
CGI2015 manuscript No.
(will be inserted by the editor)

Volumetric Surface Deformation with Auxiliary Voxel Grids

Abstract We propose two space deformation methods

based on voxels. Our methods, approximately preserv-

ing the volume of a mesh object, are simple to imple-

ment and have a high performance due to resorting to

voxelization. Volumetric deformations are achieved by

either dual quaternion skinning or a nonlinear rigidity

energy. The mesh surface embedded within the voxel

grid is updated by means of interpolation. Three inter-

polation methods are implemented, targeting speed and

smoothness, respectively. Both visual and quantitative

evaluations on a variety of large polygon meshes are

provided, demonstrating the effectiveness of the meth-

ods.

Keywords Volume Preservation · Voxel Deformation ·
Blend Skinning · Space Deformation

1 Introduction

Volume preservation has long been a point of focus in

deformation in order to enhance the visual plausibility.

A widely applied technique is dual quaternion skinning

(DQS) [12], which is a closed-form solution approxi-

mately preserving the volume. Deformation cast as a

surface-based energy minimization problem [3, 9] bet-

ter preserves the shape details, but for volume preser-

vation, complicated volume constraints need to be de-

fined. Moreover, the resulting deformations might not

be as natural as a full volumetric discretization with

physically plausible deformation energies [4]. The im-

plementations of such volumetric energies, however, of-

ten are difficult to achieve. Physics-based simulations of

incompressible solids [7, 10] are difficult to control due

to the presence of many parameters [5].

In this paper, we present two volumetric methods

that approximately preserve the volume of an object

throughout the deformation. Our methods are easy to

implement and run fast on a modern laptop. One method

is to apply DQS to voxels that represent the volume do-

main enclosed by the mesh surface, and consequently,

deform the surface by the efficient trilinear embedding,

which is also extended as blending of transformations

if the surrounding voxel nodes of a vertex store rota-

tions. For large polygonal meshes, this strategy gener-

ally accelerates the computations by at least an order

of magnitude. The other method is to cast the voxel

deformation as a rigidity energy minimization problem

based on as-rigid-as-possible (ARAP) surface modeling,

preserving volumetric properties and producing reason-

ably natural poses. To maintain the shape smoothness,

embedding based on radial basis functions (RBFs) is

implemented. To keep user interactions to a minimum

in this method, the voxel deformations are controlled by
moving point handles in the spirit of linear blend skin-

ning (LBS) instead of by directly manipulating voxels.

Moreover, a deformed configuration resulting from LBS

assists to speed up the iterative minimization and ro-

bustly obtain large deformations. In the context of em-

bedding, our two methods are suitable for a wide range

of mesh representations.

The benefit of using voxels is two-fold. On the one

hand, the voxelization avoids coping with geometric is-

sues such as self intersections and nonmanifoldness that

usually need to be handled in tetrahedral meshing. On

the other hand, the voxel grid facilitates the construc-

tion of the Laplacian matrix used to build the rigidity

energy, as it provides an easily accessible neighborhood

structure.

Both visual and quantitative evaluations on a va-

riety of 3D models are provided; the results show the

effectiveness of our methods.



2

2 Volumetric deformation

The volume domain of a mesh denoted by S is dis-

cretized by a hardware accelerated voxelization method [13],

resulting in a voxel grid denoted by V. In our case,

voxels are isotropic, and the ones across the mesh sur-

face are retained for embedding introduced in Section 3.

Voxels are structured in a grid so that they are easily

accessible.

2.1 Volumetric DQS

Given a skinned model consisting of H bones and P
mesh vertices, for each vertex p, associated with influ-

ence weightsWp = (wi, ..., wH), DQS parameterizes the

transformation of Hi using dual quaternion denoted by

q̇i, i ∈ {1, ...,H}, and transforms a vertex from rest pose

to the deformed position by the final dual quaternion

as q̇ = (
∑H

i=1 wiq̇i)/ ‖
∑H

i=1 wiq̇i ‖.
For each vertex, the runtime cost mainly lies in the

interpolations of handle rotations, which are nonlinear

calculations. To decrease the cost, a straight way is re-

ducing the number of vertices involving interpolations.

