
Automatic Bootstrapping of a Morphable Face Model using Multiple

Components

Frank B. ter Haar

Electro-Optics, TNO Defence Security and Safety

The Hague, The Netherlands

Frank.terHaar@tno.nl

Remco C. Veltkamp

Information and Computing Sciences

Utrecht University, the Netherlands

Remco.Veltkamp@cs.uu.nl

Abstract

We present a new bootstrapping algorithm to automat-

ically enhance a 3D morphable face model with new face

data. Our algorithm is based on a morphable model fit-

ting method that uses a set of predefined face components.

This fitting method produces accurate model fits to 3D face

data with noise and holes. In the fitting process, the dense

point-to-point correspondences between the scan data and

the face model may become less reliable at the borders of

components. We solve this by introducing a blending tech-

nique that improves on the distorted correspondences close

to the borders. Afterwards, a new face instance is acquired

similar to the 3D scan data and in full correspondence with

the face model. These newly generated face instances can

then be added to the morphable face model to build a more

descriptive one. To avoid our bootstrapping algorithm from

needlessly adding redundant face data, we incorporate a

redundancy estimation algorithm. We tested our bootstrap-

ping algorithm on a set of scans acquired with different

scanning devices, and on the UND data set. Quantitative

and qualitative evaluation shows that our algorithm suc-

cessfully enhances an initial morphable face model with

new face data, in a fully automatic manner.

1. Introduction

Statistical models of the human face have proven to be

an effective tool for person identification of 3D face scans.

To build a statistical model, a set of example faces is re-

quired with face features in full correspondence. With such

a model, a new face instance can be constructed as a linear

combination of the example faces. For 3D face identifica-

tion, the idea is to use the statistical model to construct a

face instance that resembles an input image. The way these

example faces are combined linearly to represent an input

face, provides both global and local information about the
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input face, that can be used to classify and identify differ-

ent input faces. For a statistical face model to be applicable

in face recognition systems all over the world, it is impor-

tant to include example data on all possible face variations.

Since this is an intractable task, a flexible model is required

that updates itself in case of new example faces. For that, a

system should automatically fit the face model to face data,

estimate dense and accurate correspondences beyond the

linear combinations of current example data, and measure

the redundancy of the new example faces. When full cor-

respondence between the face model and the scan data is

established and the new face instance is not redundant, it

can be added as a new example to the statistical face model,

increasing the descriptiveness of the model. The process of

using a statistical model to enhance itself automatically, is

referred to as bootstrapping the synthesis of the model [14].

The difficulty of bootstrapping is that: (1) If the model (as

is) fits a new example well, there is no use of adding the new

example to the model. This must be automatically verified.

(2) If the model doesn’t fit the new example, the correspon-

dences are incorrect and the example cannot be added to the

model. (3) It should be fully automatic. Nowadays, several

statistical models are available, ready to be used and reused.

In this work we present a bootstrapping algorithm based on

an initial statistical model, which automatically fits to new

scan data with noise and holes, and which is capable of mea-

suring the redundancy of new example faces.

1.1. Related work

The need for bootstrapping statistical models was posed

by Vetter et al. [14]. They introduced a bootstrapping al-

gorithm for statistical models, and showed that the use of

merely an optic flow algorithm was not enough to establish

full correspondence between example faces and a reference

face. Instead, they attain an effective bootstrapping algo-

rithm by iteratively fitting the face model, applying the op-

tic flow algorithm, and updating the face model. Blanz and

Vetter also used this bootstrapping algorithm in [3] to build

a 3D morphable face model.



Their bootstrapping algorithm works well in case of in-

put data with constant properties, but fails when input data

is incomplete and when the optic flow algorithm fails. To

bootstrap the 3D morphable face model with more general

face data, Basso et al. [2] added a smoothness term to reg-

ularize the positions of the vertices where the optic flow

correspondence is unreliable. In case a 3D morphable face

model is not yet available, a reference face can be used as

an approximation instead, which is a major advantage.

