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Preface

Welcome to the 11" International Society for Music Information Retrieval Conference (ISMIR
2010). ISMIR 2010 will be convened in Utrecht, Netherlands, 9-13 August 2010 and is jointly
organised by Utrecht University, the Utrecht School of the Arts, the Meertens Institute and Philips
Research. The organisers have a strong conviction (which we believe is widely shared by the MIR
community) that studying the human processing of music is a key issue in innovative MIR research.
Therefore, MIR research and applications that model musical cognition and perception, that
contribute to the human understanding and experience of music, or that make creative use of MIR
research receive particular attention during ISMIR 2010.

ISMIR conferences have a long tradition of high quality interdisciplinary scholarship. We hope that
you will find that these proceedings have met the high standards of excellence reached by previous
ISMIR Program Committees (PC) and participating Music Information Retrieval (MIR) researchers.
Like earlier ISMIRs, the success of ISMIR 2010 is founded upon the hard work of its 24 PC
members, the thoughtful adjudications of its 262 reviewers, and the large number (176) of first-rate
submissions it received from its vibrant research community.

ISMIR 2010 builds upon lessons learned from earlier ISMIR conferences and thus has carried on
many practices from ISMIR’s past. ISMIR 2010 submissions were reviewed double-blind to avoid
bias. Each accepted paper was allotted six pages of proceedings space. As in the past, there was no
quality distinction made concerning the mode of presentation (whether poster or oral). Those papers
chosen for oral presentation were selected solely on the grounds of providing ISMIR 2010
participants with a conference programme that best reflected the wide-ranging interests, techniques
and findings of ISMIR’s multidisciplinary world. Unlike recent ISMIRs, there was no rebuttal phase
because of the shortened review timelines caused by ISMIR 2010’s earlier-than-usual August meeting
date.

New to ISMIR 2010, however, was the creation of a new kind of submission category. This year we
introduced the State-of-the-Art Report (STAR) paper. STAR papers are intended to summarize for the
community the current research questions, accomplishments, and open problems in one of MIR’s
many subfields. STAR papers were allotted up to 12 pages to allow STAR authors to
comprehensively cover their topics. This year, we received seven excellent STAR submissions.
Because of time and space considerations, we were only able to include two STAR papers in the
programne on the topics of Music Emotion Recognition (Kim, et al.) and Audio-Based Music
Structure Analysis (Paulus, Mueller and Klapuri). We hope that ISMIR attendees find this new class
of paper useful and that STAR papers become part of the ISMIR tradition.
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Table 1. ISMIR Publication Statistics 2000-2009

Presentations Total Total Total Unique Pages/ |Authors/ |U. Authors/
Year | Location Oral |Posters [Papers |Pages Authors  |Authors |Paper [Paper Paper
2000 | Plymouth 19 16 35 155 68 63 4.4 1.9 1.8
2001 | Bloomington | 25 16 41 222 100 86 5.4 2.4 2.1
2002 | Paris 35 22 57 300 129 117 5.3 2.3 2.1
2003 | Baltimore 26 24 50 209 132 111 4.2 2.6 2.2
2004 | Barcelona 61 44 105 582 252 214 5.5 2.4 2.0
2005 | London 57 57 114 697 316 233 6.1 2.8 2.1
2006 | Victoria 59 36 95 397 246 198 4.2 2.6 2.1
2007 | Vienna 62 65 127 486 361 267 3.8 2.8 2.4
2008 | Philadelphia | 24 105 105 630 296 253 6.0 2.8 2.4
2009 | Kobe 38 85 123 729 375 292 5.9 3.0 2.4
2010 | Utrecht 24 86 110 656 314 263 6.0 2.9 2.4

As stated before, ISMIR 2010 received 176 papers for review (not including the seven STAR papers).
We were very pleased to see that ISMIR retained its international following as the submissions came
from 29 different countries. The reviewers generated 696 reviews and meta-reviews. Of these, 108
papers were selected for publication. This yielded an acceptance rate of 61% which is in line with
previous ISMIR rates. Twenty-two papers were selected for oral presentation. When combined with
the two STAR papers, the total number of oral presentations comes to 24 as shown in Table 1. Eighty-
six papers were chosen for poster presentation. Not shown in Table 1 (to keep the data consistent
across years) are the six extra posters presented by those giving oral presentations. Also missing from
Table 1 are the two informative papers from the 2" Future of MIR—f(MIR)—workshop held in
conjunction with ISMIR 2010 and included in the proceedings. Table 1 statistics do not include the
many posters that were presented as part of the 2010 Music Information Retrieval Evaluation
eXchange (MIREX) 2010 poster session. Finally, the 30 late-breaking poster/demo abstracts that have
been made available via the ISMIR 2010 website are not part of the Table 1 data.

We are very proud to have two distinguished special speakers on the programme. Music psychologist
Carol L. Krumhansl, giving the Keynote Lecture, is famous for her research into the perception of
tonality, and her work is probably the most widely-used music-psychological source for MIR
research. Joris de Man, our Invited Speaker, is the composer of the music for the computer game
Killzone 2. He will discuss the merge of music and technology from a seemingly different point of
view that may nevertheless have many implications for future MIR research and applications.

ISMIR 2010 is preceded by the one-week Utrecht Summer School in Music Information Retrieval
(USMIR), which is jointly organised by the Department of Information and Computing Sciences of
Utrecht University and the Institute for Psychoacoustics and Electronic Music of Ghent University
(Belgium). This summer school follows the example on an earlier, highly successful event that
preceded ISMIR 2004 in Barcelona. Twenty-eight students and 14 specialists from 15 different
countries and will participate in this summer school, discussing and doing practical work on topics
that range from melody retrieval to Wii-retrieval and from user-based music research method to
toolboxes such as PHAT. As in ISMIR 2010, the human processing of music is the starting-point for
the meaningful application of technology.

This year’s social programme has been designed in such a way that it continues the broad themes of
the conference in a more leisurely fashion. It confronts music technology, creativity and performance,
and adds a historical and a Dutch dimension to mixture. You will come across street organs, carillons,
prepared pianos, human and mechanical performers, and in particular the precursor of that ubiquitous
MIR tool, piano roll notation, in its authentic, material form, punched in cardboard.

The Programme Chairs would like to express their deep gratitude to all those who have given so much
to make ISMIR 2010 programme and proceedings a success. We thank the members of the
Conference Committee, the Programme Committee, the reviewers, and the submitters. Many thanks
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go to our sponsors, Gracenote, the City of Utrecht, the Province of Utrecht, the Netherlands
Organisation for Scientific Research (NWO), Philips Research, Microsoft Research, Google Research
and the Netherlands Research School for Information and Knowledge Systems (SIKS), for making
many aspects of the programme possible and in particular for enabling us to fund a number of Student
Travel Awards. Extra-special recognition goes to Drs. Bas de Haas, of Utrecht University, for his
tireless efforts in making the managerial aspects of the whole conference programming process run as
efficiently as possible.

Frans Wiering
General Chair, ISMIR 2010

J. Stephen Downie and Remco Veltkamp
Programme Chairs, ISMIR 2010

Xi
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Keynote Presentation

Carol L. Krumhansl, Department of Psychology, Cornell University

Music and Cognition: Links at Many Levels

The talk presents research showing that music and cognition have strong links at many levels.
An example of a link at a deep level is the empirical support found for deeply theorized
properties of music such as Lerdahl’s theory of musical tension. Confirmation of this theory
demonstrates that the cognitive representation of musical structure includes hierarchical trees
similar to those proposed for language. At a somewhat higher level, sensitivity to statistically
frequent patterns in the sounded events enables listeners to abstract a tonal framework for
encoding and remembering music and generating expectations. Violations of these
expectations contribute to the emotional response to music and produce neural responses in
fMRI studies. Thus, statistical learning, found for language and other perceptual domains,
extends to music where it has special significance. Finally, research on music recognition
suggests a great deal of surface information is encoded in memory. Very short excerpts of
popular music can be identified with artist, title, and release date. Even when an excerpt is not
identified, emotion and style judgments are consistent. These results point to a long-term
memory for music with large capacity and fine detail as well as schematic knowledge of style
and emotional content.
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A COMPARATIVE EVALUATION OF ALGORITHMS FOR DISCOVERING
TRANSLATIONAL PATTERNS IN BAROQUE KEYBOARD WORKS

Tom Collins
The Open University, UK
t.e.collins@open.ac.uk

ABSTRACT

We consider the problem of intra-opus pattern discovery,
that is, the task of discovering patterns of a specified type
within a piece of music. A music analyst undertook this
task for works by Domenico Scarlattti and Johann Sebas-
tian Bach, forming a benchmark of ‘target’ patterns. The
performance of two existing algorithms and one of our own
creation, called STACT, is evaluated by comparison with
this benchmark. SIACT out-performs the existing algo-
rithms with regard to recall and, more often than not, pre-
cision. It is demonstrated that in all but the most care-
fully selected excerpts of music, the two existing algo-
rithms can be affected by what is termed the ‘problem of
isolated membership’. Central to the relative success of
SIACT is our intention that it should address this particu-
lar problem. The paper contrasts string-based and geomet-
ric approaches to pattern discovery, with an introduction to
the latter. Suggestions for future work are given.

1. INTRODUCTION

This paper discusses and evaluates algorithms that are in-
tended for the following task: given a piece of music in
a semi-symbolic representation, discover so-called transla-
tional patterns [14] that occur within the piece. Transla-
tional patterns (in the geometric sense) are discussed fur-
ther in Sec. 1.1. Although they are not the only type of pat-
tern that could matter in music analysis, many music ana-
lysts would acknowledge that such a discovery task forms
part of the preparation when writing an analytical essay
[6]. Even if the final essay pays little or no heed to the dis-
covery of translational patterns, neglecting this preparatory
task entirely could result in failing to mention something
that is musically very noticeable, or worse, very important.
Hence we are motivated by the prospect of automating the
discovery task, as it could have interesting implications for
music analysts (and music listeners in general), enabling
them to engage with pieces in a novel manner. We also
consider this task to be an open problem within music in-
formation retrieval (MIR), so attempting to improve upon
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current solutions is another motivating factor. The algo-
rithms are applied to Baroque keyboard pieces by Scarlatti
(Sonatas L1 and 10) and—to ensure common ground with
existing work [7, 13]—Bach (Preludes BWVv849 and 854).
Two existing algorithms and one of our own creation are
evaluated by comparing their output with a music analyst’s
(the second author’s) independent findings for these same
keyboard pieces (Sec. 4).

1.1 Review of existing work

In MIR there do not seem to be clear distinctions between
the terms pattern ‘discovery’ [5,8, 14,16], ‘extraction’ [10,
11,17], ‘identification’ [7,9] , and ‘mining’ [3], at least in
the sense that most of the papers just cited address very
similar discovery tasks to that stated at the beginning of
Sec. 1. Conklin & Bergeron [5] give the label ‘intra-opus’
discovery to concentrating on patterns that occur within
pieces. An alternative is ‘inter-opus’ discovery, where pat-
terns are discovered across many pieces of music [5, 9].
This makes it possible to gauge the typicality of a partic-
ular pattern relative to the corpus style. Terms that are
clearly distinguished in MIR are pattern ‘discovery’ and
‘matching’ [4]. Pattern matching is the central process in
‘content-based retrieval’ [18], where the user provides a
query and then the algorithm searches a music database
for more or less exact instances of the query. The out-
put is ranked by some measure of proximity to the origi-
nal query. This matching task is quite different from the
intra-opus discovery task, where there is neither a query
nor a database as such, just a single piece of music, and
no obvious way of ranking an algorithm’s output. While
we have stressed their differences, some authors attempt
to address both discovery and matching tasks in the same
paper [12, 13], suggesting that representations/algorithms
that work well for one task might be adapted and applied
fruitfully to the other.

Some attempts at pattern discovery have been made with
audio representations of music [15]. However, we, like
the majority of work cited in this section, begin with a
semi-symbolic representation, such as a MIDI file. Work
on semi-symbolic representations can be categorised into
string-based [2,3,5,8—11,16,17] and geometric approaches
[7, 12—14], and which approach is most appropriate de-
pends on the musical situation. For instance the string-
based method is more appropriate for the excerpt in Fig. 1.
We propose that the most salient pattern in this short ex-
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Figure 1. Bars 1-3 of the Introduction from The Rite of
Spring by Igor Stravinsky, annotated with MIDI note num-
bers and ontimes in crotchets starting from zero. For clar-
ity, phrasing is omitted and ornaments are not annotated.

cerpt consists of the notes C5, B4, G4, E4, B4, A4, ignor-
ing ornaments for simplicity. The simplest way to discover
the three occurrences of this pattern is to represent the ex-
cerpt as a string of MIDI note numbers and then to use an
algorithm for pattern discovery in strings. The string 72,
71, 67, 64, 71, 69, ought to be discovered, and the user re-
lates this back to the notes C5, B4, G4, E4, B4, A4. The
geometric method is not appropriate here because each oc-
currence of the pattern has a different rhythmic profile.

On the other hand, the geometric method is better suited
to finding the most salient pattern in Fig. 2a, consisting of
all the notes in bar 13 except the tied-over G4. This pattern
occurs again in bar 14, transposed up a fourth, and then
once more at the original pitch in bar 15. Each note is an-
notated with its relative height on the stave (or morphetic
pitch number [14]), taking C4 to be 60. Underneath the
stave, ontimes are measured in quaver beats starting from
zero. The first note in this excerpt, G3, can be represented
by the datapoint d; = (0,57), since it has ontime 0 and
morphetic pitch number 57. A scatterplot of morphetic
pitch number against ontime for this excerpt is shown in
Fig. 2b. Meredith et al. [14] call the set of all datapoints
representing an excerpt a dataset, denoted by D. Restrict-
ing attention to bars 13-15, we begin with the dataset

D ={d;,d,,...,ds}. €))

A pattern is defined as a non-empty subset of a dataset. In
our example, we will choose to look at the patterns

P={d,,..

.,dg}, and @ = {dg,di1,...,di7}. (2)

The vector that translates d; to dg is
dg —d; = (3,60) — (0,57) = (3,3) = v. 3)

We have given this vector a label v = (3,3). It is this
same vector v that translates ds to d11, d3 to dys,...,ds
to d;7. Recalling the definitions of P and () from (2), it
is more succinct to say that ‘the translation of P by v is
equal to Q. This translation is indicated in Fig. 2c.

Looking at Fig. 2c it is evident that as well as () be-
ing a translation of P, pattern R is also a translation of P.
Meredith et al. [14] call { P, Q, R} the translational equiv-
alence class of P in D, notated

TEC(P,D) = {P,Q, R}. €))

The TEC gives all the occurrences of a pattern in a
dataset.
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Figure 2. (a) Bars 13-16 of the Sonata in C major L3
by Scarlatti, annotated with morphetic pitch numbers and
ontimes; (b) each note from the excerpt is converted to a
point consisting of an ontime and a morphetic pitch num-
ber. Morphetic pitch number is plotted against ontime, and
points are labelled in lexicographical order d; to dss; (c)
the same plot as above, with three ringed patterns, P, Q), R.
Arrows indicate that both () and R are translations of P.

So P is an example of a translational pattern, as trans-
lations of P, namely () and R, exist in the dataset D. The
formal definition of a translational pattern is as follows.

Definition. For a pattern P in a dataset D, the pattern P
is a translational pattern if there exists at least one sub-
set (Q of D such that P and () contain the same number
of elements, and there exists one non-zero vector v that
translates each datapoint in P to a datapoint in Q).

In the example in Fig. 2, two dimensions were considered
(ontime and morphetic pitch number). The definitions and
pattern discovery algorithms given by Meredith et al. [13]
extend to k£ dimensions; specifically MIDI note number
and duration are included as further dimensions.

The string-based method is not so well suited to Fig. 2a.
The first step would be voice separation, generating per-
ceptually valid melodies from the texture. Sometimes the
scoring of the music makes separation simple [9], but even
when voicing contains ambiguities, there are algorithms
that can manage [1,3]. Supposing fragments of the pat-
tern in Fig. 2a were discovered among separated melodies,
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Figure 3. A Venn diagram (not to scale) for the number of
patterns (up to translational equivalence) in a dataset. The
total E' is shown relative to the number typically returned
by SIATEC (F), COSIATEC (G), and SIACT (H).

these fragments still would have to be correctly reunited.
In this instance, even the most sophisticated string-based
method [5] does not compare with the efficiency of the ge-
ometric method. The key difference between geometric
and string-based approaches is the binding of ontimes to
other musical information in the former, and the decou-
pling of this information in the latter. Both are valid meth-
ods for discovering patterns in music.

The reporting of existing intra-opus algorithms will of-
ten mention running time [3, 8, 12—-14], occasionally recall
is given [11, 17], and sometimes precision [10]. With the
inter-opus discovery task an algorithm’s output is seldom
compared with a human benchmark [5,9]. The justification
is that ‘investigations of entire collections require consider-
able amounts of time and effort on the part of researchers’
[9, p. 171]. Still, is it not worth knowing how an algorithm
performs on a subset of the collection?

2. ALGORITHMS FOR PATTERN DISCOVERY

In equation 2, pattern P was introduced without explain-
ing how it is discovered. It could be discovered by cal-
culating all the TECs in the dataset D, and then certainly
TEC(P, D) will be among the output. However this ap-
proach is tremendously expensive and indiscriminate. It is
expensive in terms of computational complexity, as there
are 2" patterns to partition into equivalence classes, where
n = | D] is the size of the dataset. Moreover, it is indis-
criminate as no attempt is made to restrict the output in
terms of ‘musical importance’: while P is arguably of im-
portance, not all subsets of D are worth considering, yet
they will also be among the output. The set E in Fig. 3
represents the output of this expensive and indiscriminate
approach.

Therefore Meredith et al. [14] restrict the focus to a
smaller set F', by considering how a pattern like P is max-
imal. Recalling (1) and (2), the pattern P is maximal in
the sense that it contains all datapoints that are translatable
in the dataset D by the vector v = (3,3). It is called a
maximal translatable pattern [14], written

P=MTP(v,D)={deD:d+veD} (5

Meredith et al.’s [14] structural inference algorithm (SI2)
calculates all MTPs in a dataset, which requires O(kn?)
calculations. While the TEC of each MTP must still be de-
termined to give the set F' in Fig. 3, this approach is enor-
mously less expensive than partitioning 2" patterns and
involves a decision about musical importance: ‘In music,
MTPs often correspond to the patterns involved in percep-
tually significant repetitions’ [14, p. 331]. SIA works by
traversing the upper triangle of the similarity matrix

dlfdl dgfdl dnfdl
d—-dy do—dy -+ d,—d>

A= : . _ . - (0
dl—dn dz—dn dn_dn

If the vector w = d; — d; is not equal to a previously cal-
culated vector then a new MTP is created, MT P(w, D),
with d; as its first member. Otherwise w = u for some
previously calculated vector u, in which case d; is included
in MTP(u, D). Soitis possible to determine the set F’ for
a dataset D by first running SIA on the dataset and then
calculating the TEC of each MTP. The structural inference
algorithm for translational equivalence classes (SIATEC)
performs this task [14], and requires O(kn?) calculations.

To our knowledge there are two further algorithms that
apply the geometric method to pattern discovery: the cov-
ering structural inference algorithm for translational equiv-
alence classes (COSIATEC) [13] and a variant proposed by
Forth & Wiggins [7]. COSIATEC rates patterns accord-
ing to a heuristic for musical importance and produces a
smaller output than STATEC, the set labelled G in Fig. 3.
The name COSIATEC derives from the idea of creating a
cover for the input dataset:

1. Run SIATEC on Dy = D, rate the discovered pat-
terns using the heuristic for musical importance, and
return the pattern P, that receives the highest rating.

2. Define a new dataset D; by removing from Dy each
datapoint that belongs to an occurrence of F.

3. Repeat step 1 for D, to give P, repeat step 2 to de-
fine Do from D1, and so on until the dataset Dy
is empty.

4. The output is
G ={TEC(Py, Dy),...,TEC(Pn,Dn)}. (7)

Forth & Wiggins’ variant on COSIATEC [7] uses a non-
parametric version of the heuristic for musical importance
and requires only one run of STATEC. While only one run
reduces the computational complexity of their version, it
does mean that the output is always a subset of F', whereas
running STATEC on successively smaller datasets (steps 2
and 3 above) makes it possible to discover patterns beyond
F (the portion G\ F' in Fig. 3).

3. THE PROBLEM OF ISOLATED MEMBERSHIP

In Sec. 2 we noted that pattern P from (2) could be dis-
covered by running SIA on the dataset D from (1). This
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is because P is the MTP (cf. equation 5) for the vector
v = (3,3) and SIA returns all such patterns in a dataset.
However, D is a conveniently chosen example consisting
only of bars 13-15 of Fig. 2a. How might an MTP be af-
fected if the dataset is enlarged to include bar 167 Letting

D+ :{dl,...,d35}, vV = (3,3), (8)

it can be verified that

PJr = MTP(V, D+) = {dl, ey dg, dlg, dlg, d22}.

©))
Unfortunately P+, the new version of P, contains three
more datapoints, dig, dig, dag, that are isolated tempo-
rally from the rest of the pattern. This is an instance of
what we call the ‘problem of isolated membership’. It
refers to a situation where a musically important pattern
is contained within an MTP, along with other temporally
isolated members that may or may not be musically im-
portant. Intuitively, the larger the dataset, the more likely
it is that the problem will occur. Isolated membership af-
fects all existing algorithms in the SIA family, and could
prevent them from discovering some translational patterns
that a music analyst considers noticeable or important (see
Sec. 4 for further evidence in support of this claim).

Our proposed solution to the problem of isolated mem-
bership is to take the SIA output and ‘trawl’ inside each
MTP from beginning to end, returning subsets that have a
compactness greater than some threshold a and that con-
tain at least b points. The compactness of a pattern is the
ratio of the number of points in a pattern to the number
of points in the region of the dataset in which the pattern
occurs [13]. Different interpretations of ‘region’ lead to
different versions of compactness. The version employed
here is of least computational complexity O(kn), and uses
the lexicographical ordering shown in Fig. 2b. The com-
pactness of a pattern P = {p1,...,p;} in a dataset D is
defined by

c¢(P,D)=1/{d; € D:p1 <d; < pi}| (10)

For instance, the compactness of pattern @) in Fig. 2c is
8/9, as there are 8 points in the pattern and 9 in the dataset
region {dg, d10,...,d;7} in which the pattern occurs.

One of Meredith et al.’s [14] suggestions for improv-
ing/extending the STA family is to ‘develop an algorithm
that searches the MTP TECs generated by SIATEC and
selects all and only those TECs that contain convex-hull
compact patterns’ [p. 341]. The way in which our pro-
posed solution is crucially different to this suggestion is to
trawl inside MTPs. It will not suffice to calculate the com-
pactness of an entire MTP, since we know it is likely to
contain isolated members. Other potential solutions to the
problem of isolated membership are to:

e Segment the dataset before discovering patterns. The
issue is how to segment appropriately—usually the
discovery of patterns guides segmentation [2], not
the other way round.

e Apply SIA with a ‘sliding window’ of size r. Ap-
proximately, this is equivalent to traversing only the

elements on the first r superdiagonals of A in (6).
The issue is that the sliding window could prevent
the discovery of very noticeable or important pat-
terns, if their generating vectors lie beyond the first
r superdiagonals.

e Consider the set of all patterns that can be expressed
as an intersection of MTPs, which may not be as
susceptible to the problem of isolated membership.
The issue with this larger class is that it is more com-
putationally complex to calculate, and does not aim
specifically at tackling isolated membership.

The algorithmic form of our solution is called a com-
pactness trawler. It may be helpful to apply it to the exam-
ple of P* in (9), using a compactness threshold of @ = 2/3
and points threshold of b = 3. The compactness of succes-
sive subsets {d1},{d1,dz2},...,{dy,...,ds} of PT re-
mains above the threshold of 2/3 but then falls below, to
9/18, for {dy,...,ds,d1s}. Sowereturnto {dy,...,ds},
and it is output as it contains 8 > 3 = b points. The pro-
cess restarts with subsets {ds}, {dis,d19}, and then the
compactness falls below 2/3 to 3/5 for {ds, d19, d22}.
So we return to {d;s, d19}, but it is discarded as it contains
fewer than 3 points. The process restarts with subset {d22 }
but this also gets discarded for having too few points. The
whole of PT has now been trawled. The formal definition
follows and has computational complexity O(kn).

1. Let P = {py,...
and: = 1.

,pi} be a pattern in a dataset D

2. Let j be the smallest integer such that+ < j < [ and
C(Pj+1,D) < a, where Pj+1 = {pi, ey pj+1}~ If
no such integer exists then put P/ = P, otherwise
let P/ = {pl7>p]}

3. Return P’ if it contains at least b points, otherwise
discard it.

4. If j exists in step 2, re-define P in step 1 to equal
{Pj+1,--.,pi}. set i = j + 1, and repeat steps 2
and 3. Otherwise re-define P as empty.

5. After a certain number of iterations P will be empty
and the output can be labelled Py, ..., Py, thatis N
subsets of the original P, where 0 < N < [.

We give the name ‘structural inference algorithm and
compactness trawler’ (SIACT) to the process of calculat-
ing all MTPs in a dataset (SIA), followed by the applica-
tion of the compactness trawler to each. The compactness-
trawling stage in SIACT requires O(kmn) calculations,
where m is the number of MTPs returned by SIA. If de-
sired, it is then possible to take the output of STACT and
calculate the TECs. These TECs are represented by the set
H in Fig. 3. To our knowledge, this newest member of
the STIA family is the only algorithm intended to solve the
problem of isolated membership.
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4. COMPARATIVE EVALUATION

A music analyst (the second author) analysed the Sonata in
C major L1 and the Sonata in C minor L10 by Scarlatti, the
Prelude in Cf minor BWV849 and the Prelude in E major
BWV854 by Bach. The brief was similar to the intra-opus
discovery task described in Sec. 1: given a piece of music
in staff notation, discover translational patterns that occur
within the piece. Thus, a benchmark of translational pat-
terns was formed for each piece, the criteria for benchmark
membership being left largely to the analyst’s discretion.
One criterion that was stipulated was to think in terms of
an analytical essay: if a pattern would be mentioned in
prose or as part of a diagram, then it should be included in
the benchmark. The analyst is referred to as ‘independent’
because of the relative freedom of the brief and because
they were not aware of the details of the STA family, or
our new algorithm. The analyst was also asked to report
where aspects of musical interest had little or nothing to
do with translational patterns, as these occasions will have
implications for future work.

Three algorithms—SIA [14], COSIATEC [13] and our
own, STACT—were run on datasets that represented L1,
L10, BWvV849, and BWV854. For COSIATEC the non-
parametric version of the rating heuristic was used [7] and
for SIACT we used a compactness threshold of a = 2/3
and a points threshold of b = 3. The choice of ¢ =
2/3 means that at the beginning of an input pattern, the
compactness trawler will tolerate one non-pattern point be-
tween the first and second pattern points, which seems like
a sensible threshold. The choice of b = 3 means that a
pattern must contain at least three points to avoid being
discarded. This is an arbitrary choice and may seem a lit-
tle low to some. Each point in a dataset consisted of an
ontime, MIDI note number (MNN), morphetic pitch num-
ber (MPN), and duration (voicing was omitted for simplic-
ity on this occasion). Nine combinations of these four di-
mensions were used to produce ‘projections’ of datasets
[14], on which the algorithms were run. These projections
always included ontime, bound to: MNN and duration;
MNN; MPN and duration; MPN; duration; MNN mod 12
and duration; MNN mod 12; MPN mod 7 and duration;
MPN mod 7. For the first time to our knowledge, the use
of pitch modulo 7 and 12 enabled the concept of octave
equivalence to be incorporated into the geometric method.

If a pattern is in the benchmark, it is referred to as a
target; otherwise it is a non-target. An algorithm is judged
to have discovered a target if a member of the algorithm’s
output is equal to the target pattern or a translation of that
pattern. In the case of COSIATEC the output consists of
TECs, not patterns. So we will say it has discovered a tar-
get if that target is a member of one of the output TECs. Ta-
ble 1 shows the recall and precision of the three algorithms
for each of the four pieces. Often COSTIATEC did not dis-
cover any target patterns, so for these pieces it has zero
recall and precision. This is in contrast to the parametric
version’s quite encouraging results for Bach’s two-part in-
ventions [12,13]. When it did discover some target patterns
in L10, COSIATEC achieved a better precision than the

Piece — L1 L10 BWV849 BWV854
Algorithm | Recall
SIA 29 22 28 22
COSIATEC .00 17 .00 .00
SIACT .50 .65 .56 .61
Precision

SIA | 1.5e® 11e® 13e® 18e¢7°
COSIATEC .00 .02 .00 .00

SIACT | 2.6e™ 2 15e 3 78e % 20e3

Table 1. Results for three algorithms on the intra-opus pat-
tern discovery task, applied to four pieces of music. Recall
is the number of targets discovered, divided by the sum of
targets discovered and targets not discovered. Precision is
the number of targets discovered, divided by the sum of
targets discovered and non-targets discovered.

other algorithms, as it tends to return far fewer patterns per
piece (168 on average compared with 8,284 for STACT and
385,299 for STA). Hence the two remaining contenders are
SIA and SIACT. SIACT, defined in Sec. 3, out-performs
SIA in terms of both recall and precision. Having exam-
ined cases in which STIA and COSIATEC fail to discover
targets, we attribute the relative success of SIACT to its
being intended to solve the problem of isolated member-
ship. Across the four pieces, the running times of SIA and
SIACT are comparable (the latter is always slightly greater
since the first stage of STACT is SIA).

5. DISCUSSION

This paper has discussed and evaluated algorithms for the
intra-opus discovery of translational patterns. One of our
motivations was the prospect of improving upon current
solutions to this open MIR problem. A comparative eval-
uation was conducted, including two existing algorithms
and one of our own, STACT. For the pieces of music con-
sidered, it was found that STACT out-performs the existing
algorithms considerably with regard to recall and, more of-
ten than not, it is more precise. Therefore, our aim of im-
proving upon the best current solution has been achieved.
Central to this achievement was the formalisation of the
‘problem of isolated membership’. It was shown that for
a small and conveniently chosen excerpt of music, a maxi-
mal translatable pattern corresponded exactly to a percep-
tually salient pattern. However, when the excerpt was en-
larged by just one bar, the MTP gained some temporally
isolated members, and the salient pattern was lost inside
the MTP. Our proposed solution, to trawl inside an MTP,
returning compact subsets, led to the definition of STACT.

The weight placed on the improved results reported here
is limited somewhat by the extent of the evaluation, which
includes only four pieces, all from the Baroque period,
and all analysed by one expert. Extending and altering
these conditions and assessing their effect on the perfor-
mance of the three algorithms is a clear candidate for fu-
ture work. There are also more sophisticated versions of
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compactness and the compactness trawler algorithm that
could be explored, and alternative values for the compact-
ness and points thresholds, a and b. The discovery of ‘ex-
act repetition’ has provided a sensible starting point for
this research, but extending definitions such as (5) to al-
low for ‘inexact repetition’ is an important and challeng-
ing next step. Cases of failure, where STACT does not dis-
cover targets, will be investigated. Perhaps some of these
cases share characteristics that can be addressed in a fu-
ture version of the algorithm. Although we have seen STA
presented before as the sorting of matrix elements [14],
the connection that A in (6) makes with similarity matri-
ces [15, 16] may lead to new insights or efficiency gains.
We will be trying to elicit more knowledge about the
attributes of a pattern that matter to human analysts, so
as to rank output patterns and to compare these attributes
with the assumptions underlying STACT. It could be that
current pattern discovery methods overlook particular as-
pects of musical interest. If so a string-based or geometric
method might be easily adapted, or very different meth-
ods may have to be developed. Could one focused algo-
rithm encompass the many and diverse categories of mu-
sical pattern? It seems improbable, and the discussion of
Figs. 1 and 2 in Sec. 1.1 could be interpreted as a coun-
terexample. Hence, given the improved voice separation
algorithms, and string-based and geometric methods that
now exist, another worthy topic for future work would be
the unification of a select number of algorithms within a
single user interface. This would bring us closer to achiev-
ing our opening, more ambitious aim, of enabling music
analysts, listeners, and students to engage with pieces of
their choice in a novel and rewarding manner. To this end,
the work reported here clearly merits further development.
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ABSTRACT

The automated extraction of chord labels from audio
recordings constitutes a major task in music information
retrieval. To evaluate computer-based chord labeling pro-
cedures, one requires ground truth annotations for the un-
derlying audio material. However, the manual generation
of such annotations on the basis of audio recordings is te-
dious and time-consuming. On the other hand, trained mu-
sicians can easily derive chord labels from symbolic score
data. In this paper, we bridge this gap by describing a pro-
cedure that allows for transferring annotations and chord
labels from the score domain to the audio domain and vice
versa. Using music synchronization techniques, the gen-
eral idea is to locally warp the annotations of all given data
streams onto a common time axis, which then allows for
a cross-domain evaluation of the various types of chord
labels. As a further contribution of this paper, we extend
this principle by introducing a multi-perspective evaluation
framework for simultaneously comparing chord recogni-
tion results over multiple performances of the same piece
of music. The revealed inconsistencies in the results do not
only indicate limitations of the employed chord labeling
strategies but also deepen the understanding of the under-
lying music material.

1. INTRODUCTION

In recent years automated chord recognition, which deals
with the computer-based harmonic analysis of audio
recordings, has been of increasing interest in the field of
music information retrieval (MIR), see e.g. [1,4,5,7,12,
14]. The principle of harmony is a central attribute of
Western tonal music, where the succession of chords over
time often forms the basis of a piece of music. Such har-
monic chord progressions are not only of musical impor-
tance, but also constitute a powerful mid-level representa-
tion for the underlying musical signal and can be applied
for various tasks such as music segmentation, cover song
identification, or audio matching [10, 13].

The evaluation of chord labeling procedures itself,
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which is typically done by comparing the computed chord
labels with manually generated ground truth annotations,
is far from being an easy task. Firstly, the assignment of
chord labels to specific musical sections is often ambigu-
ous due to musical reasons. Secondly, dealing with perfor-
mances given as audio recording, the ground truth annota-
tions have to be specified in terms of physical units such
as seconds. Thus, specifying musical segments becomes
a cumbersome task, which, in addition, has to be done for
each performance separately. On the other hand, musicians
trained in harmonics are familiar with assigning chord la-
bels to musical sections. However, the analysis is typically
done on the basis of musical scores, where the sections are
given in terms of musical units such as beats or measures.
When dealing with performed audio recordings, such an-
notations are only of limited use.

As one main contribution of this paper, we introduce
an automated procedure for transferring annotations and
chord labels from the score domain to the audio domain
and vice versa, thus bridging the above mentioned gap be-
tween MIR researchers and musicians. Given the score of
a piece of music, we assume that musical sections spec-
ified in terms of beats or measures are labeled using the
conventions introduced by Harte [4]. In case the score
is given in some computer-readable format such as Mu-
sicXML or LilyPond [6], recent software allows for ex-
porting the score into an uninterpreted MIDI file, where
the tempo is set to a known constant value. This allows for
directly transferring the score-based ground truth annota-
tions to a MIDI-based ground truth annotation. We then
use music synchronization techniques [9] to temporally
align the MIDI file to a given audio recording. Finally,
the resulting alignment information can be used to tempo-
rally warp the audio annotations onto a common musically
meaningful time axis, thus allowing a direct comparison to
the ground truth annotations.

As a second contribution, we extend this principle by
suggesting a novel multi-perspective evaluation frame-
work, where we simultaneously compare chord recogni-
tion results over multiple performances of the same piece
of music. In this way, consistencies and inconsistencies in
the chord recognition results over the various performances
are revealed. This not only indicates the capability of the
employed chord labeling strategy but also lies the basis for
a more detailed analysis of the underlying music material.
As a final contribution, we indicate the potential of our
framework by giving such detailed harmonic analyses by
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means of three representative examples.

The remainder of this paper is organized as follows.
First, in Sect. 2 we give an overview about music synchro-
nization. Then, in Sect. 3 we present the multi-perspective
evaluation framework. In Sect. 4 we demonstrate our frame-
work giving an in-depth analysis of typical chord recogni-
tion errors. Conclusions and prospects on future work are
given in Sect. 5.

2. MUSIC SYNCHRONIZATION

For the methods presented in the following sections the
concept of music synchronization is of particular impor-
tance. In general, the goal of music synchronization is to
determine for a given position in one version of a piece
of music, the corresponding position within another ver-
sion. Most synchronization algorithms rely on some vari-
ant of dynamic time warping (DTW) and can be summa-
rized as follows. First, two given versions of a piece of
music are converted into feature sequences, say X
(X1,Xo,...,Xy)and Y = (11,Ys,...,Y)), respec-
tively. In this context, chroma features have turned out
to yield robust alignment results even in the presence of
significant artistic variations. In the following we em-
ploy CENS (Chroma Energy Normalized Statistics) fea-
tures, a variant of chroma features making use of short-
time statistics over energy distributions within the chroma
bands, for a detailed description see [9]. Additionally,
we consider non-standard tunings similar to Gémez [3].
Then, an N x M cost matrix C is built up by evaluat-
ing a local cost measure c¢ for each pair of features, i.e.,
C(n,m) = ¢(Tpn,ym) forn € [1 : N] := {1,2,...,N}
and m € [1 : M]. Each tuple p = (n,m) is called a
cell of the matrix. A (global) alignment path is a sequence
(p1,-..,pr) of length L with p, € [1 : N] x [1 : M]
for ¢ € [1 : L] satisfying p1 = (1,1), pr = (N, M)
and pe1 —pe € X for £ € 1 L — 1]. Here,
¥ = {(1,0),(0,1),(1,1)} denotes the set of admissible
step sizes. The cost of a path (pi,...,pr) is defined as
Zngl C(pe).- A cost-minimizing alignment path, which
constitutes the final synchronization result, can be com-
puted via dynamic programming from C'. For a detailed ac-
count on DTW and music synchronization we refer to [9].

Based on this general strategy, we employ a synchro-
nization algorithm based on high-resolution audio features
as described in [2]. This approach, which combines the
high temporal accuracy of onset features with the robust-
ness of chroma features, generally yields robust music
alignments of high temporal accuracy.

3. MULTI-PERSPECTIVE VISUALIZATION

A score in a computer readable format such as LilyPond or
MusicXML is available for many classical pieces of music
[11]. For a trained musician it is much more intuitive to an-
notate the chords of a piece on the basis of the underlying
score than on the basis of an audio recording. However,
such an annotation is not directly transferable to an audio
recording of the same piece, as both use very different no-
tions of time. Furthermore, this also implies that this an-
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notation cannot be used directly to evaluate the results of
an audio-based automatic chord labeling method. In this
section, we present a method integrating music synchro-
nization techniques, which allows for a direct comparison
of chord labels derived from different versions of a piece
of music. This approach has several advantages. Firstly,
the manual annotation becomes much more intuitive. Sec-
ondly, the position of a chord recognition error in an audio
recording can be easily traced back to the corresponding
position in the score. This allows for a very efficient in-
depth error analysis as we will show in Sect. 4. Thirdly, a
single score-based annotation can be transfered to an arbi-
trary number of audio recordings for the underlying piece.

