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Understanding Visualization:
A Formal Approach using Category Theory and

Semiotics
Paul Vickers, Member, IET Joe Faith, and Nick Rossiter.

Abstract—This article combines the vocabulary of semiotics and category theory to provide a formal analysis of visualization. It
shows how familiar processes of visualization fit the semiotic frameworks of both Saussure and Peirce, and extends these structures
using the tools of category theory to provide a general framework for understanding visualization in practice, including: relationships
between systems, data collected from those systems, renderings of those data in the form of representations, the reading of those
representations to create visualizations, and the use of those visualizations to create knowledge and understanding of the system
under inspection. The resulting framework is validated by demonstrating how familiar information visualization concepts (such as
literalness, sensitivity, redundancy, ambiguity, generalizability, and chart junk) arise naturally from it and can be defined formally and
precisely. This article generalizes previous work on the formal characterization of visualization by, inter alia, Ziemkiewicz and Kosara
and allows us to formally distinguish properties of the visualization process that previous work does not.

Index Terms—I.6.9.c Information visualization, G Mathematics of Computing, category theory, semiotics

F

1 INTRODUCTION

V ISUALIZATION is a catch-all term that embraces a
wide range of activities concerned with represent-

ing, or making visible aspects or features of a given set of
data or system, from the graphical analysis of scientific
data, through the ‘infographics’ used to communicate in
the popular media, to data art. It has recently grown in
scale, popular currency, and theoretical discussion due
to a combination of factors including the growth in the
importance of data mining and processing in industry
and science, and the availability of popular and powerful
computer visualization tools, such as Processing (see [1]).

Visualization practice combines a range of skills and
disciplines, including statistics, aesthetics, HCI, graphic
design, and computer science. However, perhaps be-
cause of this diversity, there has been relatively little
discussion of its theoretical basis. Purchase et al. [22]
remarked that visualization “suffers from not being
based on a clearly defined underlying theory”, and
that “formal foundations are at a nascent stage”. The
danger of neglecting the theoretical foundations is that
the discipline will fragment into isolated communities of
practice that fail to learn from one another and replicate
work unnecessarily. There have been a number of efforts
to map visualization’s theoretical foundations, the prin-
cipal ones being Mackinlay [19], Card and Mackinlay
[4], Chi [7], Tory and Möller [25], van Wijk [28] and
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Ziemkiewicz and Kosara [30] (see also [16]). We discuss
the relationship between these treatments and ours in
section 6 and show how using a more powerful formal
framework allows us to formally distinguish properties
of the visualization process that previous work does not.

This article contributes to this development of theo-
retical foundations by generalizing previous work and
providing a higher-level framework for understanding
the visualization process. It does this by employing
two existing tools. The first is semiotics, the study of
signs. As devised by Saussure and Peirce, semiotics
has developed into a powerful theoretical framework
for understanding the relationships between signs, sign
systems, the consumers of those signs, and the systems
they represent. Information visualizations are signs par
excellence, and thus seem obvious candidates for semiotic
analysis. In section 2 we provide a brief introduction to
the analysis frameworks used by semiotics and discuss
how this applies to visualization. The result is to show
how visualization can be understood using a series of
relationships, or mappings, from one domain to another,
summarized in a semiotic triad.

The second tool is category theory, the mathematical
study of systems of structures and their mappings. This
is introduced in section 3, and applied to visualization in
section 4. The most powerful concept in category theory
is the notion of commutativity, which forces one to try
to extend and construct structures in such a way as to
reach algebraic closure by considering the consequences
and implications of a structural description of a system.
The end result, or closure, is the general description of
visualization given in section 4.3 culminating in Fig. 10
and Table 2. By applying the criteria of commutativity
and closure to Peirce’s semiotic triad in sections 4 and
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5 we use our framework in a natural way to cover
(or uncover) some aspects which are already familiar
to practitioners of information visualization, and some
other aspects which are less obvious. Specifically, the
theory lets us differentiate between chart junk that is part
of the schema, that which is arbitrary, and redundancy
in the layout. We also show how the derived property
of ‘intensionality’ can be used to discriminate between
true visualizations and data-driven representations.

2 SEMIOTICS AND VISUALIZATION

Semiotics is the study of the creation and interpretation
of signs. Signs are words, images, sounds, smells, objects,
etc. that have no intrinsic meaning and which become
signs when we attribute meaning to them [6]. Signs stand
for or represent something beyond themselves. Mod-
ern semiotics is based upon the work of two principal
thinkers, the Swiss linguist Ferdinand de Saussure and
the American philosopher and logician Charles Sanders
Peirce. In Saussure’s linguistic system a sign is a link
between the signified (a concept) and the signifier (a sound
pattern) both of which are psychological constructs hav-
ing non-material form rather than material substance [6].
For example, /tree/ is a signifier for the concept of the
thing we know as a tree. The sign thus formed is a link
between the sound pattern and the concept. Modern ap-
plications admit material form for the signifier (e.g., road
signs and printed words). Saussure’s scheme explicitly
excludes reference to objects existing in the real world;
the signified is not directly associated with an object but
with a mental concept.

Peirce’s semiotics is based upon a triadic relationship
that comprises [29]:

• The object: the thing to be represented (note, this
need not take a material form);

• The representamen: the form that the sign takes
(word, sound, image, etc.,); the representamen rep-
resents the object;

• The interpretant: the sense we make of the sign.
Peirce thus admits the referent that Saussure brackets.
Fig. 1 (adapted from Vickers [29]) shows a Peircean
triad drawn as a ‘meaning triangle’.1 It should be noted
that the Saussurean signifier and signified correspond
only approximately to Peirce’s representamen and inter-
pretant; unlike Saussure’s signified, Peirce’s interpretant
itself becomes a sign vehicle in the mind of the inter-
preter. The triangle shows the sign formed by the name
Agamemnon which signifies an individual cat of that
name.

To see how this relates to visualization consider Fig. 2
(adapted from Vickers [29]) which shows a semiotic
relationship between a set of student marks and an
external representation. Using a spreadsheet program we
take a data set collected from the real world system of a

1. In 1923 Ogden and Richards [20] gave this visual interpretation of
Peirce’s triad since when it has become the conventional representation
(see also Sowa [24]).

Fig. 1. Semiotic ‘meaning triangle’ showing a Peircean semiotic triad
(notation after Sowa [24]). Approximations to Saussure’s terms are given
in parentheses: A real-world cat is the object. It is represented by the
symbol “Agamemnon” which evokes the concept of Agamemnon the cat
in our mind.

cohort of students studying a course. These data are then
presented to the user as a chart. Note, the chart is not the
data set but a representation of it. So, we have a Peircean
sign in which the data set is the referent object, the chart
serves as its representamen, and the interpretant is the
sense we make of the data by studying the chart.

