
Adding Git support to SolidSTA for analysing
C# metrics and dependencies

Software Maintenance and Evolution

Authors:
T. Back (s3218147)

K.Y. Kliffen (s2369494)

Supervisor:
prof. A. Telea

November 13th, 2016

Contents

1 Introduction 2

2 Related Work 2

3 Architecture Design and Decisions 2
3.1 Source Code Management System . 2
3.2 Git Library . 3
3.3 Abstract Importer . 3
3.4 Improvement of the Abstract Importer . 4
3.5 Vertical and Horizontal Storage Structure . 5
3.6 Memory Limits . 6
3.7 Hard Disk Space . 6
3.8 Local Processing . 7
3.9 Various Fixes . 7

4 Results 8

5 Conclusions 9

6 Future Work and Limitations 9

References 11

A SCMServer Abstract Interface 12

1

1 Introduction

Throughout the life a software, it is under continuous change. Over time its complexity
increases [8] and therefore is more difficult to maintain. In the maintenance process, tools
are used to gain a deeper understanding of a software project and its evolution.

There are multiple software analysis tools out there, but none of them offer a complete set
of analysis tools. For this project we improve an existing tool (SolidSTA) to support the
source code management system Git.

Git is the most used version control system [5, 11] for source code at the moment and used
for many software projects to organize their code base. Therefore, to analyse also current
software projects, support for the most used version control system is needed.

This report is structured as follows. First, the existing versions of the SolidSTA tool are
discussed. Secondly, the changes to the architecture to support Git are explained. Finally,
the results and performance of the new SCMImporter utility are discussed and some limi-
tations and future improvements are described.

2 Related Work

In this report we use an extended version of the Solid Sourcecode Trend Analyzer (SolidSTA)
[1]. The original tool allows the import of SVN and Git repositories as well as performing
project and file metrics using static code analysis.

An extended version of the Solid Sourcecode Trend Analyzer uses an utility program called
TFSImporter to connect to Microsoft’s Team Foundation Server (TFS) repositories and cal-
culate extensive code metrics for C# projects [7] and source code dependencies [9]. How-
ever, the new metrics are only available for TFS repositories since the analysis is done
inside the TFSImporter. SolidSTA communicates with the command line application TF-
SImporter through an basic text based interface. The dependencies are visualized with an
external program called Solid Software Explorer (SolidSX).

3 Architecture Design and Decisions

In this section we explain the existing architecture of the TFS Importer and how we intend
to change it to extend the number of repository types accepted by the application. First, a
short description of a Source Code Management System is given. Secondly, the used library
is described. Thirdly, an architecture is proposed. Finally, the difference between different
kinds of repositories is discussed in terms of querying for changes.

3.1 Source Code Management System

In software development, it is common practice to use a Source Code Management System
(SCMS) or a Version Control System (VCS) to collaborate on software projects. In this report

2

the terms may be used interchangeably.

Examples of such systems are: Git, Mercurial, SVN and Team Foundation Sever (TFS).

Most systems have a notion of commit or change set. This is a moment in time when
a developer saves a status and thus changes of files to the SCMS. It contains the time of
the change, the author of the change and the changed files. Often they also contain a
description of the change in a short message.

3.2 Git Library

The version 1.0 of SolidSTA requires a native installation of the Git command line tool.
To put less dependencies on the environment, we incorporate the Git functionality in the
utility using the existing library LibGit2Sharp [3]. The library is written in C with a proper
C# binding [4], which is needed since the TFSImporter is written in C#.

The LibGit2Sharp library allows for cloning of a repository and storing it for offline use. This
prevents performance issues due to network connectivity, since the files are stored locally
on disk. Furthermore it allows for querying commits and changed files per commit. It is
also possible to get the file contents of a file, without checking out a given version of the
repository.

3.3 Abstract Importer

The extended SolidSTA application consists of three major parts:

• SolidSTA, graphical user interface for displaying metrics of projects, files as well as
evolutions of metrics and user interaction

• CSharpMetrics, a library for static code analysis using NRefactory [6]

• TFSImporter, an utility for connecting to repositories on the Team Foundation Server

SolidSTA is a python program, which uses the TFSImporter utility to connect to a TFS
repository. This communication is done via a command-line interface. The TFSImporter
uses the C# metrics library to calculate the code metrics on the project. To support other
repositories, the binding between the TFSImporter and the CSharpMetrics must be ab-
stracted to an Abstract Importer.

