors from such
images is hard, since a tumor may

have weak-contrast, fuzzy,
complex-shaped borders

consist of several types of sub-patterns
(e.g. network, globular, unstructured, or
salt-and-pepper)

be partially overlapped by hair structures

For our project, we received a matlab imple-
mentation of an image segmentation method[8]
and we wanted to make a C++/CUDA im-
plementation of this segmentation method and
expand it with a graphical user interface with
several visualization methods that would allow
the user to compare two or more segmenta-
tions of the same skin image with each other.
An important reason for us to port the matlab
implementation to C++/CUDA is the possi-
ble speed up that we would obtain since the
matlab code can not be executed in parallel
and since skin images usually have a high res-
olution, the execution of the code can take a
long time (especially when multiple images are
executed in batch mode). Implementing this
method in C++/CUDA instead would allow us
to run certain parts of the code in parallel mak-

ing it also perfectly scalable for the amount of
threads that a GPU is able to run.

This report is organized as follows: In section
2 we first start with explaining how we have im-
plemented the segmentation algorithm in C++
and CUDA, followed by a comparison with the
matlab implementation of this segmentation al-
gorithm and a benchmark to see how fast our
version performs. Section 3 goes into more de-
tail about the implementation of the algorithms
used for the segmentation. Section 4 discusses
the different visualization techniques that we
have implemented in our program in order to
compare two or more segmentations with each
other. The implementation of every technique
is first discussed, followed by a discussion about
the results that they produce. Finally section 5
presents the conclusion of our project and de-
scribes some future work that could be done in
order to improve and expand our work.

2 Segmentation

In this section the implementation of the seg-
mentation algorithm based on a matlab imple-
mentation of an image segmentation method[8]
is detailed. The algorithm is implemented in
C++ and CUDA in order to try and make the
segmentation as fast as possible.

2.1 Segmentation Algorithm

The segmentation algorithm makes use of var-
ious other image processing algorithms. More
details about the implementation of the non-
trivial algorithms used can be found in sec-
tions 3.1-3.14.

The segmentation of an image starts off by

1

This project has been financially supported by the research grant PN-II-RU-TE-2011-3-0249 offered by
ANCS/UEFISCDI, Romania.

(a) original tumor skin image. (b) Possible segmentation of the tumor.

Figure 1: Skin image

converting it to grayscale. From the grayscale
image an image pyramid of depth n is created,
n is a value set by the user and n > 0. Let
Ii (x, y) denote the image at image pyramid
level i, using the image In (x, y) with n being
the maximum depth of the pyramid, an initial
segmentation contour is created. In order to
create this initial contour Otsu’s threshold τ of
In (x, y) is calculated. Next Bn (x, y) is cre-
ated by converting In (x, y) to binary based on
threshold τ , and then inverting the result. The
connected components in Bn (x, y) are then la-
beled and put into a list L together with their
area size, with the list L being sorted descend-
ing on the areas. If L is empty then no initial
contour can be created and an error is returned,
reducing the minimum area and/or image pyra-
mid depth might help in this case. Looping
through L a suitable connected component is
searched for, the connected component has to
meet two conditions.

1. The area must be greater than or equal
to a minimum area, the minimum area is
defined by the user.

2. The connected component must not touch
the border of the image.

If both conditions are met then the boundary of
the connected component is traced. The traced
boundary is then returned as the initial con-
tour. If L contains no suitable connected com-
ponent then τ is reduced by 5% and the al-

gorithm restarts from the point of converting
In (x, y) to Bn (x, y). Pseudo-code for extract-
ing the initial contour can be found in Code
listing 1.
Deformation of the contour is done itera-

tively by looping over the image pyramid from
n to 2. At the start of each iteration i, a
Gaussian filter is applied to the Mi ×Ni image
Ii (x, y) by using convolution. The Gaussian fil-
ter kernel kgaus (x, y) used is a P ×Q Gaussian
kernel with standard deviation σ, where

P = 1 + round�Mi

30
�

Q = 1 + round�Ni

30
�

σ = max (Mi,Ni)
50

.

The filtered image Fi (x, y) is then obtained
as Fi (x, y) = Ii (x, y) � kgaus (x, y), where �
denotes convolution and the padding used for
Ii (x, y) is replication padding. After obtain-
ing Fi (x, y) a Sobel edge filter is applied on
Fi (x, y), the result of this operation is denoted
as SFi

(x, y). Depending on the current itera-
tion i, an edge map Ei (x, y) is created. If i = n
then Ei (x, y) = SFi

(x, y), otherwise Ei (x, y) =
SFi
(x, y) ∗SRi

(x, y), where the multiplication
is point-wise. Here Ri (x, y) is Ii+1 (x, y) re-
sized to Mi × Ni and SRi

(x, y) is the result
of the Sobel edge filter applied to Ri (x, y).
From Ei the gradient vector flow in both di-

2

Snake init(image , minArea) {

threshold = image.otsu ()

reduceThresh = 0.05

while true do

bw = image.convertToBW(threshold)

bw.invert ()

/* L contains the label pixels and
area , sorted desc on the area */

L = bw.bwlabel ()

if connectedComponents.size () == 0

then throw Exception

for c ∈ L do

if (c.area < minArea) then

threshold -= reduceThresh

break

end

if touchesBorder(c.pixels) then

if c == L.end () then

threshold -= reduceThresh

break

else

continue

end

else

return traceBoundary(c.pixels)

end

end

end

return NULL

}

Code listing 1: Initial contour extraction
from In(x,y).

rections (ui (x, y) and vi (x, y)) is created, by�ui (x, y) , vi (x, y)� = GVF(Ei, µ, niter). The
parameters for the GVF also depend on the cur-
rent iteration i, if i = n then µ = 0.02, niter = 20,
otherwise µ = 0.1, niter = 5. The GVF results
are then normalized as follows:

mag (x, y) =�ui (x, y)2 + vi (x, y)2
ui (x, y) = ui (x, y)

mag (x, y) + 1e−10
vi (x, y) = vi (x, y)

mag (x, y) + 1e−10
where each operation is point-wise. Having cal-
culated ui (x, y) and vi (x, y) snake advection
can now be performed. The snake advection
requires a couple of parameters set by the user,

αi elasticity; βi rigidity

/* one -based array indices */
for i = n downto 2 do

img = pyramid[i]

P = 1 + round(img.width () / 30)

Q = 1 + round(img.height () / 30)