Fig. 2. A chart is a representation of the data. The interpretant is the
concept formed in our mind when we read the chart representation.

It is important to note that, contrary to Saussure’s
original structuralist view, sign systems exist within a
social and cultural context which, the post-structuralists
would argue, needs to be accounted for. Peirce’s semi-
otics, through the notion of a ground, admits such a
context. It is important because visualization requires
the producer (the addresser, in semiotic terminology)
and the consumer (the addressee) to share contextual
knowledge for successful meaning making to take place
(see also van Wijk [28]). In Peirce’s semiotics meaning
is mediated such that the “meaning of a sign is not
contained within it, but arises in its interpretation” [6].
Hjelmslev [13] recognized that no sign can properly
be interpreted without first contextualizing it so that
in addition to a sign’s denotative (literal) meaning its
context also lends it connotative meaning. For instance,
in the example of our student system the ground would
include knowledge about what constitutes a pass mark
and where the grade boundaries lie (see also Hullman
and Diakopoulos [14]).

Note that this semiotic framework excludes some ex-
amples of what is popularly regarded as information
visualization such as Radiohead’s “House of Cards”
video [23]. The video was shot without any cameras,
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being derived solely from data obtained from 3D images
produced by Geometric Informatics for close proximity
objects and Velodyne Lidar for landscapes. The data
sets used to make the video can be downloaded from
the project’s web site which encourages us “to create
your own visualizations” [23]. According to Lima [17],
the video, while unarguably data-driven, ought not be
considered a visualization as it provides no insight into
the data — it is pure spectacle [2]. As Card, Mackinlay,
and Shneiderman put it: “The purpose of visualization is
insight, not pictures” [5]. Visualization, then, is a process
that begins with the real world, or more narrowly, a sys-
tem in the real world about which we are interested (e.g.,
a mechanical system or a cohort of students on a degree
course). From the system we gather data which are then
mapped via transformation rules to a representation (a
graph or chart, an interactive 3D model, statistical box
plots, etc.) and this representation is then ‘read’ by the
person wishing to gain insight into the system. Note
that the data being visualized always have a context (a
ground), a scenario in which they were intended for use.

Reading the representation evokes concepts and ideas
in the mind and inferences are drawn leading to un-
derstanding of the system and, as we shall see later,
knowledge of the truth as it pertains to that system. This
process is encapsulated in Fig. 3.

Fig. 3. Understanding the real world through visualization: Data are
purposefully collected from the real world and, via mappings, represen-
tations are produced. These are used in turn for meaning making and
drawing inferences about the data. The visualization process encom-
passes cognition in the observer’s mind.

3 CATEGORY THEORY

In this section we introduce the main concepts of cate-
gory theory [18], a branch of mathematics developed to
analyze systems of structures, and mappings between
those structures, in their most general form. This level
of generality means that category theory is capable of
demonstrating similarities between disparate fields of
mathematical enquiry — from set theory to theoretical
computer science — in such a way that allows insights
from one to be translated to another. It can thus act as a
Grand Unified Theory in mathematics.

In sections 3.1–3.3 we introduce the basic elements
and concepts of category theory, and in sections 4.1–
4.3 we show how these elements and concepts apply
to visualization processes. In section 5 we derive some
results of analyzing information visualization in this
way.

3.1 Morphisms, Objects, and Triangles
Here we introduce the central concepts of the object
and the morphism and how they may be arranged into
diagrams, the fundamental one being the triangle. In
section 4 we will see that the elements of a visualiza-
tion process (such as data sets and representations) are
objects and the processes that map between them (such
as measurement and rendering) are morphisms.

Category theory is built from just two classes of entity:
objects and morphisms (we follow the convention that
Objects are Capitalized and morphisms are italicized).
Almost anything can be considered as an object: physical
objects, abstract objects, or entire systems. Indeed, much
of category theory’s power comes from its recursive
ability to treat ever more complicated systems as build-
ing blocks in the next level of abstraction. All that is
required for an entity to qualify as an object is that
it can be individuated, that is, we have some method
for determining whether two objects are identical.2 This
method is represented as a mapping from the object to
itself, known as the identity morphism (see section 3.2).

Morphisms are mappings between objects. They are
represented diagrammatically by (and often called) ar-
rows. For a mapping to qualify as a morphism there
must be a unique target for each domain object, i.e.,
one object each at the base and the head of the arrow.
Ontologically, a morphism may be understood as a
generalization of a mathematical function, i.e., as an
association between its source and target. Morphisms
may represent physical, causal, or temporal processes,
or purely formal relationships.

Objects and morphisms can be combined into dia-
grams, the simplest of which, and the most basic tool
in category theory, is a triangle, as in Fig. 4.

A
f //

h ��

B

g

��
C

(a) The basic
triangle

A
f //

g◦f ��

B

g

��
C

(b) Triangle that
commutes

Fig. 4. Category theory triangles. If the triangle in (b) commutes then
h = g ◦ f .

3.2 Commutativity, Identity, and Associativity
Here we introduce the notions required to ensure that a
category is well defined. In section 4.1 we see that these
notions enforce some very basic conceptual hygiene
on visualizations (such as the necessity of determining
whether two versions of a visualization are ‘the same’).

Given objects A, B, and C and morphisms f : A −→ B
and g : B −→ C, the first question a category theorist

2. In category theory it is strictly not possible to show that things
are the same or identical. The strongest statement possible is that two
sets are naturally isomorphic (unique up to natural isomorphism), that
is, indistinguishable.
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would ask about Fig. 4(a) is whether there is another
morphism, h : A −→ C, that completes the triangle such
that the result of applying f then g is the same as would
be achieved by h. This morphism is the composition of f
and g, or g◦f . (Note the ordering: compositions are read
right to left as the morphism g is applied to the result of
f .) If there is such a morphism h then the triangle is said
to commute, the objects and morphisms together form a
category, and we can write the equation h = g ◦ f .

