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ABSTRACT

An essential element of exploratory data analysis is the use of
revealing low-dimensional projections of high-dimensional data.
Projection Pursuit has been an effective method for finding in-
teresting low-dimensional projections of multidimensional spaces
by optimizing a score function called a projection pursuit index.
However, the technique is not scalable to high-dimensional spaces.
Here, we introduce a novel method for discovering noteworthy
views of high-dimensional data spaces by using binning and ran-
dom projections. We define score functions, akin to projection pur-
suit indices, that characterize visual patterns of the low-dimensional
projections that constitute feature subspaces. We also describe an
analytic, multivariate visualization platform based on this algorithm
that is scalable to extremely large problems.

Keywords: Random Projections, High-dimensional Data.

Index Terms: H.5.2 [User Interfaces]: Graphical user interfaces
(GUI)— [H.2.8]: Database Applications—Data Mining

1 INTRODUCTION

This work is motivated by the lack of pattern detection methods
that are efficient in high-dimensional spaces. While many of these
methods [16, 10, 35, 28] are effective in low-dimensional spaces,
their computational complexity prevents their application in very
high-dimensional spaces. While there are approaches to speed up
these methods [24, 49, 14], most involve parallelization schemes,
computationally complex ideas or ad-hoc pre-processing methods.

By contrast, we have attempted to integrate a recent method
called random projections, in an iterative framework, to detect vi-
sual patterns in high-dimensional spaces. The main use of the ran-
dom projection theorem in data mining has been as a preprocess-
ing step in order to reduce the dimensionality of a space to a man-
ageable subspace before applying classification algorithms such as
Support Vector Machines or decision trees that are not readily scal-
able to very high-dimensional spaces. CHIRP [46] proposed a dif-
ferent approach: it is a visual-analytic classifier, based on iterated
random projections, that approximates the distribution-free flex-
ibility of Projection Pursuit without the computational complex-
ity. This motivated us to see whether guided random projections
could be used to construct a visual analytics platform for discerning
meaningful structures in very large datasets. In this paper we inves-
tigate such an approach to find dimensions that contribute strongly
to analytically meaningful features. Such features capture visual
patterns of point sets that drive substantive interpretations. The
strength of our method is in exploiting non-axis-parallel subspaces
(i.e. non-orthogonal projections).

Making this effective requires us to analyze how to visually ex-
plore these random projections, as models based on subspaces, that
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together characterize a score. Because we require a large num-
ber of random projections to find substructures in high-dimensional
spaces, visualizing these collections of random projections to un-
derstand views of the data is challenging. The Subspace Explorer
we developed incorporates multiple multivariate perspectives of the
subspace with extensive interaction and drill-down capabilities to
understand the contribution of variables.
Our contributions in this paper are:

e An algorithmic scheme, based on random projections, to find
low-dimensional views of interesting visual substructures in
very high-dimensional data.

e A methodology to compute features in high-dimensional
space based on prior work in 2-D [47].

e An Exploratory Data Analysis (EDA) tool, the Subspace Ex-
plorer, that can be used to explore multiple perspectives of
low-dimensional projections.

We describe related work in the following section. Then, we de-
scribe our approach and the Subspace Explorer and finally we de-
scribe our validation tests and examples of use with real data before
ending with concluding thoughts.

2 RELATED WORK

Our visual analytic application depends on several areas of prior re-
search. The first concerns projections, which reduce dimensionality
in vector spaces in order to reveal structure. The second involves
manifolds, which use graph-theoretic concepts to reveal structure in
point distributions. The third concerns visual features, which can
describe structures in multivariate data.

2.1 Projections

To discover low-dimensional projections clearly discriminat-
ing clusters, researchers have applied Multidimensional Scaling
(MDS) [33] and Principle Component Analysis (PCA) [12]. These
are computationally expensive procedures when dealing with very
high-dimensional data sets.

Projection pursuit has been combined with the Grand Tour [6,
13], which smoothly animates a sequence of projections, resulting
in a dynamic tool for EDA. Projection Pursuit has been used to
find class-separating dimensions [29] and combined with tours to
investigate Support Vector Machines [11]. These approaches allow
one to explore the data variables via projections that maximize class
separability but can only handle a small number of variables (< 8
for clear tour displays).

Axis-parallel 2-D projections of data are ranked on a class sep-
arability measure [41] for multivariate visual exploration and used
with 1-D histograms to analyze variables and interactively construct
a classifier [19]. However, using axis-parallel projections of data
to find low-dimensional views with large class-separation [37] will
be ineffective when there does not exist class separability in axis-
parallel views of the data.



Discriminan
function

Figure 1: Fisher’s linear discriminant separating two groups.

2.1.1 The Problem with Axis-parallel Projections

There are two serious problems with axis-parallel approaches: 1)
computations on pairs of dimensions grow quadratically with the
number of dimensions, and 2) axis-parallel projections do a poor
job of capturing high-dimensional local geometry. While the pur-
suit of axis-parallel projections can be interesting and may well
work for some smaller data sets, there is no reason to expect that
they can reveal interesting structures in data. Moreover, the pub-
lished examples of “high-dimensional” problems involve relatively
few dimensions (in the tens or hundreds). Our Cancer dataset ex-
ample has over 16,000 dimensions. Dimensions of that magnitude
have over a hundred million 2-D axis-parallel projections. Generat-
ing this number of plots and visually examining them is impractical.