Amberg et al. [1] proposed a non-rigid Iterative Closest

Point (ICP) algorithm to establish dense correspondences

between a reference face and face scans, but they need an

initial rigid transformation for the reference face based on

14 manually selected landmarks. Afterwards, the reference

face and the fitted face instances can be used to construct a

new morphable face model.

Huang et al. [8] proposed a global to local deformation

framework to deform a shape with an arbitrary dimension

(2D, 3D or higher) to a new shape of the same class. Their

method also operates in the space of implicit surfaces, but

uses a non-statistical deformation model. They show their

framework’s applicability to 3D faces, for which they de-

form an incomplete source face to a target face.

The use of multiple components has been used by Blanz

et al. to improve the face model fitting [3] and for face

recognition purposes [4], but so far the resulting face in-

stances were not accurate enough to be incorporated in the

statistic model. The explicit point-to-point correspondences

of the fitted face instance and the statistical model had to be

established by techniques based on optic flow or non-rigid

ICP.

In our previous work [10] a set of predefined face com-

ponents was used to increase the descriptiveness of a 3D

morphable face model. With the use of multiple com-

ponents, a tighter fit of the face model was obtained and

higher recognition rates were achieved. However, by fit-

ting each component individually, components started to

intersect, move apart, or move across. So, afterwards the

full point-to-point correspondences between the morphable

model and the fitted instance were distorted. The post-

processing method to blend the borders of the components

introduces a new set of surface samples without correspon-

dence to the model either.

1.2. Contribution

We present a new bootstrapping algorithm that can be

applied to general 3D face data. Our algorithm automati-

cally detects if a new face scan cannot be sufficiently mod-

eled, establishes full correspondence between the face scan

and the model, and enhances the model with this new face

data. Compared to previous work, our algorithm is fully au-

tomatic, reuses initial face statistics, checks for redundancy,

and retains the full correspondence even in case of noisy

scan data with holes.

Without the use of unreliable optic flow [2] or semi-

automatic non-rigid ICP [1], we are able to bootstrap the 3D

morphable face model with highly accurate face instances.

As a proof of concept, we (1) fit the initial morphable face

model to several 3D face scans using multiple components,

(2) blend the components at the borders such that accurate

point-to-point correspondences with the model are estab-

lished, (3) add the fitted face instances to the morphable

model, and (4) fit the enhanced morphable model to the

scan data as one single component. In the end, we com-

pare each single component fit obtained with the enhanced

morphable model to the single component fit obtained with

the initial morphable model. Qualitative and quantitative

evaluation shows that the new face instances have accurate

point-to-point correspondences that can be added to the ini-

tial morphable face model. By comparing the multiple and

single component fit, our bootstrapping algorithm automat-

ically distinguishes between new face data to add and re-

dundant data to reject. This is important to keep both the

model fitting and the face recognition with model coeffi-

cients time-efficient.

Figure 1. Changing weight w3 {-2,0,+2} of the USF model causes

an unwanted change in the gaze direction.

2. Morphable face model

In this work we fit the morphable face model of the

USF Human ID 3D Database [13] to 3D scan data to ob-

tain a clean model of the face scan, that we use to iden-

tify 3D faces. This statistical point distribution model

(PDM) was built from 100 cylindrical 3D face scans with

neutral expressions from which n=75,972 correspondences

were selected using an optic flow algorithm. Each face

shape Si was described using the set of correspondences

S = (x1, y1, z1, . . . , xn, yn, zn)T ∈ ℜ3n and a mean face

S̄ was determined. Principal Component Analysis (PCA)

was applied to these 100 sets Si to obtain m eigenvec-

tors of the PDM. Because there are only 100 faces in the

n dimensional face space, there are at most m=99 mean-

ingful eigenvectors. The mean face S̄, the eigenvectors

si = (∆x1,∆y1,∆z1, . . . ,∆xn,∆yn,∆zn)T , the eigen-

values λi (σ2
i = λi) and weights wi are used to model

new face instances according to Sinst = S̄ +
∑m

i=1
wiσisi.