Consider an informal example, the category of familial
relations. Suppose A, B, and C are persons, f is the
mapping of ‘motherhood’, and g is ‘sisterhood’; then
g ◦ f corresponds to ‘aunthood’, the diagram commutes,
and we have a category. But now suppose that g is
‘friendship’. We do not have a well defined mapping
for g ◦ f in this case (other than the tautological ‘the
relationship I have with a friend of my mother’). Hence
we cannot form a commuting triangle or create a cate-
gory. To form a category encompassing both kinship and
friendship we must enrich our vocabulary of morphisms
to describe those relationships. Societies that are based
on communal kin-groups rather than atomic families
will tend to develop richer vocabularies to capture these
composite relationships, hence their set of morphisms
will tend to form well-defined categories. This is an
example of how category theory can be used in practice:
no one would suggest that kin-groups form vocabularies
because of their category-theoretic properties, but the
category-theoretic perspective suggests a set of questions
that could be asked of that vocabulary, and a conceptual
framework for analyzing it.

To form a category it is also necessary that all objects
X each have a single identity morphism: 1X : X −→ X
such that for every morphism f : A −→ B we have
1B ◦ f = f = f ◦ 1A (i.e., mapping from A to B with f
has the same outcome before and after 1A and 1B are
applied). We can view this diagrammatically:

A1A 88
f // B 1Bee

Thus, this notion of ‘sameness’ is defined with respect
to the morphisms in a category, rather than the identity
of the object itself. The implications of this definition are
explored in section 4.1.

The final requirement for a category to be valid is that
morphism composition is associative, i.e., (h ◦ g) ◦ f =
h ◦ (g ◦ f). In section 4 we apply this definition of a
category to the semiotic triad.

3.3 Types of Morphism
Here we introduce types of morphisms, an idea which
lies at the heart of this work. Section 5.1 shows how
these types correspond to, and have a direct impact
upon, basic visualization concepts such as ambiguity,
literalness, redundancy, and chart junk.

Morphisms are of several types, the main four which
concern us here being monomorphic, epimorphic, endo-
morphic, and isomorphic. These are defined as follows.

• f : A −→ B is monomorphic (monic) iff ∀g1, g2 :
C −→ A, g1 6= g2 =⇒ f ◦ g1 6= f ◦ g2. See Fig. 5(a).

• f : A −→ B is epimorphic (epic) iff ∀g1, g2 : B −→
C, g1 6= g2 =⇒ g1 ◦ f 6= g2 ◦ f . See Fig. 5(b).3

• f : A −→ A is endomorphic (endic) if it maps an
object to itself. See Fig. 5(c).

• f : A −→ B is isomorphic (isic) if there is an inverse
mapping f−1 : B −→ A such that f ◦f−1 and f−1◦f
are both identity morphisms. That is, f−1 ◦ f = 1A
and f ◦ f−1 = 1B. See Fig. 5(d).

C
g1 //
g2 // A

f // B

(a) Monomorphism

A
f // B

g1 //
g2 // C

(b) Epimorphism

A
f // A

(c) Endomorphism

A
f //

B
f−1oo

(d) Isomorphism

Fig. 5. Diagrams illustrating monomorphism, epimorphism, endomor-
phism, and isomorphism.

Monomorphism, epimorphism, and isomorphism are
generalizations of the more familiar set theoretic terms
injection, surjection, and bijection, respectively. For ex-
ample, let us define three set objects A, B, and C repre-
senting people and a morphism f : A −→ B representing
motherhood, such that f maps each person in A to their
respective mother in B. If g1 and g2 map people in one
object to their friends in another then:

• f is not monic since two different friends of mine
can have the same mother; that is, though we might
have a pair of mappings such that g1 6= g2, the
compositions f ◦ g1 and f ◦ g2 could be equivalent.

• f is epic since two different friends of my mother
must be different people (they cannot be the same
person).

• f is not endic since one cannot be one’s own mother.
• f is not an isomorphism since if f−1 were ‘child’

(the obvious candidate for an inverse map) then
f ◦ f−1 could be my spouse (a person in B who
is not my mother) and f−1 ◦ f could be my sibling
(a person in A with whom I share a mother).

These simple examples illustrate how sensitive the
properties of monomorphism and epimorphism are to
the definitions employed for the underlying types. In
section 5 we apply each of these definitions to the
visualization category generated in section 4.

4 CATEGORY THEORY APPLIED TO VISUAL-
IZATION

This section applies category theory to the semiotic triad.
The end result can be seen in the commutative diagram

3. These definitions of monic and epic, through the use of the
6= relational operator, rely on the closed world assumption. This is
satisfactory for the classical logic of the category of sets but not for the
intuitionistic logic of categories in general.
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in Fig. 10 but, as is usual with category theory, we
proceed by constructing the diagram in stages, checking
for commutativity at each step.

Peircean semiotics is based on a triadic relationship
between object, representamen, and interpretant. We can
draw our semiotic triad as the commutative diagram in
Fig. 6(a) (where O, R, and I stand for object, representa-
men, and interpretant respectively).

O
f //

g◦f
��

R

g

��
I

(a) The Peircean
semiotic triad

Data
render //

understanding

%%

Representation

read

��
Evocation

(b) Visualization

Fig. 6. The Peircean semiotic triad shown as commuting triangles

In visualization the object is the data collected from
a given system, the representamen is the representation,
and the interpretant is the mental state evoked by the
representation in the mind of the interpreter. Thus, we
name the objects in our commutative diagram Data, Rep-
resentation, and Evocation respectively. The morphisms
between them we define as follows:

• The transformation from Data to Representation is
named render because the data are rendered in
a given way so as to represent the Data while
maintaining structure and content.

• The morphism between Representation and Evoca-
tion is called read because the interpreter reads the
Representation.

• To the composition read◦render we assign the name
understanding as a proper Representation leads to
the reader understanding some aspect of the Data.

Thus, Fig. 6(b) shows the Peircean semiotic triad pre-
sented as a commutative diagram which forms the core
of the visualization process.

In visualization the object can be further decomposed
into a set of data and a system which that data measures.
Thus, the starting point for the visualization process
is not data but the system from which the data were
gathered. Furthermore, the interpretation of the repre-
sentation leads not only to understanding the data but
also to beliefs and inferences about the system, the truth
of which can be tested. Thus, if we combine Figs 3 and
6(b) we get Fig. 7. A prototypical visualization process
consists, then, of the following entities and processes,
which we will describe using the category theoretic
terms of objects and morphisms:

• System: a real world system, object, or phe-
nomenon, such as a class of students.

• Data: a set of data that describes some aspect of that
System, produced by a measure, such as test scores
for those students.

• Representation: some visual, aural, haptic, or literal
artefact of that Data, produced by a process of
rendering, such as a bar chart of their performance.

• Evocation: what the Representation evokes in the
mind of the user through the user’s reading of it,
such as the teacher’s viewing of the bar chart.