Fig. 1 An animation still of a skinned character consisting
of 84,888 vertices. Volumetric DQS (5,542 voxels) results in
volumetric deformation fairly similar to DQS while it is at
least an order of magnitude faster. Numbers below are aver-
age time per frame in seconds.

In most cases, a voxel grid as valid object representation

is coarser than embedded polygonal mesh, in particular

for high resolution meshes. In the context of space de-

formation, furthermore only the voxels on the grid hull

will be deformed by DQS. As a result, applying DQS

to voxel grid together with trilinear embedding largely

decreases the cost. Figure 1 shows an illustration.

2.2 Nonlinear volumetric ARAP

The surface-based ARAP energy formulation of [14] is

adopted to define our volumetric rigidity energy, as it

is conceptually easy to understand and easy to imple-

ment. This ARAP formula minimizes the changes of

edge lengths and addresses the nonlinearity of transfor-

mations of each discrete cell.

In our definition, each discrete, volumetric cell Ci
consists of a voxel and its at most six immediate neigh-

bors. The volumetric ARAP approximately preserves

the edge lengths between voxel nodes by iteratively

minimizing the cell energy as

E(C
′

i) =
∑

j∈N (i)

ωij ‖ (n
′

i − n
′

j)−Ri(ni − nj) ‖2 . (1)

Edges between a voxel node ni and its immediate neigh-

bors nj , j ∈ N (i) are weighed by ωij correspondingly.

n
′

i is the deformed position at an iteration. The pres-

ence of rotation Ri of ni enforces that cell Ci deforms

as-rigidly-as-possible. In detail, Ri is derived from the

singular value decomposition (SVD) of the covariance

matrix Si =
∑

j∈N (i)(ωijeije
′T
ij ) = Ui

∑
i V

T
i , and Ri =

ViU
T
i [14], where eij = ni−nj and e

′

ij is the edge after

deformation.

The total energy is the sum of all cell energies and

can be compactly written as a matrix form of equa-

tions [14] subject to positional constraints. Weights ωij

are assembled into a matrix called Laplace-Beltrami op-

erator denoted by L. In ARAP, cotangent weights [6]

instead of uniform weights are computed to avoid defor-

mation artifacts [14], but at the risk of the emergence of

degeneration, as they are only defined for 2D manifolds.

In our volumetric ARAP, because the graph Laplacian

was easily established beforehand based on the neigh-

borhood structures, the Laplace-Beltrami operator is

easily defined based on uniform weights as

LV =


∑

j∈N (i) 1.0, i = j,

−1.0, j ∈ N (i),

0, otherwise.

(2)

To keep user interactions to a minimum, points are

placed within the volume and their influence weights

are computed by the method of [11], as it yields smooth

weights. Through LBS, voxel deformations are controlled

by moving points instead of by directly manipulating

the voxels.

Since LBS is efficient for large deformations, the

minimization is accelerated and stabilized for large ro-

tations. First, rotations from rest pose to current con-

figuration resulting from LBS are provided as an initial

guess. Second, new positions are computed by mini-

mizing Equation 1. The two procedures are alternately

performed to achieve the global unique minimum.

