
Geometric matching
of weighted point sets

Geometrisch Vergelijken
van Verzamelingen van Gewogen Punten

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van
doctor aan de Universiteit Utrecht

op gezag van Rector Magnificus, Prof. Dr. W.H. Gispen,
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen
op woensdag 21 september 2005 des middags te 12:45 uur

door

Panagiotis Giannopoulos

geboren op 1 maart 1973,
te Athene



Promotor: Prof. Dr. Mark H. Overmars
Co-promotor: Dr. Remco C. Veltkamp

Faculteit Wiskunde en Informatica
Universiteit Utrecht

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate School.
ASCI dissertation series number 115.

This research has been partially supported by the Dutch Technology Founda-
tion STW, project no. UIF 5055, and a Marie Curie Fellowship of the Eu-
ropean Community programme “Combinatorics Geometry and Computation”,
FU Berlin, under contract number HPMT-CT-2001-00282.

ISBN 90-393-4021-8



Preface

This thesis is about geometric pattern matching. In particular, it deals with
questions of the following type:

Given two patterns, determine how similar they are, according to
some distance measure between the patterns.

An introduction to the field of geometric pattern matching is given in Chapter 1.
The next two chapters deal with transportation distances for weighted point sets.
The results in Chapter 2 have been previously published in Giannopoulos and
Veltkamp [65] and Typke et al. [129], while a preliminary version of Chapter 3
has been published in Cabello et al. [32].

Chapters 4 and 5 deal with the problem of maximizing the area of overlap
of two unions of disks under translations and rigid motions; the results have
already appeared in a technical report by de Berg et al. [52] and published in
de Berg et al. [50].

Being a PhD student, almost always entails being involved, to some extend,
in exciting research problems not directly connected to the main thesis’ topic.
One such problem I came across, concerns geometric spanner graphs and min-
imizing their dilation by adding one or more edges (shortcuts). The results of
this research are not included in this thesis; the interested reader can find them
in Farshi et al. [89].

This research has been partially supported by the Dutch Technology Foun-
dation STW, project “Shape Matching Environment”, no. UIF 5055. The two
main objectives of this project were the following: first, the development of al-
gorithms for complex shape matching problems, including matching point sets
with accuracy weights, collections of curves and regions, articulated objects;
second, the development of a state-of-the-art software shape matching environ-
ment of currently available algorithms. The results presented here correspond
to the first part of the project.
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and my supervisor Remco Veltkamp for giving me the chance to work in the
GIVE group in Utrecht and for always being very supportive and understand-
ing even when my research interests diverted from theirs. Remco’s experience,
ideas and guidance have been of major help in the first few years of the PhD’s
labyrinth.
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Chapter 1

Introduction

Shape matching is a fundamental problem in computer vision, pattern recog-
nition and robotics: given two shapes A,B, one would like to know how much
they resemble each other. Usually, one of the shapes may undergo certain trans-
formations like translations, rotations or scalings in order to be matched with
the other as well as possible. Then the problem becomes that of finding a trans-
formed version of A that is similar to B according to some criterion. An example
of two shapes and a possible match between them is shown in Figure 1.1.

Pattern A Pattern B Match

Figure 1.1: Two patterns A and B and a possible match of a rotated and translated
version of A to B.

1.1 Shape

Shape is a modality that can be found in abundance in our physical world.
Indeed, every physical object around us can be attributed a ‘shape’. However
an exact definition of shape is elusive. Shape can be formed by color or intensity
patterns from which a geometrical representation can be derived. Alternatively,
“shape is limit of solid” [104].

Shape in mainly considered as a geometrical characteristic. Veltkamp [137]
notes that, from the human visual perception point of view, shape can be con-
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10 Introduction

sidered as a single visual entity, which is different from a single geometric entity.
For example, a finite point set is not a single geometric entity, but can well be
perceived as a single visual entity, a shape. Apart from geometry, the notion
of shape is also concerned with structure (connectivity), attributes (color, tex-
ture), semantics (functionality, features) and interaction with time (animation,
deformation, morphing).

This thesis deals with geometric shapes, i.e. shapes defined by finite unions
of geometric primitives such as points, straight line segments, curve segments,
triangles and disks. In the literature, the term pattern is often used instead of
shape. Formally, the shape of a pattern is the pattern under all transformations
in a transformation group. Here, we avoid this formality and the terms pattern
and shape are used synonymously.

In many applications, images are typical sources of geometric patterns. Nor-
mally, the image is subjected to a feature extraction process, such as corner
detection, edge detection and region detection, whose details shall not concern
us here. Feature extraction is an active field of research on itself, related to
disciplines such as image processing and computer vision; see Jain et al. [84]
and Bosdogianni and Petrou [103] for details.

1.2 Applications

The application domain of shape matching is vast and includes a range of dif-
ferent applications such as optical character recognition, medical image regis-
tration, molecular docking and content based image retrieval; some examples
are given below.

Optical character recognition

Optical character recognition (OCR) is the task of automatically reading hand-
written or printed text [49]. First, the text is scanned and then the resulting
image is converted into an electronic document of recognized characters and
words. The potential of OCR systems is enormous because they enable users to
harness the power of computers to access printed documents. OCR is already
being used widely in the legal profession, where searches that once required hours
or days can now be accomplished in a few seconds. OCR is a highly specialized
form of pattern matching. For example, special OCR methods exist for Chinese
character recognition [78]. Most OCR algorithms are designed specifically for
character recognition and can not be generalized to recognition of more complex
shapes.

Medical image registration

Medical image registration is the process of the alignment of two medical images
taken from different views or obtained using different input devices [90]. For
example, in multi-modality matching, one image might be a CT (computer to-
mography) scan while the other is an MRI (magnetic resonance imaging) image.
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Alignment aims at matching salient points between two or three-dimensional im-
ages that correspond to the same physical region of the scene being imaged. For
medical purposes, accuracy in registration is critical and thus of major impor-
tance.

Molecular docking

Molecular docking is an important task in computational drug design [60]. A
fundamental assumption for rational drug design is that drug activity is ob-
tained through the molecular docking of one molecule (the ligand) to the pocket
of another, usually larger, molecule (the receptor) which is commonly a protein.
In their active, or binding conformations, the molecules exhibit geometric and
chemical complementarity, both of which are essential for successful drug ac-
tivity. Thus, most approaches take into consideration both the chemical and
geometric characteristics of the molecules.

Given two interacting molecules of known geometry, the docking problem
consists of finding their relative positions during the interaction. Recent meth-
ods adopt the approach of matching points (features) of the binding pocket to
points (features) of the ligand. Such points can be defined by using energy cal-
culations or the geometry of the receptor and the ligand or both. Once these
points have been identified the docking problem reduces to point set matching.

Content based image retrieval

Today, large image databases are common place in multimedia applications.
Content based image retrieval (CBIR) is the task of automatically retrieving
images by their content instead of external features such as keywords [123]. A
recent user survey about cognition aspects of image retrieval shows that users
are more interested in geometry based (shape) retrieval than intensity-based
(color and texture) retrieval [123]. Retrieving by shape is still considered one of
the most difficult aspects of CBIR with all current commercial CBIR systems
performing poorly with this respect. Thus there is an increasing demand for
efficient and reliable shape matching methods.

1.3 Approaches to shape matching

Shape matching has been approached in a number of ways within the context
of computer vision and pattern recognition. These include aspect graphs [67],
the generalized Hough transform [22], geometric hashing [141], the alignment
method [79], deformable templates [118], wavelet-based transforms [83], neural
networks [68], and statistics [120]; for a survey see Hagedoorn and Veltkamp [72].

Global object methods work on an object as a whole, i.e. a complete object
area or contour. Examples are Fourier descriptors [88], moments [38] curvature
scale space [94] and shape contexts [24]. An important drawback of these meth-
ods is that they require complete object segmentation in images which is in itself
an ill-posed problem [84]. In general, such methods are not robust against noise
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and occlusion and not appropriate for partial shape matching. Therefore, global
methods are not well suited for measuring the similarity between two patterns
that differ much.

Most of the methods mentioned above depend heavily on heuristics that
give no theoretical guarantee on the quality of the matching they achieve, but
perform well in practice. Some can be very simple and fast but they lack specific
properties and thus generality. A different approach is similarity measure based
shape matching explained below.

1.3.1 Similarity measure based shape matching

A similarity measure is a function that assigns a non-negative real number to
each pair of patterns. Similarity measure based methods have several advantages
over most global methods. They are independent of pattern representations as
long as the used measure is defined on patterns as sets. Moreover, similarity
based methods can be used in partial matching. A disadvantage of these meth-
ods is their running time which is often high and tends to increase with the
complexity of the similarity measure.

Computational geometry

Computational geometry is the sub-area of algorithmic design that deals with
the design and analysis of algorithms for problems involving geometric ob-
jects. The standard approach taken in computational geometry is the devel-
opment of exact, provably correct and efficient solutions to geometric problems.
For an introduction to the field, see the classical textbooks by Preparata and
Shamos [105] and de Berg et al. [53].

This thesis considers shape matching mostly from the computational geom-
etry point of view. A typical example of this approach is finding a geometric
transformation that minimizes a similarity measure between two patterns. Sim-
ilarity measure based matching has been a topic of extensive research over the
last fifteen years; see the surveys by Alt and Guibas [11] and Hagedoorn and
Veltkamp [72].

Many problems in geometric pattern matching can be seen as geometric op-
timization problems in which one seeks to optimize a function of one or more
variables, subject to a number of constraints induced by a given collection of
geometric objects. By exploiting the geometric as well as combinatorial prop-
erties of the problem one opts for the development of efficient algorithms; for a
survey on geometric optimization algorithms, see Agarwal and Sharir [4].

1.4 Similarity measures for geometric patterns

A similarity measure is a function that assigns a nonnegative real number to
pairs of patterns indicating the degree of their resemblance. The choice of the
measure depends on the properties required of it and the particular geometric
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primitives defining the patterns, both of which depend on the particular shape
matching problem for the application at hand.

For example, the Hausdorff distance can be applied on two sets of points, seg-
ments, polygonal and general curves. An alternative to the Hausdorff distance
for polygonal curves is the Lp metric distance between their turning angle func-
tions. Moreover, for curves, the Fréchet distance is more appropriate than the
Hausdorff distance. Also, the similarity of closed curves can be measured by the
overlap or the symmetric difference of their enclosed area. A formal definition of
the most important similarity measures–including those mentioned above–will
be given in Section 1.5.1. Emphasis will be given on similarity measures for
point sets.

For many shape matching applications such as shape classification and con-
tent based image retrieval, particular properties of similarity measures are desir-
able. The next section describes such properties and discusses their implications.

1.4.1 Properties of similarity measures

A similarity or distance measure d on a collection of shapes S is a function
d : S × S → R+ ∪ {0}. The following four properties define a metric.

i. Self-identity : For all A ∈ S, d(A,A) = 0.

ii. Positivity : For all A 6= B ∈ S, d(A,B) > 0.

iii. Symmetry : For all A,B ∈ S, d(A,B) = d(B,A).

iv. Triangle inequality : For all A,B,C ∈ S, d(A,C) ≤ d(A,B) + d(B,C).

A pseudo-metric is a function that satisfies properties (i), (iii) and (iv). In
his thesis Hagedoorn [73] presents a theory of similarity measures in which he
defines metric and pseudo-metric pattern spaces. Formally, a metric pattern
space is a structure (X,S, d), where X is a topological space, S is a collection
of subsets of X, and d is a metric on S. If d is a pseudo-metric, then (X,S, d) is
called a pseudo-metric pattern space. The set X is called the base set. A metric
defined on X is called the base metric.

In this thesis, X is Rk, thus, the collection of patterns S is a collection of
subsets of Rk. A well-known base metric on Rk is the Lp metric for p ≥ 1. For
every x, y ∈ Rk

Lp(x, y) = p

√√√√ k∑
i=1

|xi − yi|.

The case p = 2 is known as the Euclidean metric; unless stated otherwise, L2

will be our base metric. Many similarity measures on shapes are based on the
Lp distance, some of which are presented in section 1.5.1.

Consider a set S with a pseudo-metric d. Grouping together elements of S
with zero distance results in a metric on the resulting partition of S.
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Shape matching often involves the task of computing the similarity of two
patterns independent of transformations. A similarity measure d on a set S is
independent of the transformations in a given transformation group G on S if
and only if d(g(A), B) = d(A,B) for any two patterns A,B ∈ S and any trans-
formation g ∈ G; here, g(A) denotes the application of the transformation g on
A. Examples of transformation groups on R are translations, homotheties, i.e.,
translations combined with scaling, rotations about a fixed point, (Euclidean)
isometries or rigid motions, i.e., translations combined with rotations and re-
flection, and similarities, i.e., isometries combined with scaling.

One property of similarity measures that is important for the above task is
transformation invariance for a chosen transformation group.

v. Transformation invariance: For a chosen transformation group G on a set
S and for all A,B ∈ S, g ∈ G, d(g(A), g(B)) = d(A,B). This also implies
that d(g(A), B) = d(A, g−1(B)).

Formally, the shape of a pattern A ∈ S for a transformation group G equals
the orbit of G passing through A that is defined as G(A) = {g(A)|g ∈ G}.
The collection of all these orbits forms the shape space S/G. Given a metric
(pseudo-metric) d on S that is invariant for a transformation group G on S, we
can define a new metric (pseudo-metric) dG : S/G × S/G → R+ ∪ {0} defined
by

dG(G(A), G(B)) = inf{d(g(A), B)|g ∈ G}.

Thus, dG is a transformation-independent metric on the space of shapes S/G;
see Section 1.5 for examples of such metrics.

For measuring the similarity between complex geometric patterns one often
seeks to devise new measures based on other simpler distance measures. A typ-
ical example is the Lp-based Hausdorff distance for point sets in Rk; see section
1.5.1. These new measures intend to capture additional ‘shape’ information
of patterns and acquire new useful properties. This task is quite challenging
and often one has to cancel one property in order to include another one. A
natural property to ask from a similarity measure is to ‘respect’ scaling of the
base distance, that is, if the base distance is scaled by some positive factor the
new distance is scaled by the same factor as well. In Chapter 2 we will see an
example of a distance measure on fuzzy sets that does not satisfy this property.

A general property often asked from similarity measures is robustness. Hage-
doorn [73] introduced four axiom-properties expressing four different types of
robustness: ‘deformation’, ‘blur’, ‘crack’ and ‘noise’ robustness. Basically, they
express the following principle: if the ‘difference’ between two patterns is suffi-
ciently limited then their distance should be small. Actually, each of the axioms
defines a continuity property related to the particular type of ‘difference’.

We have mentioned several properties for similarity measures. A property
can be useful or undesirable depending on the application at hand. An example
of two shape matching applications with conflicting property interests is given
below.
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Efficient shape-based retrieval

Two challenging problems in content-based image retrieval are the following: re-
trieving images by shape, as opposed to color and texture, and efficient search-
ing in large image databases [72, 139]. As we have already discussed in the
previous sections, similarity measures for geometric patterns can be used for
shape-based (geometry) image comparison. Barros et al. [23] and Vleugels and
Veltkamp [139] showed that similarity measures which satisfy the triangle in-
equality can be used also for efficient comparison of a query image to a large
number of images in a database.

This is based on the following simple observation. Consider a shape A1 that
closely matches a query shape Aq: d(A1, Aq) is relatively small. Let Ar be
some reference shape. If the triangle inequality holds, d(Ar, Aq) ≤ d(Ar, A1) +
d(A1, Aq), then we know that |d(Ar, Aq) − d(Ar, A1)| is small as well. We
can measure the distance between a database shape A1 and a query Aq by
comparing their distances from a reference shape Ar. The computation of the
latter distances can be done off-line for all Ai. So, at run-time the computation
of a single d(Ar, Aq) yields all Ai that resemble Ar as much as Aq resembles Ar,
including those that resemble Aq.

In other words, for each image object in the database, its distance to a
set of m predetermined reference or vantage objects is calculated; the m-vector
of these distances specifies a point in the m-dimensional vantage space. An
efficient nearest-neighbor search on these points can determine the objects that
are similar to a given query object. Vleugels and Veltkamp [139] demonstrated
the efficiency of this approach through experiments on a database of 72, 816
hieroglyphic polylines.

Partial matching

Partial matching is the task of finding sub-patterns common to two shapes. It
is considered one of the most complex tasks in shape matching and is impor-
tant in real-world applications where occlusion in the input shapes is present.
Ideally, a similarity measure should take into account occlusion but give small
distance for two shapes with considerable ‘overlap’. The triangle inequality is
a ‘non-compatible’ property with the notion of partial matching, as the typical
example of the ‘man’ the ‘centaur’ and the ‘horse’ shows [136]. It is natural to
require from a similarity measure to give a small distance between the ‘man’ and
the ‘centaur’ and the ‘centaur’ and the ‘horse’ since in both cases there are con-
siderable large common sub-patterns. However the distance between the ‘man’
and the ‘horse’ is expected to be large thus cancelling the triangle inequality
among the three shapes.

It is quite difficult to construct similarity measures that inherently perform
partial matching. Two examples are the partial Hausdorff distance [80] and the
Earth Movers Distance [44]. Partial matching can be ‘enforced’ by special prob-
lem formulations such as the largest common pattern problem given in Section
1.5.
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1.5 Shape matching problems using similarity
measures

Shape matching problems using similarity measures can be formulated in various
ways that can be taxonomized according to a variety of criteria. A rough division
comes from the notion of exact and approximate similarity or pattern matching.
In the sequel, we assume a collection of patterns S, a similarity measure d and
a transformation group G on S. Exact pattern matching can be formulated as
the following optimization problem:

• Given A,B ∈ S, compute ming∈G d(g(A), B) and a transformation g ∈ G
that achieves the minimum.

The minimum measures the similarity between A and B independently of
transformations, while, depending on the nature of d, the transformation that
achieves the minimum can be easily used to find the sub-pattern of B which is
most similar to A.

Note that when G is the identity group, this problem reduces to the com-
putation of the distance between A and B. As we will see in Sections 1.5.1 and
1.5.2 most similarity measures can be efficiently computed for patterns in two
and three dimensions, thus, the identity group is excluded for the rest of this
section.

Exact pattern matching has two main disadvantages [64]. Firstly, it assumes
that all input geometric data are given with infinite precision and that two points
match if their coordinates are identical. However, this is an inaccurate repre-
sentation of reality, where the input is typically noisy and any match requires
some notion of a tolerance parameter. In point pattern matching, for example,
point coordinates are known to some finite precision, and hence each point is
actually a ball of small radius. Secondly, most of the algorithms designed to
compute exact similarity are complex with high running times. This provides
the motivation for approximations which come in two forms: approximation
algorithms and approximate similarity.

Approximation algorithms

Approximation algorithms for hard geometric optimization problems is a well
developed science; see the book by Vazirani [135] and the surveys by Bern and
Eppstein [25] and Arora [18]. Typically, the attention is limited to problems for
which no polynomial-time exact algorithms are known or likely to exist (NP-
hard problems). However, for the reasons explained above, it makes sense to
look for efficient approximation algorithms also for shape matching problems for
which complex and high degree polynomial running time algorithms are known.
Studying approximation algorithms is also interesting for the problem structure
that is revealed and the techniques that can be developed.

In this thesis we are interested in constant-factor and (1 + ε)-approximation
algorithms. Assuming maximization problems, such algorithms compute a value



1.5 Shape matching problems using similarity measures 17

that is at least a constant or (1+ ε) times the optimum, for any given ε > 0. We
present such algorithms for particular shape matching problems in Chapters 3,
4 and 5.

Approximate similarity

Approximate similarity is captured by approximation schemes particularly de-
vised for shape matching problems. The most simple approximate similarity
formulation is given as a decision problem:

• Given A,B ∈ S and a threshold ε > 0, decide whether there exists some
g ∈ G for which d(g(A), B) ≤ ε.

Using this decision problem we can apply binary search over ε to approximate
infinitesimally the minimum value of ε for which the decision problem is true, i.e.,
the solution of the corresponding optimization problem we saw in the beginning
of this section. In some cases the solution space has a particular structure which
allows for parametric search to be used [92, 46, 102, 132], yielding the optimal
solution.

Partial matching is a difficult problem to formulate. Typically, one would
like to find sub-patterns ‘common’ to both shapes according to some similarity
measure. However, there are two parameters to be optimized here: the size of
the sub-patterns and the quality of the matching. These are two conflicting tasks
and the notion of a threshold helps in defining our goal. Partial matching can be
formulated as the largest common pattern (LCP) problem and its natural dual
which are defined as follows: Given A,B ∈ S and a size measure |.| appropriately
defined for the patterns in S, then

• given a parameter ε > 0 determine A′ ⊆ A,B′ ⊆ B such that

min
g∈G

d(g(A′), B′) ≤ ε

and |A′| is maximized.

• given a parameter K > 0, compute

min
A′∈A,B′∈B

min
g∈G

d(g(A′), B′)

where |A′| ≥ K.

Note that the acromym LCP stands usually for the largest common point
set problem first introduced by Akutsu et al. [8]; see section 1.5.1 for details.

Heffernan and Schirra [75] proposed an approximate decision formulation,
the (ε, β)-approximate pattern matching. Although it was primarily used for
point set matching, it can be generally defined as follows: Given A,B ∈ S and
parameters ε, β > 0 and denoting ε∗ = ming∈G d(g(A), B),

• If ε∗ ≤ ε, then return g ∈ G for which d(g(A), B) ≤ (1 + β)ε;
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• If ε∗ > (1 + β)ε, then return NONE.

• If ε∗ ∈ (ε, (1 + β)ε], return I DONT KNOW.

The above formulation captures the intuition that determining an answer
close to the optimal is harder than determining an answer that is further away;
if ε∗ lies in the approximation range (ε, (1 + β)ε], the algorithm cannot de-
cide. Note that this formulation has two disadvantages over a general (1 + ε)-
approximation algorithm. Firstly, in some problem instances a possibly large
amount of computing time will be consumed without an approximation being
returned. Secondly, the running times given for point sets [75] increase substan-
tially when one tries to get an answer for an ε close to ε∗.

Finally, Gavrilov et al. [64] gave another general approximate scheme that
captures the notion of partial matching. This is the (α, β)-approximate pattern
matching that can be defined as the following promise problem: Given A,B ∈ S,
parameters α, β and numbers l, r,

• determine g ∈ G for which there exist A′ ⊆ A,B′ ⊆ B such that

d(g(A′), B′) ≤ (1 + β)r

and |A| ≥ (1 − α)l.

The numbers l and r are the promise parameters: we assume that there
exists a subset A′ ⊆ A of size l that matches some B′ ⊆ B to within distance r,
and we wish to approximate this solution.

An obvious drawback of approximations is that they cannot be used in the
typical scenario where one seeks in a collection of patterns the most similar one
to a given pattern. However, an approximation can still be used for finding
sub-patterns of a large pattern B that are similar to a given pattern A.

The notion of approximation algorithms for approximate pattern matching,
unavoidably brings some confusion. In the sequel we give some more approxi-
mation schemes defined specifically for point set matching and summarize some
algorithmic results for point set and curve matching problems.

1.5.1 Finite point sets

In this section we summarize results on point set matching based on the three
most commonly used distance measures: the discrete or exact metric, the bot-
tleneck distance and the Hausdorff distance. Our aim is to show the complexity
of these problems and name a few techniques used for their solution.

Discrete metric

Given point sets A and B in Rk, the discrete metric dE between them is

dE(A,B) =
{

0 if A = B
1 otherwise
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The discrete metric is invariant under general homeomorphisms but has no
noise tolerance. We assume that |A| = |B| = n. Minimizing the discrete
metric under translations can be easily done in optimal O(n log n) time for any
k [13]: it suffices to match those two points with the lexicographically smallest
coordinate vectors and then to check whether the rest of the points match as
well. For rigid motions, the problem is known as the exact congruence problem
which can be solved optimally in O(n log n) time for k = 2, 3 [13]: the problem
is easily reduced to the classical substring matching problem for k = 2 and the
isomorphism of labeled, three-connected and planar graphs problem for k = 3.

For k ≥ 4 the best known algorithm runs in O(ndk/3e log n) time [31]. This
algorithm is much more involved than the ones in the previous low dimensional
cases and is based on a dimension reduction technique different than the ones
presented by Alt et al. [13], Akutsu [7] and Matousek [7] for the same problem.
Braß and Knauer [31] also conjectured that an optimal O(n log n)-algorithm for
any fixed k, should be possible. Finally, reflections and scalings can be easily
incorporated in all the above algorithms without affecting the running times.

When |A| = n and B = m with n 6= m the interesting problem is to find
common sub-patterns to both A and B under the exact metric. Then the largest
common pattern problem and its dual reduce to the following two problems
respectively:

• Find the largest common congruent subset to both A and B.

• Determine whether A is congruent to some subset of B.

For the first problem, Akutsu et al. [8] gave algorithms of time complexity
O(n1.43m1.77 + n2) for k = 2, O(n1.89m2.8 + n3) for k = 3, O(n2.87m4 + n4)
for k = 4, and O(nk−1mk + nk) for k ≥ 5. These algorithms are mainly
based on simple voting schemes and good upper bounds on a combinatorial-
geometric quantity related to the distance multiplicity vectors of A and B.
Using simple random sampling techniques in addition, the authors gave also
output-sensitive randomized algorithms for computing the optimum or a (1− ε)
approximation of the optimum; for the latter and for k = 2, the algorithm
runs in O((n1.43m1.77 + n2)K−2 log3 n) expected time, where K is the largest
common congruent subset, and succeeds with probability 1− n−1. In the same
paper, algorithms for similarity instead of congruence were given based on the
same ideas and with similar running times.

For the second problem, Akutsu et al. [8] gave an O(min{n1.43m0.77, n4/3m})
running time algorithm for k = 2. For k = 3, Braß [29] improved the upper
bound on the maximum number of congruent triangles by Akutsu et al., and pre-
sented a randomized O(mn7/4 log nβ(n)) algorithm , where β(n) is an extremely
slow growing function. Finally, for k ≥ 4, Rezende and Lee [54] presented an
O(nmk)-algorithm based on circular sorting, an extension of geometrical sort-
ing [70].
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Bottleneck distance

We first examine the case where |A| = |B| = n. Let F (A,B) be the set of all
bijections from A onto B. Then, the bottleneck distance dB is defined as

dB(A,B) = min
f∈F (A,B)

max
a∈A

d(f(a), a)

where d is the Lp metric. Bottleneck matching may be useful for applications
where it is known that there is a bijection between the points of both patterns.
However, it is not appropriate for applications where |A| 6= |B| due to noise or
occlusion. The bottleneck distance is invariant under rigid motions.

Efrat et al. [57] presented, for k = 2, an O(n1.5 log n)-algorithm that decides
whether dB(A,B) ≤ ε, for any given ε ≥ 0; the algorithm uses Dinitz’s algo-
rithm for finding perfect matchings and takes advantage of the properties of the
underlying geometric graph. Using this algorithm for the decision problem and
special data structures for limiting the search over the values of ε, they also gave
an O(n1.5 log n)-algorithm that computes dB . For k = 3, these two problems
can be both solved in O(n11/6+ε) time. For any k ≥ 2 and the L∞-metric,
the corresponding running times are O(n1.5 logk−1 n) and O(n1.5 logk n) [57].
These algorithms are quite complex, thus difficult to implement, and have large
constants of proportionality in their running times. The authors also gave a
(1 + ε)-approximation algorithm for dB that uses an optimal algorithm for ap-
proximate nearest neighbor searching [19] and is relatively easy to implement.
This algorithm runs in O((1 + 1/ε)kn1.5 log n) time for any k ≥ 2 and ε > 0.

The decision problem for the optimal transformation that minimizes dB can
be formulated as follows: Given ε > 0 decide whether there exists a transfor-
mation of A such that every point in A falls into the ε-neighborhood of exactly
one a point in B, i.e. a disk of radius ε centered at that point. Note that the
smallest ε for which this is true is the minimum dB over all transformations.
For k = 2 and translations, Alt et al. [13] gave an O(n6)-algorithm that uses
standard graph theoretical techniques for finding whether a perfect matching
exists for all O(n4) combinatorially distinct translations. This was improved
by Efrat et al. [57] to O(n5 log n) by using some of the techniques devised for
the problems described in the previous paragraph to search for augmenting
paths when moving from one combinatorially distinct translation to another
one. Using parametric search the latter algorithm can be used to compute the
optimum translation in O(n5 log2 n) time. For rigid motions the problem is
usually referred to as the approximate congruence decision problem for which
only a O(n8)-algorithm exists [13] for k = 2. The optimization problem can
be solved in O(n8 log n) time. However the problem of numerical instability
that motivated approximate formulations still remains: these algorithms need
to compute the intersection point of curves of degree 6 with circles.

Arkin et al. [17] considered the above decision problem under various as-
sumptions on the ε-neighborhoods of the points in B and gave lower and upper
bounds on the number of matches and improved running times. For example,
for k = 2 and translations when the neighborhoods are pairwise disjoint there
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can be only one possible match and this can be decided with a very simple al-
gorithm in O(n log n) time. For rigid motions under the same conditions, there
are point sets with Ω(n) matches and no two point sets can have more than
O(n2) matches; the algorithm runs in O(n4 log n) time.

A (1 + ε)-approximation of the minimum bottleneck distance under trans-
lations can be achieved by imposing a uniform grid of appropriate size de-
pending on ε and k on the space of translations and computing a (1 + ε)-
approximate bottleneck distance for each grid point [57]. This algorithm runs in
O(c(ε, k)n1.5 log n log ε−1) time where c(ε, k) is a constant depending on ε and
k. Heffernan and Schirra [75] gave (ε, β)-approximate decision algorithms for
k = 2, that discretize the space of transformations using an appropriate grid,
perform some “structural pertubation” of both sets A and B and finally solve a
maximum-flow problem on the underlying geometric network. The algorithms
run in O(n1.5) and O(n2.5) for translations and isometries respectively.

Finally, the LCP problem for the bottleneck distance, for |A| = n 6= m = |B|,
can be solved in O(m3n4

√
m + n) time [14] for k = 2 and rigid motions using

similar techniques as the ones by Alt et al. [13]. For higher dimensions similar
algorithms with high polynomial running times exist while the problem is NP-
hard for unbounded dimensions [14].