Weight wi, also referred to as coefficient, represents the

number of standard deviations a face instance morphs along

eigenvector si. Since the connectivity of the n correspon-

dences in the PDM is known, each instance is a triangular



mesh with proper topology and without holes.

Fig. 1 shows the changes of the original face model

when the weight of the third eigenvector (w3) is varied. It

can be noticed that the model is tilted upwards and down-

wards. This variation in one of the first eigenvectors means

that the alignment of the 100 sets Si is not optimal for

face identification using model coefficients. Furthermore,

the morphable face model has n=75,972 vertices that cover

the face, neck and ear regions and its resolution in the up-

ward direction is three times higher than in its sideways

direction. Because the running time of the model fitting

method is dependent on the number of vertices, and frontal

face scans cover merely the face region, we recreated the

morphable face model such that it contained only the face

(data within 110 mm from the tip of the nose) and not the

neck and ears. To obtain a more uniform resolution for the

model, we reduced the upward resolution to one third of the

original model. To adjust the original model, we selected

from the mean face S̄ the reduced set of k=12,956 corre-

spondences S̄′ = (x1, y1, z1, . . . , xk, yk, zk)T ∈ ℜ3k that

satisfy the above conditions, realigned each reduced face

shape S′

i to S̄′ using the ICP algorithm, and recomputed

the PCA model. Visual inspection of our newly constructed

PCA model showed no signs of pose variations.

3. Face scans

We fit the morphable face model to 3D scan data from

the UND [6], GAVAB [9], BU-3DFE [15], Dutch CAESAR

[5], and our local dataset. From all except the UND set,

we randomly select four scans yielding a first test set of 16

scans. These scans vary in pose, facial expression, resolu-

tion, accuracy, and coverage. This set of 16 face scans is

used to test our bootstrapping algorithm. To test the auto-

matic redundancy check, we used a subset of 277 face scans

from the UND dataset, namely the first scan of each new

subject.

To segment the 3D face data from these scans, we ap-

ply the pose normalization method described in [11]. This

method randomly samples the surface mesh, such that every

≈2.0 mm2 of the surface is approximately sampled once.

We use these locations in combination with their surface

normal as initial placements for a nose tip template. To lo-

cations where this template fits well, a second template of

global face features is fitted to normalize the face’s pose

and to select the tip of the nose. The face is then segmented

by removing the scan data with a Euclidean distance larger

than 110 mm from the nose tip. In the end the face data is

centered with the localized tip of the nose in the origin. To

remove some of the speckle noise, we applied five iterations

of Taubin’s λ|µ (0.330|-0.331) smoothing method.

4. Bootstrapping algorithm

The main problem in bootstrapping the 3D morphable

face model, is that (1) we only want to add example faces

that are not covered by the current model, (2) new exam-

ple faces suffer from noise and missing data, which makes

it hard the establish the required point-to-point correspon-

dences, and (3) it should be fully automatic. In this sec-

tion, we briefly describe the used model fitting method, then

we explain our algorithm to establish dense point-to-point

correspondences between the multiple component fits and

the morphable face model, and finally, we explain how the

bootstrapping algorithm can distinguish between new face

data to add to the model and redundant data to reject.

Figure 2. Model Fitting. Four face instances Scomp, are con-

structed during the model fitting process each with the focus on

a smaller subset of vertices. The composition of these components

provides an accurate fit.

4.1. Model fitting

The morphable face model that we use (see Sect. 2) has

m=99 coefficients that can be varied to fit the face model to

new scan data. To fit the model, we bring a new 3D face

scan into alignment with the 3D face model automatically.

First, we automatically normalize the pose of the face, de-

tect the tip of the nose, and segment the face as described in

Sect. 3. Secondly, we align the face scan to the face model,

coarsely by using their nose tips and more accurately using

the ICP algorithm. Then we apply a model fitting algorithm

similar to [10]. With a set of four face components a more

accurate fit is achieved than with a single component. This

model fitting algorithm iteratively adjusts the m coefficients

wi for each component, such that the vertices move closer

to the vertices of the scan data. After all components are

fitted to the scan data individually, an accurate representa-

tion of the new face Sfine is acquired. Each component can

then be described using the set of m coefficients wi for the

eigenvectors of the face model. However, the fitted face in-

stance Sfine may show artifacts at the borders of these fitted

component. Note that we use the same PCA model for each

component, but with a subset of the model’s vertices only.