Regarding the second problem, consider the following worst-
case lemma:

Let U be a set of p(p — 1)/2 axis-parallel unit vectors
in R?. Let x be a p x 1 positive vector in R” that rep-
resents a dimension of maximum interest (an interest-
ing 1-D projection, a Bayes-optimal discriminating vec-
tor, a first principal component, ...). Let ux be the el-
ement of U that is closest in angle to x. Then for any
X, the maximum possible angle between ux and x is

Omax = arccos(1/,/p).

As p increases, 04y heads toward 90 degrees rapidly (for p = 20,
it’s almost 80 degrees). In short, axis-parallel projections will tend
to be non-informative for high-dimensional problems. This result is
a corollary of the curse of dimensionality. Thus even for algorithms
designed to search algorithmically through axis-parallel projections
for optimal views, there is no guarantee that these can be found and
no way of knowing that ones discovered are anywhere near optimal.

Further, we assert that algorithms that use margins alone to
find multidimensional structure are based on mistaken assumptions.
Figure 1 shows two clusters in 2-D space where neither variable
alone is sufficient to determine the clusters. Fisher’s linear dis-
criminant is essentially one variable that is a linear combination
of the two - the data projected onto the linear discriminant would
clearly show two clusters. Some may argue that you get the same
result by keeping both variables but in p-dimensional space you
need all p variables and that is impractical when dealing with large-
p datasets. This point is central to every argument subsequently in
the paper. Any pattern recognition endeavor faces this problem; an
example is subspace clustering [34]. Typical papers on subspace
clustering demonstrate their value on well-separated, Gaussian or
hyper-rectangle clusters in an embedding space [3, 7]. For such
data, a directed search using greedy approaches can find these clus-
ters. However, many real datasets present ill-posed problems [43].
Effective modeling requires regularization techniques. Or in our
case, random projections.

2.1.2 Random Projections

Johnson-Lindenstrauss [26] proved that if a metric on X € R”
results from an embedding of X into Euclidean space, then X
can be embedded in R? with distortion less than 1+ &, where
0< e <1,and g = O(e%log(]X|)). Remarkably, this embedding is
achieved by projecting onto a random g-dimensional subspace such
that, roughly speaking, the input points are projected onto spher-
ically random hyperplanes through the origin. A random projec-
tion matrix T, € R? is generated with identical independently-
distributed entries with zero mean and constant variance. This is
multiplied with the original matrix X,x, € R” to obtain the pro-
jected matrix

B= LXT e RY
Va
where g << min(n, p). B preserves all pairwise Euclidean distances
of X in expectation. This theorem has been applied with much suc-
cess to many data mining approaches from classification to cluster-
ing [15, 9] primarily as a dimensionality reduction technique.

2.2 Manifolds

The manifold learning community [42, 8] has used nonlinear maps
on k-Nearest Neighbor graphs to find informative low-dimensional
representations of high-dimensional data. They assume that the
data of interest lie on an embedded non-linear manifold within the
higher-dimensional ambient space usually of much lower dimen-
sionality. We are similarly interested in finding an embedded sub-
space but instead of using geodesic distances or neighborhood func-
tions to approximate high-dimensional distances, we use random
projections.

2.3 Features

In the Rank-by-Feature framework [22], all pairwise relations are
ranked according to various statistical features such as correlation,
uniformity, normality, etc. and users can explore 1-D or orthogo-
nal 2-D views of variables using histograms, boxplots or scatter-
plots. Information-bearing 2-D projections of data in scatterplots
are ranked on perceptually motivated goodness measures based on
particular tasks [5]. Albuquerque et. al [4] describe quality metrics
for multivariate visualization techniques like scatterplot matrices
and parallel coordinates in relation to the related tasks of analyzing
clusters and separating labeled classes. In these approaches 2-D
projections are ranked and visually analyzed.

Turkay et al. [45] propose a model for dual analysis of items
and dimensions through linked views of orthogonal projections of
items and plots of summary statistics of the dimensions. The objec-
tive is to understand relationships between dimensions by brush-
ing items. Their work is analogous to the Scagnostics [47] idea,
as they characterize and visualize individual dimensions with sum-
mary statistics like the mean and skewness. In doing so, they trans-
form data dimensions to feature space. By contrast, Scagnostics
is closer to the spirit of Projection Pursuit indices than restrictive
classical statistical summaries like means and skewness. Our work
extends Scagnostics as we look at characterizing visual patterns
within highly multivariate data and presenting them in an environ-
ment that guides exploration.

3 THE SUBSPACE EXPLORER

In this paper we describe a computationally efficient search algo-
rithm for interesting views of very high-dimensional data using an
approach based on random projections. To explore the subspaces
described by the discovered random projections and get insight into
the relationships between variables, we developed the Subspace Ex-
plorer which leverages multiple visualizations or views of multi-
variate data. To handle large datasets both in terms of n, the number
of observations, and p the number of variables, we leverage binning
and random projections as described in the following sections.