Hausdorff metric

The Hausdorff metric is the most studied similarity measure in computational
geometry. Perhaps the reason is that it is defined on a very general pattern
collection: the set of all compact, i.e. closed and bounded, subsets of Rk. There
are numerous results even for finite point sets only; we will not try to give all
these results here, but rather mention the most important ones. For two point
sets A and B in Rk, with |A| = n, |B| = m, the Hausdorff metric H(A,B) is
defined as

H(A,B) = max{h(A,B), h(B,A)}
where h(A,B) is the directed Hausdorff distance of A to B given by

h(A,B) = max
a∈A

min
b∈B

d(a, b)

where d is one of the Lp-metrics. Sets A and B need not have the same number
of points. Rather than a one-to-one matching, the Hausdorff distance achieves
in general a many-to-many correspondence. The Hausdorff metric is invariant
under rigid motions and quite sensitive to noise: its value is determined by the
“worst” matching point.

For k = 2 and any Lp the Hausdorff distance can be optimally computed in
O(n + m) log(n + m) time [9]; for the L2, this is simply done by using Voronoi
diagrams.

Rucklidge [115] showed that the graph of the function of the Hausdorff dis-
tance under translations for k = 2 with the L1 or L∞ metric can have Ω(n3)
local minima. This lower bound can be overcome by examining the depth of
the intersection of unions of rectangles without actually computing the whole
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arrangement [42] of these unions. Using segment trees this can be done in
O(nm log nm) time. Finding the smallest ε for which the decision problem is
true can be done in O(nm log2 nm) time using an optimization technique by
Frederickson and Johnson [61]. For the same problem, using a different method
based on a randomized optimization technique, Chan [34] removed a log nm
factor. For higher dimensions several algorithms of the same flavor have been
given by Chew et al. [40]. The corresponding lower bound for the same problem
for k = 2 and the L2 metric is again Ω(n3). In this case the minimum Haus-
dorff distance can be found in O(nm(n+m) log nm) time by computing all local
minima on the upper envelope of a set of Voronoi surfaces [48]. For k = 3 and
any δ > 0 there is a O((nm)2(n + m)1+δ)-algorithm based on similar ideas. For
higher dimensions the problem can be solved in O(nd3k/2e+1+δ) time [40].

For rigid motions, the Hausdorff distance can be computed in O(n2m2(n +
m) log2 nm) [41] using similar ideas as in the case of translations for the L1

metric, and parametric search. The corresponding lower bound is Ω(n5) [115].
Aichholzer et al. [6] presented simple constant factor approximation algo-

rithms for k = 2, 3 that exploit properties of characteristic points of a point set,
the so called reference points. For example, for k = 2 they achieve a factor of
1 + 4/π in O((n + m) log(n + m)) and O(nm log(nm) log∗ nm) for translations
and rigid motions respectively. Based also on reference points and combining
the ideas of Heffernan and Schirra [75], Chew et al. [43] presented (ε, β) approxi-
mate decision algorithms for the Hausdorff distance under translations and rigid
motions that run in O((m+n) log nm) and O(nm log nm) respectively. Gavrilov
et al. [64] gave also (ε, β)-approximate solutions that exploit upper bounds on
approximate distance distributions and whose running time depends on the di-
ameter of the point sets. Also, for rigid motions in two dimensions they reduced
the problem to a combinatorial pattern matching using algebraic convolutions,
yielding an algorithm that runs in O(n(n + ∆)) where ∆ is the diameter of set
A and assuming n ≥ m.

The techniques of Gavrilov et al. give also algorithms for the (ε, β) -largest
common point set problem for k = 2, 3. For k = 2 the algorithm runs in O(∆mn)
time, logarithmic factors omitted. Finally, Indyk and Venkatasubramanian [82]
introduced a generalized bottleneck distance that includes both the bottleneck
and the Hausdorff distance as special cases. This measure relaxes the condition
that the mapping must be one-to-one but guarantees that only a few points are
mapped to any point. Using again combinatorial pattern matching techniques
they gave a randomized algorithm for the (α, β) promise problem in the plane
that runs in almost linear time and succeeds with high probability.

1.5.2 Curves

For two objects in the plane, one can base the distance measure on their bound-
aries. For example, assuming that each boundary is given by a closed curve,
one can try to find the translation that minimizes the Hausdorff distance [102]
or the Fréchet distance [12] between the two curves. Since these distance mea-
sures are based on the boundaries of the objects, they are fairly sensitive to
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noise. The area of overlap (or the area the symmetric difference) of two poly-
gons is less sensitive to noise [51, 10] and therefore more appropriate for certain
applications.

The function of the area of overlap of two translated simple polygons was first
studied by Mount et al. [96]. They showed that this function is a continuous,
piecewise polynomial surface of at most degree two with O((nm)2) pieces and a
representation that can be computed in O((nm)2) time for two polygons with n
and m vertices. No efficient algorithm is known that computes the translation
that maximizes the area of overlap and does not compute the whole function.
De Berg et al. [51], gave an efficient O((n + m) log(n + m)) algorithm for deter-
mining the optimal translation for the case of convex polygons; they also gave
a constant-factor approximation algorithm. Finally, Alt et al. [10] used similar
techniques as in [51] and gave a constant-factor approximation of the minimum
area of symmetric difference of two convex shapes.

1.6 Overview of the thesis

Point set matching has been studied in depth, as the relevant survey in the
previous section shows. However there are hardly any results on more complex
cases where a shape is modeled by points that, apart from their coordinates, are
characterized by an extra attribute, a weight. As we will see in the next chapter,
this model is more appropriate for certain cases where the relative importance
of a point needs to be taken into account as a separate parameter and not an
extra coordinate; for example, see Section 2.7.3 on matching music scores. This
thesis deals with shape matching problems related to weighted-point sets. As
one can expect, most of these problems have high complexity, as their point set
counterparts do, although a clear comparison cannot be made since the similar-
ity measures used are different. We present several approximation algorithms
for weighted-point set matching problems using different similarity measures.
The rest of this section summarizes our results.

The notion of weighted point sets is presented in Chapter 2, where the focus
lies on weighted point set matching using transportation distances. Here the
weight of a point is defined as an amount of mass. An example of such distance
is the Earth Mover’s Distance (EMD), first introduced by Rubner et al. [113]
for color-based image retrieval purposes. The EMD between two weighted point
sets measures the minimum amount of work needed to transform one set into
another one by weight transportation. One disadvantage of the EMD is that it
does not obey the triangle inequality. After giving its definition and analyzing
its properties, we introduce a variant, the Proportional Transportation Distance
(PTD), which is shown to be a pseudo-metric. We exhibit the potential use of
EMD and PTD in shape matching and retrieval—discussing the advantages of
one over the other—by testing them on a variety of data sets: company logos,
fish contours, music scores and polyhedral models. The experiments show that
the EMD and PTD can be effectively used in shape matching and that the use of
PTD, together with the vantage objects method discussed in Section 1.4.1, has
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a clear advantage over the EMD for time-efficient retrieval in large databases.
These results have been previously published in Giannopoulos and Veltkamp [65]
and Typke et al. [129].

The next three chapters of the thesis take a more algorithmic approach
by dealing with the fundamental shape matching problem as this was defined
in Section 1.5. We present approximation algorithms for several optimization
problems in which the objective function is fairly complex and for which no
(practical) algorithms for finding the exact optimum are known yet. A general
and simple track is followed in all the chapters. First, we establish lower bounds
on the objective function. These direct our search for the optimum which we
then approximate by using an appropriate discretization of the variables’ space.

Chapter 3 studies the problem of minimizing the EMD of two weighted-point
sets in the plane under translations and rigid motions; a preliminary version
of this chapter has been published in Cabello et al. [32]. We give the first
polynomial-time (1 + ε) and (2 + ε)-approximation algorithms for this problem.
In the general case where the sets have unequal total weights our algorithms
run in O((n3m/ε4) log2(n/ε)) time for translations and a (2 + ε)-approximation
in O((n4m2/ε4) log2(n/ε)) time for rigid motions. When the sets have equal
total weights, the respective running times decrease to O((n2/ε4) log2(n/ε)) and
O((n3m/ε4) log2(n/ε)). We also show how to compute a (1+ε)-approximation of
the minimum cost assignment under translations and rigid motions in O((n3/2/
ε7/2) log5 n) and O((n7/2/ε9/2) log6 n) time respectively.

In Chapter 4, the weight of a point is relative to the area or volume inclosed
in a simple object around the point. In this way a weighted-point set can define a
shape given by the union of simple objects. In particular we deal with unions of
either homothets of a single planar convex object or arbitrary planar fat convex
objects under certain conditions. A homothet of an object is a translated and/or
scaled version of the object, while fatness is a property that ensures that the
object is not infinitesimally thin. We measure the similarity of two weighted-

weighted points

Figure 1.2: Two sets of two-dimensional homothets and the area of overlap of their
respective unions for some translation.

point sets by the area of their respective unions; see Figure 1.2 for an example.
Our main result is an almost quadratic (1− ε)-approximation algorithm for the
minimum area of overlap of two such unions under translations; these results
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have already appeared in a technical report by de Berg et al. [52], and are
published in de Berg et al. [50].

Chapter 5 extends the transformation space for the latter problem to rigid
motions. We focus on unions of disks and give a O((n2m2/ε3) log m)-time algo-
rithm that computes a (1− ε)-approximation of the optimum. Under the condi-
tion that the optimum is at least a constant fraction of the area of one of the two
unions, we show how to compute such an approximation in O((m2/ε4) log(m/ε)
log2 m) time; in this case the algorithm is probabilistic and succeeds with high
probability. A preliminary version of this chapter has been published in de Berg
et al. [50].





Chapter 2

Weighted point set
matching

2.1 Introduction

A weighted point set is a set of points each having an attribute or weight. A
typical scenario where the use of weighted point sets arises is the following. Let’s
assume that a two- or three-dimensional shape has been reduced to a finite set
of points that describe the shape. Practical shape matching applications impose
computational limitations that pose a trade off between the size of the point
set and its shape descriptive power. Normally, one would like to decrease the
size of the set without loosing too much ‘shape’ information. A simple way to
achieve this is to search for points in the shape whose position is important and
associate a relative weight with them. For two-dimensional shapes, for example,
the weight could measure the amount of some property such as the curvature
of the points along a contour.

This chapter deals with similarity measures for matching geometric patterns
given as sets of weighted points. Our goal is to search for distance functions
that, apart from the position of the points, incorporate this extra information
as well.

In general, the meaning of a point weight and the way it affects matching
depends on the particular application. For example, the weight could be a cer-
tainty measure of the correctness of the points’ coordinates. The interpretation
for matching could be that points with low weight values match easier than
those with high weight values, since their position is uncertain, and they have
more freedom to move around. Alternatively, a small weight could mean that
the existence of the point is uncertain; the smaller its weight the less its influence
in the matching.

If the weights are in [0, 1] they could be interpreted as “membership values”
used in fuzzy sets. For a set S ⊆ Rk, a fuzzy set U is a function U : S → [0, 1];
S is the support set of U . The value U(x) is thought of as the membership
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value of x in S. In other words, the points take their weights from the interval
[0, 1], where weight 0 means the point is not contained in the set and weight 1
means the point is completely contained in the set. An ordinary or “crisp” set
is a fuzzy set whose membership values are either 0 or 1.

It is tempting to demand of any distance defined for fuzzy sets to be a metric
invariant under rigid motion, that respects scaling of the underlying distance.
In [30] it is proved that there is no metric that satisfies all these properties.
So it makes sense to take a close look at distance properties, and choose those
that are relevant for the application in mind. We are mainly interested in a
distance measure for weighted point sets that is symmetric, invariant under
rigid motion, respects scaling and obeys the triangle inequality. As explained in
Section 1.4.1, these properties make it suitable for shape based image database
retrieval. Depending also on the application, the property of positivity can be
dropped as long as this does not result in counter-intuitive identifications of
arbitrarily different sets.

In the next two sections we survey related work on distance measures for
weighted point sets. We expose advantages and disadvantages of proposed dis-
tances in the literature and show that either the properties of interest don’t
hold, or when they do, they can produce extremely counter-intuitive results.
Then in section 2.5 we introduce a pseudo-metric, the proportional transporta-
tion distance (PTD), which has the desired properties and, although it does
not follow the positivity property, gives zero distance only for weight-scaled ver-
sions of the same set. We exhibit its potential use in section 2.7, by testing it on
four different test data sets of company logos, fish contours, music scores and
polyhedral models. Section 2.6, gives simple upper bounds on the PTD and
the Earth Movers Distance (EMD) related to incremental change of the point
sets. Finally, partial matching based on transportation distances is discussed in
Section 2.8.

2.2 Fuzzy sets and the Hausdorff distance

An often used metric for compact subsets of Rk is the Hausdorff distance, that
has been already defined for finite point sets in Section 1.5.1. The directed
Hausdorff distance between two sets A,B both compact subsets of Rk is given
by

h(A,B) = sup
a∈A

inf
b∈B

d(a, b)

where d is one of the Lp metrics. Then the Hausdorff metric H(A,B) is defined
by

H(A,B) = max{h(A,B), h(B,A)}.

The rest of the section gives an overview of the extensions of the Hausdorff
metric to weighted point sets that have been proposed. All of them use the
notion of level sets. Let S be the support set and a non-empty compact subset
of Rk. For a fuzzy set w on S, the set σt(w) = {x ∈ S|w(x) ≥ t} is the “internal”
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t-level set of w; the set ξt(w) = {x ∈ S|w(x) ≤ t} is called the “external” t-level
set of w.

An interesting question is whether the Hausdorff metric can be extended to
fuzzy sets. Chaudhuri and Rozenfeld [37] presented such an extension that is
a metric, respects scaling of the sets and is invariant under isomorphisms. We
give its definition below.

Let each fuzzy set U have a finite number of distinct membership values and
let T = {t1, . . . , tm} be the set of all membership values of all such sets. We
assume that both σt(U), ξt(U) are compact for every U and t ∈ T . Then the
Hausdorff distance H(A,B) between two fuzzy sets A and B is given by

H(A,B) =
∑m

k=1 tkH(σtk
(A), σtk

(B))∑m
k=1 tk

The serious drawback of this definition is that it is not always valid, since not all
the sets have the same maximum membership value. As a consequence the level
sets are empty for some sets and membership values, and the Hausdorff distance
between the empty and some other set is undefined. This problem can be solved
by modifying the sets such that they have the same maximum membership
value. This has the undesirable effects that the nature of the sets change,
and that sets that initially differ only in their weights cannot be distinguished
anymore, e.g. two sets that are equal at all support points except their maxima.
In other words, positivity is not satisfied any more and the distance fails to
differentiate between fuzzy sets with arbitrarily different maximum membership
values. This problem can be tackled by adding a term that is a metric itself,
denoting dissimilarity rather than geometrical distance based on weights of the
original sets only. On the other hand, under this correction, the metric will no
more respect scaling of the underlying distance. Both definitions coincide with
the ordinary Hausdorff distance for crisp sets.

Another metric was defined by Boxer[28]. Here the problem of emerging null
level-sets is solved by introducing an auxiliary compact set S′ where S∩S′ = ∅,
and extending every fuzzy set A defined on S to the fuzzy set A′ defined on S∪S′

such that A(x) = 0 for all x ∈ S′. Under this definition the resulting distance is
a metric, respects scaling but is not motion invariant. Another disadvantage of
this metric is that it does not coincide with the ordinary Hausdorff distance in
the case of ordinary sets. For a general compact set S, the selection of S′ might
be difficult and different selections have different effects on the metric. The
arbitrary choice of S′ makes this metric less appealing than it seems, though in
the simple case of S being the set of pixels of an image, S′ can naturally be the
border of the image.

Last, another proposal came from Fan[59]. As a compact subset of Rk, S is
bounded. We arbitrarily choose the diameter d of S; then d = supH(A,B) exists
for any two fuzzy sets A,B on S. Then the Hausdorff metric can be extended
such that H(∅, ∅) = 0 and H(A, ∅) = d for all fuzzy sets A on S. Under this
convention we can use the definition of Chaudhuri and Rozenfeld given above.
This metric is motion invariant, coincides with the Hausdorff distance for crisp
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sets but does not respect scaling since d is fixed. An intuitive drawback is that
the value of the metric can be heavily biased by the diameter d.

We conclude that no extension of the Hausdorff distance that meets our
goals is known. In the next sections we take an alternative approach based on
mass transportation distances.

2.3 The mass transportation problem

The mass transportation problem also known as the Monge-Kantorovich mass
transference problem was first introduced by Monge [95] back in 1781 in the
following way:

Split two equally large volumes into infinitely small particles and
then associate them with each other so that the sum of products
of these paths of the particles to a volume is least. Along what
paths must the particles be transported and what is the smallest
transportation cost?

In 1942 Kantorovich reformulated the problem as a continuous linear optimiza-
tion problem over a convex set. An extensive work on the history, theory,
modifications and applications of general Mass Transportation Problems can be
found in a two volume work of Rachev and Rüschendorf [106, 107]. The possible
use of the mass transportation problem in defining a similarity measure between
two shapes was first considered by Mumford [97], while Rote [110] proposed a
metric for polygons based on similar ideas.

In this thesis, we focus on the discrete version of Kantorovich’s formulation,
whose name Earth Movers Distance (EMD) is attributed to Rubner et al. [113].
The EMD has been successfully used for color-based image retrieval by Co-
hen [44] and Rubner [112] as well as shape-based image retrieval by Fry [62]
and Cohen [44]. We give the definition of the EMD below.

2.4 The Earth Movers Distance

2.4.1 Definition

Let A = {a1, a2, . . . , am} be a weighted point set such that ai = {(xi, wi)}, i =
1, . . . ,m, where xi ∈ Rk with wi ∈ R+ ∪ {0} being its corresponding weight.
Let also W =

∑m
i=1 wi be the total weight of set A.

The Earth Movers Distance between two weighted point sets measures the
minimum amount of work needed to transform one to the other by moving
weight under certain conditions which are discussed later on. Intuitively speak-
ing, a weighted point ai can be seen as an amount of earth or mass, equal to wi

units, situated at xi; alternatively it can be taken as an empty hole of wi units
of mass capacity. We can arbitrarily assign the role of the supplier to one set
and that of the receiver/demander to the other one, setting, in that way, the
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direction of weight movement. The EMD then, measures the minimum amount
of work needed to fill the holes with earth.

The EMD can be expressed as a linear program. Given two weighted point
sets A,B and a ground distance d, we denote as fij the elementary flow of
weight from xi to yj , over the elementary distance dij . If W,U are the total
weights of A,B respectively, the set of all feasible flows F(A,B) between A and
B is defined by the following constraints:

1. fij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n

2.
∑n

j=1 fij ≤ wi, i = 1, . . . ,m

3.
∑m

i=1 fij ≤ uj , j = 1, . . . , n

4.
∑m

i=1

∑n
j=1 fij = min{W,U}

These constraints simply say that each particular flow is non-negative, a point
from the “supplier” set does not give away more weight than it has and a point
from the “receiver” set does not receive more weight than its capacity. Finally
the total weight moved is the minimum of the total weights of the two sets.

The flow of weight fij over a distance dij is penalized by its product with
this distance. The sum of all these individual products-costs is the total cost
paid in order to transform A to B. The EMD(A, B) is defined as the minimum
total cost over F(A,B), normalized by the weight of the lighter set; a unit of
cost or work corresponds to transporting a unit of weight by a unit of ground
distance. That is:

EMD(A,B) =
minF∈F(A,B)

∑m
i=1

∑n
j=1 fijdij

min{W,U} (2.1)

Stated in a different way, the EMD is the average ground distance that weights
travels during an optimal flow [45].

2.4.2 Properties and Computation

The most important properties of the EMD can be summarized below:

1. It is a metric if the ground distance is a metric and is applied on the space
of equal total weight sets. A nice proof of this can be found in [112].

2. Its transformation invariance group coincides with that of the ground dis-
tance (assuming transformations that do not modify the weight of the
points).

3. It respects scaling of the underlying ground distance.

4. It is invariant under uniform weight scaling.
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5. It allows for partial matching by definition, thus showing some tolerance
for occlusion, since the total weights need not be the same. In the case
of two sets with unequal total weights, some of the weight of the heavier
distribution remains unused or unmatched depending on the direction of
the weight flow.

6. It is continuous, in other words, infinitesimal small changes in position
and/or weight of existing points cause only infinitesimal change in its
value. Moreover addition of a point, i.e noise (which can be seen as in-
creasing its weight from zero to a positive value) can lead to an arbitrary
small change in the EMD’s value by making the point’s weight arbitrarily
small. These two facts simply imply that the EMD is deformation and
noise robust according to the corresponding robustness axioms presented
in [73].

The EMD can be computed efficiently by solving the corresponding linear
programming problem, using for example a streamlined version of the simplex
algorithm for the transportation problem [76]. In practice simplex performs
well, but in theory it can perform an exponential number of steps before giving
a solution. Theoretically better - polynomial time - algorithms for general linear
programming, like an interior point algorithm could be used; however it is likely
to perform better than the simplex method only for very large problem sizes.
Since the transportation problem is a special case of the minimum cost flow
problem in networks, a polynomial time algorithm that solves the latter can
be used as well [5]; see Section 3.2 for further details. Finally, for the special
case of the L2-based EMD in the plane one can use the algorithm of Atkinson
and Vaidya [20] that runs in O((n + m)2.5 log(n + m) log N) where N is the
magnitude of the largest supply or demand at any point.

2.4.3 Drawbacks of the EMD

In this section we identify two drawbacks of the EMD relevant for our purpose.
Let N denote the space of weighted point sets, in which any two sets can have
unequal total weights. The EMD has the following drawbacks when applied on
N :

1. It does not obey the positivity property. The EMD does not take into
account the surplus of weight, if any, between two sets. As a result, there
are cases where it does not distinguish between two non-identical sets.
For example in Figure 2.1, B′ was constructed by adding just the point
b′i of arbitrary weight u to B. However EMD(B, B′)=0. We can add
new points or weight on existing points on the left of b′2 thus making B′

arbitrary different from B, but its distance to B will not increase.

2. It does not obey the triangle inequality. Figure 2.1 gives a simple counter-
example. Moving point c1 to the right, thus increasing ε, can invalidate the
triangle inequality between sets A, B and C: The inequality holds for ε = 1
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Figure 2.1: The EMD does not distinguish between sets B and B′, and does not
satisfy the triangle inequality for sets A, B and C.

but not for ε = 10. As a result the EMD prevents the triangle inequality
from being used in speeding up database retrieval; see Section 1.4.1

Consequently the EMD on N is not a metric.

2.5 The Proportional Transportation Distance

An interesting question, that naturally arises, is the following: is there a simi-
larity measure based on weight transportation such that the surplus of weight
between two point sets is taken into account and the triangle inequality still
holds?

In the sequel we present a new distance for weighted point sets in N . Let
A,B ∈ N . When measuring the distance from A to B, rather than taking A
as the supplier and B as the demander moving only as much weight as needed,
trying to fill the ‘holes’ with ‘earth’, we move the total weight of A to the
positions of the points in B. What we measure then, is the minimum amount
of work needed to transform A to a new set A′ that resembles B. In particular,
we redistribute A’s total weight from the position of its points, to the position
of B’s points leaving the old percentages of weights in B the same.

We call this distance the Proportional Transportation Distance (PTD); it is
defined as follows. Let A,B be two weighted point sets and d a ground distance.
The set of all feasible flows F(A,B) from A to B, is now defined by the following
constraints:

1. fij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n

2.
∑n

j=1 fij = wi, i = 1, . . . ,m
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3.
∑m

i=1 fij = ujW
U , j = 1, . . . , n

4.
∑m

i=1

∑n
j=1 fij = W

The PTD(A, B) is given by:

PTD(A,B) =
minF∈F(A,B)

∑m
i=1

∑n
j=1 fijdij

W
(2.2)

Constraints 2 and 4 forces all of A’s weight to move to the positions of points
in B. Constraint 3 ensures that this is done in a way that preserves the old
percentages of weight in B. Next, we examine PTD’s properties.

2.5.1 Properties

Let us take a closer look at PTD’s definition. While measuring the PTD(A, B)
for any sets A and B, if we substitute the variables fij , i = 1, . . . , n, j = 1, . . . , m,
in its LP formulation, call it LP1 with f ′

ijW (W 6= 0 is the total weight of A)
we get the following LP problem:

min
F∈F(A,B)

m∑
i=1

n∑
j=1

f ′
ijdij , (2.3)

where F(A,B) is defined by:

• f ′
ij ≥ 0

•
∑n

j=1 f ′
ij = wi/W

•
∑m

i=1 f ′
ij = uj/U

•
∑m

i=1

∑n
j=1 fij = 1

It is clear that this new formulation, call it LP2, gives us the distance between
the two sets of percentages of weights in A, B. Note that the total weights of the
new sets are both equal to one. Since the substitution function fij = f ′

ijW,W 6=
0 is bijective, LP1 is equivalent to LP2. This means that we are working again
on the space of equal total weight sets.

However, it’s obvious that more than one LP1 problem can be equivalent to
the same LP2 problem i.e. any two weighted point sets of the same cardinality
and coincident, can have the same percentages of weight at the same positions
although their corresponding individual weights are different.

We can now state the properties of PTD.

1. It obviously has the identity property.

2. It obeys the triangle inequality. This follows from the equivalence between
the two LP formulations stated above.
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3. It does not follow the positivity property since the distance between posi-
tionally coinciding sets with the same percentages of weights at the same
positions is 0. However this is the only case in which the distance between
two non-identical point sets is zero. The PTD will distinguish two sets B
and B′ where the one came from the other by adding even only one point;
see example in Figure 2.1.

4. It has all the other properties that the EMD for equal total weight sets
has.

It follows that the PTD is a pseudo-metric. Of course, by identifying sets with
zero distance we can produce a metric on the resulting partition of the set N
of generally unequal total weight sets.

2.6 Lower and Upper Bounds

Computing the EMD or PTD can be time consuming, especially for large point
sets. In certain cases, an upper or lower bound can be as good as the exact value
of the distance. The quality and the usefulness of any such bound depends of
course on how close to the exact value it is and how quickly it can be computed.

Lower bounds on the EMD, both for equal and unequal total weight sets,
that can be computed efficiently were given by Cohen [44] and Rubner et
al. [114]. The bounds were used to cut the cost of nearest neighbor queries
in very large image databases. Specifically, a kth nearest neighbor query re-
turns the k database images which are closest to the query. During the query
processing, an exact EMD computation need not be performed if there is a lower
bound on the EMD which is greater than the kth smallest distance computed
so far. In the next chapter we will see another use of lower bounds in the design
of approximation algorithms for the minimum EMD under transformations.

Suppose we have computed the distance between two large weighted point
sets and we introduce one new point in one of the sets. We would like to avoid
computing the distance from scratch; depending on the application at hand an
answer to the following question may be good enough: Will the distance get
smaller or larger? If it gets larger, can we give an upper bound on this change?
In general, due to limited computational resources available, one may just want
a value close to the optimal. Such an upper bound can be achieved, for example,
by computing a near-optimal basis for the simplex-based transportation algo-
rithm [116]. In the following sections we establish some simple upper bounds
for EMD and PTD and give an example of their use.

2.6.1 Upper Bounds on the EMD

We distinguish between the following two cases.
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Adding a point to the set with the largest total weight.

Due to the partial matching that the EMD implicitly performs, the addition of
a point to the set with the largest total weight or to any of the two sets when
their total weights are equal - will either decrease the distance or leave it the
same. If every distance of the new point to each of the demanders to which
non-zero weight is transported is larger than all the distances over which the
weight is transported, the EMD does not change. This means that the cost of
covering the demand cannot get less since the new point is too far away.

If the above condition does not hold, there is a potential of lowering the
distance. An upper bound can be easily established by following the greedy
approach: Find all the demanders who are closer to the new point than their
previous suppliers are. Starting from the closest demander transport as much
weight as possible from the new point, canceling the equivalent previous flow.
We continue the above procedure until the new point has no more weight avail-
able.

Adding a point to the set with the smallest total weight.

In this case the new point will always be taken into account. In particular let
A,B be the two weighted point sets and B′ = B∪{x}, where x is the new point
with weight ux. Let also W,U,U ′ = U + ux, with W > U be the total weights
of A,B,B′ correspondingly. Note that if U ′ > W only the amount of W −U is
going to be used from x’s weight.

Suppose that EMD(A,B) = (minF∈F
∑m

i=1

∑n
j=1 fijdij)/U has been com-

puted. A trivial upper bound can be established by using the flow {fij} defining
EMD(A,B) and matching all or part of x’s weight in a greedy way: transport
weight to the unsatisfied demanders starting from the closest one. Looking only
at x, this is the minimum cost way to match all or part of its weight with the
sub-distribution of A that is left after its initial matching with B. Let us call
this cost WORKx. This gives us the following:

EMD(A,B′) ≤
minF∈F

∑m
i=1

∑n
j=1 fijdij + WORKx

U + ux
(2.4)

We can check whether this upper bound is less than or equal to EMD(A,B).
This gives the following relation (minF∈F

∑m
i=1

∑n
j=1 fijdij)/WORKx ≥ U/ux;

when it holds we are sure that EMD(A,B′) ≤ EMD(A,B).

2.6.2 Upper Bounds on the PTD

Let again A,B be the two weighted point sets and B′ = B ∪ {x}, where x
is the new point with weight ux. Since the triangle inequality holds for the
PTD we have the following: PTD(A,B′) ≤ PTD(A,B) + PTD(B,B′). This
already gives us an upper bound and PTD(B,B′) can be easily computed in
O(|B|) time in the following way: We assign zero-cost flow from each point in
B to the same point in B′. The demand of all points common to both sets is
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Figure 2.2: Optimal flow [fij ] for ptd(B, b′) is shown by thick arrows.

thus covered, since the points in B′ have smaller weight than their counterparts
in B. Next, we transport all the remaining weight from B to the new point
x. It is not difficult to see that this flow is optimal, since, assuming that the
triangle inequality holds for the ground distance, the residual network contains
no negative cost-directed cycles; for information on optimality conditions for
min-cost network flows see [5].

