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Fig. 1. Rotationally-seamless parameterization with a subdivision directional field. An initial field (left) is optimized for low curl at the coarsest level I = 0. We
subdivide the field to fine level I = 3 (center), and then solve for a seamless parameterization in both levels (right). Our subdivision preserves curl, and thus
results in a low integration error in both levels. The coarse-level optimization takes 7.5 secs, the subdivision 7.6 secs, and the parameterization 7.0 secs, to a
total of 22.1 secs. This is a speedup of about two orders of magnitude compared to running the curl optimization directly on the fine level, taking 1438.7 secs.

We present a novel linear subdivision scheme for face-based tangent direc-
tional fields on triangle meshes. Our subdivision scheme is based on a novel
coordinate-free representation of directional fields as halfedge-based scalar
quantities, bridging the mixed finite-element representation with discrete
exterior calculus. By commuting with differential operators, our subdivision
is structure-preserving: it reproduces curl-free fields precisely, and repro-
duces divergence-free fields in the weak sense. Moreover, our subdivision
scheme directly extends to directional fields with several vectors per face
by working on the branched covering space. Finally, we demonstrate how
our scheme can be applied to directional-field design, advection, and robust
earth mover’s distance computation, for efficient and robust computation.
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1 INTRODUCTION

Directional fields are central objects in geometry processing. They
represent flows, alignments, and symmetry on discrete meshes. They
are used for diverse applications such as meshing, fluid simulation,
texture synthesis, architectural design, and many more. There is then
great value in devising robust and reliable algorithms that design and
analyze such fields. In this paper, we work with piecewise-constant
tangent directional fields, defined on the faces of a triangle mesh.
A directional field is the assignment of several vectors per face,
where the most commonly-used fields comprise single vectors. The
piecewise-constant face-based representation of directional fields
is a mainstream representation within the (mixed) finite-element
method (FEM), where the vectors are often gradients of piecewise-
linear functions spanned by values on the vertices.

Working with a fine-resolution smooth (and good-quality) mesh
is often essential to get good results with methods that produce
piecewise-constant directional fields. However, working on a fine
mesh is also computationally expensive, and often wasteful—the
desired directional fields are smooth and mostly defined by a sparse
set of features such as sinks, sources, and vortices.

A classical way to bridge this gap is to work with a multi-resolution
representation, based on a nested hierarchy of meshes. A popular
way to generate this representation is to use subdivision surfaces.
Subdivision surfaces are generated by operators that comprise a set
of stencils, often linear and stationary (with a fixed stencil), that
are used to recursively refine functions defined on meshes (and
consequently the vertex positions). These operators can be used to
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prolong and restrict functions between coarse and fine levels, allow-
ing for multigrid field computation. We consider the limit surface as
the target domain on which we compute the fields, and represent
the degrees of freedom of the computation by the coarse control
mesh through subdivision.

To be able to work with hierarchical directional fields on subdivi-
sion surfaces, one needs to define specialized subdivision operators.
A necessary requirement for obtaining consistent results is that the
subdivision operators are structure-preserving; that is, the differen-
tial and topological properties of the directional fields are preserved
under subdivision. This can be achieved by designing subdivision
operators that commute with differential operators. Unfortunately,
differential operators on piecewise-constant face-based fields are
defined with the metric and the embedding of the mesh (e.g., face
areas and normals) built in. As a result, these quantities have com-
plicated and nonlinear expressions in the linearly-subdivided vertex
coordinates. Creating linear stationary subdivision operators di-
rectly on face-based directional fields is then a challenging task.
Recently, de Goes et al. [2016b] devised a method for subdivision
vector-field processing for differential forms in the discrete exterior
calculus (DEC) setting. The differential quantities in DEC are in-
herently separated into combinatorial and metric operators; due
to this, it is possible to define a stationary subdivision scheme for
differential forms that commutes with the combinatorial part alone,
as introduced in [Wang et al. 2006].

Inspired by this insight, we introduce a coordinate-free represen-
tation for face-based fields, allowing us to decompose the face-based
differential operators into independent combinatorial and metric
components. With this decomposition, we define linear stationary
subdivision operators for such fields. Our scheme naturally extends
to branched covering spaces, where we then apply it to directional
fields with an arbitrary number of vectors per face.