• And that Evocation is thus an understanding of the
original data (understanding = read ◦ render).

Fig. 7 shows this expansion, though it should be noted
that this diagram is incomplete and is to be read only as
a stepping stone on the way to Fig. 10.

System
measure // Data

render //

understanding

&&

Representation

read

��
Evocation

Fig. 7. The objects System, Data, Representation, Evocation and the
morphisms between them.

4.1 The Visualization Process is a Category
For these objects and morphisms to form a category
certain conditions must apply.

1) Object Identity: each of {System, Data, Represen-
tation, Evocation} must have an identity operation
defined, and the kernel of this identity function
will, in turn, identify an equivalence class of objects
that are considered identical under this mapping.
In particular this requires that we are able to decide
unequivocally if two instances of the same System,
Data, Representation, and Evocation are identical.
This simple requirement forces a great deal of con-
ceptual hygiene. Unless we can answer the follow-
ing questions we are vulnerable to the accusation
that the visualization process is not well-defined.

a) 1System: The problem of identifying systems is
a common and urgent one in most empiri-
cal science; we cannot talk about replicating
results unless we are doing the same things
to the same systems. Moreover, unlike a data
set which captures a snapshot of a system
and is static, a System may experience change
over time. For example, in a System of a class
of students the individual students age and
mature, change their clothes, and some may
even drop out of the course. How may we
know when two System objects have the same
denotation? Agreed criteria are needed for
establishing System identity which will allow
a System to experience change over time while
still being considered to be the same System.

b) 1Data: When do we say that two sets of data,
such as test scores, are the same? Do the abso-
lute scores matter or is it the same set of scores
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when expressed as a percentage? What degree
of precision is required? If we had a very
large set of scores (such as when studying the
changes in national exam performance) then
identity might be defined in terms of there
being no statistically significant difference be-
tween samples or aggregate distributions.

c) 1Representation: When are two representations
the same? Is a printed version the same rep-
resentation as an on-screen version, or an au-
ditory display equivalent to a visual one?

d) 1Evocation: What does it mean to say that two
users form the same mental picture of the
data? The obvious problems in determining
internal psychological states mean that this
issue is usually operationalized in terms of
the ability to answer questions about the data
(‘which student did best?’, ‘has average per-
formance gone up or down?’), where the same
answer implies the same understanding.

2) Morphisms must be Maps: recall there can be only
one object at each end of an arrow. In the case
of render this requires that a single set of Data
(to within 1Data) generates a single Representation.
This is not obviously true. For example, visualiza-
tion tools that allow interactive data exploration
seem capable of generating many representations
of a single data set. But in this case it is the tool,
bound to that Data, that is considered to be the
Representation rather than any particular state or
view that it produces.

3) Commutativity of Morphisms: As section 3.2
showed, commutativity is required. For example,
in Fig. 7 the result of reading the Representation
produced by rendering the Data is an understanding
of the Data. If the Data is rendered and then read,
but as a result the reader does not understand the
data then the process of visualization has failed.

4) Morphism Associativity: As per section 3.2, the
composition of morphisms must be associative.

Visualization processes for which conditions 1–4 are
satisfied can be considered as valid categories satisfying
the axioms of category theory.

4.2 The Intension of the Visualization Process
Fig. 7 shows the visualization process as a category,
but this represents a single concrete instance of this
process. It could represent, for example, the production
and consumption of a single particular scatter plot from
a single particular set of data. We now need to generalize
this notion to describe, for example, the properties of
scatter plots in general. In this section we generalize each
of the objects of the visualization category.

4.2.1 Schema is the Generalization of Data
In the case of the Data we have the familiar notion
of a Schema, which refers to the structure rather than

any particular values of the data. For example, a rela-
tional database of tables and attributes is defined using
a database schema, which is then filled with values
during its lifetime of use. The Schema is the intension
(the constant conditions that capture the set of all pos-
sible values for that data set) while the Data is the
extension (the variable set of actual values).4 Not all
Data has a corresponding Schema (generally known as
unstructured data). Examples include natural language
text which can be represented, for example, by pictorial
illustrations. However there can be no rules governing
the layout of this Representation: there may be a set of
Representations of a similar style (for example, several
illustrations in a single book) but each is individually
inspired by the text it is designed to Represent. Unless
the Data can be generalized into a Schema, there can be
no corresponding generalization of the Representation
into a Layout. This criterion also helps to distinguish
between works that are data art or data-driven art (see
section 5.3).

4.2.2 Layout is the Generalization of Representation
We can also generalize the notion of a particular Rep-
resentation to that of a Layout, that is, the way in
which Data belonging to a Schema are represented. For
example, the two scatter plots in Fig. 12(a) are different
Representations, but share a Layout. Layout is a familiar
notion from data visualization tools (such as the charting
feature in spreadsheet programs) that allow the user to
choose which of many options are used to graphically
represent selected data. The tool uses a set of rules to
map from a data Schema to a representational Layout.

4.2.3 Questions are the Generalization of Evocation
Generalization is the process of splitting the extension into
an unsaturated (incomplete) and a saturated (complete)
part (in Frege’s sense of the terms [11]). It is the former
that constitutes the intension. Data, for example, may
be associated with a Schema, such as a table, and the
values that can fill the empty spaces. Representations
can be split into a Layout, such as a set of axes, and the
marks that are placed in the space defined by the axes.
In the case of the contents of the mental states evoked
by reading a Representation, the equivalent is to split the
proposition describing that mental state into a property
for which there may be some object of which it can be
truthfully predicated. That is, if reading a Representation,
such as a bar chart of exam results, evokes the thought
that ‘Alan got the best mark’ (or best mark(Alan)), then
the generalization of this is the question ‘Who got the
best mark?’ (or best mark( )). That is, Questions are sys-
tem predicates at the intensional level while Evocation
involves the extension of those predicates for specific

4. In philosophy a distinction is drawn between a term’s intrinsic
meaning or its intension and its denotation, or extension. Frege gave
the example of the morning star and evening star. The two terms have
different meanings (intensions) but both have the same denotation
(extension), the planet Venus [24].
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cases. Evaluation of these extensional predicates allows
truth statements about the System to be tested.