A short proof of the above statement goes as follows: assume a point set
B with three points, and the set B′ that contains one more point x as shown
in Figure 2.2. The flow established by the procedure above has the following
non-zero individual flows: f11, f22, f33, fx1, fx2 and fx3 with direction from B′

to B. Suppose that this flow is not optimal; this implies that there is at least
one more non-zero individual flow, e.g. f23. We show that the new flow is
not optimal. Assume that f23 = ε > 0. We first cancel the flow f23; this
gives an excess of weight, equal to ε, to point 2 of B. In return, this gives
us the opportunity to cancel an equal amount of flow from fx2 and add it to
fx3. Thus we have identified a directed-cycle in the residual network with cost:
−εd(2, 3) + 0 − εd(x, 2) + εd(x, 3). It is now easy to see that if the triangle
inequality holds for d then the cost is negative (d is assumed to be symmetric
and positive).

If we take a look at the distribution of B’s weights we see that the weight
uj/U of a point bj ∈ B becomes uj/(U +ux). We can establish an upper bound
following the procedure described next. For each bj ∈ B assign a new flow
f ′

ij to it, starting from its closest previous supplier–this information is given to
us by the previous optimal flow fij–until

∑m
i=1 f ′

ij = uj/(U + ux). Note that∑n
j=1 f ′

ij < wi/W for each ai ∈ A. Finally all the weight left unmatched is
moved to the new point x.

Now, PTD(A,B′) ≥
∑m

i=1

∑n
j=1 f ′

ijdij +
∑m

i=1 dix(wi/W −
∑n

j=1 f ′
ij). Let

us call the first term α and the second term β. If β ≤ PTD(B,B′) then this
upper bound is better than the one based on the triangle inequality. Moreover,
if β ≤ PTD(A,B) − α, then we know that PTD(A,B′) ≤ PTD(A,B).

2.6.3 An example of the Lower and Upper Bounds’ use

Assume that we have computed a lower and upper bound lbD(A,B′),upD(A,B′)
respectively and D(A,B) is known–D is either the EMD or PTD:
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If lbD(A,B′) ≥ D(A,B) then we conclude that the addition of the new point to
B will either increase the distance or leave it the same. On the other hand if
ubD(A,B′) ≤ D(A,B) then the distance will decrease or stay the same.

If neither of the above conditions hold then an upper bound can be used
just as an indication of the distance’s value. If this indication does not satisfy
the user, the bound can be used as an initial feasible solution in an algorithm
that solves the transportation problem. For example, one could use the upper
bound as a feasible flow in the cycle-canceling algorithm for the min-cost flow
problem in networks [5]. This algorithm finds negative cost-directed cycles in
the residual network and augments flows on these cycles; in our case, any of
these cycles must contain the new point added in B. As already mentioned,
the algorithm terminates when the residual network contains no negative cost-
directed cycle.

2.7 Experimental Results

We have tested our pseudo-metric on two different image collections, one of
company logos and another one of fish contours; the results are described in
Sections 2.7.1 and 2.7.2. A preliminary version of these results appeared in
Giannopoulos and Veltkamp [65]. Our primary objective is to show that it
can be actually used in shape-based object recognition; this together with its
properties, namely the triangle inequality, would make it a good candidate for
image retrieval applications. However, we did not strive for the best matching
and retrieval procedure possible for logos and fish specifically; in the course of
the next sections, we discuss also about how our experimental results can be
improved.

In both cases the original images are reduced to feature weighted point sets.
The weight of a point represents its importance in the image: its edge strength
value in the first collection and a curvature measure value in the second. In
order to calculate the PTD between two sets, each set is first normalized by
its total weight as the LP2 formulation suggests. The distance computation is
based on the EMD publicly available code [111]. This code implements a special
version of the simplex method, see Section 2.4.2.

Our calculations are made independent of translation, rotation and scaling
by a simple preprocessing procedure that put the original shapes into some
standard pose. Solving the optimal transformation problem instead, will give
results that are at least as good with a dramatic increase of the computation
time. No polynomial time algorithm is known that minimizes the transportation
distance under translation; see Chapter 3 for details.

Finally, in Sections 2.7.3 and 2.7.4, we summarize the experiments per-
formed by Typke et al. [129] and Tangelder and Veltkamp [125] where our pro-
posed pseudo-metric was used for measuring melodic similarity and polyhedral
model retrieval correspondingly.

All the experiments described in this section were performed on a 2-GHz
Pentium 4 system with Windows XP.
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2.7.1 Logos

The UMD-Logo-Database [56] contains 105 grey-scale images that are black
and white scanned versions of logos. We have selected only 14 logos, good
representatives of the whole database, to test the PTD. These can be seen in
the first column of Figure 2.3.

The weighted point set for each logo is constructed as follows. First, we
identify edges using a Canny edge detector [143] and corners using the SU-
SAN corner detector [122, 121]. Then an intermediate weighted point set is
constructed by selecting only edge points that are also corners, keeping the in-
tensity in the edge image, rather than in the original image, as the point weight.
The higher the intensity, the more important the point. In this way, we keep
the most dominant points in the logo’s shape, reducing the initial number of
edge points from some thousands to some hundreds - in most cases less than
500. This makes the computation of the PTD between two sets possible in a
reasonable amount of time. For example the PTD between two sets of around
300 points each, takes no more than 5 seconds on our configuration; see previous
section.

Finally, the bounding box of the logo in each image is first centered to the
origin and then scaled to a unit area rectangle. Taking into account the purpose
of our experiments and the type of the logo images in the database, this simple
normalization compensates satisfactorily for translational and scaling effects in
the original images. Since there are hardly any rotated versions of logos we did
not incorporate any rotational normalization.

Note that ‘weak’ outliers, that can frequently occur in scanned versions of
images, may not be detected as edges or points. Since the feature point extrac-
tion precedes the normalization step, outliers may be prevented from wrongly
determining the bounding box of each logo.

We have computed the distance for every pair of the selected logos. Each
row in Figure 2.3 shows the initial logo image, its corresponding weighted point
set and best 6 matches. The width of the dots in the weighted point sets is
relative to the values of the weight. This can be easily seen in the apple in
the second row where points in its interior have lower weight than points on its
outline. As an indication of the actual distance values, here are the values for
the Apple logo in the first row, from left to right: 0.0, 0.087, 0.146, 0.147, 0.152
and 0.157. Interestingly enough, the worst match for both Apple logos is the
Microsoft logo with a distance value of 0.3958 and 0.3956 respectively.

For almost all logos the weights are within a very small range. Discarding the
weights, thus setting them all to 1, can produce bad matches only for those sets
that have many points with low weight. For example a query with the second
Apple logo in the query column, would give as a best match, after itself, the
rounded logo with the bird inside (fourth in the query image column); the other
Apple logo, first in the column, would comes second. This is due to the fact
that more weight in the interior of the query Apple logo has to travel towards
the outline of the first Apple logo. In general, the use of the edge strength as
the weight value will really pay off if the test database consists of noisy (e.g.
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query image weighted points

matcht1 match 2 match 3 match 4 match 5 match 6

Figure 2.3: Top six matches for the 14 selected logos.
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query points
match1 match 2 match 3 match 4 match 5 match 6

Figure 2.4: Top six matches of the Apple logo using the EMD.

blurred) images, provided that our feature detectors are good enough to avoid
most of the noise. Then, the higher the intensity of a point in the edge image,
the more certain we are about its participation in the object’s shape.

Last, we have compared our PTD results with those of EMD’s: for the
second Apple logo in the query column, the best six matches using EMD are
shown in Figure 2.4. The reason behind this result is the partial matching
property of EMD. The weighted point set that corresponds to the Apple logo
has almost a hundred points while the one of the University of Maryland (match
2) has almost a thousand and much more total weight. When they are matched,
almost every point in the Apple’s set will coincide or be very close to a point in
the Maryland’s set and thus little weight is moved.

2.7.2 Fish Contours

Our second test data set comes from the SQUID database [93] which contains
1100 images of contours of marine animals, mostly fish. Each one of them is
thinned to a one pixel width contour which is actually a simple polygon with
its defining points ordered, in our case, clockwise.

Preprocessing

In order for our computations to be independent of orientation, position and
scaling the following preprocessing steps are applied to the polygons. First,
each polygon’s center of mass is translated to the origin. Then the polygon is
rotated around the origin in such a way that its major principal axis, identified
with the PCA method [103], coincides with the x-axis. Next, each polygon is
re-translated so that the center of its bounding box lies on the origin. The
reason behind this translation lies in our choice of corners as feature points, see
next section; since they probably lie on the bounding box, we would like them
to play a bigger role in the translational normalization. Finally the polygon is
scaled so that its bounding box has unit area.

Corner Extraction

Corners are points with high curvature and therefore significant for a polygon’s
shape. As already mentioned in the beginning of Section 2.7, we would like to
select points with high curvature, and construct a weighted point set with the
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weights set to the actual curvature value. However, discrete curvature estima-
tion is a difficult problem by itself. Several algorithms have been proposed, each
one with its advantages and drawbacks [142].

We used a simple, fast and easy to implement corner detection algorithm
by Rosenfeld and Weszka [109, 126]. The algorithm computes the value of a
curvature measure for each point and then retains only points of local maxima as
corners. A smoothing parameter determines the region of support, the curvature
measure value for each point and, as a result, the number of output corners.
We set this smoothing parameter to 0.045 for all input polygons. This gives us
a small number of corners between 15 and 30 in most cases.

Here we should re-emphasize the fact that this curvature measure was used
as a way to obtain weighted point sets and demonstrate the use of the proposed
pseudo-metric and is not of the best interest of the application itself; we applied
it on one particular collection where all the contours have been generated in
the same way and on the same scale. Moreover, while computing the curvature
measure, the same smoothing parameter was used for all the contours. Further
discussion on the effects of this feature extraction choice on the matching results
can be found in the next section.

Distance Computation and Results

We computed the distance for all pairs of all fish polygons. We should mention
here that although the PCA method gives the two principal axis, it lacks any
information about their direction, resulting thus in a two-way ambiguity for
each of them. In our case this means that there are two configurations resulting
in the same set of principal axis. This has been observed by other researchers as
well [98]. We deal with this problem as follows. Let A and B be two normalized
weighted point sets and −B a version of B rotated by 180 degrees around the
origin. Then, the distance between A and B equals min{PTD(A, B), PTD(A,
−B)}. Since the sets are small the computation of the distance takes no more
than 0.05 seconds on a machine with the same configuration as the one used for
the logo collection.

In Figure 2.5 the five best matches for example polygon queries are shown.
The results are organized in pairs of rows where the first row shows the nor-
malized polygon and the second the normalized weighted point set. Their ori-
entation is the one of the two that gave the minimum distance according to the
previous paragraph. The distance values, from left to right, for the shark query
are as follows: 0.0, 0.082, 0.091, 0.102, 0.109. In contrast with the point sets in
Figure 2.3, the weights here are spread over the whole range of values in (0, 1);
this is shown by dots of variable width. Thus, discarding the weights, influences
the results: more similar shapes can come after less similar ones.

The corner extraction method used here imposes a trade off between the
number of output corner points and the relevance of the curvature measure
value to the actual curvature value. Adjusting the smoothing parameter to give
out more corners will result in a weight distribution quite different from the
actual curvature distribution. Less corners, however, enclose less information
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query/match 1 match 2 match 3 match 4 match 5

Figure 2.5: Top five matches for selected queries of fish polygons.
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query/match 1 match 2

Figure 2.6: A counter-intuitive match.

on the polygon’s shape. In general, a bad corner detector and curvature measure
can give point sets with points in close positions and similar weight distributions
which correspond to dissimilar shapes.

Figure 2.6 shows a counter-intuitive example. Here, the first column corre-
sponds to the query and best match, and the second corresponds to the second
best match. Note, for example, that both ends of the head and tail of the query
eal fish are matched to the spikes on the head of the second fish, through their
corresponding weighted points; these points carry, for both sets, the largest per-
centage of total weight. The points corresponding to the tail of the second fish
are matched with points on the ‘belly’ of the eal fish, and there is almost no
information, i.e points, on the remaining part of the latter.

The problem here lies on the representation of a contour with two dimen-
sional weighted points that are close, as far as the ground distance is concerned,
but far regarding their distance along the contour. However, an approach that
takes into account distance information along the contour, as the one used in
SQUID [94] does, does not always give better results. Figure 2.8 shows a bad
match taken from SQUID; starting from left to right in each row, the top six
matches are given, where the query and best match are found in the top left
corner. Our results for the same query are given in Figure 2.7 and look much
better. Apart from the identity match, the next three top matches fail to show
up in SQUID’s first eighteen results.

We have examined many other query results through a simple demo that
can be also found in our web-site [66]. Although shape similarity is a highly
subjective matter, generally argued similar shapes are given as a result for most
queries. Overall the results are satisfactory and indicate that our pseudo-metric
can be effectively used for shape retrieval.

Retrieval

We have experimented with two ways of retrieval, which can be found in our
web-site as well: the full distance matrix approach and the vantage (reference)
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query/match 1 match 2 match 3 match 4 match 5 match 6

Figure 2.7: An example where PTD-based matching performs better than SQUID;
compare to figure 2.8.

Figure 2.8: A counter-intuitive result in SQUID [93].

shapes method, described in Section 1.4. In the first all the distances are pre-
computed. This approach is of course fast, and gives all best matches that the
user is interested in without false positives. A query with a new image can be
dealt with by using linear search, where the distances from the new image to all
the images in the database are computed. In our case, taking into account the
average size of a weighted point set corresponding to a fish contour, this method
will give a query time of about two to three minutes; clearly, the linear search
method is not at all suitable for larger collections. An alternative to the latter is
the vantage objects method which, taking advantage of the triangle inequality,
is both scalable and fast. Given a query image and a positive constant ε, all
images in the database that are within distance ε from the query are returned,
together with some false positives. In our case, using for example ten vantage
objects, the query time is not more than half a second, on the average.
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2.7.3 Melodies

The representation of music as a weighted point set in a two-dimensional space
has prevailed ever since the 13th century. Music scores are two-dimensional sets
of notes (points) with time and pitch as coordinates; varying characteristics are
associated with the notes by, for example, using different symbols for different
note durations. Following this observation, we used the EMD and PTD to mea-
sure melodic similarity directly by comparing weighted point sets [129] instead
of first transforming the music into one-dimensional abstract representations as
most previous methods did. We tested our method on the RISM A/II1 collection
that contains about half a million musical incipits2.

In general, each melody is transformed into a signature given as a weighted
point set as follows; see Typke et al. [129] for a more detailed description. For
each note one point is created; rests are encoded implicitly as the time spans
that are not covered by points. In the database, the durations of notes and their
positions within measures are specified using divisions of a quarter note, in a
way similar to the MIDI format. With every melody, the number of divisions
per quarter note is stored. The time coordinate of a note is the sum of lengths of
measures preceding the note plus the note’s position within its measure, divided
by the number of divisions for a quarter note. In order to skip leading rests, all
notes are shifted so that the first note starts at time 0. The pitch coordinate of a
note is determined by its pitch in the Walter Hewlett’s (1992) Base-40 notation.
Finally, a note’s weight simply reflects its duration. Although the experiments
were performed with weights that depend only on note durations, additional
weight components, like stress weight and note number weight could lead to
additional desirable effects.

Anonymous: Roslin Castle
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Figure 2.9: An example of two melodies, their signatures and the weight flow between
them with the EMD.

1Répertoire International des Sources Musicales, 1995-2002.
2An incipit is the beginning of a piece, typically about 20 notes long.
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Before applying the EMD or PTD to a pair of sets, several adjustments are
made to the coordinates and weights of the points. For example, one of the
two sets is transposed in the pitch axis so that both sets have equal weighted
average pitch. Figure 2.9 gives an example of two melodies, their signatures
after the necessary adjustments and the weight flow between them when the
EMD is used.

Extensive experiments showed that this method has significant advantages
over previous methods. For example, compared to the “Frankfurt Experi-
ence” and the “Harvard Experience” of sorting RISM incipits described by
Howard [77], we were able to identify about twice the percentage of melodies
by anonymous composers and group together 76% instead of 46% of the known
occurrences of a tune called “Roslin Castle” [129]. The experiments also showed
that the partial matching provided by the EMD does not always make musi-
cal sense; the authors note that in order to be able to find motifs and themes
within complete pieces, it might be necessary to ‘segment’ the pieces into small
chunks and then use the EMD or PTD to compare the chunks individually.
For a discussion about EMD, PTD and partial matching, see Section 2.8. Fi-
nally, by exploiting PTD’s triangle inequality and using vantage objects, an
interactive online search engine was build that searches all melodies in the test
database [128]. Since this database is large, the computation of the distance of
a query melody to every record is prohibitive. Indeed, our approach reduced
the query running time approximately 70 minutes to 9 seconds, without altering
the result considerably.

2.7.4 Polyhedral Models

Recent improvements in laser scanning technology, 3D visualization and mod-
eling, necessitate the development of tools supporting the automatic search for
3D objects in archives. The World Wide Web provides access to thousands of
such objects mostly in virtual reality modeling language (VRML) format which
represents 3D models as meshes. Tangelder and Veltkamp [125] described a new
geometric approach to 3D shape comparison and retrieval for arbitrary objects
represented by a polyhedral mesh. In contrast with existing approaches, their
approach uses the overall relative spatial location by representing the 3D shape
as a weighted point set, without taking the connectivity relations into account.
Below, we describe briefly the way these weighted point sets are constructed.

To compare two objects independently of orientation, position and scaling,
PCA is first applied to bring the objects in a standard pose. Each object is
enclosed by a 3D grid and a salient point is created for each non-empty grid
cell. The following three methods to obtain in each grid cell a salient point
and a weight are described and compared: (1) choosing the vertex in the cell
with the highest Gaussian curvature, and choosing as weight a measure for that
curvature, (2) choosing the area-weighted mean of the vertices in the cell, and
choosing as weight a measure denoting the normal variation of the facets in the
cell and (3) choosing the center of mass of all vertices in the cell, and the weight
equal to one.
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Figure 2.10: Query results using the Gaussian curvature method for the Princeton
database. Each column illustrates a query. The top row shows the query objects, the
second row the nearest neighbor, the third and fourth row show the second and third
nearest neighbor, respectively.

Using the PTD for comparing two weighted point sets, experiments were
performed on two different test databases: a database from Princeton consisting
of 133 models classified into functional categories such as mugs, cars and boats,
and the Utrecht database consisting of 512 models including 376 models of air
planes classified into shape categories [124]. The results of the experiments on
the Princeton database showed the method to have better performance than
the best of the shape distribution based methods given by Osada et al. [101]
on the same database. The improvement goes up to as much as 14% when the
Gaussian curvature method is used. Example query results of the latter method
are shown in Figure 2.10. In the experiments, computing the PTD takes on
average about 2 seconds. Using the triangle inequality with the vantage objects
method, reduces the query time to the database of 512 models from 17 minutes
to 15 seconds on the average when 8 vantage objects are used.

2.8 Concluding remarks

This chapter is about weighted point set matching using similarity measures.
A pseudometric, the PTD, with additional properties that make it suitable
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Figure 2.11: An example of partial matching problem that calls for the LCP solution.

for shape matching and retrieval was presented. This distance is based on mass
transportation. It’s effectiveness has been established via extensive experiments
on a range of different test data sets. We end this chapter with a few words on
partial matching.

As mentioned in section 2.4.2, the EMD performs partial matching when
applied on two sets with unequal total weights, by matching only the smallest
of the two weights. Obviously this is not true for the EMD on equal total weight
sets or the PTD in general. Searching for a pattern A in a pattern B requires
transformations to be taken into account as well. That is, the transformation
that minimizes the distance has to be found; this is a quite difficult problem that
is dealt with in the next chapter. An algorithm that minimizes the EMD under a
given group of transformations was given in [45]. Unfortunately, this algorithm
can be trapped in local minima and increases the computation time consider-
ably. However, the optimal transformation does not always produce meaningful
results. Consider, for example, the two polygonal patterns in figure 2.11; the
dots in the image represent sub-patterns with arbitrary shapes.

We assume that both patterns will be reduced to weighted point sets that
outline their corresponding shapes. Here, we would like to be able to identify
similar sub-patterns of both sets by finding a suitable transformation and flow
that establish the matching i.e the correspondence among individual points.
Even if the two sets have unequal total weights, minimization of the EMD
under rigid motions, for instance, will not necessarily match the triangles of A
to their rotated versions in B. In general, the outcome will depend also on the
the weights of individual points and the shape of the missing components, i.e.
the ones represented with dots.

The above issues call for the more general partial pattern matching formula-
tion of the Largest Common Pattern problem that was presented in Section 1.5.
It would be interesting to try to devise polynomial time LCP algorithms for
the EMD or PTD, prove hardness results if this is not possible and look for
heuristics that work well in practice.





Chapter 3

Minimizing the Earth
Mover’s Distance under
Transformations

3.1 Introduction

This chapter deals with the problem of minimizing the Earth Mover’s Distance
under transformations. As already mentioned in the previous chapter, this task
is important for measuring similarity independently of transformations and sub-
sequently for finding a given pattern into a larger one. We are interested in
transformations that change only the position of the points, not their weights;
in particular we focus on translations and rigid motions. We present polynomial-
time (1 + ε) and (2 + ε)-approximation algorithms for the minimum Euclidean
EMD of two weighted point sets in the plane under translations and rigid mo-
tions.

We start with some notation and definitions that will be used throughout
the chapter. Then we give a summary of previous work and our results. The
algorithms are presented in the rest of the chapter.

3.1.1 Preliminaries

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two planar weighted point sets
with m ≤ n. In a slightly different notation to the one used in the previous
chapter, a weighted point ai ∈ A is defined as ai = {(xai

, yai
), wi}, i = 1, . . . ,m,

where (xai
, yai

) ∈ R2 are the point’s coordinates and wi ∈ R+∪{0} is its weight.
A weighted point bj ∈ B is defined similarly as bj = {(xbj

, ybj
), uj}, j = 1, . . . , n.

Let W =
∑m

i=1 wi and U =
∑n

j=1 uj be the total weight, or simply weight, of
A and B respectively.

We consider B to be fixed, while A can be translated and/or rotated relative
to B. We assume some initial positions for both sets, denoted simply by A and

51
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B. We denote by Rθ a rotation about the origin by some angle θ ∈ [0, 2π)
and by T~t a translation by some ~t ∈ R2. Let I be the set of all possible
rigid motions in the plane. Any rigid motion I ∈ I can be uniquely defined
as a translation followed by a rotation, that is, I = I~t,θ = Rθ ◦ T~t, for some
θ ∈ [0, 2π) and ~t ∈ R2. In general, transformed versions of A are denoted by
A(~t, θ) = {a1(~t, θ), . . . , am(~t, θ)} for some I~t,θ ∈ I. For simplicity, rotated only
versions of A are denoted by A(θ) = {a1(θ), . . . , am(θ)}. Similarly, translated
only versions of A are denoted by A(~t) = {a1(~t), . . . , am(~t)}.

The EMD between A(~t, θ) and B, as ~t, θ vary, is a function EMD : I →
R+ ∪ {0} defined as

EMD(~t, θ) = min
F∈F(A,B)

∑m
i=1

∑n
j=1 fijdij(~t, θ)

min{W,U} ,

where dij(~t, θ) is the distance of ai(~t, θ) to bj , and F = {fij} ∈ F(A,B) with
F(A,B) being the set of all feasible flows between A and B defined by the usual
constraints:

1. fij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n

2.
∑n

j=1 fij ≤ wi, i = 1, . . . , m

3.
∑m

i=1 fij ≤ uj , j = 1, . . . , n

4.
∑m

i=1

∑n
j=1 fij = min{W,U}

In case that ~t or θ or both are constant, we simply write EMD(θ), EMD(~t)
and EMD respectively. Unless stated otherwise, we deal with the Euclidean
or L2-based EMD where dij is given by the L2-norm. We study the following
problem:

Given two weighted point sets A,B compute a rigid motion I~topt,θopt
that

minimizes EMD(~t, θ).
Note that the objective function is not linear in ~t and θ but it is still linear

in F . Thus, the minimum EMD occurs at some vertex of the convex poly-
tope F(A,B). This suggests the following straightforward algorithm: for ev-
ery vertex F = {fij} of F(A,B) compute the transformation that minimizes∑m

i=1

∑n
j=1 fijdij(~t, θ). Assuming that the latter problem can be solved opti-

mally, the algorithm is guaranteed to find a transformation that minimizes the
EMD. However, the number of the vertices of F(A,B) can be exponential in m
and n. Moreover, as we shall see in the next section, the problem of finding the
optimum transformation for a given flow is not trivial.

3.1.2 Relevant work

The problem of minimizing the EMD under transformations was first studied by
Cohen and Guibas [45]. They gave simple algorithms for finding the minimum
EMD under translations for the following two special cases: one-dimensional,
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equal weight sets with L1, and k-dimensional equal weight sets with L2
2. The

latter case is quite restrictive since, in general, the sets need not have the same
weight, and the use of square Euclidean distance is statistically less robust than
Euclidean distance [86]. Currently, no (practical) algorithm that computes an
optimal translation and/or rotation is known for the Euclidean EMD.

Based on an idea similar to the Iterative Closest Point Iteration [26], Cohen
and Guibas presented also a Flow-Transformation iteration which alternates
between finding the optimum flow for a given transformation, and the optimum
transformation for a given flow. They showed that this iterative procedure
converges, but not necessarily to a global optimum. The task of finding the
optimum flow for a given transformation is just the transportation problem we
have seen in the previous chapter; see also Section 3.2. We discuss the second
task below.

Finding the optimal transformation for a given flow. Recall that a
given flow F = {fij} between two sets A and B induces in general a many-
to-many correspondence between the points of A and the points of B. The
problem of finding the optimal transformation for a given flow is actually the
problem of finding a transformation of the points in set A that minimizes the
sum of weighted distances to the corresponding points in the other set. This
problem can be solved efficiently for the case of squared Euclidean distance and
translations, rigid motions and similarities [130], linear and affine transforma-
tions [134].

For the Euclidean distance and translations, the problem reduces to the
Euclidean Minisum problem or the Fermat-Weber problem [35], where one wants
to find a point that minimizes the sum of weighted distances to a set of given
points. In 1937 Weiszfeld [140] proposed an iterative procedure to solve this
problem. Unfortunately, this procedure is not guaranteed to find a location
that achieves the global minimum. Currently, no exact solution to the Fermat-
Weber problem is known even in the real RAM model of computation [21, 27].
However, Bose et al. [27] gave an O(n log n) time deterministic and O(n) time
randomized (1 + ε)-approximation algorithm in any fixed dimension.

We conclude that even if the exponential time algorithm for finding the min-
imum Euclidean EMD under translations is used, we only know how to achieve
a (1 + ε)-approximation of the optimum. However, as we will show, such an
approximation can be also achieved in polynomial time.

3.1.3 Results

In this chapter, we give polynomial-time (1 + ε) and (2 + ε)-approximation
algorithms for the minimum Euclidean EMD under translations and rigid mo-
tions; the algorithms for translations are given in Section 3.4, while the al-
gorithms for rigid motions can be found in Section 3.5. In the general case
where the sets have unequal total weights we compute a (1 + ε)-approximation
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in O((n3m/ε4) log2(n/ε)) time for translations and a (2 + ε)-approximation in
O((n4m2/ε4) log2(n/ε)) time for rigid motions. When the sets have equal to-
tal weights, the respective running times decrease to O((n2/ε4) log2(n/ε)) and
O((n3m/ε4) log2(n/ε)).

The case where wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n, deserves special
attention: the integer solutions property of the minimum cost flow problem and
the fact that 0 ≤ fij ≤ 1 imply that there is a minimum cost flow from A
to B that results in a partial assignment between A and B, that is, a perfect
matching between A and a subset of B; when n = m the problem is simply
referred to as the assignment problem. We show how to compute a (1 + ε)-
approximation of the minimum cost assignment under translations and rigid
motions in O((n3/2/ε7/2) log5 n) and O((n7/2/ε9/2) log6 n) time respectively. Fi-
nally, we give probabilistic (1 + ε)-approximations of the minimum cost par-
tial assignment under translations in O((n3/ε4) log2(n/ε) log n) time and under
rigid motions in O((n4m/ε5) log2(n/ε) log n log m) time; both algorithms suc-
ceed with high probability.

In Section 3.3, we give two simple lower bounds on the EMD that are vital
to our approximation algorithms. These algorithms need to compute the EMD
for a given transformation. Computing the EMD exactly is expensive, and
unnecessary since we opt for approximations for our original problem. We begin
by showing how to get a (1+ ε)-approximation of the EMD in almost quadratic
time.

3.2 Approximating the EMD

The transportation problem is a special version of the minimum cost network
flow problem, the uncapacitated version of which can be formulated as fol-
lows [5]: Let G(V,E) be a directed graph (network) defined by a set V of
vertices and a set E of directed edges. Each edge (vi, vj) ∈ E connecting vi ∈ V
to vj ∈ V has an associated cost dij that denotes the cost per unit flow on that
edge. Each edge (vi, vj) has also an associated lower bound lij that denotes
the minimum amount of flow on the edge. Each vertex vi has a weight wi ∈ R

representing its supply/demand. If wi > 0, vi is a supply vertex; if wi < 0, vi

is a demand vertex with a demand of −wi; and if wi = 0, vi is a transhipment
vertex. Without loss of generality we assume that the total demand is at least as
much as the total supply, i.e.,

∑|V |
i=1 wi ≤ 0. Let fij be the variable representing

the amount of flow from vi to vj on the edge (vi, vj). The objective is to

minimize
∑

i,j:(vi,vj)∈E

fijdij

subject to ∑
j:(vi,vj)∈E

fij −
∑

j:(vj ,vi)∈E

fji = wi,∀i : wi ≥ 0,
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∑
j:(vi,vj)∈E

fij −
∑

j:(vj ,vi)∈E

fji ≥ wi,∀i : wi < 0,

lij ≤ fij ,∀i, j : (vi, vj) ∈ E.

Clearly, the Euclidean EMD formulation fits into the above model where G is
a directed complete bipartite graph with V = A ∪ B and E = {(ai, bj) : ai ∈
A, bj ∈ B}, there are no transhipment vertices, the edges are directed from
supply vertices to demand vertices, dij is the Euclidean distance of ai to bj , and
lij = 0.

Currently, the fastest strongly polynomial-time algorithm for the minimum
cost flow problem on G(V,E) is due to Orlin [99], and runs in O((|E| log |V |)(|E|
+ |V | log |V |)) time. Several weakly polynomial-time algorithms exist, that as-
sume integer edge costs and/or integer supplies and demands [5]. For example,
the algorithm by Goldberg and Tarjan [69] assumes integer edge costs and runs
in O(|V ||E| log(|V |2/|E|) log(|V |C)) time, where C is the largest edge cost.