σ = max(img.width (),img.height ()) / 50

kgaus = createGaussianKernel(w, h, σ)
F = img.filter(kgaus ,

PADDING_REPLICATION)

if i < n then

R = pyramid[i + 1]

R.resize(img.width (), img.height ())

SF = sobelEdge(F)

SR = sobelEdge(R)

E = SF * SR

<u, v> = GVF(E, .1, 5)

else

E = sobelEdge(F)

<u, v> = GVF(E, .02 , 20)

end

/* point -wise multiplication , sqrt */
mag = sqrt(u*u + v*v)

/* add 1e -10 to every entry in mag */
mag += 1e-10

/* point -wise division */
u /= mag

v /= mag

snake = snakeAdvection(snake , α[i], β
[i], γ[i], κ[i], u, v, iter[i], r)

snake = upsampleSnake(snake)

end

Code listing 2: Snake deformation loop

γi viscosity; κi external force weight

iteri number of r resample after r

iterations; iterations

All the parameters except r are set per level of
the image pyramid. Finally after advection the
points on the snake are upsampled. That is,

∀p ∈ Snake ∶ p = 2p.
Pseudo-code for the snake deformation loop can
be found in Code listing 2.
After the deformation is finished, there is still

some post-processing to be done. Figure 2a
shows a peninsula typed artifact on the bot-
tom left of the contour. These type of artifacts
form when the snake advection moves points on

3

(a) Peninsula like

artifact on a contour.

(b) Peninsula like

artifact removed

through

curvature-based

Laplacian smoothing.

Figure 2: Peninsula like artifact removal.

(a) Self intersections. (b) Self intersections

removed through hole

filling and boundary

extraction.

Figure 3: Self intersection artifact removal.

the snake into an order where they are inter-
leaved, but still form one line. The resampling
of snake points does not remove these type
of artifacts, because the distance between two
consecutive points stays within the threshold.
The last point of the peninsula and its consecu-
tive point, is guaranteed to form a sharp corner.
This allows curvature-based Laplacian smooth-
ing to remove these points, the difference be-
tween pre- and post smoothing results is shown
in Figure 2. It should be noted that the mat-
lab code where this implementation is based on,
uses a different method to get rid of these type
of artifacts. The matlab implementation uses
roipoly which internally uses poly2mask[1],
followed by only keeping the largest connected
component. The second type of artifacts that
need to be removed are self intersections. Self
intersections are removed through first filling
all the holes in the contour, followed by bound-
ary extraction. The difference between pre- and
post self intersection cleanup is shown in Fig-

(a) Original image.

(b) Matlab

segmentation.

(c) C++/CUDA

segmentation.

Figure 4: Segmentation comparison.

ure 3.

After all the artifact cleanup is done, the con-
tour is fully connected and one pixel thick. If
preferred the contour can be dilated as a final
post-processing step, this allows for any con-
tour thickness that is desired.

2.2 Comparison

In this section some segmentations made with
the matlab and C++/CUDA implementation
are shown side by side for visual comparison.
Note that the images of the segmentations are
cropped to show the contour only. The seg-
mentations in Figures (4)-(6) are all created
using the parameters:

α = {.5, .2, .1} β = {.5, .2, .1}
γ = {.8, .8, .8} κ = {.9, .9, .9}

iter = {30,40,50} r = 5

n = 4 Amin = 200

4

System 1

CPU

Model

Intel(R)
Core(TM)
i7-3770K
CPU @
3.50GHz

Cores 4∗
Clock 3901MHz

GPU

Model
2 x GeForce
GTX 690∗∗

CUDA
Cores

1536

GPU Clock
rate

1020MHz

Memory 2 GiB

Memory
Clock rate

3004Mhz

Memory 31GiB

System 2

CPU
Model

Intel(R)
Core(TM)2
Duo CPU
T7250 @
2.00GHz

Cores 2
Clock 2001MHz

GPU

Model
GeForce
8600M GT

CUDA
Cores

32

GPU Clock
rate

950MHz

Memory 256 MiB

Memory
Clock rate

400 Mhz

Memory 2GiB

∗ 4 physical cores, 8 logical due to hyper-threading∗∗ only one GPU is used for CUDA calculations

Table 1: System setups

System Figure Image Size Implementation Time
1 4 1023 × 767 Matlab 0.536s
1 4 1023 × 767 C++/CUDA 0.371s
2 4 1023 × 767 Matlab 2.6s
2 4 1023 × 767 C++/CUDA 8.4s
1 5 1944 × 1944 Matlab 56s
1 5 1944 × 1944 C++/CUDA 1.7s
2 5 1944 × 1944 Matlab 516s
2 5 1944 × 1944 C++/CUDA 40s
1 6 1936 × 2592 Matlab 59s
1 6 1936 × 2592 C++/CUDA 2.8s
2 6 1936 × 2592 Matlab 550s
2 6 1936 × 2592 C++/CUDA N/A∗

∗ The GPU runs out of memory.

Table 2: Execution times of the C++/CUDA and matlab implementations on several images.
The final times are an average of ten consecutive runs.

where { , , } denotes the values for image pyra-
mid levels 2 . . . n, α is the snake elasticity, β is
the snake rigidity, γ is the snake viscosity, κ
is the external force weight, iter is the num-

ber of iterations for snake advection, r is af-
ter how many advection iterations resampling
happens, n the depth of the image pyramid,
and Amin the minimum area for the initial con-

5

(a) Original image.

(b) Matlab

segmentation.

(c) C++/CUDA

segmentation.

Figure 5: Segmentation comparison.

tour. The C++/CUDA implementation is also
run against the matlab implementation, in or-
der to compare the speed of both implementa-
tions. The systems on which the run times were
measured can be found in Table 1. The exe-
cution times shown in Table 2 are excluding
reading the input from disk, and writing the
result to disk. In both cases the actual elapsed
time of the algorithm is measured. The final
timing is the result of the average of ten runs.

Figures (4)-(6) show that given the same
parameters, the matlab and C++/CUDA im-
plementations of the segmentation algorithm
produce similar visual results. The difference
in the images is likely due to matlab using dou-
bles, while in CUDA everything is done with
floats, also downscaling in CUDA does not ap-

(a) Original image.

(b) Matlab

segmentation.

(c) C++/CUDA

segmentation.