4.2. Correspondence estimation

After the application of the model fitting method, most

of the face model’s vertices are brought into correspon-

dence with the face scan, but at the component’s borders

these point-to-point correspondences are inaccurate. Only

in highly exceptional cases, borders are good enough to
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Figure 3. Repairing inconsistencies at the borders of components.

Vertex S0[vi] is moved towards its corresponding point S1[vi] us-

ing a weighted voting scheme. Close by vertices in both compo-

nents S0 and S1 are used to compute the appropriate weight.

bootstrap the face model with Sfine directly. To resolve the

artifacts at the borders of the individually fitted components,

we use their sets of m coefficients wi that were used to ob-

tain each component. In fact, each set of coefficients can be

used to acquire a full face instance of which the component

is simply a predefined subset of vertices. We refer to such a

full face instance as Scomp. Because we fitted a set of c=4

components, we have c=4 face instances Scomp. So the face

instance Sfine is basically a composition of the c intermedi-

ate face instances (Fig. 2). To blend the c components, we

blend the vertices of the c face instances. In this process,

the goal is to determine for each vertex in Sfine a new posi-

tion, such that it has a smooth transition to its neighboring

vertices. Once we reach this state, we refer to this final face

instance as Sfinal .

Because components can overlap more than several mil-

limeters, Laplacian smoothing of the vertices at the bor-

ders would not suffice. The selection of a larger region

of triangles and vertices to smooth causes a non-statistical

shape deformation and local features may not be preserved.

In particular, the places were three or more components

overlap, it is hard to regularize the vertex positions using

smoothing techniques. Surface stitching techniques as in

[12] could be applied to stitch the components, but this

would distort the point-to-point correspondences. Mesh

fairing using Gaussian curvatures, as in [16] for instance,

could smooth some of the border triangles properly. How-

ever, these techniques focus on the preservation of sharp

features, whereas we want to remove sharp creases caused

by overlapping components.

To repair the discontinuities at the borders, we have

developed an algorithm, that uses the vertex positions of

the intermediate face instances Scomp, local neighborhood

properties and the PCA model. Since all instances Scomp

were acquired with the same PCA model, their vertices are

all in full correspondence. In case two connected vertices

cause a discontinuity in Sfine , one can assume that mov-

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4. Correspondence estimation. By individually fitting com-

ponents (b,c) to scan data (a), artifact may occur at the borders of

Sfine (d). The maximum displacement error (r in mm) for a ver-

tex is an indication of the local mesh distortion (e), towards pur-

ple/black means a higher distortion. Using this error, surrounding

vertices are selected that all contribute to the voting for a new po-

sition of the vertex. After the voting, each vertex is repositioned

based on the weighted votes for close by components (f). The final

model fit Sfinal (g) presents smooth transitions between the differ-

ent components. Five iterations of Laplacian smoothing (h) was

not enough to repair the artifact close to the eyebrow whereas the

face already lost most of its detail.

ing each vertex towards the center of mass of its adjacent

vertices (as in Laplacian smoothing) slightly improves on

the situation. However, propagating this smoothing locally

causes the border discontinuities to attract well positioned

vertices instead of solving the discontinuity. Propagating

such smoothing globally, changes the statistical shape of the

face (Fig. 4h). Instead, we morph each vertex Sfine [vi] to-

wards its c corresponding positions Scomp[vi]. For that we

need to (1) detect the local distortions, (2) know which com-

ponents lie close to which vertices, (3) have for each vertex



a weight for each close by component, and (4) recompute

the vertex positions.