In the following, we assume that an audio recording and
a score in computer readable format are given for a piece
of music. Additionally, chord labels manually annotated
by a trained musician on the basis of a score are given as
well as labels automatically derived from the audio record-
ing via some computer-based method. In a first step, we
export the score to a MIDI representation. This can be
done automatically using existing software. Beat and mea-
sure positions are preserved during the export, such that
the score-based annotations are still valid for the MIDI
file. In a next step, we derive CENS features from the
MIDI as well as from the audio as mentioned in Sect. 2,
sayX = (Xl,XQ, N 7AXVN) and Y := (}/1,5/2, .. .,YM),
respectively. Since each CENS feature corresponds to a
time frame, we can also create two binary chord vector se-
quences, A := (A41,...,An) and B := (By,...,Bu),
which encode the given chord labels in a framewise fash-
ion. Here, A,,B,, € {0,1}¢ forn € [1 : N] and
m € [1 : M]. The constant d equates the number of con-
sidered chords. A value of one in a vector component en-
codes the chord prevalent in the corresponding time frame.
As we consider in the following only the 24 major and mi-
nor chords (d = 24), we have to map the given chord labels
in a meaningful way to one of these. To this end, we em-
ploy the interval comparison of the dyad, which was used
for MIREX 2009 [8] and takes into account only the first
two intervals of each chord. Thus, augmented and dimin-
ished chords are mapped to major and minor respectively,
as well as any other label having a major or minor third as
its first interval. Using the first four measures of Chopin’s
Mazurka Op. 68 No. 3 as an example, we illustrate the
sequences A for the score and B for the audio in Fig.1(b)
and 1(c), respectively. Note that in Fig.1(b) the time is ex-
pressed in terms of measures, while in Fig.1(c) the time is
given in seconds. This different notion of time prevents a
comparison of A and B at this point.

The next step consists of synchronizing the two CENS
features sequences X and Y as mentioned in Sect. 2. The
resulting alignment path p = (p1, ..., pr) encodes tempo-
ral correspondences between elements of X and Y. Fol-
lowing the same time frame division, the alignment path
also encodes correspondences between the sequences A
and B. Using this linking information, we locally stretch
and contract the audio chord vector sequence B according
to the warping information supplied by p. Here, we have
to consider two cases. In the first case, p contains a subse-
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Figure 1. Various chord annotations visualized for the Chopin
Mazurka Op. 68 No. 3 (F major), mm. 1-4. (a) Score. (b) Score-
based ground truth chord labels. (¢) Computed audio chord labels
(physical time axis). (d) Warped audio chord labels (musical time
axis). (e) Overlayed score and audio chord labels. (f) Multi-
perspective overlay of score and audio chord labels.
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quence of the form
(n,m),(n+1,m),...,(n+£—1,m)

for some ¢ € N, ie. the ¢ score-related vectors
Ap, ..., Ao are aligned to the single audio-related
vector B;,. In this case, we duplicate the vector B,, by
taking ¢ copies of it. In the second case, p contains a sub-
sequence of the form

(n,m),(n,m+1),....,(n,m+£—1)

for some ¢ € N, i. e., the score-related vector A,, is aligned
to ¢ audio-related vectors B,,, ..., By,4+¢—1. In this case,
we replace the £ vectors by the vector By, |¢/2). The re-
sulting warped version of B is denoted by B. Note that
the length of B equals the length N of A, see Fig. 1(d).
For the visualization we set all vectors in B to 0, where no
groundtruth chord label is available, as for example in the
middle of measure (abbreviated mm.) 4, see Fig. 1(d).

Overall, we have now converted the physical time axis
of the audio chord vector sequence B to the musically
meaningful measure axis, as used for A. Finally, we
can visualize the differences between the score-based and
the audio-based chord labels by overlaying A and B, see
Fig. 1(e). Here, the vertical axis represents the 24 ma-
jor/minor chords, starting with the 12 major chords and
continuing with the 12 minor chords. Blue entries now in-
dicate areas, where the ground truth labels and the audio
chord labels coincide. On the contrary, green and red en-
code the differences between the chord labels. Here, green
entries correspond to the ground truth chord labels derived
from the score, whereas red entries correspond to the au-
dio chord labels. For example, at the beginning of mm. 2
the score as well as the audio chord labels indicate a C
major chord. On the contrary, at the end of mm. 2 there
is a C major chord specified in the score, while the chord
labels derived from the audio incorrectly specify an A mi-
nor chord. Using the measure-based time information, we
can look directly at the corresponding position in the score
and analyze the underlying reason for this error. We will
demonstrate this principle extensively in Sect. 4, where we
present an in-depth analysis of typical errors produced by
automatic chord labeling methods.

Next, we extend the just developed concept by introduc-
ing a multi-perspective visualization, see Fig. 1(f). Here,
we make use of the fact that for classical pieces usually
many different interpretations and recordings are available.
Visualizing the chord recognition results simultaneously
for multiple audio recordings of the same piece, we can an-
alyze the consistency of errors across these recordings. On
the one hand, if an error is not consistent, then this might
indicate a chord ambiguity at the corresponding position.
On the other hand, a consistent error might point to an in-
trinsic weakness of the automatic chord labeler, or an error
in the manual annotations. This way, errors might be auto-
matically classified before they are manually inspected.

In Fig. 1(f) the multi-perspective visualization for the
first four measures of the Chopin Mazurka is represented.
Here, we warped the automatically generated chord labels
for 51 different audio recordings onto the musical time axis
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using the steps described above. By overlaying the result-
ing chord vector sequences B for all pieces, we get a vi-
sualization similar to the previous one in Fig. 1(e), so that
the visualization for one audio recording can be seen as a
special case of the multi-perspective visualization. In the
multi-perspective visualization, we distinguish two cases
using two different color scales: one color scale ranges
from dark blue to bright green, and the other color scale
ranges from dark red to yellow. The first color scale from
blue to green serves two purposes. Firstly, it encodes the
score-based ground truth chord labels. Secondly, it shows
the degree of consistency between the automatically gen-
erated audio labels and the score labels. For example, the
dark blue entries at the beginning of mm. 2 show, that a
C major chord is specified in the score labels, and most
audio-based labels coincide with the score label here. At
the end of mm. 2 the bright green shows that the score spec-
ifies a C major, but most audio-based results differ here
from the score label. Analogously, the second color scale
from dark red to yellow also fulfills two purposes. Firstly,
it encodes the audio-based chord labels that differ from the
score labels. Secondly, it shows how consistent an error
actually is. For example, at the beginning of mm. 2 there
are no red or yellow entries, since the score labels and the
audio labels coincide here. However, at the end of mm. 2,
most audio-based chord labels differ from the score labels.
Here most chord labels either specify an F major or an A
minor chord.

4. EVALUATION

None of the currently available automatic chord labeling
approaches works flawlessly. Errors can either be caused
by the inherent ambiguity in chord labeling, or by a weak-
ness special to the employed chord labeler. An in-depth
analysis allowing for a distinction between these error
sources is a very hard and time-consuming task. In this
section, we show how this process can be supported and
accelerated using the evaluation and visualization frame-
work presented in Sect. 3. To this end, we manually cre-
ated score-based chord annotations for several pieces of
music. Furthermore, we implemented a very simple base-
line chord labeler to study very common sources of error
in chord labeling.

4.1 Annotations

For the following evaluation, a trained musician (Verena
Konz) manually annotated the chords for three pieces of
Western classical music. Firstly, Mazurka in F major
Op. 68 No. 3 by Chopin. Secondly, Prelude in C ma-
jor BWV 846 by Bach. Thirdly, the first movement of
Beethoven’s Fifth Symphony, Op. 67. Using the under-
lying score, the annotations were created on the beat-level,
and in the case of the Bach Prelude on the measure-level.
The format and naming conventions used for the annota-
tion were proposed by Harte [4]. The annotator paid much
attention to capture even slight differences between adja-
cent chords. Hence, the bass tone as well as missing or
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added tones in chords are marked explicitly using the cor-
responding shorthands.

4.2 Baseline-method for chord recognition

A baseline chord labeler can be implemented using only a
few simple operations. Given an audio recording, we first
extract CENS features (see Sect. 2) resulting in a feature
sequence Y := (Y7,Ya,...,Ys). We derive ten features
per second, with each feature considering roughly 1100 ms
of the original audio signal. Non-standard tunings are con-
sidered as described in Sect. 2. Then, we define a total of
24 chord templates, 12 templates for the major chords and
12 for the minor chords. The considered templates are 12-
dimensional vectors, in which the respective three tones of
the corresponding major(minor) chord (the root note, the
major(minor) third and the fifth) are set to 1 and the rest to
0. Thus, we obtain e. g. for C major the template

(1,0,0,0,1,0,0,1,0,0,0,0)
and for C minor the template
(1,0,0,1,0,0,0,1,0,0,0,0).

Let 7" in the following denote the set of all 24 chord tem-
plates. In a next step, we choose a distance function d,
which measures the distance of the i-th feature vector Y; to
atemplatet € T'.

d:[0,1]** x [0,1]*  [0,1]

(t.Y:)

dit, ;) =1—- —————,
e[l - 1Yl

where (-, -) denotes the inner product and ||-|| the Euclidean

norm. By minimizing over ¢ € T' we can find the best

matching chord template ¢t* for the i-th feature vector.

t* = argmin d(t,y;)
teT

The chord label associated with t* constitutes the final re-
sult for the i-th frame.

4.3 Experiments

We start our evaluation by looking again at our running
example, Chopin Mazurka Op. 68 No. 3. Our proposed
visualization method clearly reveals various chord recog-
nition errors, see Fig. 1(e). Making use of the musical
time axis, these errors can now easily be traced back to the
corresponding position in the score and analyzed further.
For example, at the beginning of the piece, the score-based
ground truth annotation corresponds to F major, whereas
the computed audio-based annotation corresponds to F mi-
nor. A mix-up of major and minor often appears in the
chord recognition task. The next misclassification occurs
at the end of mm. 1, where the ground truth still corre-
sponds to F major, but the computed annotation specifies
a C major, which is actually the subsequent chord in the
ground truth. This may be a boundary problem or an error
in the synchronization.
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In the middle of mm. 2, we note that the ground truth
chord is B minor, whereas the computed chord is C major.
Having a look at the score, one can see that the chord in
question is actually a B diminished chord. Due to the re-
duction of the manual annotation to major/minor chords,
this chord is mapped to a B minor chord in the ground
truth. Causing a misclassification here, this is often a prob-
lem in the major/minor evaluation based on the comparison
of the dyad.

The next misclassifications are due to the musical am-
biguity of chords. At the end of mm.2 we observe in the
score a C major chord, where the fifth is missing. Compar-
ing on the dyad level, this chord is mapped to a C major
chord in the ground truth. However, all the notes of the
chord (C,E) are also part of an A minor chord, which is ac-
tually computed at this position. A similar problem occurs
at the beginning and at the end of mm. 3, where the ground
truth annotation corresponds to D minor, whereas the com-
puted annotation corresponds to F major. The same phe-
nomenon appears a last time at the end of mm. 4, where F
major is recognized instead of A minor. This phenomenon
is caused by ambiguities inherent to the chord labeling task
and constitutes a very common problem. The chords in
classical music rarely are pure major or minor chords, be-
cause tones are often missing or added. Hence, the recog-
nition as well as the manual annotation process become a
hard task.

Next, we illustrate what kind of additional information
our multi-perspective visualization can provide compared
to the just discussed visualization that only makes use of
a single audio recording. Here, we consider again the first
four measures of the Chopin Mazurka. Instead of using
only one audio recording we overlay the chord recogni-
tion results for 51 different audio recordings in our multi-
perspective visualization, see Fig. 1(f). Looking for con-
sistencies and inconsistencies, it is possible to classify and
investigate single errors even further. For example, the
misclassified F minor chord in the beginning of mm. 1 (see
Fig. 1(e)) seems to be an exception for the specific record-
ing. This can be clearly seen from the multi-perspective
visualization where only for a few of the 51 audio record-
ings F minor is computed instead of F major. Also, the
misclassification at the end of mm. 4 (F major instead of A
minor) is not consistent across all considered audio record-
ings. On the contrary, some of the misclassifications which
we observed in the case of one audio recording (Fig. 1(e)),
are consistently misclassified for most of the other audio
recordings. For example, the diminished chord in the mid-
dle of mm.2, the chord ambiguity problem occuring at
the end of mm.2 (A minor instead of C major), the be-
ginning of mm. 3 (F major instead of D minor) and the
end of mm. 4 (F major instead of A minor). Overall, the
multi-perspective chord recognition allows for a classifica-
tion of recognition errors into those specific to a recording
and those independent of a recording.

As a further example we now consider the famous Bach
Prelude in C major, BWV 846. The multi-perspective vi-
sualization for 5 different audio recordings for mm. 19-24
(see Fig. 2) again reflects the chord recognition problems
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Figure 2. Bach BWV 846, mm. 19-24. (a) Score, (b) Multi-
perspective overlay of score and audio chord labels.

related to diminished chords. At the beginning of the ex-
cerpt (mm. 19-21) and at the end (mm. 24) the chord recog-
nition result for all audio recordings consistently agrees
more or less with the ground truth. However, one can
observe two passages with green entries in mm.22-23.
Looking at the corresponding position in the score, we
find two diminished seventh chords, in mm. 22 an F#:dim7
and in mm. 23 an Ab:dim7. Due to the reduction to ma-
jor/minor chords these two chords are mapped to F# minor
and Ab minor in the ground truth annotation, respectively,
see Fig. 2. However, in most audio recordings an A minor
chord is detected instead of F#:dim7, having two tones (A
and C) in common. And instead of the Ab:dim7 chord an
F minor chord is found, for which even all three tones are
present (F, Ab and C) due to the additional passing note C
in the Ab:dim7. While the seventh chord in mm. 20 is rec-
ognized well for all recordings, we see that in mm. 21 the
F major seventh chord was mistaken for an A minor chord,
again due to chord ambiguity reasons.

As a last example we now consider the first move-
ment of Beethoven’s Fifth Symphony in 37 different audio
recordings. Actually, this piece of music is much more
complicated in terms of harmonic aspects than the pre-
viously considered Chopin and Bach examples. In the
Beethoven example, we can often find the musical prin-
ciples of suspension, passing notes or “unisono” passages.
Here, the automatic chord recognition as well as the man-
ual annotation are challenging and ambiguous tasks. One
example for the use of nonharmonic tones in chords can be
found in mm. 470-474, visualized in Fig. 3. Looking at the
score, we observe in the left hand a D major chord with a
missing fifth (mm.470-473), but in the right hand a G is
added in octaves to this D major chord. Being the fourth
of D, the G can be seen as a nonharmonic tone in D major.
This causes a chord misclassification for about 15 record-
ings, where G major or alternatively G minor is computed.

-6
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Figure 3. Beethoven’s Fifth, mm. 470-474. (a) Score, (b) Multi-
perspective overlay of score and audio chord labels.
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Figure 4. Beethoven’s Fifth mm. 484-490. (a) Score, (b) Multi-
perspective overlay of score and audio chord labels.

On the contrary, the G seventh chord in mm. 474 is recog-
nized very well for all recordings. Note that the first beats
of the measures 470-474 are not manually annotated, since
the octaves do not represent meaningful chords.

Another example of a musical pattern that is found to
be extremely problematic in the chord recognition task, is
the principle of suspension. We illustrate the problems re-
lated to this musical characteristic using another excerpt
(mm. 484-490) of Beethoven’s Fifth, see Fig. 4. In each
of the measures 484-488, one can find a suspension on the
first eighth, which resolves into a major chord on the sec-
ond eighth. This musical characteristic can easily be spot-
ted in the multi-perspective visualization. Here, we see
that at the beginning of each measure the number of au-
dio recordings for which the computed annotation agrees
with the ground truth is very low and gets higher after-
wards. In mm. 490 finally the first complete pure major
chord is reached. Note that the second beats of mm. 485-
487 consist of passing notes to the next suspension. Hence,
a meaningful chord cannot be assigned resulting in several
beats missing a ground truth annotation.
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5. CONCLUSIONS

In this paper, we have introduced a multi-perspective eval-
uation framework that allows for comparing chord la-
bel annotations across different domains (e. g., symbolic,
MIDI, audio) and across different performances. This
bridges the gap between MIR researchers, who often work
on audio recordings, and musicologists, who are used to
work with score data. In the future, we plan to apply
our framework for a cross-modal evaluation of several
computer-based chord labeling procedures, some of which
working in the symbolic domain and others working in the
audio domain. Furthermore, in a collaboration with musi-
cologists, we are investigating how recurrent tonal centers
of a certain key can be determined automatically within
large musical works. Here, again, our multi-perspective
visualization based on a musically meaningful time axis
has turned out to be a valuable analysis tool.
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ABSTRACT

An interesting problem in music information retrieval is
how to combine the information from different sources in
order to improve retrieval effectiveness. This paper intro-
duces an approach to represent a collection of tagged songs
through an hidden Markov model with the purpose to de-
velop a system that merges in the same framework both
acoustic similarity and semantic descriptions. The former
provides content-based information on song similarity, the
latter provides context-aware information about individ-
ual songs. Experimental results show how the proposed
model leads to better performances than approaches that
rank songs using both a single information source and a
their linear combination.

1. INTRODUCTION

The widespread diffusion of digital music occurred dur-
ing the last years has brought music information retrieval
(MIR) to the general attention. A central goal of MIR is to
create systems that can efficiently and effectively retrieve
songs from a collection of music content according to some
sense of similarity with a given query. In information re-
trieval systems, the concept of similarity plays a key role
and can dramatically impact performances. Yet, in music
applications, the problem of selecting an optimal similar-
ity measure is even more difficult because of the intrinsic
subjectivity of the task: users may not consistently agree
upon whether, or at which degree, a pair of songs or artists
are similar.

In the last years, in order to deal with the subjective
nature of music similarity, it became very common to de-
scribe songs as a collection of meaningful terms, or tags,
as done in Last.fm ! and Pandora? . In particular, tags are
often, directly or indirectly, provided by end users and can
represent a variety of different concepts including genre,
instrumentation, emotions, geographic origins, and so on.

Uhttp://www.last.fm
2 http://www.pandora.com
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Many approaches have been developed to collect tags, rang-
ing from mining the Web and exploiting social behavior of
users, to automatic annotation of music through machine
learning algorithms. Tags are useful because they contex-
tualize a song — for instance describing an historical pe-
riod, a geographical area, or a particular use of the song
— through an easy high-level representation. This infor-
mation can then be used to retrieve music documents, to
provide recommendations or to generate playlists.

Excluding the case of Pandora, where songs are anno-
tated by human experts to guarantee high quality and con-
sistency, in automatic systems or when the social behavior
of users is kept into account, the semantic descriptions may
be very noisy. In automatic approaches, for example, the
quality of the prediction strictly depends on the quality of
the training set, on the quality of the model, and on other
issues such as parameter overfitting or term normalization.
On the other hand, standard content-based music similar-
ity, computed directly on music features, can be exploited
to improve the quality of the retrieval, without requiring
additional training operations.

The goal of this paper is to provide a general model to
describe a music collection and easily retrieve songs com-
bining both content-based similarity and context-aware tag
descriptions. The model is based on an application of hid-
den Markov models (HMMs) and of the Viterbi algorithm
to retrieve music documents. The main applicative sce-
nario is cross-domain music retrieval, where music and text
information sources are merged.

1.1 Related Work

There has been a considerable amount of research devoted
to the topic of music retrieval, recommender systems and
music similarity. Some of the most well-known commer-
cial and academic systems have been described in [2]. The
model proposed in this paper fits the scenario of item-based
retrieval systems, combining pure acoustic similarity and
semantic descriptions.

Methodologies that merge different heterogeneous sour-
ces of information have been recently proposed in [1] for
the task of semantic discovery, in [9] for artist recommen-
dation and in [16] for music classification. All of these ap-
proaches learn a metric space to join and compare the dif-
ferent sources of information in order to provide the user
with a single ranking list. Our approach is consistently
different, because it is built on a graph-based representa-
tion of the collection that model both sources of informa-
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Figure 1. Overview of the proposed model. Songs s; are states of a HMM: observation probabilities provide semantic
descriptions, transitions probabilities are ruled by acoustic similarity between songs.

tion and thus it does not rely on an additional processing
to combine them. Content-based music similarity can be
computed directly on music features as done in [4, 7] or
through a semantic space which describes music content
with meaningful words [12, 18]. In our work, we exploit
the properties of an HMM to combine these two descrip-
tions to improve retrieval performances.

As it is well known, HMMs have been extensively used
in many applications, which in particular involve processes
through time such as speech recognition [13]. In the music
information retrieval research area, they have been used
in different scenarios: query-by-example [15], automatic
identification [10], alignment [11], segmentation [14], and
chord recognition [5]. At the best of our knowledge, this is
the first application of HMMs in the task of cross-domain
retrieval where music and text information is modeled in a
single framework.

2. STATISTICAL MODELING OF A MUSIC
COLLECTION

The general goal of music search engines is to retrieve a
list of songs according to a particular principle. The prin-
ciple could be described either directly by a general seman-
tic indication, such as the tag “classic rock™, or indirectly
by a song, such as the set of tags assigned to “Yesterday”.
In both cases, the principle represents a user information
need, and it can be assumed that the goal of an user is to
observe consistently the application of this principle dur-
ing the time of his access to the music collection. In the
particular case of playlist generation, a system should be
able to retrieve a list of music documents that are acous-
tically similar to the music the user likes and, at the same
time, are relevant to one or more semantic labels that give
a context to his information need.

The methodology presented in this paper aims at pro-
viding a formal and general model to retrieve music docu-
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ments combining acoustic similarity and semantic descrip-
tions given by social tags. That is, the goal is to propose a
model that encompasses both content-based similarity and
context-aware descriptors. To this end, HMMs are particu-
larly suitable because they allow us to model two different
sources of information. In fact, HMMs represent a dou-
bly embedded stochastic process where, at each time step,
the model performs a transition to a new state according to
transition probabilities and emits a new symbol according
to observation probabilities.

Thus HMMs can represent either content and context
information, under the following assumptions:

e if each state represents a song in the collection, acous-
tic content-based similarity can be modeled by tran-
sition probabilities

e if the symbols emitted by the HMM are semantic
labels, the context that describes each state can be
modeled by observation probabilities.

A suitably built HMM (see Section 2.1) may be ex-
ploited to address the examples provided at the beginning
of this section. On the one hand, the model can generate a
path across songs while observing, for a defined number of
time steps, the semantic label “classic rock”. On the other
hand, the model can start the path from the state associated
to “Yesterday” and proceed to new states while observing
the semantic labels associated to the seed song. In both
cases, the songs in the path are likely to have a similar
content because of transition probabilities and are likely to
be in the same context because of emission probabilities.

Since states of a HMM are not directly observable, the
paths across the song collection need to be computed by
a decoding step, which highlights the most probable state
sequence according to a sequence of observations. A rep-
resentation of the proposed model is depicted in Figure 1.
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2.1 Definition of the HMM

An HMM )\ that represents a collections of tagged songs
can be formally defined by:

1. The number of songs [V in the collection, each song
represented by a state of the HMM. The set of states
is denoted as S = {s1, $2, ..., SN }-

2. The number M of distinct tags that can be used to
describe a song. The set of symbols is denoted as

V ={v1,v9, ..., 00}

3. The state transition probability distribution A = a;;,
which defines the probability to move from state 7 to
state j in a single step. Transition probabilities a;;
depends to the similarity between songs s; and s;.

4. The observation probability distribution of each state
Jj, B = b;(k), which defines the probability that tag
vy is associated to song j. Observation probabil-
ity values represent the strength of the relationships
song-tag, which is indicated as affinity value.

5. The initial state distribution 7 = {m;}, that defines
the probability to start a path across the model be-
ginning at state s;. Differently from the standard
definition of HMMs, the initial state distribution is
computed dynamically at retrieval time, since it is
strictly connected to the type of information need,
as described in Section 2.3.

Although acoustic similarity is always a positive value,
implying a;; > 0 V4%, j, with the aim of improving scala-
bility, each state is directly connected to only the P most
similar songs in the collection, while the transition proba-
bilities with all the other states are set to 0. Heuristically,
we set P to be the 10% of the global number of songs.
At present, no deeper investigation has been carried out
to highlight an optimal value of P. In order to obtain a
stochastic model, both transition and emission probabili-
ties are normalized, thatis ), a;; = Land >, b;(k) = 1.
Because of these two steps, transition probabilities are usu-
ally not symmetric, then a;; # a;;

After setting all the parameters, the HMM can be used
to generate random sequences, where observed symbols
are tags. Dually, well known algorithms can be used to
decode the most probable state sequence according to a
given observation sequence.

2.2 Computing the Relevance of Songs

The task at retrieval time is to highlight a sub-set of songs
in the collection that are relevant to a particular query, ei-
ther expressed by semantic labels or by a seed song. In
the context of HMMs, the general problem can be stated
as follows [13]: “given the model ), and the observation
sequence O = {o(1),...,0(T)} with o; € V, the goal is
to choose a state sequence S = {s(1),...,s(T)} which
is optimal in some sense”. Clearly, the observations se-
quence represents the semantic description specified by the
user need.
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In literature, this problem is solved using the max-sum
algorithm, which in HMMs applications is known as the
Viterbi algorithm. The algorithm efficiently searches in
the space of paths, in order to find the most probable one,
with a computational cost that grows only linearly with the
length of the chain. The algorithm is composed by a for-
ward computation to find the maximization for the most
probable path, and by a backward computation to decode
the sequence of states. Although the general structure of
the algorithm has been maintained, some key modifica-
tions in the recursion part of the forward computation have
been introduced. Following the notation and the algorithm
description provided in [13] the normal initialization and
the modified recursion steps follow, for 1 < 7 < N:

Initialization: fort = 1

0:(j) = mj - obs;(t) )]
Yi(j) =0 )
Recursion: for2 <¢t < T
6¢(j) = 122@[&71@ - agj] - obs;(t) 3
Yy(j) = arg 1r<nf¥§v[5t_1(i) - aj) 4)
ary = =L with k= (j) 5)

As it can be seen, we introduce obs;(t), defined in the
next section, which is a general function that indicates how
the semantic description is considered during the retrieval
process. This function plays the role of observations in
typical decoding applications.

Equation 5 introduces a variation of the role of transi-
tion probabilities. In fact, because of the structure of the
model, it could happen that the optimal path enters a loop
between the same subset of songs or, in the worst case,
jumps back and forth between two states. Clearly, this is a
problem because the retrieved list would present the same
set of songs multiple times. Moreover, the loop could be
infinite, meaning that the algorithm cannot exit from it and
the retrieval list would be composed by only few songs. We
addressed this problem by introducing a decreasing factor
d, which is applied to the transitions probabilities when
they are selected in the forward step. So, when a transition
is chosen, the probability a;; is decreased by factor d (we
set d = 10), as shown in Equation 5, in order to make un-
likely that the state sequence would pass again through the
corresponding edge. It has to be noted that the attenuation
is carried out locally, meaning that it affects the structure
of the model only during the current retrieval operation.

Another issue that has to be addressed is a limitation
in the structure of standard HMMs. Because of the first-
order Markov chain assumption, HMMs are generally poor
at capturing long-range correlations between the observed
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variables, that is between variables that are separated by
many steps [3]. Earlier experiments showed that this limi-
tation involved a decrease in precision when decoding long
paths. In order to solve this problem, we considered the re-
trieval composed by many sub-retrieval operations, each
one retrieving a sub-list of songs. Instead of performing a
single backward decoding, the algorithm works for a sub-
set of iterations, from which an optimal sub-path is built.
Only the first n songs of this sub-path are considered in the
final ranking list; at the end of each iteration the algorithm
restarts from the last state of the n suggested. Given the lo-
cality of the approach, in this way we aim to keep constant
the quality along the retrieved list, avoiding a decrease in
precision.

2.3 Querying the Model

As often assumed in the interaction with music search en-
gines, in our scenario a user can submit a query in two dis-
tinct ways: by providing a tag or by selecting a seed song
in the collection. According to the kind of query, some of
the model parameters are set differently.

In the tag-based scenario, the goal is to rank the songs
according to their relevance with the provided tag and, at
the same time, to their acoustic similarity. In this case, the
observation sequence is composed simply by the chosen
tag. We decided to set the initial state probability equal
for all the states, in order to let the algorithm decide the
beginning of the retrieved list. This scenario is very related
to the standard HMMs case, then the function obs;(t) of
Equations 1 and 3 is defined as

obs;(t) = b;(or) (6)

for a generic state j, where observations o, may be the
same tag for all the time steps or it may change over time in
case of playlist generation through more complex patterns.

In the seed-song scenario, when the query is submit-
ted as a song ¢, the system is required to provide the user
with a list of songs potentially similar to the query. In this
case, the initial state distribution is forced to be 1 for the
state representing the seed song and O for all the others.
The observation sequence to be decoded is modeled as the
vector of observations characterizing the seed song. The
function obs; (t) of Equations 1 and 3 is proportional to the
inverse of the Kullback-Leibler (KL) divergence between
the semantic description of the seed song and the chosen
state [6]. The choice of the KL divergence aims at gener-
alizing the terms used for the tags, because it is related to
the similarity of concepts associated to the tags rather than
to the pure distance between lists of tags. It is important to
note that the KL divergence is required also because each
song is described by a set of tags. Clearly, we consider
the inverse because the goal is to maximize the probability
when the divergence is small. Therefore,

1

0bs;(t) ~ m

@)

for the generic state j and the initial seed state g; clearly,
observations of ¢ do not change over time ¢ being linked
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to observations of the seed song. Since it is an observation
probability, the actual value of obs;(t) undergoes a nor-
malization process. It is worth noting that the use of KL
divergence can be extended also to the tag-based scenario
when the user provides a set of tags (instead of a single
one) although this extension has not been tested yet.

3. EXPERIMENTAL EVALUATION

A big challenge when designing a music retrieval system
is how to evaluate a novel methodology. Although several
efforts have been made within the MIREX campaigns, be-
cause of well-known copyright issues, data of past cam-
paigns are not always available to test new approaches.
Ideally, the list of retrieved songs should be evaluated by
humans, in order to consider effectively the subjective na-
ture of the concept of music similarity. Being human evalu-
ation a time consuming task, we use an automatic approach
considering that reliable annotations on songs can be ex-
ploited to measure the quality of a ranking list.

We tested our model through the Computer Audition
Lab (CAL500) dataset [18]: 502 songs played by 502 uni-
que artists, each one annotated by a minimum of 3 individ-
uals using a vocabulary of 174 tags. A song is considered
to be annotated with a tag if 80% of the human annotators
agreed that the tag would be relevant. CAL500 is a reason-
able ground truth because annotations are highly reliable,
complete and redundant — i.e., multiple persons explicitly
evaluated the relevance of every tag for each song. So far,
it has been mainly used to evaluate automatic music anno-
tation systems, but we believe that it could be a reasonable
ground truth also to evaluate qualitatively a retrieval task.
Although the size of the dataset does not allow to perform
experiments in terms of scalability, we argue that, at this
point, it is more significant to test the effectiveness of the
approach, to show if the model can provide improvements
in the retrieval process.

In the experiments reported in this section, we require
that each tag is associated with at least 30 songs and re-
move some tags that seemed to be redundant or overly sub-
jective. The semantic space is then composed by 62 tags
describing information about: genre, instrument, acoustic
qualities, vocal characteristic, emotion, and usage.

Retrieval is evaluated with metrics considering both per-
formances at the top and along the whole ranking list. Since
a music retrieval system should maximize the quality of the
retrieved items in the first positions, we evaluate the preci-
sion at the first 3, 5 and 10 positions (P3, P5, P10). Beside,
we include the mean average precision (MAP) measure, in
order to have also an evaluation along the whole ranking
list. All these metrics are extensively used in the literature
to assess the effectiveness of a retrieval system [8].

3.1 Acoustic Content-based Similarity

A number of methodologies have been proposed in litera-
ture to compute direct acoustic content-based similarity. In
this set of experiments, we rely on the algorithm proposed
in [7], which uses a single Gaussian with full covariance to
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model a song. Although, some alternative approaches have
been recently proposed [4], we use this one because of
its efficiency and simplicity in the implementation. Songs
are represented through vectors of Mel-Frequency Cepstral
Coefficients together with their first and second derivatives
(MFCC + delta) extracted from about one minute of mu-
sic content, and the similarity between songs is computed
using a symmetrized version of the KL divergence.

Section 2.1 describes how transition probabilities are
computed from these similarity values, in particular by se-
lecting for each state s; the first P most similar songs and
performing the normalization ) jaij = 1 with s; € P.
It is important to note that we aim at proposing a general
approach, which is independent on the way acoustic sim-
ilarity is actually computed and which can be applied to
other audio descriptors and other similarity measures. For
this reason the computation of acoustic similarity is pre-
sented within the experimental evaluation section.

3.2 Semantic space

There are several approaches to collect tags for music, each
with its own advantages and disadvantages [17]. Among
all, we chose two different representations.

A first semantic description has been computed from
the music content. We used the supervised multiclass la-
beling (SML) model described in [18] to automatically an-
notate songs with tags based on an audio content analysis.
For a given song, the output of this algorithm is a vector
of posterior probabilities named semantic multinomial that
represents the strength of the relationship tag-song.

A second representation has been created by gather-
ing the social tags from Last.FM, as reported on February
2010. For each song of the dataset, we collected two lists
of social tags using their public data sharing AudioScrob-
bler® website. We gathered both the list of tags related to a
song, and the list of tags related to an artist. The relevance
score between a song and a tag is given by the sum of the
scores in both lists, plus the tag score for any synonym
or other wild matches of the tag in both lists [1]. Social
tag scores are then mapped to the equivalent class in our
semantic description. If no gathered tag for a given song
belonged to the semantic space, the semantic description
is represented by a uniform distribution, where all the tags
share the same score. This lead to a very sparse and noisy
description, which is useful to test the effectiveness of our
approach.

We addressed these descriptions with two different eval-
uations, although they could be combined together in a sin-
gle richer semantic description [1].

3.3 Tag-based Retrieval

In this first experiment, the model is queried using a tag; a
semantic concept is provided to the system, and the goal is
to rank all the songs according to their relationships with
that term. Metrics are then averaged through all the terms
in the vocabulary. Retrieval performances are measured

3 http://ws.audioscrobbler.com/2.0/
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Semantic  Model P3 P5 P10 MAP
HMM 0.516 0.488 0.452 0.361
SML
Tag 0.419 0431 0405 0.332
HMM 0.347 0.331 0.268 0.225
Last.fm
Tag 0.303 0.297 0.218 0.207

Table 1. Results of the tag-based retrieval experiments.

by finding the positions, along the ranking list, of the doc-
uments annotated with the considered tag in the ground
truth. HMM-based retrieval is compared with the retrieval
performed by simply ranking the songs according to their
affinity value for that tag. Results are reported in Table 1,
considering both types of semantic description.

As it can be seen, HMM-based retrieval clearly outper-
forms the retrieval based on a single tag, with a major im-
provement in the quality at the top of the ranking list. On
the other hand, retrieval along the full list tends to decrease
its effectiveness, as it can be inferred by the lower improve-
ment achieved by MAP. This is probably due to the prob-
lem, discussed in Section 2.2, of HMMs generally poor
at capturing long-range correlations between the observed
variables. Still we believe that the most important aspect
to consider in a retrieval system is the quality on the top
of the ranking list. Results based on Last.fm tags tend to
have lower performances in terms of absolute values. This
likely depends on the fact that the semantic descriptions
are rather sparse and noisy and that sometimes songs were
represented through a uniform distribution.

3.4 Seed Song Retrieval

In this experiment, retrieval is carried out by submitting to
the system 50 randomly selected seed songs and consider-
ing the sequence of states highlighted by the optimal path
as a ranking list of retrieved documents. A ground truth,
against which retrieval results are compared, has been cre-
ated for each query song by selecting the 30 most similar
songs according to their human-based annotations. Seman-
tic similarity has been computed using an application of the
KL divergence to the set of tags for each pair of songs.
We compare different approaches: the HMM-based re-
trieval, a direct content-based retrieval where songs have
been ranked according to their acoustic similarity with the
seed (“Content”), a semantic similarity measured as KL
divergence between the semantic descriptions of the seed
song and each document in the collection (“Tags”), and a
linear combination between the two distances (“LinComb”).
As it can be seen from the results reported in Table 2,
even in this case the proposed model leads to outperform-
ing results; the same consideration reported in Section 3.3
can be extend to the current evaluation. The only different
aspect is that, in this case, the Last.fm tags better quantize
the similarity relationships among songs; thus, the abso-
lute values of the metrics is not very different between the
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Semantic Model P3 P5 P10 MAP
Tag 0.266 0270 0.246 0.211
Content  0.237 0.234 0.236 0.187
SML

LinComb 0.280 0278 0.244 0.204
HMM 0.295 0.288 0.258 0.225
Tag 0.273 0272 0262 0.191
Content  0.237 0.234 0.236 0.187

Last.fm
LinComb 0.305 0292 0.262 0.198
HMM 0.304 0.299 0.284 0.219

Table 2. Results of the song-based retrieval experiments.

two semantic representations.

4. CONCLUSIONS

We introduce a novel methodology that represents a mu-
sic collection through an hidden Markov model with the
purpose to build a music retrieval system that combines
content-based acoustic similarity and context-aware seman-
tic descriptions. In the model, each state represents a song,
transitions probabilities depend on acoustic similarity and
observation probabilities represent semantic descriptions.
An application of the Viterbi algorithm allows us to cre-
ate paths across the model, which provides a ranking list
of the songs. This approach represents an application of
cross-domain retrieval combining audio content and text
for item-based retrieval. It is important to note that the ap-
proach can be generalized also to other multimedia tasks
where content can be combined with context, such as video
or image retrieval.

Some issues are still open and will be addressed in fu-
ture work. First of all, evaluation tested only the effective-
ness of the model; scalability needs to be evaluated with
a larger collection, in terms of number of songs and tags.
Moreover, future research will be also devoted to the anal-
ysis of the effects introduced by different content descrip-
tors and similarity measures. Finally, the extension to other
music retrieval tasks, such as music recommendation and
playlist generation, will be explored.
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ABSTRACT

In this paper we present a general probabilistic model suit-
able for transcribing single-channel audio recordings con-
taining multiple polyphonic sources. Our system requires
no prior knowledge of the instruments in the mixture, al-
though it can benefit from this information if available.
In contrast to many existing polyphonic transcription sys-
tems, our approach explicitly models the individual instru-
ments and is thereby able to assign detected notes to their
respective sources. We use a set of training instruments to
learn a model space which is then used during transcrip-
tion to constrain the properties of models fit to the target
mixture. In addition, we encourage model sparsity using a
simple approach related to tempering.