For the general transportation problem, Gabow and Tarjan [63] presented an
algorithm that assumes integer edge costs and integer supplies and demands; the
algorithm achieves a time bound of O((min{

√
W, |V |}|E|+W log W ) log(|V |C))

where W is the sum of supplies and demands. For the transportation problem
in the plane, Atkinson and Vaidya [20] presented an algorithm that assumes
integer supplies and demands and runs in O(|V |2.5 log(|V |) log W ) time, where
W is the largest supply or demand; an improved version of this algorithm, by
Agarwal et al. [3], runs in |V |2+δ log(|V |) log W ) time, for any fixed δ > 0.

Consider the complete bipartite graph G(V,E) with V = A ∪ B and E =
{(ai, bj) : ai ∈ A, bj ∈ B}. Using the algorithm of Callahan and Kosaraju [33],
we can construct, in O((n + m) log(n + m) + ((n + m)/ε2) log(1/ε)) time, a
linear size (1 + ε)-spanner Gs, i.e., a graph Gs(V,Es) with |Es| = O((n + m)/ε)
such that the shortest path between any two points in Gs is at most (1 + ε)
times the Euclidean distance of the points. As we will see below, running
the algorithm of Orlin on Gs produces an approximate value EMDs such that
EMD ≤ EMDs ≤ (1+ε)EMD. For convenience, this simple procedure is referred
to as ApxEMD(A,B, ε) and given in Figure 3.1.

ApxEMD(A, B, ε):

1. Let G(V, E) be a complete bipartite graph with V = A∪B and E = {(ai, bj) :
ai ∈ A, bj ∈ B}.

2. Construct a (1 + ε)-spanner Gs(V, Es) using the algorithm of Callahan and
Kosaraju [33], such that |Es| = O(n/ε).

3. Find a minimum cost flow on Gs using the algorithm by Orlin [99], and
report the cost.

Figure 3.1: Algorithm ApxEMD(A, B, ε).
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ai
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fij

fij

fij

δ(ai, bj)

(ai, bj)

ai

bj

Figure 3.2: Two point sets A = {ai}, B = {bj}, a spanner Gs on A ∪ B, and an
optimal flow fij sent over δ(ai, bj) in Gs.

Lemma 3.1 For any given ε > 0, ApxEMD(A,B, ε) computes a value EMDs

such that EMD ≤ EMDs ≤ (1 + ε)EMD in O((n2/ε2) log2(n/ε)) time.

Proof: First, we convert Gs into a directed graph as follows: each edge (ai, bj) ∈
Es is substituted by two directed edges (ai, bj) and (bj , ai) both with cost dij .
For any pair of vertices ai, bj , any shortest path from ai to bj in Gs is now
directed; let δ(ai, bj) be such a path and d(ai, bj) be its length. Note that since
Gs is not necessarily bipartite, δ(ai, bj) might contain one or more other vertices
of A and/or B.

Let {fij} be a minimum cost flow on G. In Gs, we choose to send an amount
of fij from ai to bj over δ(ai, bj); see Figure 3.2 for an illustration. Consider
a vertex v ∈ V that is an intermediate node in δ(ai, bj). Then, fij enters and
leaves v without affecting its total surplus or deficit, that is, the incoming flow
minus the outcoming flow. Since {fij} is a feasible flow on G, the flow induced
by the above assignment is a feasible flow on Gs. Since d(ai, bj) ≤ (1 + ε)dij we
have

EMDs ≤
∑m

i=1

∑n
j=1 fijd(ai, bj)

min{W,U} ≤
∑m

i=1

∑n
j=1 fij(1 + ε)dij

min{W,U} = (1 + ε)EMD.

Moreover, any minimum cost flow on Gs can be decomposed into flows along
paths from supply vertices to demand vertices in Gs and thereby defines some
feasible flow on G. Hence, since dij ≤ d(ai, bj), we have that EMD ≤ EMDs.
Constructing Gs takes O((n+m) log(n+m)+((n+m)/ε2) log(1/ε)) = O(n log n
+(n/ε2) log(1/ε)) time. Since |Es| = O((n+m)/ε) = O(n/ε), computing a min-
imum cost flow on Gs takes O(((n/ε) log(n+m))((n/ε)+(n+m) log(n+m))) =
O(((n/ε) log n)((n/ε) + n log n)) time. In total the algorithm takes O(n log n +
(n/ε2) log(1/ε) + ((n/ε) log n)((n/ε) + n log n)) = O((n2/ε2) log2(n/ε)) time.
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For the assignment or minimum cost Euclidean bipartite matching problem
in the plane, Varadarajan and Agarwal [133] presented an algorithm that finds
a matching with cost at most (1 + ε) times the cost of an optimal matching in
O((n/ε)3/2 log5 n) time; we refer to this algorithm as ApxMATCH(A,B, ε).

Theorem 3.1 [133, Theorem 3.1] Let A and B be two sets of points in the
plane with |A| = |B| = n. For any given ε > 0, a perfect matching between A
and B with cost at most (1 + ε) times that of an optimal perfect matching can
be computed in O((n/ε)3/2 log5 n) time.

3.3 Lower bounds on the EMD

We give two lower bounds on the EMD, that depend on the distance between
two points that belong to — or can be easily computed from — A∪B. As such,
these lower bounds direct our search for the optimal transformation; see next
section.

The following simple lower bound comes directly from the definition of the
EMD.

Observation 3.1 Given two weighted point sets A and B, EMD ≥ mini,j dij.

Proof: Let {fij} be an optimal flow between A and B. We have

EMD =

∑m
i=1

∑n
j=1 fijdij

min{W,U} ≥
minij dij

∑m
i=1

∑n
j=1 fij

min{W,U} = min
ij

dij ,

since
∑m

i=1

∑n
j=1 fij = min{W,U}.

The next lower bound is due to Rubner et al. [114], and applies to sets with
equal weights. A practical use of it was already given in Section 2.6. The lower
bound is based on the notion of the center of mass of a weighted point set.

The center of mass C(A) of a planar weighted point set A = {(xai
, yai

), wi},
i = 1, . . . ,m, is defined as

C(A) =
∑m

i=1 wi · (xai
, yai

)∑m
i=1 wi

.

Theorem 3.2 [114] Let A and B be two weighted point sets with equal weights.
Then EMD ≥ d(C(A), C(B)).

As Klein and Veltkamp [87] noted, this lower bound implies that the center
of mass is a reference point [6] for equal weight sets, resulting in a trivial 2-
approximation algorithm for the minimum EMD under translations; see next
section for details.
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3.4 Approximation algorithms for translations

We denote by ~ti→j the translation which matches ai and bj ; we call such a
translation a point-to-point translation. Observation 3.1 implies that the point-
to-point translation that is closest to ~topt gives a 2-approximation of EMD(~topt).
Hence, we have the following:

Lemma 3.2 Given two weighted point sets A and B, it holds that EMD(~topt) ≤
mini,j EMD(~ti→j) ≤ 2EMD(~topt).

Proof: Clearly, EMD(~topt) ≤ mini,j EMD(~ti→j). Next, consider the optimal
position A(~topt) of A and an optimal flow {fij} between A(~topt) and B. Consider
also the distance dij(~topt) for every pair of points ai(~topt), bj and let di0j0(~topt)
be the smallest of all these distances. Assume that we translate A(~topt) to
the position A(~ti0→j0). Then di0j0(~ti0→j0) equals to 0 and, since di0j0(~topt) ≤
dij(~topt), we have that

dij(~ti0→j0) ≤ dij(~topt) + di0j0(~topt) ≤ 2dij(~topt),

for every i = 1, . . . ,m and j = 1, . . . , n. Hence, we have

min
i,j

EMD(~ti→j) ≤ EMD(~ti0→j0)

≤
∑m

i=1

∑n
j=1 fijdij(~ti0→j0)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij2dij(~topt)

min{W,U}
= 2EMD(~topt).

According to Observation 3.1, the point-to-point translation which is closest to
~topt can be at most EMD(~topt) away from ~topt. This bound is crucial for the
(1 + ε)-approximation algorithm given in Figure 3.3. Using a uniform square
grid of suitable size we compute the EMD for a limited number of grid trans-
lations within a small neighborhood – of size EMD(~topt) – of every point-to-
point translation. Note that we do not know EMD(~topt) but we can compute
mini,j EMD(~ti→j) which, according to Lemma 3.2, approximates EMD(~topt)
well-enough. In order to save time, rather than computing EMD exactly, we
will approximate it using the procedure ApxEMD.

Theorem 3.3 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted
point sets in the plane with m ≤ n. For any given ε > 0, Translation(A,B, ε)
computes a translation ~tapx such that EMD(~tapx) ≤ (1+ε)EMD(~topt) in O((n3m
/ε4) log2(n/ε)) time.
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Translation(A, B, ε):

1. Let α = mini,jApxEMD(A(~ti→j), B, 1) and let G be a uniform square grid
of spacing cεα, where c = 1/

√
72.

2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Place a disk D of radius α around ~ti→j .

(b) For every grid point ~tg of any cell of G that intersects D compute a

value ẼMD(~tg) = ApxEMD(A(~tg), B, ε/3).

3. Report the grid point ~tapx that minimizes ẼMD(~tg).

Figure 3.3: Algorithm Translation(A, B, ε).

Proof: According to Lemma 3.2

EMD(~topt) ≤ min
i,j

EMD(~ti→j) ≤ 2EMD(~topt).

From Lemma 3.1 we have that

EMD(~ti→j) ≤ ApxEMD(A(~ti→j), B, 1) ≤ 2EMD(~ti→j).

Hence, since α = mini,j ApxEMD(A(~ti→j), B, 1) we have that

EMD(~topt) ≤ α ≤ 4EMD(~topt).

Also, according to Observation 3.1, there is a point-to-point translation ~ti→j for
which |~ti→j − ~topt| ≤ EMD(~topt) ≤ α. Algorithm Translation will, at some
stage, consider the α-neighborhood of such a translation, and thus, compute a
value ẼMD(~tg) for some grid point ~tg for which

|~tg − ~topt| ≤
√

2(εα/
√

72)2/2 ≤ (ε/3)EMD(~topt),

and thus dij(~tg) ≤ dij(~topt) + (ε/3)EMD(~topt); see Figure 3.4. Assuming that
{fij} is the optimal flow at ~topt, and similarly to the proof of Lemma 3.2, we
have

EMD(~tg) ≤
∑m

i=1

∑n
j=1 fijdij(~tg)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij(dij(~topt) + (ε/3)EMD(~topt))

min{W,U}
= (1 + ε/3)EMD(~topt).

From Lemma 3.1 we have that

EMD(~tg) ≤ ẼMD(~tg) ≤ (1 + ε/3)EMD(~tg).
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ai

bj

ai(~tg)

ai(~topt)

EMD(~topt) ≤ α ≤ 4EMD(~topt)

Grid size:

Θ(ε × EMD(~topt))

Figure 3.4: A pair of points ai, bj for which dij(~topt) ≤ EMD(~topt), and a grid trans-
lation ~tg of ai for which |~tg − ~topt| ≤ (ε/3)EMD(~topt).

Hence, the algorithm reports a translation ~tapx such that

EMD(~tapx) ≤ ẼMD(~tapx)

≤ ẼMD(~tg)
≤ (1 + ε/3)EMD(~tg)
≤ (1 + ε/3)(1 + ε/3)EMD(~topt)
≤ (1 + ε)EMD(~topt),

for every ε ≤ 3. There are nm point-to-point translations, around each of which
procedure ApxEMD is run for O(α2/(α2ε2)) = O(1/ε2) grid points. Hence,
the algorithm runs in O((nm/ε2)(n2/ε2) log2(n/ε)) = O((n3m/ε4) log2(n/ε))
time.

3.4.1 Equal weight sets

In this section we consider the case of sets with equal total weights. Let
~tC(A)→C(B) be the translation that matches the centers of mass C(A) and C(B).
Theorem 3.2 suggests the following trivial 2-approximation algorithm: compute
EMD(~tC(A)→C(B)); we omit the proof since it is straightforward and very similar
to the one of Lemma 3.2.
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Also, according to Theorem 3.2, ~topt is at most EMD(~topt) far away from
~tC(A)→C(B). Hence, we need to search for ~topt only within a small neighborhood
of ~tC(A)→C(B). We modify algorithm Translation as follows: First we com-
pute C(A) and C(B). Then, we run ApxEMD(A(~tC(A)→C(B)), B, 1) and set
α to the value returned. Next, we use the same grid size as in Translation,
and run ApxEMD(A(~tg), B, ε/3) for all the grid points ~tg which are at most α
away from ~tC(A)→C(B). The minimum over all these approximations gives the
desired approximation bound; this follows easily from arguments very similar to
the ones used in the proof of Theorem 3.3. Note that the total number of grid
points to be tested is O(1/ε2). Hence, we have managed to save an nm term
from the time bound of Theorem 3.3.

Theorem 3.4 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted
point sets in the plane with equal total weights and m ≤ n. For any given ε > 0,
a translation ~tapx such that EMD(~tapx) ≤ (1 + ε)EMD(~topt) can be computed in
O((n2/ε4) log2(n/ε)) time.

For the assignment problem under translations, we can use the above algo-
rithm for equal weight sets, running ApxMATCH instead of ApxEMD. This
reduces the running time further.

Theorem 3.5 For any given ε > 0, a (1 + ε)-approximation of the minimum
cost assignment under translations can be computed in O((n3/2/ε7/2) log5 n)
time.

Note that the latter algorithm can be also applied to equal weight sets with
bounded integer point weights by replacing each point by as many points as its
weight.

3.4.2 Partial assignment

In Section 3.3, Observation 3.1, we saw that, in general, there is at least one
pair of points ai, bj whose distance is at most EMD. Next, we prove that, for
the partial assignment case, there is a linear number of pairs of points whose
distance is at most 2EMD.

Lemma 3.3 Given two weighted point sets A = {a1, . . . , am}, B = {b1, . . . , bn}
with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n, there are at least m/2
distances dij with dij ≤ 2EMD.

Proof: Consider an optimal flow {fij} that results in a partial assignment be-
tween A and B. Then there are exactly m flow variables fij with fij = 1
and m(n − 1) variables with zero flow. Since min{W,U} = m, we have that∑m

i=1

∑n
j=1 fijdij = mEMD, where exactly m terms dij appear in the sum.

Since dij ≥ 0, it follows that there are at most k out of m distances dij with
dij ≥ (m/k)EMD. Equivalently, there are at least m − k distances dij with
dij ≤ (m/k)EMD. We choose k = m/2, and the lemma follows.
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Note that algorithm Translation tests all possible nm pairs of points ai, bj

in order to find at least one for which dij(~topt) ≤ EMD(~topt). Based on the
above lemma, we can easily prove that testing a linear number of pairs suffices
in order to find one for which dij(~topt) ≤ 2EMD(~topt) with high probability.
Algorithm RandomTranslation is given in Figure 3.5; it is a straightforward
probabilistic version of algorithm Translation.

RandomTranslation(A, B, ε):

1. Repeat (2/ log e)n log n times:

(a) Choose a random pair (ai, bj) ∈ A × B.

(b) Let αij =ApxEMD(A(~ti→j), B, 1).

Let α = 2 mini,j αij and G be a uniform square grid of spacing cεα,

where c = 1/
√

288.

2. Repeat (2/ log e)n log n times:

(a) Choose a random pair (ai, bj) ∈ A × B.

(b) Place a disk D of radius α around ~ti→j .

(c) For every grid point ~tg of any cell of G that intersects D

compute a value ẼMD(~tg) = ApxEMD(A(~tg), B, ε/3).

3. Report the grid point ~tapx that minimizes ẼMD(~tg).

Figure 3.5: Algorithm RandomTranslation(A, B, ε).

Theorem 3.6 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted
point sets with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n. For any
given ε > 0, RandomTranslation(A,B, ε) computes a translation ~tapx such
that EMD(~tapx) ≤ (1 + ε)EMD(~topt) in O((n3/ε4) log2(n/ε) log n) time. The
algorithm succeeds with probability at least 1 − 2n−1.

Proof: According to Lemma 3.3, there are at least m/2 distances dij(~topt) with
dij(~topt) ≤ 2EMD(~topt). Since there are in total nm possible distances dij(~topt),
we have that

Pr[dij(~topt) > 2EMD(~topt)] ≤ 1 − m/(2nm) = 1 − 1/(2n)

for a random pair ai, bj . Thus, the probability that K random draws of a pair
ai, bj will all fail to give a pair for which dij(~topt) ≤ 2EMD(~topt) is at most
(1− 1/2n)K . By choosing K = (2/ log e)n log n the latter probability is at most
e−(log n)/ log e = n−1.

The rest of the proof is almost identical to the proof of Theorem 3.3. That
is, if a pair ai, bj for which dij(~topt) ≤ 2EMD(~topt) is tested, then the algorithm
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will compute in step 1 a value α such that

2EMD(~topt) ≤ α < 8EMD(~topt).

Similarly, step 2 will report a translation ~tapx such that

EMD(~topt) ≤ EMD(~tapx) ≤ (1 + ε)EMD(~topt)

in O(((n log n)/ε2)(n/ε)2 log2(n/ε)) = O((n3/ε4) log2(n/ε) log n) time. The al-
gorithm fails to report such a translation if and only if any of its two random
steps fail. That is, the algorithm fails with probability at most 2n−1.

3.5 Approximation algorithms for rigid motions

We first give (2 + ε) and (1 + ε)-approximation algorithms for rotations for
the general and partial assignment case respectively. Then, we combine these
algorithms with the (1 + ε)-approximation algorithms for translations to get
approximation algorithms for rigid motions.

3.5.1 Rotations

Let ∠aiobj be the angle between the segments oai and obj such that 0 ≤
∠aiobj ≤ π. Also, let θi→j be the rotation by ∠aiobj that aligns the origin
o and points ai and bj such that both ai and bj are on the same side of o.
Note that this is the rotation that minimizes dij(θ); we call such a rotation an
alignment rotation.

We begin with a simple lemma that we will need later on.

Lemma 3.4 Let ai and bj be two points in the plane with ∠aiobj = φ. If ai is
rotated by an angle θ ≤ φ, then dij(θ) < 2dij.

Proof: First, note that we are only interested in the rotation of ai that increases
its distance to bj ; see Figure 3.6 for an illustration. Since θ ≤ φ we have that
dij(θ) ≤ dij(φ), hence it suffices to bound dij(φ).

First, we assume that none of ai and bj coincides with the origin. Then,
without loss of generality, we assume that xbj

> 0 and ybj
= 0. We also assume

that yai
6= 0, since, otherwise, if xai

> 0 then φ = 0 and dij(φ) = dij , or if
xai

< 0 then φ = π and dij(φ) < dij . Let ri =
√

x2
ai

+ y2
ai

be the rotation
radius of ai. We have

dij =
√

r2
i + x2

bj
− 2xbj

ri cos(φ)

and
dij(φ) =

√
r2
i + x2

bj
− 2xbj

ri cos(2φ).
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o
φ

φ

ai(φ)

ai

dij

bj

dij(φ)

ri

ri

Figure 3.6: If ∠aiobj = φ and ai is rotated about o by φ then dij(φ) < 2dij .

Then

4d2
ij − d2

ij(φ) = 3r2
i + 3x2

bj
+ 2xbj

ri(2 cos2(φ) − 4 cos(φ) − 1)

> 3(ri − xbj
)2

≥ 0,

where in the equality we used that cos(2x) = 2 cos2(x) − 1, and in the first
inequality we used that 2 cos2(φ)− 4 cos(φ)− 1 > −3. Hence, dij(θ) ≤ dij(φ) <
2dij .

Consider the angle ∠ai(θopt)obj for every pair of points ai(θopt) and bj and let
∠ai0(θopt)obj0 be the smallest of all these angles. Then θi0→j0 is the alignment
rotation that is closest to θopt. Similarly to Lemma 3.2, and using Lemma 3.4,
we can now prove that this alignment rotation gives a 2-approximation of
EMD(θopt). Hence, we have the following:

Lemma 3.5 Given two weighted point sets A and B, it holds that EMD(θopt) ≤
mini,j EMD(θi→j) ≤ 2EMD(θopt).

Proof: Clearly, EMD(θopt) ≤ mini,j EMD(θi→j). Consider an optimal position
A(θopt) of A and an optimal flow {fij} between A(θopt) and B. We assume that
θopt is not an alignment rotation, otherwise the lemma holds trivially. Next,
consider the angle ∠ai(θopt)obj for every pair of points ai(θopt) and bj , and let
∠ai0(θopt)obj0 be the smallest of all these angles. Assume that we rotate A(θopt)
by ∠ai0(θopt)obj0 to the position A(θi0→j0); this is the alignment rotation that
is closest to θopt. Then, ∠ai0(θi0→j0)obj0 equals to 0 and

∠ai(θi0→j0)obj ≤ ∠ai(θopt)obj + ∠ai0(θopt)obj0 ≤ 2∠ai(θopt)obj ,
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for every i = 1, . . . ,m and j = 1, . . . , n. According to Lemma 3.4 we have that
dij(θi0→j0) < 2dij(θopt). Concluding,

min
i,j

EMD(θi→j) ≤ EMD(θi0→j0)

≤
∑m

i=1

∑n
j=1 fijdij(θi0→j0)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij2dij(θopt)

min{W,U}
= 2EMD(θopt).

By approximating mini,j EMD(θi→j) with mini,jApxEMD(A(θi→j), B, ε/2)
we can get a (2 + ε)-approximation of EMD(θopt). We call this algorithm
Rotation(A,B, ε). Apart from the cost value, Rotation returns the corre-
sponding rotation θi→j as well. Hence we have the following:

Lemma 3.6 For any given ε > 0, a rotation θapx such that EMD(θapx) ≤
(2 + ε)EMD(θopt) can be computed in O((n3m/ε2) log2(n/ε)) time.

Partial assignment. Let us now consider rotations for the special case where
all the weights are one, for which we will provide a (1 + ε)-approximation. Let
a1bj1 , . . . , ambjm

be a matching corresponding to an optimal integer flow at an
optimal rotation θopt for the problem. Observe that diji

(θopt) ≤ mEMD(θopt)
because mEMD(θopt) =

∑
i diji

(θopt). This means that in order to find an
optimal rotation we only need to consider the rotations

{θ ∈ [0, 2π) : dij(θ) ≤ mEMD(θopt)},

for all i, j. Of course, since we do not know the value EMD(θopt), we will instead
consider the rotations Rij(α) = {θ ∈ [0, 2π) : dij(θ) ≤ mα}, for some value α
such that EMD(θopt) ≤ α ≤ 3EMD(θopt). Inside each Rij we will consider
sample rotations Θij according to the following. We divide Rij(α) into two
parts, R<

ij(α) = {θ ∈ [0, 2π) : dij(θ) ≤ α} and R>
ij(α) = {θ ∈ [0, 2π) : α ≤

dij(θ) ≤ mα}. To handle R<
ij(α), we consider the set of distances

D<
ij(α) = {k · ε α

18 ∈ [0, α] | k ∈ N},

which consists of O(1/ε) values. To handle R<
ij(α), we consider the set of dis-

tances
D>

ij(α) = {α(1 + ε/6)k ∈ [α,mα] | k ∈ N},

which contains O(log1+ε
mα
α ) = O(log1+ε m) = O(ε−1 log m) values. Figure 3.7

gives an illustration of these two sets of distances. Let Dij(α) = {0, α,mα} ∪
D<

ij(α) ∪ D>
ij(α), and consider the set of angles Θij = {θ ∈ [0, 2π) | dij(θ) ∈
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bji

ai(θopt)

EMD(~topt) ≤ α ≤ 3EMD(~topt)

o

ai(θi)

ai(θ
′
i)

ai(θi)

ai(θ
′
i)

α

ai(θopt)

mα

εα/18

k

αε/6(1 + ε/6)k

trajectory of ai

Figure 3.7: A pair of points ai, bji for which diji(θopt) ≤ mEMD(θopt), and two
examples of possible positions of ai(θopt), ai(θi) and ai(θ

′
i), depending on diji(θopt).

Dij(α)}. This finishes the description of Θij , and therefore Θij contains O(ε−1

log m) angles.
The claim is that the best rotation among

⋃
ij Θij provides a (1 + ε) - ap-

proximation for EMD(θopt). The main idea is that the angles from Θiji
that

are in R<
ij(α) take care for the case when diji

(θopt) is at most α ≥ EMD(θopt)
by controlling the absolute error this pair produces in the approximation, while
the angles from Θiji

that are in R>
ij(α) take care for the case when diji

(θopt)
is between α and mEMD(θopt) ≤ mα by controlling the relative error that the
pair aibji

produces.
A detailed description of the algorithm, referred to as PartRotation, is

given in Figure 3.8. The algorithm shown runs ApxEMD for the general case
where m < n; when m = n, ApxMATCH can be used instead.

Theorem 3.7 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two point sets
with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n. For any given ε ∈ (0, 1),
PartRotation(A,B, ε) computes a rotation θapx such that EMD(θapx) ≤ (1 +
ε)EMD(θopt) in O((n3m/ε3) log2(n/ε) log m) time. When m = n, the same
approximation can be computed in O((n7/2/ε5/2) log6 n) time.

Proof: First note that EMD(θopt) ≤ α ≤ 3EMD(θopt). Let a1bj1 , . . . , ambjm
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PartRotation(A, B, ε):

1. Let α = mini,jApxEMD(A(θi→j), B, 1).

2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Compute Dij(α) = {0, α, mα} ∪ D<
ij(α) ∪ D>

ij(α)).

(b) Let Θij = {θ ∈ [0, 2π) | dij(θ) ∈ Dij(α)}
(c) For each sample rotation θ ∈ Θij

compute a value ẼMD(θ) =ApxEMD(A(θ), B, ε/3).

3. Report the sample rotation θapx that minimizes ẼMD(θ).

Figure 3.8: Algorithm PartRotation(A, B, ε).

be a matching corresponding to an optimal integer flow at an optimal rotation
θopt, and consider the sample rotation θg ∈

⋃
i Θiji

that is closest to θopt.
Our objective is to show that ẼMD(θg) ≤ (1 + ε)EMD(θopt). Observe that if
θopt ∈

⋃
Θij then the approximation holds trivially.

Consider one pair aibji
, and let θi, θ

′
i ∈ Θiji

be the two closest angles such
that θopt lies between them. We may assume that diji

(θi) ≤ diji
(θ′i). Then it

holds that diji
(θi) ≤ diji

(θopt) ≤ diji
(θ′i) and diji

(θi) ≤ diji
(θg) ≤ diji

(θ′i). If
diji

(θopt) < α, then θopt ∈ R<
iji

(α), and also θi, θ
′
i ∈ R<

iji
(α). Because θi, θ

′
i are

contiguous in Θiji
, we have diji

(θ′i) − diji
(θi) ≤ εα/18, and therefore

diji
(θg) − diji

(θopt) ≤ εα/18 ≤ εEMD(θopt)/6.

If diji
(θopt) > α, then θopt ∈ R>

iji
(α), and also θi, θ

′
i ∈ R>

iji
(α). Because θi, θ

′
i

are contiguous in Θiji
, we have diji

(θ′i) ≤ (1+ε/6)diji
(θi), and therefore it holds

that diji
(θg) ≤ (1 + ε/6)diji

(θopt).
Then we have

EMD(θg) ≤
∑m

i=1 diji
(θg)

m

≤
∑

{i:diji
(θopt)<α} diji

(θg) +
∑

{i:diji
(θopt)>α} diji

(θg)

m

≤
∑

{i:diji
(θopt)<α} εEMD(θopt)/6

m

+

∑
{i:diji

(θopt)>α}(1 + ε/6)diji
(θopt)

m

≤
∑m

i=1 εEMD(θopt)/6
m

+ (1 + ε/6)
∑m

i=1 diji
(θopt)

m
= εEMD(θopt)/6 + (1 + ε/6)EMD(θopt)
= (1 + ε/3)EMD(θopt),
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and we conclude

EMD(θapx) ≤ ẼMD(θapx)

≤ ẼMD(θg)
≤ (1 + ε/3)EMD(θg)
≤ (1 + ε/3)(1 + ε/3)EMD(θopt)
≤ (1 + ε)EMD(θopt).

Regarding the running time, observe that for each pair of points ai, bj we
run ApxEMD for O(ε−1 log m) sample rotations. Hence PartRotation runs
in O(nm/ε log m(n2/ε2) log2(n/ε)) = O((n3m/ε3) log2(n/ε) log m) time. When
n = m we can use ApxMATCH instead of ApxEMD, reducing the running
time to O(n2/ε log n(n/ε)3/2 log5 n) = O((n7/2/ε5/2) log6 n).

3.5.2 Rigid motions

We can combine algorithm Rotation with the 2-approximation algorithm for
translations in Lemma 3.6 to get a (4+ ε)-approximation of the minimum EMD
under rigid motions in the following way: for each point-to-point translation
~ti→j , compute a (2+ε/2)-approximation of the optimum EMD between A(~ti→j)
and B under rotations about bj . The minimum over all these approximations
gives a 2(2 + ε/2)-approximation of EMD(~topt, θopt); see, for example, the first
step of algorithm RigidMotion shown in Figure 3.9 where a 6-approximation
of EMD(~topt, θopt) is computed.

Lemma 3.7 For any given ε > 0, a (4 + ε)-approximation of the minimum
EMD under rigid motions can be computed in O((n4m2/ε2) log2(n/ε)) time.

Proof: According to Observation 3.1, there exist two points ai0 , bj0 whose dis-
tance at an optimal position of A is at most the minimum EMD under rigid mo-
tions. The above algorithm will use, at some stage, bj0 as the center of rotation
by translating B appropriately. Of course for this ‘new’ position of B there is an
optimal rigid motion of A, I~topt,θopt

for which di0,j0(~topt, θopt) ≤ EMD(~topt, θopt)
as well.

If A is translated by ~ti0→j0 instead of ~topt, and then rotated by θopt we have
dij(~ti0→j0 , θopt) ≤ dij(~topt, θopt) + |~topt − ~ti0→j0 |, for every i = 1, . . . ,m and
j = 1, . . . , n. Since |~topt − ~ti0→j0 | = di0,j0(~topt, θopt) ≤ EMD(~topt, θopt) we have
that dij(~ti0→j0 , θopt) ≤ dij(~topt, θopt) + EMD(~topt, θopt). Similarly to the proof
of Lemma 3.6, we see that

EMD(~ti0→j0 , θopt) ≤ 2EMD(~topt, θopt).