Completing the generalization mapping, from exten-
sion to intension, provides a salutary reminder of the
importance of the underlying Question in visualization;
“From Killer Questions Come Powerful Visualizations”
as Johnstone puts it [15]. In software development terms,
answering a question is the requirement of the Repre-
sentation. This is true even in the case of exploratory
data analysis (the terminology is due to Tukey [27]),
where the purpose is not to answer a specific prior Ques-
tion or hypothesis, but to discover hypotheses worth
subsequent testing using conventional confirmatory data
analysis. Exploratory data analysis is what happens
when you don’t know what question you’re trying to
answer. Confirmatory data analysis starts with Data and
a Question and then seeks an answer using a Represen-
tation. Exploratory data analysis starts with Data and a
Representation, and then seeks a Question worth asking.

Fig. 8 shows the Data, Representation, and Evocation
objects from our visualization category at the extensional
level and Schema, Layout, and Questions as their respec-
tive generalizations, or intensions.

Intension

Schema
rules // Layout

answers // Questions

Data

genD

OO

render
// Representation

genR

OO

read
// Evocation

Extension

genE

OO

Fig. 8. Introducing the intensional level of the category generalizing the
extension with genD : Data −→ Schema, genR : Representation −→
Layout, genE : Evocation −→ Questions

4.3 Completion of the Visualization Category
Combining our partial diagrams (Figs. 7 and 8) we get
the diagram in Fig. 9. From a category-theoretic point
of view, that is, by considering its formal structural
properties, this diagram is now complete as it is closed
in the mathematical sense. Seeking closure requires us
to find a terminal object, an object at which all paths
of possible morphism compositions terminate. Although
Fig. 9 does have such an object (Questions), we would
not say that this is the terminal object of the visualization
process. Therefore, we need to identify a new terminal
object that reflects the true end of this process.

4.3.1 Knowledge is the Terminal Object of Visualization
Data is not the start of the visualization process, and nor
is the ability to answer Questions about that Data the
end. What we are seeking is Knowledge of the System.
Visualization starts with a System that we measure in
various ways to generate Data. That Data will always

Schema
raises //

rules

((

Questions

Layout

answers
55

System

Op

AA

measure

��

Representation

read ))

genR

OO

Data

genD

OO

render

66

understanding
// Evocation

genE

OO

Fig. 9. Intermediate mathematically closed visualization category with
terminal object Questions.

be partial (in both senses of the word) but it is all
we have. Similarly, the only Knowledge we can gain is
that which can be deduced from the evidence presented
in the Representation, and the Questions define what
Knowledge we can gain from the visualization process.
That is, Knowledge operationalizes the Questions by
allowing the abstract nature of the Questions to be
practically measured or assessed. It is by answering
questions that one gains knowledge. This relationship is
also analytic: Knowledge is not well-defined unless it is
capable of answering questions, and those questions are
epistemologically prior to the knowledge of the answers.
(One can imagine a question to which there is no answer,
but not an answer for which there is no question.)

The ultimate goal of the visualization process is to gain
Knowledge of the original System. When this succeeds
(when the diagram commutes) the result is a truth rela-
tionship between the Knowledge and the System. When
this process breaks down and we fail to deduce correct
conclusions then the diagram does not commute.5

4.3.2 The Completed Category

Schema
raises //

rules

&&

Questions

Op

��

Layout

answers
77

System

Op

DD

measure

��

truth // Knowledge

Representation

read ''

genR

OO

Data

genD

OO

render

77

understanding
// Evocation

infers

AA
genE

OO

Fig. 10. The visualization process as a category with terminal object
Knowledge and initial object System.

5. Note, that although this is a strongly realist and representational
use of terms such as truth and knowledge it does not necessarily imply
a commitment to objectivism about the status of that knowledge. See,
for example, Faith [10].
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The full diagram describing the general visualization
process is given as Fig. 10 and a specific example is
shown in Table 1. In this example we start with students
in a mathematics class (System). We want to know
how well they are performing, overall and individually
(Knowledge), so we determine that we must gather data
about their performance in a test (Schema). This Schema,
as well as being a generalization of the Data is also
a time-invariant descriptive abstraction of the System.6

Having gathered the results (Data) we choose a bar chart
(Layout) that will be capable of showing the distribution
of overall and individual marks (Questions). The Schema
acts as a frame and determines, or raises, what Ques-
tions can be answered by the Layout. For example, from
a table with two columns labelled ‘Student’ and ‘Grade’
we can tell that the Data denoted by this Schema will let
us answer questions like “What was the average mark?”,
but not questions like “Who was the tallest?”.

The Layout, in turn, is used to answer the Questions,
but only some Schema-derived Layouts are capable of
doing this. For example, a bar chart will enable us to
spot the best student but a pie chart would not.

Showing the data (Representation) in this way evokes
an understanding of the data that the cohort achieved
an average mark of more than 70, that Alan got the
highest mark, etc. So now we have Knowledge about
our System (the Maths class): we know who performed
best of all, that nobody failed, that the average mark was
satisfactory (this requires prior context), etc.

5 RESULTS: APPLYING THE CATEGORY

With this category corresponding to the visualization
process we can use the concepts of category theory to
consider its properties, and show how common intu-
itions about visualization can be defined more formally.

5.1 Properties of the render Morphism
To illustrate how this may be done, we will consider
what it means in visualization terms, for the render
morphism to be monomorphic, epimorphic, isomorphic,
and endomorphic. In each case we take a standard cate-
gory theoretic definition and apply it to the visualization
process category and we find that this yields a property
or issue that is important for visualization.

5.1.1 Monomorphism Corresponds to Sensitivity
A render morphism is monic iff ∀measure1,measure2 :
System −→ Data : render ◦ measure1 6= render ◦
measure2 =⇒ measure1 6= measure2.

That is, if the System is measured in two different
ways the resulting Representations will necessarily be
different. For example, suppose we assess student per-
formance with two different tests the results of which are
captured by measure1 and measure2 and represent them

6. Formally, a Schema has “the structure of a continuant which does
not specify time or timelike relationships” [24, p. 73].

TABLE 1
Example of how the visualization category applies to objects in practice

Category Object Example
System A cohort of students on a course

Schema

Data

Layout

Representation

Questions
best mark( )

average mark( )

Evocation
best mark(Alan)

average mark(> 70)

Knowledge
“Alan performed the best”,
“Nobody failed”,
“The average mark was satisfactory”

in two ways: a simple textual description (e.g., “John
was the best student”), and a bar chart. The differences
in the test would not make any difference to the textual
description but they would to the bar chart (assuming
that identity morphisms on the Representations and
Data are well-defined). We would normally describe this
in terms of the sensitivity of the visualization. Sensitivity
is usually assumed to be a desirable property of a
representation (and this assumption may often be valid)
but the point here is to show that this important property
may be defined formally and precisely.