2 RELATED WORK
2.1 Directional fields

Tangent directional fields on discrete meshes have been researched
extensively in recent years. The important aspects of their design
and analysis are summarized in two relevant surveys: [de Goes
et al. 2016a] focuses on differential properties of mostly single vec-
tor fields, with an emphasis on different discretizations on meshes,
while [Vaxman et al. 2016] focuses on discretization and represen-
tation of directional fields (with N vectors at every given tangent
plane) and their applications.

The fundamental challenge of working with directional fields
is how to discretize and represent them. The most common dis-
cretization considers one directional object per face, or alterna-
tively piecewise-constant elements (e.g., [Bommes et al. 2009; Crane
et al. 2010; Tong et al. 2003; Wardetzky 2006]). This representa-
tion conforms with the classic piecewise-linear paradigm of the
finite-element method, and admits a dimensionality-correct coho-
mological structure, when mixing conforming and non-conforming
elements [Wardetzky 2006]. Moreover, the natural tangent planes,
as supporting plane to the triangles in the mesh, allow for simple
representations of N-directional fields [Crane et al. 2010; Diamanti
et al. 2014; Ray et al. 2008]. However, the representation is only
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C° smooth, and makes it difficult to define discrete operators of
higher order including derivatives of directional fields, such as the
Lie bracket [Azencot et al. 2013; Mullen et al. 2011; Sageman-Furnas
et al. 2019], or Killing fields [Ben-Chen et al. 2010].

An alternative approach to single-vector field processing is dis-
crete exterior calculus [Crane et al. 2013; Hirani 2003], that represents
vector fields as 1-forms, discretized as scalars on oriented edges.
DEC enjoys the benefit of representing fields in a coordinate-free
manner, which allows for a decomposition of the differential opera-
tors into combinatorial and metric components. This is beneficial
for the subdivision scheme we work with in this paper. However,
DEC is not as of yet defined to work with general N -directional
fields, and, when using linear Whitney forms, it still suffers from
discontinuities at edges and vertices. We note that alternative ap-
proaches exist that use vertex-based definitions [Knoppel et al. 2013;
Liu et al. 2016; Sharp et al. 2019; Zhang et al. 2006], representing
directional fields on tangent spaces defined at vertices. While en-
joying better continuity, a full suite of differential operators has not
yet been studied for them; in particular, differential operators that
define discrete sequences, necessary for a correct Helmholtz-Hodge
decomposition [Poelke and Polthier 2016; Wardetzky 2006].

2.2 Multiresolution vector calculus

Directional fields are important for applications such as mesh-
ing [Bommes et al. 2009; Kélberer et al. 2007; Zadravec et al. 2010],
simulations on surfaces [Azencot et al. 2015], parameterization
[Campen et al. 2015; Diamanti et al. 2015; Myles and Zorin 2012]
and non-photorealistic rendering [Hertzmann and Zorin 2000]. An
underlying objective in all these applications is to obtain fields that
are as smooth as possible. Nevertheless, as demonstrated in [Vax-
man et al. 2016], directional fields are subject to aliasing and noise
artifacts quite easily for coarse meshes. Using fine meshes alleviates
this problem to some extent, but incurs a price of increased com-
putational overhead, especially for nonlinear methods. For this, a
smooth and low-dimensional representation for smooth directional
fields on fine meshes, such as the one we introduce, is much needed.

The most prevalent approach to low-dimensional smooth process-
ing on fine meshes is to use some refinable multiresolution hierarchy.
This paradigm is extensively employed in the FEM literature when
using either refined elements (h-refinement) or higher-order basis
functions (p-refinement) [Babuska and Suri 1994]. This has also
been applied to vector fields in planes and in volumes [Schober and
Kasper 2007]. A major difference in which our subdivision method
departs from both these approaches is that the geometry of the
target limit surface is different than that of the control coarse mesh.
As such, using p- or h-refinement directly on the coarse cage is sus-
ceptible to committing the so-called “variational crime” [Strang and
Fix 2008], where the function space and the computation domain
are mismatched.