3.1 Binning

To efficiently deal with large datasets in our visual analytic plat-
form, we first bin datasets with more than 2000 observations. We
base the number of bins on a formula in [40]. Given n instances,
we compute the marginal number of bins b using

b=cj logy(n)

The constant ¢ is a parameter the analyst can manipulate depend-
ing on the level of compression required; larger values improve
speed but reduce resolution. The application defaults to ¢; = 100,
which is seen empirically (across a wide variety of datasets) to pro-
duce a sufficiently large number of bins to capture the data dis-
tribution. Multivariate data binning is usually performed by a k-
Nearest Neighbor (kNN) grouping of the data or a segmentation of
the KNN connectivity graph or a Voronoi tessellation or k-means
clustering. We adapt a single run of the k-means algorithm to find
b clusters with the modification that it be sensitive to datasets with
outliers. First, we pick b data points at random as starting cen-
troids, then for every data point we compute its distance to each b
centroid and store the closest centroid and distance. The goal is to
have a representative segmentation of the high-dimensional, many-
points dataset, so outlier points or those far from most of the data
points are placed into their own singleton bin. Those points whose
distance to their closest centroid is greater than a threshold ¢ are
considered singleton bins, where

t=0+c6

Here [1 is the mean of the vector of closest distances and & is the
sample standard deviation of the same. The constant c; is a tunable
parameter that is set to 5 based on empirical studies that ensure
the balance between coverage and number of bins. Thus, the to-
tal number of bins may increase depending on the extra singletons
discovered. Given the singleton bins, the other data points are as-
signed to their closest bin and each bin centroid is updated. This
can be seen as a modified single run of the k-means algorithm with
the resulting list of bins as the segmentation of the multivariate data
space and the bin centroids as the new data points.

3.2 Selecting Random Projections

By working with point-to-point distances in low-dimensional, non-
axis-parallel subspaces, we escape the curse of dimensionality fol-
lowing the successful results by researchers in the manifold learn-
ing community [18]. The original Johnson-Lindenstrauss proof in-
volved Gaussian weights so the input matrix X is multiplied by
a dense matrix of real numbers. This is a computationally ex-
pensive task for large data. Achlioptas [1] replaced those pro-
jections with simpler, faster operations as he showed that using
unit-weighted projections do not jeopardize accuracy in approxi-
mating distances. The projection matrix he generated consists of
identical independently-distributed random variables with values in
{1,0,—1} drawn from a probability distribution, so

1 with probability .-
t;j = /5 0 with probability 1 — 1
—1 with probability 5-

He recommended using s = 3 which gives a three-fold speedup
as only a third of all the variables are processed to construct the
embedding. The key issue for all methods producing Johnson-
Lindenstauss embeddings is that it must be shown that for any
vector, the squared length of its projection is sharply concentrated
around its expected value. Achlioptas’ contribution is in determin-
ing the probability distribution for the random projection matrix
such that for all vectors the concentration is as least as good as in the

spherically symmetric case. He even shows a miniscule improve-
ment while using such a spare projection matrix. The computation
of the projection reduces to aggregate evaluation — summations and
subtractions of randomly selected variables but no multiplications.
Furthermore, Hastie et al. [31] showed that unit random weights for
most purposes can be made very sparse. For better robustness, es-
pecially when dealing with heavy-tailed distributions, they recom-
mend choosing s = ,/p. We use this sparse formulation to produce
the projection matrix in our application.

Applying the Johnson-Lindenstrauss theorem yields a subspace
whose inter-point distances are negligibly different from the same
inter-point distances in very high-dimensional space. This enables
the execution of relatively inefficient data mining methods without
significant loss of accuracy. This also enables the fast generation of
low-dimensional projections that can be evaluated and visualized.
The subspaces generated from this framework differs from the sub-
spaces analyzed in traditional subspace clustering approaches [34]
in that each dimension of a g-dimensional (¢-D) random projection
(which can individually be considered a 1-D random projection) is a
linear combination of the original data dimensions. Subspace clus-
tering approaches consider a subset of the original data dimensions
as the subspace to evaluate.

We generate a number, r, of random ¢-D projections as candidate
subspaces and score each based on the visual pattern features we
define. Then we present the 10 top-scoring ¢-D random projections
in the Subspace Explorer. For our search, we generate r = 50 g-
D projections to score. We set the default g for the ¢g-D random
projection space to be 20. The random projection dimension ¢ is
meant to be O(logy(n)) from the theorem, but with the binning,
this is a good estimate in most cases and it can be changed by the
user of the platform easily, as needed. Generating one g-D random
projection matrix is fast: for each 1-D random projection vector,
we pick s = ,/p variables and randomly assign 4/ — 1 weights to
them. Thus, picking redundant variables is less of a problem for
random projections than it is for subset subspace methods. And
redundancy is less likely to occur as p increases which is the focus
of this research. We then use the projection matrix to get the g-
D projected data that is scored by computing features as described
below.

Our search strategy of generating and evaluating a random sam-
ple of r subspaces has its limitations. Increasing r or the size of the
search space, increases the likelihood of finding the desired sub-
structure, but, at the cost of time. Looking at 50 high-dimensional
slices is a good compromise (which we determined empirically).
Noise is another problem that plagues every data-mining algorithm.
If there is a large amount of noise relative to the systematic elements
of the problem, no data mining method, including Support Vector
Machines and random projection based approaches, is going to per-
form well.