First, to detect the local distortion, we determine for each

vertex Sfine [vi] its maximum displacement error to one of

its c corresponding positions Scomp[vi], using

mde[vi] = maxc∈comp(e(Sfine [vi], Sc[vi])),

where e(p, q) is the Euclidean distance between two 3D co-

ordinates p and q. When a vertex has approximately the

same 3D position in all face instances Scomp, its displace-

ment error is small. In that case, we have consensus on

its position and thus less need for a repositioning. Second,

close by vertices are selected (Sfine [vj ]) using a sphere of

radius r[vi] around Sfine [vi], where radius r[vi] equals the

displacement error times three, r[vi] = 3 · mde[vi]. For a

vertex Sfine [vi] on a component border, this set of close by

vertices include vertices from different components. If all

close by vertices belong to the same component as the cur-

rent vertex nothing will change. Thirdly, each close by ver-

tex Sfine [vj ] adds a weighted vote for the component it be-

longs to. This weight decreases linearly with the distance of

vertex Sfine [vj ] to Sfine [vi]. The maximum weight of one is

for the vertex Sfine [vi] itself, and decreases linearly to zero

for radius r[vi]. Because components can move away from

each other, radius r[vi] must be at least two times larger

than the maximum displacement error, otherwise nothing

changes. In the end, a vertex next to the border of the two

components, has a number of close by vertices that vote

for its own component and a number of close by vertices

that vote for the other component. Then, vertex Sfine [vi]
is morphed towards its corresponding position Scomp [vi] in

the other component according to these weighted votes. For

example, if a vertex (weighted vote of 1) has four close by

vertices with weighted votes of 0.25 of which two vertices

lie on an other component Scomp , then we have a 3-to-1 vote

and vertex Sfine [vi] if morphed for 25% towards Scomp [vi].
Another example in 2D is shown in Fig. 3. In case close

by vertices belong to three or more components, the ver-

tex Sfine [vi] is morphed to three or more different positions

Scomp [vi].
This weighted voting scheme for the local geometry of a

face instance Sfine , results in a proper blending of the com-

ponents. Since the overall topology of the face instance is

retained, and the problematic vertices and their local neigh-

borhood are assigned to new positions, the adjusted face

instance Sfine is now in full correspondence with the face

model. Fig. 4, shows the multiple component fit Sfine based

on four components Scomp (two are shown), the displace-

ment errors, the blending, and the final result Sfinal .

4.3. Redundancy estimation

After the regularization of the vertex positions, the re-

paired face instance Sfinal can be added to the morphable

Figure 5. Redundancy estimation. From left to right, the face scan,

Ssingle , the residual errors of Ssingle , Smult , the residual errors of

Smult , and the color map for the point-to-point distances (in mm).

face model. To do so, we can apply the ICP algorithm to

finely align Sfinal to S̄ and include it in the example set of

3D faces from which the morphable face model was built.

Then, we can recompute the PCA model using 100+k ex-

ample faces, and keep the m + k principal eigenvectors and

eigenvalues of the face (Sect. 2). This way the face prop-

erties of a new example face can be added to the statistical

face model. With this enhanced model, we should be able

to produce accurate model fits with only a single compo-

nent to face scans similar to those k example scans. In the

end, each face scan can be described using m + k model

coefficients, and face identification can be performed based

on such a m + k feature vector.

The addition of k extra example faces to the current face

model, causes an increase of computation costs for both the

model fitting and face identification method. So, it is im-

portant not to add example faces that are already covered

in the current morphable face model. Therefore, we esti-

mate the redundancy of encountered example data. First,

the morphable face model is fitted as a single face compo-

nent to the 3D scan data, which we refer to as Ssingle . Sec-

ondly, we fit the morphable face model using multiple face

components with the improved correspondence estimation

described above, Smult . After the model fitting process, a

residual error between the vertices of the model fit and the

scan data remains. The difference of the two residual errors

of Ssingle and Smult , can be used to estimate the redundancy

of the new face scan. In case the residual error of Ssingle is

significantly larger than that of Smult , then the face scan

is most likely not contained in the current morphable face

model, and we should add Smult to the model.