3

3.4 Improvement of the Abstract Importer

Figure 1: The architecture of the SCMImporter

The Figure 1 shows the architecture of the SCMImporter. Starting point is SolidSTA,
which will issue queries to the Abstract Importer. In version 1.0 of SolidSTA calls the TFS
Importer directly. In the new improved version, SolidSTA will call instead the Abstract
Importer, which provides a transparent interface to Git and TFS repositories. It will also do
the metrics calculation.

To start off, the Abstract Importer needs a basic interface. It will be the base for all variations
of repository importers. Some basic data structure is already given through the TFSIm-
porter, which will be used by all implementations of repository specific importers. This
data structure is abstracted from the repository and library specific data structures.

Because the TFSImporter is a working importer for TFS repositories, the code base of that
project is used to extend the functionality. The TFSImporter is written in plain C# and uses
another C# library. The library CSharpMetrics is used for the extraction of software metrics
of C# projects. Using another programming language to extend the software or re-engineer
the existing software would need significantly more work and will possibly not add the
same detailed metrics as with the C# code. Therefore, the support for other repository
types will be added to the TFSImporter making it the more general SCMImporter.

The center of this project is the abstract class SCMServer and its implementation for Git.
The complete interface is listed in Appendix A.

All of the non-primitive types (such as commits) are defined within the SCMImporter and
do not have dependencies on other libraries. Wherever necessary a converter method is
defined to convert from a specific type used by one of the specific importers to our defined
types and also back. This is done for example for Microsoft’s TFS library and also for
LibGit2Sharp, since their libraries use some library specific object types for representing

4

commits.

3.5 Vertical and Horizontal Storage Structure

In the project we found out that different SCM tools order their data in different kinds of
ways. Both types are explained in the following list and also shown in Figure 2.

• Horizontal
In a horizontal data structure the commits are organised around the files. So, when a
commit is made, the change is saved at the individual files. In this way, the history of
a file can be easily retrieved, whereas its more difficult to see which files have changed
at specific commits or moments in time.

• Vertical
In a vertical data structure the basic structure are the commits. It’s easy to visualise
which files have changes at specific moments in time, but its rather expensive to list
how individual files have changed in the duration of the project.

Figure 2: Difference between horizontal and vertical data structure

Whereas Microsoft’s TFS uses a horizontal structure, Git uses a vertical structure. This is
in general no problem, because it does not matter in which direction a two-dimensional
data structure is queried; the result is the same. However, it does concern the speed of
the application. Algorithms are usually optimised for a specific data structure and the
TFSImporter is no exception from that.

By implementing a second version of the querying algorithms, which only changed the way
of running through the data, the speed was improved for example for the GIMP project by

5

an expected factor of 60x1. Thus, the algorithm does matter and is selected based on the
SCM data structure (GetRepoMode() method in the SCMServer interface).

3.6 Memory Limits

In the process of reading in the file contents, we run into an issue with the maximal amount
of memory. As it turns out when we read a file from the Git repository - the library returns
as expected a Stream object - however the Stream does not refer to file in the repository with
some logic to read that correct file information (lazy loading), but instead the Stream is
preprocessed and loaded into the memory at request.

When requesting all the file contents of all files in a large repository, a very large amount
of memory is consumed - even exceeded the amount that the LibGit2Sharp library [4]
can handle. The memory issue arises as soon as the memory size exceeds 29 + 210 =
1536Megabytes. We don’t know why it is exactly this number, but since we know about it,
we can work around it.

To circumstanced this issue, the SCMImporter does process the commits in chunks. We
decided to process 100 commits per chunk. This has been decided to be able to han-
dle repositories with large commits, but also being able to process the repository fast by
performing batch database insertions. So, a trade-off was found between reliability and
speed.

