

Revision Analyser
Technical Background

29th of June, 2011

Written by:

Johan van der Geest

Mark Ettema

University of Groningen

Revision Analyser - Technical Background

Version 1.0 Page 2 of 9

Contents

1 Project plug-in system.. 3

1.1 Auto-load system ... 3

1.2 Accessing the project types ... 3

1.3 Project class ... 4

2 Task system ... 5

2.1 Task class ... 5

2.2 Starting a task batch .. 5

3 Global variables ... 6

3.1 Getting a global variable .. 6

3.2 Setting a global variable manually ... 6

3.3 Getting or deleting (all) variables .. 6

4 RevisionSet control .. 7

4.1 Revision class ... 7

4.2 RevisionSet properties ... 7

4.3 RevisionSet methods ... 7

4.4 Updated event listener .. 7

5 RevisionSlider control .. 8

5.1 Attaching a RevisionSet ... 8

5.2 RevisionSelected event listener ... 8

6 SolidSX control ... 9

6.1 SolidSX methods .. 9

6.2 Loaded event listener .. 9

Revision Analyser - Technical Background

Version 1.0 Page 3 of 9

1 Project plug-in system

One great feature of Revision Analyser is its modular project plug-in system. It allows

developers to create new project types for Revision Analyser and ship them as a DLL file to

customers.

1.1 Auto-load system

On startup, Revision Analyser will scan the “Plug-ins” sub-folder for DLL files that end with

“Project.dll”. Using .NET’s assembly features, a project DLL file will automatically be loaded

into the memory and will get access to the global namespaces of Revision Analyser. During

run-time, the application can show a list of loaded plug-ins via the About dialog (Figure 1).

Figure 1: Plug-ins dialog.

1.2 Accessing the project types

The RevisionAnalyser.Global.ProjectTypes class contains a list of the project types

that are currently loaded in the system. You can access it anywhere within Revision Analyser

using the following code:

 using RevisionAnalyser.Global.ProjectTypes;
 List<ProjectType> types = ProjectTypes.Instance.GetProjectTypes();
 ProjectType type = ProjectTypes.Instance.GetType(“Example”);

You can then create an instance of that project by calling the GetProjectInstance method on
the ProjectType class:

 Project project = type.GetProjectInstance();

Revision Analyser - Technical Background

Version 1.0 Page 4 of 9

1.3 Project class

The Project class is an abstract class that contains the following abstract methods:

 FirstRun: this method will be called on the first run of a project.

 Opened: each time the project is opened, this method will be called (also when the

project is opened for the first time).

 InitMenu: in this method you can initialize the Project menu. You will get a reference

to the ToolStripMenuItem object of the Project menu, such that you can easily add

menu items to it.

It also contains the following properties:

 ProjectFolder: the location of the project folder.

 ProjectFile: the location of the project XML file (.raproj extension).

 XmlDoc: reference to the XmlDoc object for the project XML file.

 RevisionSet: reference to the ReferenceSet object (see chapter 4 for more

information).

Revision Analyser - Technical Background

Version 1.0 Page 5 of 9

2 Task system

Revision Analyser has an advanced task system that allows developers to run (time-

consuming) tasks in a separate thread from the main thread. This allows you to continuously

inform the end user about the progress while the task is performed.

2.1 Task class

The Task class is an abstract class that contains just one abstract method, named Run. This

method will be called when the task is going to be executed. When the task is finished, you

should call the TaskFinished method, otherwise the task will never finish. It is a good

practice to have the following structure in your Run() method, to make sure the task will

always finish:

 public override void Run()
 {
 try
 {
 // Normal execution code here
 }
 catch (Exception ex)
 {
 // Handle exceptions here
 }
 finally
 {
 TaskFinished();
 }
 }

You should use the AddLog method of the Task class to add a message to the log. Another

method that is available is InsertTask, which allows you to add a task to the task batch on-

the-fly.

2.2 Starting a task batch

You can start a batch with tasks (or just one task) by passing a list with Task objects to the

constructor of the TasksForm class, like shown below:

 TasksForm frmTasks = new TasksForm(
 new List<Task>
 {
 new TaskA(),
 new TaskB()
 },
 false
);

Revision Analyser - Technical Background

Version 1.0 Page 6 of 9

3 Global variables

Revision Analyser can share global variables between projects, such as the paths of the Java

Runtime Environment and SolidSX2. This way, you do not have to store these variables in

individual projects. The user manual of Revision Analyser explains how this functionality

works for the end user.