We evaluate our method on both recorded and synthe-
sized two-instrument mixtures, obtaining average frame-
level F-measures of up to 0.60 for synthesized audio and
0.53 for recorded audio. If knowledge of the instrument
types in the mixture is available, we can increase these
measures to 0.68 and 0.58, respectively, by initializing the
model with parameters from similar instruments.

1. INTRODUCTION

Transcribing a piece of music from audio to symbolic form
remains one of the most challenging problems in music in-
formation retrieval. Different variants of the problem can
be defined according to the number of instruments present
in the mixture and the degree of polyphony. Much research
has been conducted on the case where the recording con-
tains only a single (monophonic) instrument and reliable
approaches to pitch estimation in this case have been de-
veloped [3]. However, when polyphony is introduced the
problem becomes far more difficult as note harmonics of-
ten overlap and interfere with one another. Although there
are a number of note properties that are relevant to poly-
phonic transcription, to date most research has focused on
pitch, note onset time, and note offset time, while the prob-
lem of assigning notes to their source instruments has re-
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bear this notice and the full citation on the first page.
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ceived substantially less attention. Determining the source
of a note is not only important in its own right, but it is
likely to improve overall transcription accuracy by helping
to reduce cross-source interference. In order to distinguish
between different instruments, we might wish to employ
instrument-specific models. However, in general, we do
not have access to the exact source models and so must es-
timate them directly from the mixture. This unsupervised
learning problem is particularly difficult when only a sin-
gle observation channel is available.

Non-negative Matrix Factorization (NMF) [8] has been
shown to be a useful approach to single-channel music
transcription [10]. The algorithm is typically applied to the
magnitude spectrum of the target mixture, V', for which it
yields a factorization V' ~ W H where W corresponds to
a set of spectral basis vectors and H corresponds to the set
of activation vectors over time. There are, however, several
issues that arise when using NMF for unsupervised tran-
scription. First, it is unclear how to determine the number
of basis vectors required. If we use too few, a single ba-
sis vector may be forced to represent multiple notes, while
if we use too many some basis vectors may have unclear
interpretations. Even if we manage to choose the correct
number of bases, we still face the problem of determining
the mapping between bases and pitches as the basis order
is typically arbitrary. Second, although this framework is
capable of separating notes from distinct instruments as in-
dividual columns of W (and corresponding rows of H),
there is no simple solution to the task of organizing these
individual columns into coherent blocks corresponding to
particular instruments.

Supervised transcription can be performed when W is
known a priori. In this case, we know the ordering of the
basis vectors and therefore how to partition H by source.
However, we do not usually have access to this informa-
tion and must therefore use some additional knowledge.
One approach, which has been explored in several recent
papers, is to impose constraints on the solution of W or its
equivalent. Virtanen and Klapuri use a source-filter model
to constrain the basis vectors to be formed from source
spectra and filter activations [13]. Vincent et. al impose
harmonicity constraints on the basis vectors by modeling
them as combinations of narrow-band spectra [12]. In prior
work, we proposed the Subspace NMF algorithm which
learns a model parameter subspace from training examples
and then constrains W to lie in this subspace [5].
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Figure 1. Illustration of the Probabilistic Eigeninstrument
Transcription (PET) system. First, a set of training instru-
ments are used to derive the eigeninstruments. These are
then used by the PET model to learn the probability dis-
tribution P(p,t|s), which is post-processed into source-
specific binary transcriptions, 71, 7z, ..., Ts.

Recently, it has been shown [4, 9] that NMF is very
closely related to Probabilistic Latent Semantic Analysis
(PLSA) [6]. In this paper, we extend the Subspace NMF
algorithm to a probabilistic setting in which we explicitly
model the source probabilities, allow for multi-component
note models, and use sparsity constraints to improve sep-
aration and transcription accuracy. The new approach re-
quires no prior knowledge about the target mixture other
than the number of instruments present. If, however, in-
formation about the instrument types is available, it can be
used to seed the model and improve transcription accuracy.

Although we do not discuss the details here due to a
lack of space, we note that our system effectively performs
instrument-level source-separation as a part of the tran-
scription process: once the model parameters have been
solved for, individual sources can be reconstructed in a
straightforward manner.

2. METHOD

Our system is based on the assumption that a suitably-
normalized magnitude spectrogram, V, can be modeled
as a joint distribution over time and frequency, P(f,t).
This quantity can be factored into a frame probability P(t),
which can be computed directly from the observed data,
and a conditional distribution over frequency bins P(f|t);
spectrogram frames are treated as repeated draws from an
underlying random process characterized by P(f|t). We
can model this distribution with a mixture of latent factors

as follows:
Z P(f|2)P(z|t)

P(f,t) =

Note that when there is only a single latent variable
z this is the same as the PLSA model and is effectively
identical to NMF. The latent variable framework, however,
makes it much more straightforward to introduce additional
parameters and constraints.

P@)P(f|t) = (1
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Suppose now that we wish to model a mixture of .S in-
strument sources, where each source has P possible pitches,
and each pitch is represented by a set of Z components.
We can extend the model described by (1) to accommo-
date these parameters as follows:

> P(flp, = 5)P(zls,p, 1) P(slp, ) P(plt)

P52z

) )
where we have used the notation P(f|t) to denote the fact
that our model reconstruction approximates the true dis-
tribution, P(f|t). Notice that we have chosen to factor
the distribution such that the source probability depends
on pitch and time. Intuitively, this may seem odd as we
might expect the generative process to first draw a source
and then a pitch conditioned on that source. The reason
for this factorization has to do with the type of sparsity
constraints that we wish to impose on the model. This is
discussed more fully in Section 2.2.2.

P(flt) =

2.1 Instrument Models

P(fl|p, z, s) represents the instrument models that we are
trying to fit to the data. However, as discussed in Section 1,
we usually don’t have access to the exact models that pro-
duced the mixture and a blind parameter search is highly
under-constrained. The solution proposed in [5], which we
extend here, is to model the instruments as mixtures of ba-
sis models or “eigeninstruments”. This approach is similar
in spirit to the eigenvoice technique used in speech recog-
nition [7].

Suppose that we have a set of instruments models M for
use in training. Each of these models M; € M has FPZ
parameters, which we concatenate into a super-vector, m,.
These super-vectors are then stacked together into a matrix,
O, and NMF with some rank K is used to find © ~ QC.!
The set of coefficient vectors, C, is typically discarded at
this point, although it can be used to initialize the full tran-
scription system as well (see Section 3.4). The K basis
vectors in €2 represent the eigeninstruments. Each of these
vectors is reshaped to the F'-by-P-by-Z model size to form
the eigeninstrument distribution, P(f|p, z, k). Mixtures of
this distribution can now be used to model new instruments
as follows:

P(f|p, 2,s) Z P(fIp, 2, k)P(kls) 3)
where P(k|s) represents an instrument-specific distribu-
tion over eigeninstruments. This model reduces the size of
the parameter space for each source instrument in the mix-
ture from F'PZ, which is typically tens of thousands, to
K which is typically between 10 and 100. Of course the
quality of this parametrization depends on how well the
eigeninstrument basis spans the true instrument parameter
space, but assuming a sufficient variety of training instru-
ments are used, we can expect good coverage.

! Some care has to be taken to ensure that the bases in € are properly
normalized so that each section of F' entries sums to 1, but so long as
this requirement is met, any decomposition that yields non-negative basis
vectors can be used.
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2.2 Transcription Model

We are now ready to present the full transcription model
proposed in this paper, which we refer to as Probabilistic
Eigeninstrument Transcription (PET) and is illustrated in
Figure 1. Combining the probabilistic model in (2) and the
eigeninstrument model in (3), we arrive at the following:

P(flty =Y P(flp,z k)P(k|s)P(z|s,p,t)P(s|p, ) P(plt)

5,p,2,k
4
Once we have solved for the model parameters, we cal-
culate the joint distribution over pitch and time conditional
on source:

_ P(slp. )Pl P(t)
e Pl ) PGID P (D)

This distribution represents the transcription of source
s, but still needs to be post-processed to a binary pianoroll
representation so that it can be compared with ground truth
data. This is done using a simple threshold ~ (see Sec-
tion 3.3). We refer to the final pianoroll transcription of
source s as 7.

P(p,tls) ©)

2.2.1 Update Equations

We solve for the parameters in (4) using the Expectation-
Maximization algorithm. This involves iterating between
two update steps until convergence. In the first (expecta-
tion) step, we calculate the posterior distribution over the
hidden variables s, p, z, and k, for each time-frequency
point given the current estimates of the model parameters:

P(s,p, z,k|f,t) =

P(flp, z k)P(k|s)P(z|s, p, t) P(s|p, t) P(p|t)

P(f[t)
(6)
In the second (maximization) step, we use this poste-
rior to maximize the expected log-likelihood of the model
given the data:

L= Vylog (P@)P(f11))

It

(N

where V; ; are values from our original spectrogram. This
results in the following update equations:

_ Zﬂt,z P(S7p7 2y k|f7 t)v‘ﬁt

P(k|s) = (8)
(k=) Zf,ht,z P(s,p, 2,k[f, t)Vi4
P(s,p,z, k|f,t)V
Plalspit) = it PP Z R Ve
Zf,k;,z P(Svpazvk‘fvt)vf,t
Z -ZP(svpaz7k|f7t)Vf,t
P(slp. t) = L& (10)
Zf,l@s,z P(S,p,Z,k|f,t)Vf7t
Z szP(Sup7Zak|f7t)Vf,t
P(plt) = S (1)

= D pkpse P80z k| f ) Viy
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2.2.2 Sparsity

The update equations given in Section 2.2.1 represent a
maximum-likelihood solution to the model. However, in
practice it can be advantageous to introduce additional con-
straints. The idea of parameter sparsity has proved to be
useful for a number of audio-related tasks [1, 11]. For
multi-instrument transcription, there are several ways in
which it might make sense to constrain the model solu-
tion in this way. First, it is reasonable to expect that if
pitch p is active at time ¢, then only a small fraction of the
instrument sources are responsible for it. This belief can
be encoded in the form of a sparsity prior on the distribu-
tion P(s|p,t). Similarly, we generally expect that only a
few pitches are active in each time frame, which implies a
sparsity constraint on P(plt).

One way of encouraging sparsity in probabilistic mod-
els is through the use of the entropic prior [2]. This tech-
nique uses an exponentiated negative-entropy term as a
prior on parameter distributions. Although it can yield
good results, the solution to the maximization step is com-
plicated, as it involves solving a system of transcendental
equations. As an alternative, we have found that simply
modifying the maximization steps in (10) and (11) as fol-
lows gives good results:

[ Plssp 2, klF Vi
> {Zf,k,z P(s,p, 2,k f, t)vf,t} ’

P(s|p,t)

12)

(S s Poipiz k1002 ]

B
S [ S s P22, kI, )V

When « and § are less than 1, this is closely related to
the Tempered EM algorithm used in PLSA [6]. However, it
is clear that when « and §3 are greater than 1, the P(s|p, t)
and P(p|t) distributions are “sharpened”, thus decreasing
their entropies and encouraging sparsity.

P(plt) = (13)

3. EVALUATION
3.1 Data

Two data sets were used in our experiments, one contain-
ing both synthesized and recorded audio and the other con-
taining just synthesized audio. There are 15 tracks, 3256
notes, and 18843 frames in total. The specific properties of
the data sets are summarized in Table 1. All tracks had two
instrument sources, although the actual instruments varied.
For the synthetic tracks, the MIDI versions were synthe-
sized at an 8kHz sampling rate using timidity and the SGM
V2.01 soundfont. A 1024-point STFT with 96ms window
and 24ms hop was then taken and the magnitude spectro-
gram retained.

The first data set is based on a subset of the woodwind
data supplied for the MIREX Multiple Fundamental Fre-
quency Estimation and Tracking task.? The first 21 sec-

nttp://www.music-ir.org/mirex/2009/index.
php/Multiple_Fundamental_Frequency_ Estimation_&_
Tracking



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Type | # Tracks | # Notes | # Frames
Woodwind | S/R 6 1266 5424
Bach S 3 724 7995

Table 1. Summary of the two data sets used. S and R
denote synthesized and recorded, respectively.

onds from the bassoon, clarinet, oboe, and flute tracks were
manually transcribed. These instrument tracks were then
combined in all 6 possible pairings. It is important to note
that this data is taken from the MIREX development set
and that the primary test data is not publicly available. In
addition, most authors of other transcription systems do
not report results on the development data, making com-
parisons difficult.

The second data set is comprised of three pieces by J.S.
Bach arranged as duets. The pieces are: Herz und Mund
und Tat und Leben (BWV 147) for acoustic bass and pic-
colo, Ich steh mit einem Fuf3 im Grabe (BWYV 156) for tuba
and piano, and roughly the first half of Wachet auf, ruft uns
die Stimme (BWV 140) for cello and flute. We chose in-
struments that were, for the most part, different from those
used in the woodwind data set while also trying to keep the
instrumentation as appropriate as possible.

3.2 Instrument Models

We used a set of 33 instruments of varying types to de-
rive our instrument model. This included a roughly equal
proportion of keyboard, plucked string, bowed, and wind
instruments. The instrument models were generated with
timidity, but in order to keep the tests with synthesized au-
dio as fair as possible, a different soundfont (Papelmedia
Final SF2 XXL) was used.> Each instrument model con-
sisted of 58 pitches (C2-A6#), which were built as follows:
notes of duration 1s were synthesized at an 8kHz sampling
rate, using velocities 40, 80, and 100. A 1024-point STFT
was taken of each, and the magnitude spectra were aver-
aged across velocities to make the model more robust to
differences in loudness. The models were then normal-
ized so that the frequency components (spectrogram rows)
summed to 1 for each pitch. Next, NMF with rank Z (the
desired number of components per pitch) was run on this
result with H initialized to a heavy main diagonal struc-
ture. This encouraged the ordering of the bases to be “left-
to-right”.

One potential issue with this approach has to do with
the differences in the natural playing ranges of the instru-
ments. For example, a violin generally cannot play below
G3, although our model includes notes below this. There-
fore, we masked out (i.e. set to 0) the parameters of the
notes outside the playing range of each instrument used in
training. Then, as described in Section 2.1, the instrument
models were stacked into super vector form and NMF with
arank of K = 30 (chosen empirically) was run to find the
instrument bases, 2. These bases were then unstacked to
form the eigeninstruments, P (flp, 2, k).

3http://www.papelmedia.de/english/index.htm
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Figure 2. Example PET (5 = 2) output distribution
P(p,t|s) and ground truth data for the bassoon-clarinet
mixture from the recorded woodwind data set.

In preliminary experiments, we did not find a significant
advantage to values of Z > 1 and so the full set of exper-
iments presented below was carried out with only a single
component per pitch.

3.3 Metrics

We evaluate our method using precision (P), recall (R),
and F-measure (F) on both the frame and note levels. Note
that each reported metric is an average over sources. In ad-
dition, because the order of the sources in P(p, t|s) is arbi-
trary, we compute sets of metrics for all possible permuta-
tions (two in our experiments since there are two sources)
and report the set with the best frame-level F-measure.
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When computing the note-level metrics, we consider a
note onset to be correct if it falls within +/- 50ms of the
ground truth onset. At present, we don’t consider offsets
for the note-level evaluation, although this information is
reflected in the frame-level metrics.

The threshold « used to convert P(p,t|s) to a binary
pianoroll was determined empirically for each algorithm
variant and each data set. This was done by computing
the threshold that maximized the average frame-level F-
measure across tracks in the data set.

3.4 Experiments

We evaluated several variations of our algorithm so as to
explore the effects of sparsity and to assess the perfor-
mance of the eigeninstrument model. For each of the three
data sets, we computed the frame and note metrics using
the three variants of the PET model: PET without spar-
sity, PET with sparsity on the instruments given the pitches
P(s|p,t) (a = 2), and PET with sparsity on the pitches at
a given time P(p|t) (8 = 2). In these cases, all parame-
ters were initialized randomly and the algorithm was run
for 100 iterations.

Although we are primarily interested in blind transcrip-
tion (i.e. no prior knowledge of the instruments present
in the mixture), it is interesting to examine cases where
more information is available as these can provide upper-
bounds on performance. First, consider the case where we
know the instrument types present in the mixture. For the
synthetic data, we have access not only to the instrument
types, but also to the oracle models for these instruments.
In this case we hold P(f|p, s, z) fixed and solve the ba-
sic model given in (2). The same can be done with the
recorded data, except that we don’t have oracle models for
these recordings. Instead, we can just use the appropriate
instrument models from the training set M as approxima-
tions. This case, which we refer to as “fixed” in the experi-
mental results, represents a semi-supervised version of the
PET system.

We might also consider using the instrument models M
that we used in eigeninstrument training in order to initial-
ize the PET model in the hope that the system will be able
to further optimize their settings. We can do this by taking
the appropriate eigeninstrument coefficient vectors ¢, and
using them to initialize P(k|s). Intuitively, we are trying
to start the PET model in the correct “neighborhood” of
eigeninstrument space. These results are denoted “init”.

Finally, as a baseline comparison, we consider generic
NMF-based transcription (with generalized KL divergence
as a cost function) where the instrument models (submatri-
ces of W) have been initialized with a generic model de-
fined as the average of the instrument models in the train-
ing set.

3.5 Results

The results of our approach are summarized in Tables 2—4.
As a general observation, we can see that the sparsity fac-
tors have helped improve model performance in almost all
cases, although different data sets benefit in different ways.
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Frame Note
P R F P R F
PET 0.56 | 0.64 | 0.56 | 0.42 | 0.73 | 0.51
PET,—o 0.60 | 0.61 | 0.60 | 0.46 | 0.73 | 0.56
PETjz_» 0.57 | 0.64 | 0.56 | 0.51 | 0.79 | 0.58
PET; 0.71 | 0.68 | 0.68 | 0.64 | 0.86 | 0.71
PETy qc1e || 0.84 | 0.84 | 0.84 | 0.82 | 0.93 | 0.87
NMF 0.34 | 048 | 0.39 | 0.19 | 0.59 | 0.29

Table 2. Results for the synthetic woodwind data set. All
values are averages across sources and tracks.

Frame Note
P R F P R F
PET 0.52 | 0.52 | 0.50 | 0.41 | 0.73 | 0.50
PET,—5 049 | 0.57 | 0.51 | 0.41 | 0.78 | 0.51
PETz—» 0.58 | 0.53 | 0.53 | 0.46 | 0.72 | 0.55
PET; 0.60 | 0.60 | 0.58 | 0.48 | 0.82 | 0.58
PETfizeq || 057 | 0.58 | 0.55 | 0.45 | 0.77 | 0.54
NMF 0.35 ] 055 | 042 | 0.27 | 0.77 | 0.38

Table 3. Results for the recorded woodwind data set. All
values are averages across sources and tracks.

For the synthetic woodwind data set, sparsity on sources,
P(s|p,t), increased the average F-measure on the frame-
level, but at the note-level, sparsity on pitches, P(p|t), had
a larger impact. For the recorded woodwind data, sparsity
on P(p|t) benefited both frame and note-level F-measures
the most. With the Bach data, we see that encouraging
sparsity in P(p|t) was much more important than it was for
P(s|p,t) on both the frame and note-level. In fact, impos-
ing sparsity on P(s|p, t) seems to have actually hurt frame-
level performance relative to the non-sparse PET system.
This may be explained by the fact that the instrument parts
in the Bach pieces tend to be simultaneously active much
of the time.

As we would expect, the baseline NMF system per-
forms the worst in all test cases — not surprising given
the limited information and lack of constraints. Also un-
surprising is the fact that the oracle models are the top-
performers on the synthetic data sets. However, notice
that the randomly-initialized PET systems perform about

Frame Note
P R F P R F
PET 0.50 | 0.65 | 0.54 | 0.21 | 0.60 | 0.30
PET,—o 0.50 | 0.57 | 0.51 | 0.22 | 0.51 | 0.30
PETjz—» 0.55 | 0.66 | 0.59 | 0.24 | 0.65 | 0.34
PET; 0.53 | 0.58 | 0.53 | 0.23 | 0.50 | 0.30
PET, qce || 091 | 0.85 | 0.87 | 0.53 | 0.83 | 0.64
NMF 0.36 | 0.50 | 0.42 | 0.09 | 0.46 | 0.14

Table 4. Results for the synthetic Bach data set. All values
are averages across sources and tracks.
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as well as the fixed model on recorded data. This im-
plies that the algorithm was able to discover appropriate
model parameters even in the blind case where it had no
information about the instrument types in the mixture. It
is also noteworthy that the best performing system for the
recorded data set is the initialized PET variant. This sug-
gests that, given good initializations, the algorithm was
able to further adapt the instrument model parameters to
improve the fit to the target mixture.

While the results on both woodwind data sets are rel-
atively consistent across frame and note levels, the Bach
data set exhibits a significant discrepancy between the two
metrics, with substantially lower note-level scores. This
is true even for the oracle model which achieves an aver-
age note-level F-measure of 0.64. There are two possible
explanations for this. First, recall that our determination
of both the optimal threshold « as well as the order of the
sources in P(p, t|s) was based on the average frame-level
F-measure. We opted to use frame-level metrics for this
task as they are a stricter measure of transcription quality.
However, given that the performance is relatively consis-
tent for the woodwind data, it seems more likely that the
discrepancy is due to instrumentation. In particular, the al-
gorithms seem to have had difficulty with the soft onsets of
the cello part in Wachet auf, ruft uns die Stimme.

4. CONCLUSIONS

We have presented a probabilistic model for the challeng-
ing problem of multi-instrument polyphonic transcription.
Our method makes use of training instruments in order to
learn a model parameter subspace that constrains the solu-
tions of new models. Sparsity terms are also introduced to
help further constrain the solution. We have shown that
this approach can perform reasonably well in the blind
transcription setting where no knowledge other than the
number of instruments is assumed. In addition, knowl-
edge of the types of instruments in the mixture (informa-
tion which is relatively easy to obtain) was shown to im-
prove performance significantly over the basic model. Al-
though the experiments presented in this paper only con-
sider two-instrument mixtures, the PET model is general
and preliminary tests suggest that it can handle more com-
plex mixtures as well.

There are several areas in which the current system could
be improved. First, the thresholding technique that we
have used is extremely simple and results could probably
be improved significantly through the use of pitch depen-
dent thresholding or more sophisticated classification. Sec-
ond, and perhaps most importantly, although early experi-
ments did not show a benefit to using multiple components
for each pitch, it seems likely that the pitch models could
be enriched substantially. Many instruments have complex
time-varying structures within each note that would seem
to be important for recognition. We are currently explor-
ing ways to incorporate this type of information into our
system.
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ABSTRACT

The automatized beat detection and localization have been
the subject of multiple research in the field of music infor-
mation retrieval. Most of the methods are based on onset
detection. We propose an alternative approach:

Our method is based on the “Forward-Backward seg-
mentation”: the segments may be interpreted as attacks,
decays, sustains and releases of notes. We process the seg-
ment boundaries as a weighted Dirac signal. Three meth-
ods devived from its spectral analysis are proposed to find
a periodicity which corresponds to the tempo.

The experiments are carried out on a corpus of 100 songs
of the RWC database. The performances of our system on
this base demonstrate a potential in the use of a ““ Forward-
Backward Segmentation” for temporal information retrieval
in musical signals.

1. INTRODUCTION

The automatized beat detection and localization have been
the subject of multiple research in the field of music in-
formation retrieval. The study of beat is indeed important
as the structure of a music piece lies in the beat. West-
ern music uses however different levels in the hierarchy of
scale measuring time. We have to distinguish the fatum
which is “the regular time division that mostly coincides
with all note onsets” [3] from the factus which is defined
as the rate at which most people would clap their hands
when listening to the music [8]. Here, we look for the tac-
tus, which will be named tempo and measured in beat per
minute (BPM).

Several methods have been suggested in order to extract
the tempo information from an audio signal. Most of them
use an onset detection method as onset localization carries
the temporal structure that leads to the estimation of the
tempo. Theses methods use different observation features
in order to propose a list of onset positions. They are very
dependent on that detection. Dixon’s first algoritm [4] uses
an energy based detector in order to track the onset posi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2010 International Society for Music Information Retrieval.
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tions. Then a clustering is performed on the inter-onset-
interval values. Some best clusters are chosen as possible
hypothesis. A hypothesis is finally validated with a beat
tracking.

In Alonso’s algorithm [1], onset positions are deducted
by using a time-frequency representation and a differen-
tiator FIR filter to detect sudden changes in the dynamics,
timbre or harmonic structure. The tempo is then deduced
using either the autocorrelation or spectral product.

Klapuri [9] proposes a more complex way of extract-
ing the onset positions. The loudness differentials in fre-
quency subbands are computed and combined in order to
create four accent bands. This aims at detecting harmonic
or melodic changes as well as percussive changes. Using
comb filter resonators to extract features, and probalistic
models, the values of tatum, tactus and measure meter are
computed.

Uhle [12] suggests a method based on the segmenta-
tion of the signal into long-term segments corresponding
to its musical structure (for example, the verses and cho-
rus of a song). The amplitude envelope of logarithmically
spaced frequency subbands is computed; its slope signal
aims to represent accentuation on the signal. The analysis
of an autocorrelation function on 2.5 second segments in-
side each long-term segment gives the tatum estimator. A
larger-scale analysis over 7.5 second segments is then per-
formed in order to give values corresponding to the mea-
sure. The local maxima positions of the autocorrelation
function are finally compared with a bank of pre-defined
patterns in order to define the best value of the tempo on
the long term segment.

Dixon [5] has proposed an alternative method to onset
calculation. The signal is splitted into 8 frequency bands
and autocorrelation is performed on each smoothed and
downsampled subband. The three highest peaks of each
band are selected and combined in order to determine the
final tempo estimation.

Another algorithm is that of Scheirer [10]. This algo-
rithm performs a comb filterbank that seeks for periodi-
cally spaced clock pulse that best matches the envelope of
6 frequency subbands.

Tzanetakis [11] suggests a method based on a wavelet
transform analysis. This analysis is performed over 3 sec-
ond signal segments with 50% of overlap. On each seg-
ment, amplitude envelope of 5 octave-spaced frequency
bands is extracted. Autocorrelation is then computed. Three
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kind of autocorrelation analysis are computed in order to
estimate the value of the tempo. The first one is the me-
dian of highest peak of the sum of the envelopes over every
window. The second one returns the median value of the
highest peak on each subband and each segment. The last
one computes several best peaks from the autocorrelation
on the sum of every envelope and then chooses the most
frequent value.

Our method is based on the analysis of an automatic
segmentation of the signal into quasi-stationary segments :
the segments may be interpreted as attacks, decays, sus-
tains and releases of notes. So we propose to process the
segment boundaries in order to find a periodicity which
would correspond to the tempo.

In section 2, we describe the segmentation used as a
front-end, the analysis of this segmentation in the frequency
domain and the different methods we use to extract the
value of the tempo in BPM. In the last part, we present
the results of our experiments on the RWC [6, 7] corpus.

2. METHOD

Our method relies on the detection of quasi-stationnary
segments in the audio signal waveform. A frequency anal-
ysis of the boundaries is then performed in order to find the
most present periodicities and thereby estimate the tempo
consequently.

The algorithm is based on three steps :

e Segmentation
e Boundary frequencial analysis

e Tempo extraction

2.1 Segmentation

We segment the signal using the “Forward Backward Di-
vergence” [2]. The signal is assumed to be a sequence of
quasi-stationnary units, each one characterized by the fol-
lowing gaussian autoregressive model :

Yn = Zaiynfi +en )
var(e,) = o2
where y,, is the signal and e,, an uncorrelated zero mean
Gaussian sequence.
As the variance o, is constant over an unit and equals o,
the model of each area is parametered by the following
vector :

(AT 0) = (a1, ..., ap,0) )

The strategy is to detect changes in the parameters, using a
distance based on the mutual conditional entropy. A sub-
jective analysis of the segmentation shows a sub note seg-
mentation and the location of attacks, sustains and releases.

For a solo musical sound, the segments of the signal
correspond to the different steps of a note. On Figure 1,
we present a solo note of trombone. The note is segmented
into four parts, which correspond to the attack, the sustain
and the release. Note that the attack and decay phases of
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some notes are often grouped together into a single seg-
ment. In such cases, the attack period is too short for the
segmentation algorithm as it imposes a minimal length to
initiate the autoregressive model.

1 2 3 4

Figure 1. Segmentation of a trombone note. a) Waveform,
b) Spectrogram, c¢) Time. 1) Attack, 2) Sustain, 3 & 4)
Release. The vertical lines are the boundaries of the seg-
ments. The first boundary correspond to the onset.

As they represent a rupture point of the signal, we as-
sume that onset localizations, containing the tempo infor-
mation, are included in the list of boundaries time. We
therefore focus on positions of the boundaries.

2.2 Boundary Frequencial analysis

The main objective is to find a periodicity in the localiza-
tion of the boundaries that would be the effect of the song’s
rythmical pattern. In order to find the periodicity, a signal
by (t) is created. This signal is a weighted Dirac signal,
where each Dirac is positioned at the time of a boundary
g

The Diracs are weighted in order to give more influence
to the boundaries located at times that are most likely to be
onsets. Asuming that at onset times, an increase of energy
is observed, each Dirac is weighted by the difference be-
tween the energy of the spectrum computed on 20 ms after
and before ¢, ( resp. e, and e}, ).

w(ty) =ef —ep (3
We obtain b, (t) (see an example on Figure 2) :
N
bu(t) =Y 6(t — tr)w(ts) 4)

k=1

where N is the count of boundaries, ¢, is the time of the
k" boundary.

We compute B,,, the Fourier transform of b,, to extract
frequency information of this signal.
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Figure 2. Representation of a b, (¢)

The expression of the Fourier transform B,,(f) is :

/Zé (t — ti)e 2™t (ty,)dt
R

k=1

_ Z ei2iﬂftkw(tk)
k=1

This formula offers the advantage of being fast to cal-
culate.

&)

2.3 Tempo extraction
2.3.1 Spectrum analysis

We analyse the spectrum B,, on the range of frequencies
30 - 400 BPM (an example is given on Figure 3). We find
the positions of the highest peaks as a base for each deci-
sion.

We then extract the positions and energies of the main
peaks in terms of energy. As it is computed over a long
time, the peaks of the spectrum are high and narrow, which
makes the localization easier.

20 Spectrum

Double Tempo

Amplitude

4k 4

Correct Tempo

ok Triple Tempo T

0 I . | I L . L
50 100 150 200 250 300

Tempo (BPM)

!
350 400

Figure 3. Spectrum |(B,,(f)|? of a whole song.

This localization is obtained by detecting the local max-
ima. This algorithm considers a point p and its two direct
neighbors. p is a local maxima if

‘Bw(p - 1)|2 < ‘Bw(p)|2

(6)
‘Bw(P + 1)|2 < \Bw(p)|2
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We then choose several of the highest peaks with the

only constraint that the distance between two peaks has to
be greater than 3 BPM. Only a few peaks are really higher
than others in the spectrum, so we choose to select only
the four greatest peaks in terms of energy, the position se-
lected for further peaks would be considered as noise. Let
P = {p1 p2 p3 pa} be the list of selected peak positions
under the constraint : |By, (p;)|* > |Buw(pit1)|>. We ob-
serve that every selected peak carries information that can
be exploited in order to find out the value of the correct
tempo. We finally apply a decision algorithm on P to find
the tempo.
Two strategies are concidered. The first one looks for the
correlation between the length of the segments and each
value p in the temporal domain. The second one tries to
find the best comb matching the spectrum.

2.3.2 “Inter-Boundaries-Intervals decision”

The first approach is in the temporal domain, and uses the
boundaries of the segmentation. Theses boundaries are fil-
tered on their weights in order to keep only the boundaries
where a high increase of energy is experienced: we only
keep the boundaries with a significant weight. This filter-
ing is computed in order to keep instants which are most
likely onset instants. The set I of intervals between each
couple of following boundaries is then computed.

For each p;, we perform the pseudo periods correspond-
ing to 1/4, 1/3, 1/2, 1, 2, and 3 times p;. These pseudo
periods have been chosen as they correspond to the period
of half, quarter, eighth and sixteenth note in duple meter or
triple meter.

The score Num(p;) is the number of intervals in I whose
durations correspond to one of these pseudo periods.

The estimated tempo py, is given by :

po = argmax (Num(p;)) @)
pii=1,...,4

2.3.3 “Comb decision”

The second method uses the spectrum and is in frequency
domain. This method is based on the first peak p;, as we
assume that it is always significant for the tempo detection.
We then consider 7 tempi, which are ipl, %pl, %pl, 2p1,
3p1 and 4p; , as well as p, itself, noted tp;, ¢ = 1,...,7
. We only keep, among this list of tempi, those which are
in the range 30 - 240 BPM, assuming that a value outside
of these bounds would hardly be considered as the main
tempo.

For each tempo value tp;, we compute the product of the
spectrum and a Dirac comb with the 10 harmonic teeth cor-
responding to the tempo value.

The mean amplitude value of the so filtred spectrum
gives a score Ampl(tp;).
The estimated tempo p. is given by

Pe = argmax (Ampl(tp;)) (8)

tpii=1,...,7
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2.3.4 Combination of the strategies

In order to take advantage of both methods, we propose a
combined decision algorithm. Using p.; and p.o the two
best tempi returned by the “Comb decision” algorithm, we
apply the “Inter-Boundaries-Intervals” strategy to compare
the two values Num(p.1) and Num(pes).

The tempo with the best Num is chosen as a final deci-
sion.

3. EXPERIENCE
3.1 Corpus

We choose to test our method on the part of the RWC
database [6, 7] that is BPM-annotated. This corpus has
been created in order to provide a benchmark for experi-
mentation on music information retrieval and is now well
known and widely used in this research field. It therefore
seems interesting to use it in order to facilitate comparisons
between our algorithm’s results and others. This corpus is
a compilation of 100 tracks of Japanese Pop songs. Each
song lasts from 2 minutes 50 seconds to 6 minutes 07 sec-
onds.

As the method needs no learning, our experiment protocol
consists in applying our algorithm on each full track.

3.2 Experiments

The methods are based on the Forward Backward diver-
gence segmentation: in order to implement this algorithm,
we choose to use the parameters defined in [2] for voiced
speech signal. No specific adaptation is performed for mu-
sic.

As previously mentioned, we observe that the highest
peak of the spectrums has a strong link with the tempi.
Over the 100 tracks computed, the highest peak position
is linked with the tempo 98 times: it is located twice on
a position corresponding to the half of the ground-truth
tempo, 3 times on the correct position, 60 times on the
double tempo and 32 times on a position corresponding to
4 times the tempo.

To assess quantitatively each version of our method, we
introduce a confident interval : the tempo value is con-
sidered as “Correct” if its difference with the ground-truth
value at strictly less than 4 BPM. The ratios and multiples
are considered good when their distance to 2, 3, 4, 1/3 or
1/2 is strictly less than 0.03.

Two metrics are computed in order to evaluate the accu-
racy of each method. The first one is the ratio of correctly
estimated tempi over the whole corpus.

# of correctly estimated tempi
L

where L is the number of evaluated tracks.

The second one is more flexible and assumes that the
tempi corresponding to half, third double and three time
the annotated tempo are correct. This metric is computed
taking take into account that tempo value is subjective and
can vary from one listener to another.

€))

Accuracy; =

30

# of correct or multiple tempi
L

Accuracys = (10)

3.2.1 “Inter-Boundaries-Intervals decision”

The filltring of the boundaries involves a threshold: the se-
lectionned boundaries have a weight greater than 10% of
the maximum weight among the boundaries. The detailled
results of the Inter-Boundaries-Intervals decision are visi-
ble in Table 1. The global result are 56 % of Accuracyl
and 95% of Accuracy?2.

Ratios with the correct tempo
172 1 | 2 | 4| Nolink
7 |56]28 |1 5

Accq
56

Acey
95

Table 1. “Inter-Boundaries decision Decision” : Number
of music tracks in function of the ratios between the esti-
mated tempo and the ground truth value. Accuracy; and
Accuracys are deducted.

3.2.2 Comb decision

In order to optimize the results of this method and to be
sure to get the peak value on each hypothesis multiple, the
returned value is the maximum of 7 equally spaced tempi
in a neighborhood of £1 BPM around each p multiple
value. Applying this method to our corpus and returning
the best two hypothesis, we observe that the ground-truth
tempo is present for 98 of the tracks. The global result of
this method, choosing only the best comb as result, is 64%
for Accuracy, and 96% for Accuracys. The detailled re-
sults are visible in Table 2.

Ratios with the correct tempo
172 | 1 2 | 3 | Nolink
31641290 4

Aceq
64

Aces
96

Table 2. “Comb Decision” : Number of music tracks in
function of the ratios between the estimated tempo and the
ground truth value. Accuracy; and Accuracys are de-
ducted.

3.2.3 Combination of the strategies

As shown in Table 3, the combination of the two previous
methods largely improves the results. The results in terms
of Accuracy; is 78% and 93% in terms of Accuracys.

Ratios with the correct tempo
1721 1 | 2|3 | Nolink
131781210 7

Acecq
78

Acco
93

Table 3. Percentage of the returned values ratio of the
ground truth for the Fusion of the two algorithms
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The differences between their results is essentially due
to the detection of the “double tempo”. This type of error
dissapears. The number of serious errors is stable.

3.3 Discussion

The 2004 MIREX evaluation was the last MIREX session
which the task of tempo estimation was evaluated. These
results were obtained on a corpus of 3199 tempo-annotated
files ranging from 2 to 30 seconds, akd divided into three
kinds : loops, ballroom music and songs exerpts.

The algorithms evaluated during this campaign are de-
tailed and compared in [8]. The Klapuri’s algorithm [9] ob-
tained the best score on this evaluation with an Accuracy,
of 67.29% and an Accuracys of 85.01% among the total
set of evaluated signals and reaching 91.18% of Accuracys
on the song’s subset.

An exhaustive search for the best combination of five
algorithms, using a voting mechanism, has also be com-
puted. The best combination achieved 68% in terms of
Accuracyy, whereas the best Accuracys reached 86%.

The MIREX corpus and the RWC part we use are dif-
ferent (in particular in terms of length). Nevertheless, our
results are comparable and experiments will be realized on
short extracts of the songs in order to define the robustness
of our method.