Figure 6: Segmentation comparison.

ply a low-pass filter to reduced the effect of
moiré patterns, while matlab does. Table 2
shows that the execution time is in favor of the
C++/CUDA implementation, if there is a de-
cent NVIDIA GPU present. For the smallest
image(1023 × 767) in the table, the speedup is

only
536

371
= 1.44 = 44% for System 1 and there

is even a slowdown of 1 − 2615

8380
= 0.69 = 69%

for System 2. However, on the bigger im-

6

float bicubic(float* p, float ix , float

iy) {

float r0 = cubic(p[0] , p[1] , p[2] ,

p[3] , ix);

float r1 = cubic(p[4] , p[5] , p[6] ,

p[7] , ix);

float r2 = cubic(p[8] , p[9] , p[10],

p[11], ix);

float r3 = cubic(p[12], p[13], p[14],

p[15], ix);

return cubic(r0 , r1 , r2, r3, iy);

}

Code listing 3: Bicubic-spline interpolation
with, ix and iy as the vertical and horizontal
interpolation points.

ages the C++/CUDA implementation is signif-
icantly faster on both systems. System 2 also
runs out of GPU memory during the segmen-
tation of Figure 6a. Running out of mem-
ory is due to whole levels of the image pyra-
mid 3.4 Image Pyramid being loaded into
the GPU memory at once. The CUDA imple-
mentation could benefit from performing some
operations on blocks of the image, where pos-
sible.

3 Algorithms

Next the algorithms implemented in C++ and
CUDA will be described.

3.1 Convert to Grayscale

Conversion to grayscale is only implemented for
RGB images, conversion is done using CUDA
since data for each pixel is independent. The
formula used for the conversion is given by:

Gval = round (0.299R + 0.587G + 0.114B)
where R is the red value, G is the green value,
B is the blue value and Gval is the gray value,
and R, G, B, Gval are integer values in the
interval [0,255].
3.2 Resizing

When rescaling an image the same algorithm
as matlab version 7.9.0.529 is used to calculate

the sampling points. The sampling points sx, sy
are given by the following equations:

sx = x + 1
2

fx
− 1

2

sy = y + 1
2

fy
− 1

2

where x, y are the indices in the rescaled image
and fx, fy are the scaling factors in the x, y
direction. Note that the equation given here is
not exactly the same as the one found in mat-
lab, due to matlab using one-based indexing
while C++ uses zero-based indexing.
Having found the sampling points, the next

step is to interpolate the values at the sam-
pling points, as it is unlikely that they will
correspond to actual discrete pixel coordinates.
The interpolation method used for obtaining
the values at the sampling points is bicubic-
spline interpolation. Bicubic-spline interpola-
tion is implemented using a series of five cubic-
spline interpolations in 1-D. The cubic-spline
interpolation implementation itself is deduced
from eq. (1).

y = ax3 + bx2 + cx + d (1)

Let Pn denote a point n and let pn denote the
value at point n, then given two points P1 and
P2 in between which to interpolate, y(0) and
y(1) can be calculated by:

p1 = y(0) = d (2)

p2 = y(1) = a + b + c + d (3)

this results into two equations with four un-
knowns which means there is no unique solu-
tion, thus two more equations are needed. The

next two equations are deduced from
d

dx
y(0)

and
d

dx
y(1). The values corresponding to the

derivatives are found by taking the discrete
derivatives in P1 and P2. This gives the fol-
lowing equations:

1

2
p2 − 1

2
p0 = d

dx
y(0) = c (4)

1

2
p3 − 1

2
p1 = d

dx
y(1) = 3a + 2b + c. (5)

7

Using eqs. (2)–(5), a, b, c and d can now be
solved in terms of p0 . . . p3 through Gaussian
elimination. Performing said Gaussian elimi-
nation yields:

a =−1
2
p0 + 3

2
p1 − 3

2
p2 + 1

2
p3 (6)

b = p0 − 5

2
p1 + 2p2 − 1

2
p3 (7)

c =−1
2
p0 + 1

2
p2 (8)

d = p1 (9)

substituting the exponents in eqs. (6)–(9) into
eq. (1) defines to polynomial for P0 . . . P3. In-
terpolating between P1 and P2 is now simply
done by solving eq. (1) for x, where 0 ≤ x ≤ 1.
Note that x = 0 corresponds to p1 and x = 1
corresponds to p2. Pseudo-code of the CUDA
implementation for bicubic-spline interpolation
using the 1-D cubic-spline interpolation can be
found in Code listing 3.

3.3 Convolution

Convolution is implemented to perform spatial
filtering, in favor of correlation. This is done
using the CUDA cufft library, to allow con-
volution to be a fast point-wise complex mul-
tiplication in the frequency domain. This does
however mean that all the non-symmetrical fil-
ter kernels are rotated 180○ in the code.
The padding types implemented for convo-

lution aside from no padding, are zero- and
replication padding. Both zero- and replication
padding pad the input to size M+P −1×N+Q−
1, where M is the image width, N is the image
height, P is the kernel width and Q is the kernel
height. Figure 7a and Figure 7b show an ex-
ample of zero padding and replication padding,
as implemented in CUDA. Figure 7c shows
how Figure 7b is indeed replicating the near-
est border, due to the circularity of the FFT.
Filter kernels need to start at the center

of the signal. Therefore the padded kernel is
transformed so that the middle of the kernel
starts at the start of the image signal. Fig-
ure 8 shows an example of the transformation,
as implemented in CUDA.

if img(x,y) <= τ then

bw(x,y) = 0

else

bw(x,y) = 1

end

Code listing 4: Converting grayscale to
binary using a threshold τ .

3.4 Image Pyramid

The image pyramid is created by using the in-
put image of size M ×N as base of the pyra-
mid. Let the base level be level 1 and let
In (x, y) denote the image at pyramid level n
with dimensions Pn × Qn, for n > 0. then Pn

and Qn are calculated by Pn = �Pn+1
2
�, Qn =

�Qn+1
2
� and In (x, y) is calculated by In (x, y) =

In+1 (x, y) � k(x, y) scaled down to Pn × Qn

using the method described in 3.2 Resizing.
Here � denotes the correlation implemented as
in 3.3 Convolution and k(x, y) is the Gaus-
sian kernel given by

k(x, y) = g(x − a−1
2 , y − b−1

2)
a−1∑
s=0

b−1∑
t=0 g(s − a−1

2 , t − b−1
2)

with a is the width of k, b is the height of k,
0 ≤ x < a, 0 ≤ y < b and x, y are integers. g(x, y)
is the standard Gaussian function given by

g(x, y) = e−x2+y22σ2

where σ denotes the standard deviation. The
pyramid implementation uses a 7 × 7 Gaussian
kernel (implemented in C++) with σ = 3.
3.5 Grayscale to Binary

Conversion from a grayscale image to binary
is done by first calculating a threshold, the
threshold is then used to determine which pix-
els belong to the foreground and background.
Calculating the threshold is done using Otsu’s
method[7], the entire method is implemented
in CUDA. Once the threshold is calculated the
binary image is simply obtained by a CUDA

8

1 2 3
4 5 6
7 8 9

→
1 2 3 0 0
4 5 6 0 0
7 8 9 0 0
0 0 0 0 0
0 0 0 0 0

(a) Padding a 3×3 image to a 5×5 image using

zero padding.