5.1.2 Epimorphism Corresponds to Non-Redundancy
A render morphism is epimorphic iff ∀read1, read2 :
Representation −→ Evocation : read1 ◦ render 6= read2 ◦
render =⇒ read1 6= read2.

That is, if two people read the same Representation in
different ways they will reach different understandings of
the Data. Although this may seem tautological, there are
important cases when it is not true. Consider a set of data
in which three attributes are measured for each sample
(e.g., student performance on three different tests). This
data could be represented using a conventional scatter
plot in which the x-coordinate corresponds to test 1, y
to test 2, and both the size and shade of each point
correspond to test 3 (see Fig. 11). One individual may
notice the position and size of each point, whereas
another may notice the shade. They would draw iden-
tical conclusions about the data, but they have read the
representation in different ways. The representation in
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this case is redundant as test 3 is represented in two
different ways; hence there is more than one way of
gaining an understanding of that information from a
single representation.

(a) The data set (b) A redundant
representation: the
test 3 dimension is
mapped to both
shade and size

Fig. 11. Redundancy in representations

5.1.3 Endomorphism Corresponds to Literalness
A render morphism is endomorphic (a mapping of an
object back onto itself) iff Data = Representation. That
is, some Representations consist in simply presenting the
Data (for example, in a spreadsheet or printed table).
These, too, are valid visualizations, and the concept they
demonstrate is literalness.7

Contrast this with Cox’s notion that visualizations are
necessarily metaphorical [8], that there is a direct rela-
tionship between visualization and the mapping process
(cognitive and creative) in metaphor theory. She says (p.
89):

Linguistic and visual metaphors are defined
as mappings from one domain of information
(the source) into another domain (the target).
Likewise, data-viz maps numbers into pictures,
resulting in visaphors, digital visual metaphors.

However, we can see that endomorphic renderings are
valid visualizations that are not metaphorical.

5.1.4 Isomorphism Corresponds to Non-Ambiguity
A render morphism is isomorphic iff there is an inverse
morphism (which we will call decode) such that decode ◦
render = 1Data and render ◦ decode = 1Representation.
Thus, the decode morphism lets us recover the original
Data from a Representation rendered from it (to within
the degree of accuracy determined by 1Data). Non-
isomorphic Renderings are thus ambiguous in the sense
that two different data sets may generate the same Rep-
resentation. Sometimes this is a valuable property, for
example in representations that aggregate or filter large
or complex data sets into simpler forms. In other situa-
tions it is less desirable. Further, as isomorphism implies
both monomorphism and epimorphism, a rendering that
is isomorphic, in addition to being non-ambiguous, will
also exhibit sensitivity and an absence of redundancy.

7. N.b., we are bracketing the discussion over the metaphysical
status of logical data compared with that of a physical representation.

These properties are summarized in Table 2 which shows
what combinations of morphism properties determine
what characteristics of a particular rendering (e.g., only
endic renderings are literal, monic ones exhibit sensitiv-
ity, non-isomorphism leads to ambiguity, etc).

TABLE 2
Summary of morphism properties as applied to the render morphism.

Non-endomorphic Endomorphic
Monic Epic Isic Monic Epic Isic

Sensitive X X X X

Non-redundant X X X X

Non-ambiguous X X

Literal X X X

5.2 Non-Epimorphic Layout Implies Chart Junk
In this section we show how one common contentious
issue in information visualization (chart junk) can be
characterized using category theory. In the scatter plots

(a) Plain charts

(b) Arbitrary chart
junk

(c) Schema-derived chart junk

Fig. 12. Chart Junk

in Fig. 12(a) every element of the Layout was derived
from some element of the Schema. If we write these
objects as sets, then we can say that the morphism
between them is a surjection:

Schema = {Instances,Attributes}
Layout = {Points,Axes}

rules(Instances) = Points

rules(Attributes) = Axes

However, this is not always the case. For example, sup-
pose we decorate one of our scatter plots with a figure
as in Fig. 12(b). What is the Layout in this case? If the
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Layout is a generalization of this particular Representation
then it will include the decoration. But this decoration
is not derived epimorphically using a rule from any part
of the Schema — it is an arbitrary addition (perhaps
inspired from some property of the System not captured
in the Data). It is ‘chart junk’.

The following aspects of this definition of chart junk
should be noted.

1) This use of the term is not intended to be pejorative:
chart junk can be useful in aiding understanding
of the system [3]. The purpose of this category-
theoretic definition is to highlight the difference be-
tween decorative elements in Layouts that commu-
nicate Data (those that are derived from a Schema)
and those that do not.

2) It is a much narrower use of the term than Tufte’s
original definition [26] which defined chart junk
as all unnecessary, redundant, or non-data ink.
Consider the example in Fig. 12(c) in which scatter
plots are decorated with faces indicating the data
trend. The decoration is redundant chart junk in
Tufte’s sense, but not in ours since it communicates
something about the data. There is a rule for de-
riving this element of the Layout from the Schema
which thus ensures that Fig. 10 commutes.

3) There is a difference between redundancy at the
extensional level of the Data and Representation
introduced in Fig. 8 and arbitrary chart junk at
the intensional level of the Schema and Layout.
A Representation may include some redundancy
even though there is no chart junk. In the example
of the scatter plot in which a single Data attribute
is represented using two retinal attributes such
as in Fig. 11(b) — or, indeed, the example in
Fig. 12(c) of a scatter plot decorated with a face
representing the polarity of the correlation — we
have redundancy in the Representation, but the
Layout rules are surjective (epic): every element
of the Layout is the product of some aspect of
the Schema. Redundancy at the level of Data and
Representation may not be arbitrary at the level of
Schema and Layout. Conversely, chart junk is not
(necessarily) redundant, it is arbitrary.

5.3 Intensionality and Infographics

For an example of the power of intensional general-
ization, compare the two infographics in Figs. 13 and
14. In Fig. 14(b) both sides of the diagram follow the
same pattern; this pattern is a schema. The existence of
this intensional generalization means the representation
can support two operations that Fig. 13 cannot. The
first operation is that it can generate questions that it
can then answer (for example: “I see that 54% of left-
leaning people support gay rights; so what proportion of
right-leaning individuals do?” — Fig. 14(a)). The second
operation that Fig. 14(b) can support is that the layout
can be generalized to more examples (e.g., how would

E�ects of poverty

Income

Facts from Global Basic Income Foundation:
http://www.globalincome.org/English/Facts.html

Hunger

923 million: number of hungry people

Children

10 million: number of children 

in developing countries that

die each year before age 5

2.5 billion: number living on less than

two dollars per day

 School

73 million: number of primary school

age children not in school

Fig. 13. Infographic showing facts about world poverty. Facts taken
from the Global Basic Income Foundation at http://www.globalincome.
org/English/Facts.html

this diagram apply to European socially progressive and
economically libertarian political parties?). Having no
intensional level, the example in Fig. 13 can support
neither of these operations. It communicates information
that evokes understanding, but does not empower the
user to interrogate or reuse the information it presents.