3.3 Computing Features

The most prevalent approaches to computing visual features in
point sets in high-dimensional spaces have been based on 2-D axis-
parallel projections [22, 5, 48]. Scagnostics [47] present a canonical
set of nine features that have proven to be effective in moderate-
dimensional problems. Not all of the Scagnostics features can be
extended to higher-dimensions however. Here we describe those
that we incorporate into The Subspace Explorer. These are the
measures that are computed from the geometric Minimum Span-
ning Tree (MST) of the set of points [2].

Outlying: Tukey [44] introduced a non-parametric approach to
outlier detection based on peeling the convex hull as a measure of
the depth of a level set imposed on scattered points. We do not as-
sume that the multivariate point sets are convex and want to detect
outliers that may be located in interior, relatively empty regions.
So, we consider a vertex whose adjacent edges in the MST all have



a weight (length) greater than ® to be an outlier. Setting @ us-
ing Tukey’s gap statistic based on conventional boxplots produces
a large number of outliers for large datasets (n > 10,000). So, w
deviate from the original formula and adopt the robust methodol-
ogy of Letter Value Boxplots [20] which get detailed information
in the tails through order statistics at various depths going out from
the median. We choose the formulation of @, the depth after which
points are labeled outliers, to be such that z percent of the sam-
ple size are considered outliers. This z can be varied by the ana-
lyst based on domain knowledge but defaults to 2%. The Outlying
measure is the proportion of the total edge length due to edges con-
nected to detected outliers.

Coutlying = length(Toutiers) /length(T)

Clumpy: This Scagnostic is based on the Hartigan and Mohanty
RUNT statistic [17]. The runt size of a dendrogram (the single-
linkage hierarchical clustering tree) node is the smaller of the num-
ber of leaves of each of the two subtrees joined at that node. As
there is an isomorphism between a single-linkage dendrogram and
the MST, we can associate a runt size (r;) with each edge (e;) in
the MST, as described by Stuetzle [39]. The clumpy measure em-
phasizes clusters with small intra-cluster distances relative to the
length of their connecting edge and ignores runt clusters with rela-
tively small runt size.

Celumpy = mjax 1- max [length(ey)] /length(e;)

where j indexes edges in the MST and & indexes edges in each runt
set derived from an edge indexed by j.

Sparse: Sparseness measures whether points are confined to a
lattice or a small number of locations in the space. This can hap-
pen when dealing with categorical variables or when the number of
points is extremely small. The 90th percentile of the distribution of
edge lengths in the MST is an indicator of inter-point closeness.

Csparse = 490

Striated: Another common visual pattern is striation: parallel
strips of points produced by the product of categorical and contin-
uous variables. Let V() C V be the set of all vertices of degree 2 in
V and let /() be an indicator function. Striation counts the number
of adjacent edges whose between-angle cosine is less than -0.75.

1
Cstriated = ﬁ Z I(cos Be(m)e(ub) < —0.75)
veV @

Stringy: With coherence in a set of points defined as the pres-
ence of relatively smooth paths in the MST, a stringy shape is deter-
mined by the count of degree-2 MST vertices relative to the over-
all number of vertices minus the number of single-degree vertices.
Smooth algebraic functions, time series, points arranged in vector
fields and curves fit this definition.

v®
Cstringy = m

3.4 Displaying Subspaces

The Subspace Explorer is an EDA dashboard that presents charts
with different views of the data and facilitates multiscale explo-
ration of data subspaces through rich interactivity in a manner simi-
lar to iPCA [23] which facilitates understanding the results of PCA.
Others [27] have noted that connecting multiple visualizations by
linking and brushing interactions provides more information than
considering the component visualizations independently. We com-
bine several geometric techniques - SPLOMs, parallel coordinate

plots and biplots - along with a graph-based technique and a radar
plot icon to visualize collections of random projections and the sub-
spaces of high-dimensional data they describe as seen in Figure 2.!.

The overall interface design of the Subspace Explorer is based on
multiple coordinated views. Each of the six data views represents
a specific aspect of the input data either in dimension subspace or
projection space, and are coordinated in such a way that any inter-
action with one view is immediately reflected in all the other views
allowing the user to infer the relationships between random projec-
tions and dimension subspaces. Data points are colored according
to class labels if they exist or in a smoothly increasing gradient of
colors from yellow to purple based on the order of the data points
in the input file. The smooth gradient indicates the sequence of ob-
servations which may be of interest when looking at Stringy shapes
that point to time series data.

Because it is designed for expert analysts, Subspace Explorer
trades ease of first use for analytic sophistication. Consequently
users require some training to be familiarized with the definition
of random projection subspaces and to read and interact with the
various plots. The objective of the Explorer is to aid in the interpre-
tation of random projection subspaces in terms of the original data
variables. This is complicated by the fact that each dimension of
the random projection subspace is a linear combination of a subset
of the original variables. Therefore the user can switch between
looking at the projected space (the g-D random projection matrix
B) in the Projection Space Views and the data subspace (the subset
of dimensions used in the random projections) in the Data Space
Views.