3 Space deformation

We construct space deformation d : R3 → R3 based

on spatial interpolation. Trilinear interpolation is the

fastest way to embed a mesh within voxels. If the sur-

rounding eight nodes of a mesh vertex store rotations

that are from the rest pose to the deformed positions,



Volumetric Surface Deformation with Auxiliary Voxel Grids 3

Model # Voxels # Vertices Volumetric DQS Volumetric ARAP
Volume (%) Time (s) Volume (%) Time (s)

Long cube 4,800 1,002 99.4188 0.047 95.3269 0.423796
Fat man 5,542 84,888 97.308 0.364397 98.3852 2.74804
Warrior 1,108 40,197 86.3242 0.01398 93.0 0.0631
Head 18,296 48,624 99.422 0.453636 94.1977 23.9236
Arm 13,263 49,874 98.5649 0.227855 99.3745 7.32747
Name card 10,849 130,340 110.425 0.418142 99.8083 6.39093
Mushroom 16,408 131,304 99.9798 4.56489 98.5793 26.13
Tree 3,261 11,645 107.26 0.306284 105.032 1.99311

Table 1 Model statistics: Timings are the overall time of reaching the target pose, and percentages are relative volume also
indicating whether an increasing or decreasing volume. ARAP runs with 2 iterations. Volumetric ARAP has relative volume
similar to volumetric DQS, while it produces more natural poses. Note that the number of voxels is much smaller than the
number of vertices in cases of large meshes.

Fig. 2 Surfaces are rendered under the same point light.
Trilinear interpolation and blending of transformations give
rise to a pattern of strips on the surface. RBFs interpolation
is smooth enough to interpolate the surface.

the interpolation is easily extended as blending of ei-

ther transformation matrices. However, these two meth-

ods belong to Shepard’s scheme [2] that is not smooth

enough to interpolate surfaces.

To address the limitations, smooth interpolation of

displacements based on radial basis functions (RBFs)

is developed. In particular, we use RBF with compact

support to yield a sparse matrix

k(x, c) = e(
−‖x−c‖2

σ2
) + aT · x+ b, (3)

where c ∈ R3 is the RBF center which is the center

of a hull voxel in our case, and x ∈ R3 is the evalu-

ation point. The presence of the linear term helps to

reproduce global behavior of the function. The result-

ing sparse and symmetric matrix can be solved by LU

decomposition. σ is the average distance between RBF

centers following the guideline of ALGLIB [1] which is

a popular numerical analysis library, guaranteeing that

there will be several centers at distance σ around each

evaluation point. This RBFs interpolation gives rise to

smooth result regarding the two methods mentioned

above, see Figure 2.
4 Results

Our methods were implemented in C++ on a laptop

with an Intel Core i7 2.4Ghz processor and 6 GB mem-

Model Trilinear Linear blending RBFs

Long cube 0.0008 0.0016 0.1154
Fat man 0.0581489 0.0882 9.20568
Warrior 0.0305 0.0526 1.30276

Head 0.0291048 0.0547445 9.52889
Arm 0.030507 0.056674 8.46751

Name card 0.0686187 0.132592 23.0921
Mushroom 0.0739739 0.135898 82.674

Tree 0.004 0.0094 1.14412

Table 2 Space deformation timings: Trilinear and linear
blending are sufficient for real-time requirements. Time is in
seconds.

ory. The LU decomposition, sparse Cholesky solver and

two-sided Jacobi SVD are provided by the Eigen li-

brary [8].

Model statistics and quantitative comparisons are

reported in Table 1, and statistics on space deformation

are presented in Table 2.

Both volumetric DQS and volumetric ARAP ap-

proximately preserve the volume with respect to LBS

even in cases of complex motions such as bending and

twisting, see Figure 3 and 4, respectively. Volumetric

DQS yields volume preservation fairly similar to DQS,

while it often runs much faster (see Section 2.1). Though

volumetric ARAP is more computationally expensive

than volumetric DQS (see Table 1), it produces more

natural poses. This is because essentially it preserves

the locality, see Figure 5. Targeting smoothness of the

surface in addition to the pose, our volumetric ARAP

can be combined with RBFs interpolation to preserve

both shape details and volumetric properties simulta-

neously.