To compute the residual error of these model fits we use

the RMS distance of closest point pairs,

drms(S, scan) =

√

√

√

√

1

n

n
∑

i=1

emin(pi, scan)2 (1)

using all n vertices of Ssingle and Smult . Closest point

pairs (p,p′) for which p′ belongs to the boundary (including

holes) of the face scan, are not used in the distance measure.

Fig. 5 shows for one face scan, the two model fits and their

residual error maps. For this example the RMS error for

Ssingle is 0.89 mm and for Smult 0.68 mm.



Dataset Ssingle Smult S
+

single
Ssi − Smu S

+

si − Smu

GAVAB 1.36 1.24 1.27 0.13 0.04

GAVAB 1.34 1.16 1.19 0.18 0.03

GAVAB 2.04 1.59 1.56 0.45 -0.03

GAVAB 1.32 1.16 1.19 0.17 0.03

BU-3DFE 1.18 1.01 1.02 0.18 0.02

BU-3DFE 1.28 1.12 1.15 0.16 0.03

BU-3DFE 1.06 0.96 0.96 0.10 0.00

BU-3DFE 1.61 1.40 1.49 0.21 0.09

local 0.70 0.55 0.58 0.15 0.03

local 0.89 0.68 0.69 0.21 0.01

local 0.79 0.62 0.67 0.17 0.05

local 0.69 0.55 0.58 0.14 0.04

CAESAR 1.86 1.77 1.80 0.09 0.03

CAESAR 1.88 1.77 1.78 0.11 0.01

CAESAR 1.81 1.74 1.77 0.07 0.03

CAESAR 1.80 1.75 1.78 0.05 0.03

Table 1. RMS errors (mm) of output models to input scans. The

model fits with the smallest and largest difference in residual errors

(bold) are show in Fig. 6.

5. Results

To elaborate on the performance of our bootstrapping al-

gorithm, we applied it to the dataset of 16 different face

scans and to the subset of 277 UND scans. The small set is

used to evaluate the model fitting and correspondence esti-

mation algorithm. The UND set is used to test the redun-

dancy estimation.

5.1. Correspondence estimation

To evaluate the correspondence estimation, we compare

the residual errors of fitted face instances. First, we fit the

initial morphable face model as a single component to the

segmented face data Ssingle . Secondly, we fit the initial

model to the segmented face data using the four compo-

nents and blend their borders. Thirdly, we add these 16 face

instances Smult to the example set and recompute the PCA

model, keeping the m=99 principal components of the face.

Finally, we fit the enhanced morphable face model to the

same segmented face data using a single component S+

single .

In Tab. 1, we report the residual errors of the fitted face

instances. We use these errors for quantitative evaluation

of the produced fits. For all face scans, Smult has a lower

residual error than Ssingle , which means that a higher fitting

accuracy is achieved with the use of multiple components

in combination with the improved correspondence estima-

tion. After the model was enhanced with the 16 face in-

stances Smult , the model was again fitted as a single com-

ponent to the 16 face scans. Now, all residual errors are

lower for S+

single than they were for Ssingle , which means

that our bootstrapping algorithm successfully enhanced the

morphable face model. For one face scan, the face instance

S+

single is even more accurate than Smult . This is possible,

because we enhanced the model with the facial variety of 16

faces at once. We expect that the residual errors of S+

single

can be lowered further, by iterating the process of (1) fitting

the enhanced model using multiple components, (2) replac-

ing the 16 face instances S+

mult , and (3) building a new PCA

model. In fact, we tried it for the face scan in Fig. 5 and

lowered its RMS distance for Smult (0.68 mm) and S+

single

(0.69 mm) to 0.64 mm for S+

mult . So, iteratively replacing

the 16 instances of the enhanced model with their improved

instances S+

mult , will probably help to some extend. Note

that the residual errors are lowest for our local set, which

contains the highest resolution scans, and the highest errors

for the low resolution CAESAR faces. This is due to the

RMS distance that measures point-to-point distances. Be-

cause we are interested in the difference between residual

errors, this works fine, otherwise, one could use a surface

mesh comparison tool instead [7].