The Control options allow the user to select an input data file,
specify whether the data file has a class label as the last column (this
information is used to color the data points in the visualization) and
a row label as the first column, the score function to maximize, a
random number seed (for the random number generator) and the
dimensionality, g, of the random projection space (the default is set
to 20 as described in Section 3.2). The Update button causes the
data file to be read, the data matrix to be binned, a number of ¢-D
random projections to be generated and scored, the top 10 scoring
projection scores to be shown in the Score View and the best scoring
g-D projection to be shown in the Projection Space Views with the
corresponding data subspace shown in the Data Space Views.

3.4.1 Projection Space Views:

Given a selected score function, these views look at the projected
data based on the ¢g-D random projections that maximize the se-
lected score.

Score View:(Figure 2D) Our algorithm goes through a number
of ¢g-D random projections and ranks them based on their scores.
The default views start off with the best scoring one. It is useful to
toggle through the list of a few high-scoring random projections as
each may have discovered a different view of the high-dimensional
dataset showing the interesting structure the score captured. With
visualization tools there is not one answer or one view but rather a
number of views to look at different interesting slices or perspec-
tives of the data. This barchart shows the scores of the top 10 scor-
ing g-D random projections. This easily interpretable view func-
tions as a controller to select a g-D random projection to investigate
- selecting a bar updates all views.

Radar Plot Icon:(Figure 2E) The value of the chosen score
function for a selected random projection subspace is listed under
the Update button. However, the user might like to know the quality
of each subspace with respect to the other score functions. Instead
of listing the score values or providing another barchart, we use a
simple visual icon to summarize the score values. The radar plot is
a snapshot of the characteristics of the selected random projection

'Higher resolution images of all figures here are available at
http://www.cs.uic.edu/ aanand/subspaceExplorer.html
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Figure 2: The Subspace Explorer showing a highly Clumpy 20-D random projection for a dataset with 2000 rows, 500 dimensions and clusters
embedded in 5 dimensions. The detected known embedding dimensions are shown as orange text. (A) Control options. (B) Biplot View of the
data subspace. (C) Random Projection View of the biplot of the projected data space. (D) ScoreView of the top 10 scoring random projections.
The selected (red) bar represents one 20-D random projection which is shown in different perspectives in the other plots. (E) Radar plot Icon
summary of all scores for the selected random projection. (F) Variable List (same set as B). (G) Parallel Coordinate View of the top used

dimensions (same set as B)

on all the computed score functions. We chose to provide coarse in-
formation allowing for quick visual size-comparisons to not detract
from the focus of analyzing the variables in the selected subspace.

Random Projection View:(Figure 2C) To see evidence of the
interesting structure detected by the selected score function, we vi-
sualize the projected data matrix B, x4 € R?7. We could compute
the MDS of the projected data but choose to compute the PCA and
display a biplot. A biplot shows data observations as points and po-
sitions similar observations closer in the 2-D space. The vectors in
the plot represent each 1-D random projection vector that make up
the columns of the ¢-D space. The angle between the vectors indi-
cates their similarity. Hovering over a random projection highlights
the data variables it uses in the Data Space Views and clicking on
a random projection updates the Data Space Views to show all the
variables used in the selected 1-D random projection. This action
allows the user to investigate one data subspace denoted by a subset
of dimensions from the original data (for instance, Figure 12).

3.4.2 Data Space Views:

Given a selected g-D random projection and that we are using unit-
weighted projections, a number of data dimensions with non-zero
weights can be thought of as turned on. We count the number of
times each dimension is turned on and select the minimum num-
ber of dimensions - of those used more than the median count or
the thirty most commonly turned on - to display as the top-used
ones. Showing more than thirty variables is not useful because of
the clutter they introduce and, as often observed by statisticians,
the intrinsic dimensionality of real datasets is usually fewer than
ten dimensions, e.g., [30].

Radial View:(Figure 2B, Figure 3A) We are interested in the
variables commonly used to capture a score and how they relate to
each other as other work on dimensionality reduction [21]. To do
so we use radial graph display of the top-used dimensions for the
selected random projection. Variables are linked if they are used
together in a 1-D random projection. The thickness of the line rep-
resents the number of co-occurences. The variables are ordered
around the circle in a manner that minimizes the number of cross-
ings. This ordering is done in a fast, greedy manner: a variable, v,
is picked at random, the variable that co-occurs with it the most,
vy, is drawn next, the variable that co-occurs the most with v, is
drawn next and so on. This way densely connected variables are
positioned closer together. Hovering over a variable highlights its
connections in cyan text labels and clicking on it updates the other
Data Space Views to just show the data subspace of those linked
variables. Figure 10 shows an instance where using this interaction
allows the user to discover related variables that separate a group in
the data.

Biplot View:(Figure 3C) To compare the data subspace with the
projected data using the same visual metaphor, we construct a biplot
of the data subspace. The top-used dimensions are selected from
the original data matrix X to represent the data subspace. This view
shows the similarity between data dimensions as they are drawn as
vectors in the biplot with smaller angles indicating high similarity.
This view often validates the structure described by the score func-
tion. Figure 2 is a interesting example where this is not the case.
This data view shows observations collected in one big clump while
the Random Projection View of the projected data shows multiple
clumps which would obtain a higher clumpy score.
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Figure 3: The interchangeable Data Views with the detected known embedding dimensions shown as orange text. (A) Radial View of links
between all the top used dimensions in the selected 20-D random projection. (B) SPLOM View of the top 5 used dimensions. (C) Biplot View of

all the top used dimensions.