4. CONCLUSIONS

In this paper, we presented a tempo estimator based on an
automatic segmentation of the signal into quasi-stationnary
zones. The use of this segmentation for the tempo induc-
tion seems to be rather significant: the spectrum of the
Dirac signal derivate from the segmentation shows a pre-
dominant value directly linked with the tempo on 98% of
our tests. The three methods which exploit this property
have good performence. These methods are still rather

simple, so we will investigate some potential improvements:

e Some experiments will be realized in order to eval-
uate the sensitiveness of our method to the use of
short extract. Good results would allow the use of
this method on slipping windows of few dozens of
second. Such treatment could be realized in order to
detect changes in the tempo.

e The use of the phase of B,,(p) seems promissing for
the developpement of a precise onset localizator.

5. REFERENCES

[1] M. Alonso, B. David, and G. Richard. Tempo and beat
estimation of music signals. In Proc. Int. Conf. Music

Information Retrieval, pages 158—163, 2004.

[2] R. André-Obrecht. A new statistical approach for the
automatic segmentation of continuous speech signals.
IEEE Trans. on Acoustics, Speech and Signal Process-

ing, 36(1):29-40, 1988.

31

(3]

(4]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

J. Bilmes. Timing is of the essence: Perceptual
and computational techniques for representing, learn-
ing, and reproducing expressive timing in percus-
sive rhythm. Master’s thesis, MIT, Cambridge, Mass.,
USA, 1993.

S. Dixon. Automatic extraction of tempo and beat from
expressive performances. Journal of New Music Re-
search, 30(1):39-58, 2001.

S. Dixon, E. Pampalk, and G. Widmer. Classification of
dance music by periodicity patterns. In Proc. Int. Conf.
Music Information Retrieval, pages 159-165, 2003.

M. Goto. Development of the RWC music database.
In Proceedings of the 18 th International Congress on

Acoustics (ICA 2004), pages 553-556, 2004.

M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.
RWC music database: Popular, classical, and jazz mu-
sic databases. In Proc. 3rd International Conference on
Music Information Retrieval (ISMIR 2002), pages 287—
288, 2002.

F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzane-
takis, C. Uhle, and P. Cano. An experimental com-
parison of audio tempo induction algorithms. IEEE

Trans. on Audio, Speech, and Language Processing,
14(5):1832 — 1844, september 2006.

A. Klapuri, A. Eronen, and J. Astola. Analysis of the
meter of accoustic musical signals. IEEE Trans. on
Audio, Speech, and Language Processing, 14(1):342—
355, 2006.

E. Scheirer. Tempo and beat analysis of acoustic music
signals. Journal of the Acoustical Society of America,
104:588-601, 1998.

G. Tzanetakis and P. Cook. Musical genre classifica-
tion of audio signals. IEEE Trans. on Speech and Audio
Processing, 10(5):293-302, 2002.

C. Uhle, J. Rohden, M. Cremer, and J. Herre. Low
complexity musical meter estimation from polyphonic
music. In Proc. AES 25th International Conference,
pages 63—-68, June 2004.



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

32



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

AMUSE (ADVANCED MUSIC EXPLORER) - A MULTITOOL
FRAMEWORK FOR MUSIC DATA ANALYSIS

Igor Vatolkin
Chair of Algorithm Engineering,
TU Dortmund

Wolfgang Theimer
Research in Motion, Bochum

Martin Botteck

martin.botteck@ieee.org

wolfgang.theimer@ieee.org

igor.vatolkin@udo.edu

ABSTRACT

A large variety of research tools is available now for mu-
sic information retrieval tasks. In this paper we present a
further framework which aims to facilitate the interaction
between these applications. Since the available tools are
very different in target domain, range of available meth-
ods, learning efforts, installation and runtime characteris-
tics etc., it is not easy to find software which is optimal
for certain research goals. Another problematic issue is
that many incompatible data formats exist, so it is not al-
ways possible to use output from one tool just as input for
another one. At first we describe some of the available
projects and outline our motivation starting the develop-
ment of AMUSE framework for audio data analysis. Re-
quirements and application purposes are given. The struc-
ture of our framework is introduced in detail and the in-
formation for efficient application is provided. Finally we
discuss several ideas for further work.

1. INTRODUCTION AND MOTIVATION FOR A
NEW FRAMEWORK

During the recent years more and more scientific tools for
music information retrieval and related research areas have
been developed. To name just a few, Marsyas is one of
the oldest available MIR projects for different analysis and
synthesis tasks [12]. jMIR tools refer to different applica-
tions from feature extraction to data mining methods [7].
MusicMiner established new navigation techniques for lar-
ge music collections based on self-organized maps and three-
dimensional landscapes [9]. MIR Toolbox includes a large
number of different adjustable Matlab functions for extrac-
tion of features from time signal characteristics to com-
plex harmony and major/minor key descriptors [4]. The
Chroma Toolbox provides advanced features related to chro-
ma and pitch [10]. RapidMiner is aimed to solve a wide
range of different data mining tasks (not only for music
and audio classification domain) and supports numerous
methods [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
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The motivation to start our own project developing a
new software framework arose after the discussion and def-
inition of several promising MIR applications and in-depth
comparison of different above mentioned and further tools.
Typically each existing tool has several main focus points
as well as certain application advantages and disadvan-
tages. Therefore the choice of software to use depends
strongly on the defined scenario. Possible three exam-
ples could be: If the researcher develops own classification
methods, it may be interesting for her/him to gather many
available audio features from the corresponding tools. If
the aim is to run advanced low-level signal analysis and
create the features by himself, the researcher would create
this code and use some ready products, e.g. WEKA tool-
box [13] for the revision, how well the novel features are
suited for audio classification. The last example is that for
different reasons multi-objective evaluation of algorithmic
chain can be significant. Here the focus point is to col-
lect different metrics (confusion matrix-based measures,
runtime and disc space demands etc.) and to run multi-
objective optimization algorithms searching for the best
tradeoff between several solutions.

Another aspect is that many tools which are very help-
ful for MIR research are either too specific and concentrate
on limited audio retrieval domains, e.g. Chroma Toolbox
(so we may need several of them!) or are on the other side
too powerful and generic (e.g. RapidMiner) and it is not
easy to create the appropriate solution. The input and out-
put data formats differ from tool to tool and even the sup-
port of the WEKA ARFF format does not mean, that the
written attributes are the same. Therefore it made sense
for us to develop a multi-tool framework, which provides
own data interchange formats and own evaluation methods.
The integration of further tools and also the extension of
methods with own code belonged to requirements. Further
consideration was that some fields had been underrepre-
sented in many available tools and it was important for us
to emphasize them as independent tasks in music retrieval
chain: feature processing is an intermediate step between
the extracted raw features and ready classifier input. The
way how the labeled vector is built from the frame-based
signal features for training of classification models can be
very different and has a strong impact on classification re-
sult quality. Another issue is the inclusion of optimization
methods, e.g. heuristics, to search for the best parametriza-
tion of the algorithm chain, for example the estimation of
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satisfactory time frame size or pruning of feature set.

The current version of AMUSE made possible to run
different large experiment studies including feature extrac-
tion from several tools, processing with many methods,
classification for user-defined music categories and also
optimization of some parameters [3, 14, 15].

2. FRAMEWORK STRUCTURE
2.1 Background, Requirements and Functionality

AMUSE (Advanced MUSic Explorer) is a GPL-licensed

framework implemented in Java ! . Therefore the main com-
ponent can be run on any operating system which supports

the Java Runtime Environment. The integrated tools have

no usage restrictions with regard to their source codes. If

they are not available as Java libraries, executable versions

must be provided. In that case it may certainly lead to the

dependence on the running operating system.

The AMUSE core provides different functionalities. With

own sound processing methods mp3s can be converted to
waves. Downsampling and stereo to mono conversion meth-
ods are included as well. It is possible to split automaticly
the wave files (we had experiences that very long songs
supplied to some tools led to memory problems or unac-
ceptable running time). Scalability is supported either us-
ing multi-threading on one machine or providing the tasks
to grid systems like Sun Grid Engine or LSF Batch. Ef-
ficient data set management which directly supports the
WEKA ARFF format (well-established for various data
mining tasks) and a logger component are integrated.

Several user interfaces are available: Definition and ap-
plication of tasks can be easily done within a graphical user
interface, see Figure 5 for screenshots. In command-line
mode AMUSE runs one or more tasks from given configu-
ration files. In loop mode AMUSE is pre-loaded in mem-
ory and waits for new tasks by scanning for corresponding
configuration files in a task folder.

Project packages are organized in the way so that the
core and extendable components are strictly separated. In-
tegration of external tools requires writing of adapter classes
which take care of input / output conversion and start these
tools as library or by system call. AMUSE plugins allow
to create such integrations without changes on the main
project and be easily installed and deinstalled.

2.2 Music Retrieval Chain and Integrated Methods

We distinguish between subtasks in a MIR chain. Figure 1
gives a complete overview. The rectangles correspond to
AMUSE tasks which are run by the related node compo-
nent. Each task can adhere to the larger number of AMUSE
Jjobs which can be calculated on several processing units -
e.g. a feature extraction task for a hundred music files can
be distributed to several machines as one hundred jobs.

2.2.1 Feature Extraction

Feature extraction provides low-level or high-level numer-
ical descriptors from the audio signal. It can be a com-

Uhttp://amuse-framework.sourceforge.net
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plete task (melody extraction) or a part of a longer chain,
where audio files are categorized using the extracted fea-
tures. AMUSE provides a generic mechanism to select the
features which must be extracted by external tools. For
each tool a so called base script must exist which allows
to extract all supported features. After the AMUSE extrac-
tion task is loaded into memory, some parts of these base
scripts are omitted, if the corresponding transforms or fea-
tures should not be extracted this time.

2.2.2 Feature Processing

Feature processing is an intermediate step between raw ex-
tracted features and ready-labeled input for classification.
Starting with a matrix of M features over IV time frames at
the beginning, different methods change this matrix. Some
of them extend the dimensionality (e.g. calculating the
derivations for all features) or reduce the dimensionality
(pruning the features or deselecting time frames using spe-
cific information like temporal structure of a song). The
last step is the conversion of the feature matrix to a vec-
tor which can be labeled for supervised classification. This
can be done e.g. by Gaussian, histogram or autoregres-
sive models. Since the source time frames may differ be-
tween features, the matrix is automaticly adjusted using
the smallest existing time frame. For example if the first
feature is calculated from 1024 sample frames and the sec-
ond one from larger windows (number of beats per minute)
and the third from the complete song (music track length),
N will be set to the number of 1024 sample frames in the
complete song. A music track length feature will then have
the same values for all corresponding matrix entries.

2.2.3 Classification and Training

Supervised classification training creates models from given
data and requires the ground truth information. Classifica-
tion applies the previously learned models and computes
the list of relations to the given categories for the provided
music tracks. Unsupervised classification techniques cate-
gorize data without any given information by e.g. cluster-
ing. It is possible to run preprocessing before the classi-
fication, for example removing the outliers. Since Rapid-
Miner [8] and WEKA [13] are also Java-based projects,
they are integrated into AMUSE directly as libraries. It is
also possible to connect to Matlab or R engines starting
further classification methods.

2.2.4 Validation

The classification validator is responsible for evaluation
of classification results. Confusion matrix-based metrics
and error rates are well known and measure the quality
of classification results. Other measures relate to the bal-
ance aspect - if a data set contains too much positive in-
stances, accuracy may be high inspite of the poorly de-
signed algorithm which tends to categorize everything as
positive. Further it is possible to measure correlation be-
tween ground truth and predicted category relationships.
All these metrics can be either calculated on the lower data
level (measuring the classification success for smaller au-
dio intervals as data instances) or on the higher data level
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Figure 1. AMUSE task chain.

(evaluating classification averaged for the complete music
tracks). Other metric group (data reduction rate) calculates
the amount of data used for training related to the size of
the original feature matrix.

2.2.5 Optimization

Each of the above mentioned tasks has more or less param-
eters and it is obviously, that it is not a simple task to find
an optimal combination of them. For example the larger
time frames for low-level feature extraction allow a more
precise frequency resolution up to the Nyquist frequency.
But if they are too long, different notes are mixed together
and it becomes harder to learn anything. The optimization
of the music data analysis chain is very rarely supported
by related MIR tools. Indeed many optimization toolboxes
exist (e.g. CILIB [11], SPOT [1] etc.) but the application is
often too generic and must be adapted to the MIR domain.
Therefore the goal of the optimization node is to run meth-
ods searching for optimal parameter settings. Currently
several evolution strategies [2] are directly implemented in
AMUSE and can be used for optimization.

2.3 Database Structure and Data Formats

Information provided by user (ground truth, music tracks)
and the generated output are stored in folders called AMUSE
databases. Most of the data is currently saved as text ARFF
format [13] for several reasons: It is very comprehensible,
is supported by most tools and is much more compact than
XML. However it is an option to support further formats
in future using e.g. MySQL database which requires more
storage place but provides a very fast searching routine.
Music and category folders store the songs provided by
the user and the corresponding ground truth for any related
categories (music genres, information about harmony and
melody etc.). Feature folders save the extracted features,
the folder processed features stores the unlabeled feature
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FFELATION 'Music feature'
Zrowa=g

tcolunns=11027
4sample_rate=ZZ050
swindow_size=512

MATTRIEUTE 'Tonal centroid wector' NUMERIC
[BATTRIEUTE 'Tonal centroid wector' NUMERIC
[BATTRIEUTE 'Tonal centroid wector' NUMERIC
[FATTRIBUTE 'Tonal centroid wector' NUMERIC
[BATTRIBUTE 'Tonal centroid wector' NUMERIC
MATTRIEUTE 'Tonal centroid wector' NUMERIC
BATTRIBUTE Windowlumber NUMERIC

-0.04412107458392,-0.03193232536324,0.0317222975496,0.059711013405
0.0826042957199,-0.0714777017575,0, 1838832096449, 0. 0516827560259
-0. 0635795107293, -0, 126756415105, 0. 1308533042553, 011355759812, 0
-0. 14163669473, -0. 0068530245434, 0. 0742737169193, 0.01301531165809
-0, 12271131203, 0.01168226451875, 0. 025590556053415,-0. 0554043395045

0.0385410122573,-0. 0367863107091 ,0. 136631525033, 0. 2654694548501,
—N P1ARARAATARR N 19373TATITIE] N NAGAATNIAANAZ N 154217103084 N

Figure 2. Example ARFF file with extracted features.

vectors for classification. Binary classification models are
placed in the model directory, metric database is used for
evaluation of music data analysis experiments. Optimiza-
tion database contains of optimization logs in search for
optimal parameter settings. Currently AMUSE does not
support any visualization methods, but the data can be eas-
ily read into well-established tools like Gnuplot or Matlab.

An example for a feature file is given in Figure 2. Here
the extended ARFF format is used: AMUSE attributes are
placed as comments after the relation description and store
the information about the data set size, sampling frequency
and time frame size. Since for each feature the correspond-
ing time frame is saved in attribute WindowNumber, it is
simple to detect the time intervals from which the features
have been extracted.

The AMUSE experiments are also saved as ARFFs.
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Figure 3. Data flow in AMUSE.
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» trainer
» classifier
» validator
» optimizer
» preferences
> util » audio

Figure 4. Package structure.

3. DETAILS FOR DEVELOPERS

The data flow during an AMUSE experiment is shortly de-
picted in Figure 3. User starts the main SCHEDULER com-
ponent either from GUI or from the command line. Af-
ter the configuration of the experiment the tasks are com-
pletely described in the corresponding TASKCONFIGURA-
TION objects which are provided to the appropriate TASK-
STARTER component. Here one or more AMUSE jobs are
generated. These jobs are run on the same machine or are
processed to a grid system. During the runtime of a single
AMUSE instance the scheduler counts up the jobs. After
they are ready, the next experiment can be started.

3.1 Package Structure

The most important AMUSE Java packages are shown in
Figure 4. Scheduler and GUI packages interact with user,
the computing of jobs is done in objects which are placed
in nodes package and extend an abstract class NODESCHED-
ULER. Data package handles AMUSE data objects and
AREFF input / output routines. Preferences store different
configuration parameters (database folders, downsampling
rate, path to grid scripts etc.). The util package contains
logger and audio processing methods.
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3.2 Guidelines for Tool Integration

Here we give a brief overview for several steps needed to
extend AMUSE with new tools:

e Tool setup: Software which should be integrated into
AMUSE must be tested for execution on the current
operating system. It must be possible to start it either
as Java library or by system call using a previously
configured batch file.

e Writing an adapter class: Here the tool will be started.
The functions which convert input and output data
to AMUSE format must be implemented. If e.g. a
feature extractor program saves the data as XML, it
has to be converted into ARFF format for features as
given in Figure 2.

e Plugin definition: The default way to integrate a new
tool into AMUSE is to create the corresponding plu-
gin. Several plugin installation files (mostly ARFFs)
must describe the changes in AMUSE which will be
applied after the installation. Each feature and each
method used in AMUSE has a unique id number.
The configuration file featureTable.arff lists all cur-
rently available features with given ids. If a new tool
allows the extraction of several new features, this file
must be updated. The same procedure is essential for
further algorithms. There is a list with all available
classification methods, validation metrics, process-
ing and preprocessing algorithms etc.

e Plugin installation and integration should be tested.
After the successful evaluation the job is done!

4. ONGOING WORK

The core framework has been already developed, however
a lot of work remains. In the near future we will provide
comprehensive introduction and developer manuals. Inte-
gration of further tools and extension with own methods
belongs to the current and ongoing activities. Especially
the optimization node will be extended with new methods
related to multi-objective evaluation and computational in-
telligence algorithms.

As further steps we plan to add some visualization pos-
sibilities for experiment results and navigation possibilites
through given music collections. The algorithms for sym-
bolic and community-based retrieval can be also integrated.

5. ACKNOWLEDGEMENTS

We thank the Klaus Tschira Foundation for the financial
support.



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Back

& : Amuse Wizard - Manage Experiments \_f 4_\ )_¢
| Back | | start Tasks |
|8 Type Additional Information
1 Feature Extraction File number: 10 Feature number: 76
2 Feature Processing File number: 10 Feature number: 76
3 Classification training Ground truth source: 21
4 Validation Categony: 21 Metric number: 23
Down
Check Tasks | | Save Tasks |
Wizard Log
3 : Amuse Wizard - Feature Extraction \_f 4_\ >_<
Back Load | Save | Finish Configuration
Select Music Files ;| Select Features
[ Music Database : Jse| ID Feature Description Value Count
¢ CJcDs 4 0|Zerp-crossing rate 1]~
¥ 1|Linear prediction coefficients 10
¢ 3 achc = - - -
9 Back_in_Black é 2|&average distance between extremal spectral values and its variance 215
¢ == | 3laverage distance between zZero-crossings of the time-domain signal. .. 2
[} 01_Hells_Bells.mp3 v] 4|Root mean square 1] |
D 02 _Shoot_To_Thrill. mp3 [¥] GlLow energy 1
D 03_What_Do_You_Do_For_Maoney_Honey:. [v] 7|Mormalized energy of harmonic components 1
) v] 10(Tristimulus 2
D 04.Given.The_Dog_A_Bone.mp3 v] 11[EMS peak number in 3 seconds 1
[} 05 _Let_Me_Put_My_Love_Into_You.mp3 v | 12[RMS peak number above half of maximum peak in 3 seconds 1
D 0&_Back_In_Black.mp3z v] 145pectral centroid 1
[} 07_You_Shook_Me_All_Night_Long.mp3 v 122“9““: gre%“'?‘;": I 1
) v] pectral bandwidt
D 08_Have_A_Drink_On_Me.mp3 v 175pectral skewness 1
[} 09 Shake_A Leg.mp3 V] 18[Spectral kurtosis 1
D 10_Rock_And_Roll_aint_MNaoise_Faollution.m v] 195pectral crest factor 4
] 20[5pectral flatness measura 4
] M [ [» [¥] 2 1[spectral extent 1|+
Add Files | Remove Selacted | <-| | - = Check Selected Uncheck Selected <-| - =
Wizard Log
£ : Amuse Wizard - Feature Processing \_I 4_\

| Save | Finish Configuration

Selected Processing Algorithms

Add

Principal Component Analyzer

Percent of components to select:

1.NaN Eliminator

2.Derivation Calculator

3.0nset Pruner(b]

4.Principal Component Analyzer[75]

Default

IM\l
=]

Select Matrix to Vector Method

[Lve_][_oown ]

GMM1

Global Settings
Partition Size:

Unit:

Milliseconds =

5000 Partition Overlap: [2500

Optional Model Description: |

Wizard Log

Figure 5. AMUSE GUI: Management of experiments (top); Feature extraction experiment setup (middle); Feature pro-

cessing experiment setup (bottom).
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APPENDIX: LIST WITH INTEGRATED TOOLS

Here we give an alphabetically sorted list of currently inte-
grated tools. In AMUSE it is easy to create complex exper-
iments using different algorithms, e.g. extracting features
with jAudio and MIR Toolbox, preprocessing them with
Matlab, classifying with WEKA and validating them with
metrics available in AMUSE.

(1]

(2]

(3]

(4]

e Chroma Toolbox: Extraction of different novel chroma
and pitch features [10].

e CMRARE: A set of cepstral modulation ratio regres-
sion (CMRARE) parameters for audio signal [5].

¢ jAudio: Java application for audio feature extraction

[6].

e Matlab: Corresponding AMUSE adapter allows to
run Matlab code. Path to the installed Matlab ver-
sion must be set in AMUSE configuration.

e MIR Toolbox: A large set of Matlab fuctions for ex-
traction of low-level and high-level audio descrip-
tors [4].

e R: Corresponding AMUSE adapter allows to run R
code. Path to the installed R version must be set in
AMUSE configuration.

e RapidMiner (former Yale): Java framework for data
mining [8]. A large number of different classifi-
cation and data processing algorithms is available,
audio feature extraction is provided by ValueSeries
plugin.

e WEKA: An established framework for machine learn-
ing which is integrated as library in RapidMiner [13].
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ABSTRACT

We present an efficient approach for an off-line alignment
of a symbolic score to a recording of the same piece, us-
ing a statistical model. A hidden state model is built from
the score, which allows for the use of two different kinds
of features, namely chroma vectors and an onset detec-
tion function (spectral flux) with specific production mod-
els, in a simple manner. We propose a hierarchical prun-
ing method for an approximate decoding of this statistical
model. This strategy reduces the search space in an adap-
tive way, yielding a better overall efficiency than the tested
state-of-the art method.

Experiments run on a large database of 94 pop songs
show that the resulting system obtains higher recognition
rates than the dynamic programming algorithm (DTW),
with a significantly lower complexity, even though the rhyth-
mic information is not used for the alignment.

1. INTRODUCTION

We address the problem of synchronizing a polyphonic
musical score with an audio performance of this score, in
the “off-line” version of this task. This allows one to con-
sider the whole recording before estimating the positions
of the score notes. We are interested in an alignment at the
“symbolic level”, which means that the result is the time
indexes of the score notes or chords.

Applications of such a system can be a score retrieval
from a musical query, or the ability to use both the audio
and symbolic (score) content for music indexing. Some
musical content analysis tasks, such as motif detection or
chord transcription, may indeed be easier on symbolic data
than on raw audio files.

While most on-line score following systems use statis-
tical models which can be rather complex [4, 8, 14], many
oft-line algorithms simply rely on the DTW algorithms or
refinements of it [6,9]. These latter algorithms are often
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faster than the former and can also be applied to audio-to-
audio synchronization.

However, their complexity (in time and space) is quadratic
in the number of audio frames. This complexity problem
has been addressed in [10], where a “short-time” DTW is
proposed, which reduces the memory space requirement,
at the cost of a greater time complexity. In [11], Miiller et
al introduce a “multi-scale” DTW (MsDTW) which allows
for an efficient pruning strategy in a coarse-to-fine fashion.

To the authors’ knowledge, hierarchical approaches have
not been used for music synchronization, appart from [11].
In [3], Cont exploits a Hierarchical Hidden Markov Model.
However, although its advantage in terms of interpretation,
this structure is equivalent to a “flat” HMM [12].

With a dynamic programming framework, the use of
different kinds of descriptors can be difficult. Hence such
systems use a single feature representation, generally chroma
vectors. A notable exception can be found in [6], where a
strategy is proposed to combine local distances resulting
from chroma vectors and onset features in a DTW scheme.
The use of a statistical model makes the fusion of different
pieces of information more natural. This structure is often
used in real-time systems [2, 5], which model each feature
distribution with a Gaussian mixture.

The hidden state model presented here exploits a differ-
ent model for two different sets of features: a “histogram
model” (see Sec. 2.1.1) for chroma vectors and a logistic
model (see 2.1.2) for an onset indicator feature. This sys-
tem obtains a very good alignment precision with a signif-
icantly lower complexity than the DTW algorithm.

We also introduce a hierarchical approach for search
space reduction, which performs a pruning of the unlikely
states in a hierarchical way. We take advantage of struc-
tural information given by the score (namely beat and bars),
which allows for a meaningful hierarchical segmentation
of the music. This method provides an alternative to the
commonly used beam search strategy, which consists in
maintaining only a fixed (small) number of paths at each
decoding step. Our approach proves advantageous com-
pared to both beam search and MsDTW, in terms of global
search space size and runtime, without affecting the align-
ment performance in practice.

In the next section we present our baseline models for
audio-to-score alignment. Then, a hierarchical pruning method
for an approximate decoding of these models is proposed
in Section 3. We expose the results of our experiments in
Section 4 before suggesting some conclusions in Section 5.
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Figure 1. Score Representations. Top: The original graph-
ical score. Middle: The score as a sequence of chord. Bot-
tom: The finite state machine representing the score.

2. BASELINE MODELS FOR AUDIO-TO-SCORE
ALIGNMENT

Similarly to [15], we segment the musical score into chords,
which are sets of notes that sound at the same time. Every
time a note appears or disappears, a new chord is created.
We can then fit a hidden state model to the audio signal, the
states of which are defined by the chords of the score. The
score is seen as an automaton, as represented in Figure 1.

In this work, we chose not to take into account the rhyth-
mic information given by the score, as we consider that we
have no prior knowledge of the tempo. We use the Maxi-
mum Likelihood (ML) path in the automaton as the align-
ment path. Let y=y1,...,yyn be the feature sequence ex-
tracted from the signal. Let S,, be the random variables de-
scribing the current state at time n. The ML path S, which
can be efficiently computed by the Viterbi algorithm, is:

N

S = P(y|S) = P(yn|Sy),
argrer‘lsax (v|S) argrer‘lsaxH (Yn|Sn)

ey
n=1

where S is the set of acceptable paths. We consider as ac-
ceptable the paths which go through all the states in the
right order. This model is thus a left-right Hidden Markov
Model whose only transitions are self-transitions and tran-
sitions from one state to the following one. All these tran-
sitions have the same probabilities.

2.1 Observation Models

Similarly to [13], two kinds of information are used in this
work: the pitch content and the onset information. Thus,
we use two types of features in order to take them into
account. Chroma vectors are used in order to model the
pitch content of the signal, and the spectral flux is supposed
to detect the note onsets.

2.1.1 Chroma Vectors

As observed in [9], chroma vectors provide a compact, yet
efficient representation of the pitched content of a musical
signal for music-to-score matching. A chroma vector is a
twelve-dimension vector, each of whose component repre-
sent the “power” in all the frequency bands of a chromatic
class (from A to G#). The chroma vectors we use are com-
puted according to [16], with a 50 Hz time resolution.

For each state s, a probability distribution {g(¢) }i=1...12
over the 12 chroma components is built, as the superpo-
sition of one-note distributions which correspond to the
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notes that are present in the state. A one-note distribu-
tion is a simple Kronecker function {&(i, j) }i=1...12 where
J is the pitch class of the considered note. Then, a constant
component ¢ is added in order to model noise, and we ob-
tain a distribution g defined by g(i) = (1 — ¢)g(i) + 5.
A value of 0.7 has been found satisfactory for the noise
parameter q. For example, the distribution values corre-
sponding to the chord {Cg, E3, Gs, 04} are (represented
in a vector) 1TTq(O, 0,0,2,0,0,0,1,0,0,1,0)4 51, where
1 is a vector of ones.

In order to calculate the likelihood of each state, we use
the model exposed in [15]. The values of the chroma vec-
tor v extracted from the audio is considered as a histogram
of random samples drawn from the distribution g (corre-
sponding to chord c¢). The probability of having v as a
result of such a sampling is:

12
p(vle) = Z(v) [T 95)*™. ©)
i=1
Here, « is a scaling parameter. Since the value of this pa-
rameter has no effect on the decoding result, it is fixed to
1. Z(v) is a positive number which only depends on the
observation v, hence it is the same for every path and its
value is not considered.

2.1.2 Spectral Flux Feature

In order to render the “burst of energy” which appears at a
note onset, we exploit the spectral flux feature, which has
been proven efficient in a beat tracking task [1]. We use
this feature for a “probabilistic” onset detector.

The spectral flux values are first normalized so that their
maximum is 1. A local threshold is then computed by ap-
plying a 67% rank filter of length 200 ms to the output.
We then obtain an “onset feature” by subtracting this local
threshold to the normalized spectral flux. Finally, a simple
logistic model is used in order to calculate the likelihood
of an onset. We denote by A the random variable repre-
senting the attack (onset) indicator ({A = 1} means that
there is an attack). For a value f of the onset feature, we
have: obf

P(A:”f) —m 3)

where b is a positive parameter, which controls the “confi-
dence” of the onset detector: when the value increases, the
decision is closer to a deterministic detector (with proba-
bilities O or 1).

2.2 Chord and Onset Models

Two structures of HMMs are evaluated in this work. In the
Chord structure, a chord is represented by a single state,
and only the pitch information (described by the chroma
vectors) is taken into account. The spectral flux is not con-
sidered.

The Onset model is a refinement of the previous struc-
ture which takes the onset information into account. In this
model, a lower “level of hierarchy” is added in order to
model two possible phases of a chord: attack and sustain.
Earch chord corresponding to an onset is split into two suc-
cessive phase states: attack (A = 1) and sustain (A = 0),
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Chord
Model

B4y
EoCREHDER

Figure 2. State Structure of the chord and onset models for
the previous score (A and S stand for respectively attack
and sustain).

Onset
Model

which share the same chroma vector model. The two types
of features are supposed to be independent. The chroma
feature is assumed to depend only on the chord state while
the onset feature only depends on the phase state. Hence,
if we assume an uninformative prior about the phase state,
i.e. p(A = a) = 3, we have:

p(v, fle.a) o p(vle)p(A = alf) “

where these other probabilities are expressed in (2) and (3).
Each state of the model is then the combination of a chord
and a phase: we write S,, = (C,,, 4,,). Equation (1) is
then:

N
S = argmax H P(vn|Cr)p(Anlfn)-
Ses

&)

n=1

Six different values are tested for the parameter b of eq. (3):
0, 0.1, 1, 10, 50 and 100.

The structures of the two models are compared in Fig. 2.
For the Onset model, the lower level states are represented
inside the “chord super-states”. In the example, the fourth
super-state contains only a sustain state, because the tran-
sition from the previous chord to the fourth one does not
correspond to an onset, but to the extinction of one note.

3. ANOVEL HIERARCHICAL PRUNING
APPROACH

In order to speed up the decoding phase, we use a hierar-
chical pruning approach, inspired by the multi-scale Dy-
namic Time Warping (MsDTW) algorithm [11]. The idea
is to first obtain a coarse alignment and then use the result
to prune the search space at a more precise level.

For these coarse alignments, we take advantage of higher
musical structures than what we call chords, namely beat
and bars. These structures, given by the score, allow for
a meaningful hierarchical segmentation of the music. At
each of these levels, a HMM can be built, whose states
correspond respectively to the beats and to the bars of the
score. As the considered temporal units are larger and the
precision needed at these levels is lower, the observations
used for the alignment are calculated over longer windows,
with a smaller time resolution. Figure 3 illustrates the con-
struction of the automata and the calculation of the obser-
vations, at the three levels of hierarchy.

The algorithm proceeds as follows: on the highest level
automaton, we calculate for every state s and every frame
n, the maximum likelihood that can be obtained by going
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@ Bars
Beats
OH—ELH—L e
Chords
O

Score: automaton Audio: integration windows
Figure 3. Finite state machines (modeling the score) and
integration windows (over which are calculated the obser-
vations) at the three considered levels of hierarchy.

through state s at time n. This value is written

{P(ylS)}

P(s,n) = S 6)

max
€S,Sp=s
where S is the set of acceptable paths and y is the ob-
servation sequence. This calculation can be done by a
“forward-backward version” of the Viterbi algorithm. It
is very similar to the forward-backward algorithm, and can
be deduced from it by replacing the sum operation by a
max. This algorithm allows for the calculation of the opti-
mal path S = Sl, e §N at the same time.

The values P(s,n) are then used to prune the low-score
paths. We do not use the posterior probabilities P(S,|y)
instead of P(s,n) for the pruning process since we are in-
terested in the path’s scores and not in the states’. Since a
state probability is the sum of the probabilities of the path
going through this state, there is a risk that some states
containing many average-score paths may be favored com-
pared to a state containing an isolated high-score path.

This “pruning score” P(s,n) constitutes an important
difference with the beam search strategy. Indeed, beam
search operates directly at the low level and it uses the par-
tial Viterbi score

ﬁ,z(s,n) = Segl%X:s {P(yl, e YnlS1, - Sn)} @)

in order to prune the low-score path. Hence it only con-
siders the observation up to the current frame, whereas our
approach takes into account the whole signal.

The structure of the automaton is left-right, thus the re-
lation defined on the set of states by: s < s iff there is
a path from s to &', is a total order. It is then possible to
define the “furthest admissible states™ S,, and S;" for each
time n by:

S, = min{s| P(s,n) > P(};’S)} )
St = max{s | P(s,n) > P(z;|S)}7 ©))

where 7 is a parameter which controls the minimum likeli-
hood of the paths that are kept in the pruning process. We
define the tolerance radii 6 _ and § as the maximum num-
ber of states that separate respectively S, from S, and S,
from S;t, forn € {1,...,N}.

These tolerance radii specify a set of states around the
alignment path, which allows for a reduction of the search
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Figure 4. Principle of the hierarchical pruning method.
The grey scale of a cell correspond to the maximum likek-
ihood of the paths going through this cell. At the beat level,
only the domain delimited by the black lines is explored.

space at the lower level. Hence, the alignment at the lower
level is calculated by exploring only this domain. Figure 4
illustrates this pruning process. The same procedure is re-
peated at each level.

The observations used in the higher levels are integrated
(moving average) versions of the chroma vectors, with a
lower time resolution. This use of averaged observations is
musically justified since the harmony (and thus the chroma
information) is in general homogeneous over a whole beat
(or bar) duration. The spectral flux is not considered in
these levels. The integration windows are chosen in order
to take into account the fastest reasonable tempi. For the
beat level, this duration is 200 ms, corresponding to a very
fast tempo of 300 beats per minute. For the bar level, the
integration window is 1 s, that is a four-four time with a
tempo of 240 bpm. A 50% overlap is used, yielding time
resolutions of respectively 10 Hz and 2 Hz. The histogram
model exposed in Sec. 2 is used and the distribution g
corresponding to a state (beat or bar) is the superposition
of the distributions associated to the chords that it contains,
weighted by their theoretical durations (in beat).

The main difference between the MsDTW pruning ap-
proach and ours is that the tolerance widths § are not given
as a parameter, but they are computed from the data in an
adaptive way, controlled by the parameter 7. It is often
more advantageous to set the tolerance in terms of like-
lihood (parameter 1) than in terms of deviation from the
alignment path (parameter ¢). Indeed, it is possible that
a wrong path obtains a slightly higher score than the right
one at a coarse level (for example a path following a differ-
ent repetition of a musical phrase). If this wrong path is far
(in terms of states) from the right alignment, the latter one
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will be discarded by the fixed-radii pruning process. On
the other hand, it is reasonable to suppose that the “real”
alignment path always obtains a high likelihood, and thus
is not pruned out by our method.

4. EXPERIMENTS
4.1 Database and Evaluation Measure

The database used in this work comprises 94 songs of the
RWC-pop database [7]. These songs are polyphonic multi-
instrumental pieces of length 2 to 6 minutes, most of which
contain percussion. The alignment ground-truth is given
by the synchronized MIDI files provided with the record-
ings. The same MIDI files are exploited as target scores.
However, as we intend to be able to handle any type of
score, in particular scores with missing or unreliable tempo
indications, we artificially introduce (rather extreme) tempo
modifications in these MIDI files: every 4 bars, a random
tempo change (between 40 and 240 bpm) is added.

The chosen evaluation measure is the recognition rate,
defined as the fraction of onsets which are correctly de-
tected less than § = 300 ms away from the real onset time.
This threshold is based on the MIREX’06 contest ! .

4.2 Reference System: DTW

We compare our alignment models to a reference DTW
(Dynamic Time Warping) system. The DTW algorithm
searches for the alignment between two sequences which
minimizes the cumulative costs along the alignment path.

This method is used to synchronize the sequence of ob-
servations (chroma vectors and spectral flux) extracted from
the audio with a sequence built from the score. This “pseudo-
synthesis” is performed by associating to each chord a chroma
vector template (having the same values as the probabil-
ity distributions of Sec. 2.1.1) and a duration given by the
score. The obtained sequence is then linearly stretched so
that its length is the same as the recording. For the onset
detection feature, the reference sequence is a sequence of
zeros and ones, the ones correponding to the onset loca-
tions in the “pseudo-synthesis”.

For this system, the spectral flux sequence is locally
normalized so that its maximum is 1 on a 2-s sliding win-
dow. The local distance between the observation (v, f)
(respectively chroma vector and locally normalized spec-
tral flux) and the template counterpart (g, a) is given by:

D((v.1).(9.0)) = 7

v .
[o[lllgll

where - denotes the inner product and w is a non-negative
parameter which controls the weight given to the onset de-
tection feature. Between three different values which have
been tested {1,1,2}, the value w 1 has been found
the most efficient on our database. A DTW system which
considers only the chroma observation (corresponding to
w = 0) is also evaluated.

+wl|f —aql, (10)

I Music Information Retrieval Evaluation eXchange 2006, score
following task: http://www.music-ir.org/mirex/2006/
index.php/Score_Following_Proposal
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[ System | Recognition Rate | Search Space | S Search Space Run time | Errors
ystem .
DTW (only chroma) 78.77% 100% Beats [ Onsets | (ins) (nb)

DTW (chroma+onset) 86.07% Onset b = 50 - 26.26% 482 0
Chord 64.49% 16.2% BS N3, = 700 - 5.74% 733 0
Onset (b =0) 69.70% MsDTW 6=150 || 2.24% | 14.02% 1180 0
Onset (b= 0.1) 70.49% 0 =60 0.81% 7.93% 362 0
Onset (b= 1) 73.14% 26.3% 7 = 1000 042% | 4.53% 300 0
Onset (b = 10) 82.90% 17 = 200 035% | 4.07% 276 0
Onset (b = 50) 87.16% 7 = 100 0.33% | 3.82% 265 0
Onset (b = 100) 84.71% =150 030% | 359% | 256 0
Table 1. Recognition rate and mean search space (fraction Z — ?8 8%2;2 ;g%gj igg g
of the DTW algorithm search space) as a function of the n=5 019% | 2.59% 715 2

alignment system.