In Fig. 6, we show some of the resulting model fits and

their distance maps acquired with our bootstrapping algo-

rithm. In this figure, we show the two faces per dataset that

achieved the smallest and largest difference in residual er-

rors in the same order as in Tab. 1. Visual inspections of the

fitted models shows an improved single component fit of

the enhanced model to the scan data (S+

single ), compared to

the single component fit using the initial morphable model

(Ssingle ). This can be seen in the residual error maps as

well. That the bootstrapping algorithm successfully incor-

porated the 16 face scans in the morphable face model, can

be seen by face instances Smult and S+

single , which are very

similar. The initial morphable face model consisted of neu-

tral expression scans only. Nevertheless, the use of multiple

components allows for correspondence estimation among

some expression data as well.

5.2. Redundancy estimation

To distinguish between new and redundant face data, we

computed the residual errors for face instances Ssingle and

Smult using the RMS distance measure. In Tab. 1, we re-

ported the RMS errors for our set of 16 faces. These differ-

ences in RMS error for Ssingle − Smult vary between 0.05

and 0.45. The maximum difference of 0.45 was achieved

for the sad looking person on row four in Fig. 6. With the

use of a threshold t for the difference in RMS error, we de-

cide whether a face is redundant or new. Based on the visual

inspection of the faces in Fig. 6, we decided to select t=0.17

for our experiments. In case the RMS difference is higher

than t, we consider a face to be new and otherwise as redun-

dant. With this threshold, we classify only the faces in row

two, four, and five and being new.

We applied our bootstrapping algorithm to the 277 UND

scans, and let our algorithm automatically select potential

faces to add to the model, without actually adding them.

This way we can see which face scans (persons) are new to

the model. For these persons, we may assume a difficulty

in identifying them, because a coefficient based recognition



Figure 6. Automatic correspondence estimation. From left to right, the segmented and pose normalized faces, the single component fit

Ssingle , its distance map, the multiple component fit Smult , its distance map, and the single component fit S
+

single with its distance map.

Faces in rows two, four, and five were selected as being new to the model.

system may confuse that person with a different person that

has those coefficients. Out of the 277 UND scans, 35 scans

were found as being new to the system, that is, having a de-

crease in RMS error of Ssingle−Smult higher than threshold

t. Some of these produced fits are shown in Fig. 7. Most of

the selected faces have indeed new face features and should

be added to the morphable face model. However, some of

the faces that are covered by facial hair produce less reliable

fits. To improve on these fits, one could apply a skin detec-

tion algorithm and remove the hair beforehand. The total

time spend by our algorithm is less than two minutes per

face scan on a desktop computer. Since our algorithm fits



Figure 7. UND faces (1st model) that were automatically boot-

strapped. Ssingle (2nd and 3rd) and Smult (4th and 5th) are shown.

the face model twice, parallelizing this process can greatly

reduce the computation time.

6. Concluding remarks

In this work we presented a method for establishing ac-

curate correspondences among 3D face scans. With the use

of an initial morphable face model and a set of predefined

components, we are able to produce accurate model fits to

3D face data with noise and holes. Afterwards, the compo-

nents still have defects on their border, for which we pre-

sented a new blending technique that retains the full cor-

respondence between the face instance and the morphable

model. These newly generated face instances can be added

to the example set from which a new and enhanced mor-

phable model can be built, as we show in this work. We ap-

plied our bootstrapping algorithm to 277 UND scans, and it

successfully established full correspondence between these

scans and the initial morphable model, and our automatic

redundancy check approved 35 new scans to be added to

the model.

With our new bootstrapping algorithm, we are able to

successfully update an initial face model, which we use to

produce more accurate fits to new scan data. Compared to

previous work, our algorithm is fully automatic, reuses ini-

tial face statistics, checks for redundancy, and retains the

full correspondence even in case of noisy scan data with

holes.
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