1 2 3
4 5 6
7 8 9

→
1 2 3 3 1
4 5 6 6 4
7 8 9 9 7
7 8 9 9 7
1 2 3 3 1

(b) Padding a 3×3 image to a 5×5 image using

replication padding.

1 2 3 3 1
4 5 6 6 4
7 8 9 9 7
7 8 9 9 7
1 2 3 3 1

⇔
1 1 2 3 3
1 1 2 3 3
4 4 5 6 6
7 7 8 9 9
7 7 8 9 9

(c) Equivalence due to FFT circularity

Figure 7: Padding examples.

1 2 3 0 0
4 5 6 0 0
7 8 9 0 0
0 0 0 0 0
0 0 0 0 0

→
5 6 0 0 4
7 8 0 0 9
0 0 0 0 0
0 0 0 0 0
2 3 0 0 1

Figure 8: Centering a 3×3 kernel; zero padded
to 5 × 5; on (0,0).

kernel implementing the thresholding shown in
Code listing 4.

3.6 Connected Component
Labeling

Connected component labeling is implemented
in C++. In order to label the connected com-
ponents in a binary image a two-pass algorithm
is used. The algorithm requires an equivalence
list which keeps track of which labels belong
to the same connected component. during the
first-pass the pixels are scanned row based, once
a foreground pixel is found a label is assigned
to it. The assigned label is a new unused label
if the 8-connected neighbors do not have a la-
bel, otherwise it is the smallest label found in

the neighbors. If a connected component gets
labeled, but still has neighbors with a higher
label, then an entry is added to the equivalence
list stating the two labels belong two the same
connected component. Figure 9 shows the la-
beling process during the first-pass. The cre-
ated equivalence list after the first pass consists
of the pair �2,1�. The second pass solves equiv-
alences and produces a set of labels which are
not equivalent. Leading to the final result in
Figure 10.

3.7 Boundary Tracing

Boundary tracing is implemented as Moore
boundary tracking[6]. The whole algorithm is
implemented in C++, because it is a sequen-
tial algorithm and thus using CUDA will not
provide a lot of benefit.

3.8 Snake resampling

Snake resampling takes a connected snake, with
points in clockwise or counterclockwise order
and resamples it in two-passes. The algorithm
is implemented in C++, because each point is
checked and changed sequentially.
During the first-pass all the points on the

snake that are too close to each other are re-

9

0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0

(a) Binary input image.

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(b) First foreground pixel found gets labeled

1.

0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(c) First pixel in row five gets labeled 2, since

the 8-connected neighbors do not have a label.

0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 2 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 0
0 0 0 0 0 0 3 3 0
0 0 0 0 0 0 0 0 0

(d) Labels at the end of the first pass.

Figure 9: First-pass of connected component labeling.

0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 0
0 0 0 0 0 0 2 2 0
0 0 0 0 0 0 0 0 0

Figure 10: Labels at the end of the second
pass.

moved according to a specified minimum dis-
tance dmin. The pseudo-code in Code list-

for each pi ∈ snake
if dist (pi, pi+1) >= dmin

newSnake.add(pi)
endif

end

snake = newSnake

Code listing 5: First-pass of the snake
resampling algorithm.

ing 5 shows how the new snake gets con-
structed. The distance function in the code is
defined as

dist (p1, p2) = �p1.x−p2.x�+�p1.y−p2.y�, (10)
which is the Manhattan distance. A thing to
note is that pn+1 = p1 where n is the total num-
ber of snake points.
In the second-pass new points are added to

10

current = p1
while current != pn do

/* set the next point */
next = current + 1

if dist(current, next) > dmax

/* q is the point interpolated half way between current and next */
q = interp(current , next , 0.5)

if next != snake.begin ()

/* current is the new point inserted before next */
current = snake.insert(next , q)

else

/* current is the newly added point */
current = snake.add(p);

end

/* set current to the previous point */
--current

else

/* set current to the next point */
++ current

end

end

Code listing 6: Second-pass of the snake resampling algorithm

the snake, if the specified maximum distance
dmax between two consecutive points pi and
pi+1 is exceeded. If the distance exceeds dmax

then a new point pj is created by linear inter-
polating half way between pi and pi+1. If after
adding pj the distance is still exceeding dmax,
then a new point is created again by interpo-
lating between pi and pj , this process continues
until the distance does not exceed dmax. The
pseudo-code inCode listing 6 depicts the pro-
cess. Again dist is defined as in eq. (10), and
pn+1 = p1, p1−1 = pn.

3.9 Sobel Edge Filter

Sobel edge filtering is implemented using con-
volution, as shown in 3.3 Convolution. The
image is filtered using a horizontal kernel fol-
lowed by filtering with a vertical kernel. Giv-
ing

sx(x, y) =(f(x, y)� kx(x, y))
sy(x, y) =(f(x, y)� ky(x, y))

where f(x, y) is the image, sx(x, y) is the hor-
izontal sobel edge filter result and sy(x, y) is
the vertical sobel edge filter result. The filter

kernels are defined as

kx(x, y) =
�������
1 0 −1
2 0 −2
1 0 −1

�������
ky(x, y) =

�������
1 2 1
0 0 0−1 −2 −1

�������
note that both kernels are rotated 180○, because
convolution is used instead of correlation. After
filtering, the distance is calculated point-wise in

CUDA as d(x, y) =�(sx (x, y))2 + (sy (x, y))2.
Finally the normalized distance is returned as
result, where normalizing is done as follows:

d (x, y)
max (d (x, y)) .