If θij
opt is the optimal rotation of A(~ti→j) about bj then

EMD(~topt, θopt) ≤ EMD(~ti0→j0 , θ
i0j0
opt ) ≤ EMD(~ti0→j0 , θopt).
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Thus,

EMD(~topt, θopt) ≤ min
ij

EMD(~ti→j , θ
ij
opt)

≤ EMD(~ti0→j0 , θ
i0j0
opt )

≤ 2EMD(~topt, θopt).

From Lemma 3.6 we also have that

EMD(~ti→j , θ
ij
opt) ≤ Rotation(A(~ti→j), B, ε/2) ≤ (2 + ε/2)EMD(~ti→j , θ

ij
opt).

Putting it all together we get

EMD(~topt, θopt) ≤ min
ij

EMD(~ti→j , θ
ij
opt)

≤ min
ij

Rotation(A(~ti→j), B, ε/2)

≤ (2 + ε/2)min
ij

EMD(~ti→j , θ
ij
opt)

≤ 2(2 + ε/2)EMD(~topt, θopt)
= (4 + ε)EMD(~topt, θopt).

Since Rotation is run nm times, the running time of the algorithm is O(nm(n3

m/ε2) log2(n/ε)) = O((n4m2/ε2) log2(n/ε)).

The (2 + ε)-approximation algorithm for rigid motions is based on similar
ideas. According to Observation 3.1, there exist two points ai, bj whose dis-
tance at I~topt,θopt

is at most EMD(~topt, θopt). We place a grid of suitable size
around each ~ti→j . For each grid point ~tg that is at most EMD(~topt, θopt) away
from ~ti→j we compute a (2 + ε)-approximation of the optimum EMD between
A(~tg) and B under rotations about bj . The minimum over all these approxi-
mations is within a factor of (2 + ε) of EMD(~topt, θopt). Since we do not know
EMD(~topt, θopt), we first compute a 6-approximation of it as shown above. Algo-
rithm RigidMotion(A,B, ε) is shown in Figure 3.9; for the partial assignment
problem, a (1 + ε)-approximation can be achieved by running PartRotation

instead of Rotation.

Theorem 3.8 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted
point sets in the plane with m ≤ n. For any given ε > 0, RigidMotion(A,B, ε)
computes a rigid motion I~tapx,θapx

such that EMD(~tapx, θapx) ≤ (2+ε)EMD(~topt,

θopt) in O((n4m2/ε4) log2(n/ε)) time. A (1+ ε)-approximation of the minimum
cost partial assignment under rigid motions can be computed in O((n4m2/ε5)
log2(n/ε)) log m time.

Proof: The proof is very similar to the proof of Lemma 3.7. First note that
according to that lemma, EMD(~topt, θopt) ≤ α ≤ 6EMD(~topt, θopt). Consider
again a pair of points ai0 , bj0 such that ~topt is at most EMD(~topt, θopt) away
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RigidMotion(A, B, ε):

1. For each pair of points ai ∈ A and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to be bj by translating B
appropriately.

(b) Run Rotation(A(~ti→j), B, 1) and let αij be the cost value returned.

Let α = minij αij .

2. Let G be a uniform grid of spacing cαε, where c = 1/
√

288. For each pair of
points ai ∈ A and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to be bj by translating B
appropriately.

(b) Place a disk D of radius α around ~ti→j .

(c) For every grid point ~tg of any cell of G that intersects D run

Rotation(A(~tg), B, ε/3). Let ẼMD(~tg) and θg
apx be the cost value and

angle returned respectively.

3. Report the grid point ~tapx that minimizes ẼMD(~tg), and the corresponding
angle θapx.

Figure 3.9: Algorithm RigidMotion(A, B, ε).

from ~ti0→j0 . Since, at some stage, the algorithm will consider bj0 as the center
of rotation, we have that ~topt ∈ D, where D is a disk of radius α around
~ti0→j0 . For the grid translation ~tg that is closest to ~topt we have |~tg − ~topt| ≤
(1/4)εEMD(~topt, θopt). Similarly to the proof of Theorem 3.3 we have that

EMD(~tg, θopt) ≤ (1 + ε/4)EMD(~topt, θopt).

If θg
opt is the optimal rotation of A(~tg) about bj0 then of course EMD(~tg, θ

g
opt) ≤

EMD(~tg, θopt). Note that Rotation(A(~tg), B, ε/3) returns a cost ẼMD(~tg) for
which

ẼMD(~tg) ≤ (2 + ε/3)EMD(~tg, θ
g
opt),

and an angle θg
apx for which EMD(~tg, θg

apx) ≤ ẼMD(~tg). Hence, in total we have

EMD(~topt, θopt) ≤ EMD(~tapx, θapx)

≤ ẼMD(~tapx)

≤ ẼMD(~tg)
≤ (2 + ε/3)EMD(~tg, θ

g
opt)

≤ (2 + ε/3)EMD(~tg, θopt)
≤ (2 + ε/3)(1 + ε/4)EMD(~topt, θopt)
≤ (2 + ε)EMD(~topt, θopt),
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where the last inequality holds for any ε ≤ 2.
Since Rotation runs for O(nm/ε2) grid translations in total, the algorithm

runs in O((nm/ε2)(n3m/ε2) log2(n/ε)) = O((n4m2/ε4) log2(n/ε)) time. Note
that for the partial assignment problem a (1+ε)-approximation can be achieved
by running PartRotation instead of Rotation; the running time increases
to O((nm/ε2)(n3m/ε3) log(m/ε) log2(n/ε)) = O((n4m2/ε5) log(m/ε) log2(n/ε)).

As in the case of translations, for equal weight sets we need to search for
the optimal translation only around ~tC(A)→C(B). We set the center of rotation
to be C(B). Computing the 6-approximation of EMD(~topt, θopt) can be done
simply by running Rotation(A(~tC(A)→C(B)), B, 1). Similarly, we need to run
Rotation(A(~tg), B, ε/3) only for grid points ~tg that are close to ~tC(A)→C(B).
For the assignment problem, instead of using Rotation, we can use the version
of PartRotation that runs ApxMATCH to achieve a (1 + ε)-approximation.

Theorem 3.9 If A and B have equal total weights, then, for any given ε > 0,
a rigid motion I~tapx,θapx

such that EMD(~tapx, θapx) ≤ (2 + ε)EMD(~topt, θopt)
can be computed in O((n3m/ε4) log2(n/ε)) time. For the minimum cost assign-
ment problem under rigid motions a (1 + ε)-approximation can be computed in
O((n7/2/ε9/2) log6 n) time.

Finally, for the partial assignment problem under rigid motions, we can use
the same arguments as in the translational case to convert algorithm Rigid-

Motion – that will now use PartRotation – into a randomized one where
its two first steps are executed only for a random selection of Θ(n log n) pairs
of points. We refrain from giving an exact description of the algorithm and
a proof, since doing so will only produce unnecessary replication of ideas that
have been already introduced. We conclude with the following:

Theorem 3.10 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted
point sets with m ≤ n and wi = uj = 1, i = 1, ...,m, j = 1, ..., n. For
any given ε > 0, a rigid motion I~tapx,θapx

such that EMD(~tapx, θapx) ≤ (1 +
ε)EMD(~topt, θopt) can be computed in O((n4m/ε5) log2(n/ε) log n log m) time.
The algorithm succeeds with probability at least 1 − 2n−1.

3.6 Concluding remarks

This chapter presented polynomial-time (1+ ε) and (2+ ε)-approximation algo-
rithms for the minimum Euclidean EMD under translations and rigid motions.

Note that algorithm ApxEMD in Section 3.2 can be trivially generalized in
higher dimensions: for two d-dimensional point sets A and B with |A| = m, |B| =
n and m ≤ n, a (1 + ε)-spanner Gs with O(ε−d+1) edges can be computed in
O(n log n+(n/εd) log(1/ε)) time [33]. As before, we run Orlin’s algorithm on Gs

and ApxEMD runs in O((n2/ε2(d−1)) log2(n/ε)) time. Unfortunately we do not
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know whether the approximation algorithm of Varadarajan and Agarwal for the
minimum cost bipartite matching in the plane carries on in higher dimensions.
Also, note that the lower bounds in Section 3.3 and Lemma 3.3 hold for any
dimension. Hence, for the general EMD in d-dimensional Euclidean space, a
(1 + ε)-approximation of the minimum under translations can be computed in
O((n3m/ε3d−2) log2(n/ε)) time. Algorithm RandomTranslation generalizes
in a similar way.

We intend to work on extending the (1 + ε)-approximation for rotations to
the general case of arbitrary weights; Another interesting and non-trivial task
is to give lower and upper bounds of the complexity of the function EMD(~t, θ),
i.e., the total number of its local optima.



Chapter 4

Maximizing the Area of
Overlap of two Unions of
Convex Objects under
Translations

4.1 Introduction

In the last two chapters we have dealt with similarity measures for weighted-
point sets based on weight (mass) transportation. Alternatively, we can think
of the weight of a point as a property counted in area or volume: in the simplest
case we can assign to each point a ball centered at it with radius relative to its
weight. Then, a weighted-point set can define a shape given by a union of balls
and a possible measure of the similarity of two such sets is the area of overlap
of their respective unions.

In this chapter, we deal with matching shapes that are ‘expressed’ as unions
of convex objects using the area of overlap as a similarity measure. In particular,
consider two sets A and B consisting of either homothets of a single planar
compact convex object or arbitrary planar compact fat convex objects under
the following conditions: (i) the ratio of the areas of any two objects in A ∪ B
is bounded (ii) any object in A intersects only a constant number of other
objects in A, and the same holds for B. Fatness ensures that the objects are
not infinitesimally thin; see Section 4.2 for a formal definition of fatness.

Each set is treated as a union of objects, that is, area that is covered by
more than one object is counted only once. An example of two such sets A
and B, consisting of disk homothets, and the area of overlap of their respective
unions for some translation of A is given in Figure 4.1. The objective is to find a
translation of A that maximizes the area of its overlap with B. We will see that
this is a computationally hard problem, and, as an alternative, we will show

73
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Figure 4.1: Two unions of disks A and B and their overlap for some translation of A.

how to compute a translation for which the area of overlap of is at least (1− ε)
times that of an optimal translation.

4.1.1 Applications

As a first application consider the case of polygons with curved boundaries that
was put forward as an open question by Mount et al. [96]. On one hand, we
tackle a restricted version of this problem since clearly not every such polygon
can be represented as a union of either convex homothets or fat convex objects.
On the other hand, our setting is more general, since such unions can form
shapes that can have non-simple, non-connected components.

Any two- or three-dimensional shape can be efficiently approximated by a
finite union of disks or balls—see, for example, the works by O’Rourke and
Badler [100] and Amenta and Kolluri [16]. Ranjan and Fournier [108] also used
the union of disks or spheres representation to interpolate between two shapes.
The assumptions (i) and (ii) above will often be satisfied when disks or balls
are used to approximate objects, although the constant in assumption (i) may
become large when the approximated objects have fine details. Moreover, both
assumptions make perfect sense in molecular modeling with the hard sphere
model [74]. Under this model the radii range of the spheres is fairly restricted
and no center of a sphere can be inside another sphere; a simple packing ar-
gument shows that the latter implies assumption (ii). A related problem with
applications in protein shape matching was examined by Agarwal et al. [1], who
gave algorithms for minimizing the Hausdorff distance between two unions of
disks or balls under translations.

4.1.2 Relevant work

As already mentioned in Section 1.5.2, Mount et al [96] examined the function
of the area of overlap of two translated simple polygons, de Berg et al. [51]
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gave an efficient algorithm for computing the maximum area of overlap of two
convex polygons under translations and Alt et al. [10] gave a constant-factor
approximation algorithm of the minimum area of symmetric difference of two
convex shapes.

Independently of our work, Cheong et al. [39] gave an almost linear, prob-
abilistic approximation algorithm that computes the maximum area of overlap
of two unions of convex objects under translations up to an absolute error with
high probability. When the maximum overlap is at least a constant fraction of
the area of one of the two sets, the absolute error is in fact a relative error. As
they point point out, this can be good enough for certain shape matching ap-
plications, since if two shapes are quite dissimilar we usually do not care about
how bad the match exactly is. We will present their method in the next chapter
where it is actually used in an approximation algorithm for rigid motions.

4.1.3 Results

Throughout this chapter, we focus on the case of sets of convex homothets;
special attention is given to the sub-case of sets of disjoint unit disks. Once our
main ideas are presented, we state the results for the case of sets of fat convex
objects and give detailed proofs only when these differ substantially from the
ones given in previous cases.

First, we show in Section 4.3 that the maximum number of combinatori-
ally distinct translations of A with respect to B can be as high as Θ(n2m).
Moreover, the function describing the area of overlap is quite complex, even for
combinatorially equivalent placements. Therefore, we focus on approximation
algorithms.

We present a deterministic (1−ε)-approximation algorithm for the maximum
area of overlap under translations of two unions of either convex homothets or
fat convex objects. This algorithm is the main result of this chapter. We assume
that our objects have boundaries of constant description complexity and that
the maximum number of intersections per object pair is constant. For example
this is true for objects which can be defined as semialgebraic sets of constant
description complexity1. Consequently, we can both compute the overlap of any
two objects and decide whether a point is covered by an object in constant time.
Under this model of computation, our algorithm runs in O((nm/ε2) log(m/ε))
time; this is worse than the algorithm of Cheong et al., but our algorithm is
deterministic and our error is always relative, even when the optimum is small.

In Section 4.3.4 we study in detail the function of the area of overlap for
sets of disjoint unit disks and give an intuitive geometric interpretation of the
critical translations that correspond to the function’s local/global optima and
saddle points. In Section 4.4 we give a lower bound on the maximum area of
overlap, expressed in the number of pairs of objects that contribute to that

1A subset of R
d is called a real semialgebraic set if it is obtained as a finite Boolean com-

bination of sets of the form {f = 0} or {f > 0} for d-variate polynomials f . A semialgebraic
set has constant description complexity if it can be described in terms of a constant number
of polynomials, with a constant bound on the degrees of the corresponding polynomials.
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C1

C2

Figure 4.2: Object C1 is a degenerate convex object (straight line segment) and non-
fat. Object C2 is 4-fat. The dashed circles indicate the boundaries of the smallest
enclosing and largest enclosed disks; the black dots represent their centers.

area. This is a vital ingredient of the proof of the approximation bound of the
algorithm presented in Section 4.6. As a side-result of our analysis of the lower
bound on the maximum area of overlap, constant-factor approximation schemes
are presented as well; see Section 4.5. Note that, although we focus on the
two-dimensional case, our results can be generalized to 3D for the case of sets
of spheres in a straightforward way.

We start with the problem statement, some definitions and the notation that
will be used throughout the chapter.

4.2 Preliminaries

Let A = {A1, . . . , An} and B = {B1, . . . , Bm}, (n ≤ m), be two sets of either
homothets of the same planar compact convex object C or arbitrary planar
compact fat convex objects. To avoid confusion we denote by C an arbitrary
planar compact convex object; its area and interior are denoted by V (C) and
Int(C) respectively.

In the case of homothets, each Ai ∈ A can be written as αi C(~ai) for some
translational vector ~ai and scaling factor αi; similarly, each Bj ∈ B can be
written as βj C(~bj).

In the case of fat convex objects, each C in A∪B is α-fat, for some fixed α >
1; that is, for each C ∈ A∪B the ratio of the area of its smallest enclosing disk D′

C
to the area of its largest enclosed disk DC is at most α; see Figure 4.2 for some
examples. For more details concerning fat objects see van der Stappen [131]
and Vleugels [138].

Throughout the paper the following assumptions hold:
(i) Let Cs and Cl be the object in A ∪ B with the smallest, resp. largest area.
We assume that V (Cl)/V (Cs) = λ for some constant λ > 0; we call λ the scaling
ratio. Without loss of generality we can also assume that V (C) = V (Cs) = 1
and V (Cl) = λ.
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(ii) We define the depth of a point p ∈ R2 with respect to a set of objects as the
number of objects in the set that contain it. We assume that the depth of any
point p ∈ R2 with respect to A is bounded by some constant; the same holds
for the depth of any point p ∈ R2 with respect to B. We call the minimal such
constant the overall depth and denote it by β. One case that will receive special
attention is that of disjoint unit disks, where β = 1 and λ = π, i.e., all disks
have radii equal to 1.

The two sets A and B lie in a two dimensional coordinate space that we
call the work space. We consider set B to be fixed, while A can be translated
relative to B. Let T be the infinite set of all possible translations of A, i.e. the
set R2. We call T the configuration space. Translated versions of A are denoted
with A(~t) = {Ai(~t), . . . , An(~t)} for some ~t ∈ T . The area of overlap of A(~t) and
B, as ~t varies, is a function V : T → R with V(~t) = V ((

⋃
A(~t)) ∩ (

⋃
B)). We

investigate the following problem:

For two sets A,B, defined as above, compute the optimal translation ~topt

that maximizes V(~t).

The Minkowski sum of two planar sets A and B, denoted by A ⊕ B, is the
set {p1 + p2 : p1 ∈ A, p2 ∈ B}. Similarly, the Minkowski difference A	B is the
set {p1 − p2 : p1 ∈ A, p2 ∈ B}.

We define Tij = Bj 	 Ai. Note that V (Ai(~t) ∩ Bj) > 0 if and only if
~t ∈ Int(Tij). Let T (A,B) = {Tij : Ai ∈ A and Bj ∈ B}. Then V(~t) > 0
if and only if ~t ∈ Int(T (A,B)). The boundaries of the Minkowski differences
Tij ∈ T (A,B) induce a subdivision (arrangement of cells) of the configuration
space 2. It is easy to see that this arrangement can be non-simple and non-
connected. Each cell in the arrangement is a set of combinatorially equivalent
placements of A relative to B, i.e. the set of all overlapping pairs (Ai(~t), Bj) is
the same for all ~t in the cell.

We denote by R(Ai, Bj) the convex region whose boundary is exactly the
convex contour traced by the boundary of Ai when Ai is translated around
Bj such that their boundaries just touch. Of course Bj ⊂ R(Ai, Bj) and if
Ai(~t) ∩ Bj 6= ∅ then Ai(~t) ⊂ R(Ai, Bj).

In the next section we study the combinatorial complexity of the configura-
tion space.

4.3 Complexity of the function of the area of
overlap

We look first at the case of sets of convex homothets and then at the case of fat
convex objects. Next we discuss a brute force method for finding the optimal

2Abusing the terminology slightly, we will sometimes use the term ‘configuration space’
when we are actually referring to the decomposition of the configuration space induced by the
Minkowski differences.
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. . .

. . .A

B

d

d + ε

|A| = n

|B| = m > n

...

O(n) O(n) O(n)

m times

Figure 4.3: Two sets A and B and part of their configuration space T (A, B) with
highest Θ(n2m) complexity.

translation taking the case of sets of disjoint unit disks as an example. For the
latter case, we also study the function of the area of overlap and give a geometric
characterization of its critical points.

4.3.1 Sets of convex homothets

We first look at the case of two sets of disjoint unit disks, which will also provide
us with a lower bound example on the complexity of the configuration space.

Theorem 4.1 Let A and B be the sets of n resp. m disjoint unit disks in the
plane, with m ≥ n. The complexity of the arrangement induced by T (A,B), can
be as high as Θ(n2m).

Proof: Each set Bj 	 Ai is a disk of radius 2. Since the disks in both sets are
closed and disjoint, no disk of one set can intersect more than five disks of the
other set at any position. This is due to the ‘kissing’ or Hadwiger number of
unit open disks, which is six [127]. This implies that a point in the configuration
space cannot be covered by more than five of the m disks Bj	Ai, for any fixed i,
1 ≤ j ≤ m. In total, considering all values of i, no point in the total arrangement
can be covered by more than 5n disks Bj 	Ai. A similar argument for the disks
in B gives that no point can be covered by more than 5m disks Bj 	Ai. Thus,
the maximum depth of any point in the arrangement is 5min{m,n} = 5n. Since
the complexity of the arrangement of n pseudodisks with maximum depth k is
O(nk) [119], the complexity of the configuration space is O(n2m).

To see that this bound is tight consider the sets A and B shown in Figure 4.3.
Let d be the distance between the centers of any two consecutive disks in A and
d′ = d + ε, ε 6= 0, the distance between the centers of any two consecutive
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disks in B. These two sets give an arrangement of which the part of highest
complexity is shown in Figure 4.3. In each of the Ω(m) ‘bunches’ of Θ(n) disks,
the complexity is Θ(n2), since each disk intersects all the others. In total the
complexity is Θ(n2m).

Next, we generalize to the case of sets of non-disjoint, non-unit homothets
of a fixed convex object.

Theorem 4.2 Let A and B be two sets of n resp. m (m ≥ n) homothets of a
convex object C in R2, with scaling ratio λ and overall depth β. The complexity
of the arrangement induced by T (A,B), can be as high as Θ(n2m).

Note that for any planar convex object C, we have C 	 C ⊕ C = R(C, C). We
need the following lemma in order to prove the theorem:

Lemma 4.1 For a compact convex set C in R2, 9V (C) ≤ V (C	C⊕C) ≤ 13V (C);
the left hand-side equality holds for centrally symmetric objects while the right
hand-side equality holds for triangles.

Proof: We need the following properties of the Minkowski sum C1 ⊕ C2 and
the mixed area V (C1, C2) of two planar compact convex sets C1, C2; see Schnei-
der [117]:

• V (C1 ⊕ C2) = V (C1) + 2V (C1, C2) + V (C2),

• V (C 	 C) ≤ 6V (C), with the equality holding for triangles,

• V (4V (C) ≤ C 	 C), with the equality holding for centrally symmetric
objects,

• V (C, C) = V (C),

• V (C1, C2) = V (C2, C1) ≥ 0 and

• V (C1 	 C1, C2) = V (C1, C2) + V (−C1, C2).

Combining the above, we have:

V (C 	 C ⊕ C) = V (C 	 C) + 2V (C 	 C, C) + V (C)
= 2V (C) + 2V (C,−C) + V (−C) + 2V (C, C) + 2V (−C, C)
= 5V (C) + 4V (C,−C).

Moreover, V (C 	 C) = 2V (C) + 2V (C,−C) and 4V (C) ≤ V (C 	 C) ≤ 6V (C). So,
V (C) ≤ V (C,−C) ≤ 2V (C) and 9V (C) ≤ V (C 	 C ⊕ C) ≤ 13V (C).

We can now prove Theorem 4.2:
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Proof: We first give an upper bound on the number of Bj ’s that can intersect
an Ai, for any fixed i. Since any Ai, Bj can be fully contained in Cl, R(Bj , Ai)
can be fully contained in R(Cl, Cl) and, by Lemma 4.1, we have

V (R(Bj , Ai)) ≤ V (R(Cl, Cl)) ≤ 13λ.

Since V (Bj) ≥ 1, for any j, and the depth of the arrangement of all such Bj ’s is
at most β, a simple volume argument gives an upper bound of 13λβ. Following
a similar argument as in the proof of Theorem 4.1, the maximum depth in
configuration space is 13λβ min{m,n} = O(n).

Unfortunately, we cannot use the same result from Sharir [119] as we did in
Theorem 4.1 since the set of the Minkowski sums T (A,B) is not necessarily a
set of pseudodisks.

We continue by bounding the total number of intersections in configuration
space from above. We denote with Ts = Cs	Cs and Tl = Cl	Cl the smallest and
largest Minkowski differences respectively with 4 ≤ V (Ts) and V (Tl) ≤ 6λ, see
the proof of Lemma 4.1; any Tij ∈ T (A,B) can be fully contained in Tl. Thus,
for any fixed i′, j′, R(Tij , Ti′j′) can be fully contained in R(Tl, Tl). Based again
on Lemma 4.1, the bounded maximum depth in configuration space and a vol-
ume argument, Ti′j′ cannot intersect more than 3/2 · 132λ2β min{m,n} = O(n)
other Tij ’s. Since the Minkowski difference of two objects of O(1) complexity
has O(1) complexity, and we have O(nm) such differences, the total bound fol-
lows. It follows from Theorem 4.1 that this bound is tight.

4.3.2 Sets of fat convex objects

Let D be the smallest of all disks DC , C ∈ A∪B. Similarly, let D′ be the largest
of all disks D′

C , C ∈ A∪B. Any C ∈ A∪B can contain D and be contained in D′.
Thus, since all the objects C ∈ A ∪B are α-fat, V (D) ≥ 1/α and V (D′) ≤ αλ.

Theorem 4.3 Let A and B be two sets of n resp. m (m ≥ n) α-fat objects in
R2, with scaling ratio λ and overall depth β. The complexity of the arrangement
induced by T (A,B), can be as high as Θ(n2m).

The proof is similar to the proof of Theorem 4.2.
Proof: First, any R(Bj , Ai) can be contained in R(D′,D′). Since the overall
depth is at most β, based on Lemma 4.1, a simple volume argument gives an
upper bound of 9λαβ on the number of Bj ’s that can intersect an Ai. Following
a similar argument as in the proof of Theorem 4.1, the maximum depth in
configuration space is 9λαβ min{m,n} = O(n).

Next, note that V (Tij) ≥ 2 for any Tij . Any Tij ∈ T (A,B) can be contained
in D′ 	 D′. D′ 	 D′ is point symmetric with V (D′ 	 D′) = 4V (D′). For any
fixed i′, j′, R(Tij , Ti′j′) can be fully contained in R(D′ 	 D′,D′ 	 D′). Since
V (R(D′ 	D′,D′ 	D′)) ≤ 36λα, based on the bounded maximum depth of the
configuration space and a volume argument, Ti′j′ cannot be intersected by more
than 162λ2α2β min{m,n} = O(n) Tij ’s and the total bound follows. Since a
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unit disk is α-fat, this bound is tight according to Theorem 4.1.

4.3.3 A brute force approach to computing the optimum
translation

Theorems 4.2 and 4.3, imply that V is a piecewise 2-variate function of com-
plexity Θ(n2m) with each piece being a sum of Θ(n) terms vij , with each term
giving the area of overlap of a single pair of objects (Ai, Bj) as a function of
the translational vector ~t(tx, ty). This means that the system of the first order
necessary conditions ∂V/∂tx = ∂V/∂ty = 0, the solutions of which give all the
local maxima and saddle points of V, can give rise to Θ(n2m) different systems
of two equations each where each equation is a sum of Θ(n) terms. As the case
of sets of disjoint unit disks shows, see Section 4.3.4, such a system can be quite
complex and hard to solve exactly.

One could examine cases of sets of a particular convex object and, based
on geometric properties of it, try to find the exact optimum efficiently. For
example, in the case of disjoint unit squares, V is linear in a translation in a
fixed horizontal or vertical direction; the maximum is obtained at an alignment
of two horizontal edges and two vertical edges. Section 4.3.4 presents a geometric
interpretation of the system of the first order necessary conditions for the case
of sets of disjoint unit disks. However, we were unable to use this to find the
optimum or at least bound the number of solutions.

4.3.4 Disjoint unit disks

Let Ai and Bj be two disks of unit radius each and (xi, yi) and (xj , yj) be
the coordinates of their centers. The area of their overlap vij as a function of
~t(tx, ty) has the following form:

vij(tx, ty) = 2 arccos
(

1/2
√

(xi − xj + tx)2 + (yi − yj + ty)2
)

− 1/2
(√

(xi − xj + tx)2 + (yi − yj + ty)2

√
4 − (xi − xj + tx)2 − (yi − yj + ty)2

)
.

Figure 4.4, (a) plots this function; it has a circular base of radius 2 and a
pointed top that corresponds to the center of the base where the maximum area
of overlap π is achieved.

The partial derivatives of vij have the form:

∂fij/∂tx =
(xj − xi − tx)

√
4 − (xi − xj + tx)2 − (yi − yj + ty)2√

(xi − xj + tx)2 + (yi − yj + ty)2
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Figure 4.4: The function of the area of overlap of two unit disks and its derivative.
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and

∂vij/∂tx =
(yj − yi − ty)

√
4 − (xi − xj + tx)2 − (yi − yj + ty)2√

(xi − xj + tx)2 + (yi − yj + ty)2
.

We denote with d =
√

(xi − xj + tx)2 + (yi − yj + ty)2 the distance between
the centers of Ai and Bj . Then, vij(d) is just any 2-D vertical to the (tx, ty)-
plane slice of vij(tx, ty). Figure 4.4, (b) shows ∂fij(d)/∂d. It is clear that
vij(d) is not differentiable when d = 0 where the centers of the two disks align
and the area of overlap is π; at this position an infinitesimally small move dx
towards any direction will instantly decrease the overlap by 2dx; reaching this
position from any direction instantly increases the overlap by 2dx. However vij

is differentiable at all other positions for which d ≤ 2; using standard methods
(conjugate, l’hospital) it can be easily shown that ∂fij(d)/∂d = 0 when d = 2.

As already explained in the previous section, the system ∂V/∂tx = ∂V/∂ty =
0 can give rise to Θ(n2m) different systems of two equations each where each
equation is a sum of Θ(n) terms which are radicals in our case (of course one has
to carefully single out the Θ(n2) center alignment translations where the partial
derivatives of the terms are not defined). Using extra variables we can convert
each such system into a system that consists of 2n equations of polynomials of
quadratic degree each and two equations of polynomials of n + 1 degree each.
Bezout’s theorem [55] gives an exponential 22n(n+1)2 upper bound on the num-
ber of roots(the polynomials have no common factors). It would be interesting
to see whether the theory of mixed volume of the Newton polytopes [47, 55]
gives a better upper bound, and whether sparse elimination techniques could
solve the system faster, but this falls out of the scope of this thesis. Using
numerical approximations, the cost of the solution could be lowered but most
techniques give rather limited control on the error bound.

A geometric interpretation

Let Ai(xi, yi), Bj(xj , yj) be a pair of intersecting disks. Let us first assume,
without loss of generality, that ~t(tx, ty) is such that yj = yi + ty and xj 6= xi + tx
that is, the centers of both disks lie on a line parallel to the x-axis but don’t
coincide.

Then
∂vij/∂ty = 0

and

∂vij/∂tx = ((xj − xi − tx)/|xi − xj + tx|)
√

4 − (xi + tx − xj)2 = ±α.

where α is the height of the lens of the intersection of the two disks. In general,
an infinitesimally small move in the direction of the line connecting the two
centers will increase or decrease the area of overlap by α–the change depends
only on the distance between the two centers–and in a direction perpendicular
to that line the change is zero.
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Figure 4.5: Geometric interpretation of ∂fij .