6 RELATED THEORY

6.1 Algebraic Semiotics

Both Peirce and Saussure understand signs in terms
of relationships and mappings between signs and sign

http://www.globalincome.org/English/Facts.html
http://www.globalincome.org/English/Facts.html
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(a) Exploded ‘Support’ section (b) Full chart showing both sides

Fig. 14. Infographic illustrating political differences. David McCandless 2009 — http://www.informationisbeautiful.net/visualizations/left-vs-right-us/

systems. Thus, they seem natural candidates for the cat-
egory theory treatment. The first effort to apply category
theory to semiotics was that of Goguen and Harrel [12]
who attempted a formalist treatment of the semiotics
of information visualization and user interface design,
which they described as ‘algebraic semiotics’.

The objects in Goguen’s algebraic semiotics are sign
systems. The actual definition is complex, involving
theoretical apparatus taken from mathematical algebra
but, the key elements are signs, constructors, and axioms.
The signs form the vocabulary, or set of all possible signs.
The constructors provide a systematic way of generating
those signs. And the axioms constrain those signs. Con-
sider Goguen’s example of a simple time of day system
which shows the number of minutes since midnight. The
signs are the set of natural numbers generated using two
constructors: the constant 0 (representing midnight) and
a successor operation, s, where for a time t, s(t) is the
next minute. A single axiom, s(1439) = 0, constrains the
set of generated signs to a 24 hour day. Goguen thus
defines signs in terms of generalized structures from
which the validity of any particular sign is derived. In
terms of of first-order logic, the sign system is a theory
of which any particular sign is a model.

Goguen then considers the mappings between sign
systems, which he calls semiotic morphisms. Consider a
slow, regular sand glass containing 1440 grains of sand
in which one grain of sand falls every minute, and which
is turned when the last grain falls. We can define a

mapping from the time of day system by respectively
mapping its elements (constant 0, the s constructor, the
set of numbers, the s(1439) = 0 axiom) to our new
elements (empty lower glass, the falling of a grain of
sand, the possible piles of sand, turning the glass).

Goguen’s is a strongly structuralist theory in two
senses. First, signs are defined as such in virtue of their
membership of, and role within, a sign system. It is the
structure of the sign system that defines its constituents
as signs. Second, the only relationships considered —
the semiotic morphisms — are between sign systems
rather than between sign systems and either external or
mental states. It all happens within the ‘third order’ [9].
In particular, there is no distinction in this framework
between a set of data and a visualization of that data.
Data is just another sign system.

We find this structuralism problematic. For example,
how can this framework be used to discuss the qual-
ity of a visualization? Goguen attempts an answer to
this ‘narrowly’ by characterizing how well his semiotic
morphisms preserve the structure of a sign system. We
argue that the solution, as presented in this article,
is a post-structuralist scheme that expands the use of
category theory to explicitly incorporate other elements
of the visualization process, including the visualization’s
context, and how the visualization is used in practice.

http://www.informationisbeautiful.net/visualizations/left-vs-right-us/
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6.2 Non-Category Theoretic Approaches

Our framework is method-blind in that it does not
specify how the various objects (Schema, Data, Questions,
etc.) and morphisms (render, raises, etc.) should be
defined. Other formal approaches to visualization have
sought more to explore the hows by understanding the
biology, as it were, of different visualization techniques.
They focus variously on classification (taxonomy), on
describing the differences and commonalities between
visualization techniques, on codifying graphic design
and layout rules, and on understanding the different
representational processes employed in visualization of
all kinds.

Tory and Möller [25] show how theoretical models
and taxonomies focus on understanding the design space
and design choices of the visualization process. Their
approach seeks to understand and clarify the differences
between different types of visualization to show how
“traditional divisions (e.g., information and scientific
visualization) relate and overlap” [25]. The focus is on
the process level letting us see both the relationships
between different task types and what types of task each
design model enables users to perform.

Continuing in the taxonomic vein Chi [7] aimed to
understand how visualization techniques work and how
they fit into different design spaces. Understanding the
different operating steps and how they are re-used in
different visualization techniques enables, it is claimed,
more rapid implementation of visualizations.

We see from Fig. 10 that the taxonomic techniques
above deal with, and could thus be used in the speci-
fication of the Schema and Layout objects and the rules,
and rendering morphisms. Consider Tory and Möller’s
taxonomy which suggests suitable schemata for different
data types. Two-dimensional data with one dependent
and one independent variable, for instance, can be repre-
sented using scatter plots and bar charts whilst data with
any number of dependent and independent variables
can be mapped to charts with colour, multiple views,
glyphs, and parallel co-ordinate plots. Chi’s taxonomy
gives a very detailed analysis of 36 visualization tech-
niques (Representation + Layout) showing what kinds
of data they are well-suited to. Thus, taxonomy-based
treatments help the visualization designer with speci-
fying the intensional level of the category for a given
System and Data.

Mackinlay [19] analyzed information graphics and
combined first-order logic with a ‘composition algebra’
to codify graphic design criteria to allow construction of
a tool that automatically designs graphical presentations
of relational information. The composition algebra’s
rules enable multiple data sets with common axis dimen-
sions to be displayed on a single combined plot. It is very
much concerned with layout rules and representational
techniques. Thus, we can see that this technique might
help in determining the rules morphism used in the
specification of Layout. Mackinlay offers ‘expressiveness

criteria’ that indicate the encoding technique that should
work for each data mapping. For example, a Layout may
use size as a display attribute effectively for ordinal or
quantitative data while colour, orientation, and shape
will all work well for nominal data. Card and Mack-
linay [4] took this foundation further and organized the
visualization design space as a framework that can be
used to design new or augment existing visualizations.
Principally, their work is concerned with the intensional
decisions of how best to map a given Schema to a Layout
given the information requirements (Questions) of the
task.