3.7 Hard Disk Space

Before the SCMImporter can import any data of the Git repository, the Git repository has
to be cloned first. Within the cloning process the whole history of the selected project’s
primary branch and the content of the files is received and saved to disk. This is the only
Git specific extra amount of hard disk space needed.

Additionally, the file contents command copies every source code file change in a local
zipped file. So, each file version of supported code files is saved as well. Since different
versions of the same file may have a lot of code in common, it can be compressed at a high
ratio.

Last, but not least for the calculation of the dependencies, the revisions are checked out,
which also take some space during the calculation, since it checks out a given version and
performs the static dependency analysis.

Since the TFS part was left untouched, the hard disk requirements are still the same as with
the SolidSTA for TFS.

1A projected run would take about 36 hours in horizontal mode and its now down to around 34 minutes in
vertical mode

6

3.8 Local Processing

After the repository was cloned once, with every new run of the SCMImporter a fetch is
done to include the latest updates. After this, all processing is done offline on the local
machine. It’s also possible to clone the repository once, then cut the Internet connection
and continue to run the SCMImporter.

3.9 Various Fixes

Throughout the project we encountered also various other issues on a smaller scale. The
ones we feel worth mentioning are listed in the following subsections.

3.9.1 Git Project Clean-up

When cloning a Git repository, all Git related files are marked read-only. SolidSTA could
not delete these files when the project would be deleted. A small change in the python code
was made to force the Git files to be writable and to delete the files then.

3.9.2 Line of Codes Metric

Unfortunately, the line of code (LOC) metric from the CSharpMetrics returned a zero value
for every file. Since we rely for the analysis of the metric on NRefactory, we implemented
a basic LOC counter manually in the SCMImporter ourselves when metric calculation is
requested.

3.9.3 Representation of File Path

After adding the first version of the functionality for the support of git repositories and
inserting some basic data into the database, we wondered why these data was not getting
displayed in SolidSTA. After looking through the code over and over again as well as the
structure of the database and its links between the tables, we did not find anything strange.
In the end it turns out, that the Path in the Files table has a follow a very specific format and
is not platform independent. All paths have to start with a (forward) slash and may not con-
tain a backslash. The format can be described with: /[folders/]filenameWith.Extension

3.9.4 Unicode Support in Python

Some text displaying functions did not work in SolidSTA when the text contained diacrit-
ics such as é. This problem was found when a repository was used with foreign names
containing these characters. This was fixed by forcing the use of Unicode text in these
functions.

7

4 Results

Besides adding the functionality, also some performance testing was made to evaluate the
speed of the new Abstract Importer. Since a previous version of SolidSTA also had already
support for Git repositories integrated, a comparison can be made as well.

For the tests, we decided to run them on two selected repositories:

1. GIMP
GIMP [2] is an open-source graphics editing software with almost 20 years of commit
history.

2. LibGit2Sharp
LibGit2Sharp [4] is the git library that used in the Abstract Importer for the usage of
Git. It is a bit smaller than GIMP.

The performance of the Abstract Importer was evaluated on the following system: Intel Core
i5 4570 (3.20 GHz) with 16 GB ram, running with a 5400 RPM hard drive. Version 1.0 of
SolidSTA was used to compare with the new SCMImporter utility. The SCMImporter was
timed using .NET build-in timer objects and storing the timings inside a file on execution.
SolidSTA version 1.0 was timed using a stopwatch and executing the different commands
by hand. The results for the SCMImporter can be seen in Table 1 and for the old TFS
importer in Table 2.

Repository # commits filetree version info. version contents file metrics
GIMP[2] 37,563 4.2 s. 3 m. 20.0 s. 34 m. 2.3 s. -
LibGit2Sharp[4] 2,109 0.4 s. 18.0 s. 48.8 s. 20.3 s.

Table 1: Performance of SCMImporter on different sizes of Git repositories

Repository # commits filetree version info. version contents file metrics
GIMP 37,563 < 1 s. 1 h. 30m. 3h. 50m. -
LibGit2Sharp 2,109 < 1 s. 3 m. 6 s. - -

Table 2: Performance of v1.0 SolidSTA on different sizes of Git repositories

Some values in both tables are missing, since metrics can only be calculated on C# projects
and would otherwise not be comparable between versions. When testing the LibGit2Sharp
repository with the old version of SolidSTA, it was not possible to perform the content
operation, due to some error in the old program, which we could not fix.