4.3 Performances of the Baseline Systems

The recognition rates and average search space of several
settings are summed up in Table 1. The search space is
the number of explored cells (state/frame pairs, or audio
frame/pseudo-synthesis frame pairs, depending on the sys-
tem) over the total number of cells required for the DTW
algorithm (the square of the number of audio frames).

First, it can be seen that the DTW which considers only
the chroma observations performs better than the chord
model. This is easily explained by the fact that the former
system implicitly models the note durations in the pseudo-
synthesis stage, whereas the statistical models do not take
them into account. This increases the precision, but also
the search space (from 16.2% to 100%).

However, the use of the onset information allows the
onset model to overcome this shortcoming and to obtain a
slighty better precision than the DTW systems, with a still
lower complexity. Indeed, a recognition rate of 87.16% is
obtained with a value of b = 50, against 86.07% for the
DTW system wich takes into account the onset observa-
tion, whereas the mean search space is 26.3%.

The increase of accuracy induced by the onset observa-
tion is smaller in the DTW system than in the statistical
models. This is probably due to the difficulty of modeling
the spectral flux process. Indeed, this onset detection func-
tion is not very well modeled by our binary templates, and
the logistic model of (3) seems to be more relevant to this
process than the local distance of (10).

The increase of search space in the onset model is bene-
ficial to the alignment precision. Indeed, even with a value
of b = 0 (which means that the onset information is not
used) the recognition rate increases from 64.49% (chord
model) to 69.70%. The explanation lies in the fact that
most chords are then represented by two states. Thus the
minimum duration of each chord is two frames instead of
one, which prevents the system from rapidly skipping sev-
eral states and leads to a smoother alignment path.

4.4 Pruning Evaluation

This hierarchical pruning method is run on the RWC pop-
ular music database. The lowest-level model uses the on-
set structure with parameter b = 50. Several values of the
pruning parameter 1 have been tested and the experimental
results are summed up in Table 2. The mean search space
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Table 2. Performance of our implementation of the align-
ment algorithm using different settings of the hierarchical
pruning method.

sizes are displayed for each pruning setting at the beat and
chord level, as the fraction of explored cells over the total
number of cells used by the DTW algorithm. At the bar
level, it is 0.16% for MsDTW and 0.04% for all the other
systems. For each setting, the total run-time is also pre-
sented, as well as the number of “pruning errors” on the
whole database (94 songs). A pruning error occurs when a
part of the ground truth alignment path is discarded by the
pruning process. The implementation of the algorithms is
in MATLAB, and was run on a Intel Core2, 2.66 GHz with
3.6 Go RAM under Linux.

The performance of three additional reference systems
is displayed. This first one is the baseline onset model with
no pruning. The second reference system uses beam search
(BS). This algorithm performs the decoding of the statisti-
cal model similarly to the Viterbi algorithm, but maintains
only the best NNj, paths, according to the partial Viterbi
score of (7). The minimum value of N;, for which the de-
coded path is the same as without pruning is N, = 700.

The third reference system is a MsDTW (multi-scale
DTW) system [11]. This system performs a DTW align-
ment, but it uses a coarse-to-fine pruning process in order
to keep only a fixed neighborhood around the alignment
path, at each level. The same three levels as in 3 are used.
The deviation parameter value 6 = 150 is the minimum
value yielding no pruning error on our database.

Finally, the last one uses constant tolerance radii §_ =
04 = 60. This value § is the lowest one for which no
pruning errors are made.

In terms of alignment precision, all the systems which
do not make pruning errors obtain the same scores as the
reference system (87.16%). Thus, the reduction of the
search space does not affect the alignment precision.

The results show the benefits of this pruning method,
since the search space and run time of all the tested systems
which use it are lower than the reference system (without
pruning). As expected, the explored space decreases with
the value of 7. No pruning error occurs until a value of n =
20, whose corresponding run-time is half of the reference
system (240 s against 484 s).

The benefit of this method compared to a fixed radius
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Figure 5. Number of explored states per audio frame at
the onset level for each song of the database, without and
with pruning (onset model with b = 50).

0 can also be seen: the tested system with 6 = 60 (the
minimum value for no pruning error) runs in 362 s, and
requires more space than our “adaptive” pruning strategy.

The hierarchical strategy allows our approach to be more
effective than beam search (3.53% search space against
5.74%). Hence, considering the whole signal (although
at a coarse level) seems to reduce the risk of following
a promising path which will eventually come to a “dead-
end”. This problem could be adressed by estimating a
tempo process in a beam search approach, such as in [15]
or [4]. However the complexity of these models would be
much higher.

In Fig. 5 are displayed the numbers of explored states
per audio frame in each song of our database, for three
different pruning strategies: the reference system (without
pruning), the system using a fixed radius 6 = 60 and the
system using our adaptive approach with n = 20. Both
pruning strategies achieve a significant reduction of the
search space on all the songs. More interestingly, we can
see that the search space width obtained with our pruning
strategy can greatly vary from songs to songs, whereas it
is more or less constant with a fixed § (only affected by
the number of onset states in a beat). This variability is
uncorrelated to the original number of states in the score,
indicating that our approach manages to adapt the pruning
process to the data. Thus, whereas in some cases, the width
obtained with our method is greater than with a constant 9,
it is most of the time significantly smaller.

5. CONCLUSION

In this paper, we show that a novel hierarchical pruning
approach for the approximate decoding of a hidden state
model leads to a good precision in our alignment task,
with a low complexity. In our experiments, we find that
the recognition rate is even higher than a DTW system
when a description of note onsets is used additionally to
the chroma vectors, while keeping a lower complexity than
this algorithm in the decoding phase.

The proposed hierarchical pruning method further re-
duces the complexity without affecting the accuracy of the
system. The main advantage of this strategy compared to
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the one used in [11] is that the tolerance radii can adapt to
the data, yielding a better overall efficiency.

In the continuation of this work, we will address the use
of a more elaborate model at the lowest level, which is now
feasible thanks to the pruning strategy. We will also try to
further reduce the number of states in the model, by taking
advantage of the repetitions in the musical structure.
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ABSTRACT

This paper proposes an improved query by sing-
ing/humming (QBSH) system using both melody and lyr-
ics information for achieving better performance. Sing-
ing/humming discrimination (SHD) is first performed to
distinguish singing from humming queries. For a hum-
ming query, we apply a pitch-only melody recognition
method that has been used for QBSH task at MIREX with
rank-1 performance. For a singing query, we combine the
scores from melody recognition and lyrics recognition to
take advantage of the extra lyrics information. Lyrics rec-
ognition is based on a modified tree lexicon that is com-
monly used in speech recognition. The performance of
the overall QBSH system achieves 39.01% and 23.53%
error reduction rates, respectively, for top-20 recognition
under two experimental settings, indicating the feasibility
of the proposed method.

1. INTRODUCTION

Query by singing/humming (QBSH) is an intuitive me-
thod for music retrieval. With a QBSH system, users are
able to retrieve intended songs by singing or humming a
portion of the intended song in order to retrieve it. Most
of the QBSH researches so far utilize melody information
as the only cue for retrieval [1-3]. Ghias et al. [1] pro-
posed one of the early papers of query by humming,
which used three different characters (‘U’, ‘D’, and ‘S’)
are to represent pitch contours. McNab et al. [2] enhanced
the representation by considering rhythm information of
segmented notes. Jang and Gao [3] proposed the first
QBSH system using dynamic time warping (DTW) over
frame-based pitch contours, which accommodates natural
singing/humming for better performance. More recently,
QBSH task is held in MIREX since 2006 and quite a few
related methods and corresponding performance can be
found therein [12].

Lyrics are also an important part of a song which serve
the cue for detecting the song's identity, or its mood or
genre. However, the use of lyrics for content-based music
analysis appears much later. Wu et al. [4] and Chen [14]
used lyrics to enhance music mood estimation. Wang et
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al. [5] proposed one of the few music information retriev-
al systems which used both lyrics and melody informa-
tion. However, queried lyrics were input by the user in-
stead of decoded from the user's acoustic input. Xu et al.
[6] suggested that acoustic distance must be considered
for a lyrics search when the user input approximate lyrics
query. Our method also takes advantage of the extra in-
formation provided by the lyrics, except that we attempt
to decode the queried lyrics from the user's singing input
directly, which does not impose extra efforts on the user.
Suzuki et al. [13] also proposed a similar system which
took singing input for lyrics recognition, and the results
were verified by the corresponding melody information.
However, their system could not handle humming input,
which is likely to happen in a music retrieval system.
Moreover, the corpus used for their experiments is too
small to justify the method’s feasibility.

The proposed QBSH system uses singing/humming
discrimination (SHD) to detect whether there exists lyrics
information. If yes, we apply speech recognition to de-
code the lyrics information and come up with a lyrics
score. The lyrics score is combined with the melody score
to enhance the recognition performance.

The remainder of this paper is organized as follows.
The proposed QBSH system is introduced in section 2.
Experimental results are shown in section 3. We conclude
this paper and address directions for future work in sec-
tion 4.

2. SYSTEM OVERVIEW

Figure 1 shows the schematic diagram of the proposed
system, in which blocks enclosed by thicker lines are the
methods proposed by this paper. In the offline part,
acoustic models and test corpus are used to obtain the
model similarity, where each model is characterized by
an RCD (right-context dependent) bi-phone. Phone-level
similarity is used for SHD, and syllable-level similarity
is used for lyric scoring. Lexicon network is also created
in this part for lyrics recognition. In the online part, SHD
is first performed to decide if the acoustic input is sing-
ing or humming. If the input is classified as humming,
the result is based on melody recognition alone. On the
other hand, if the input is classified as singing, lyrics
recognition is performed to obtain a decoded string of
lyrics. The output of our system then uses the combined
scores of melody and lyrics. The melody recognition
module uses UPDUDP [11] for pitch extraction and li-
near scaling (LS) [7] for comparison, which achieved the
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best performance during QBSH task in MIREX2009 [12].
The other components will be explained in detail in the
following subsections.

offline { online
> ) input audio
acoustic AT&T
models FSm
recognition
network
lerics recognition | melody recognition
model decoded lod fod
similarity string melody melody
computation scores scores
lyrics scoring
syllable level similarity
combination
C output )

Figure 1. The proposed system.

2.1 Phone and Syllable Similarity

An intuitive approach to SHD is based on the number of
distinct phones decoded in the user's acoustic input. The
more distinct phones in an acoustic query, the more likely
the query is singing instead of humming. In counting dis-
tinct phones, we also need to take phone similarity into
consideration for achieve most robust results. Moreover,
we also need to have similarity between syllables for ob-
taining lyrics score. The procedure for computing phone
and syllable similarity is explained next.

Firstly, we can obtain the confusion matrix of 156 bi-
phone models by performing free phone decoding on a
speech corpus by HTK [8]. Then we can use the accuracy
rates of the confusion matrix as the similarity measure
between any two phone models. It should be noted that
the similarity is not symmetric, but this does not affect
the proposed methods.

After defining phone similarity K, the similarity matrix
of 423 Mandarin syllables can be computed via dynamic
programming (DP) as follows. Considering two syllables
Syl, and Sylg, with phone sequence ay,ay, ..., a,, and
by, by, ..., b, respectively, the definition of the similarity
between Syl, and Syl; is:

tap(mn)

Slm(sylA'Sle) = max (m,n) ’ (1)
where the recursive formula of ¢, 5 is:
tag(i—1,))
tap(i,j) = max tap(i,j—1) . (@

K(a;, b)+tap(i—1,j—1)

with boundary conditions :
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tag(i,j) =0, ifi=00rj=0. 3)
Figure 2 shows the image of 423 x 423 similarity matrix
in gray scale, where white points represent 1, and black
points represent 0.

Figure 2. The similarity matrix of 423 Mandarin syl-
lables displayed as a gray-scale image.

2.2 Singing/Humming Discrimination

The basic rationale behind SHD is that the number of dis-
tinct phones occurring in humming is often less than that
in singing. Thus, free phone decoding is performed on the
singing input to obtain a phone sequence. If these phones
are similarity in acoustics, then the effective count of dis-
tinct phones should be less. Assume there are n distinct
phones a4, a,, ..., a,, in the decoded phone sequence, then
the effective count is defined as follows. Let P to be a sub
matrix of sim for a;a,, ..., a,, then we can calculate the
effective phone count in the sequence:

r =n+1-—median(s) 4)
where r is the effective phone count, and s is the column
sum of P. A lower effective phone count indicates that
the acoustic query is more likely to be humming instead
of singing. In particular, when a,a,, ..., a,, are very dif-
ferent in pronunciation, then median(s) is close to 1 and
r is close to n. On the other hand, if these phones are
very similar in pronunciation, then median(s) is close to
nand r is close to 1.

Thus an optimum threshold of effective phone count
can be set for SHD for minimizing classification error.

2.3 Lyrics Recognition

If an acoustic query is classified as singing, we can apply
lyrics recognition for better performance. Since the aver-
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age length of a singing query is about 7 seconds, the first
30 syllables of each song are used to build up the recogni-
tion network. (Without loss of generality, here we assume
the anchor position of each query is the beginning of a
song. If not, then we can simply use the phrase onset as
the beginning to select the first 30 syllables for building
the network.) By considering the recognition network as a
finite state machine, this network is determinized and
minimized by AT&T FSM tool [9]. Moreover, to handle
the case of "stop in the middle", an epsilon transition is
added between each internal state and the terminal state.
Figure 3 shows an example of the network, consisting of
the first 3 syllables of 2 songs, where Song-i-Syl-j de-
notes the j-th syllable of the i-th song, and <eps> denotes
the epsilon transition.

Song-1-Syl-1

Song-2-Syl-1

Figure 3. An example of the recognition network.

2.4 Lyrics Scoring and Combination

After running Viterbi search over the recognition network,
we can decode a syllable sequence that has the maximum
likelihood. To obtain the similarity score based on lyrics,
we then compare the decoded syllable sequence with the
30 syllables of each song. This is again achieved by DP
instead of using exact string matching since we want to
have a score indicating the similarity. Consider two sylla-
bles sequences, Seq, and Seqp containing syllables
Ay, A,, ..., A, and By, B,, ..., B, respectively. The recur-
sive formula for DP is:

t(i—1,))
t(i,j) = max t,j—-1) . (5)
sim(4;, B) +t(i—1,j - 1)
with boundary conditions :
t(i,j) = 0,ifi=00rj=0 (6)

Thus, t(m,n) can be taken as a similarity score between
the decoded string from the query and the lyrics of each
song in the database. In implementation, we let Seq, to
be the decoded string, and the first k syllables of the lyr-
ics (with k equal to the length of Seq,) to be Seqy for
computing the score.

For score combination, we need to normalize each in-
dividual score. For a given query to a song database of
2000 songs, we will eventually obtain vector L of size
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2000 representing the lyrics raw similarity scores, and
vector M of size 2000 representing the melody raw dis-
tance measures (computed by LS). We than linearly
normalize M and —L, respectively, to the range [0, 1].
The normalized distance vectors M’ and L' are then com-
bined via the following formula:

C=pxlogM +(1—-p)xlogl’ (7
Then the minimum entry in C corresponds to the most
likely song considering both lyrics and melody. Note that
if p is equal to 0, only the lyric information is considered.
On the other hand, if p is equal to 1, only the melody in-
formation is considered. The value of p was set to 0.5
empirically in our experiments.

3. EXPERIMENT
3.1 The Dataset

The public corpus MIR-QBSH [10] is used extensively in
our experiment, where the anchor positions for all queries
are from the beginning. Since our speech recognition en-
gine is for Mandarin, therefore we selected 2469 clips
from the corpus which correspond to 23 Mandarin songs.
To increase the complexity of the comparison, we added
2131 noise songs to the database, such that the total size
of the database is 2154.

First of all, 80 clips are selected from the corpus with
evenly distributed gender and types (singing/humming).
These clips were hand labeled to have the ground truth,
and then used to train the threshold-based classifier for
SHD. The remaining 2389 clips are used for testing the
overall performance of our QBSH system.

Acoustic models of RCD bi-phones for computing
phone/syllable similarity were obtained by training over a
normal Mandarin speech of 80 subjects.

3.2 Experimental Results

3.2.1 Results of SHD

Figure 4 shows the detection error tradeoff (DET) curve
of SHD using the training data of 80 clips, where singing
clips are viewed as positive while humming clips nega-
tive. Based on this plot, the threshold of effective count is
set to 20.4958 for SHD to achieve equal error rates of
false positive and false negative. Figure 5 gives the dis-
tribution of the effective phone counts of the training data,
together with the identified Gaussian models via maxi-
mum likelihood estimate. The Gaussian models for posi-
tive data (of size n;) and negative data (of size n,) are
denoted as g, and gy, respectively, in the figure.
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Figure 5. The distribution of the effective phone counts
of the training data of SHD. The Gaussian models for
positive data (of size n;) and negative data (of size n,)
are g, and g4, respectively.

To evaluate the performance of SHD over unseen data,
1183 clips were selected (out of the 2389 clips) and hand
labeled as singing or humming. Table 1 shows confusion
matrix of SHD, with a recognition rate of 78.61%. In par-
ticular, 10.99% of the humming clips are misclassified as
singing, which may generate erroneous output in lyrics
recognition. Initial error analysis indicates that some of
the misclassified humming clips are caused by a variety
of pronunciation during the humming. On the other hand,
24.51% of the singing clips are misclassified as humming,
which is not so detrimental to the overall performance
since the accuracy of melody recognition is already high.
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cognition results, . . .
ground truth singing | humming
singing 75.49% | 24.51%

(687) (223)
humming 10.99% | 89.01%

(30) (243)

Table 1. Recognition result of SHD.

3.2.2 Lyrics recognition and Combined Results

When we applied SHD to 2389 clips, 1477 of them were
classified as singing. Figure 6 shows the top-20 recogni-
tion rate of these 1477 clips over a song database of size
2154. The top-20 recognition rate is 72.99%.

73

7281

7281

recognition rate
N
~

7261

725

724 L i i
0 5 10 15 20
top N
Figure 6. The top-20 lyrics recognition rate of 1477 clips
classified as singing.

The value of p in Eq. (7) was set to 0.5 empirically.
Now it is time to do a post analysis by plotting the overall
recognition rates versus the values of p, as shown in Fig-
ure 7. Apparently the performance stays much the same
for these two cases of LS resolution equal to 11 and 51,
respectively, as long as the value of p lies within [0.3,
0.9]. This confirms our selection of p value of 0.5.
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Figure 8 shows the overall performance of the pro-
posed QBSH system. Different values of resolution in LS,
11 and 51, were used in this experiment. The lower and
upper ratios of LS were set to be 0.5 and 2. The top-20
recognition rates of resolution 11 and 51 are 92.80% and
96.19%, respectively, which outperform the baseline sys-
tem (88.20% and 95.02%). The error reduction rates are
39.01% and 23.53%, respectively.
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Figure 8. The top-N recognition rate of 2389 clips.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an improved QBSH sys-
tem that distinguishes singing queries from humming
ones, and then applies different procedures in order to
take advantage of the lyric information of singing input.
The experimental results demonstrate the effectiveness of
the proposed system, with error reduction rates of 39.01%
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and 23.53% for LS with resolutions of 11 and 51, respec-
tively.

Several directions for immediate future work are under
way. Currently, our acoustic models were obtained by
training on normal speech corpus. This can be improved
by training or simply adapting using singing corpora in-
stead. Moreover, it would be desirable to incorporate
multi-lingual speech recognition since there are quite a
few famous songs with the same tune but different lyrics
in different languages.
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ABSTRACT

Page appearance and layout for music notation is a
critical component of the overall musical information
contained in a document. To capture and transfer this
information, we outline an interchange format for OMR
applications, the OMR Interchange Package (OIP)
format, which is designed to allow layout information
and page images to be preserved and transferred along
with semantic musical content. We identify a number of
uses for this format that can enhance digital
representations of music, and introduce a novel idea for
distributed optical music recognition system based on this
format.

1. INTRODUCTION

Page appearance and layout for music notation is a
critical component of the overall musical information
contained in a document. For example, musically
semantic information, such as note duration, is often
visually augmented by adjusting horizontal spacing to
reflect a spatial representation of note duration [1]. Some
scholars infer geographical origin or time period based on
note shapes, or even, in the case of handwritten
manuscripts, by the particular “hand” of a scribe [2, 3].
The layout may also reveal some subtle intent of the
composer, especially in sketches and autograph
manuscripts [4].

To date, however, there has been little effort to
attempt to preserve this information when a page is
scanned and processed by optical music recognition
(OMR) software. This presents several opportunities for
improvement. By maintaining a direct relationship
between recognized musical symbols and the original
image it was extracted from, we contend that musicians
and music scholars will be better able to understand and
interpret digital facsimiles of musical documents while
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simultaneously providing the ability to index, search, and
retrieve these documents.

For OMR researchers, this also presents an
opportunity to build large global ground-truth datasets.
By maintaining the relationship between the graphical
representation and the semantic interpretation of a
musical symbol, we can build sets of training data which
exemplar-based adaptive supervised-learning software
can use to train and test its recognition models.
Furthermore, by allowing for these datasets to be shared
between different adaptive OMR platforms, we can take
advantage of work done by others who have created
different datasets to further improve recognition software.
This is discussed further in Section 4.

In this paper, we present the OMR Interchange
Package (OIP) format, a common interchange format for
OMR applications that bundles notation, images, and
metadata together in a single file. Work on this format
was inspired by functionality present in large, established
digitization projects, most notably Google Books and the
Internet Archive. These projects use file formats designed
to preserve layout information in textual materials. We
discuss two such formats, hOCR and DjVu, and examine
them for ideas of how we might construct a similar music
notation-specific format.

Rather than build a completely separate set of
specifications, the OIP format combines established
standards into an application profile—that is, we provide
specifications on how these standards should be
combined. These standards concern music, image, and
metadata encoding formats, contained within an
established standard for packaging and serializing these
files into a single file, for easy transport across multiple
systems. By taking an application profile approach,
instead of establishing a new, monolithic standard, we
hope to take advantage of existing software to manipulate
component files, e.g., reading and writing images, and
delegate the maintenance and improvement of the
component standards to their respective communities.

One of the goals for developing the OIP format is to
provide a mechanism for interchange between different
elements in an OMR digitization workflow, from capture
through recognition and into any number of potential
uses. Specific design considerations were made to ensure
that non-common practice notation systems are
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accommodated, to allow for encoding earlier musical
print and manuscript sources.

2. BACKGROUND

2.1 Optical Character Recognition

The Google Books project [5] and the Internet Archive
[6] are industrial-scale initiatives to convert physical
textual items, e.g., books, magazines, and newspapers, to
searchable digital representations. As items in these
collections are digitized, their page images are processed
by OCR software, extracting the textual content, and
facilitating full-text searching of their collections.

Within the OCR workflow, the precise location on the
page where a word occurs is saved through the use of a
bounding box that defines a region around the word.
When the words on the page are converted to searchable
text, the bounding box coordinates are stored, along with
the word itself. In some cases, similar coordinates can be
stored to outline higher-level page elements such as lines,
columns, or paragraphs. Figure 1 shows an example from
the Internet Archive of a page image returned from a full-
text search with the phrase “Them will I gild with my
treasure” highlighted in reference to its position on the
original page scan.

6 It/ LAW OF THE YUKON.

[Them] il [ [gild] fwith| poy freasure] them will I glut
with my meat;

But the others—the misfits, the failures—I trample
under my feet.

Dissolute, damned and despairful, erippled and palsied
and slain,

Ye would send me the spawn of your gutters—Go!
take back your spawn again.

Figure 1: Document with search terms high-
lighted in situ. (Source: Internet Archive)

In contrast, we can find little evidence to suggest
similar techniques are in widespread use for databases of
music documents. Instead, collections either choose to
simply display the page image with no transcription of
the source available (e.g., [7, 8]), or transcribe the content
into a searchable and manipulable digital format without
reference to the original page layout (e.g., [9]). For music
documents, where the layout of the symbols can play a
critical role in determining the intended interpretation of
the music, we posit that a hybrid approach is needed,
similar to that demonstrated by Google Books or the
Internet Archive.

Critical to the development of these systems is a
common standard that allows various systems in an OMR
workflow to capture and preserve images, layout, and
music semantics. To help inform our development of
such a standard, we identified formats used in the textual
domain for encoding layout information: The hOCR
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format, developed as an output format for the Google-
sponsored OCRopus document analysis software, and
DjVu, a third-party document imaging solution adopted
by the Internet Archive for displaying its digitized texts.

2.1.1 hOCR

hOCR [10] is a format that uses standard HTML tags, but
embeds OCR-specific information that can be read and
manipulated by other OCR software. According to the
authors of the hOCR specification, it can be used to
encode “layout information, character confidences,
bounding boxes, and style information” [11]. For generic
HTML rendering software, like a web browser, the OCR-
specific information is ignored and the page is rendered
without interference.

For the developers of hOCR, HTML was preferred
over the definition of a new XML format since the
HTML specification already contains many tags for
defining document elements, such as headings, tables,
paragraphs, and page divisions. Furthermore, the files can
be viewed, manipulated, and processed with a wide range
of existing tools, such as browsers, editors, converters,
and indexers.

To encode information about a page layout, hOCR
uses the “class” and “title” attributes of HTML tags. For
example, a bounding box outlining a paragraph may be
defined as:

<div class="ocr_ par” id="par_ 7"
title="bbox 313 324 733 652">

...paragraph text...

</div>

Figure 2: hOCR format defining a paragraph
bounding box

The bounding box is given as two sets of pixel co-
ordinates corresponding to the upper-left and lower-right
corners of the box, relative to the upper-left corner of the
image.

Page images corresponding to the text output are
linked from the hOCR document with either a local path
name or an HTTP URL. The identity and integrity of the
image file can be verified by embedding the MDS5
checksum of the image file in the hOCR file.

2.1.2 DjVu
DjVu is primarily designed as a highly efficient method
of compressing and transferring images and documents.
Included in its specification, however, is the ability to
include a “hidden” text layer within a binary DjVu file.
The DjVu format specification [12] defines seven
different types of document “zones,” each featuring a
bounding box defined by an offset co-ordinate from a
previously defined zone and a given width and height.
These zones can define boundaries for pages, columns,
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regions, paragraphs, lines, words, or characters. Text is
encoded as UTF-8.

2.2 Music Applications
hOCR and DjVu are not the only formats that can provide
positional information about text. The popular PDF
standard allows for this functionality as well. They serve,
however, as examples of existing formats in the textual
domain from which we can begin to discuss similar
approaches in the musical domain.

To begin building our standard, we define five basic
criteria that the OIP format should conform to:

2.2.1 Must be self-contained

Files conforming to the OIP format should be self-
contained in a single file. The choices here are between
defining a unique binary format, as the DjVu format
does, or allowing multiple files to be packaged as a single
file.

2.2.2 Must encapsulate multi-page documents

Both hOCR and DjVu encode multiple pages in a single
file. hOCR provides only the textual content of those
pages and links to externally stored images, while DjVu
stores both image and content for multiple pages within a
single file.

2.2.3 Must encapsulate notation, images, and metadata
For each page in the document our format must include a
page image, the notation content, and, if available, any
other metadata about that page. Here, the music domain
requires a different approach than the text domain, owing
largely to the complexity of encoding music notation over
encoding text. In Section 3, we discuss the specific
standards chosen for this criteria.

2.2.4 Must use existing standards

Drawing largely on the arguments made by the hOCR
developers to justify their use of HTML over creating a
new format [10], we specify that, wherever possible,
existing standards must be used in preference to creating
one. This is especially true for encoding notation, where
new formats are introduced every few years, often
designed to meet very specific needs, and fall out of use
within a few years of being introduced. By using existing
standards, we hope to ensure a broader support
community beyond our specific application.

2.2.5 Must allow extended information

Beyond the required notation, images, and metadata
storage, we see the OIP format as a general-purpose
container for storing any extra information about the page
content. However, this extra information should be
opaque to clients that do not support it, and should not
interfere with their ability to read and write OIP files. For
example, a specific application could save extended
colour-space information about an image in the OIP,
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available to applications that can use it, but ignored by
clients that cannot use it.

3. FORMAT SPECIFICATION

As discussed in the previous sections, we have chosen to
combine existing standards into an application profile. In
this section we will discuss our specific choices of
standards and how they should be combined to create an
OIP-compliant file. In the interests of space we will
specifically avoid any in-depth explanation about the
component standards themselves, since they are freely
available for consultation.

3.1 Packaging

An OIP file is, at its most basic representation, a
collection of files and folders serialized as a single file.
Rather than simply allowing an ad hoc method of
bundling these files and folders together, we chose to use
a very minimal standard for organizing the content of
these files.

There are several ways to approach this problem. One
type of solution is exemplified by formats such as the
Metadata Encoding and Transmission Standard (METS).
Data typically represented in binary formats (e.g.,
images) can be stored, for example, within an XML file
by Base64 encoding. A single METS file containing
many high-quality images could potentially be many
gigabytes in size, however.

A second approach is the file bundle approach. This is
used by many formats, including Microsoft’s XML-based
Office formats (e.g., DOCX) and the Java JAR format.
These files are simple file and folder hierarchies
containing component files, such as images or text files.
They appear as a single file archive by using a well-
known file archiving system (e.g., ZIP or TAR). Once
these bundles have been uncompressed, read and write
operations on the smaller component files can be done
directly via the native file system and not on the single
monolithic XML file.

The Baglt format is a lightweight file bundling
specification. It was created and is maintained by the
Library of Congress and the California Digital Library. It
is currently in the process of becoming an IETF standard
[13]. The name refers to a colloquial rendering of the
Enclose and Deposit method [14], also known as the “bag
it and tag it” method.

This format defines a simple hierarchy of files and
folders, known as a “bag.” These can be represented
plainly on any computer system as standard files and
folders, or they can be converted into a single file using
ZIP or TAR packaging.

Minimally, one directory and two files must be
present in every bag in order to be considered compliant
to the standard. A data directory contains any
arrangement of files or folders are stored. This is the
bag’s “payload.” One of the required files is a bagit.txt
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file that simply stores the version of the Baglt
specification to which that bag conforms and the
character encoding used for the metadata files. The
second required file is a manifest file listing checksums
for each file within the data directory, helping to ensure
the integrity and identity of each of the files in the bag.
Other optional files are outlined in the Baglt
specification [13].

<bag-directory>

|- bagit.txt

| - manifest-md5.txt

| - [other optional bagit files]

|- data

|- [page 1]

[image files]
[notation files]
[metadata files]
2]
[image files]
[notation files]
[metadata files]

Figure 3: A generalized OIP structure.

For the OIP format, we further specify a file hierarchy
within the data directory of a bag. A folder is created in
the data directory for each page in a multi-page
document, allowing the format to accommodate
documents of any size. In each page folder, we store files
relating to this page. A generalized example of the OIP
structure is given in Figure 3.

This does not create incompatibilities with the
original Baglt specification, as there is no structure to
which the data directory must conform. Software for
processing Baglt files will guarantee the integrity and
identity of each file in the bag without needing to
understand the OIP format.

3.2 Notation

There are many file formats for encoding music notation,
but for this specific application we require a format that
can encode positional coordinates for every musical
element on the page. This eliminates many traditional
formats used for notation interchange, such as MIDI. The
Notation Interchange File Format (NIFF) fits this
requirement, but is no longer actively maintained and is
considered an obsolete standard [15]. The SharpEye
output format (MRO) [16] also encodes this information
and is used by [17] to provide positioning information for
musical elements. This format, however, is specifically
designed for use with common Western notation (CWN)),
limiting its usefulness for older or alternative notation
systems. MusicXML [18] and NeumesXML [19] focus
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respectively on CWN and neumed notation, limiting their
applicability for a broad range of notation systems.

For OIPs, we recommend the use of the Music
Encoding Initiative (MEI) format as a notation encoding
scheme. MEI inherits many features of the Text Encoding
Initiative (TEI), a format specifically designed for
scholars representing original text sources in digital form.
MEI can also adequately represent CWN as well as other
notation systems [20].

METI allows for bounding boxes, or “zones,” to be
defined for a given image and identified with a unique
ID. These id’s can then be attached to semantically
defined musical elements in MEI. A brief example is
shown in Figure 4.

<facsimile source="s2">
<surface>

<graphic xml:id="s2pl"
xlink:href="m000001719 0001.tif"/>

<zone xml:id="s2plzl" lrx="0"
lry="0" ulx="0" uly="0"/>

<zone xml:id="s2plz2" lrx="1"
lry="1" ulx="10" uly="10"/>

</surface>
</facsimile>
<l-- -

<measure n="1" xml:id="dle656"

facs="s2plzl"/>

Figure 4: A MEI-formatted example showing
bounding box definitions.

In MEI, the <graphic> eclement defines a link to a
page image, while subsequent <zone> elements outline
regions of this image, identified with a unique xml:id
attribute. These zones are then used later within the music
notation markup, as illustrated in Figure 4 by the
<measure> tag. It uses the facs attribute to link a
defined bounding box to a measure definition. This
attribute is available to all music notation elements.

3.3 Images

For image formats, we follow the guidelines given in [21]
for musical master archival images. These guidelines
recommend lossless file encoding formats such as TIFF
or PNG for archival formats. While there is no technical
reason for not using other formats such as lossy JPEG,
we suggest lossless formats to maintain the highest
possible image quality.

One issue we have not yet addressed is how to
reconcile the differences between an original image and
an image file that has been cropped, de-skewed, and
prepared for processing by an OMR package. Since any
geometric manipulation will affect the co-ordinates of the
musical elements on the page, it would be difficult to
automatically reconcile the position of musical elements
in an original image, when the notation was extracted
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using a processed image. This becomes especially
important when considering the OIP format as an
interchange format between multiple OMR systems, each
of which may use different image processing techniques,
or even require that certain elements of an image be
removed prior to recognition, such as staff lines.

To reconcile this, we specify that, at a minimum, an
OIP should contain the original page image, and a page
image that the OMR system used during the recognition
stage prior to removing any musically relevant elements.
The additional inclusion of any intermediary images used
by OMR software is permitted, but not required. For an
OIP that has been processed by multiple OMR packages,
each package should save its source image and
recognized notation in MEIL.

3.4 Metadata

METI has the facilities to capture bibliographic, analytic,
and editorial metadata. There is also the possibility that
other metadata can be captured and stored within the file
hierarchy. While we do not require any further metadata
beyond what can be captured in MEI, we do not prevent
the inclusion of other files with metadata formats
describing, for example, detailed image processing
techniques, historical and archival information, or library-
specific local information.

4. APPLICATIONS

We have formulated the OIP format as an interchange
format between multiple elements of an OMR workflow,
from digitization through recognition, and finally into a
delivery format specifically designed to capture and
transfer page layout along with the semantic music
content. In this section, we identify three specific
applications where OIP files can be implemented as a
standardized format for constructing tools useful for
music scholars and OMR research.

4.1 Diplomatic Facsimiles

While there is some disagreement on the actual definition
of the term, we define diplomatic facsimile as “a
visualization (on-screen or in print) from the digital
transcription of a source artifact, such that it has the same
semantic content as the source, and its glyphs and layout
are similar to the original source” [22].

For notation styles outside of the CWN tradition, a
diplomatic facsimile provides the ability to transcribe a
musical source with its original layout and symbols,
without interpreting it by using modern music notation
symbols. Barton, Caldwell, and Jeavons provide an
excellent overview of the importance of this distinction
[23]. Diplomatic facsimiles also allow libraries and
archives to withhold distribution of original images due
to copyright restrictions, while simultancously allowing
scholars access to a faithful electronic reproduction of the
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original musical content, including precise positioning for
each musical element in the document.

4.2 Online Music Document Databases

An online database of music documents, similar to Goo-
gle Books or the Internet Archive’s display of textual
documents, could be constructed with OIP as a source
format for these documents. In an OMR workflow, OIP
files would serve as an interchange format between the
OMR software and a database system designed to orga-
nize, index, and display these documents.

As mentioned in the introduction, music scholars
often use visual cues in the layout of a page of music to
determine how a piece of music might be performed, or
where it came from. Viewing these documents in their
original form, while still making them available for
content-specific searching and indexing, would provide a
valuable research tool for many music scholars.

Furthermore, an online music document database
could highlight relevant musical phrases matching a
user’s query, displayed as an invisible layout on the
original image. Advanced computer processing could
potentially provide links between similar passages within,
or across, musical pieces, allowing users to navigate a
document by musical phrase.

4.3 Distributed Optical Music Recognition

The extent, variety, and variability of musical symbols
pose a unique problem to optical music recognition
software. These symbols encompass indications of pitch,
duration, dynamics, tempo, or performer interpretation
(e.g., turns and trills). Different printing practices or fonts
also introduce variations in these shapes.

Adaptive  OMR (AOMR) software attempts to
account for this variability by using machine-learning
methods for understanding and interpreting new shapes,
or variations on known shapes. These systems are often
trained using human annotators or correctors, who
provide a system with the correct musical interpretation
of a graphical shape [24].

This training process is often the most tedious and
expensive part of the OMR process. Developing training
sets of sufficient quantity and variety is an expensive and
labour-intensive process. Similarly, a poorly trained
recognition system will require more human intervention,
leading to lower overall throughput for any digitization
and recognition initiative. For large digitization projects,
this can have a significant impact on the overall cost of
digitizing these materials [25].

With a common interchange format, however, these
data sets could be built cumulatively. As new pieces of
music are recognized and corrected, this work can be
saved and used to train other AOMR clients with no
further intervention by a human annotator.

Perhaps more importantly, this concept can be used to
build a distributed global network of AOMR clients.
Sharing training data with other networked OMR clients
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would allow them to build their recognition models using
data previously provided by other members of the
network. For example, an archive that has provided a data
set of examples from a 16th-Century Italian music printer
can make this data set available immediately to other
members of the network, allowing these clients to
immediately re-train their recognition systems to take
advantage of this new data and increase their accuracy on
this particular repertoire.

5. CURRENT AND FUTURE WORK

To date, we have finished the initial release of an open
source Python library for reading and writing Baglt files,
available at [26]. This is part of a larger project to
develop a distributed optical music recognition system, a
networked collection of adaptive OMR clients.
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ABSTRACT

Social tags are receiving growing interests in informa-
tion retrieval. In music information retrieval previous re-
search has demonstrated that tags can assist in music clas-
sification and clustering. This paper studies the problem of
combining tags and audio contents for artistic style clus-
tering. After studying the effectiveness of using tags and
audio contents separately for clustering, this paper pro-
poses a novel language model that makes use of both data
sources. Experiments with various methods for combining
feature sets demonstrate that tag features are more useful
than audio content features for style clustering and that the
proposed model can marginally improve clustering perfor-
mance by combing tags and audio contents.