Perhaps closest in scope to our work, Ziemkiewicz
and Kosara [30] used set theory to explore the mapping
between data and representation. They asserted that for
a visualization to be readable the rendering must be both
injective and surjective, that is, bijective (isomorphic in
our category). Non-injective mappings, they say, can lead
to representations in which more than one data item is
mapped to the same visual element leading to ambiguity
(see section 5.1.4) while non-surjective mappings lead
to representations containing marks not derived from
the data (which would include chart junk, see section
5.2). Their analysis seems to preclude chart junk as
a valid element in a visualization, while our scheme
makes no assessment of the desirability of chart junk.
Ziemkiewicz and Kosara add a further stipulation that
all information visualizations must involve non-trivial
interactivity and be syntactically notational. Using these
three criteria they then classify and distinguish between
different types of visualization (e.g., scientific visual-
ization, information graphics, etc.). Within information
visualization they identify three classification axes: linear
vs non-linear mappings, how information loss is treated
in the rendering, and the semantic notationality of the
system. This theoretical framework enables taxonomic
analysis within information visualization and between
different non-information visualization techniques. With
the focus being on the properties of the representational
mapping their work sits, again, in the intensional part
of our category centered on the rules morphism (the
intension of render).

Ziemkiewicz and Kosara’s work is very helpful in
understanding different visualization processes in a tax-
onomic sense (though they tend to exclude narrative
visualizations for their lack of interactivity). The set
theoretic approach allows sensitivity, redundancy, and
ambiguity to be defined in a similar way to our approach
but category theory enables us to go further and differ-
entiate between:

1) Types of chart junk (arbitrary and schema junk);
2) The individuation of attributes and the individua-

tion of instances.

van Wijk’s [28] model of visualization treats knowl-
edge acquisition as the accumulation of knowledge ele-
ments over quantized intervals of time. The knowledge
gained depends (a) on the existing knowledge of the
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user (a basic tenet of information theory) and (b) the
perceptual and cognitive abilities of the user which will
be affected by their prior experience (an acceptance
of the post-structuralist view of context). The model
also permits changing of the visualization specification
(the layout rules in our category) to facilitate further
exploration of the data. Pinker [21] can also be brought
to bear here as his study of how people read graphs
can be used to inform the design of layouts and data-to-
representation mappings. A particular strength of van
Wijk’s work [28] is that it provides insight into why
some types of visualization are successful and others not;
it gives us a tool for understanding why a categorical
description does not commute, that is, it helps us to
understand how the read transformation takes place to
form Evocations in the mind of the user.

Hullman and Diakopoulos [14] used the tools of
rhetoric to offer techniques for understanding the se-
lection of data (Schema and measurement design), the
design of representations (Layout), and the role of anno-
tations and interactivity. They also deal explicitly with
denotative and connotative meaning in understanding
how visualizations are viewed. This aspect of their work
finds its place on the intensional and extensional sides
of our category.

6.3 Summary

The theoretical development in section 4 gave rise to
the visualization process category in Fig. 10 and the
summary of how different types of mapping affect a vi-
sualization through the render morphism in Table 2. Fig.
10 provides an overview of a well-formed visualization
process. As far as a visualization designer is concerned,
this category diagram will not tell them how to create
a visualization, rather it tells them all the major com-
ponents that must be considered for correct knowledge
creation and sense making to take place. Visualization
design works principally at the intensional level while
user interaction with an instance of the visualization pro-
cess takes place at the extensional level. Fig. 10 shows the
objects and morphisms but does not specify their types.
Table 2 summarizes the main morphism types available
and, as we showed in section 5.1, these types materially
affect the properties of the visualization. For example,
when specifying a render morphism to transform Data
into a Representation, we saw that if the Representation
was required to contain no ambiguity then it must be
isomorphic (bijective for sets). Fig. 10 also tells us that
a complete visualization process needs to be considered
from both the extensional (real world of instances) and
intensional (definitional, schematic) levels.

The category theory approach in this article takes a
higher level view of visualization than the examples
of previous work described above. These earlier theo-
retical and formal treatments, which focus either on tax-
onomic descriptions or on process to show how certain
effects can be achieved using particular visualization

techniques, can be seen to contribute to the development
of one or more objects or morphisms within the visual-
ization category in Fig. 10.

7 CONCLUSIONS

This article is concerned with the foundational concepts
necessary for developing from first principles a formal
description of visualization. We have:

1) Shown how the process of information visualiza-
tion fits within the semiotic theory of Peirce and
Saussure;

2) Shown how the semiotic frameworks can be for-
mally characterized using the language of category
theory;

3) Extended the Peircean semiotic triad into a math-
ematically closed category (see Fig. 10) that incor-
porates the context of the visualization, including
the relationship between the triad and the original
system under study, the relationship between the
data, representation, schema, and layout, and the
questions and human insight and knowledge that
result from the visualization process;

4) Used this formal framework to
a) formally define visualization properties (liter-

alness, redundancy, sensitivity, generalizabil-
ity, chart junk) that were previously defined
intuitively, if at all, and to

b) expand on definitions provided in earlier
work (see Table 2) including differentiating
between redundancy and arbitrary chart junk.
These insights arise out of, and were discov-
ered using, the category theoretic treatment of
the visualization process;

5) Used the category to derive the property of ’in-
tensionality’ as applied to visualizations, and pro-
vided examples of how that property empowers
users.

Prior to this work many of the visualization con-
cepts discussed above were understood intuitively or
heuristically, but now we have verifiable formal theo-
retical descriptions that can be used to make principled
judgements about the visualization process in general
and about individual specific instances in particular. The
category in Fig. 10 is a mathematically formal diagram
that defines a well-formed visualization process; if all
the morphisms and objects are well defined, the dia-
gram will commute, and we can be confident that the
knowledge gained is reliable and reflective of the system.
The diagram can be used for reasoning and under-
standing. We can also envisage a tool that encapsulates
the category’s formalisms which, through some form
filling or other exercise allows the user to specify details
of the system, schema, and proposed layout, together
with candidate questions. The tool could then validate
the design and also show the consequences of specific
design decisions. For example, a proposed layout would



14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR

result in redundancy while another would exhibit non-
ambiguity, sensitivity, etc.

We have identified the principal objects implicated
in visualization, the 14 morphisms (relationships) that
map between the structures in these objects, and four
properties that each of those relationships may pos-
sess (monomorphism, epimorphism, isomorphism, and
endomorphism). We have considered the implications to
visualization by applying these properties to just one of
those relationships (the render morphism).

In future work we will consider the implications of
these properties for the remaining morphisms and apply
higher-order category theory tools to compare different
visualizations in terms of their ability to generate the
same knowledge. This would be particularly appropriate
when considering visualization across modalities allow-
ing us to compare, say, a graphical representation with
an auditory display.
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