Since we use the same data as a basis for measuring the performance of both programs, a
comparison can be made. A first look at the numbers already reveals that the new version
with the Abstract Importer is faster than the previous version. Whereas the time difference
for querying all files that are present in the project is quite fast in both versions, the dif-
ference in speed is significant for the other tasks. The new importer is probably slower,
since version 1.0 of SolidSTA requests only the latest files in the repository and does not
read the full history of every file that exists. The processing time for gathering just the

8

information about all commits with times and commit messages has been greatly reduced.
This is due to the fact, that the repository is kept locally and no heavy computational op-
erations are necessary. When running the version 1.0 of SolidSTA version, it was clear
that versions were calculated for each file individually, so a horizontal method was used.
This explains the difference in processing time taken by the new implementation. The file
contents command involves more steps and is especially resource demanding on IO. But
an improvement by the factor of around 8 was achieved by the new implementation, which
was also caused by the same horizontal method.

The interface between SolidSTA and SCMImporter was not changed. It should be possible
for a user of SolidSTA to use a Git C# repository without needing specific configuration
compared to the TFS repositories.

5 Conclusions

In our project we did not focus on Software Maintenance and Evolution in general, but
had a rather hands-on experience of program understanding for an existing project and
improve it with new functionality. For minimal change impact, we used reverse engineer-
ing to provide an abstract interface for different kinds of repositories - which was mostly
already provided by the TFS Importer. This will allow for easy extension for new kinds of
repository in the future.

We did however encounter a difference in execution time depending on the repository
structure and query methods. Therefore, we had to define two methods for each kind of
repository to be queried efficiently. The execution time of version information and version
contents was decreased significantly compared to original TFS Importer.

6 Future Work and Limitations

In this section we list some possible improvements and limitations of the SCMImporter for
SolidSTA.

• SVN support is not yet implemented. Using the open source library SharpSVN [12],
it should be able to use a similar vertical approach to import from SVN repositories
as with Git repositories.

• The LibGit2Sharp library has an issue regarding reading the changes of a project
when a new file consisting only of empty lines (end of line characters)2 is committed.
This issue is fixed in the current version of the library (v0.22), however a new memory
leak was introduced, which affects the SCMImporter even more. Unfortunately, the
thrown OutOfMemoryException is not catchable, which makes it impossible to handle the
issue. Since LibGit2Sharp is still under development, we hope that this issue will

2This can be observed in the Roslyn repository at https://github.com/dotnet/roslyn. An issue regarding
this error can be found at https://github.com/libgit2/libgit2sharp/issues/979

9

https://github.com/dotnet/roslyn
https://github.com/libgit2/libgit2sharp/issues/979

be fixed in future versions. But until then, the SCMImporter is limited to those
repositories, which do not contain these kind of empty files.

• To work in conjunction with the Solid Software Explorer, administrator rights are
needed. This is necessary because the Solid Software Explorer saves data to its
own program directory. In the newer versions of Windows, these folders are write-
protected for unprivileged programs and therefore administrator rights are needed
for SolidSTA when starting SolidSX.

• All commits are queried for files that were added, modified or deleted per commit
to construct a complete filetree. When a file is deleted however, it still exists in the
repository as a file that was never changed after it’s deletion. In a future version, the
line corresponding to deleted files may end at the commit when it was deleted. This
might yield interesting insight into when and how files are deleted during the project.

• With the newly calculated metrics, it might be interesting to use a 2D projection of
the high dimensional space from these metrics to visualize evolution of code metrics
between commits [10].

• The current version of SCMImporter clones only the primary (usually master) branch
of a project. A future version might allow for selecting certain branches to be analysed.

10

References

[1] SolidSource BV. SolidSTA tool distribution. 2008. url: www.solidsourceit.com.

[2] Gimp contributors. GIMP repository. url: https://github.com/GNOME/gimp (visited
on 11/03/2016).

[3] Libgit2 contributors. Libgit 2 website. url: https://libgit2.github.com/ (visited on
11/03/2016).