1. INTRODUCTION

The rapid growth of music the Internet both in quantity and
in diversity has raised the importance of music style analy-
sis (e.g., music style classification and clustering) in music
information retrieval research [10]. Since a music style is
generally included in a music genre (e.g., the style Progres-
sive Rock within the genre of Rock) a style provides finer
categorization of music than its enclosing genre. Also, for
much the same reason that all music in a single genre has
some commonality, all music in a single style has some
commonality belonging to a same style, and the degree
of commonality is stronger within a style than within its
enclosing genre. These properties suggest that by way of
appropriate music analysis, it is possible to computation-
ally organize music sources into not only musicologically
meaningful groups but also into hierarchical clusters that
reflect style and genre similarities. Such organizations are
likely to enable efficient browsing and navigation of music
items.

Much of the past work on music style analysis meth-
ods is based solely on audio contents and various feature
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extraction methods have been tested. For example, [32]
presents a study on music classification using short-time
analysis along with data mining techniques to distinguish
among five music styles. Pampalk et al. [17] combine
different similarity sources based on fluctuation patterns
and use a nearest neighbor classifier to categorize music
items. More recently Chen and Chen [3] use long-term
and short-term features that represent the time-varying be-
havior of music and apply support vector machines (SVM)
to classify music into genres. Although these audio-
content-based classification methods are successful, music
style classification and clustering are difficult problems to
tackle, in part because music style classes are more nu-
merous than music genres and thus computation quickly
reaches a limit in terms of the number of styles to classify
music into. One then naturally asks whether adding non-
audio features push style classification/clustering beyond
the limit of audio-feature-based analysis.

Fortunately, the rapid development of web technologies
has made available a large quantity of non-acoustic infor-
mation about music, including lyrics and social tags, latter
of which can be collected by a variety of approaches [24].
There has already been some work toward social tag based
music information retrieval [1,11,13,16,23]. For example,
Levy and Sandler [16] demonstrate that the co-occurrence
patterns of words in social tags are highly effective in
capturing music similarity, Bischoff et al. [1] discuss the
potential of different kinds of tags for improving music
search, and Symeonidis et al. [23] propose a music recom-
mendation system by performing latent semantic analysis
and dimensionality reduction using the higher order SVD
technique on a user-tag-item tensor.

In this paper we consider social tags as the source of
non-audio information. We naturally ask whether we can
effectively combine the non-audio and audio information
sources to improve performance of music retrieval. Some
prior work has demonstrated that using both text and audio
features can improve the ranking quality in music search
systems. For example, Turnbull et al. [25] successfully
combine audio-content features (MFCC and Chroma) with
social tags via machine learning methods for music search-
ing and ranking. Also, Knees et al. [12] incorporate au-
dio contents into a text-based similarity ranking process.

Department of Computer Science

ogihara@cs.miami.edu



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

However, few efforts have been made to examine the ef-
fect of combining tags and audio-contents for music style
analysis. We thus the question of, given tags and repre-
sentative pieces for each artist of concern, whether the tags
and the audio-contents of the representative pieces com-
plement each other with respect to artist style clustering,
and if so, how efficiently those pieces of information can
be combined.

In this paper, we study the above questions by treat-
ing the artist style clustering problem as an unsupervised
clustering problem. We first apply various clustering algo-
rithms using tags and audio features separately, and exam-
ine the usefulness of the two data sources for style cluster-
ing. Then we propose a new tag+content (TC) model for
integrating tags and audio contents. A set of experiments
is conducted on a small data set to compare our model with
other methods, and then we explore whether combining the
two information sources can improve the clustering perfor-
mance or not.

The rest of this paper is organized as follows. In Section
2 we briefly discuss the related work. In Section 3 we intro-
duce our proposed TC model for combining tags and con-
tents for artist style clustering. We conduct comprehensive
experiments on a real world dataset and the experimental
results are presented in Section 4. Section 5 concludes.

2. RELATED WORK

Audio content based automatic music analysis (clustering,
classification, and similarity search in particular) is one of
the most important topics in music information retrieval.
The most widely used audio features are timbral texture
features (see, e.g., [26]), which usually consist of Short
Term Fourier Transform (STFT) and Mel-Frequency Cep-
stral Coefficients (MFCC) [20]. Researchers have applied
various data mining and statistically methods on these fea-
tures for classifying or clustering artists, albums, and songs
(see, e.g., [3,5,18,19,26]).

Music social tags have recently emerged as a popular
information source for curating music collections on the
web and for enabling visitors of such collections to express
their feelings about particular artists, albums, and pieces.
Social tags are free-text descriptions of any length (though
in practice there sometimes is a limit in terms of number of
characters) with no restriction on the words that are used.
Social tags thus can be as simple as a single word and as
complicated as a long, full sentence. Popular short tags
include heavy rock, black metal, and indie pop and long
tags can be like “I love you baby, can I have some more?”

As can be easily seen social tags are not as formal as
descriptions that experts such as musicologists provide.
However, by collecting a large number of tags for one sin-
gle piece of music or for one single artist, it seems pos-
sible to gain understanding of how the song or the artist
is received by the general listeners. As Lamere and Pam-
palk point out [13] social tags are widely used to enhance
simple search, similarity analysis, and clustering of music
items [13]. Lehwark, Risi, and Ultsi [15] use Emergent-
Self-Organizing-Maps (ESOM) and U-Map techniques on
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tagged music data to conduct clustering and visualization
in music collections. Levy and Sandler [16] apply latent
semantic dimension reduction methods to discover new se-
mantics from social tags for music. Karydisi et al. [11] pro-
pose a tensor-based algorithm to cluster music items using
3-way relational data involving song, users, and tags.

In the information retrieval community a few attempts
have been made to complement document clustering us-
ing user-generated tags as an additional information source
(see, e.g., [21]). In such work the role that social tags play
is only supplementary because the texts appearing in the
original data are, naturally, highly more informative than
tags.

The situation in the MIR community seems different
from this and the use of tags seems to show much stronger
promise. This is because audio contents, which are the
standard source of information, have to go through feature
extraction for syntactic or semantic understanding and thus
the distance between the original data source and the tag
in terms of informativeness appears to be much smaller in
MIR than in IR.

There has been some work exploring the effectiveness
of joint use of the two types of information sources for re-
trieval, including including the work in [25] and [12] where
audio contents and tags are combined for searching and
ranking and the work in [30] that attempts to integrate au-
dio contents and tags for multi-label classification of mu-
sic styles. These prior efforts are concerned with super-
vised learning (i.e., classification) while the present paper
is concerned with unsupervised learning (i.e., clustering).

3. TAG+CONTENT MODEL (TC)

Here we present our novel language model for integrating
tags and audio contents and how to use the model for artis-
tic style clustering.

3.1 The Model

Let A be the set of artists of interest, S the set of styles of
interest, and 7 the set of tags of interest. We assume that
for each artist, for each style, and for each artist-style pair,
its tag set (as a multiset in which same elements may be re-
peated more than once) is generated by mutually indepen-
dent selections. That is, for each artist a € A and for each
nonempty set of tags t = (¢1,...,tn), t1,...,tn € T, we
define the language model, p(t| a), by

n

p(t|a) = ] p(t: ] a)

i=1
Similarly, for each style s € S, we define its language
model p(t | s), by

n

p(t]s)=]]ptils)

i=1

Although we might want to consider the artist-style joint
language model p(t|a, s), we assume that the model is
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dictated only by the style and that it is independent of the
artist. Thus, we assume

p(tla,s) =p(t|s)

for all tags t € 7. Then the artist language model can be
decomposed into several common style language models:

p(tla) = p(t|s)p(s|a).
seES
Instead of directly choosing one style for artist a, we as-
sume that the style language models are mixtures of some
models for the artists linked to a, i.e.,

p(s|a) =Y p(s|b)p(d|a),
beA
where b is an artist linked to artist a. Combining these
yields the following model:

p(fla) =TT D wtils)p(s [ b)p(b|a).

i=1seSbecA

We use the empirical distribution of the observed artists
similarity graph for p(b|a) and let B, , = p(b|a). The
model parameters are (U, V'), where

Ut,s :p(t|s)v Vb,s :p(b|8)

Thus, p(t; | a) = [UV ' B];.q.

The artist similarity graph can be obtained using meth-
ods described in Section 3.2. Now we take the Dirichlet
distribution, the conjugate prior of multinomial distribu-
tion, as the prior distribution of U and V. The parame-
ter estimation is maximum a posteriori (MAP) estimation.
The task is

U,V =argmin/(U, V),
LAY
where (U, V) = KL (A||UVTB) — InPr(U, V).

Using an algorithm similar to the nonnegative matrix
factorization (NMF) algorithm in [14], we obtain the fol-
lowing updating rules:

ey

U, < U, {CBTV}

ts

Vie < Vi, [BCTU|
where C;; = A;;/[UV ' BJ;;. The computational algo-
rithm is given in Section 3.3.

3.2 Artist Similarity Graph Construction

Based on the audio content features, we can construct the
artist similarity graph using one of the following popular
methods, which is due to Zhu [33].

€ NN graphs A strategy for artist graph construction is the
e-nearest neighbor algorithm based on the distance
between the feature values of two artists. For a pair
of artists 7 and j, if the distance d(4, ) is at most e,
draw an edge between them. The parameter € con-
trols the neighborhood radius. For the distance mea-
sure d, the Euclidean distance is used throughout the
experiments.

59

exp-weighted graphs This is a continuous weighting
scheme where W;; = exp(—d(i, j)?/a?). The pa-
rameter « controls the decay rate and is set to 0.05
empirically.

3.3 The Algorithm

Algorithm 1 is our method for estimating the model pa-
rameters.

Algorithm 1 Parameter Estimation

Input: A: tag-artist matrix.
B: artist-artist relation matrix;
Output: U: tag-style matrix;
V: artist-style matrix.
begin
1. Initialization:
Initialize U and V randomly,
2. Iteration:
repeat
2.1 Compute CU = AU/[UVTB]U,
2.2 Assign Uy, — U, [CBTV} ,

2.3 Compute C;; = Ailj/[BUVTt

Jijs

2.4 Assign Vi, — Vi [BCTU} "
until convergence ('

3. Return V
end

3.4 Relations with Other Models

The TC model uses mixtures of some existing base lan-
guage models as topic language models. The model is dif-
ferent with some well-known topic models such as Prob-
abilistic Latent Semantic Indexing (PLSI) [8] or Latent
Dirichlet Allocation (LDA) [2] since they assume the topic
distribution of each object is independent of those of oth-
ers. However, this assumption does not always hold in
practice since in music style analysis, artists (as well as
songs) are usually related to each other in certain ways.
Our TC model incorporates an external information source
to model such relationships among artists. Also, when the
base matrix B is an identity matrix, this model is iden-
tical to PLSI (or LDA), and the algorithm is the same
as the NMF algorithm with Kullback-Leibler (KL) diver-
gence loss [6,29].

4. EXPERIMENTS
4.1 Data Set

For experimental purpose, we use the data set in [30]. The
data set consists of 403 artists and one representative song
per artist. The style and tag descriptions are obtained re-
spectively from All Music Guide and Last.fm, as described
below.
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4.1.1 Music Tag Information

Tags were collected from Last.fm (http://www.last.fm). A
total of 8,529 tags were collected. The number of tags
for an artist ranged from 3 to 100. On average an artist
had 89.5 tags. Note that, the tag set is a multiset in that
the same tag may be assigned to the same artist more than
once. For example, Michael Jackson was assigned “80s”
for 453 times.

4.1.2 Audio Content Features

For each song we extracted 30 seconds of audio after the
first 60 seconds. Then from each of the 30-second audio
clips, we extracted 12 timbral features using short-term
Fourier transform following the method described in [27].
The twelve features are based on Spectral Centroid, Spec-
tral Rolloff, and Spectral Flux. For each of these three
spectral dynamics, we calculate the mean and the standard
deviation over a sliding window of 40 frames. Then from
these means and variances we compute the mean and the
standard deviation across the entire 30 seconds, which re-
sults in 2 X 2 x 3 = 12 features. We mention here that we
actually began our exploration with a much larger feature
set of size 80, which included STFT, MFCC, and DWCH,
but in an attempt to improve results all the features but
STFT were consolidated which was consistent with the ob-
servations in [9].

4.1.3 Style Information

Style information was collected from All Music Guide
(http://www.allmusic.com). All Music Guide’s data are all
created by musicologists. Style terms are nouns like Rock
& Roll, Greek Folk, and Chinese Pop as well as adjec-
tives like Joyous, Energetic, and New Romantic. Styles
for each artist/track are different from the music tags de-
scribed in the above, since each style name appears only
once for each artist. We group the styles into five clus-
ters, and assign each artist to one style cluster. In the ex-
periments, the five groups of styles are: (1) Dance-Pop,
Pop/Rock, Club/Dance, etc., consisting of 100 artists in-
cluding Michael Jackson; (2) Urban, Motown, New Jack
Swing, etc., consisting of 72 artists including Bell Biv De-
Voe; (3) Free Jazz, Avant-Garden, Modern Creative, etc.,
consisting of 51 artists including Air Band; (4) Hip-Hop,
Electronica, and etc., consisting 70 artists including Afrika
Bambaataa; (5) Heavy Metal, Hard Rock, etc., consisting
of 110 artists including Aerosmith.

4.2 Baselines

We compare our proposed method with several state-of-
the-art clustering methods including K-means, spectral
clustering (Ncuts) [31], and NMF [14]. For each cluster-
ing method, we perform it on two data matrices, i.e., the
tag-artist matrix and the content-artist matrix, respectively.
We also perform them on an artist similarity graph which is
the linear combination of two similarity graphs generated
based on tags and contents respectively using the graph
construction method described in Section 3.2. NMF is not
suitable for symmetric similarity matrices, there exists its
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‘ clustering methods ‘ tags only ‘ content only ‘ both ‘

K-means N v N
Ncuts v vV Vv
NMF v v
SNMF YV

PHITS-PLSA vV

Table 1. The implemented baseline methods.

K-means | Ncuts NMF
Accuracy 0.2953 0.4119 | 0.4020
NMI 0.0570 0.1166 | 0.1298

Table 2. Clustering results using tag information only.

symmetric matrix version, SNMF [28]. We use SNMF to
deal with the artist similarity matrix. We also use PHITS-
PLSI, a probabilistic model [4] which is a weighted sum of
PLSI and PHITS, to integrate tag and audio content infor-
mation for artist clustering. The summary of the baseline
methods is listed in Table 4.2.

4.3 Evaluation Methods

To measure the clustering quality, we use accuracy and
normalized mutual information (NMI) as performance
measures.

e Accuracy measures the relationship between each
cluster and the ground truth class assignments. It is
the total matching degree between all pairs of clus-
ters and classes. The greater accuracy, the better
clustering performance.

e NMI [22] measures the amount of statistical infor-
mation shared by two random variables representing
cluster assignment and underlying class label.

4.4 Experimental Results

4.4.1 Tags-only or Content-only

Tables 2 and 3 respectively show the clustering perfor-
mance using tag information only and the performance us-
ing content features only. We observe that the tags are
more effective than the audio content features for artist
style clustering. Figure 1 better illustrates this observation.

4.4.2 Combining Tags and Content

Table 4.4.2 show the performance of different clustering
methods using both tag and content information. Since the

K-means | Ncuts NMF
Accuracy 0.2407 0.2803 | 0.2878
NMI 0.0168 0.0317 | 0.0349

Table 3. Clustering results using content features only.
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[
04F | Joontent

Accuracy

K-means Neuts NMF

(a) Accuracy

2]
[Jcontent

1 |H

K-means Neuts NMF

(b) NMI

Figure 1. Clustering performance using tag or content in-
formation.

first three clustering algorithms are originally designed for
clustering one data matrix, we first construct an artist sim-
ilarity graph as follows. (1) We compute the pairwise Eu-
clidean distances of artists using the tag-artist matrix (nor-
malized by tags (rows)) to obtain a symmetric distance ma-
trix d;, and another distance matrix d. can be calculated in
the similar way using the content- artist matrix. (2) Since
dy and d. are in the same scale, we can simply combine
them linearly to obtain the pairwise artist distance. (3) The
corresponding artist similarity graph can be constructed us-
ing the strategies introduced in Section 3.2. Once the artist
similarity graph is generated, the clustering can be con-
ducted using any clustering method. Since both PHITS-
PLSI and our proposed method are designed to combine
two types of information, we can directly use the tag-artist
matrix as the original data matrix, and the similarity graph
is constructed based on content features. Figure 2 illus-
trates the results visually.
From the results, we observe the following:

e The artist clustering performance is not necessarily
improved by incorporating content features. This
means that the tags are more informative than con-
tents for clustering artist styles.

e Advanced methods, e.g. PHITS-PLSI and our pro-
posed method, can naturally integrate different types
of information and they outperform other tradi-
tional clustering methods. In addition, our proposed
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method outperforms PHITS-PLSI because PHITS-
PLSI is more suitable for incorporating explicit link
information while our method is more suitable for
handling implicit links (graph).

e Continuous similarity graph construction such as
exp-weighted method performs better than discrete
methods, e.g. ¢ NN.

e Our proposed method with combined tags and con-
tents using € NN graph construction outperforms
all the methods using only tag information. This
demonstrates our model is effective for combining
different sources of information, although the con-
tent features do not contribute much.

0.25|

Accuracy

0.15|

01

K-means Neuts SNMF  PHITS-PLSI TC

(a) Accuracy

02

0.1

K-means Neuts SNMF  PHITS-PLSI TC

(b) NMI

Figure 2. Clustering performance combining tags and con-
tents.

5. CONCLUSION

In this paper, we study artistic style clustering based on two
types of data sources, i.e., user-generated tags and audio
content features. A novel language model is also proposed
to make use of both types of information. Experimental re-
sults on a real world data set demonstrate that tag informa-
tion is more effective than music content information for
artistic style clustering, and our model-based method can
marginally improve the clustering performance by combin-
ing tags and contents. However, other simple combination
methods fail to enhance the clustering results by incorpo-
rating content features into tag-based analysis.
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| | | K-means | Ncuts | SNMF | PHITS-PLSI [ TC |

e NN Acc 0.2680 | 0.2804 | 0.2630 0.3152 0.3648
graph NMI 0.0193 | 0.0312 | 0.0261 0.0709 0.1587
exp-weighted | Acc 0.2730 | 0.2903 | 0.2953 0.3316 0.4417
graph NMI 0.0226 | 0.0321 | 0.0389 0.1347 0.2008

Table 4. Clustering results combining tags and content.
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ABSTRACT

In this paper, we propose a system which automatically
generates slideshows for music, by utilizing images re-
trieved from photo sharing web sites, based on query
words extracted from song lyrics. The proposed system
consists of two major steps: (1) query extraction from
song lyrics, (2) image selection from web image search
results. Moreover, in order to improve the display dura-
tion of each image in the slideshow, we adjust image tran-
sition timing by analyzing the duration of each lyric line
in the input song. We have conducted subjective evalua-
tion experiments, which prove that the proposal can gen-
erate impressive music slideshows for any input song.

1. INTRODUCTION

Music video, i.e., a series of visual content displayed with
music, is a popular and effective way to increase the en-
tertainability of the music listening experience. The syn-
ergetic effect generated by combining visual and audio
signals is known as the sympathy phenomenon in the field
of psychology [1]. While it is easy to enjoy music videos
created by others (usually by experts), it is extremely dif-
ficult for common users to create music video by them-
selves. Namely, the cost to collect video and/or image
material that is suitable for the selected music is expen-
sive. Furthermore, the editing process to fuse the material
with music also requires much intensive effort.

An important factor which reflects the image of a song
is its lyrics. Many songs have lyrics which impressively
represent its visual scenery, which are difficult to be ex-
tracted from their acoustic features. Numerous research
efforts focusing on song lyric analysis have been pre-
sented recently. For example, extraction of song genre,
topic and mood, have been investigated in recently pre-
sented work [2-5].

This paper proposes a system which generates a music
slideshow automatically, by using images retrieved from
the web based on query words that are derived from song
lyrics. By utilizing images from the web, which provides
an abundant and diverse resource of images, our proposal
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personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
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is able to generate slideshows of wide variety, without
applying any burden to the user. In order to generate such
a system, we focus on two major issues. One is the auto-
matic extraction of words from the lyrics that are appro-
priate for web image search. The other is to select an op-
timal image to be displayed with each lyric line, from the
set of candidate images obtained by web image search.

In this paper, we firstly propose a query extraction me-
thod from song lyrics based on the frequency of social
tags attached to retrieved images. This method is effective
to generate appropriate queries to avoid the retrieval of
images that are unsuitable for slideshows. Secondly, we
propose a method which selects images from the search
results, based on entire impression of the song lyrics. This
method is expected to increase the unity among the im-
ages within the slideshow. Moreover, we apply a method
to adjust image transition time within the slideshow, by
analysis of the duration time per lyric line. Subjective us-
er evaluations will show that the proposal is capable of
generating high-quality music slideshows automatically.

2. RELATED WORK

Mainly, two types of methods have been proposed for au-
tomatic generation of visual content from music. One is to
generate visual contents using personal videos and/or
photos [6-8], and the other is to utilize web images
[9]1[10]. An advantage for using personal videos/photos is
that the resulting slideshow will be more familiar to the
user. However, in order to generate high-quality slide-
shows, a sufficient amount of personal material must be
prepared, which is a heavy burden for casual users.

The web image-based approach has two major issues:
query selection and image selection. Appropriate selec-
tion of query words is expected to be effective for the re-
trieval of images for slideshows. However, existing works
[9][10] have utilized naive methods for query word selec-
tion, such as stop word rejection, and selection of specific
parts of speech (e.g., nouns). Using values to measure the
significance of words, e.g. TF*IDF, can be utilized to se-
lect query words which are significant within the lyrics.
However, it is unclear whether or not such measures are
appropriate to select query words for web image search to
generate slideshows.

For the image selection problem, an idea has been pro-
posed in [10] to select images containing human faces and
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outdoor scenery. However, no evidence has been pro-
vided that such images are optimal for music slideshows.
A naive approach is to use the top-ranked images in the
search results for the image selection. In this case though,
highly ranked images are expected to be selected repeti-
tively for the same query, hence, the same image may be
used for different songs with similar lyrics. Therefore, this
approach is expected to generate slideshows with a lack
of diversity, which may cause boredom for system users.

3. SYSTEM CONFIGURATION

The configuration of the proposed system is illustrated in
Figure 1. The system selects one image for each lyric line
of the input song. The selected image is displayed on the
slideshow application (Figure 2) during music play. Im-
ages for the slideshow are collected from Flickr, a highly
popular photograph sharing site [11], by using the Flickr
API. As illustrated in Figure 1, we assume that a database
which contains songs with their corresponding lyrics and
timing information is prepared beforehand, as in the case
of karaoke systems.

&

Input music

flickr

Search
// \ auery
Candidate Image .
Retrieval =| Search

. results

Lyrics ™.
N Lyrics
g DB

_“Synchronization
~information

Candidate Images

Image Selection

Image

Synchronized A song
Playback :

3

Figure 1. System configuration

The process flow of the system consists of the following

three steps.

1. Candidate Image Retrieval
This step extracts a candidate set of images per lyric
line, by selecting appropriate query words from each
line of the lyrics of the input song.

2. Image Selection
This step selects an image from the previously ex-
tracted candidate image set for each line, to compose
the slide show.

3. Synchronized Playback
Selected images for each line are displayed with the
song, according to the prepared timing information.
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Figure 2. A screenshot of the proposed system

The following section explains the slideshow genera-
tion method, namely the candidate image retrieval and
image selection steps, in detail.

4. SLIDESHOW GENERATION METHOD

4.1 Candidate Image Retrieval

In this step, the system generates a query (set of words)
for each lyric line of the input song. The image search re-
sult from Flickr, obtained by the generated query is uti-
lized as the candidate image set for the lyric line. The
query is generated by analyzing the frequency of query
words that are applied to the images in the search result,
as social tags. This method is based on the hypothesis that,
query words which are frequently used as social tags in
Flickr have a significant meaning in the web image data-
base, thus are expected to be effective to retrieve images
which are expressive of the song lyrics. This method ex-
tracts the optimum combination of query words for each
lyric line, based on the following three ideas:
* Words used in a lyric line should be prioritized, since
such words accurately represent the content of the line.
e The query should be composed with as many words as
possible, since such queries are more specific than sin-
gle word queries, thus should result in more accurate
image retrieval.
e Multiple words within a query tend to co-occur as im-
age social tags.

4.1.1 Process Flow of Social Tag-Based Query Selection

Let N;..(Z;) represent the set of nouns used at the i-z4 line
of the lyrics, N,,.(/;) represent the nouns used in the pa-
ragraph which contains the i-¢ line, and N,(m) represent
the word set which describes the general impression of
song m (hereafter referred to as “general impression
words”, details explained in Section 4.1.2). Furthermore,
when W expresses the set of words used as the query for
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the Flickr API, let DF(W) (Document Frequency)
represent the number of images in the search results, and
UF(W) (User Frequency) represent the number of unique
users (counted by the user ID information of the Flickr
images) in the search results.

The proposed method extracts candidate query words
for the i-¢h line in lyrics of music piece m, from N,.(/)
and N,.(/;). Words which have DF or UF value less than
a pre-defined threshold are omitted. The thresholds for
DF and UF are empirically set as 40 and 10, respectively.

Next, let P(N;,..(1;)) express the power set of Ny,.(1):
P(Niine(Z))={W iiner1s Wiiner2r -+ Wiinent, Where W,y €x-
presses the x-th set of words in P(Nj.(/)). From
P(Njine()), Wpax is selected under the condition that
DF(W ) is not zero and that |W,. is the highest in
P(Nyie(2), where |W| expresses the number of words in
W. If more than one W, can be selected, the set which
has the highest UF(W ) is selected. In this way, W .y is
regarded as the set of queries for the i-th line, Qy.(1)-

Then, in order to maximize the number of query words
(which is assumed to reduce the number of candidate im-
ages, and improve search accuracy), we expand the query
by using words in N,,.,(/). Namely, expanded sets of
words, which are composed of the power set of N,.(1),
plus the previously derived Qy..(l) are generated as
P (Npara(1))={W paran* Quine(1)y Wopararat Qiine(li)s - Wy
rary? Quine(l)} = AW’ pararts W’ paranzs +++ W’ parany}- Then, in
the same way as explained above, W' . is selected from
P (Nparal1).

Finally, by sending the all elements of W’ .. under the
condition of ‘AND’ combination to Flickr, the system re-
trieves the candidate images for each line. If W’ . has no
elements, N,;(m) is used as the query.

4.1.2 Estimation of General Song Impression

As mentioned above, N,;(m) is the general impression
word set, i.e., a set of words which expresses the collec-
tive impression of song m. This word set can be used for
lyric lines from which no effective query words could be
extracted. Furthermore, the general impression word set is
also effective to generate slideshows with a sense of unity,
as will be described in the next section.

The general impression of a song is estimated by text-
based classification based on its entire lyrics. Namely,
song classifiers are preliminarily constructed by SVM
[12] for each of the categories showed in Table 1. The
categories are divided into three concepts: Season,
Weather, and Time. Each concept consists of several cat-
egories. The concepts/categories in Table 1 are selected
because they all represent important aspects of song lyrics,
and are expressed by discriminative words. For the clas-
sifier, we used the software SVM"¢" [13] with a linear
kernel for learning. Here, lyrics have been vectorized by
TF*IDF, and the training data for the classifiers learning
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have been obtained by a manually collected database of
Japanese pop songs with human-applied labels. If the
classifier determines that a song m is positive for its re-
spective category, the name of the category is added to
N.(m). Note that multiple words may be included in

Nal/(m)'

Concepts Category labels
Season Spring, Summer, Autumn, Winter
Weather Sunny, Cloudy, Rain, Snow, Rainbow
Time Morning, Daytime, Evening, Night

Table 1. Concepts and category labels for describing
general impression of music.

4.2 Image Selection

The next step is to select an image to compose the slide-
show from the candidate image set for each lyric line. We
propose an image selection method based on an impres-
sion score, which represents strength of association be-
tween the image and the general impression words of the
input song. Consideration of the impression score is ex-
pected to select images that are more fitting to the overall
theme of the input song, thus increases the sense of unity
among the images which compose the slideshow.

4.2.1 Relevant Tag Extraction Based on Co-occurrence

Probability

Relevant tags for calculating the impression score are ex-
tracted based on co-occurrence probability of social tags
on Flickr. In this paper, the co-occurrence probability is
calculated based on UF instead of DF, since there are
many tags with unusually high DF on Flickr, due to users
who upload many images with the exact same tag set,
while UF is more robust to the effect of such user beha-
vior.

The relevance score between a general impression
word n,; € N, (m), and a given tag ¢ is calculated by the
co-occurrence probability of z and n,; and also the im-
pression words which belong to the same concept as n,;.
For example, when the relevance score between “sum-
mer” and tag ¢ is calculated, the same score for all other
general impression words in the “Season” concept, i.e.,
“spring”, “autumn”, and “winter”, are also calculated. In
this way, it is possible to extract tags which have specifi-
cally high relevance to n,;, and decrease the score of gen-
erally popular tags, i.e., words which co-occur frequently
with many other words.

The co-occurrence score between general impression
word n,; and tag ¢, CoScore(t,n,y;), is defined as:

B UF(tmnaH)

CoScore(t,n,, )= UF(n.,) 1)
all
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Then, the relevance score R between n,; and ¢ is defined
as:

2. Pltln)

R(t, ny ) = CoScore([, n, )_ %

X wgt )

where C is the set of general impression words which be-
long to the same concept of n,;. For example, when n,; =
“spring”, C = {“spring”, “summer”, “autumn”, “winter”},
since “spring” belongs to the “Season” concept. In the
definition of the relevance score in Eq.(2), the first term
increases the score of tags which have high co-occurrence
probability with n,,. Subtraction of the second term de-
creases the score of tags with high co-occurrence proba-
bility of impression words which belong to the same con-
cept as n,;. Note that wgt is a coefficient to adjust the im-
pact of the second term. This coefficient is set to 3, em-
pirically.

Based on Eq.(2), the relevance score between each
general impression word, and all tags which co-occur
with the general impression word, are calculated. Tags
whose relevance scores are over 0.024, and UF value ex-
ceeds 5, are regarded as relevant tags of each impression
word.

4.2.2 Definition of Impression Score

For image selection, we calculate the impression score for
all images in the candidate image set, based on the tags
applied to the image, and the above relevance score. The
object of this method is to select images with tags which
have high relevance to the general impression words of
the input song. As a result of this process, the impression
score of images with “noisy” tags, i.e., tags with low re-
levance to the general impression of the input song, will
be degraded.
The impression score of image i is determined by

ZR(t’ nal[)

(€L, etaea (M)

7;’ N ];elated (nall )‘

> 3)

R €Nyt (m)

score(i ) =

i

where T; is the set of tags applied to image i, T,ciuea(7a)
is the relevance tag set of general impression word n,,
and R(¢, n,y) is the relevance score between n,; and tag ¢.

This impression score is computed for each candidate
image, and the image with the highest score is selected to
be displayed with its respective lyric line, during the sli-
deshow.

4.3 Image Transition Timing Adjustment

In the proposed system, the images obtained per lyric line
are displayed in synchronization with each line during the
song playback. Adequate usage of the line information
leads to natural image transition during the slideshow,
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since lines represent a semantic unit in the lyrics. Howev-

er, display duration of each image may be too short/long

when using the line information naively. For example, in

a rap song with many lines, the image display time maybe

too short, so that users may not be able to comprehend the

images in the slideshow. On the other hand, in a slow bal-
lad song, images may be displayed for a long time, which
may cause boredom.

In order to improve the overall quality of the slideshow,
We propose an image transition timing adjustment method,
which adjusts the display time of images according to the
duration of each lyric line. In this process, we first esti-
mate the typical duration time of images in a song. Then,
the line of lyrics is “combined” or “divided”, based on the
difference of the duration of the line and the typical dura-
tion time of the input song. In the “combining” process,
lines with short duration time are combined with their ad-
jacent lines, and a single image is displayed for the com-
bined set of lines. In the “dividing” process, lines with
long duration time are “divided” into plural sub-lines, and
an image is to be displayed along with each sub-line.

The process flow for image transition timing adjust-
ment consists of the following steps.

1. Typical duration time of song m is calculated from the
lyrics data. Namely, the mode value of the line dura-
tion time is used as the typical image duration time 7,

2. Lines which have less than 4 [sec] duration time are
“combined” with the next line. If there is no next line,
it is “combined” with the previous line. However, lines
are “combined” only if they belong to the same para-
graph. An image is retrieved for the newly combined
line.

3. A line which has more than 12 [sec] duration time is
“divided” equally. The number of divisions is con-
trolled so that approximate duration time of the new
“divided” line is equivalent to 7,,. When the line is “di-
vided” into n lines, n images are displayed from the
candidate image set, which is retrieved based on the
lyrics of the original line.

4. Interlude sections (which generally have no lyrics) are
divided by the same process as step 3. The general im-
pression words are used as query for image retrieval.

5. EXPERIMENTS

5.1 Outline

In order to evaluate the quality of the proposed method,
we have conducted a subjective evaluation experiment.
This experiment compares the proposed method with oth-
er conventional methods, by asking 42 subjects to rate the
slideshows generated by all methods. The subjects are
asked to view the music slideshows of the same song,
which are generated by the proposed and comparative
methods (details of the methods are explained in Section
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5.2). Then, each subject is asked to apply a five-ranked
rating for each slideshow, based on the following evalua-
tion measures:

a) Accordance between lyrics and images [content]
b) Appropriateness of image display time [duration]
¢) Unity of all images in slideshow [unity]

d) Overall quality [quality]

In this experiment, we use 10 Japanese pop songs and
28 ~ 29 subjects have provided evaluation results for each
song. In order to evaluate the method described in Section
4.3, we have selected songs so that half of these songs in-
clude “combined” lyric lines (hereafter referred to as the
“combined set”) in the process of adjustment of image
transition timing explained in Section 4.3, and the other
half include “divided” lines (hereafter referred to as the
“divided set”).

5.2 Evaluated Methods
The next three methods were evaluated and compared.

A) MusicStory [9]

The first comparative method generates slideshows
based on the method proposed for MusicStory [9]. Name-
ly, all nouns are extracted from the entire lyrics of the in-
put song, and are sent to the Flickr APl under the ‘OR’
combination. The images in the search result are dis-
played according to the transition timing determined by
the BPM (beats per minute) of the input song

B) TF*IDF based method

The second comparative method extracts query words
from the lyrics based on TF*IDF. The process flow to ob-
tain the image for the i-¢4 line in the lyrics is described as
follows. First, the nouns extracted from the i-z4 line in the
lyrics, are sent to Flickr as query under the condition of
‘AND’ combination. If the result has no images, the noun
with the smallest TF*IDF is removed, and the rest of the
nouns are sent to Flickr again. This process is repeated
until a set of images are obtained. If the system is unable
to retrieve images by any of the nouns in the line, the im-
ages from the previous line are re-used. Finally, the high-
est-ranked image in the search result (according to the
Flickr “interestingness” ranking) is selected. Images are
obtained for each line and switched in synchronization
with line appearance within input song. In this paper, the
DF element of TF*IDF is calculated based on our data-
base, which contains 3062 Japanese pop songs.

C) Proposed method

The third method is our proposal. Queries are generat-
ed from the lyrics by the social tag-based method, images
are selected from the image search results based on the
impression score, and the image transition timing is ad-
justed by the method described in Section 4.3.
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5.3 Experimental Results

Figure 3 shows the average rating of all subjects, for each
evaluation measure and method. The results in this Figure
show that the proposed method has received the highest
ratings, compared to the other methods for all evaluation
measures. Most significantly, the proposed method has
received the best rating for the overall quality, a differ-
ence which is statistically significant to the others based
on t-test (p<0.001). These results prove that the proposed
method is capable of generating high-quality slideshows.

MusicStory ®=TF*IDF ®PROPOSAL
5
4
v
g
53
>
<
2 j * i
1 ‘
content  duration unity quality

Evaluation Measure
Figure 3. Average ratings of each evaluation measure.

Lyrics | “If this separation means departure, I will
line | give my all smiles to you.”
TF*IDF based “departure” (line word)
uer ctarila? (18
Proposal smile” (line word)
Lyrics | “Will the memory of our encounter and the
line | town we’d walked in be kept in our heart?”
TF*IDF based “heart” (line word)
uer pr TTH
Proposal town” (line word)
Lyrics | “I wish I could stay with you for even a
line | moment.”
TF*IDF based “moment” (line word)
uer “car” and “night scene”
Proposal
(paragraph words)
Lyrics | “But the shining days will never return to
line | me today or tomorrow.”
TF*IDF based “today” (line word)
uer “evening”
Proposal . !
(general impression word)

Table 2. Examples of image search queries generated by
TF*IDF based and proposed methods.

In order to analyze the query selection process of the
proposed method, we compare the queries generated by
the proposal to those of the TF*IDF based method. Ex-
amples are written in Table 2. This table shows examples
of lyrics lines (English translations by the authors from
the original Japanese lyrics) and the queries generated
from the lines by the two methods. In the first two exam-
ples in this table, it is clear that the proposal has success-
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fully selected words which represent visual concepts.
Contrarily, the TF*IDF method has selected words which
are important, but also are difficult to be represented in a
visual manner. This is due to the characteristic of the pro-
posed method, which considers the UF values of the
words in Flickr. Furthermore, when there are no “visual”
words in the lyrics, the proposal can appropriately gener-
ate queries, either from the lyric paragraph, or general
impression words, as shown in the last two examples.
These examples indicate that the proposed method is ef-
fective to generate good queries from any song lyric.

Moreover, even when the queries generated by the
both methods are the same, the proposal is capable of se-
lecting more suitable images for the song. For example,
when both methods retrieve images by the query “town”
for a winter song, the proposal appropriately selects an
image of a town with falling snow, while the TF*IDF
based method selects a general image of a town. Exam-
ples like this indicate that the proposed image selection
method based on impression score can generate suitable
slideshows which represent the overall theme of the song.

Additionally, in the “duration” measure, the proposal
has achieved ratings superior to the TF*IDF based me-
thod for 9 songs, indicating that the proposed adjustment
method has succeeded in improving slideshow quality.
The difference of the average ratings between the propos-
al and the TF*IDF based method for “combined sets” is
0.21, while the difference for “divided sets” is 0.61. This
result implies that the proposed method is more effective
to improve slideshows for songs with lyrics that are slow-
ly sung, as in slow ballads.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a system to generate sli-
deshows for any given song, by using words in their lyrics
to retrieve web images. We have proposed a query gener-
ation method for image search and an image selection me-

thod to compose slideshows from the image search results.