A more closesly-related prominent approach to refinable spaces is
Isogeometric Analysis [Hughes et al. 2005]. The premise is computa-
tion over refinable B-spline basis functions, replacing the piecewise-
linear FEM functions. The setting promotes integration over the
target (smooth) domain, and therefore is theoretically correct and
structure-preserving. However, they rely on quadrature rules to
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Fig. 2. Subdivision halfedge-form method pipeline. A face-based tangent field in the space X is converted to the equivalent halfedge representation in space I’
(Section 5). The halfedge form is further separated into a DEC 1-form z; and a non-conforming function e which is the half-curl of the field (Section 5.3). They
are individually subdivided (Section 6) and assembled back to a field on a finer mesh.

perform the complicated integrals that involve the basis functions.
Methods such as [Juttler et al. 2016; Nguyen et al. 2014] employ
subdivision rules for evaluation on the limit surface, but then design
approximative quadrature rules for the exact integrals, tailored to
fit specific differential operators.

A recent work by de Goes et al. [2016b] utilizes subdivision for
1-forms (first introduced in [Wang et al. 2006]) as means to represent
vector fields in recursively refinable spaces. By doing so, they effi-
ciently emulate the IGA premise in a linear setting, and directly on
the discrete meshes. This technique substitutes coarse inner-product
matrices with inner product matrices restricted from the fine do-
mains, encoding fine-mesh geometry on the coarse mesh. Using
subdivision matrices as prolongation operators is akin to collapsing
a single V-cycle in a multigrid setting [Brandt 1977]. The essence of
the technique is to design stationary 1-form subdivision operators
that commute with the discrete differential operators. This is made
possible as DEC operators are purely combinatorial.

Unfortunately, their approach does not readily extend to face-
based piecewise-constant fields. The effect of stationary subdivision
methods on triangle areas and normals is not linear, which makes
it difficult to establish the required commutation rules. Our paper
introduces a novel representation of face-based fields using halfedge-
based forms, that can be readily subdivided using stationary oper-
ators. As such, we introduce a metric-free subdivision method for
face-based directional fields that guarantees structure preservation.

Directional fields. Much less has been explored in the literature
about differential operators on directional fields. In [Bommes et al.
2009; Kalberer et al. 2007], directional fields are used as candidate
gradients for functions on branched covering spaces. Diamanti et
al. [2015] further define PolyCurl, which encodes the curl of N-
directional fields. They then optimize for curl-free fields. However,
we are not aware of any study of general directional calculus and
its applications to geometry processing. We provide a branched sub-
division scheme, and subsequently a multiresolution representation
and a calculus suite for directional fields.

2.3 Subdivision surfaces in geometry processing

Subdivision surfaces are popular objects in geometry processing,
and are methods of choice for shape design for animation [Liu
et al. 2014] and architectural geometry [Liu et al. 2006]. Their most
popular utility is that of multiresolution (or just coarse-to-fine)
mesh editing. In the context of simulation, they have been applied
to fluid simulation [Stam 2003], thin-shell design [Cirak et al. 2002],
and surface deformation [Grinspun et al. 2002; Thomaszewski et al.
2006]. The latter work also uses the folded V-cycle approach to work
on the coarse mesh with the limit surface metric; nevertheless, they
work with quadrature as well to approximate the exact solution.

3 CONTRIBUTIONS

The main contributions of our paper are summarized as follows.

Halfedge forms (Section 5). We define a novel coordinate-free
representation for piecewise-constant vector fields on faces. The
essence of this representation is to consider their projection on
the halfedges defining each triangle. We prove the equivalence
of this representation to that of face-based fields, and show that
these halfedge forms can be represented as the combination of a
DEC 1-form and edge-based curl, which is consistent with the case
where the 1-form is exact (the gradient of some scalar function).
Halfedge forms are then a new type of 1-form that bridges mixed-
FEM representation with that of DEC.

Subdivision vector fields (Section 6). Given the coordinate-free
halfedge-form representation, we introduce a subdivision scheme
to face-based vector fields with the following properties:

Coarse gradient fields are subdivided into fine gradient fields,
where the underlying scalar function is refined using a vertex-
based scalar subdivision method.

The curl of a subdivided vector field, as a scalar function, is a
refinement of of the curl of the coarse vector field.

We depict the subdivision pipeline in Figure 2.
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