[4] Libgit2sharp contributors. Libgit2sharp git repository. url: https : / / github . com /

libgit2/libgit2sharp (visited on 11/03/2016).

[5] Google Trends. Git, Concurrent Versions System, Apache Subversion, Mercurial - Explore
- Google Trends. 2016. url: https://www.google.com/trends/explore?q=%5C%2Fm%
5C%2F05vqwg,%5C%2Fm%5C%2F09d6g,%5C%2Fm%5C%2F012ct9,%5C%2Fm%5C%2F08441_

&hl=en-US&tz&tz (visited on 11/06/2016).

[6] ICSharpCode. NRefactory repository. 2010. url: https://github.com/icsharpcode/
NRefactory (visited on 11/04/2016).

[7] Joost Koehoorn. Software evolution analysis for Team Foundation Server. 2013. url: http:
//irs.ub.rug.nl/dbi/520a16b64a989.

[8] Metrics and Laws of Software Evolution—The Nineties View. IEEE. 1997. url: http://
www.ece.utexas.edu/~perry/work/papers/feast1.pdf.

[9] Robbert-Jan Pijpker and Joost Koehoorn. Report for Software Maintenance and Evoltion.
2014.

[10] RRO da Silva et al. “Metric Evolution Maps: Multidimensional Attribute-driven Ex-
ploration of Software Repositories”. In: ().

[11] Ian Skerrett. Eclipse Community Survey 2014 Results. 2014. url: https://ianskerrett.
wordpress.com/2014/06/23/eclipse-community-survey-2014-results/ (visited
on 11/04/2016).

[12] Sharp SVN. Sharp SVN website. url: https://sharpsvn.open.collab.net/ (visited
on 11/03/2016).

11

www.solidsourceit.com
https://github.com/GNOME/gimp
https://libgit2.github.com/
https://github.com/libgit2/libgit2sharp
https://github.com/libgit2/libgit2sharp
https://www.google.com/trends/explore?q=%5C%2Fm%5C%2F05vqwg,%5C%2Fm%5C%2F09d6g,%5C%2Fm%5C%2F012ct9,%5C%2Fm%5C%2F08441_&hl=en-US&tz&tz
https://www.google.com/trends/explore?q=%5C%2Fm%5C%2F05vqwg,%5C%2Fm%5C%2F09d6g,%5C%2Fm%5C%2F012ct9,%5C%2Fm%5C%2F08441_&hl=en-US&tz&tz
https://www.google.com/trends/explore?q=%5C%2Fm%5C%2F05vqwg,%5C%2Fm%5C%2F09d6g,%5C%2Fm%5C%2F012ct9,%5C%2Fm%5C%2F08441_&hl=en-US&tz&tz
https://github.com/icsharpcode/NRefactory
https://github.com/icsharpcode/NRefactory
http://irs.ub.rug.nl/dbi/520a16b64a989
http://irs.ub.rug.nl/dbi/520a16b64a989
http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf
http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://sharpsvn.open.collab.net/

A SCMServer Abstract Interface

The SCMServer is defined as the following interface:

1 abstract class SCMServer {

2 public abstract void Connect(string url , string directory , string user , string

password);

3 public abstract string PreparePath(string path);

4 public abstract VersionSpec GetFirstVersionAfter(DateTime dt);

5

6 public abstract IEnumerable <ChangeSet > QueryFileHistory(string path , RecursionType

recursion , VersionSpec versionFrom , int maxCount , bool includeChanges , bool

includeDownloadInfo , bool sortAscending);

7 public abstract Item[] GetItems(string path , VersionSpec version , RecursionType

recursion , DeletedState deletedState , ItemType itemType , bool

includeDownloadInfo);

8

9 public abstract RepoOperationMode GetRepoMode ();

10 }

12

	Introduction
	Related Work
	Architecture Design and Decisions
	Source Code Management System
	Git Library
	Abstract Importer
	Improvement of the Abstract Importer
	Vertical and Horizontal Storage Structure
	Memory Limits
	Hard Disk Space
	Local Processing
	Various Fixes

	Results
	Conclusions
	Future Work and Limitations
	References
	SCMServer Abstract Interface