3.10 Gradient Vector Flow

The gradient vector flow[9] calculation is imple-
mented in CUDA. The algorithm takes three
arguments:

1. f(x, y) the result of the sobel edge filter,
or the multiplication of sobel edge filter re-
sults.

11

for i from 0 to nIter - 1 do

gvfx (x, y) = gvfx (x, y) + µ (gvfx (x, y)� kl (x, y)) −mag (x, y) ∗ (gvfx (x, y) − gx (x, y))
gvfy (x, y) = gvfy (x, y) + µ (gvfy (x, y)� kl (x, y)) −mag (x, y) ∗ (gvfy (x, y) − gy (x, y))

end

Code listing 7: Iterative calculation of the gradient vector flow. The value of µ is passed to
the algorithm and kl is a discrete laplacian kernel.

2. µ a multiplication factor for the result of a
laplacian filter

3. nIter number of iterations the algorithm
should perform.

At first the normalization of f(x, y) is calcu-
lated as

f̄ (x, y) = f (x, y) −min (f (x, y))
max (f (x, y)) −min (f (x, y)) .

Then f̄(x, y) is used to calculate the gradient
in both horizontal and vertical direction:

gx (x, y) =f̄ (x, y)� kx

gy (x, y) =f̄ (x, y)� ky

where gx, gy are the gradient in horizontal and
vertical direction. The gradient filter kernels
are defined as:

kx(x, y) = �1
2

0 −1
2
� ; ky(x, y)=

����������

1

2
0

−1
2

����������
note that both kernels are again rotated 180○,
because convolution is used instead of correla-
tion. Next the squared magnitude is calculated
point-wise as:

mag (x, y) = (gx (x, y))2 + (gy (x, y))2 .
Initially the gradient vector flow in the hori-

zontal and vertical direction is set to:

gvfx(x, y) = gx(x, y)
gvfy(x, y) = gy(x, y).

After setting the initial GVF values, the final
values for gvfx(x, y) and gvfy(x, y) are calcu-
lated iteratively, as shown in Code listing 7.
The discrete laplacian kernel used is defined as

kl =
�������
0 1 0
1 −4 1
0 1 0

�������
.

3.11 Snake Advection

Snake advection tries to minimize the snakes in-
ternal energy[5]. The implementation in C++
follows the same equations(eqs. (11)–(12)) as
given in [5], with the exception that no inverse
matrix is used.

xt = (A + γI)−1 (γxt−1 − fx (xt−1, yt−1)) (11)

yt = (A + γI)−1 (γyt−1 − fy (xt−1, yt−1)) (12)

Instead a system of linear equations(eqs. (13)–
(14)) is solved using the Eigen library, be-
cause it does not require a dense inverse ma-
trix on which matrix multiplication has to be
performed, but instead makes use of LDLT
Cholesky decomposition. Note that LDLT
Cholesky decomposition is possible, because
A + γI is as sparse banded matrix.

(A + γI)xt = γxt−1 − κfx (xt−1, yt−1) (13)

(A + γI)yt = γyt−1 − κfy (xt−1, yt−1) (14)

Equations (13)–(14) also introduce the factor κ
as an external force weight.
The implementation consists of two loops.

The inner-loop does the actual advection, while
the outer-loop handles resampling after a cer-
tain number of iterations. The outer-loop
starts by calculating the coefficients for the
discrete derivatives. The coefficients c1 . . . c5
are calculated from the user specified values
α(elasticity parameter), β(rigidity parameter)
and γ(viscosity parameter).

c1 = β c2 = − α − 4β
c3 = (2α + 6β) + γ c4 = − α − 4β
c5 = β

From c1 . . . c5 the N ×N matrix A, with N the

12

Snake snakeAdvection(snake , α, β, γ, κ, gvfx , gvfy , nIter , resample) {

/* calculate discrete derivatives */
coefficients [5] = {β, −α − 4β, (2α + 6β) + γ, −α − 4β, β}
i = 0

while i < nIter do

/* create snake.size () by snake.size () banded matrix */
A = createMatrix(snake.size (), coefficients)

/* set number of iterations after which we resample */
if resample <= nIter - i then iIter = resample else iIter = nIter - i

snake = snakeAdvecInner(snake , A, γ, κ, gvfx , gvfy , iIter)

snake = resampleSnake(snake , 0.5, 2.0)

i += iIter

end

return snake

}

Code listing 8: Snake advection outer-loop.

number of points in the snake, is created as

A =
�����������

c3 c4 c5 0 � 0 c1 c2
c2 c3 c4 c5 0 � 0 c1� � � � � � � �
c5 0 � 0 c1 c2 c3 c4
c4 c5 0 � 0 c1 c2 c3

�����������
.

Then the inner-loop is executed for a number
of iterations, followed by the resampling of the
snake as shown in 3.8 Snake resampling.
The pseudo-code in Code listing 8 and Code
listing 9 depict the process. Note that in the
code, A is a sparse matrix created using the
Eigen library.

3.12 Curvature-based Laplacian
Smoothing

Curvature-based Laplacian smoothing limits
the angle two consecutive points can have. The
algorithm is sequential, similar to the snake
resampling and thus is implemented in C++.
Curvature-based Laplacian smoothing works
by deleting points if the angle between two con-
secutive vectors is too big. The vectors �v1 and�v2 are chosen as:

�v1 = �pi.x − pi−1.xpi.y − pi−1.y�
�v2 = �pi+1.x − pi.xpi+1.y − pi.y�

where pi is the current point being inspected,
pi+1 is the next point, with pn+1 = p1 where n

is the number of points on the snake. pi−1 is
the previous point on the snake that was not
deleted, if there is no preserved point yet pi−1
is simply the previous point on the snake, with
p1−1 = pn. The chosen vectors �v1 and �v2 are

normalized giving v̂1 = �v1� �v1� and v̂2 = �v2� �v2� .
Now the dot product v̂1 ⋅ v̂2 is equal to cos (θ),
where θ is the angle between �v1 and �v2.

The algorithm preserves the current point
if v̂1 ⋅ v̂2 ≥ 0.9, otherwise the current point is
discarded. After going through all the points
on the snake, the snake is resampled using the
method shown in 3.8 Snake resampling. Re-
sampling is done with dmin = 0.5 and dmax = 2.
If points were discarded by the algorithm it is
run again, until no points are discarded.