Parallel Coordinate View:(Figure 2G) To learn finer detail
about data distributions over variables we include a Parallel Coordi-
nate Plot of the data observations across selected dimensions. The
ordering of dimensions is consistent with the Radial View. While
parallel coordinate plots are generally plagued by clutter, they are
used to bring to light clusters within particular variables (see Fig-
ures 7 and 9)and to facilitate comparisons between data observa-
tions when used with interactivity in other linked plots. As we
restrict the number of top-used variables to display, we curb the
clutter from many dimensions.

SPLOM View:(Figure 3B) To aid the process of making con-
nections between variables and displays, we provide a Scatterplot
Matrix (SPLOM) showing the top 5 most commonly used variables.
As with Jigsaw [38], different analysts wanted different views of
the data. The SPLOM shows pairwise relationships between vari-
ables which highlights behavior that may not be evident in multidi-
mensional projections so having this perspective provides a distinct
view as shown in Figure 7. Selecting a scatterplot highlights the
variables drawn on the x and y axes in all the other plots as the
linking cascades.

Variable List:(Figure 2F) The long variable names in real
datasets introduce clutter in the Data Space Views. To overcome
this and still keep variable detail in the views, we use shortened
identifiers in the views and provide a list of the mapping of original
variable names to the variable identifiers here. We decided against
using a tooltip providing localized detail in each plot to not over-
whelm the user with many interaction associations in each plot.

4 EXAMPLES

The Subspace Explorer claims to find visual patterns using
Scagnostic scores in subspaces of high-dimensional data. To val-
idate the use of random projections in finding these interesting sub-
spaces, we generate synthetic data with known structure and an-
alyze subspaces discovered by our tool. Then we describe some
findings when the Subspace Explorer is applied to real datasets.

4.1 Synthetic Data

We built a generator to create datasets with n observations and p
ambient dimensions. It takes as input n, p and m, the number of
dimensions representing the embedding space with the interesting
structure (when appropriate). We describe the synthetic data gen-
eration process for each score function below. Figure 4 shows the
result of our tests. For most scores, the figure shows the number of
m embedding variables correctly discovered by the Subspace Ex-
plorer. As the number p increases and m is small, the ability to find
most of the embedding space expectedly decreases.

OUTLYING
n

#Actual Detected|#Total Detected -+

p # Actual
5000 500 79 53 79
5000 1000 79 41 79
5000 5000 75 24 75
2000 5000 63 19 63
CLUMPY
n ] [m #Actual Detected|Visually Present
5000 500 5 3|y
5000 1000 10 B|Y
5000 1000 50 19y
5000 5000 50 11N
SPARSE
n P [m #Actual Detected|Visually Present
5000 500 20 14|y N
5000 1000 20 13y
5000 1000 50 26|Y
5000 5000 50 10]Y
STRINGY -
n P [m #Actual Detected|Visually Present
5000 500 20 12y
5000 1000 20 6[Y
5000 1000 50 28|Y
5000 5000 50 8|Y
STRIATED
n ] [m #Actual Detected|Visually Present
5000 500 20 11|y
5000 1000 20 12|N
5000 1000 50 21|N
5000 5000 50 16N

Figure 4: Table summarizing validation test results on synthetic data
for each score function. The graphs on the right show canonical ex-
amples of the structures in 2-D that the score functions detect. Simi-
lar structures will be embedded in noisy higher-dimensional spaces.

Outlying To find outliers in mutlivariate datasets, we generate
datain all p dimensions from the Cauchy distribution [25]. This dis-
tribution has extremely long tails. We seek to validate the outliers
flagged by our multivariate outlier detection algorithm based on the
MST in random projection space by comparing them to the ones de-
tected by running through the original data matrix and finding those
rows that differ from the sample mean by two sample standard de-
viations. The plots in Figure 5 show outliers flagged as slightly
larger white points or white lines in the Parallel Coordinate View.
These outliers were found in a dataset with n = 5000, p = 500. Fig-
ure 4 reports the number of actual outliers found in all the data, the
number of outliers correctly detected by our algorithm along with
the total number of outliers we detect for different datasets. The 2-
D scatterplot shows a star-convex bivariate Cauchy distribution to
give a picture of the outlying structure generated.

Clumpy We generate a clumpy dataset by first picking m dimen-
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Figure 5: The Outlying score is maximized for multivariate Cauchy
data and detected outliers are shown in white.

sions out of the p at random. We place cluster centroids on the m
vertices of a (m — 1)-dimensional simplex. This means that a cen-
troid at variable v for instance, would have v; set to 1, the set of all
the other m — 1 variables set to 0 and the remaining p — m variables
to be set to small Gaussian random numbers. Given the centroids,
we have to generate the remaining observations. To generate a data
point, we randomly choose a cluster this point will belong to and we
add to the centroid values small Gaussian noise. Figure 2 shows the
Subspace Explorer with a dataset with n = 2000, p = 500,m =5,
so the clusters are embedded in 5 dimensions. The orange-colored
variable names in the Data Space Views are two of the 5 variables
from the known embedding space. It can be seen that this view
clearly shows some clumpy sets of points which are colored by the
cluster they belong to. It is important to note that simply perform-
ing PCA on all the data and projecting it onto the top two principle
components does not reveal clusters or clumps. The 2-D scatter-
plot in Figure 4 shows the clusters generated at the vertices of a
1-D simplex when m = 2 and p = 2. In higher-dimensional embed-
ding spaces (higher values of m), we would expect to see even more
overlap of clusters.