3.1 Getting a global variable

You can get the value of a global variable with the following code:

 String var = GlobalVariables.Instance.GetVariable(“KEY”);

If the global variable does not exist, a form will popup for the end user that allows him or her

to set the variable. Setting the variable is mandatory, there is no way to close this dialog for

the end user without setting the variable.

You can also pass a second parameter to the GetVariable method containing a default value

to show in the form when a variable has not been set before.

3.2 Setting a global variable manually

You can set a global variable manually with the use of the following code:

 GlobalVariables.Instance.SetVariable(“KEY”, “Value”);

It is not mandatory to pass the key as upper-case string. The SetVariable method will

transform the key to upper-case by default.

3.3 Getting or deleting (all) variables

The GetVariables method will return a <String, String> Dictionary containing all global

variables that are currently set.

The DeleteVariable method will remove the global variable that you pass in its first

parameter. The DeleteVariables method will remove all global variables.

Revision Analyser - Technical Background

Version 1.0 Page 7 of 9

4 RevisionSet control

The RevisionSet control offers a neat way for storing details about revisions within the

Revision Analyser application. This could be any kind of revision, such as CVS, SVN or GIT.

4.1 Revision class

The RevisionSet control stores Revision objects. Before we start to discuss the functionalities

of the RevisionSet control, we first want to introduce to you the Revision class.

The Revision class is a very simple abstract class that only stores these two properties:

 ID: a unique ID for the revision (a long / 64-bit signed integer).

 Time: a DateTime object that tells when the revision was committed.

As a developer for a custom project type, you must override the Revision class. You can then

add your own custom properties. For example, the Recoder project type adds the Author

and LogMessage properties in its own SvnRevision class.

4.2 RevisionSet properties

The RevisionSet control contains the following properties:

 FirstRevision: the first revision that is stored in the set. Returns 0 if the set is empty.

 LastRevision: the last revision that is stored in the set. Returns 0 if the set is empty.

 RevisionCount: the number of revisions stored in the set.

4.3 RevisionSet methods

The RevisionSet control contains the following methods:

 AddRevision: adds a Revision object to the set. You can optionally pass a true as

second parameter to force the Updated event to be fired (see the next paragraph).

 GetRevision: returns the Revision object for a given revision ID.

 GetRevisionDictionary: returns a Dictionary containing all revision ID’s and objects.

 GetRevisionList: returns a List containing just the Revision objects.

 ContainsRevision: checks whether the specified revision ID exists in the set.

 DeleteRevision: deletes a specified revision ID from the set. You can optionally pass a

true as second parameter to force the Updated even to be fired.

 ClearRevisions: removes all revisions from the set.

 Update: fires the Updated event.

4.4 Updated event listener

You can attach an event listener to Updated to get notified of changes to the set.

Revision Analyser - Technical Background

Version 1.0 Page 8 of 9

5 RevisionSlider control

The RevisionSlider is an advanced GDI+ control that can be linked to a RevisionSet to display

its revisions on a timeline.

5.1 Attaching a RevisionSet

In order to make the RevisionSlider functional, you must attach a RevisionSet to it. You can

do this through code (by changing the RevisionSet property), or through the designer in the

Visual Studio IDE, as can be seen in Figure 2.

Figure 2: Attaching a RevisionSet through the designer.

The RevisionSlider will add an event listener to the RevisionSet control after assigning it, so

that it will automatically update itself whenever a revision is added or deleted.

5.2 RevisionSelected event listener

The RevisionSelected even listener allows you to get notified whenever an user selects

another revision in the timeline. Revision Analyser uses this event listener to update the

SolidSX2 control after an user selects a new revision.

Revision Analyser - Technical Background

Version 1.0 Page 9 of 9

6 SolidSX control

The SolidSX control is a control that can automatically launch SolidSource SolidSX2, capture

the required window handles, and render it flawlessly within Revision Analyser. This allows

us to make use of the great external visualization tool SolidSX, while still offering good

usability by integrating it within Revision Analyser.

6.1 SolidSX methods

The SolidSX control has the following public methods:

 OpenSolidSX: launches SolidSX and opens the given database file.

 CloseSolidSX: closes SolidSX.

 SelectRevision: selects the given revision in SolidSX.

 ExpandAll: expands all nodes in SolidSX.

 CollapseAll: collapses all nodes in SolidSX.

 ExpandLevel: expands to a given level in SolidSX (for example: 0, 1, 2, etc.).

6.2 Loaded event listener

You can attach an event listener to Loaded to get notified when SolidSX is finished loading.