3.13 Contour Closing

Contour closing transforms the points on the
snake into actual discrete points and draws a
line between them, to make sure the contour
is closed. Because the order of points matters
when drawing the lines the algorithm is sequen-
tial, and thus again implemented in C++. The
algorithm loops through he snake coordinates.
During the loop the snake points pi and pi+1
are first round to integer values, with again
pn+1 = p1 where n is the total number of snake
points. Using Bresenham’s line drawing[2] al-
gorithm all the discrete points that make up the
line from round(pi) to round(pi+1) are added to

13

Snake snakeAdvecInner(snake , A, γ, κ, gvfx , gvfy , iter) {

bx = snake.x

by = snake.y

for i = 0 to iter - 1 do

for j = 0 to snake.size () - 1 do

/* 2-D linear interpolation of the GVF for the snake points */
vfx = interp2(gvfx , snake.x[j], snake.y[j])

vfy = interp2(gvfy , snake.x[j], snake.y[j])

snake.x[j] = γ * snake.x[j] + κ * vfx

snake.y[j] = γ * snake.y[j] + κ * vfy

end

/* solve Ax = b */
snake.x = solve(A, snake.x)

snake.y = solve(A, snake.y)

end

return snake

}

Code listing 9: Snake advection inner-loop.

a buffer containing all the pixels to be drawn.

3.14 Hole Filling & Boundary
Extraction

Hole filling by reconstruction[4] and bound-
ary extraction[4] have a full implementation in
CUDA. Hole filling and boundary both make
use of dilation, in both cases a 4-connectivity
kernel k is used to perform this dilation. Where
k is defined as:

k =
�������
0 1 0
1 1 1
0 1 0

�������
.

4 Visualization

This section describes the implementation of
the different visualization methods that our
program provides and also discusses the re-
sults that they produce. The different vi-
sualizations techniques discussed in this sec-
tion are: Distance calculation (4.2.1 Distance
calculation) , Feature vector (4.2.2 Feature
vector), Double feature vector (4.2.3 Double
feature vector) and the N segmentations visu-
alization technique (4.2.4 N segmentations).
But before we start with the visualizations
techniques, we will first give a brief overview

of some basic methods on which all of the im-
plemented techniques are depending on.

4.1 Overview

Before any of the visualization techniques can
be used, the program needs to read in a color
image of the skin that needs to be analysed and
any possible previously made segmentations of
this skin image (in grayscale or binary format).
The skin image is saved in its original format
but the segmentation images first need to be
converted into binary images before they can be
used (4.1.1 Convert to binary). After this
the visualization methods can be performed
on the images and the results will be visual-
ized using a rainbow colormap (4.1.2 Rain-
bow colormap).

4.1.1 Convert to binary

Conversion to a binary image is only imple-
mented for grayscale images, conversion is done
using CUDA, since data for each pixel is inde-
pendent. The formula used for the conversion
is given by:

Bval = � 1 if Gval == 255
0 else

where Gval is the grayvalue with a integer value
in the interval [0,255] and Bval is the resulting

14

binary value which is either 0 or 1. This conver-
sion works for grayscale segmentation images
since it is assumed that the pixels of the seg-
mentations are always white thus have a Gval of
255 and the remaining pixels can be considered
as background pixels.

4.1.2 Rainbow colormap

In order to visualize the results of the dif-
ferent visualization techniques a rainbow col-
ormap (Figure 11) is used. This colormap
starts with blue and goes through the colors
green and yellow to red. The results are as-
signed to the colormap in such a way that the
lowest possible result values are shown in blue
and the maximal possible value gets the color
red. All the other result values are scaled be-
tween these two colors. This makes it easier for
the user to compare the differences between dif-
ferent results by just looking at the colors and
see where the differences are big and where they
are (almost) equal to each other.

Figure 11: Rainbow colormap

4.1.3 Distance transform

All of the implemented visualization methods
need to make use of the distance between pix-
els in one segmentations and pixels in another
segmentation. Therefore we first do a distance
transformation on every new added segmenta-
tion image using the exact Euclidean Distance
Transform (EDT) on the GPU using CUDA as
described in [3]. This method only works for
binary images and constructs a 2D weighted
centroidal Voronoi diagram for every segmen-
tation image. This Voronoi diagram contains
information that enables us to find the nearest
segmentation pixel for every other given pixel
in the image.

4.2 Visualization techniques

4.2.1 Distance calculation

The distance calculation method visualizes the
distance between one segmentation and a sec-
ond segmentation by coloring the pixels of
the border using the distance between every
pixel on that border and its corresponding clos-
est pixel on the other border using the rain-
bow colormap as discussed in 4.1.2 Rainbow
colormap. This way the pixels which are
close to the other segmentation pixels or even
overlapping the other segmentations pixels are
colored blue while the pixels which have the
biggest distance are colored red.
In order to calculate the distance between

both segmentation pixels, we make use of the
distance transform discussed in 4.1.3 Dis-
tance transform. With the Voronoi diagrams
calculated for the segmentation with which we
want to compare our given segmentation, we
can easily lookup every pixel of the given seg-
mentation in the voronoi diagram of the other
segmentation image. When we know the pixel
on the other segmentation closest to the given
pixel we can calculate the distance between
them using euclidean distance.

eu (p1, p2) =
�(p1.x − p2.x)2 + (p1.y − p2.y)2

(15)
where p1 and p2 are the two pixels for which we
want to calculate the distance. Since this can
be done for every pixel independently, we have
implemented this in CUDA which improves the
performance.
Now that we know for every pixel on one

segmentation the distance to the nearest pixel
on the other segmentation, we can color ev-
ery pixel in the segmentation using the rain-
bow color map. This method also provides the
option to let the user color both segmentation
borders, in this case the above described pro-
cedure is repeated for the other segmentation.
This method can be used to find the differences
between two segmentations of the same skin im-
age. The user can easily see where the biggest
differences between the segmentations are and
at which places they are more similar by just
looking at the colors.

15

Besides coloring the selected segmen-
tation in order to display to distance,
the program also calculates the distance
in a quantitative manner dist (s1, s2) =
����
�

p1∈s1
eu (p1, p∗1)
�s1�2 +

�
p2∈s2

eu (p2, p∗2)
�s2�2

����
2

where s1

and s2 are the two segmentations with p1 and
p2 pixels on both segmentations, p∗1 and p∗2
the nearest pixel of the other segmentation
and �s1� and �s2� the total number of pixels in
respectively segmentation 1 and segmentation
2. The resulting value indicates the similarity
of both borders where a value of 0 means that
both segmentations are exactly the same.