Moreover, we proposed a method to adjust image transi-
tion timing based on the lines of lyrics. Results of subjec-
tive evaluations have shown that our system can generate
highly satisfactory music slideshows.

In the future, we plan to expand our system to utilize
not only the lyrics, but also the acoustic features of the
input song. For example, displaying slideshows with vari-
ous effects, such as zooming and panning, in accordance
with the excitement of the song; as well as the use of beat
information for image transition all are expected to im-
prove the impression of the generated slideshows.
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ABSTRACT

A computational rhythm analysis system is proposed to
characterize the suitability of musical recordings for rhyth-
mic auditory stimulation, a neurologic music therapy tech-
nique that uses rhythm to entrain periodic physical motion.
Current applications of RAS are limited by the general in-
ability to take advantage of the enormous amount of dig-
ital music that exists today. The system aims to identify
motor-rhythmic music for the entrainment of neuromuscu-
lar activity for rehabilitation and exercise, motivating the
concept of musical “use-genres.” This work builds upon
prior research in meter and tempo analysis to establish a
representation of thythm chroma and alternatively describe
beat spectra.

1. INTRODUCTION

Digital multimedia is now an integral, and somewhat in-
escapable, aspect of modern life. Personal handheld de-
vices are designed to streamline the acquisition, manage-
ment and playback of large volumes of content as cutting-
edge computing devices approach ubiquity. This trend, in
tandem with the commercial success of devices like the
iPod and iPhone, has encouraged an environment where
both content providers and end-consumers have access to
enormous digital music collections. As a result, individ-
uals are consuming and purveying more music than ever
before and this realization introduces the classic logisti-
cal issue of content navigation; when a library becomes
sufficiently large, more complex paradigms must be devel-
oped to facilitate the searching, indexing, and retrieval of
its items.

Conventional music library systems employ metadata
to organize the content maintained within them, but are
typically limited to circumstantial information regarding
each music track — such as the artist’s name or the year
it was produced — in addition to the somewhat amorphous
attribute of genre. Understandably, stronger information
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concerning the specific nature of a track allows for more
insightful and context-driven organizations or queries of a
library.

The need for content-specific metadata introduces the
challenge that someone, or something, must extract the rel-
evant information necessary. One approach, like the one
taken by the Music Genome Project, is to manually anno-
tate a predetermined set of attributes by a diligent group
of human listeners, a scheme with clear benefits and draw-
backs. While this method is substantiated by the obser-
vation that no computational system has yet matched it-
sreliability, it simply takes a human listener far too much
time to parse music. As an example, it would require about
68 years to listen to every track currently available in the
iTunes Store, ! which now contains some 12 million tracks.

Needless to say, the development of computational al-
gorithms to extract meaningful information from digital
music provides the ability to process content as fast as an
implementing machine can manage. Many efforts over the
last twenty years proceed to these ends in varying levels
of scope and success. As mentioned however, no single
solution has been able to rival the performance and ver-
satility of even moderately skilled human listeners. It has
been proposed previously that, in this period of continued
research toward improved machine-listening technologies,
algorithms are likely to perform best when developed for a
specific application.

It is in this spirit that a computational system is pro-
posed to characterize the suitability of musical recordings
for rhythmic auditory stimulation, a neurologic music ther-
apy technique that uses rhythm to entrain periodic physi-
cal motion. The remainder of the paper is structured as
follows: Section II addresses the background of motor-
rhythmic music as a use-genre and the physiological moti-
vations; Section III briefly reviews relevant computational
models of human rhythm perception and details the pro-
posed system; Section IV explores the evaluation and visu-
alization of the algorithm results; and Section V discusses
the system behavior, observations, and directions of future
work.

! With an average track duration of 3 minutes.
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2. BACKGROUND

Music and motion share a long and intertwined relation-
ship throughout human history. Dance comprised an in-
tegral role in many ancient civilizations for spiritual and
social purposes and work song served to synchronize the
physical labor of crews, as was common on sea-faring ves-
sels. In modern times, physical exercise is often tightly
coupled with music, ranging from joggers with personal
media players to fitness classes.

Many individuals empirically find that music facilitates
exercise, and recent advances in music therapy and neuro-
science give this notion credence. Through an increased
understanding of the underlying mechanisms involved in
a human’s physiological response to music, current knowl-
edge supports the position that rhythm serves as a powerful
external timing mechanism capable of entraining gait pa-
rameters and neuromuscular activity [1]. Building upon
this principle, thythmic auditory stimulation (RAS) is “a
neurological technique using the physiological effects of
auditory rhythm on the motor system to improve the con-
trol of movement in rehabilitation and therapy” [2].

The impact of rhythmic auditory stimuli on movement
can be summarized as three primary components. Sensory
motor control provides priming and timing cues to indi-
vidual in guiding a motor response. Motor programs are
thought to be developed in the brain to control complex
motor movement, where rhythmic stimuli encourage the
creation of more efficient and fluid programs for cyclical
movement. Also, RAS supports goal-directed movement
where motion is cued by anticipation, a key musical ele-
ment, rather than by explicit events like heel strikes.

Appropriate music to achieve RAS, best described as
motor-rhythmic, must exhibit certain criteria: a strong beat-
percept, regular meter, little to no tempo deviation, and
maintain a tempo that encourages the desired entrainment
frequency, referred to in the literature as an individual’s
resonant frequency or limit cycle. The ability to succinctly
describe a class of musical content for a specific applica-
tion motivates its distinction as a use-genre.

A fundamental problem faced in RAS-based research
and applications is the inability to harness the abundance
of available digital music as external entrainment stimuli,
as no solution exists to characterize music for this purpose.
It is for this reason that nearly all uses of RAS are confined
to closely-monitored clinical settings that heavily rely on
human supervision to provide, and sometimes compose,
appropriate motor-rhythmic music. An automated system
would not only facilitate the practice of RAS as a clinical
rehabilitation technique, but also allow the integration of
RAS methodologies on a significantly broader scale, such
as exercise classes or personal fitness technologies.

Some previous systems attempt to link the rhythm, and
more specifically the tempo, of music and physical motion
in the form of running [3]. Each effort, however, incor-
porates the assumption that all content is accurately and
sufficiently described by a single tempo value. Quickly
considering the great diversity of musical content avail-
able, it is intuitive to conclude that this is inadequate. With
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these goals in mind, we seek to develop a system capable
of quantifying the motor-rhythmic attributes of digital mu-
sic content for use in applications of RAS.

3. PROPOSED SYSTEM

Computational rhythm analysis algorithms for digital mu-
sic recordings have been extensively researched over the
last twenty years. Early systems were developed to per-
form tempo extraction of individual tracks and excerpts to
ascertain a single tempo value, and beat tracking to an-
notate the location of musical pulses in a recording, both
achieving notable success. More recent efforts aim to im-
prove upon these results by employing alternate mecha-
nisms to fulfill various system tasks or seek to determine
further information, such as meter [4] and beat spectrum
[5]. A more thorough review of recent leading systems is
provided in [6].

Being that human rhythm analysis remains the best per-
forming system, explicit modeling of the human auditory
system would appear to be a viable approach toward the
development of a machine-listening algorithm for rhyth-
mic analysis. By reducing the task of rhythm perception
to the functional components of the overall biological pro-
cess, each stage can be approximated computationally. At
the most rudimentary level, human rhythm perception is
achieved in a two-stage process of event perception and
periodicity estimation.

The idea of determining meaningful events in music
perception is admittedly a loaded topic. However, a seman-
tic debate can be mostly avoided in considering that there
are arguably three orthogonal dimensions in basic music
perception: rhythmic, tonal and timbral. In the context of
characterizing the suitability of music for RAS, the focus
of meaningful events can — and should — be constrained
primarily to rhythmic, or energy-based, events. Neglecting
the other two dimensions serves to emphasize the impor-
tance of rhythmic content.

Periodicity estimation can be computationally achieved
in a variety of different manners depending on performance
concerns, such as causality and complexity. One common
school of thought regarding human beat induction claims
that the phenomena of felt-beat it is achieved through the
resonating, or entrainment, of oscillator banks in the brain
as an interval-period based process [2]. This is a particu-
larly attractive option given the correlation between the os-
cillations of the human body as a dynamic mechanical sys-
tem during movement and those of a mathematical model.

Coincidentally, these are essentially the main system
components presented by Scheirer in [7] and Klapuri et
al in [4]. Building upon the work outlined therein, the pro-
posed system proceeds in the following manner: an input
signal is first decomposed into twenty-two subband com-
ponents via a maximally-decimated filterbank closely ap-
proximating the critical bands of the cochlea and rhyth-
mic events are derived for each. These onset events are
reduced to a single stream of pulses and periodicity esti-
mation is performed using a bank of modified comb-filter
oscillators. The resulting beat spectra is transformed into
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Figure 1. A perceptually-motivated dyadic filterbank for
the decomposition of an input audio waveform.

Band | Range (Hz) | Band Range (Hz)
1 0-125 12 1750 — 2000
2 125 -250 13 2000 - 2500
3 250 - 375 14 2500 — 3000
4 375 -500 15 3000 - 3500
5 500 - 625 16 3500 — 4000
6 625 -750 17 4000 — 5000
7 750 - 875 18 5000 — 6000
8 875-1000 | 19 6000 — 8000
9 1000 — 1250 | 20 8000 — 10000
10 1250 — 1500 | 21 10000 — 12000
11 1500 - 1750 | 22 12000 — 16000

Table 1. Frequency ranges for the resulting subband com-
ponents.

rhythm chroma over time, from which global features are
calculated to compactly describe the entirety of a music
track.

3.1 Cochlear Modeling

At this point in time, it is commonly held that the hu-
man auditory system is reasonably understood so far as the
point where electrical signals are encoded and transmitted
to the brain via the auditory nerve. Most stages prior to
neural processing though, such as diffraction of the pinnae
or dynamic compression from the bones of the inner ear,
are not overly integral to the perception of rhythm. How-
ever, the cochlea does perform a coarse frequency decom-
position as transduction occurs across the critical bands of
the organ. Scheirer observed that the perception of rhythm
is maintained when amplitude modulating white noise with
the envelopes of as few as four subbands of an audio wave-
form [7]. Therefore, it is proposed that monitoring the fluc-
tuation of energy in each critical band serves as a reason-
able approximation of preconscious observation of mean-
ingful rhythmic events.

Motivated in part by the system developed by Tzane-
takis et al [8], a multi-resolution time-domain filterbank
is used to decompose an input waveform into twenty-two
subbands. Whereas wavelet processing implements com-
plimentary half-band filters and a true pyramidal structure,
the filterbank divides frequency content similarly to the
cochlea, the ranges of which are listed in Table 1 and dia-
gramed in Figure 1.

It is important to note that, given the cascaded nature of
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the structure, non-linear phase distortion introduced by IIR
filters is unacceptable and errors will propagate differently
in each band. This is particularly troublesome in the con-
text of a system developed to analyze the temporal relation-
ship between events. Therefore, half-band FIR filters of
Daubechies’ coefficients are chosen, and appropriate all-
pass filters are designed to flatten the group delay at each
successive level to ensure alignment of the resulting sub-
band components. The accumulative delay and complexity
of the filterbank decomposition is mainly dependent on the
length of the Daubechies’ filter shape selected (N = 40 in
our experiments), though the impact of using different fil-
ter lengths on performance has yet to be explored.

3.2 Rhythm Event Detection

Following decomposition, each subband signal is processed
identically to identify rhythm event candidates. Consistent
with [7] and [4], subband envelopes are calculated by half-
wave rectifying and low-pass filtering each subband wave-
form with a half-Hanning window, defined by Equations 1

and 2.

)]

XHWRk [n] = HlaX(X]g [’I’L]7 0)

Nj—1
Ek[n] = Z XHWRk [TL] * Wk[l — n] (2)

i=0

Subband envelopes are then uniformly down-sampled

to 250 Hz, influenced by the temporal resolution of the hu-
man auditory system, and compression is applied to the re-
sulting signals according to Equation 3. Event candidates
are calculated by filtering the subband envelopes with the
Canny operator defined in Equation 4, commonly used in
digital image processing for edge detection and first ap-
plied to audio processing in [9]. The frequency response
of the Canny operator is more desirable than that of a first-
order differentiator, being band-limited in nature and serv-
ing to attenuate high-frequency content.

Ck logo(1 + p)

3

Cln] = ;—2 exp(—n#), wheren = [-L,L] (4)

At this stage, event candidates effectively represent the
activation potential of their respective critical bands in the
cochlea. Though there are multiple hair cell transduction
theories concerning the significance of place and rate on
pitch perception, the fact remains that temporal masking
is caused by the necessary restoration time inherent to the
chemical reaction associated with neural encoding. Known
as the precedence effect, sounds occurring within a 50 mil-
lisecond window—about 10 milliseconds before and 40 mil-
liseconds behind—are perceived as a single event. This phe-
nomena is modeled by a sliding window to eliminate im-
perceptible or unlikely event candidates.

Rhythm event detection concludes with the summation
of subband events to a single train of pulses and a zero-
order hold to reduce the effective frequency of the pulses.
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Figure 2. Magnitude response of a typical comb-filter
(dashed line) and cascaded with a Canny filter (solid line).

A single-sample pulse is the half-wave rectified counter-
part to a single period of the highest frequency that can be
represented by the current sampling rate. Rhythmic fre-
quency content, such as the tactus or felt-beat, typically
exists on the range of .25-4 Hz (or 30-240 BPM), with
tatum and metrical levels falling just above and below that
range, respectively. Therefore, a zero-order hold of 50 ms
is applied to band-limit the signal, constraining frequency
content to 20Hz while maintaining the temporal accuracy
necessary.

3.3 Periodicity Estimation

In continuing with modeling preconscious rhythm audi-
tion, periodicity estimation is performed using a set of tuned
comb-filters spanning the frequency range of interest. This
method was pioneered as a computational model of rhythm
induction by Scheirer in [7], and has since been incorpo-
rated in a variety of derivative works due to reliability and
modest computational complexity. Importantly, modifica-
tions are introduced here to improve performance and tai-
lor the model to better suit the target application.

Unlike previous systems that aim to set a constant reso-
nance half-life across each oscillator, we propose that per-
ceived resonance of a pulse train is dependent not on time
but the number of pulses observed. It seems intuitive that
a 40 BPM click track at 40BPM should take longer to per-
ceive at the same strength as one at 180 BPM. Though
a more perceptually-motivated method may better capture
this nuance, the value of « is set at 0.825 to require a pe-
riod of regularity before resonating, while maintaining the
capacity to track modulated tempi.

Beat spectra is computed over time for each delay lag 7',
as defined by the comb-filter difference equation in Equa-
tion 5, varied linearly from 50-500 samples, inversely span-
ning the range of 30-300 BPM. Each comb-filter is also
cascaded with a band-pass filter — the Canny operator —
to augment the frequency response of the periodicity es-
timation stage. As shown in Figure 2, this attenuates the
steady-state behavior of the comb-filter effectively lower-
ing the noise floor, while additionally suppressing reso-
nance of frequency content in the range of pitch perception
over 20Hz. The Canny filter is also corrected by a scalar
multiplier to achieve a passband gain of 0 dB.

ye[n] = (1 — @) * z[n] + ax yg[n — Tj] 5)
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Resonance Period

Time

Figure 3. Example of a tempogram and chroma for
bonus5.wav, from the MIREX practice data set.

Instantaneous tempo is calculated by low-pass filtering
the energies of each oscillator over time. Scheirer previ-
ously described this process of determining the energy in
the delay line over the length of the resonance period, and
is analogous to computing an unweighted-average. A Han-
ning window of length W, set corresponding to the de-
lay lag of its respective comb-filter channel and given in
Equation 6, serves as an estimation of “resonance mem-
ory.” This time-frequency representation is referred to as
a rempogram and estimates perceived tempo strength over
time, an example of which is shown in Figure 3.

| T
Ry[n] = Wi Z wli] * (yr[n — i])? (6)
i=0

3.4 Chroma Transformation

As observed by Kurth et al [5], the duality of pitch and
rhythm allows the representation of beat spectra in terms of
chroma. In the same way that all pitches can be described
as having a height and class, various metrical levels exhibit
a similar relationship. Octave errors, a typical issue faced
in tempo extraction, are mitigated by eliminating the sub-
jective aspect of rhythm and reducing the task to a purely
objective one. Fundamental tempo class is especially im-
portant to RAS-applications, and is the ultimate focus of
the system.

Rhythm chroma is computed by first transforming beat
spectra to a function of frequency, rather than period, scaled
by the base-2 logarithm and referenced to 30 BPM. Three
tempo octaves (30-60, 60-120, and 120-240 BPM) are
collapsed by summing beat spectra with identical chroma,
as detailed in Equation 7. Understanding this representa-
tion is facilitated by plotting amplitude as a function of
log, tempo class in the polar coordinate system, shown in
Figure 3, such that the harmonic structure of a given input
becomes readily apparent.

For clarity, rhythm chroma consists of a radial ampli-
tude and an angular frequency, referred to as a class and
measured in units of degrees or radians. The transforma-
tion from tempo, in BPM, to class, in normalized radians,
is defined by Equation 8. This is a many-to-one mapping,
and is not singularly invertible. Visualizing rhythm chroma
in this alternative manner allows for deeper insight into the
nature of musical content and the extraction of novel fea-
tures, and will be discussed in greater detail shortly.
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Figure 4. Chroma diagrams for a 148 BPM click track,
before and after tempo automation. Note the difference in
scale and amplitude of the fundamental.
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3.5 Feature Vector Representation

A single rhythm chroma is obtained for a track by sum-
ming over time and normalizing by the length. Several key
features of interest are emphasized by producing a global
chroma, though this set presented is not intended to be
exhaustive by any means. Beat strength is effectively de-
scribed by the amplitude of the largest lobe, and fundamen-
tal tempo class is given by the angle of this peak. Other
lobes are actually subharmonics of the fundamental, and
provide further information about the rhythmic composi-
tion. It is important to note that the radius and angle of all
harmonics, the fundamental as well as the partials, are sig-
nificant, as they describe what is best referred to as rhyth-
mic timbre. Amplitude ratios between the fundamental and
the various partials serve as a metric of beat salience— the
clarity of the prevailing rhythmic percept— as well as a con-
fidence interval regarding system reliability.

An added benefit of averaging the rhythm chroma is
found in the fact that frequency modulations of the funda-
mental chroma manifest as a widening of the primary lobe.
Due to the behavior of comb-filter resonance, tempo devi-
ations will inherently attenuate the amplitude of the funda-
mental. From these observations, optimal music for RAS
will exhibit a large, narrow and clearly-defined fundamen-
tal with smaller, though still clearly-defined, partials.

4. EVALUATION

Since there are, to our knowledge, no previous attempts to
mathematically quantify the motor-rhythmic attributes of
musical content, system behavior is explored for a small
set of content defined as ground-truths. Initially, we ex-
amine the responses for a constant-tempo click track and a
frequency-modulated version of itself. For familiarity, se-
lect content from the MIREX tempo tracking practice data
is then processed by the proposed system.
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Figure 5. Image of the tempo automation used to mod-
ulate the tempo of the click track, and the corresponding
chromagram after analysis.

The prominent role of metronomes and click tracks in
past RAS research is indicative of the fact that they are
the most basic form of motor-rhythmic stimuli. A thirty-
second audio click track was created using a sampled clave
in Propellorhead’s Reason software and the tempo was set
at 148 BPM. The software also offers the capability of
tempo automation and allowed for the creation of a sec-
ond, frequency-modulated click track to model an expres-
sive performance. As shown in Figure 4, the constant-
tempo click track produces a chroma with clearly defined
fundamental and several smaller subharmonics, while the
chroma lobes of the frequency-modulated click track are
smeared and roughly half the amplitude. While salient,
given the ratio of the significant peaks, the widening of the
lobes is a direct result of the tempo variance in over time.
Importantly, a chromagram is shown above the tempo au-
tomation curve used to modulate the tempo of the click
track in Figure 5. Though the chromagram incurs some
delay in tracking the modulation of the click track, the sys-
tem is able to follow the tempo throughout.

Though informative and worthwhile examples to con-
sider, click tracks are not the primary focus of this system
and it is necessary to also examine the chroma of real mu-
sic data. For ease of access and familiarity within the re-
search community, musical content is selected from prac-
tice data available on the MIREX website [10]. The set
of excerpts contains a variety of different styles, but there
are two tracks in particular — train8.wav and trainl2.wav
— that serve as prime examples of what is and what is not
motor-rhythmic music.

Figure 6 shows the chroma for the two separate tracks.
It is evident from the diagram that train8.wav, an elec-
tronic piece by Aphex Twin, is significantly more motor-
rhythmic than trainl2.wav, an orchestral performance of a
composition by J. S. Bach, with a beat strength nearly 40
times greater in amplitude. Despite the lack of harmonic
definition in the chroma of the orchestral track, this system
is capable of identifying the correct fundamental class for
both excerpts according to metadata provided.
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Figure 6. Instances of good (left) and poor (right) motor-
rhythmic music.

Figure 7. Chroma representations for non-binary meter
tracks performed in 6/8 (left) and 7/8 (right).

5. DISCUSSION

Content analysis algorithms for the computation of feature-
specific metadata will no doubt play a vital role in the fu-
ture as digital music libraries continue to increase in vol-
ume seemingly without bound. The system presented here
details one such application of a relatively straightforward
use-genre that extends previous machine listening efforts.
The task of characterizing music for RAS benefits greatly
from the circumstances of the context in which it is used,
wherein the most relevant attributes of motor-rhythmic mu-
sic are objectively quantifiable.

Furthermore, representing the global rhythm in terms of
chroma allows for a compact description of the temporal
structure of music. Succinctly stated, the degree of tempo
variation inherent in a track influences both the width and
height of the chroma partials. Any music track can be rea-
sonably approximated as a set of rhythmic partials with
corresponding amplitudes, angles, and widths.

5.1 Future Work

One of the more interesting observations to result from
this work is the realization that the harmonic structure of
rhythm chroma may provide information about the meter
and other time segmentations. Figure 7 shows the global
chroma of two tracks of note from the MIREX practice
data set: train5.wav and bonus3.wav. These tracks are of
particular interest as they are not binary meter; the former
is 6/8 and the latter is 7/8. The chroma of train5.wav
is really only comprised of a fundamental and a closely-

competing subharmonic at a difference angle of about 150°.

74

[10]

Alternatively, bonus3.wayv is comprised of a variety of sub-
harmonics, but the partial located 70° from the fundamen-
tal is not even remotely present in any other chroma repre-
sentations observed. More work is necessary to determine
the true depth of the information contained within these
data.
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ABSTRACT

This paper presents the outcomes of research into using
lingual parts of music in an automatic mood classification
system. Using a collection of lyrics and corresponding
user-tagged moods, we build classifiers that classify lyrics
of songs into moods. By comparing the performance of
different mood frameworks (or dimensions), we examine
to what extent the linguistic part of music reveals adequate
information for assigning a mood category and which as-
pects of mood can be classified best.

Our results show that word oriented metrics provide a
valuable source of information for automatic mood clas-
sification of music, based on lyrics only. Metrics such as
term frequencies and tf*idf values are used to measure rel-
evance of words to the different mood classes. These met-
rics are incorporated in a machine learning classifier setup.
Different partitions of the mood plane are investigated and
we show that there is no large difference in mood predic-
tion based on the mood division. Predictions on the va-
lence, tension and combinations of aspects lead to similar
performance.

1. INTRODUCTION

With the current boost in music sharing (alongside sharing
files in other formats) [6], Celma and Lamere [4] state that
we see a transformation from albums to individual MP3s
and mixes. This also changes the way people interact with
their music collection and the demands they place on the
software that allows this interaction.

Due to the increasing size of online or digital music col-
lections, users would like to be able to access their collec-
tions through more and more advanced means [13]. For in-
stance, users would like to be able to search for songs based
on various properties, such as year, genre, play count, on-
line recommendation (Web 2.0) or even based on a set
of songs used as seed to find similar ones. One partic-
ular property that people use when creating playlists is
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mood [17]. Currently, this is often done manually by se-
lecting songs that belong to a particular mood and nam-
ing the playlist according to the mood, such as “relaxing”.
Here we investigate the possibility of assigning such infor-
mation automatically, without user interaction.

In recent years, automatic playlist generation has been
introduced to cope with the problem of the tedious and
time consuming manual playlist selection. Furthermore,
browsing the entire music library manually to select songs
for the playlist is felt to be difficult by most music listen-
ers. This becomes especially difficult if music collections
become prohibitively large, as the user will not know or
remember all songs in it.

In fact, it turns out that people have large amounts of
music in their music collection that they never even listen
to. This phenomenon is called The Long Tail [2] as many
songs fall in the region of songs that are hardly ever lis-
tened to, which is visualized as a long tail on the right size
in a histogram. Automatically generating playlists based
on certain properties, such as mood, can expose songs from
the long tail and allow for the user to explore “lost music”
in their music collections.

Here, we will focus on the automatic classification of
music into moods, which is sometimes called “music emo-
tion classification” [18]. Given a music collection contain-
ing songs that do not yet have these moods assigned to
them (or when adding a new, untagged song to the collec-
tion), the process automatically adds the mood tags to the
song, allowing selection of songs based on moods.

We think the melodic part of songs contains important
information that can help the mood classification [10]. How-
ever, we will currently focus on the linguistic aspects of
songs only. The idea is that lyrics contain lexical items
that emphasize a certain mood and as such can be used
to identify the underlying mood. Even though in spoken
language, just like in music, other aspects such as loud-
ness and pitch may also be important triggers to identify
the song’s emotion, we assume here that the actual words
can have an emotional load without being spoken or sung.
For instance, words such as “happy” or “dead” do not have
to be pronounced to have an emotional load. This corre-
sponds to Beukeboom and Semin’s idea [3] that mood af-
fects word choice and that lexical items can express moods.

There has been previous work on the influence of lyrics
on the mood of a song, such as approaches that concen-
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trate on more generic properties present in the lyrics [7],
combining music and lyrics using LSA and vector space
models [12] or using only the musical aspects [9]. Our ap-
proach is quite similar to the work presented in [8], where
multi-label classification is performed, resulting in a differ-
ent classification task. In this paper we concentrate on the
influence of the different divisions of classes on the final
results.

2. APPROACH

In this article, we describe the development of a machine
learning approach to classifying songs, based on lyrics only,
into classes that describe the mood of the song [11]. For
this, we need several components. Firstly, we need to iden-
tify which classes (moods) we are going to classify into.
Secondly, we need to select a collection of features that
allow us to describe properties of the lyrics. Using these
components, we can take a collection of lyrics (describing
songs), extract the features and classify the lyrics into their
mood class. This mood information can be used to auto-
matically create mood-oriented playlists.

2.1 Class divisions

When building a system that can classify songs into moods,
we require a set of classes that describes the allowable
moods. For this, we follow [15] in which two dimensions
are identified: arousal and valence. These dimensions cre-
ate a two-dimensional plane with four areas, dividing the
plane in positive and negative parts on both dimensions.
The moods in this plane range from “angry” and “nervous”
(negative valence, positive arousal) to “happy” and “ex-
cited” (positive valence and arousal) and from “sad” and
“sleepy” (negative valence and arousal) to “relaxed” and
“calm” (positive valence, negative arousal). These words
used here are only used as examples, indicative of the area
in the plane. Other emotionally-laden words can also be
placed in this plane.

To be able to work with a more fine grained set of classes,
we partition the arousal/valence plane into sixteen parts.
This divides both arousal and valence axes into four parts
(two on the positive and two on the negative side of the
axis). The arousal parts are called A—D and the valence
parts 1-4, which leads to individual classes described by a
letter and a number. Based on this division, we investigate
four different class divisions. The first division uses all six-
teen classes. This division is called fine-grained and ranges
from A1-D4. The second, arousal, and third, valence, fo-
cus only on one aspect of the emotional plane. These class
divisions are created by merging four classes. They corre-
spond to only using A—D and 1-4 of the fine-grained divi-
sion, respectively. Finally, we will use the Thayer division,
which clusters all fine-grained classes into four areas based
on the positive/negative areas in Thayer’s arousal/valence
plane.
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2.2 Features

We will experiment with a collection of features. These
are divided into two classes: global and word-based. The
global features describe an aspect of the lyric as a whole.
Here, we have experimented with very simple features,
which should be treated as an informed baseline. We con-
sider character count cc (the number of characters in a
lyric), word count wc (the number of words in a lyric) and
line count /c (the number of lines in a lyric).

The word-based features are more complex and use in-
formation of the specific words used and their typical oc-
currence in the lyrics of a particular mood. These features
are heavily influenced by metrics from the field of informa-
tion retrieval [16]. In particular, we use the tf*idf metric
and its components. This is a powerful technique to em-
phasize the importance of a term (word) compared to all
documents in a large document collection [14]. Originally,
tf*idf was devised to search for relevant documents in large
document collections given one or more search terms. The
metric is used to compute relevance of the documents with
respect to the search terms.

In this research, we consider the use of tf*idf to de-
scribe the relative importance of a word for a particular
mood class. In contrast to the typical context, however, we
start with the lyrics of a song instead of search keywords.
The tf*idf value of each word in the lyrics under consider-
ation is used as weights to indicate relevance with respect
to mood classes. This allows us to compute which mood
is most relevant given lyrics, where the mood is described
by the combined lyrics of all songs that have that particular
mood assigned.

The approach sketched indicates that we take the lyrics
of all songs of a particular mood and combine them as if
they are one document. This “document” can be seen as
describing a particular mood. This means that there will
be as many documents as there are moods. Each mood
class corresponds to one document.

The tf*idf metric consists of two components: term fre-
quency (tf) and the inverse document frequency (idf). These
components are multiplied when computing the tf*idf.

The first word-based feature is the term frequency (tf).
This metric measures the importance of word ¢; in docu-
ment, i.e. mood, d; with n; ; occurrences of the word in
document d;, divided by the sum of the number of occur-
rences of all words in document d;;.

N j
>k Tk j

In this situation, it measures the number of times a word
occurs with a particular document (or mood). Words oc-
curring more often in the lyrics of a particular mood will
have a higher tf for that mood.

The problem with using term frequency is that most
words that typically occur very often are function words,
such as “the”, “a” or “in”. These words are not likely to
help in classifying lyrics to moods as they do not represent
terms that typically describe a mood. What we are really

interested in are words that occur in only a sub-set (or only

tfi; = (1)
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one) of the moods. The inverse document frequency (idf)
measures the importance of the word with respect to a doc-
ument.

|D|

{dj : t; € d;}|

The total number of documents (representing moods)
D is divided by the number of documents in which the
word (¢;) appears, and taking the logarithm of that quo-
tient. The idf measures the importance of a word combined
with a specific mood against all moods. In this particular
situation, idf will be high if it occurs in the text of one or
only few moods and will be low when it occurs in multiple
moods (or even zero when it occurs with all moods).

The idf value by itself is not particularly useful as it is
too course-grained (especially when there are only a hand-
ful of moods), but can be multiplied to weigh the tf value,
resulting in the tf*idf.

idf; = log @

The tf*idf is used to calculate the relevance of a word for a
particular mood: high tf*idf values indicate high relevance
of the word to the mood.

The tf*idf provides for one particular word, a score or
weight for each of the classes. Lyrics typically contain
more than one word, which allows for a more robust com-
putation of the relevance of the mood document for the
lyrics under consideration. Practically, we can combine the
tf*idf values of all the words in the lyrics for classification
by adding the values of the separate words.

Taking the lyrics of all songs of a particular mood as one
document results in having between four and sixteen doc-
uments (depending on the mood division). This is signifi-
cantly less than the amount of documents normally under
consideration in a tf*idf setting. In fact, many words will
occur in all moods, which means that in those cases the
idf will be zero which results in a zero tf*idf for all mood
classes for that word. This turns out to be a very useful
aspect of tf*idf weights in small document collections. In
particular, words that do not help in deciding the correct
mood of lyrics, such as function words, are automatically
filtered out, as their tf*idf value will be zero. There is no
way these words can contribute to the final weight of the
lyrics, so there is no need to consider these words when
analyzing the lyrics.

To investigate whether the zero tf*idf scores really are
useful, we also experimented with Laplace smoothing, also
known as “add-one smoothing”, which reduces the amount
of words that have a zero tf*idf. Before computing idf, one
is added to the total number of documents. This means that
the idf will now always be non-zero, albeit very small. In
the case where normally the idf would be zero, the idf will
now be small and the same for all classes, but this allows
the system to use the information from the tf (which is not
possible if idf is zero).

A potential advantage of the smoothed tf*idf is that in
the case of all words having a zero non-smoothed tf*idf
(for example in the case of very short lyrics), which leads
to a zero tf*idf for all classes (and requiring a random
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choice for the class), the smoothing lets the system back-
off to using tf. By not multiplying tf with zero (idf), the tf
is retained in the final score, which makes it still possible
to classify using tf.

Another extension that is implemented normalizes over
the length of the lyrics. The tf can be larger if longer lyrics
are used (simply because more words are present in those
lyrics). The normalized tf*idf simply divides the tf*idf val-
ues computed from the lyrics by the length (i.e. number of
words) of the lyrics. This should remove the preference for
higher tf in longer lyrics.

Using tf*idf has several advantages. No linguistically
motivated tools are required and the approach is inherently
language independent. There is no need for the lyrics to be
English (or any other language). The simple occurrence of
the same words in the training data and in the test data will
allow for classification. Obviously, it may be the case that
certain words in one language may also occur in another
language, but we expect that lyrics in different languages
typically use different words. However, more research into
the impact of language dependency needs to be done.

3. RESULTS

To measure the effectiveness (and illustrate the feasibility)
of using tf*idf in classifying songs into moods, we set up a
set of experiments. Taking a collection of songs of which
the mood class is known, we extract the lyrics and apply a
machine learning classifier to these, allowing us to classify
the lyrics into classes based on the different class divisions.
For each of these combinations, we discuss the results.

3.1 Experimental settings

To be able to train a machine learning classifier and to
evaluate our experiments, we require a data set contain-
ing a set of pairs of song (or at least the lyrics) and the
corresponding mood. The data set is provided by Cray-
onroom (http://www.crayonroom.com/), a small
company creating music applications. The data set comes
from their Moody application.

Moody lets users tag songs in iTunes in order to gener-
ate mood-based playlists. The tagging is done by manually
assigning colors to songs where each color corresponds to
a particular mood. The user can choose between 16 moods,
which are presented in a four by four square. The colors
provided are similar to the hue colors of mood [1]. Note
that according to Voong and Beale [17] it is easier for a
user to tag using colors instead of tagging using keywords.

The mood information is stored in the comment field of
the song’s ID3-tag and is exported to Moody’s database.
The information stored in Moody’s database, which con-
tains artist and song title information combined with the
mood tag can also be used to automatically tag new songs.
This application relies on user input to collect the mood
information, but using that information it also helps users
tag more songs in their personal collection. As such, it can
be seen as a Web 2.0 application, which relies on collabo-
rative tagging of songs.



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

The mood set used by Moody corresponds well with the
two dimensional mood plane by Thayer [15]. The sixteen
classes, placed in a four by four grid, can be mapped ex-
actly on the plane with four mood tags in each of the areas
in the plane.

Crayonroom provided us with a set of 10,000 random
entries from the Moody database. This is a subset of the
entire database containing mostly popular songs in differ-
ent genres. Most of the songs have an English title, but
there has not been an explicit selection of songs that have
lyrics (as this information is not present in the database it-
self).

The information we received is a list of pairs of artist
and song title, combined with the corresponding mood tag.
Based on this information we started collecting the lyrics
of the songs. Many lyrics can be found online, so we used
the artist and song titles to find the lyrics automatically.
This was done by automatically searching a collection of
lyrics databases given the artist and song information.

Unfortunately, all spaces were removed from the artist
and title fields in the database. This makes automatically
finding lyrics hard. Furthermore, there are situations such
as “AC/DC” which may be spelled in different ways, such
as “ACDC”, “AC-DC”, or “ACDC”. We experimented with
several heuristics to re-introduce spaces and reduce the punc-
tuation problems in the artist and song fields. Applying
these heuristics and trying to find the resulting artists and
song titles led to 5,631 lyrics to be found in the online
databases.

The lyrics were then cleaned up and normalized. All
HTML information was removed, leaving plain text lyrics.
Furthermore, labels such as “chorus”, “repeat until fade
out” and “4x” were removed as they are not properly part
of the lyrics. We realize that this may influence the count
of certain words in the lyrics. However, it is often unclear,
for instance, where the chorus ends exactly. Similarly, it is
often unclear how many repeats are required (in the case
of “repeat until fade out”). Simply removing these labels
will affect the tf, but apart from manually analyzing the
music and correcting all lyrics, we do not see an easy solu-
tion. Manual correction is not a feasible alternative at the
moment.

From the found lyrics we extracted features and com-
bined them together with their mood tag into machine learn-
ing instances. Each instance corresponds to one song. This
information is then used for training and testing (allowing
for evaluation) in a machine learning setting. The differ-
ent class divisions and the distributions of instances can be
found in Table 1 and Table 2.

Each of the experiments is computed using ten fold cross-
validation. This meant that the collection of songs is di-
vided into ten parts and ten experiments are performed,
leaving out one part for evaluation. It is important to re-
alize that for the tf*idf features, the tf*idf values for each
of the words are recomputed for each experiment. This
is needed, because the distribution of words in the train-
ing data may be different for each experiment. Intermedi-
ate tf*idf tables are computed from the training data first,
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Arousal
grained A B C D
1 295 236 248 182 961

g 2 | 387 575 564 261 | 1,787
S 3 | 360 650 531 205 | 1,746
Z 4 | 253 413 338 133 | 1137

1295 1.874 1.681 781 | 5.631

Table 1. Distribution of instances: fine-grained (16
classes), Valence and Arousal (both 4 classes).

1 =A3+A4+B3+B4 | 1,676
2=A1+A2+B1+B2 | 1,493
3=C1+C2+D1+D2 | 1,255
4 = C3+C4+D3+D4 | 1,207

Table 2. Distribution of instances: Thayer division (4
classes).

which are then used to compute the actual tf*idf values for
the lyrics to be classified. Similarly, the tf*idf tables will
be different for each of the different class divisions.

Also keep in mind that for the computation of the tf*idf
values, all lyrics belonging to a particular class are com-
bined to serve as one document as described above. When
computing the features for each instance separately, the
tf*idf values that have been computed beforehand (and stored
in a tf*idf table) are used to compute tf*idf scores for each
of the classes.