5 Conclusion

In this paper, we have presented two space deforma-

tion methods based on voxelizaition. The two methods,

named volumetric DQS and volumetric ARAP, both

preserve the object’s volume to a degree while the lat-

ter method produces more natural poses. In most cases,



4

Fig. 3 Volumetric ARAP and volumetric DQS both are able
to preserve the volume to a degree with respect to LBS in
large bending. Volumetric ARAP, however, produces more
natural poses than DQS and volumetric DQS. Note that a
surface-based deformation energy might be unsuitable for this
tree model, due to the presence of degenerated triangles in the
leaf parts.

Fig. 4 The mushroom model twists by 135 degrees. Volu-
metric ARAP preserves 98.5793% of the volume, while LBS
gives rise to the well-known shape collapse artifact.

Fig. 5 Volumetric ARAP prevents shape distortion. The let-
ters in the name card model deform as-rigidly-as-possible
while they distort by using volumetric DQS, see the close-
ups.

speedups are obtained for volumetric DQS with respect

to DQS. A variety of results of large polygonal meshes

have demonstrated the effectiveness of the methods.

For real-time applications such as computer games

where volume preservation is desired, volumetric DQS

with trilinear embedding or its extension as blending of

transformations gives the solution. In feature films pro-

duction where shape smoothness, natural posture and

volume preservation are desired for better realism, vol-

umetric ARAP combined with RBFs can be a solution.

The volumetric ARAP method holds promise for

skeletal deformation. Currently, it cannot always achieve

realistic character postures and skin deformations, as

additional constraints should be introduced, notably

constraints that keep bone lengths constant. Moreover,

physically the character should stand throughout the

animation, so the center of mass of the body has to

be optimized at run time. Since the volumetric ARAP

energy aims to conserve edge lengths, hence it may re-

sult in a locking problem that can be solved by the

method of [10]. Our future work is to figure out such

issues, making the method more practical in character

animation.

References

1. Alglib: a cross-platform numerical analysis and data pro-
cessing library. available online at http://www.alglib.

net/. Accessed: 2015-03-03
2. Barnhill, R., Dube, R., Little, F.: Properties of shepard’s

surfaces. Journal of Mathematics 13(2) (1983)
3. Ben-Chen, M., Weber, O., Gotsman, C.: Variational har-

monic maps for space deformation. ACM Trans. Graph.
28(3), 34:1–34:11 (2009)

4. Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adap-
tive space deformations based on rigid cells. Computer
Graphics Forum 26(3), 339–347 (2007)

5. Bridson, R., Batty, C.: Computational physics in film.
Science 330(6012), 1756–1757 (2010)

6. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Im-
plicit fairing of irregular meshes using diffusion and cur-
vature flow. In: Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, pp. 317–324 (1999)

7. Diziol, R., Bender, J., Bayer, D.: Robust real-time defor-
mation of incompressible surface meshes. In: Proceedings
of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’11, pp. 237–246 (2011)

8. Guennebaud, G.: Eigen: a c++ linear algebra li-
brary,version 3.0. available online at http://eigen.

tuxfamily.org/. Accessed: 2014-11-21
9. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng,

S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient
domain mesh deformation. ACM Trans. Graph. 25(3),
1126–1134 (2006)

10. Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving
finite element simulations of deformable models. ACM
Trans. Graph. 26(3) (2007)

11. Jacobson, A., Baran, I., Popović, J., Sorkine, O.:
Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30(4), 78:1–78:8 (2011)

12. Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Geomet-
ric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27(4), 105:1–105:23 (2008)

13. Lefebvre, S., Hornus, S., Lasram, A.: Ha-buffer: Coher-
ent hashing for single-pass a-buffer. Research Report
RR-8282, INRIA (2013). URL https://hal.inria.fr/

hal-00811585

14. Sorkine, O., Alexa, M.: As-rigid-as-possible surface mod-
eling. In: Proceedings of the Fifth Eurographics Sym-
posium on Geometry Processing, SGP ’07, pp. 109–116
(2007)