In Figure 12a an example is shown in
which the distance for every pixel on the larger
segmentation with their nearest pixel on the
smaller segmentation is calculated. The col-
oring of the segmentation shows clearly that
the top part of the segmentation is close to
the other segmentation since its color is blue
but the lower side of the segmentation is far re-
moved from the other segmentation and there-
fore colored red. The calculated distance be-
tween these two segmentations is 0.0110135.
Figure 12b shows the same case as in the pre-
vious image but this time the option to color
both segmentations is used. As can be used in
the image, the colors of the segmentation al-
ready painted in Figure 12a haven’t changed
but this time the distance for every pixel on
the second border with respect to their nearest
pixel on the first segmentation is also visual-
ized. Figure 12c shows an example in which
the two segmentations are more similar with
each other. This is also clearly shown by the
coloring of the segmentation since the biggest
part is painted in blue while only the small
parts that differ have different colors. The cal-
culated distance in this case is 0.000375414.
Compared with the calculated distance in Fig-
ure 12a, it can be seen that the calculated dis-
tance value is lower when the two compared
segmentations are more similar.

4.2.2 Feature vector

The feature vector is used in combination with
the distance calculation and shows for every
pixel in one segmentation the nearest pixel in
the other segmentation by drawing lines be-
tween them. The drawn lines are also colored
according to the distance between the two pix-
els using the rainbow colormap (4.1.2 Rain-
bow colormap). This is especially useful since
the Distance calculation method only colors the
pixels of a segmentation according to the dis-
tance with the nearest pixel in the other seg-
mentation but does not show which pixel on the
other segmentation is actually the closest pixel.
Since we already have the Voronoi diagrams of
the segmentations calculated using the distance
transform (4.1.3 Distance transform) we al-
ready know the coordinates of both the given
pixel and the nearest pixel on the other segmen-
tation, therefore we only need to draw a line
between them with the proper distance color.
This is done by using the Bresenham’s line al-
gorithm which can draw a straight line between
two points given the coordinates of both points.
The pseudo code of this algorithm is shown in
Code listing 10. We have implemented it in
CUDA since we need to draw a line for every
pixel in the segmentation to their nearest pixel
in the other segmentation in this can be done
eassily in parallel once the coordinates of the
nearest pixel is known.
In Figure 13 we have shown the same seg-

mentations for which we visualized the distance
in Figure 12a and Figure 12b but this time
we have drawn the feature vectors for both seg-
mentations. Where the user could only see
which parts of the segmentations were similar
to / different from each other in the distance
calculation method, by using the feature vec-
tors the user can actually also see for every pixel
where the nearest pixel on the other segmenta-
tion is located.

4.2.3 Double feature vector

The double feature vector visualizes the same
information as the normal feature vector but
in this case for both segmentations. For ev-
ery pixel on one segmentation a line is drawn

16

(a) Distance between large segmentation and

a smaller one.

(b) Distance between both segmentations.

(c) Distance between two similar segmenta-

tions.

Figure 12: Distance calcualtions

to the nearest pixel on the other segmentation
and for every pixel on the other segmentation
there is also a line drawn to their nearest pixels
on the first segmentation. Again the Bresen-
ham’s line algorithm Code listing 10 is used
for drawing the lines between the pixels. The
distance however is visualized for both sets to-
gether meaning that the maximum distance col-
ored as red (rainbow colormap 4.1.2 Rainbow
colormap) is the maximum distance found in
either the first or the second segmentation dis-
tances set.

In Figure 14 we have shown an example
of a double feature vector for the segmenta-
tions used in Figure 12a and Figure 12b.
Compared to the feature vectors shown in Fig-
ure 13 it can be clearly seen that the double

feature vector method draws both the feature
vectors from the previous case in the same im-
age.

4.2.4 N segmentations

The N Segmentations functionality can be used
to visualize information about a set of seg-
mentations. Every segmentation is compared
with the set of the other remaining segmen-
tations in the following way: first an aver-
age segmentation is computed by calculating
an average point for every set of nearest pixel
points of the remaining segmentations. Next
the distance between this average segmentation
and the given segmentation can be calculated
for every pixel in this segmentation using the
euclidean distance eq. (15). The pixels will

17

(a) Feature vector from large segmentation to

smaller.

(b) Feature vector from small segmentation to

larger.

Figure 13: Feature vectors

Figure 14: Double feature vector for both segmentations

be colored according to their distance to the
their nearest pixel on the average segmentation
using the rainbow colormap 4.1.2 Rainbow
colormap. These calculated averages show the
user if a segmentation is located near or in the
set with other segmentations or that the seg-
mentation can be considered as an outsider in
comparison with set of remaining segmentation.

Besides showing how much a segmentation
differs from the set of remaining segmentations,
this method also shows if the set of other seg-
mentations is coherent or not. In order to vi-
sualize this, we use the calculated average seg-
mentation from the previous step and use it to
calculate the standard deviation for all the seg-
mentations in this set with the average segmen-
tations. This is visualized with the saturation

of the previously calculated pixel color where a
low saturation value, the pixel color is (almost)
the same as the original assigned average dis-
tance color, means that the set of remaining
segmentations where this segmentation is com-
pared with is coherent. A high standard de-
viation value (gray/white) indicates that most
segmentations are far away from the calculated
average segmentation which makes the set in-
coherent.

In the end these two combinations can result
in four different conclusions about a segmenta-
tion with respect to the set of other segmenta-
tions:

The segmentation is not an outlier and the
set of remaining segmentations is also co-

18

function line(x0, y0 , x1 , y1)

dx := abs(x1-x0)

dy := abs(y1-y0)

if x0 < x1 then sx := 1 else sx := -1

if y0 < y1 then sy := 1 else sy := -1

err := dx-dy

loop

plot(x0 ,y0)

if x0 = x1 and y0 = y1 exit loop

e2 := 2*err

if e2 > -dy then

err := err - dy

x0 := x0 + sx

end if

if x0 = x1 and y0 = y1 then

plot(x0 ,y0)

exit loop

end if

if e2 < dx then

err := err + dx

y0 := y0 + sy

end if

end loop

}

Code listing 10: Bresenham’s line algorithm

herent. (Low average distance / low stan-
dard deviation)

The segmentation is an outlier but the re-
maining segmentations are coherent with
each other. (high average distance / low
standard deviation)