Sparse To model sparseness, we first pick m dimensions out
of the p at random. We set those m dimensions to have only ten
unique values. The other p —m dimensions are filled with small
Gaussian noise. Flipping between Projection Space views to Data
Space views can reveal subsets of the embedded space as shown
in Figure 6. The Random Projection View shows some sparsity
given the large number of noise variables in this dataset, which has
n = 5000, p = 1000, m = 50. The number of embedding space vari-
ables discovered is shown in Figure 4. The scatterplot on the right
shows how points in 2-D are distributed such that each variable puts
points in four unique positions in the plane resulting in a 16-point
lattice formation.

Striated For the Striated Scagnostic we were motivated by the
artifact with the RANDU pseudo-random number generator that is
known to generate points in 3-D that fall on a set of parallel 2-D
planes [32]. For a RANDU dataset, there is a view in a narrow
“squint angle” where the data are highly striated. We generated
m/2 “lattice” variables with values selected from [0.0, 0.25, 0.5,
0.75, 1.0] with equal probabilities of .2. We then added m /2 “uni-
form” variables sampled from a uniform distribution. Finally, we
added p — m variables sampled from the same small Gaussians we
used for the other simulations. Figure 7 shows a random projec-
tion with clear striation. However, as the number of Gaussian noise
variables increase, the striped structure, which is seen when a tuple
of lattice and uniform variables are selected together, is not as read-

Subspace Sp: 0.010805740240574999

Figure 6: The Sparse score is maximized and correctly discovers
three of the variables from the embedding space, shown in orange
text.

STRIATED

sPARSE

STRATED

Figure 7: The Striated score is maximized showing a clearly striated
view in this data set with n = 5000, p = 50, m = 5 where the embedding
space is 10% of the ambient space..

ily visually discernible as noted in Figure 4. The 3-D scatterplot
on the right illustrates the kind of striped structure we create in the
embedding space (here m = p = 4).

Stringy We generate Stringy data by constructing smooth paths
in m dimensions and embedding these in a p-dimensional space.
Each observation will have a small Gaussian noise for the p —m
variables and for the m variables, we take their previous values
and add a small amount of Gaussian noise, therefore introducing
a first-order autocorrelation in the subspace. We see that the pro-
jected data biplot clearly shows a stringy shape for this data set with
n = 5000, p = 1000, m = 20 in Figure § even though the embedding
space accounts for only 2% of the data dimensionality. Again, the
projection of all the data on the top two principle components com-
pletely obscures this pattern.

4.2 Real Data

We describe two scenarios using Subspace Explorer on publicly-
available, large datasets to perform EDA.

Cancer:

Figure 9 shows a high-dimensional analysis not amenable to ex-
isting visual analytic platforms. There are 16,063 variables in this
dataset [36], comprising genetic markers for 14 different types of
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Figure 8: The Stringy score is maximized to show a clearly stringy
view in the random projection space. Hovering over a random pro-
jection vector highlights the variables it turns on in magenta text.

Applet started.

Figure 9: The Cancer dataset has over 16,000 dimensions and 14
classes or types of cancer. We maximize the Clumpy score and
select a scatterplot in the SPLOM showing good separation of the
purple class.

cancer. With wide datasets (large p), searching for the 2-D pair
of variables that exhibit particular structure is a computationally
expensive procedure on the order of O(p?). Subspace Explorer en-
ables us to explore different perspectives of the data and to inter-
actively learn about prominent markers related to certain classes of
cancer. We highlight a scatterplot in the SPLOM View with vari-
able var3189 on the y-axis, as this variable seems to separate class
13 (purple) from the other classes. Overall, the Random Projection
View shows that views maximizing the Clumpy score push classes
13 and 5 (dark green) apart and separates them reasonably well
from the other classes. We can hide the projection vectors from the
Biplot by pressing the ‘H’ key and then hovering over data points
to get details. Also, all these views are highly Sparse (as there are
only 200 samples in this dataset).

Selecting variables that co-occur across the g-D random projec-
tions could direct users to variables that together describe a visual
pattern. Here we are interested in finding dimensions that help
differentiate particular cancer types. Figure 10 shows an instance
where the Radial View is used to filter dimensions that are used to-
gether in the 1-D random projections that make up the g-D space.

Applet started.

Figure 10: Hovering over a variable (highlighted in magenta) in the
Radial View selects (in cyan) those it co-occurs with across the ¢-
D random projections. Selecting it updates the Data Space Views
with the data filtered on the variables co-occurring with the selected
variable.

Figure 11: The GoMoos weather dataset has 160 dimensions from
10 different sensors. We maximize the Stringy score and select a
scatterplot in the SPLOM showing two positively-correlated dimen-
sions.