Generalizing this to arbitrary translations, see Figure 4.5, we have:

∂vij/∂tx = α cos(θ),

∂vij/∂ty = α cos(θ′)

and
∂vij/∂tx + vij/∂ty = α cos(φ).

Alternatively we can give the following geometric interpretation of the first-
order necessary condition whenever ∂V is defined. We illustrate the idea for
four pairs of overlapping disks (Ai, Bi), i = 1, . . . , 4, see Figure 4.6. Let ~vi be a
vector pointing from the center of Ai to the center of Bi–a move in that direction
will instantly increase the area of overlap for each pair individually–such that
|~vi| = αi, then:

∑4
i=1 ~vi = ~0.

4.4 A lower bound on the area of overlap

This section gives a lower bound on the maximum area of overlap, expressed in
the number of pairs of objects that contribute to that area. First, we present
the case of sets of convex homothets in detail, and then we extend the result to
sets of fat convex objects. The main result is the following theorem:

Theorem 4.4 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} each be a set of
homothets of a convex object C in R2, such that (i) the overall depth is β (ii) the
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Figure 4.6: Geometric interpretation of critical translations.

scaling ratio is λ, for some constants β, λ > 0. Let ~topt be the translation that
maximizes the area of overlap V(~t) of A(~t) and B over all possible translations
~t of the set A. If k is the number of overlapping pairs Ai(~topt) and Bj, then
V(~topt) is Θ(k).

To prove this theorem, we need to introduce some additional concepts, no-
tation, and two lemmas.

C

C ′

rC

Figure 4.7: A convex object C, its reference point rC , and its kernel C′ (shaded).

Pick an arbitrary point on the boundary of C, and let this be the reference
point of C, denoted with rC , see Figure 4.7. The reference point for C also fixes
the reference points for all objects in A and B. Furthermore, the choice of the
reference point defines the kernel C ′ of C: it is a scaled version of C, scaled
with a factor 1/2

√
V (C), with rC as the center of scaling. The kernels of the
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homothets Ai(~t) in A(~t) and Bj in B are defined similarly and denoted by A′
i(~t)

and B′
j correspondingly; their reference points are denoted by rAi(~t)

and rBj
.

Note that while the objects Ai(~t) and Bj may all have different areas, the areas
of the kernels A′

i(~t) and B′
j are all the same, namely, 1/4 (we have assumed that

V (C) = 1).
The idea now is to consider other translations than the optimal one, namely,

translations for which the number of reference points rAi
that lie inside or on the

boundary of kernels B′
j is large. The area of overlap V (~t) at any such translation

~t is obviously a lower bound on the area of overlap V (~topt) at ~topt. Furthermore,
for a pair Ai(~t) and Bj for which rAi

lies inside or on the boundary of B′
j , we

establish a lower bound on the contribution of the pair to the overlap at ~t:

Ai(~t)
Bj

B′
j

rAi(~t)

rBj

p

q2

q1

A′
i(~t)

p′

Figure 4.8: If the reference point of Ai(~t) lies inside the kernel of Bj , then the kernel
of Ai(~t) (darkly shaded) lies inside Bj (lightly shaded). In this illustration, both Ai(~t)
and Bj have an area of 1. However, the claim still holds if either of Ai(~t) or Bj is
larger, as the kernels have a fixed area of 1/4.

Lemma 4.2 If the reference point rAi(~t)
of Ai(~t) lies inside or on the boundary

of the kernel B′
j of Bj, then V (Ai(~t) ∩ Bj) is at least 1/4.

Proof: Assume that the reference point rAi(~t)
of Ai(~t) lies inside or on the

boundary of the kernel B′
j of Bj . Let p be an arbitrary point in the kernel A′

i(~t)
of Ai(~t) (see Figure 4.8). We construct three additional points p′, q1, and q2 as
follows: p′ = p + (rBj

− rAi(~t)
). In other words: the relative position of p′ with

respect to the kernel of Bj is the same as the position of p w.r.t. the kernel of Ai,
so p′ lies inside or on the boundary of B′

j . Next, we define q1 = p′ + (p′ − rBj
).

Since the distance from rBj
to q1 is exactly twice the distance from rBj

to p′,
and p′ lies in the kernel of Bj or on its boundary, and B′

j is a scaled version of
Bj with a factor of at most 1/2 with rBj

as the center of scaling, q1 must lie
inside Bj or on its boundary. Next, we define q2 = rAi(~t)

+ (rAi(~t)
− rBj

). Since
rAi(~t)

lies inside B′
j or on its boundary, q2 must lie inside Bj or on its boundary,

by similar reasoning as above. Finally, since 4(rAi(~t)
, q2, p) is congruent with

4(rBj
, q2, q1), we have that p lies on the segment q1q2. Since both q1 and q2 lie

inside or on the boundary of Bj , and Bj is convex, p must lie inside Bj or on
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its boundary as well. This holds for all points p inside A′
i(~t), and since the area

of A′
i(~t) is 1/4 (recall that all kernels have area 1/4), the lemma follows.

Now let us focus on those pairs Ai(~topt) and Bj that contribute to the overlap
at the optimal translation ~topt, and disregard all other pairs of objects. For all
pairs Ai(~topt) and Bj under consideration, we look at the translations that bring
the reference point of Ai(~topt) into the kernel of Bj . For any such pair Ai(~topt)
and Bj , these translations form a region Kij in configuration space that has
exactly the size and shape of a kernel B′

j (or A′
i(~topt) for that matter, since

all kernels have the same area). The precise locations of all these regions Kij

depend on the relative positions of the Ai(~topt) with their corresponding Bj .
However, it is not difficult to determine a region R in configuration space, of
bounded size, that contains all regions Kij . Consider a pair of objects C1 and C2

of area λ (the largest possible area for any object in A or B). Figure 4.9 (top)
shows C1 (lightly shaded) and its kernel C′

1 (darkly shaded), and a subset of the
possible locations for C2 (only some extreme locations, where C2 just touches C1

are shown). The bottom half of the figure shows the region R of translations
that bring the reference points of all possible C2 into the kernel of C1 (this is the
darkly shaded region; it includes the lightly shaded region and the black region).
The small dark area in the bottom half of the figure is the set of translations
that bring the reference point of C2 at the “black position” (in the top half of
the figure) into the kernel of C1.

Since the size of any object Ai(~topt) or Bj is less than or equal to the size of
C1 (and C2), any Kij under consideration must be contained in R. The region R
has area V (R) = V (C1	C2⊕C′

1). Since C1 and C2 have the same shape and area
(namely, λ), and C′

1 is fully contained in C1, this area is at most V (C1	C1⊕C1).
Now instead of looking at all possible locations of the Ai(~topt) with respect

to their corresponding Bj , look at the actual positions: for each Ai(~topt) that
has a non-zero overlap with some Bj , we draw the region of translations Kij

that brings rAi(~topt)
into B′

j . Such a region has the same shape and size as B′
j ,

and it is fully contained in R. By Lemma 4.1, the area of R is at most 13λ,
where the constant λ is the area of the largest object in A ∪ B. On the other
hand, the area of each Kij is 1/4. A simple volume argument tells us that there
must be a point in R that is covered by at least k/4 · 1/13λ regions Kij , so we
have:

Lemma 4.3 If the number of pairs Ai(~topt) and Bj that have non-zero overlap
is denoted with k, then there exists a translation ~t] such that the number of
reference points rAi(~t])

that are contained in some kernel B′
j is Ω(k).

We are now ready to prove Theorem 4.4:

Proof: According to Lemma 4.3, there is a translation ~t] that brings Ω(k) ref-
erence points rAi(~t])

into some kernels B′
j . Each of the corresponding Ai(~t])

and Bj have an overlap of at least 1/4 by Lemma 4.2. There may be regions
in the overlap that are covered by more than one Ai or Bj . However, since the
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C1

C2

R

C ′
1

Figure 4.9: Extremal positions of C2 w.r.t. C1 in workspace (top), and the set of
translations in translation space that bring the reference points of C2 into the kernel
of C1, for all possible positions of C2 (bottom).

depth of both A and B is bounded by a constant β, any region in the overlap
is double-counted at most β2 times. It follows that total area of overlap is Ω(k)
for the translation ~t]. This area of overlap is a lower bound for the area of
overlap at ~topt. Since each pair Ai(~t) and Bj that overlaps contributes at most
a constant λ to the area of overlap, the total area of overlap is O(k), and the
theorem follows.

Basic arithmetic reveals that the constant hidden in the Ω-notation for the
lowerbound on the optimum area of overlap is 1/(208λβ2).

For sets of fat convex objects Theorem 4.4 becomes:

Theorem 4.5 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} each be a set of
α-fat convex objects in R2, for some fixed α > 1, such that (i) the overall
depth is β (ii) the scaling ratio is λ, for some constants β, λ > 0. Let ~topt

be the translation that maximizes the area of overlap V(~t) of A(~t) and B over
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all possible translations ~t of the set A. If k is the number of overlapping pairs
Ai(~topt) and Bj, then V(~topt) is Θ(k).

Proof: We define the reference point rC of C ∈ A ∪ B to be the center of its
largest enclosed disk. The kernel C′ of C is defined as the disk D, as this was
defined in Section 4.3.2, centered at rC ; that is D is the smallest largest enclosed
disk DC over all C ∈ A ∪ B. For each of the k pairs (Ai(~topt), Bj) such that
V (Ai(~topt)∩Bj) 6= 0 we consider the set of translations that bring the reference
point of Ai(~topt) into the B′

j ; these form a region Kij in configuration space that
is a disk with V (Kij) ≥ 1/α. All these k regions Kij can be easily shown to be
contained in a region R = R(D′,D′) in configuration space with V (R) ≤ 9λα,
where D′ is the largest smallest enclosing disk D′

C over all C ∈ A ∪ B. Thus,
there is a translation ~t] that brings at least k/(9λα2) reference points rAi(~t])

into
some kernels B′

j . By Lemma 4.4, see next section, each of the corresponding
Ai(~t]) and Bj have an overlap of at least 1/(4α) and the theorem follows. The
constant hidden here in the Ω-notation for the lowerbound is 1/(36λα3β2).

4.5 Constant factor approximation schemes

Theorem 4.4 suggests a constant-factor approximation algorithm: compute the
arrangement A of the regions Kij , i = 1, . . . , n, j = 1, . . . ,m. Find a cell of
maximum depth in A, and pick any point in this cell. Such a point corresponds
to a translation ~t that gives a constant-factor approximation. In the most general
setting, where we look at homothets of an arbitrary convex shape with bounded
size ratio and bounded depth in both A and B, the approximation factor is
too small for practical purposes. In the special case where A and B are sets of
disjoint unit disks, a slightly different analysis leads to an approximation factor
of (2/3 −

√
3/2π) ≈ 0.39 as the following theorem shows.

Theorem 4.6 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} each be a set
of disjoint unit disks. A translation that puts as many centers of disks of A as
possible inside or on the boundary of disks of B realizes at least (2/3−

√
3/2π) ≈

0.39 of the maximum possible overlap under translations. The approximation
factor is tight.

Proof: We follow the general approach presented in Section 4.4 and define the
kernel of a unit disk to be the disk itself with its center being its reference point.
Each of the k regions Kij is a unit disk and they are all contained in a region
R that is a disk of radius 3. The center of R corresponds to ~topt.

The distance of the center of each disk Kij to the center of R equals the
distance between the centers of the disks in the corresponding overlapping pair
(Ai, Bj) at ~topt. We draw a unit disk, denoted as W , centered at ~topt. Then
V (Kij ∩ W ) = V (Ai(~topt) ∩ Bj) and the sum of all these areas gives exactly
V(~topt). This is shown in Figure 4.10: every ‘shadowed’ area is part of one or
more terms in the sum. The darker the area, the more the disks Kij that cover
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1
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Kij

W

Figure 4.10: Disks Kij are confined within an area of 9π and the area of their inter-
section with disk W sums up to V(~topt).

it; an area is counted exactly as many times as its ‘depth’, that is, we sum
up the areas with multiplicities and that’s exactly what we need to construct
V(~topt) inside W since the disks in A ∪ B are disjoint.

Thus, there is a point in W that is covered by at least V(~topt)/π disks Kij .
Hence, there is a translation ~t] which will bring at least V(~topt)/π pairs of
disks (Ai, Bj) into overlap of area at least (2π/3 −

√
3/2) each. Thus, for this

translation, A and B have an overlap of area at least (2/3 −
√

3/2π)V(~topt).
It can be easily seen that this approach cannot give a better approximation

guarantee: consider two sets A, B with one unit disk each. The maximum area
of overlap is π and a translation that brings the center of one disk on the bound-
ary of the other has maximum depth in the arrangement of the regions Kij ; this
translation gives an area of overlap of (2π/3 −

√
3/2) but (2π/3 −

√
3/2)/π is

exactly the algorithm’s approximation factor.

This approximation scheme generalizes in a straightforward way to the case
of sets of disjoint unit point symmetric convex objects. Using Lemma 4.4, see
next page, an approximation factor of 0.25 can be easily shown; this is tight as
an example of two sets of one unit square each easily shows.

We continue by discussing on another constant-factor approximation scheme.
We can parameterize the distance between the centers of two unit disks as
d = 2 − r, 0 ≤ r ≤ 2. A straightforward generalization of the lower bound
technique presented in Section 4.4 shows that a translation that brings as many
centers of disks in A as possible into distance of at most d from the centers of
disks in B gives an approximation factor of

[(2 − r)2/(4 − r)2][2cos−1(1 − r/2) − (2 − r)/2
√

4 − (2 − r)2].
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This function observes its maximum at r ≈ 1.023, as a simple numerical analysis
shows, and gives 0 for r = 2. The latter can be easily justified: Take the
two input sets of Figure 4.3; there can be no more than one concurrent center
alignment positions and since any such translation is valid in this approach, the
one that aligns the center of the first disk of A with the center of the last disk of B
can be arbitrarily bad. Naturally, the following question arises: Is there a center
alignment translation that gives a non-zero approximation factor? The answer
is positive as the following theorem (generalized to sets of convex homothets),
of rather theoretical importance, shows.

Theorem 4.7 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} each be a set of
homothets of a convex object C in R2, such that (i) the overall depth is β (ii) the
scaling ratio is λ, for some constants β, λ > 0. Let ~ti→j be the translation that
aligns the centers of symmetry of the largest enclosed ellipses of two objects Ai

and Bj. There exists a constant α, 0 < α < 1, such that for any two such sets
A,B, there exists a pair of homothets (Ai, Bj), for which V(~ti→j) ≥ αV(~topt).

We first need the following lemma:

Lemma 4.4 Let S1, S2 be two translates of a compact, planar, point symmetric
convex object S. For all translations ~t ∈ R2 such that the center of symmetry
of S1(~t) is inside or on the boundary of S2, V (S1(~t) ∩ S2) ≥ V (S)/4.

Proof: Since both objects are convex and point symmetric we need to check
only the translations ~t for which the center cS1(~t)

of S1(~t) lies on the boundary
of S2, for any move of cS1(~t)

towards the interior of S2 can only increase the
overlap. Note that any such translation puts also the center cS2 of S2 on the
boundary of S1(~t), see Figure 4.11. It is easy to see that for any such transla-
tion, S1(~t)∩S2 is a convex, point symmetric object with its point of symmetry c
lying in the middle of the segment cS1(~t)

cS2 . We call the width, w~h(S) of a point

symmetric object S with respect to some direction ~h, the length of the straight
line segment h ∩ S, where h is the straight line passing through the center of
symmetry with direction ~h. We draw an arbitrary line h passing through c and
a line h1 passing through cS1(~t)

with the same direction as h; since S1(~t)∩S2 is
convex and symmetric, w~h(S1(~t) ∩ S2) = |e1e2| ≥ |cS1(~t)

e3| = w~h(S1)/2. Since

the later holds for any direction ~h, V (S1(~t) ∩ S2) ≥ V (S1)/4.

We can now start the proof of Theorem 4.7.
Proof: We define the kernel C ′ of C to be the largest inscribed ellipse of C
and its reference point rC to be the center of symmetry of C ′. As mentioned
in Section 4.2, we assume that C is the smallest object in A ∪ B. The kernel
of every C ∈ A ∪ B is identical to the kernel of C. The reference point of every
homothet is the center of symmetry of its kernel and is placed on the center
of symmetry of the largest inscribed ellipse of the homothet. A classic result
in convex geometry gives that V (C ′) ≥ V (C)/4 = 1/4, see for example John’s
Theorem in Matoušek [91, Chapter 13].
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Figure 4.11: Two point symmetric sets S1(~t) and S2 with the point of symmetry of
one on the boundary of the other.

As before, we assume that there are k pairs Ai(~topt) and Bj such that
V (Ai(~topt) ∩ Bj) 6= 0. For every such pair we consider the translations that
bring the reference point of Ai(~topt) into the kernel of Bj ; these form a region
Kij in configuration space that is an ellipse. Similarly to the proof of Theo-
rem 4.4, all these k regions Kij can be shown to be contained in a region R in
configuration space with V (R) ≤ 13λ.

We are now interested only in the centers of the regions Kij that correspond
to the translations ~ti→j . We will show that there exists such a translation for
which the number of reference point-kernel incidences is Θ(k).

Imagine that all Kij regions are scaled down by 1/2 with their center as the
center of scaling. Then, by a simple volume argument, there must be a point
in R covered by at least k/16 · 1/(13λ) regions Kij . Since all these k/(208λ)
regions Kij are copies of the same point symmetric object and have a non-empty
intersection, by scaling up all regions Kij to their normal size, we make sure
that there are at least k/16 ·1/13λ centers of symmetry each covered by at least
k/16 · 1/(13λ) regions Kij . These centers of symmetry correspond to transla-
tions ~ti→j . Using the facts that V(~topt) ≤ kλ an that the area of overlap is
double-counted at most β2 times, and using Lemma 4.4, we conclude that there
exists a translation ~ti→j that brings the sets A and B into overlap of at least
V(~topt)/(832λ2β2).

The approximation factor α we have computed is too small for practical
purposes even for the case of sets of disks; an interesting open question is whether
this factor can be improved.
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4.6 An (1 − ε)-approximation algorithm

In this section we give an algorithm that computes a translation ~tapx that gives
an overlap of at least (1 − ε) times the maximum overlap at ~topt, for any input
parameter ε > 0. We first give a detailed description of the algorithm for the
case of sets of convex homothets; the case of fat objects is shortly described
afterwards.

The basic idea is simple: we impose a grid over the configuration space,
compute the overlap at candidate grid points, and return the translation that
corresponds to the grid point giving the maximum overlap over all grid points.
We refine this simple idea in two ways in order to guarantee both the approxi-
mation bound and an efficient running time.

The first refinement is that we do not use an axis parallel uniform grid of
spacing Θ(ε), as would be the straightforward approach. Instead, we define the

Figure 4.12: Overlaying a non-uniform orthogonal grid over a convex object.

grid as follows: we determine a rectangular bounding box of a largest object in A
and B (its area is bounded by a constant λ) with the longest side parallel to the
diameter of the object. The grid cells (in configuration space) are scaled versions
of the bounding box, scaled with a factor cε, with the constant c = 1/(3328λ2β2)
(recall that β denotes the maximum depth of the sets A and B).

Overlaying a grid with similar dimensions and orientation over the objects
in work space gives us the following lemma:

Lemma 4.5 The total area of the grid cells intersected by the boundary of any
object in A(~t) or B is at most 8λcε.

Proof: Because of the definition of the orientation of the bounding box of the
largest object, its area is at most 2λ. Hence, the area of a single grid cell is at
most 2λ(cε)2. The bounding box of any object in A or B has at most 1/cε grid
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cells along each of its axes. Now imagine that we rotate our input such that the
grid becomes axis parallel. If we trace the boundary of any object, then a step
from one grid cell to the next one is either horizontal or vertical (a diagonal
step can be treated as a horizontal step followed by a vertical step). Because
our input objects are convex, it follows that if we trace the complete boundary
of an object, then the total number of grid cells visited is at most 4/cε. Hence,
the total area of these cells is 4/cε · 2λ(cε)2 = 8λcε.

Now suppose that we move A from ~topt to the nearest grid point in config-
uration space, g. For some of the pairs Ai(~t) and Bj that overlap at ~topt, the
area of overlap may decrease if we move Ai to g. We refer to the difference
V (Ai(~topt)∩Bj)− V (Ai(g)∩Bj) as the loss of the pair. An easy upper bound
on the loss of a pair can be derived using Lemma 4.5: the area that is lost when
we move Ai from ~topt to g is completely covered by the grid cells intersected
by the boundary of Ai(~topt) plus the next layer of grid cells in the interior of
Ai(~topt). The number of grid cells in this second layer is at most the number
of grid cells intersected by the boundary of Ai(~topt), and so by Lemma 4.5 the
loss of the pair is at most 16λcε.

Lemma 4.6 For the choice of the grid in configuration space as defined above
and the translation g in the grid nearest to ~topt, V(g) ≥ (1 − ε)V(~topt).

Proof: If we denote the number of pairs At(~topt), Bj that contribute to the area
of overlap at ~topt with k, then according to Theorem 4.4, V(~topt) = Ω(k). A pre-
cise evaluation of the constant hidden in the Ω-notation shows that V(~topt) ≥
k/(208λβ2), where β is the maximum depth of A and B. Moving from ~topt

to g, we lose an area of at most 16λcε for each of the k pairs, so we have
V(g) ≥ V(~topt)−16kλcε ≥ V(~topt)−3328λ2β2cεV(~topt). With c = 1/(3328λ2β2),
the right hand side of the latter equation becomes (1 − ε)V(~topt).

A straightforward approach to computing a (1 − ε) approximation of the
maximum area of overlap would be the following: for each pair Ai and Bj , we
compute the region Tij in configuration space; this is the region of all trans-
lations ~t ∈ T for which the overlap of Ai(~t) and Bj is non-zero. Overlaying a
grid over configuration space as explained above, we have that every such region
contains O(1/ε2) grid points. Thus, in total we have O(nm/ε2) grid points. We
can compute V (

⋃
Ai) in O(n log2 n) time, by computing a vertical decomposi-

tion of
⋃

Ai (see steps 1, 2 of the algorithm below) and then summing up the
areas of all the O(n) cells in the decomposition (the latter can be done in O(n)
time since each cell has O(1) complexity and thus its area can be computed
in constant time). Similarly we compute V (

⋃
Bj) in O(m log2 m) time and for

each grid point g V ((
⋃

Ai(g)) ∪ (
⋃

Bj)) in O((n + m) log2(n + m)) time. It
follows that for each grid point g we can compute V ((

⋃
Ai(g)) ∩ (

⋃
Bj)) in

O((n + m) log2(n + m)) time. If we simply keep track of the maximum area of
overlap (and the corresponding translation) computed over all grid points, the
whole algorithm runs in O((nm2 log2 m)/ε2) time.
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We can, however, do better by employing a “voting scheme”; this is our
second refinement of the simple idea presented in the beginning of this section.
Algorithm Translation(A,B, ε) is given in Figure 4.13.

Translation(A, B, ε):

1. Compute the boundaries of
S

Ai and
S

Bj .

2. Compute the vertical decompositions VD(A) of
S

Ai and VD(B) of
S

Bj .

3. Initialize an empty binary search tree S with entries of the form (~t,V(~t))
where ~t is the key. Let G be a grid on configuration space, as explained
above.

4. For each pair of cells ci ∈ VD(A) and cj ∈ VD(B) do:

(a) Determine all grid points ~tg ∈ G such that ~tg ∈ ci 	 cj .

For each such ~tg do:

• Let Vij(~tg) be the area of ci(~tg) ∩ cj .

• If ~tg is in S, then V(~tg) := V(~tg) + Vij(~tg);
otherwise, insert ~tg in S with V(~tg) := Vij(~tg).

5. Report the grid point ~tapx that maximizes V(~tg).

Figure 4.13: Algorithm Translation(A, B, ε).

Since the objects in A∪B are homothets, which are pseudodisks, the bound-
aries of

⋃
Ai and

⋃
Bj have O(n) size and can be computed in O(n log2 n)

time [85]. The vertical decompositions VD(A) and VD(B) have O(n) (resp.
O(m)) cells, and can be constructed in O(n log n) (reps. O(m log m)) time [53].
Note that each cell in the decompositions has at most two vertical walls, and
at most two segments that are part of the boundary of an input object. Since
the base object C has constant complexity boundary, the cells in the trape-
zoidal decompositions are sufficiently simple to determine the grid translations
for which two cells overlap in time proportional to the number of translations
returned. For the same reason, we can compute the area of overlap of two cells
ci(~t) ∩ c′j at a given translation ~t in constant time. Since the total number
of translations tested is O(mn/ε2), the size of S is O(mn/ε2), and the opera-
tions on S take O((mn/ε2) log(mn/ε)) time in total. Hence the algorithm runs
in O((mn/ε2) log(mn/ε)) time. Together with Lemma 4.6, this gives us the
following theorem:

Theorem 4.8 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} each be a set of
homothets of a convex object C in R2, such that (i) the overall depth is β and (ii)
the scaling ratio is λ, for some constants β, λ > 0. Let ~topt be the translation that
maximizes the area of overlap V(~t) of A(~t) and B over all possible translations ~t
of the set A. For any given ε > 0, Translation(A,B, ε) computes a translation
~tapx such that V(~tapx) ≥ (1 − ε)V(~topt) in O((mn/ε2) log(mn/ε)) time.
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In the case where the two sets A and B consist of α-fat objects, imposing
a uniform grid of spacing Θ(ε) will do, since there are no ‘skinny’ objects in
work space. We use a spacing of cε where c =

√
2λπα/(72λ2α4β2). First,

note that, for the k overlapping pairs at ~topt, V (Ai(~topt) ∩ Bj) 6= 0 implies
that V (D′

Ai(~topt)
∩ D′

Bj
) 6= 0. Thus, when moving A from ~topt to the nearest

grid point g the loss per pair of objects is bounded from above by the loss
of their corresponding smallest enclosing disks. Since for any object C ∈ A ∪
B, V (D′

C) ≤ λα, a simple calculation gives that the loss per pair is at most
cε

√
2λα/π. According to Theorem 4.5, V(~topt) ≥ k/c′ where c′ = 36λα3β2. In

total, V(g) ≥ V(~topt) − cεk
√

2λα/π ≥ V(~topt) − cc′ε
√

2λα/πV(~topt). Setting
c, c′ to their actual values, the right hand side of the latter equation becomes
(1 − ε)V(~topt).

As before, each region Tij in configuration space contains O(1/ε2) grid points
and hence we have O(nm/ε2) grid points in total. The union of a collection of
n fat convex objects in the plane has O(n1+γ) complexity, for any arbitrarily
small γ > 0 [58] and can be computed in O(n1+γ log2 n) time [2]. A vertical
decomposition of such a union into O(n1+γ) simple cells can be computed in
O(n1+γ log n) time [2]. The algorithms proceeds exactly as described above.
The running time of the algorithm is dominated by its last step which takes
O((nm)1+γ +(mn/ε2) log(mn/ε)) time that becomes O((mn/ε2) log(mn/ε)) for
γ < lognm(1/ε).

We have proved the following:

Theorem 4.9 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} each be a set
of α-fat objects in R2, for some fixed α > 1, such that (i) the overall depth
is β and (ii) the scaling ratio is λ, for some constants β, λ > 0. Let ~topt be
the translation that maximizes the area of overlap V(~t) of A(~t) and B over all
possible translations ~t of the set A. Then, for any given ε > 0, a translation ~tapx

such that V(~tapx) ≥ (1 − ε)V(~topt) can be computed in O((mn/ε2) log(mn/ε)).

4.7 Concluding remarks

The main result of this chapter is an efficient (1 − ε)-approximation algorithm
for computing the maximum area of overlap under translation of two sets of
either convex homothets or fat objects in two dimensions.

Theorem 4.4 can be generalized to three dimensions for sets of homothets in a
straightforward way. For sets of spheres the approximation algorithm generalizes
as well in the following way: the boundary of the union of n spheres (under the
assumptions (i) and (ii) of Section 4.2, page 76) is O(n) and can be computed in
O(n log n) time [74]. There exists a decomposition of the union into O(n) simple
cells that can be computed in O(n log n) time [74]. By using these cells in the
voting scheme, the running time of the algorithm is O((mn/ε3) log(mn/ε)).

An important direction for further research is looking into transformations
other than translations only, most notably rotations. In the next chapter we will
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see that this problem is not trivial and we will present several approximation
algorithms for rigid motions.

Depending on the particular matching applications, an approximation of the
maximum area of overlap does not necessarily guarantee a good match; an alter-
native measure could be the area of the symmetric difference of the two unions.
Note that an approximation of the maximum area of overlap does not result
in an approximation of the minimum area of symmetric difference. Unfortu-
nately, our ideas do not work for the area of symmetric difference since, for this
case, the lower bound theorem in Section 4.4 does not hold: for some problem
instances the symmetric difference is empty. Moreover, for such instances any
constant factor or (1 + ε)-approximation algorithm must give exact results, and
this seems to make this problem harder than the one we studied.

Finally, it would be worthwhile to study these problems in a more general
context, i.e., with sets of arbitrary objects instead of homothets and fat objects.





Chapter 5

Maximizing the area of
overlap of two unions of
disks under rigid motions

5.1 Introduction

In the previous chapter, we studied the problem of maximizing the area of
overlap of two unions of convex objects under translations. We mainly focused
on generalizing the type of objects for which our simple (1 − ε)-approximation
scheme holds. In this chapter, we expand the transformation group to rigid
motions. We will see that similar ideas to those given in the previous chapter
apply to the case of unions of disks and rigid motions as well, resulting in an
initial (1 − ε)-approximation scheme of relatively high complexity. Given this,
our research focus is different now: we deal only with unions of disks under the
same conditions of bounded scaling ratio and bounded depth as before, and we
present other deterministic and randomized algorithms that improve over the
initial result. Moreover, for simplicity, we omit the tedious calculations of the
constant factors involved in the running times of the algorithms.