The segmentation is not an outlier but all
the segmentations are not coherent. (Low
average distance / high standard devia-
tion)

The segmentation is a outlier but the re-
maining segmentations are also not coher-
ent. (high average distance / high stan-
dard deviation)

In Figure 15 we have shown an example
of the N segmentations method used on the
four different segmentations which were also
used in Figure 12. Figure 15a shows the
Nsegmentations with the use of the saturation
value for visualizing the standard deviation and
Figure 15b shows the same Nsegmentation
result without using the saturation value also
only displaying the average distances. As can

be seen when looking at the colors, the inner
three segmentations are relatively close to each
other in comparison with the outer segmenta-
tion. This is easy to imagine since the average
segmentation will be located closer to the three
inner segmentations than to the only outlying
segmentation. When looking at how the satu-
ration values affects the color of the segmenta-
tions in Figure 15b, it can be seen clearly that
it affects the inner segmentations at most. This
is due the fact that every segmentation is com-
pared to the set of remaining segmentation also
excluding itself. Therefore for every segmenta-
tion of the three inner segmentations this sets
exists of the 2 other inner segmentation and
the only outer segmentation. Since the outer
segmentation has a high deviation from the av-
erage segmentation, it increases the calculated
standard deviation and thus affects the satu-
ration value for the inner segmentations. The
outer segmentation itself will reflect the set of
three inner borders, which are much closer to
the calculated average segmentation and there-
fore have a lower standard deviation thus a low
affection by the saturation value.

5 Future work and
conclusion

We have made a c++/CUDA implementation
of the image segmentation method[8] which was
already implemented in matlab. As could be
seen in section 2 our implementation is signif-
icantly faster than the matlab implementation
which is easy to explain since our code can
be executed in parallel among multiple CUDA
threads. Except only porting the matlab code
to c++/CUDA, we have also made a graph-
ical user interface around it which makes the
program more user friendly and we have imple-
mented multiple visualization techniques which
allows the user to compare multiple segmenta-
tions with each other as discussed in section
3. However there is still enough room for im-
provement and extension. We have listed a few
possibilities below:

The implementation of the image resiz-

19

(a) Nsegmentations with saturation.

(b) Nsegmentations without saturation.

Figure 15: N Segmenations

20

ing in CUDA should be rewritten to do
the resampling using a convolution kernel.
Downscaling of images can then combine
the resampling kernel with a low-pass fil-
ter to reduce the effect of moire patterns.

Out of the algorithms listed in
3 Algorithms a couple that are currently
implemented in C++ can be converted
to CUDA, e.g. connected component
labeling.

The cufft library is optimized for prob-
lem certain sizes, such as powers of 2 and
3. The current implementation of convolu-
tion, 3.3 Convolution does not take this
into account, but can be extended to do
so.

As explained in 4.1.2 Rainbow
colormap, our program currently
uses the Rainbow colormap for every
visualization method but an option would
be to implement another colormap or to
implement multiple colormaps and add it
as an option to the gui. That way the user
can choose which colormap he/she wishes
to use.

Right now it is only possible to select a seg-
mentation by using the drop-down boxes
but it would probably more intuitive for
the user, to let him select a segmentation
by simply clicking on it when it is shown
in the image.

Another option would be to make it pos-
sible to let the user hoover over the pix-
els of a border and let the program display
certain information like: pixel coordinates,
calculated distance for this point etc.

At the moment it is also only possible to
clear all the segmentations at the same
time. It would probably be easier if the
user could select a specific segmentation
that he/she would like to remove from the
painted image.

References

[1] Convert region of interest (roi) polygon to
region mask. http://www.mathworks.nl/
help/images/ref/poly2mask.html .
Online accessed: 02-07-2013.

[2] J. E. Bresenham. Algorithm for computer
control of a digital plotter. IBM Systems
Journal , 4(1):25–30, 1965.

[3] Thanh-Tung Cao, Ke Tang, Anis
Mohamed, and Tiow-Seng Tan. Parallel
banding algorithm to compute exact
distance transform with the gpu. Proc.�ACM�I3D
pages 83–90, 2010.

[4] .sdooW.E.RdnazeláznoG.C.R Digital
Image Processing . Pearson education.
Pearson/Prentice Hall, 2008.

[5] Michael Kass, Andrew Witkin, and
Demetri Terzopoulos. Snakes: Active
contour models. IJCV

,

1(4):321–331, 1988.

[6] G.A. Moore. Automatic scanning and
computer processes for the quantitative
analysis of micrographs and equivalent
subjects. pages 275–326, 1968.

[7] Nobuyuki Otsu. A Threshold Selection
Method from Gray-level Histograms.
IEEE Transactions on Systems, Man and
Cybernetics , 9(1):62–66, 1979.

[8] Alessandro Parolin, Eduardo Herzer, and
Claudio R. Jung. Semi-automated
diagnosis of melanoma through the
analysis of dermatological images.
Proc.�SIBGRAPI, 71–78, 2010.

,[9] Chenyang Xu and J.L. Prince. Snakes,
shapes, and gradient vector flow.
IEEE Transactions on�Image�Processing
7(3):359–369, 1998.

21

Acknowledgements

We ackowledge the significant support to our
project delivered by dr. Daniel Boda and dr.
Adriana Diaconeasa (University of Medicine and
Pharmacy “Carol�Davila”,� Bucharest, Romania)
for the acquisition, manual segmentation, and
assessment of the skin lesion segmentation tumors
used in the design and evaluation of our
automatic segmentation software developed in
this project. We also acknowledge the financial
support delivered by the grant PN-II-RU-TE-2011
-3-0249 provided by UFEFISCDI, Romania.

http://www.mathworks.nl/help/images/ref/poly2mask.html
http://www.mathworks.nl/help/images/ref/poly2mask.html

	Introduction
	Segmentation
	Segmentation Algorithm
	Comparison

	Algorithms
	Convert to Grayscale
	Resizing
	Convolution
	Image Pyramid
	Grayscale to Binary
	Connected Component Labeling
	Boundary Tracing
	Snake resampling
	Sobel Edge Filter
	Gradient Vector Flow
	Snake Advection
	Curvature-based Laplacian Smoothing
	Contour Closing
	Hole Filling & Boundary Extraction

	Visualization
	Overview
	Convert to binary
	Rainbow colormap
	Distance transform

	Visualization techniques
	Distance calculation
	Feature vector
	Double feature vector
	N segmentations

	Future work and conclusion