We find other variables that help separate class 13 like var3189.
From this exploratory analysis one could conclude that classes 13
and 5 can be distinguished by subsets of gene markers and that
peeling away those two classes might raise more informative views
of the remaining classes to guide the selection of a classification
model. Interestingly, this is the finding in the preliminary study of
this data [36] where the authors conclude that pairwise distinctions
can be made between select tumor classes using few genes, while
multiclass distinctions among closely related tumor types are in-
trinsically more difficult. They build a multi-class Support Vector
Machine classification strategy incorporating a one-vs-all scheme.
Quick exploratory analysis through Subspace Explorer suggests a
preliminary ordering of classes: classifying class 13 against every-
thing, peeling those points away and then doing the same with class
5 points would enable the classifier to tackle the “easier” cases be-
fore the more mixed density classes.

Weather:

We collate hourly weather-sensor data from six buoys in the Gulf
of Maine (http://gomoos.org/) from March 2002 to February 2008.



Applet started.

Figure 12: The GoMoos weather dataset with the Data Views show-
ing the subspace described by the selected 1-D random projection
RP8 (highlighted in magenta).

This results in a dataset with n = 49,000 and p = 160, as there are
16 variables measured at each of the 10 buoys. We are interested
in exploring this data to discover dominant trends or relationships
across the spatially-distributed sensors. Figure 11 shows a highly
Stringy view of a random projection of the data. Generating a list
of the top 10 Stringy views of this dataset takes less than 5 seconds.
This Stringy appearance is due to the presence of a subset of smooth
series within the data. The series that are relatively high-varying in
this dataset are measures related to wind-direction, wind-gust, baro-
metric pressure and visibility across the multiple buoy sensors. The
barometric pressure readings have a large number of missing values
across the buoys which accounts for the two clumps in the views of
the data. The barometric pressure variables are also clearly dis-
cernible in the Parallel Coordinate View as having most of the data
falling at the two extremes (for e.g. V97, V80). The SPLOM View
allows the user to investigate correlated dimensions across buoys
such as positively-correlated temperature readings or negatively-
correlated density and temperature readings which constitute the
smooth series in the data. Figure 12 shows the Data Views updated
with just the data subspace from the selected 1-D random projection
vector RP8. This Stringy subspace in the Biplot View is a projection
of correlated variables related to wind speed and temperature across
multiple buoys. The user can glean insight into natural groupings of
variables by exploring the subspaces captured by different random
projections and this can aid in model creation or feature selection.

4.3 Performance

Because we use efficient binning and random projections, the com-
putation time for the scores based on the MST is O(loga(n)%q)
where g defaults to 20. Therefore, we can run through a large
number of random projections quickly to find views of the high-
dimensional data that maximize our score functions and show inter-
esting structure. On an Intel Core 2 Duo 2.2 GHz Apple Macbook
Pro with 4 GB RAM running Java 1.6 and Processing 1.5.1, we run
the Subspace Explorer on different large datasets and investigate its
performance. The graphs in Figure 13 show computation time bro-
ken down into the time to read in the input data file, bin the n obser-
vations, generate a list of g-dimensional random projections from
the p dimensional data, and score the list of projections by comput-
ing the MST and scores on the projected data. Empirical analysis
shows that the time complexity of our approach is linear (with R
of 0.997 for the regression fit) in n and p with the dominant time
taken to read in the data and bin it - both one pass operations. The
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Figure 13: Computation times (in seconds) for large datasets where
n is the number of observations and p is the number of dimensions.

largest file we read in this performance study is about 1 GB with
n = 10,000, p = 5000. Thus, the Subspace Explorer is an O(np)
visual analytic explorer of subspaces.

5 DIScUsSION & CONCLUSION

The Subspace Explorer was inspired by Projection Pursuit, but we
must emphasize that it does not use the Friedman-Tukey algorithm.
Our approach of iteratively scoring a large list of random projec-
tions to visualize high-scoring ones is efficient and ideal for vi-
sually exploring very high-dimensional datasets where Projection
Pursuit or projections based on dense or sparse matrix decomposi-
tions is impractical. As an alternative, many have proposed search-
ing for axis-parallel projections that exhibit “interesting” structure.
While these orthogonal views of variables are often found and easy
to interpret, as we mentioned in Section 2.1, axis-parallel views are
not useful in finding high-dimensional structure. We look for good
non-axis-parallel, affine, random projections that maximize a score,
similar to a projection index, and visually compare the subspaces
they represent. Also, we have described scores that go beyond the
common ones that focus on finding views showcasing clusters and
outliers. We have described a multivariate formulation of Scagnos-
tic features to look for striated views where the data fall into stripes,
sparse views where data fall into a few unique positions in space and
stringy views where data exhibit some autocorrelation-type trend.
We have identified five multivariate measures of visual structure
and intend to pursue distilling additional ones. Furthermore, we are
conducting user studies to investigate the intuitive use of our EDA
dashboard and visual features to accomplish tasks related to feature
selection.

The Subspace Explorer is a visual analytic platform facilitat-
ing the exploration of collections of random projections that max-
imize various score functions. The data analyst can drill-down to
look at dimensions or variables that are indicators for a score func-
tion, therefore aiding in feature selection. This method of find-
ing interesting views and identifying relevant dimensions in high-
dimensional data is novel in that it is an implementation of iterated
random projections and multivariate visual pattern scores wrapped
up in a visual analytic platform.
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