5.1.1 Results

Our contributions are the following. First, in Section 5.2 ,we show that the
maximum number of combinatorially distinct rigid motions of A with respect to
B is O(n3m2). As in the case of translations, the function describing the area
of overlap is quite complex, even for combinatorially equivalent placements.
Therefore, we focus again on approximation algorithms. Our algorithms are
given in the remaining sections. For the sake of clarity we describe the algo-
rithms for the case of disjoint unit disks. It is not hard to adapt them to sets
of disks satisfying the assumptions of bounded scaling ratio and depth; the nec-
essary changes are described in Section 5.6. For any ε > 0, our algorithms can
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compute a (1 − ε)-approximation of the optimum overlap. First, we present
a deterministic algorithm which runs in O((n2m2/ε3) log m) time. If ∆ is the
diameter of set A—recall that we are dealing with unit disks—the running time
of the latter becomes O((m2n4/3∆1/3/ε3) log n log m), which yields an improve-
ment when ∆ = o(n2/ log3 n). Note that in many applications the union will be
connected, which implies that the diameter will be O(n). If the area of overlap
is a constant fraction of the area of the union of A we can get a probabilis-
tic algorithm that runs in O((m2/ε4) log(m/ε) log2 m) time, and succeeds with
high probability. This algorithm uses the technique by Cheong et al. [39] for
the rotational part. We will see that a direct application of this technique to
rigid motions gives an O((m2/ε6) log(m/ε) log3 m) time algorithm that requires
the computation of intersection points of algebraic curves, which is not very
practical. Our algorithm avoids that complication.

Our algorithms for rigid motion are based on a simple two-step framework in
which an approximation of the best translation is followed by an approximation
of the best rotation. This way, we first achieve an absolute error on the optimum,
which we then turn into a relative error using the lower bound theorem for rigid
motions given in Section 5.2. The deterministic algorithm employs a clever
sampling of transformation space, directed by some special properties of the
function of the area of overlap of two disks. The probabilistic algorithm is
a combination of sampling of translation space using a uniform grid, random
sampling of both input sets, and the technique by Cheong et al..

5.2 Basic properties of the overlap function

We start by introducing some notation. Let A = {A1, . . . , An} and B =
{B1, . . . , Bm}, be two sets of disjoint unit disks in the plane, with n ≤ m.
We consider the disks to be closed. We consider B to be fixed, while A can be
translated and/or rotated relative to B.

Let I be the infinite set of all possible rigid motions—also called isometries—
in the plane; we call I the configuration space. For convenience, we denote by
Rθ a rotation about the origin by some angle θ ∈ [0, 2π) and by T~t a translation
by some ~t ∈ R2. It will be also convenient to model the space [0, 2π) of rotations
by points on the circle S1. For simplicity, rotated only versions of A are denoted
by A(θ) = {A1(θ), . . . , An(θ)}. Any rigid motion I ∈ I can be uniquely defined
as a translation followed by a rotation, that is, I = I~t,θ = Rθ ◦ T~t, for some
θ ∈ S1 and ~t ∈ R2. Alternatively, a rigid motion can be seen as a rotation
followed by some translation; it will be always clear from the context which
definition is used. In general, transformed versions of A are denoted by A(~t, θ) =
{A1(~t, θ), . . . , An(~t, θ)} for some I~t,θ ∈ I.

Let Vij(~t, θ) = V (Ai(~t, θ)∩Bj). The area of overlap of A(~t, θ) and B, as ~t, θ
vary, is a function V : I → R with V(~t, θ) = V ((

⋃
A(~t, θ)) ∩ (

⋃
B)). Thus the

problem that we are studying can be stated as follows:
Given two sets A,B, defined as above, compute a rigid motion I~topt,θopt

that
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maximizes V(~t, θ).
Let dij(~t, θ) be the Euclidean distance between the centers of Ai(~t, θ) and Bj .

For simplicity, we write V(~t),Vij(~t), dij(~t) when θ is fixed and V(θ),Vij(θ), dij(θ)
when ~t is fixed. Also, let ri be the Euclidean distance of Ai’s center to the origin.

Theorem 5.1 Let A be a set of n disjoint unit disks in the plane, and B a set
of m disjoint unit disks, with n ≤ m. The maximum number of combinatorially
distinct rigid motions of A with respect to B is O(n3m2).

Proof: Let us assume for a moment that A is first rotated about the origin by
some fixed angle θ ∈ [0, 2π). We define Tij(θ) = Bj 	Ai(θ); Vij(~t, θ) > 0 if and
only if ~t ∈ Int(Tij(θ)). Let T (A,B)(θ) = {Tij(θ) : Ai ∈ A and Bj ∈ B}. Then,
V(~t, θ) > 0 if and only if ~t ∈ Int(T (A,B)(θ)). The boundaries of the Minkowski
differences Tij(θ) ∈ T (A,B)(θ) induce a planar subdivision T (θ). Each cell
in this arrangement is a set of combinatorially equivalent translations of A(θ)
relative to B, that is, the set of all overlapping pairs (Ai(~t, θ), Bj) is the same
for all ~t in the cell. As we have seen in Section 4.3.1, T (θ) can be non-simple
and non-connected, and its maximum complexity is Θ(n2m) [52].

As θ varies, the combinatorial structure of T (θ) changes: each Tij(θ) rotates
about the center of Bj and, as a result, new cells are created or existing cells
disappear. Such a change occurs in one of the following two cases: (i) when two
arcs in T (θ) become tangent at some θ (double event) or (ii) three arcs in T (θ)
intersect at a point (triple event). By the analysis of Chew et al. [41], the num-
ber of double events is O(n2m2) and the number of triple events is O(n3m2).
Thus, the complexity of the configuration space is O(n3m2) as well.

This theorem implies that explicitly computing the subdivision of the config-
uration space into cells with combinatorially equivalent placements is highly
expensive. Moreover, the computation for rigid motions can cause non-trivial
numerical problems since it requires the computation of intersection points be-
tween algebraic curves of degree six and circles [11]. Finally, as in the case of
translations-only, the optimization problem in a cell of this decomposition is
far from easy: one has to maximize a function consisting of a linear number
of terms. Therefore we turn our attention again to approximation algorithms.
Since any rigid motion can be uniquely defined by a rotation followed by some
translation, the lower bound theorem of Section 4.4 holds also for the optimal
rigid motion. Hence, we have the following:

Theorem 5.2 Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be two sets of
disjoint unit disks in the plane. Let I~topt,θopt

be a rigid motion that maxi-
mizes V(~t, θ). If kopt is the number of overlapping pairs Ai(~topt, θopt), Bj, then
V(~topt, θopt) is Θ(kopt).
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(ri, 0)

(0, 0)

Ai

Ai(θ)

θ

(ri cos θ, ri sin θ)

Figure 5.1: Notation in Lemma 5.1. The area of the grey region corresponds to v(θ).

5.3 The rotational case

This section considers the following restricted scenario: set B is fixed, and set
A can be rotated around the origin. This will be used in the next section, where
we consider general rigid motions.

Observe that this problem has a one-dimensional configuration space: the
angle of rotation. Consider the function V : [0, 2π) → R with

V(θ) := V ((
⋃

A(θ)) ∩ (
⋃

B)) =
∑

Ai∈A,Bj∈B

Vij(θ).

For now, our objective is to guarantee an absolute error on V rather than a
relative one. We start with a result that bounds the difference in overlap for
two relatively similar rotations. Recall that ri is the distance of Ai’s center to
the origin.

Lemma 5.1 Let Ai, Bj be any fixed pair of disks. For any given δ > 0 and any
θ1, θ2 for which |θ1 − θ2| ≤ δ/(2ri), we have |Vij(θ1) − Vij(θ2)| ≤ 2δ.

Proof: Without loss of generality, we assume that θ1 = 0 and that Ai is cen-
tered at (ri, 0) with ri > 0; see Figure 5.1. We want to see that V (Ai ∩
Bj) − V (Ai(θ) ∩ Bj) ≤ 2δ for any 0 ≤ θ ≤ δ/(2ri). Consider the function
v(θ) = V (Ai ∩ Ai(θ)) with θ ∈ [0, π/2]. We will prove that if 0 ≤ θ ≤ δ/(2ri)
then v(θ) ≥ π− δ, and therefore V (Ai \Ai(θ)) = V (Ai(θ) \Ai) ≤ δ. Using that
for any sets X,Y we have V (X)− V (Y ) = V (X \ Y )− V (Y \X), then for any
0 ≤ θ ≤ δ/(2ri) it holds

|V (Ai ∩ Bj) − V (Ai(θ) ∩ Bj)|
= |V ((Ai ∩ Bj) \ (Ai(θ) ∩ Bj)) − V ((Ai(θ) ∩ Bj) \ (Ai ∩ Bj))|
≤ |V ((Ai ∩ Bj) \ (Ai(θ) ∩ Bj))| + |V ((Ai(θ) ∩ Bj) \ (Ai ∩ Bj))|
≤ V (Ai \ Ai(θ)) + V (Ai(θ) \ Ai)
≤ 2δ,

and the lemma follows.
We will show that v(θ) ≥ π−δ using the mean-value theorem. The center of

Ai(θ) is positioned at (ri cos(θ), ri sin(θ)) and the distance between the centers
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of Ai and Ai(θ) is√
r2
i (1 − cos θ)2 + r2

i sin2 θ = ri

√
2(1 − cos(θ)).

The area of overlap of two unit disks whose centers are d apart is

2 arccos
d

2
− d

√
4 − d2

2
,

and therefore we get

∂v(θ)
∂θ

=
∂v(θ)
∂d

· ∂d

∂θ

= −
√

4 − 2r2
i (1 − cos(θ)) · ri sin(θ)√

2(1 − cos(θ))

= −ri

√
2 + 2 cos(θ) − r2

i sin2(θ) ≥ −2ri,

where in the last inequality we used 2 ≥ 2 cos(θ)− r2
i sin2(θ). We conclude that

if 0 ≤ θ ≤ δ/(2ri) then ∂v(θ)/∂θ ≥ −δ/θ.
Using the mean-value theorem we see that, for any θ ∈ [0, δ/(2ri)] there

exists θ′ ∈ [0, θ] such that

v(θ) − v(0)
θ − 0

=
v(θ) − π

θ
=

∂v(θ′)
∂θ

.

Since, 0 ≤ θ′ ≤ δ/(2ri), we have ∂v(θ′)/∂θ ≥ − δ
θ and so we conclude that

v(θ) − π ≥ −δ.

For a pair Ai, Bj , we define the interval Rij = {θ ∈ [0, 2π) : Ai(θ)∩Bj 6= ∅}
on S1, the circle of rotations. We denote the length of Rij by |Rij |. Instead of
computing Vij(θ) at each θ ∈ Rij , we would like to sample it at regular intervals
whose length is at most δ/(2ri). At first, it looks as if we would have to take an
infinite number of sample points as ri → ∞. However, as the following lemma
shows, |Rij | decreases as ri increases, and the number of samples we need to
consider is bounded.

Lemma 5.2 For any Ai, Bj with ri > 0, and any given given δ > 0, we have
|Rij |/(δ/(2ri)) = O(1/δ).

Proof: Without loss of generality, we can assume that Ai is centered at (ri, 0)
and Bj is centered at (rj , 0). Note that the distance between the center of Ai(θ)
and Bj is

dij(θ) =
√

(ri cos θ − rj)2 + (ri sin θ)2 =
√

r2
i + r2

j − 2rirj cos θ.

Under these assumptions, Rij is of the form [−θij , θij ], where θij is the largest
value for which Ai(θij) ∩ Bj 6= ∅, that is, dij(θij) = 2. We have θij =

arccos r2
i +r2

j−4

2rirj
.
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(rj , 0)
(0, 0)

Bj

center of Ai(θij) in the worst case

C

p

Figure 5.2: Notation in Lemma 5.2. The center of Ai(θij) is placed in the circle C.
Therefore, θij is maximized for the dashed line through the origin and tangent to C.

As shown in Figure 5.2, the center of Ai(θij) is always placed on C, the circle
of radius two and concentric with Bj . Therefore, the value θij is maximized
when it equals the slope of the line through the origin and tangent to C. Let
p be the point of tangency. Since the triangle p, (0, 0), (rj , 0) is right on p, we
conclude that θij is maximized when rj =

√
r2
i + 4. Therefore

|Rij | = 2arccos
r2
i + r2

j − 4
2rirj

≤ 2 arccos

√
1 − 4

r2
i + 4

.

Using L’Hôpital’s rule we can compute that

lim
ri→∞

|Rij |
1/ri

= lim
ri→∞

4
1 + 4

r2
i

= 4.

It follows that the function |Rij | · ri is bounded for any ri > 0, and so |Rij |
δ/(2ri)

=
O(1/δ).

This lemma implies that we have to consider only O(1/δ) sample rotations
per pair of disks. Thus we need to check O(nm/δ) rotations in total. It seems
that we would have to compute all overlaps at every rotation from scratch,
but here Lemma 5.1 comes to the rescue: in between two consecutive rotations
θ, θ′ defined for a given pair Ai, Bj there may be many other rotations, but
if we conservatively estimate the overlap of Ai, Bj as the minimum overlap of
θ and θ′, we do not loose too much. In Figure 5.3, algorithm Rotation is
described in more detail; the value Ṽ(θ) is the conservative estimate of V(θ), as
just explained.

Lemma 5.3 Let θopt be a rotation that maximizes V(θ) and let kopt be the
number of overlapping pairs Ai(θopt), Bj. For any given δ > 0, the rotation
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Rotation(A, B, δ):

1. For each pair of disks Ai ∈ A and Bj ∈ B, choose a set Θij := {θ1
ij , . . . , θ

sij

ij }
of rotations as follows. First put the midpoint of Rij in Θij , and then put
all rotations in Θij that are in Rij and are at distance k · δ/(2ri) from the
midpoint for some integer k. Finally, put both endpoints of Rij in Θij . In
other words, Θij consists of rotations with a uniform spacing of δ/(2ri)—
except for the cases of endpoints whose distance to their neighbor rotations
is less than δ/(2ri)— with the midpoint of Rij being one of them.

2. Sort the values Θ :=
S

i,j Θij , keeping repetitions and solving ties arbitrarily.
Let θ0, θ1, . . . be the ordering of Θ. In steps 3 and 4, we will compute a value
Ṽ(θ) for each θ ∈ Θ.

3. (a) Initialize Ṽ(θ0) := 0.

(b) For each pair Ai ∈ A, Bj ∈ B for which θ0 ∈ Rij do:

• If Vij is decreasing at θ0, or θ0 is the midpoint of Rij , then Ṽ(θ0) :=
Ṽ(θ0) + Vij(θ̃ij), where θ̃ij is the closest value to θ0 in Θij with
θ̃ij > θ0.

• If Vij is increasing at θ0, then Ṽ(θ0) := Ṽ(θ0) + Vij(θ̃ij), where θ̃ij

is the closest value to θ0 in Θij with θ̃ij < θ0.

4. For each θl in increasing order of l, compute Ṽ(θl) from Ṽ(θl−1) by updating
the contribution of the pair Ai, Bj defining θl, as follows. Let θl be the s-th
point in Θij , that is, θl = θs

ij

• If Vij is increasing at θs
ij , then Ṽ(θl) := Ṽ(θl−1) − Vij(θ

s−1
ij ) + Vij(θ

s
ij)

• If Vij is the midpoint of Rij , then Ṽ(θl) := Ṽ(θl−1) − Vij(θ
s−1
ij ) +

Vij(θ
s+1
ij )

• If Vij is decreasing at θs
ij , then Ṽ(θl) := Ṽ(θl−1) − Vij(θ

s
ij) + Vij(θ

s+1
ij )

5. Report the θapx ∈ Θ that maximizes Ṽ(θ).

Figure 5.3: Algorithm Rotation(A, B, δ).

θapx reported by Rotation(A,B, δ) satisfies V(θopt)−V(θapx) = O(koptδ), and
can be computed in O((mn/δ) log m) time.

Proof: First, we show that V(θ) ≥ Ṽ(θ) ≥ V(θ) − 2kθδ for any θ ∈ Θ where
kθ is the number of overlapping pairs between A(θ) and B. That is, Ṽ is a fair
approximation of V from below for the values in Θ.

By checking whether Vij increases or decreases at θs
ij and adding the appro-

priate value to Ṽ(θ), each pair Ai, Bj contributes Vij(θs
ij) ≤ Vij(θ) to Ṽ(θ) for

some θs
ij for which |θ−θs

ij | ≤ δ/(2ri). By Lemma 5.1 we have Vij(θ)−Vij(θs
ij) ≤

2δ. Thus, in total, 0 ≤ V(θ) − Ṽ(θ) ≤ 2kθδ.
In a similar fashion, consider now the kopt overlapping pairs of disks at θopt,

and let AM be the disk furthest from the origin that participates in the optimal
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solution, i.e. AM (θopt) ∩ (
⋃

B) 6= ∅. Let θ̃ ∈ Θ be the closest value to θopt. We
have

|θ̃ − θopt| ≤ δ/(2rM ) ≤ δ/(2ri)

for all Ai in the optimal solution. Again, according to Lemma 5.1, the loss per
pair Ai, Bj is Vij(θopt) − Vij(θ̃) ≤ 2δ. In total, V(θopt) − V(θ̃) ≤ 2koptδ.

Observe that since both endpoints of every interval Rij are in Θ, no new
pairs with non-zero overlap are formed when ‘moving’ from θopt to θ̃. Hence,
for our purpose, we can assume that kθ̃ = kopt.

Putting it all together we get

V(θopt) − V(θapx) =
(
V(θopt) − V(θ̃)

)
+

(
V(θ̃) − Ṽ(θ̃)

)
+

(
Ṽ(θ̃) − Ṽ(θapx)

)
+

(
Ṽ(θapx) − V (θapx)

)
≤ 2koptδ + 2kθ̃δ + 0 + 0 ≤ 4koptδ.

The running time is dominated by the time to sort the values in Θ. The set
Θ consists of O(nm) subsets Θij , each having O(1/δ) rotations by Lemma 5.2.
Each subset Θij can easily be generated as a sorted sequence, so what remains
is to merge the sorted sequences, which can be done in O((nm/δ) log m) time.

5.4 A (1 − ε)-approximation algorithm for rigid
motions

As noted in the introduction, any rigid motion can be described as a translation
plus a a rotation about the origin. This fact is used in the algorithm Rigid-

Motion given in Figure 5.4. First, we start with the following lemma which
implies that, in terms of absolute error, it is not too bad if we choose a transla-
tion which is close to the optimal one. A proof of this lemma was already given
in Section 4.6; for completeness, a simpler proof for disks is given below.

Lemma 5.4 Let k be the number of overlapping pairs Ai(~t, θ), Bj for some
~t ∈ R2, θ ∈ [0, 2π). For any given δ > 0 and any ~t′ ∈ R2 for which |~t−~t′| = O(δ),
we have V(~t′, θ) = V(~t, θ) − O(kδ).

Proof: Consider a pair of disks Ai(~t, θ) and Bj for which Vij(~t, θ) 6= 0. If Ai

is translated by ~t′, instead of ~t, then dij(~t′, θ) − dij(~t, θ) = |~t − ~t′|. Observe
that the biggest loss per pair, Vij(~t, θ)−Vij(~t′, θ), occurs when Ai moves in the
direction of the line connecting the centers of Ai and Bj , and away from Bj .
Since the diameter of both disks is equal to 2, we have that Vij(~t, θ)−Vij(~t′, θ) <
2|~t − ~t′| = O(δ). We have k such pairs, hence1 , V(~t, θ) − V(~t′, θ) = O(kδ).

1Note that by translating A by ~t′ instead of ~t and then rotating it by θ, new pairs might
appear but this can only decrease the total loss.
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RigidMotion(A, B, ε):

1. Let G be a uniform grid of spacing cε, where c is a suitable constant. For
each pair of disks Ai ∈ A and Bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to be Bj ’s center by translating
B appropriately.

(b) Let Tij = Bj 	 Ai, and determine all grid points ~tg of G such that
~tg ∈ Tij . For each such ~tg do:

• run Rotation(A(~tg), B, c′ε), where c′ is an appropriate constant.
Let θg

apx be the rotation returned. Compute V(~tg, θ
g
apx).

2. Report the pair (~tapx, θapx) that maximizes V(~tg, θ
g
apx).

Figure 5.4: Algorithm RigidMotion(A, B, ε).

Theorem 5.3 Let A = {A1, . . . , An} and B = {B1, . . . , Bm}, with n ≤ m,
be two sets of disjoint unit disks in the plane. Let I~topt,θopt

be a rigid motion
that maximizes V(~t, θ). Then, for any given ε > 0, RigidMotion(A,B, ε)
computes a rigid motion I~tapx,θapx

such that V(~tapx, θapx) ≥ (1 − ε)V(~topt, θopt)
in O((n2m2/ε3) log m) time.

Proof: We will show that V(~tapx, θapx) approximates V(~topt, θopt) up to an ab-
solute error. To convert the absolute error into a relative error, and hence show
the algorithm’s correctness, we use again Theorem 4.4. Let Aopt be the set of
disks in A that participate in the optimal solution and let |Aopt| = k̄opt. Since
the ‘kissing’ number of unit open disks is six, we have that kopt < 6k̄opt, where
kopt is the number of overlapping pairs in the optimal solution. Next, imag-
ine that RigidMotion(Aopt, B, ε) is run instead of RigidMotion(A,B, ε). Of
course, an optimal rigid motion for Aopt is an optimal rigid motion for A and
the error we make by applying a non-optimal rigid motion to Aopt bounds the
error we make when applying the same rigid motion to A.

Consider a disk Ai ∈ Aopt and an intersecting pair Ai(~topt, θopt), Bj . Since,
at some stage, the algorithm will use Bj ’s center as the center of rotation,
and I~topt,θopt

= Rθopt ◦ T~topt
, we have that Ai(~topt) ∩ Bj 6= ∅ if and only if

Ai(~topt, θopt) ∩ Bj 6= ∅. Hence, we have that ~topt ∈ Tij and the algorithm will
consider some grid translation ~tg ∈ Tij = Bj 	 Ai, for which |~topt − ~tg| = O(ε).
By Lemma 5.4 we have V(~topt, θopt) − V(~tg, θopt) = O(koptε) = O(k̄optε).

Let θg
opt be the optimal rotation for ~tg. Then, V(~tg, θopt) ≤ V(~tg, θ

g
opt). The

algorithm computes, in its second loop, a rotation θg
apx for which V(~tg, θ

g
opt) −

V(~tg, θg
apx) = O(kg

optε), where kg
opt is the number of pairs at the optimal rotation

θg
opt of Aopt(~tg). Since we are only considering Aopt we have that kg

opt < 6k̄opt,
thus, V(~tg, θ

g
opt) − V(~tg, θg

apx) = O(k̄optε).
Now, using the fact that V(~tg, θg

apx) ≤ V(~tapx, θapx) and that k̄opt ≤ kopt,
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and putting it all together we get

V(~topt, θopt) − V(~tapx, θapx) =
(
V(~topt, θopt) − V(~tg, θopt)

)
+

(
V(~tg, θopt) − V(~tg, θ

g
opt)

)
+

(
V(~tg, θ

g
opt) − V(~tg, θg

apx)
)

+
(
V(~tg, θg

apx) − V(~tapx, θapx)
)

< O(k̄optε) + 0 + O(k̄optε) + 0 = O(koptε).

From Theorem 5.2 we have that V(~topt, θopt) = Θ(kopt) and the approximation
bound follows.

Finally, the running time of the algorithm is dominated by its first step. We
can compute V(~tg, θg

apx) by a simple plane sweep in O(m log m) time. Since there
are Θ(ε−2) grid point in each Tij , each execution of the loop in the first step takes
O(m + 1/ε2 + (1/ε2)(nm/ε) log m + (1/ε2)m log m) = O((nm/ε3) log m) time.
The step is executed nm times, thus the algorithm runs in O((n2m2/ε3) log m)
time.

5.4.1 An improvement for sets with small diameter

We can modify the algorithm such that its running time depends on the diameter
∆ of the set A. The main idea is to convert our algorithm into one that is
sensitive to the number of pairs of disks in A and B that have approximately
the same distance, and then use the combinatorial bounds by Gavrilov et al. [64].
Namely, we will use the following result (note that an extra log n factor is missing
in the reference due to a typographic error).

Lemma 5.5 [64, Theorem 4.1] Given a S set of n points whose closest pair
is at distance at least 2, there are O(n4/3t1/3 log n) pairs of points in S whose
distance is in the range [t − 4, t + 4].

This lemma and a careful implementation of Rotation allows us to improve
the analysis of the running time of RigidMotion for small values of ∆. In many
applications it is reasonable to assume bounds of the type ∆ = O(n) [64], and
therefore the result below is relevant. For example, if ∆ = O(n) this result shows
that we can compute a (1−ε)-approximation in O((m2n5/3)/ε3 log n log m) time.

Theorem 5.4 Let A = {A1, . . . , An} and B = {B1, . . . , Bm}, n ≤ m be two
sets of disjoint unit disks in the plane. Let ∆ be the diameter of A, and
let I~topt,θopt

be the rigid motion maximizing V(~t, θ). For any ε > 0, we can
find in O((m2n4/3∆1/3/ε3) log n log m) time a rigid motion I~tapx,θapx

such that
V(~tapx, θapx) ≥ (1 − ε)V(~topt, θopt).

Proof: Observe that when RigidMotion calls Rotation the origin is set at
the center of some Bj , and some Ai intersects Bj . We denote by cAi

the center
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of Ai and similarly by cBj
the center of Bj . Inside Rotation, the pairs of disks

Ai′ and Bj′ such that Ri′j′ 6= ∅ must satisfy

d(cBj
, cBj′ ) − 4 ≤ d(cAi

, cAi′ ) ≤ d(cBj
, cBj′ ) + 4

We store in a balanced tree the distances from the origin to the centers of A.
This can be done in O(n log n) time, and then we can report, for any given pair
Bj , Bj′ ∈ B and any Ai ∈ A, all the pairs Ai, Ai′ ∈ A satisfying the relation
above in O(kj,j′,i + log n) time, where kj,j′,i is the number of reported pairs.
Therefore, when we have fixed ~tg ∈ Tij in RigidMotion, we can implement

the call to Rotation(A(~tg), B, cε) in O(m log n +
P

j′ kj,j′,i
ε log m) time.

If A has diameter ∆, then Lemma 5.5 implies
∑

i kj,j′,i = O(n4/3∆1/3 log n).
This means that, overall, RigidMotion can be implemented in time

O


 1

ε2

∑
i,j

(
m log n +

∑
j′ kj,j′,i

ε
log m

)
 =

O

(
nm2 log n

ε2
+

∑
i,j,j′ kj,j′,i

ε3
log m

)
=

O

(
nm2 log n

ε2
+

∑
j,j′

∑
i kj,j′,i

ε3
log m

)
=

O

(
nm2 log n

ε2
+

m2n4/3∆1/3 log n

ε3
log m

)
= O

(
m2n4/3∆1/3 log n log m

ε3

)
.

5.5 A Monte Carlo algorithm

In this section we present a Monte Carlo algorithm that computes a (1 − ε)-
approximation for rigid motions in O((m2/ε4) log(m/ε) log2 m) time. The algo-
rithm works under the condition that the maximum area of overlap of A and B
is at least some constant fraction of the area of A.

The algorithm is simple and follows the two-step framework of Section 5.4 in
which an approximation of the best translation is followed by an approximation
of the best rotation. However, now, the first step is a combination of grid
sampling of the space of translations and random sampling of set A. This
random sampling is based on the observation that the deterministic algorithm
of Section 5.4 will compute a (1 − ε)-approximation kopt times, where kopt is
the number of pairs of overlapping disks in an optimal solution. Intuitively, the
larger this number is, the quicker such a pair will be tried out in the first step.
Similar observations were made by Akutsu et al. [8] who gave exact Monte Carlo
algorithms for the largest common point set problem.
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The second step is based on a direct application of the technique by Cheong
et al. that allows us to maximize, up to an absolute error, the area of overlap
under rotation in almost linear time, by computing a point of maximum depth
in a one dimensional arrangement.

Rotations. For a given ε > 0, we choose a uniform random sample S of
points in A with |S| = Θ(ε−2 log m). For a point s ∈ S, we define W (s) = {θ ∈
[0, 2π)|s(θ) ∈ B} where s(θ) denotes a copy of s rotated by θ. Let ΓB(S) be the
arrangement of all regions W (s), s ∈ S; it is a one-dimensional arrangement of
unions of rotational intervals.

Lemma 5.6 Let θopt be the rotation that maximizes V(θ). For any given ε > 0,
let S be a uniform random sample of points in A with |S| ≥ c1

log m
ε2 where c1

is an appropriate constant. A vertex θapx of ΓB(S) of maximum depth satisfies
V(θopt) − V(θapx) ≤ εV (A) with probability at least 1 − 1/m6.

Proof: The proof is identical to the proof of and Lemma 4.2 by Cheong et
al. [39].

The arrangement ΓB(S) has O((m/ε2) log m) complexity and can be computed
in O((m/ε2) log(m/ε) log m) time by sorting. A vertex θapx of ΓB(S) of maxi-
mum depth can be found by a simple traversal of this arrangement.

We could apply the idea above directly to rigid motions and compute the
arrangement of all regions W (s) with respect to rigid motions of S. Lemma 5.6
holds for this arrangement, and a vertex of maximum depth gives an absolute
error on V(~topt, θopt). This arrangement has O(|S|3m2) = O((m2/ε6) log3 m)
vertices [41] that correspond — in workspace — to combinations of triples of
points in S and triples of disks in B such that each point lies on the boundary of
a disk. All such combinations can be easily found in O((m2/ε6) log(m/ε) log3 m)
time. However, computing the actual rigid motion for any such combination is
not trivial, as already explained in section 5.2. This complication is avoided
by applying the technique to rotations only, thus computing a one-dimensional
arrangement instead.

Rigid motions. Since we assume that V(~topt, θopt) ≥ αV (A), for some given
constant 0 < α ≤ 1, we have that kopt ≥ αn. Based also on the fact that the
number of disks in A that participate in an optimal solution is at least kopt/6, we
can easily prove that the probability that Θ(α−1 log m) uniform random draws
of disks from A will all fail to give a disk participating in an optimal solution is
at most 1/m6. Algorithm RandomRigidMotion is given in Figure 5.5.

Theorem 5.5 Let A = {A1, . . . , An} and B = {B1, . . . , Bm}, be two sets
of disjoint unit disks in the plane and I~topt,θopt

be a rigid motion that max-
imizes V(~t, θ). Assume that V(~topt, θopt) ≥ αV (A), for some given constant
0 < α ≤ 1. For any given ε > 0, RandomRigidMotion(A,B, α, ε) com-
putes a rigid motion I~tapx,θapx

such that V(~tapx, θapx) ≥ (1 − ε)V(~topt, θopt) in
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RandomRigidMotion(A, B, α, ε):

1. Choose a uniform random sample S of points in A, with |S| = Θ(ε−2 log m).

2. Let G be a uniform grid of spacing cε, where c is a suitable constant.

Repeat Θ(α−1 log m) times:

(a) Choose a random Ai from A.

(b) For each Bj ∈ B do:

i. Set the center of rotation, i.e. the origin, to be Bj ’s center by
translating B appropriately.

ii. Let Tij = Bj 	Ai, and determine all grid points ~tg of G such that
~tg ∈ Tij . For each such ~tg do:

• Compute a vertex θg
apx of maximum depth in ΓB(S(~tg)), and

V(~tg, θ
g
apx).

3. Report the pair (~tapx, θapx) that maximizes V(~tg, θ
g
apx).

Figure 5.5: Algorithm RandomRigidMotion(A, B, α, ε).

O((m2/ε4) log(m/ε) log2 m) time. The algorithm succeeds with probability at
least 1 − 2/m6.

Proof: Recall that k̄opt is the number of disks Ai that participate in an optimal
solution. Since k̄opt > kopt/6, we have that Pr[(Ai /∈ Aopt)] < 1 − kopt

6n , for a
random Ai ∈ A. Let RA be the set of all disks Ai chosen in step 2. The
probability that all |RA| random draws from A will fail to give a disk that
belongs to an optimal pair is

Pr[RA ∩ Aopt = ∅] ≤ (1 − kopt

6n
)|RA| ≤ e−kopt|RA|/(6n) ≤ e−α|RA|/6.

By choosing |RA| ≥ (36/ log e)α−1 log m, we have that

Pr[RA ∩ Aopt = ∅] ≤ m−6.

If RA ∩ Aopt 6= ∅, then at least one intersecting pair Ai(~topt, θopt), Bj will
be identified in the first loop. Then, in the second loop, the algorithm finds
a θg

apx for which, by Lemma 5.6, V(~tg, θ
g
opt) − V(~tg, θg

apx) ≤ εV (A), for some
~tg ∈ Tij with |~topt − ~tg| = O(ε), and with probability at least 1 − m−6. As in
the proof of Theorem 5.3, we have that V(~topt, θopt) − V(~tg, θopt) = O(koptε),
V(~tg, θopt) ≤ V(~tg, θ

g
opt) and V(~tg, θg

apx) ≤ V(~tapx, θapx). Hence,

V(~topt, θopt) − V(~tapx, θapx) = O(koptε) + εV (A).

Using that V(~topt, θopt) ≥ αV (A) and V(~topt, θopt) = Θ(kopt), the approxima-
tion bound follows. The algorithm fails to return such a pair ~tapx, θapx if and
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only if any of its two random sampling steps fail. That is, the algorithm fails
with probability at most 2m−6.

Regarding the running time, the random sampling of set A can be easily done
in O((n/ε2) log m) time. In the second step, for each of the O(m/ε2) log m grid
translations ~tg, the one dimensional arrangement ΓA(~tg)(S) of O((m/ε2) log m)
complexity is computed, a vertex of maximum depth θg

apx is returned and
V(~tg, θg

apx) is evaluated; this takes in O((m/ε2) log(m/ε) log m)+m log m) time.
In total the running time is O((m2/ε4) log(m/ε) log2 m).

5.6 Sets of intersecting disks with different radii

We can generalize our results to the case where A and B consist of possibly
intersecting and various size disks under the conditions of bounded scaling ratio
λ and bounded depth β.

First, we show that the assumptions result in denser sampling of configura-
tion space with constants that depend on the parameters λ and β as well. Then,
we discuss their algorithmic implications.

Translations. First, consider Lemma 5.4. The maximum loss per pair is now
determined by a pair of disks of radius λ each: Vij(~topt, θopt) − Vij(~t, θopt) <
2λ|~topt − ~t| = O(δ). Therefore, V(~topt, θopt) − V(~t, θopt) < 2koptλ|~topt − ~t| =
O(koptδ) and the lemma holds. Moreover, Theorem 4.4 holds as well, with the
constant in the Θ-notation depending on both λ and β.

Regarding the algorithm Translation, special care needs to be taken to
avoid overcounting V(~tg). We can do this in the following way: Consider the
arrangement A of all disks Ai ∈ A in the work space. Since the maximum depth
in A is constant, A has O(n) complexity and can be computed in O(n log n)
time. Next, we compute a vertical decomposition VD(A) of A; VD(A) has O(n)
disjoint cells2 each of constant complexity and can be computed in O(n log n)
time. Similarly, we compute B and VD(B) both in O(m log m) time. The loop
in step 2 is now executed for every pair of cells ci ∈ VD(A) and cj ∈ VD(B) and
instead of computing Vij(~tg), we compute V (ci(~tg) ∩ cj). The voting scheme
proceeds as before and runs within the same time bounds.

Rotations. Consider Lemma 5.1 and its proof: the length of sampling inter-
vals is now determined by a pair of disks of radius λ each. For such a pair Ai, Bj

we have ∂v(θ)
∂θ ≥ −2riλ. Therefore, for any pair of disks Ai ∈ A and Bj ∈ B,

we can sample Vij(θ) at regular intervals whose length is at most δ/(2riλ) as-
suring that the loss per pair is at most 2δ. We also have to make sure that the
number of samples per pair remains bounded, see Lemma 5.2. Indeed, |Rij | is
maximized for the ‘worst case’ pair of disks of radius λ each; this is a scaled, by
λ, version of the original problem.

2For our purpose, we only consider cells that are inside
S

A.
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Regarding algorithm Rotation(A,B, δ), we use spacing of δ/(2riλ) in its
first step. Unfortunately, the simple technique used in the algorithm of Fig-
ure 5.3 to approximate V(θ) for all the values θ ∈ Θ does not work here since
the disks in each set are possibly intersecting and the area of overlap accu-
mulated in Ṽ(θ) can be a bad approximation of V(θ). We can overcome this
problem in the following way. We compute VD(A) and VD(B) as before. Ob-
serve that every cell ci ∈ VD(A) is fully contained in some disk in A; similarly,
every cell cj ∈ VD(B) is fully contained in some disk in B. Consider the func-
tion V (ci(θ) ∩ cj), θ ∈ [0, 2π); for every pair (ci, cj), the error in V (ci(θ) ∩ cj)
is bounded by the error in the pair of their corresponding disks. Since each cell
in both decompositions has at most two vertical walls and at most two circular
segments, the function has a bounded number of local minima/maxima. We
insert all these values, for every pair of cells, in set Θ. The algorithm proceeds
as before by considering whether V (ci(θ)∩cj) increases, decreases or reaches an
optimum at each θ ∈ Θ. Rotation now runs again in O((mn/δ) log m) time
and its correctness can be shown as in the proof of Lemma 5.3.

Rigid Motions. In addition to the relevant changes mentioned in the pre-
vious paragraphs, observe that a simple volume argument shows that any disk
Ai(~t, θ) cannot intersect more than 9λ2β disks Bj for any ~t, θ. Thus, |Aopt| >
kopt/(9λ2β).

In RigidMotion, we can compute V(~tg, θg
apx) for each pair (~tg, θg

apx) in a
straightforward way as follows: we compute V (

⋃
A) in O(n log n) time, by

computing VD(A) and summing up the areas of all its O(n) cells. Simi-
larly, we compute V (

⋃
B) in O(m log m) time and, for each pair (~tg, θg

apx),
V ((

⋃
A(~tg, θg

apx)) ∪ (
⋃

B)) in O(m log m) time. It follows that for each pair
(~tg, θg

apx) we can compute V ((
⋃

A(~tg, θg
apx)) ∩ (

⋃
B)) in O(m log m) time. By

incorporating all these changes, we can prove Theorem 5.3 as before.
Regarding the extension of Theorem 5.4, we apply the same method that

we use in its proof, namely computing in Rotation the disks Ai′ , Bj′ such
that Ri′j′ is not empty. Then, for each cell ci′ ∈ Ai′ ∩ VD(A) and each cell
cj′ ∈ Bj′ ∩ VD(B) we proceed like before. We also need to keep track of the
pairs ci′ , cj′ that have been already added to avoid overcounting them. To show
that the same time bound holds, we need to argue that there are asymptotically
the same number of pairs ci′ ∈ VD(A) and cj′ ∈ VD(B) with Ri′j′ 6= ∅ than
we had for the case of disjoint unit disks. For this, we first observe that each
disk Ai′ is decomposed into O(1) cells in VD(A) because it intersects at most
9λ2β other disks of A. The same holds for any Bj′ . Therefore, each pair of disks
Ai′ , Bj′ that we need to consider, gives rise to O(1) pairs of cells ci′ , cj′ .

It remains to bound the number of pairs Ai′ , Bj′ such that Ri′,j′ 6= ∅. For
this, observe that set A can be decomposed into O(1) disjoint groups of disjoint
disks. This can be shown using a greedy procedure: compute a maximal set
of disjoint disks Ã ⊂ A, that is, any disk in A intersects some disk in Ã; then
take Ã as a disjoint group and proceed recursively with A \ Ã. After 9λ2β + 1
steps all the disks must be in some group, as any remaining disk must intersect
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a disk in each of the 9λ2β + 1 groups, which is not possible. We can then apply
Lemma 5.5 to each of the disjoint groups, and because there are a constant
number of groups, we get the same asymptotic value for

∑
i kj,j′,i as we had for

the case of disjoint, unit disks. The result follows.
In RandomRigidMotion the size of RA has to be at least (54λ4β/ log e)α−1

log m since the condition V(~topt, θopt) ≥ αV (A) now gives that kopt ≥ αn/λ2.
Note that Lemma 5.6 holds for any two planar regions A and B and thus for the
two unions

⋃
A and

⋃
B as well. We can compute the sample points in A using

VD(A). Last we compute each W (s) by checking all disks in B in O(m log m)
time. The running time of the algorithm stays the same and Theorem 5.5 can
now be proven as before.



Chapter 6

Further research

We have examined similarity measures for weighted point sets and their use
in geometric pattern matching. In addition to the immediate open problems
posed at the end of each chapter, we conclude this thesis by giving a few general
research directions.

In Chapter 2, we dealt with similarity measures based on weight transporta-
tion. The normalized version of the EMD, i.e., the PTD, is a straightforward
variation that, of course, obeys triangle inequality, cancelling out positivity and
partial matching. It seems to be quite difficult to come up with a metric for
sets with different total weights. It would thus be interesting to find alternative
ways of weight distribution between such point sets that result in a (pseudo)
metric.

In Chapter 2, we also convinced ourselves of the potential use of the EMD
and PTD in shape matching and retrieval by performing simple experiments
on a variety of data sets. However, the best practical shape matching methods
in computer vision, heuristics based on curvature scale space [94] and shape
contexts [24] give better matching results than our simple method. One rea-
son for that is the difficulty in deriving good point set signatures from the
shapes. Therefore, one should look for more careful methods in choosing the
signatures, maybe by combining the heuristics mentioned above with the use
of transportation distances. A recent work towards this direction by Grauman
and Darell [71], that uses also some other new ideas mentioned shortly below,
has given quite promising results.

A second reason for the limitation of our matching method is the use of sim-
ple shape pose normalization that accounts for transformation effects. Heuristics
normally deal with transformations by employing sophisticated shape process-
ing that derives transformation invariant features; it is reasonable to expect
that they perform better. However, these heuristics lack specific properties and
do not perform partial matching. It seems that one can always come up with
a counter-example and have some difficulties in analyzing the behavior of these
methods, especially when they give wrong answers. As already mentioned in
the introduction, to deal with this problem properly, computational geometry
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adopts the approach of similarity measures and their minimization under trans-
formations. This is a theoretical framework that explores the use of appropriate
similarity measures for different sets of patterns and gives deep insights to par-
ticularly hard shape matching problems. Very few of these methods have found
their way into practice. Actually, no comparison has been made by performing
extensive experiments on the same data sets used by the practical heuristics.
The main reason is that the methods have high running times and can be very
complicated to program. Regardless of their high running times, we believe that
it is worthwhile doing such experiments in order to check their accuracy.

One way to decrease the running times of these theoretically sound methods
is to consider approximations. Approximation algorithms are, sometimes, also
much simpler and easier to implement. In Chapter 3, we have given approxima-
tion algorithms for the minimum EMD under rigid motions. These algorithms
are quite simple but, in general, still quite expensive, however in this case there
is no other alternative since no exact algorithms are known. In particular, the
approximation algorithm for computing the EMD (for a fixed transformation)
is not practical. As an alternative, for experiments, one could use the simplex
algorithm for solving the transportation problem. Although the running times
will not be polynomial anymore, the approximations still hold and simplex per-
forms well in practice for reasonably sized point sets. One additional problem
here is that even if the similarity measure is a metric, the approximate values
do not necessarily follow the metric properties. Even simple experiments could
reveal the (in)effectiveness of such approximations in shape matching. More-
over, research needs to be done in proving potential ’approximate’ properties
that could be useful for time-efficient retrieval. To this respect, in an approach
quite similar to—and preceding— the one by Grauman and Darell, Indyk and
Thaper [81] presented a method that uses a low distortion embedding of the
EMD into Euclidean space and a Locality-Sensitive Hashing scheme [36] to ob-
tain an approximate nearest neighbor search algorithm for the EMD on equal
weight sets.

In Chapters 4 and 5, we presented approximation algorithms for the maxi-
mum area of overlap of two unions of disks or balls under translations and rigid
motions. This is the first work dealing with matching collections of shapes.
These algorithms are in general faster than the algorithms for the minimum
EMD under rigid motions. However, because of the particular similarity mea-
sure used and the special assumptions on the input, they are less applicable.
Any object can be efficiently approximated by a finite union of disks or balls.
Our algorithms assume bounded scaling ratio and overall depth; see again Sec-
tion 4.2. As Amenta noted [15], it is not clear that one can bound the error of
shape approximation under these assumptions; it would be interesting to check
whether such a guarantee can be given. On the other hand, the algorithms
by Cheong et al. [39] for the same matching problem do not need the assump-
tions but give an absolute error on the maximum area of overlap. Can we design
(1−ε)- approximation algorithms that run without the assumptions in the same
time bounds as the ones we give ?
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point sets under approximate congruence. In Proc. of the 8th European
Sympos. Algorithms, volume 1879 of LNCS, pages 52–63, 2000.

[15] N. Amenta. Personal communication, 2004.

[16] N. Amenta and R. Kolluri. Accurate and efficient unions of balls. In Proc.
of the 16th Annu. ACM Sympos. Computat. Geom., pages 119–128, 2000.

[17] E.M. Arkin, K. Kedem, J.S.B. Mitchell, J. Sprinzak, and M. Werman.
Matching points into noise regions: Combinatorial bounds and algorithms.
In Proc. of the 2nd Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
42–51, 1991.

[18] S. Arora. Approximation schemes for NP-hard geometric optimiza-
tion problems: A survey. http://www.cs.princeton.edu/~arora/pubs/
arorageo.ps, 2002.

[19] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu. An
optimal algorithm for approximate nearest neighbor searching. In Proc.
of the 5th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 573–
582, 1994.

[20] D.S. Atkinson and P.M. Vaidya. Using geometry to solve the transporta-
tion problem in the plane. Algorithmica, 13:442–461, 1995.

[21] C. Bajaj. The algebraic degree of geometric optimization problems. Dis-
crete Comput. Geom., 3:177–191, 1988.

[22] D.H. Ballard. Generalized Hough transform to detect arbitrary pat-
terns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(2):111–122, 1981.

[23] J. Barros, J. French, W. Martin, P. Kelly, and M. Cannon. Using the trian-
gle inequality to reduce the number of comparisons required for similarity-
based retrieval. In Proc. of SPIE, vol. 2670, Storage and Retrieval for Still
Image and Video Databases IV, pages 392–403, 1996.

[24] S. Belongie, J. Malic, and J. Puzicha. Shape matching and object recog-
nition using shape contexts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(24):509–522, 2002.

[25] M. Bern and D. Eppstein. Approximation algorithms for geometric prob-
lems. In D. Hochbaum, editor, Approximation algorithms for NP-hard
problems. PWS Publishing, 1996.



Bibliography 119

[26] P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–
256, 1992.

[27] P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums
of distances, clustering and the Fermat-Weber problem. Comput. Geom.
Theory Appl., 24:135–146, 2003.

[28] L. Boxer. On Hausdorff-like metrics for fuzzy sets. Pattern Recognition
Letters, 18, 1997.

[29] P. Braß. Exact point pattern matching and the number of congruent
triangles in a three-dimensional point set. In Proc. of the 8th European
Sympos. Algorithms, volume 1879 of LNCS, pages 112–119, 2000.

[30] P. Braß. On the non-existence of Hausdorff-like metrics for fuzzy sets.
Pattern Recognition Letters, 23(1–3):39–43, 2002.

[31] P. Braß and C. Knauer. Testing the congruence of d-dimensional point
sets. Int. J. of Comp. Geom. Appl., 12(1):115–124, 2002.

[32] S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point
sets with respect to the Earth Mover’s Distance. To appear in Proc. of the
13th Annu. European Sympos. Algorithms (ESA), LNCS, October 2005.

[33] P.B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric
graph problems in higher dimensions. In Proc. of the 4th Annu. ACM-
SIAM Sympos. Discrete Algorithms, pages 291–300, 1993.

[34] T.M. Chan. Geometric applications of a randomized optimization tech-
nique. Discrete Comput. Geom., 22:547–567, 1999.

[35] R. Chandrasekaran and A. Tamir. Algebraic optimization: The Fermat-
Weber location problem. Math. Programming, 46(2):219–224, 1990.

[36] M.S. Charikar. Similarity estimation techniques from rounding algorithms.
In Proc. of the 34th Annu. ACM Sympos. Theory of Computing, pages
380–388, 2002.

[37] B.B. Chaudhuri and A. Rosenfeld. On a metric distance between fuzzy
sets. Pattern Recognition Letters, 17, 1996.

[38] C.C. Chen. Improved moment invariants for shape discrimination. Pattern
Recognition, 26(5):683–686, 1993.

[39] O. Cheong, A. Efrat, and S. Har-Peled. On finding a guard that sees most
and a shop that sells most. 2004. Manuscript. Submitted to Discrete
Comput. Geom.

[40] L.P. Chew, D. Dor, A. Efrat, and K. Kedem. Geometric pattern matching
in d-dimensional space. Discrete Comput. Geom., 21, 1999.

[41] L.P. Chew, M. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg,
and D. Kravets. Geometric pattern matching under Euclidean motion.
Comput. Geom. Theory Appl., 7:113–124, 1997.



120 Bibliography

[42] L.P. Chew and K. Kedem. Getting around a lower bound for the minimum
Hausdorff distance. Comput. Geom. Theory Appl., 10:197–202, 1998.

[43] L.P. Chew, K. Kedem, and S. Schirra. On characteristic points
and approximate decision algorithms for the minimum Hausdorff dis-
tance. Research Report MPI-I-94-150, Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany, 1994.

[44] S.D. Cohen. Finding Color and Shape Patterns in Images. PhD thesis,
Stanford University, Department of Computer Science, 1999.

[45] S.D. Cohen and L.J. Guibas. The Earth Mover’s Distance under trans-
formation sets. In Proceedings of the 7th IEEE International Conference
on Computer Vision, pages 173–187, September 1999.

[46] R. Cole. Slowing down sorting networks to obtain faster sorting algo-
rithms. J. ACM, 31:200–208, 1984.

[47] D. A. Cox, J. B. Little, and D. O’Shea. Using Algebraic Geometry, volume
185 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.

[48] K. Kedem D. P. Huttenlocher and M. Sharir. The upper envelope of
Voronoi surfaces and its applications. Discrete Comput. Geom., 9:267–
291, 1993.

[49] R. H. Davis and J. Lyall. Recognition of handwritten characters—a review.
Image and Vision Computing, 4:208–218, 1986.

[50] M. de Berg, S. Cabello, P. Giannopoulos, C. Knauer, R. van Oostrum, and
R. C. Veltkamp. Maximizing the area of overlap of two unions of disks
under rigid motion. In Proc. of the 9th Scand. Work. Algorithm Theory,
volume 3111 of LNCS, pages 138–149, 2004.

[51] M. de Berg, O. Devillers, M. van Kreveld, O. Schwarzkopf, and M. Teil-
laud. Computing the maximum overlap of two convex polygons under
translations. In Proc. of the 7th Internat. Symp. Algorithms and Compu-
tation (ISAAC ’96), volume 1178 of LNCS, pages 126–135, 1996.

[52] M. de Berg, P. Giannopoulos, C. Knauer, R. van Oostrum, and R. C.
Veltkamp. The area of overlap of two unions of convex objects under
translations. Technical Report UU-CS-2003-025, Institute of Information
and Computing Sciences, Utrecht University, The Netherlands, 2003.

[53] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag, 2nd
edition edition, 2000.

[54] P.J. de Rezende and D.T. Lee. Point set matching in d-dimensions. Algo-
rithmica, 13:387–404, 1995.

[55] A. Diaz, I. Emiris, E. Kaltofen, and V. Pan. Algebraic algorithms. In
M. J. Atallah, editor, Algorithms & Theory of Computation Handbook,
chapter 16, pages 16.1–16.27. CRC Press, 1999.



Bibliography 121

[56] D. Doerman. The UMD logo database. http://documents.cfar.umd.
edu/resources/database/UMDlogo.html.

[57] A. Efrat, A. Itai, and M.J. Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica, 31:1–28, 2001.

[58] A. Efrat and M. Sharir. The complexity of the union of fat objects in the
plane. Discrete Comput. Geom., 23:171–189, 2000.

[59] J.-L. Fan. Note on Hausdorf-like metrics for fuzzy sets. Pattern Recogni-
tion Letters, 19, 1998.

[60] P.W. Finn and L.E. Kavraki. Computational approaches to drug design.
Algorithmica, 25:347–371, 1999.

[61] G.N. Fredrickson and D.B. Johnson. Finding kth paths and p-centers by
generating and searching good data structures. J. Algorithms, 4:61–80,
1983.

[62] D. S. Fry. Shape Recognition using Metric on the Space of Shapes. PhD
thesis, Harvard University, Division of Applied Sciences, 1993.

[63] H.N. Gablow and R.E. Tarjan. Faster scaling algorithms for network
problems. SIAM J. Comput, 18(5):1013–1036, 1989.

[64] M. Gavrilov, P. Indyk, R. Motwani, and S. Venkatasubramanian. Combi-
natorial and experimental methods for approximate point pattern match-
ing. Algorithmica, 38(2):59–90, 2004.

[65] P. Giannopoulos and R. C. Veltkamp. A pseudo-metric for weighted point
sets. In Proc. of the 7th European Conf. Computer Vision, volume 2352
of LNCS, pages 715–731, 2002.

[66] G.J. Giezeman and P. Giannopoulos. The PTD retrieval demo. http:
//give-lab.cs.uu.nl/matching/ptd, 2002.

[67] Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and represent-
ing aspect graphs of polyhedral objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13:542–551, 1991.

[68] S. Gold. Matching and learning structural and spatial representations with
neural networks. PhD thesis, Yale University, 1995.

[69] A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by suc-
cessive approximation. In Proc. of the 19th Annu. ACM Sympos. Theory
of Computing, pages 7–18, 1987.

[70] J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM J. Com-
put., 12:484–507, 1983.

[71] K. Grauman and T. Darell. Fast contour matching using approximate
earth mover’s distance. In Proc. of the IEEE Conf. Comp. Vision and
Pattern Recognition, pages 220–227, 2004.



122 Bibliography

[72] M. Hagedoorn and R.C. Veltkamp. State-of-the-art in shape matching.
Technical Report UU-CS-1999-027, Institute of Information and Comput-
ing Sciences, Utrecht University, The Netherlands, 1999.

[73] M. Hagerdoorn. Pattern matching using similarity measures. PhD the-
sis, Universiteit Utrecht, Institute of Information and Computer Science,
2000.

[74] D. Halperin and M. H. Overmars. Spheres, molecules, and hidden surface
removal. Comput. Geom. Theory Appl., 11(2):83–102, 1998.

[75] P.J. Heffernan and S. Schirra. Approximate decision algorithms for point
set congruence. Comput. Geom. Theory Appl., 4(3):137–156, 1994.

[76] S. Hillier and G.J. Lieberman. Introduction to Mathematical Program-
ming. McGraw-Hill, 1990.

[77] J.B. Howard. Strategies for sorting melodic incipits. In Computing in
Musicology, Melodic Similarities: Concepts, Procedures and Applications,
volume 11, pages 119–128. MIT Press, Cambridge, Massachusetts, 1998.

[78] J.S. Huang and M.L. Chung. Separating similar complex Chinese charac-
ters by walsh transform. Pattern Recognition, 20:425–428, 1987.

[79] D. Huttenlocher and S. Ullman. Object recognition using alignment. In
Proc. of the 1st Int. Conf. Computer Vision, pages 102–111, 1987.

[80] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing
images using the Hausdorff distance. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 15(9):850–863, 1993.

[81] P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd Int.
Workshop on Statistical and Computational Theories of Vision, 2003.

[82] P. Indyk and S. Venkatasubramanian. Approximate congruence in nearly
linear time. Comput. Geom. Theory Appl., 24:115–128, 2003.

[83] C. Jacobs, A. Finkelstein, and D. Salenin. Fast multiresolution image
querying. In Computer Graphics SIGGRAPH, pages 277–286, 1995.

[84] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill,
1995.

[85] J.Pach K. Kedem, R. Livne and M. Sharir. On the union of Jordan
regions and collision-free translational motion amidst polygonal obstacles.
Discrete Comput. Geom., 1:59–71, 1986.

[86] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduc-
tion to Cluster Analysis. Wiley, 1990.

[87] O. Klein and R.C. Veltkamp. Approximation algorithms for the Earth
Mover’s Distance under transformations using reference points. In Proc.
of the 21st European Work. Comput. Geom., pages 53–56, 2004.

[88] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition,
31(8):983–1001, 1998.



Bibliography 123

[89] P. Giannopoulos M. Farshi and J. Gudmundsson. Finding the best short-
cut in a geometric network. In Proc. of the 21st Annu. ACM Sympos.
Comput. Geom., page to appear, Pisa, Italy, June 2005.

[90] J.B.A. Maintz. Retrospective registration of tomographic brain images.
PhD thesis, Universiteit Utrecht, 1996.
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Samenvatting

Geometrische patroonvergelijking is een fundamenteel vraagstuk in computer
vision, patroonherkenning en robotica: men wil van twee gegeven patronen
weten in hoeverre ze op elkaar lijken wanneer een bepaalde afstandsmaat tussen
de patronen in beschouwing wordt genomen. Dit proefschrift behandelt het
vergelijken van verzamelingen van gewogen punten, waarbij de punten in een
metrische ruimte liggen, en waarbij het gewicht een extra attribuut vertegen-
woordigt. Zulke verzamelingen dringen zich op natuurlijke wijze op in vele
toepassingen, van kleurgebaseerd zoeken naar afbeeldingen tot het vergelijken
van muziekpartituren. De keuze van de afstandsmaat hangt telkens af van de
gewenste eigenschappen ervan, die gesteld worden door de toepassing.

De Earth Mover’s Distance (EMD) is een gelijkheidsmaat voor verzamelin-
gen van gewogen punten die gebaseerd is op het verplaatsen van gewicht. De
EMD meet de minimum inspanning die nodig is om te ene verzameling in de
andere om te zetten. Inherent aan deze afstandsmaat is dat de vergelijking
niet noodzakelijk alle punten in ogenschouw neemt, met als gevolg dat deze
afstandsmaat niet aan de driehoeksongelijkheid voldoet. De driehoeksongeli-
jkheid is een eigenschap die nuttig is voor het snel zoeken in grote databases.
In het tweede hoofdstuk presenteren we een variant op de EMD, namelijk, de
Proportional Transportation Distance (PTD), die een pseudo-metriek is. Daar-
naast tonen we de effectiviteit van de EMD en de PTD in het vergelijken van
en zoeken naar patronen door beide te testen op verschillende gegevensverza-
melingen, zoals bedrijfslogo’s en muziekpartituren. Er wordt aangetoond dat
de PTD een duidelijk voordeel heeft ten opzichte van de EMD voor wat betreft
efficient zoeken.

Voor het effectief vergelijken van vormen zou men de overeenkomst tussen
vormen bij voorkeur onafhankelijk van transformaties willen meten. Dat wil
zeggen: voor gegeven vormen A en B, een afstandsmaat en een transformatie-
groep, wil men een getransformeerde versie van A bepalen die de afstand tot B
minimaliseert. Dit is een geometrisch optimaliseringsprobleem dat behandeld
wordt in de rest van dit proefschrift. We concentreren ons daarbij op translaties
en op combinaties van translaties en rotaties. De kostenfuncties van de opti-
maliseringsproblemen die we beschouwen blijken nogal gecompliceerd te zijn.
We richten onze aandacht daarom op het benaderen van de optimale oplossing.

In het derde hoofdstuk behandelen we het vraagstuk van het minimaliseren
van de EMD onder transformaties. Met behulp van eenvoudige ondergrenzen
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voor de kostenfunctie geven we de eerste (1 + ε)- en (2 + ε)-benadering voor de
minimum EMD onder translaties en translaties/rotaties. Als een speciaal geval
bekijken we nog het (partiële) toewijzingsprobleem onder dezelfde tranformaties.

In de laatste twee hoofdstukken is het gewicht van een punt afhankelijk van
de oppervlakte van een convex object waarin het punt ligt. Een verzameling van
gewogen punten definieert dan een vorm die gegeven is door de vereniging van
de objecten. De mate van overeenkomst van twee van dergelijke verzamelingen
wordt bepaald door de oppervlakte van de overlap van beide verenigingen. Eerst
laten we zien dat de complexiteit van de transformatieruimte, uitgedrukt in
termen van combinatorisch verschillende plaatsingen, nogal groot is, zowel voor
translaties als voor combinaties van translaties en rotaties. Vervolgens geven
we deterministische en probabilistische (1 − ε)-benaderingsalgoritmen voor het
maximaliseren van de overlap tussen twee verenigingen van cirkelschijven onden
translaties en combinaties van translaties en rotaties.
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