To classify the test data we used TIMBL, a k-NN classi-
fier [5]. This classifier has been developed at Tilburg Uni-
versity and contains a collection of algorithms with many
parameters to set. In the experiments described here, we
simply used the default parameter setting. This means that
the IB1 algorithm (k nearest distances with k£ = 1) is used
with the weighted overlap metric and GainRatio weighting.
This means that higher accuracy scores may be reached
when fine-tuning the classifier parameters. In this paper,
we are mostly interested in the feasibility of the approach.

3.2 Experimental results

The results of applying TIMBL to the mood data are sum-
marized in Table 3. The table shows results on the four
different mood divisions and different feature settings.

The baseline shown in the table is the majority class
baseline. This shows that the data is relatively well bal-
anced as can also be seen from Tables 1 and 2. Keep
in mind that the Arousal, Valence, and Thayer divisions
all contain four classes, whereas fine-grained is a 16 class
division. A completely random distribution of instances
would lead to a baseline of 25.00 (four classes) and 6.25
(sixteen classes).

All global features and all of their combinations have
worse performance with respect to the baseline. It turns
out that the information present in these features is simply
not specific enough. For instance, one of the initial ideas
we had before we started this research, that the length of
the lyrics may be different for lyrics in the different classes,
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Arousal Valence Thayer Fine-grained

Baseline | 33.28 31.74 29.76 11.54

cc 30.12  (1.77) | 29.02 (1.08) | 28.15 (1.92) | 9.73 (0.67)
we 3144 (0.84) | 32.59 (1.62) | 28.16 (1.65) | 11.06 (1.09)
Ic 31.81 (1.45) | 29.37 (1.69) | 27.58 (0.85) | 9.85 (0.84)
cc+we 29.02 (2.26) | 28.84 (1.71) | 28.47 (2.00) | 8.77 (0.90)
cc+le 29.61 (1.13) | 27.77 (1.74) | 26.94 (1.74) | 8.12 (0.78)
we+le 28.92 (1.28) | 2843 (2.05) | 27.01 (1.08) | 7.74 (0.91)
cc+wetle | 28.42  (1.69) | 27.65 (1.96) | 27.03 (1.84) | 8.08 (0.84)
tf 3336 (0.18) | 31.77 (0.13) | 29.85 (0.15) | 11.45 (0.12)
tf*idf 77.18 (1.02) | 76.26 (2.03) | 75.79 (1.34) | 70.89 (1.51)
tf+tf*idf | 77.23  (1.02) | 76.29 (2.07) | 75.85 (1.37) | 70.89 (1.50)

Table 3. Mean accuracy and standard deviation of different feature settings and class divisions.

is not true. This is also reflected in the other features used.
To allow for classification into moods, more specific infor-
mation is required.

All advanced features based on tf*idf (apart from tf by
itself) significantly outperform the baseline. The tf by it-
self does not help to classify songs into the correct mood
class. The reason for this is that the words that occur most
frequently (typically function words, such as “the”) greatly
outnumber the content words. Even when function words
occur approximately the same for each class, minor vari-
ations still have a large impact with respect to otherwise
more useful content words, which normally do not occur
very often. For classification purposes, we are mostly in-
terested in words that help identifying the mood of the
lyrics. Words that occur in the lyrics of all moods have
limited usefulness. Unfortunately, because function words
occur most frequent, they have a large impact on the tf.

When adding idf, which happens with the tf*idf fea-
tures, the accuracy goes up dramatically. Adding idf re-
moves (or reduces) all weights for words that occur in lyrics
of all or several classes. This means that only words that
do not occur in lyrics of all moods remain or have a higher
impact. This metric seems to coincide with the notion of
usefulness that we are trying to implement.

The words with the highest tf*idf score for a particular
class are not what we expected. These are words that occur
very frequently in only one song. Examples of words with
high idf and tf are: “aaah”, “dah”, or “yoy”. However,
these words are not often used in classification either.

The results of the experiments using a combination of
the tf*idf metric and the tf metric is slightly better than
simply using the tf*idf metric only. We expect that this has
to do with the situation where there are none or not many
words with a non-zero tf*idf in the lyrics. This may oc-
cur, for instance, when a song contains non-English lyrics.
In that case, the tf*idf values are too often zero, but the
tf features allow for a back-off strategy. The differences,
however, are minor and non-significant.

As mentioned earlier, we have also implemented a nor-
malized (dividing by the number of words in all the lyrics
of a particular mood) and a Laplace smoothed version of
the metrics. Since the normalization and smoothing can
also be applied together, this leads to three more versions
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of all the tf and tf*idf experiments described so far. The
results of these experiments are not shown in Table 3 as
these experiments yield exactly the same mean accuracy
and standard deviation as the normal tf and tf*idf features.
Obviously, the tf and tf*idf values for each of the words
are different in each case, but the classification is the same.

We think that length normalization does not help in clas-
sification because the length of the lyrics in each class is
too similar. This means that all tf*idf values are divided
by a (near) constant. Effectively, similar figures are then
used to classify. Furthermore, Laplace smoothing does not
help because most of the time the lyrics contain enough
non-zero idf words to allow for correct classification. Ad-
ditionally, when smoothing, words occurring in all classes
are used as well, but since they occur in all classes, they do
not have a large impact in deciding the correct class.

The different class divisions (arousal, valence, Thayer,
and fine-grained) were devised to show which aspect of
emotion is easiest to classify. The results show that at least
using the technique described here, there is no clear differ-
ence. We originally thought that valence would be easier
to classify. Positive or negative moods can easily be de-
scribed using words such as “happy” and “sad”. However,
the intensity (described by arousal) can just as easily be
classified. Most interesting is the fact that the fine-grained
class division can be classified effectively as well. Re-
member that the fine-grained division has sixteen classes
whereas the other divisions only have four.

4. CONCLUSION AND FUTURE WORK

This paper describes an attempt to design, implement and
evaluate a mood-based classification system for music based
on lyrics. The ultimate aim is the automatic assignment
of mood-based tags for songs in a users’ music database,
based on lyrics only. By automatically assigning mood
tags to songs, users do not have to assign mood properties
to all songs in a potentially large music collection man-
ually. Having access to the mood information ultimately
allows for the easy creation of playlists based on moods.
To measure the usefulness of words in lyrics with re-
spect to the mood classes, we used a standard information
retrieval metric: tf*idf. This metric is normally used to
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measure relevance of terms with respect to documents in
a large document collection, but when the same metric is
used in a very small set of documents, it shows some inter-
esting and useful properties. The main property used here
is that in very small document collections, the tf*idf filters
out words occurring in all documents. These are words
that are not useful for finding out which document (mood
in our case) fits best.

The results show that the tf*idf feature improves the re-
sults significantly with respect to the majority class base-
line. This shows that tf*idf can be used effectively to iden-
tify words that typically describe mood aspects of lyrics.
This outcome shows that the lingual part of music reveals
useful information on mood.

One has to keep in mind that the experiments reported
here only take the linguistic aspects of songs into account.
In order to improve results further, other characteristics,
such as tempo, timbre or key, should be taken into con-
sideration as well. However, using these aspects requires
access to the music (in addition to the lyrics).

The evaluation of the current system is against the mood
tags provided by Moody. These tags are based on human
annotation. However, it may be that different people assign
(slightly) different tags to the songs. We do not know ex-
actly how this is handled in the Moody application, but this
may have an impact on the evaluation of the system. Also,
we do not know what the inter-annotator agreement is. In
future research we need to consider this potential spread of
human annotation, for example by taking the confidence of
the system for the different moods into account.

A related problem is that the boundaries between the
different moods is not clear-cut. A possible solution to this
problem and that of the possible variation of annotation
is to evaluate using a metric that takes distances between
moods in to account. For instance, classifying A2 instead
of Al is better than classifying D4.
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ABSTRACT musical content that captures longer-term time dependen-

State-of-the-art systems for automatic music tagging cies. The DT model is similar to the Hidden Markov model
model music based on bag-of-feature representations(tHMM) which has proven robust in music identification
which give little or no account of temporal dynamics, a [12]. The difference is that HMMs require to quantize the
key characteristic of the audio signal. We describe a novelaudio signal into a fixed number of discrete “phonemes”,
approach to automatic music annotation and retrieval thatwhile the DT has a continuous state space that is a more
captures temporal (e.g., rhythmical) aspects as well as tim-flexible model for music.
bral content. The proposed approach leverages a recently Musical time series often show significant structural
proposed song model that is based on a generative timehanges within a single song and have dynamics that are
series model of the musical content — the dynamic tex- only locally homogeneous. Hence, [1] proposes to model
ture mixture (DTM) model — that treats fragments of au- the audio fragments from a single song as a dynamic tex-
dio as the output of a linear dynamical system. To model ture mixture (DTM) model [3], for the task of automatic
characteristic temporal dynamics and timbral content at themusic segmentation. These results demonstrated that the
tag level, a novel, efficient hierarchical EM algorithm for DTM provides an accurate segmentation of music into ho-
DTM (HEM-DTM) is used to summarize the common in- mogeneous, perceptually similar segments (corresponding
formation shared by DTMs modeling individual songs as- to what a human listener would label as ‘chorus’, ‘verse’,
sociated with a tag. Experiments show learning the seman-bridge’, etc.) by capturingemporal as well astextural
tics of music benefits from modeling temporal dynamics. aspects of the musical signal.
In this paper, we adopt the DTM model to propose a

) 1 'NTROPUCT!ON o novel approach to the task of automatic mueiootation
This paper concernautomatic tagging of music with de-  that accounts for both the timbral content and the tempo-
scriptive keywords (e.g., genres, emotions, instruments,ra| dynamics that are predictive of a semantic tag. We
usages, etc.), based on the content of the song. MusiGjrst model all songs in a music database as DTMs, cap-
annotations can be used for a variety of purposes, suchying longer-term time dependencies and instantaneous
as searching for songs exhibiting specific qualities (e-g-’spectral content at theong-level. Second, the character-
‘Jazz songs with female vocals and saxophone”), or re- jgiic temporal and timbral aspects of musical content that
trieval of semantically similar songs (e.g., generating play- are commonly associated with a semantic tag are identified
lists based on songs Wij[h similar annotations). by learning @ag-level DTM that summarizes the common

State-of-the-art music “auto-taggers” model a song asfeatures of a (potentially large) set of song-level DTMs
a "bag of audio features” [7,9-11, 14]. The bag of fea- for the tag. Given all song-level DTMs associated with a
tures representation extracts audio features from the SONGarticular tag, the common information is summarized by
at a regular time interval, but then treats these features i”'clustering similar song-level DTs using a novel, efficient
dependently, ignoring the temporal order or dynamics be- hierarchical EM (HEM-DTM) algorithm. This gives rise
tween them. Hence, this representation fails to account foryg 4 tag-level DTM with few mixture components (as op-
the longer term musical dynamics (e.g. tempo and beat)ygsed to tag-level Gaussian mixture models in [14], which
or temporal structures (e.g. riffs and arpeggios), which are 4o not capture temporal dynamics). Experimental results

clearly important characteristics of a musical signal. show that the proposed time-series model improves anno-
We address this limitation by adopting the dynamic tex- tation and retrieval, in particular for tags with temporal dy-
ture (DT) model [6], a generativeime-series model of namics that unfold in the time span of a few seconds.

The remainder of this paper is organized as follows. In
Permission to make digital or hard copies of all or part of this work for - Section 2, we present the annotation and retrieval system
personal or classroom use is granted without fee provided that copies areysing time-series data, while in in Section 3, we present
not made or distributed for profit or commercial advantage and that copies an efficient hierarchical EM algorithm for dynamic texture
bear this notice and the full citation on the first page. mixtures. Finally, in Sections 4 and 5, we present experi-
(© 2010 International Society for Music Information Retrieval. ments using DTM for music annotation and retrieval.
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2. ANNOTATION AND RETRIEVAL 2.3 Music Retrieval
In this section we formulate the tasks of annotation and Given a query word, songs in the database can be re-
retrieval of audio data as a semantic multi-class labeling trieved based on their relevance to the semantic query
(SML) problem [2] in the context of time-series models.  word?®. In particular, the song’s relevance to the query
word wy, is equivalent to the posterior probability of the

2.1 Notation . . .
. . . word, p(wg|Y) in (2). Hence, retrieval involves rank-
A songs is represented as a collection Bfoverlapping i )
. . 1 T ‘ ordering the songs in the database based on the k-th entry
time seriesy = {y{.,, --., ¥i.. }, Wwhere eachy!._ repre-

sentsr sequential audio feature vectors extracted by pass—(p’“) of the semantic multinomiaj.

ing a short-time window over the audio signal (also called 2.4 Learning DTM tag models

an audidfragment). The number of fragmentd;, depends | this paper, we model the tag-level distributions,
on the length of the song. The semantic content of asongy(yt |w,), as dynamic texture mixture models. The tag-
with respect to a vocabulary of size V] is represented |evel distributions are estimated from the set of training

in an annotation vectat = [cy, ..., ¢y}, wherec, > 0 gongs associated with the particular tag. One approach is
only if there is a positive association between the song andyg extract all the audio fragments from the relevant train-
the wordwy, otherwisec, = 0. Eachsemantic weight, ing songs, and then run the EM algorithm [3] directly on
ck, represents the degree of association between the songhis data to learn the tag-level DTM. This approach, how-
and wordwy,. The data seD is a collection offD| song-  ever, requires storing large amounts of audio fragments in
annotation pair$Yu, cq). memory (RAM) for running the EM algorithm. For even

2.2 Music Annotation modest-sized databases, the memory requirements can ex-
We treat annotation as a semantic multi-class problem [2,¢€€d the RAM capacity of most computers.

14] in which each class is a word from a vocabulary of To allow efficient training in both computation time and

unique tags (e.g., “bass guitar”, “hip hop”, “boring”). Each memory requirements, we propose to break the learning
wordwy, is modeled with a probability distribution over the Procedure into two steps. First, a DTM is estimated for
space of audio fragments(y!. |w;). The annotation task each song using the standard EM algorithm [3]. Next, each
is to find the subsety = {w, ..., w4} C V of A words tag-level model is estimated using the hierarchical EM al-
that best describe a novel sopig gorithm on all the song-level DTMs associated with the
Given the audio fragments of a novel sadigthe most ~ Particular tag. Because the database is first processed at the

relevant words are the ones with highest posterior proba-SOng-level, the computation can be easily done in parallel
bility, computed using Bayes' rule: (over the songs) and the memory requirement is greatly re-

duced to that of processing a single song. The memory
requirements for computing the tag-level models is also
reduced, since each song is succinctly modeled by the pa-
rameters of a DTM.

wherep(wy) is the prior of thek! word, andp(y) = Such a reduction in computational complexity also
ZL‘;'Ip(ka)p(wk) is the song prior. To promote an- ensures that the tag-level models can be learned from
notation using a diverse set of words, we assume an uni-cheaper, weakly-labeled data (i.e., missing labels, labels
form prior, p(w;) = 1/|V|. We follow [14] in estimat-  without segmentation data, etc.) by pooling over large
ing the likelihood term in (1) with the geometric aver- amounts of audio data to amplify the appropriate attributes.
age of the individual sequence likelihoodsY|wy) = In summary, adopting DTM, or time-series models in gen-
Hthl (p(yf;flww)%- Note that, unlike bag-of-features ~€ral, as a tag-model for SML annotation requires an appro-
models that discard any dependency between audio feaPriate HEM algorithm for efficiently learning the tag-level
tures vectors (each describing milliseconds of audio), we models from the song-level models. In the next section, we

p(Y|wg) p(wy,)

p(wi|Y) = o)

@)

only assume independence between diffesequiences of review the DTM and present the HEM algorithm for DTM.
audio feature vectors (describing seconds of audio). Cor-
relations within a single sequence are accounted for by the 3. HIERARCHICAL EM FOR DTMS
model presented in Section 3. In this section, we first review the dynamic texture (DT)
The probability that the songy can be described by —and dynamic texture mixture (DTM) models for modeling
word wy, is musical time-series. We then present the hierarchical EM
algorithm for efficiently learning a tag-level DTM from a
T t T set of song-level DTMs.
—1 \P\Y1.7 | Wk
pr = p(wi|Y) = |1;If 1; W |t ) - 2)
=1 [li=1 (p(yi. Jwi)) ™ 3.1 TheDynamic Texture Model

. . . A dynamic texture [6] (DT) is a generative model that takes
Finally, the song can be represented as a semantic multi- . . :

. into account both the acoustics and the dynamics of audio
nomial,p = [p1, ..., )y, where eachy, = p(wi|))

sequences [1]. The model consists of two random vari-
represents the relevance of th¢ word for the song, and . . .
VI ables,y;, which encodes the acoustic component (audio

-1 pi = 1. We annotate a song with the most likely

tags according tp, i.e., we select the tags with the words ~ * Notethat although this work focuses on single-word queries, our rep-
with the largest probability. resentation easily extends to multiple-word queries [13].
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feature vector) at timg andx,, which encodes the dynam-  hidden variables (the “complete data”). The EM algo-
ics (evolution) of the acoustic component over time. The rithm for DTM alternates between estimating second-order
two variables are modeled asiaear dynamical system, statistics of the hidden-states, conditioned on each audio
sequence, with the Kalman smoothing filter (E-step), and
v = Azt 3 computing new parameters given these statistics (M-step).

y = Cxp+w +7, (4) Previous work in [1] has successfully used the DTM for

wherez, € R" andy, € R™ are real vectors (typically the task of segmenting the structure of a song into acous-

. tically similar sections (e.qg., intro, verse, chorus, bridge,
n < m). Using such a model, we assume that the dy' solo, outro). In this work, we demonstrate that the DTM

namics of the audio can be summarized by a more parsi- .
: . . can also be used as a tag-level annotation model for mu-
monious (n < m)hidden state process x;, which evolves . ; . . .
sic annotation and retrieval. We next present a hierarchi-

as a first order Gauss-Markov process, and etshrva- . . L
: . . , cal EM algorithm for efficiently estimating these tag-level
tion variable y;, which encodes the acoustical component .

DTMs from large sets of song-level DTMs, previously es-

audio feature vector img i - L ; .
( : attl is dependent only on the timated for the set of training songs associated with a tag.
current hidden state;.

The matrix4 € R™ " is a state transition matrix, 3.3 Hierarchical EM for learning DTM hierarchies

which encodes the dynamics or evolution of the hidden Given a DTM model of each training song as learned in the
state variable (e.g., the evolution of the audio track), and previous section, the goal now is to learn a tag-level DTM
the matrixC € R™*" is anobservation matrix, which model that summarizes the common features of the corre-
encodes the basis functions for representing the audio sesponding song-level DTMs. First, all song-level DTMs
quence. The vectoj € R" is the mean of the dy-  with a particular tag are pooled together into a single, large
namic texture (i.e. the mean audio feature vectay)is DTM. Next, the common information is summarized by
a driving noise process, and is zero-mean Gaussian dis- clustering similar DT components together, forming a new
tributed , e.g.,v; ~ N(0,Q), whereQ € R"" is a tag-level DTM with fewer mixture components.

covariance matrix. w; is the observation noise and is The DT components are clustered using the hierarchi-
also zero-mean Gaussian, e.gy, ~ N(0,R), where cal expectation-maximization (HEM) algorithm [15]. At
R € R™*™ is a covariance matrix. Finally, thiaitial a high level, this is done by generatingtual samples
condition is specified as;; ~ N (u,S), wherep € R" is from each of the song-level component models, merging
the mean of the initial state, arle R"*" is the covari-  all the samples, and then running the standard EM algo-
ance. The dynamic texture is specified by the parametersithm on the merged samples to form the reduced tag-level
0={4,Q,C,R,u,S,7}. mixture. Mathematically, however, using the virtual sam-

Intuitively, the columns of”' can be interpreted as the ples is equivalent to marginalizing over the distribution of
principal components (or basis functions) of the audio fea- song-level models. Hence, the tag model can be learned di-
tures vectors over time. Hence, each audio feature vectorrectly and efficiently from the parameters of the song-level
y; can be represented as a linear combination of principalmodels, without generating any virtual samples.
components, with corresponding weights given by the cur-  The HEM algorithm was originally proposed in [15]
rent hidden state;. In this way, the DT can be interpreted to reduce a Gaussian mixture model (GMM) with many
as a time-varying PCA representation of an audio featurecomponents to a representative GMM with fewer com-
vector time-series. ponents and has been successful in learning GMMs from
3.2 The Dynamic Texture Mixture Model large datasets for the annotation and retrieval of images [2]

A song is a combination of heterogeneous sequencesand music [14]. We next present an HEM algorithm for

with significant structural variations, and hence is not mixtures with components that asgnamic textures [4].

well represented as a single DT model. To address3.3.1 HEM Formulation

this lack of global homogeneity, [1] proposed to repre- Formally, let@() = {WZ(S)?@,ES)}{S? denote the com-

sent audio fragments, extracted from a song, as sam+)ineq song-level DTM with () components,wher@fs)

ples from a dynamic texture mixture (DTM) [3], effec-  are the parameters for thi& DT component. The like-

tively modeling local structure of the song. The DTM |ihgod of observing an audio sequenge, with lengthr

model [3] introduces an assignment random variable from the combined song-level DTK() is given by

multinomial (7, - -+ , 7 ), which selects one of thé&

dynamic texture components as the source of the audio K®

fragment. Each mixture component is parameterized by  p(y1:,|0)) = > (|2 =0,00),  (5)

0. ={4,,C.,Q.,R.,u.,S,7.}, and the DTM model i=1

is parameterized b§ = {r,, 0.} . e o) - _
Given a set of audio samples, the maximum-likelinood Where z ~  multinomial(m,™, - - - m¢,,) is the hid-

parameters of the DTM can be estimated with recourse toden variable that indexes the mixture components.

the expectation-maximization (EM) algorithm [3], which P(¥1:-12*) = 4,0()) is the likelihood of the audig.-

is an iterative optimization method that alternates betweenunder thei” DT mixture component, and*) is the prior

estimating the hidden variables with the current parame-Wweight for thei*” component. The goal is to find a tag-

ters, and computing new parameters given the estimatedevel annotation DTMO(®) = {w;“),@;“)}ﬁ‘f, which
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represents (5) using fewer number of mixture components
K@ (i.e.,, K(* < K)). The likelihood of observing an
audio sequenceg, ., from the tag-level DTMO(%) is

K (@)
10 = bl = 1.0, @)
where z(®) ~ multinomial(ﬂ'ia), cee ﬁ??a)) is the hid-

den variable for indexing components&®. Note that
we will always usei and j to index the components of
the song-level modeB(®), and the tag-level mode®(®),
respectively. To reduce clutter, we will also use the short-
hand®!” and©'" to denote the*" component of(*)
and thej** component o®(®), respectively. For example,
we denotey(yy., |2 =i,0)) = p(y1.-|O).

3.3.2 Parameter estimation

To obtain the tag-level model, HEM [15] considers a set of

N virtual observations drawn from the song-level model

0 such thatV; = was) samples are drawn from the

it" component. We denote the set/éf virtual audio sam-

ples for thei’ component ay; = ﬁ;m)}m 1» Where
m) 0{*) is a single audio sample ands the length

of the V|rtual audio (a parameter we can choose). The en-

tire set of N samples is denoted a5 = {Y}K“). To

,component 0®(@, e.g., when:!”) = j. The complete-

data log-likelihood is then
log p(X, Y, Z|0')
K® k@

Z Z Zi,j IOg 7Tj(»a)

i=1 j=1

(10)

+2ij logp(Yz',Xﬂ@;a))-

The Q function is then obtained by taking the conditional
expectation of (10), and using the law of large numbers to
remove the dependency on the virtual samples. The result
is a Q function that depends only on the parameters of the
song-level DT®'*.

The HEM algorithm for DTM is summarized in Algo-
rithm 1. In the E-step, the expectations in Eq. (11) are
computed for each song-level DGSE.S) and current tag-

level DT éga). These expectations can be computed using
“suboptimal filter analysis” or “sensitivity analysis” [8] on
the Kalman smoothing filter (see [4]). Next, the probabil-
ity of assigning the song-level DG)(S) to the tag-level DT

9(‘” is computed according to (12), and the expectations
are aggregated over all the song-level DTs in (14). In the
M-step, the parameters for each tag-level compo@éﬁ)t

are recomputed according to the update equations in (15).
More details are available in [4].

obtain a consistent hierarchical clustering, we also assume

that all the samples in a s&} are eventually assigned to
the same tag-level componéhﬁ“). The parameters of the
tag-level model can then be estimated by maximizing the
likelihood of the virtual audio samples,

0" = argmaxlogp(Y|0\"), 7)
(_) a
where
K
logp(Y10'*)) =log [] p(vi|©) ®)
=1
k() (e
— 1o [[ o n” [pvixigefax, @
=1 j5=1
and X; = {xﬁf;m)} are the hidden-state variables corre-

sponding toY;. Computing the log-likelihood in (9) re-

4. MUSIC DATA

In this section we describe the music collection and the
audio features used in our experiments.

The CAL500 [14] dataset consists of 502 Western pop-
ular songs from the last 50 years from 502 different artists.
Each song has been annotated by at least 3 humans, using
a semantic vocabulary of 174 words that includes genres,
instruments, vocal characteristics, emotions, acoustic char-
acteristics, and song usages. CAL500 provides hard binary
annotations, which are 1 when a tag applies to the song and
0 when the tag does not apply. We find empirically that ac-
curately fitting the HEM-DTM model requires a significant
number of training examples so we restrict our attention to
the 78 tags with at least 50 examples.

A popular feature for content-based music analysis,
Mel-frequency cepstral coefficients (MFCCs) concisely

quires marginalizing over the hidden assignment variablessummarize the short-time content of an acoustic waveform

(“) and hidden state variableés;. Hence, (7) can also be
solved with recourse to the EM algorithm [5]. In particular,
each iteration consists of

E-Step:2(0'*),0(@)) =

Ex Z\Y@(a) llogp(X,Y, Z|0)]

M-Step:© (@* — = arg max Q(@(a a))
where©(® s the current estimate of the tag-level model,
p(X,Y, Z|0@) is the “complete-data” likelihood, and
Ex zjv.6 is the conditional expectation with respect to
the current model parameters.

As is common with the EM formulation, we introduce a
hidden assignment variabie ;, which is an indicator vari-
able for when the audio sample 3étis assigned to thg"
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by using the discrete cosine transform (DCT) to decorre-
late the bins of a Mel-frequency spectral histogramin
Section 3.1 we noted how the DT model can be viewed as
a time varying PCA representation of the audio features.
This idea suggests that we can represent the spectrum over
time as the output of the DT modet. In this case,
the columns of the observation matrix (PCA matrix)

are analogous to the DCT basis functions, and the hidden
statesz; are the coefficients (analogous to the MFCCs).
The advantage with this formulation is that a differént
matrix, i.e., basis functions, can be learned to best rep-
resent the particular song or semantic concept of interest.

2 Thisdecorrelation is usually convenient in that it reduces the number
of parameters to be estimated.
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Model P R F-score AROC MAP P10

Algorithm 1 HEM algorithm for DTM
K ()

1: Input: combined song-level DTMO(*, =t~} number HEM-GMM 049 023 026 066 045 047
of virtual samples\V. CBA 041 024 029 0.69 047 0.9

Initiali &(a) (a)yK(®

2: Initialize tag-level DTM,{© ", 7" } ;= . HEM-DTM  0.47 025  0.30 0.69 048 0.53

3: repeat

4:  {E-step}

5.  Compute expectations using sensitivity analysis for each
@Z@ and@j.a) (see [4]):

Table 1. Annotation and retrieval results for HEM-DTM
andHEM-GMM.

~() _

xt|j - Ey‘ggs) [Ez\y,éﬁ.“)[ajt]} s

H(i) T
Pt,t|j = EyIGES) Em\y,éﬁ.a) [xex; ]} ,

H(i) _ T
Pt,lt—l\j - Ey|@§s) |:E1‘y7@);"r)[xtxt—l]:| )

< () _ - (11)
Wii = Ey\@(.s) (ye = yJ')Ez‘yyé(_@ [z:]" |,
N J
Ut(\lJ) = Ey\eg@ (e — ) (we —95)"]
ﬁg’b) = }Ey\@gs) [yt} s
ly; = E@,(.S) [logp(y1;f|@§a))}.
Compute assignment probability and weighting:
A 7 exp (Nicuy)
Zij = o @) (12)
Ej’:l 7Tj/ exp (Nzezb’)
Wi = Zi;N; = i@j’ﬂ'z{S)N (13)

Computed aggregate expectations for e@gH':

Nj =222, = Wi Pl
M; =3, vai,j,(_ V= W

T A (7)
2J Zt:2 Pt,_t)—1|j’ (14)

5. EVALUATION

Song-level DTMs were learned withh = 16 compo-
nents and state-space dimensioe= 7, using EM-DTM.
Tag-level DTMs were learned by pooling together all song
models associated with a given tag and reducing the result
to a DTM with K(") = 2 components with HEM-DTM.
To reduce the effect of low likelihoods in high dimen-
sions, we normalize the single-segment likelihood terms,
e.g.,p(yt. Jwg), by the length of the sequence

To investigate the advantage of the DTM’s temporal
representation, we compare the auto-tagging performance
of our model (HEM-DTM) to the hierarchically trained
Gaussian mixture models (HEM-GMM) from [14], a gen-
erative model that ignores temporal dynamics. A compar-
ison to the CBA model of [9] is provided as well. We fol-
low the procedure of [14] for training HEM-GMMs, and
our CBA implementation follows [9], with the modifica-
tion that the codebook is constructed using only songs from
the training set. All reported metrics are the results of 5-
fold cross validation where each song appeared in the test
set exactly once.

5.1 Annotation and Retrieval

Annotation performance is measured following the proce-
dure in [14]. Test set songs are annotated with the 10 most
likely tags in their semantic multinomial (Eg. 2). Anno-

WJ =2 tation accuracy is reported by computing precision, recall
Aj =20 Wig Dt I{ili’ and F-score for each tag, and then averaging over all tags.
Ty =0, Wiy S0, W) For a detailed definition of the metrics, see [14].
8: {M-step} To evaluate retrieval performance, we rank-order test

songs for each single-tag query in our vocabulary, as de-
scribed in Section 2. We report mean average precision

9:  Recompute parameters for each compo@ﬁf:

C:=T;0: 1, R = L (A; — CIT;), : . -
AJ* - \I/] 7 ! - TMjl( / / jx)*\I/T (MAP), area under the receiver operating characteristic
i 1j¢j ’ Qj = (r=1)M; (95 = Tf i) (15) curve (AROC) and top-10 precision (P10), averaged over
5 = ;i S5 = ;i — 1 (H3)", all the query tags. The ROC curve is a plot of true positive
e K% C* B, rate versus false positive rate as we move down the ranked
Ty = =" g& o Yi = T][{_(’YJ = CjBj)- . . .
i list. Random guessing would result in an AROC of 0.5.

10: until convergence

o The top-10 precision is the fraction true positives in the
11: Output: tag-level DTM{©'*, z{®} 11",

top-10 of the ranking. MAP averages the precision at each
point in the ranking where a song is correctly retrieved.

5.2 Results

Furthermore, since we explicitly model the temporal evo- Annotation and retrieval results are presented in Table 1,
lution of the spectrum, we do not need to include the in- demonstrating superior performance for HEM-DTM, com-
stantaneous deltas of the MFCCs. pared to HEM-GMM,for all metrics except for precision.

Our experiments use 34 Mel-frequency bins, computed 1iS indicates that HEM-DTM is slightly more aggressive
from half-overlapping, 46ms audio segments. Each audioWhen annotating songs, but still its annotations are more
fragment is described by a time serigls. of 7 = 450 accurate, as evidenced by.the hlgher F-score. HEM-DTM
sequential audio feature vectors, which corresponds toPerforms better than CBA in all metrics. For retrieval, al-
10 seconds. Song-level DTM models are learned from 10ugh AROC scores are comparable for CBA and HEM-

a dense sampling of audio fragments of 10 seconds, ex-2TM, HEM-DTM clearly improves the top of the ranked
tracted every 1 second. list more, as evidenced by the higher precision-at-10 score.
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HEM-DTM
F-score MAP

HEM-GMM
F-score  MAP

Tag

HEM-DTM better than HEM-GMM

male lead vocals 0.44 0.87 0.08 0.81
femalelead vocals 0.58 0.69 0.42 0.44
fast rhythm 0.40 0.48 0.20 0.42
classic rock 0.41 0.37 0.18 0.36
acoustic guitar 0.44 0.43 0.31 0.44
electric guitar 0.32 0.35 0.14 0.34
HEM-GMM better than HEM-DTM
mellow 0.34 0.41 0.37 0.49
slow rhythm 0.45 0.60 0.44 0.62
weak 0.22 0.26 0.26 0.25
light beat 0.36 0.58 0.53 0.61
sad 0.13 0.23 0.28 0.30
negative feelings 0.27 0.33 0.35 0.36

Table 2. Annotation and retrieval results for some tags
with HEM-DTM and HEM-GMM.

classic rock, driving, energy, fast, male
lead vocals, electric guitar, electric, indif-
ferent, powerful, rough

HEM-DTM

boring, major, acoustic,driving, not like-
able, female lead vocalgecording quality,
cold, synthesized, pop, guitar

HEM-GMM

Table 3. Automatic 10-word annotations for ‘Every little
thing she does is magic’ by Police.

HEM-DTM performs better on average by capturing

temporal dynamics (e.g., tempo, rhythm, etc.) over sec-
onds of audio content. Modeling temporal dynamics can 2]

Rank HEM-DTM

1 JamesTaylor  ‘Fireand rain’

2 Arlo Guthrie  ‘Alicesrestaurant massacree
3 Zombies  ‘Beechwood park’

4 Croshy, Stills, Nash and Young  ‘Teach your children’

5 Donovan  ‘Catch thewind’

6 American musicclub  ‘Jesushands

7 Aaron Neville  ‘Tell it like it is’

8 10cc  ‘Foryou and i’

9 Byrds  ‘Wasn't born to follow’

10 Beautiful south  ‘One last love song’

Rank HEM-GMM

1 Stranglers  ‘Golden brown’

2 Croshy, Stills, Nash and Young  ‘Teach your children’

3 Pet shop boys  ‘Being boring’

4 Counting crows  ‘Speedway’

5 Beth quist ~ ‘Survival’

6 Beautiful south  ‘One last love song’

7 Neutral milk hotel ~ ‘Where you'll find me now’
8 Police  ‘Every little thing she does is magic’
9 Eric clapton ~ ‘Wonderful tonight’

1 Belle and Sebastian  ‘Like Dylan in the movies’

Table 4. Top retrieved songs for ‘acoustic guitar’.

gorithm for efficiently learning DTM models from large
training sets, enabling its usage as a tag model for seman-
tic annotation and retrieval. Experimental results demon-
strate that the new model improves accuracy over current
bag-of-feature approaches.
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(1]

be expected to prove beneficial for some tags, while adding

no benefit for others. Indeed, some tags might either be[3
modeled adequately by instantaneous characteristics alone
(e.g., timbre), or require a global song model. Table 2
lists annotation (F-score) and retrieval (MAP) results for a
subset of our vocabulary. As expected, HEM-DTM shows [5]

(4]

strong improvements for tags associated with a clear tem-

poral structure. For the genre “classic rock”, which has
characteristic tempo and rhythm, HEM-DTM achieves an [7]
F-score of approximately 0.4, doubling the performance

of HEM-GMM. Similarly, HEM-DTM proves particularly

“male lead vocals” and “fast rhythm”, or the instruments

such as electric or acoustic guitar. Conversely, our HEM-
DTM shows no improvement over HEM-GMM when pre- [11]
dicting tags for which temporal structure is less significant,

[12]
Finally, Tables 3 and 4 show example annotations and

such as “mellow” and “negative feelings”.

retrieval rankings for both HEM-DTM and HEM-GMM.
Ground truth results are marked in bold.

6. CONCLUSIONS

We have presented the dynamic texture mixture model; @as]
principled approach for capturing the temporal, as well as

timbral qualities of music. We derived a hierarchical al-
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(8]
suitable for tags with significant temporal structure, e.g., [9]

[14]
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AUTOREGRESSIVE MFCC MODELSFOR GENRE CLASSIFICATION
IMPROVED BY HARM ONIC-PERCUSSION SEPARATION

Halfdan Rump, Shigeki Miyabe, Emiru Tsunoo, Nobukata Ono, Shigeki Sagama
The University of Tokyo, Graduate School of Information Science and Technology
{runp, m yabe, t sunoo, onono, sagayanma}@il .t.u-tokyo.ac.jp

ABSTRACT (see [2] for a comprehensive review). The MFCCs are of-
ten calculated on the unaltered spectrum, thus containing

In this work we improve accuracy of MFCC-based genre information of all aspects of the music. The MFCCs ef-
classification by using the Harmonic-Percussion Signal Sepfectively function as a lossy compression of a short part
aration (HPSS) algorithm on the music signal, and then of the music signal into a small number of coefficients. It
calculate the MFCCs on the separated signals. The choicanay happen that certain characteristics of the music signal
of the HPSS algorithm was mainly based on the observa-which could be useful for genre classification are blurred
tion that the presence of harmonics causes the high MFCCdy the compression. A possible way to resolve this issue
to be noisy. A multivariate autoregressive (MAR) model is to break down the music signal into several signals, each
was trained on the improved MFCCs, and performance in containing a specific kind of information about the signal,
the task of genre classification was evaluated. By combin-and then calculate the MFCCs on the new signals. An ex-
ing features calculated on the separated signals, relative erample could be to separate the instruments and then cal-
ror rate reductions of 20% and 16.2% were obtained whenculate the MFCCs for the signals, each containing only a
an SVM classifier was trained on the MFCCs and MAR single instrument. However, it is possible that such a sepa-
features respectively. Next, by analyzing the MAR features ration will fail, thus generating unpredictable results which
calculated on the separated signals, it was concluded thatnight actually be worse than just using the original signal
the original signal contained some information which the for classification. In this work we have used a simple algo-
MAR model was capable of handling, and that the best per-rithm that separates the music signal into two signals, one
formance was obtained when all three signals were usedcontaining harmonics and the other containing percussion.
Finally, by choosing the number of MFCCs from each sig- The choice of this algorithm is based on some observations
nal type to be used in the autoregressive modelling, it wasabout the nature of the MFCCs, discussed in section 2.
verified that the best performance was reached when the
high MFCCs calculated on the harmonic signal were dis-

carded. o
After the music signal has been separated, MFCCs can

be calculated on all three signals (original signal, harmon-
1. INTRODUCTION ics and percussion). A classifier can be trained directly on
Music information retrieval (MIR) is a diverse research the MFCCs, or more elaborate models can be constructed

field with many different areas of interest, such as chord @nd used for classification. In this paper we investigate if
detection, melody extraction etc. One of the popular taskshigher classification performance can be achieved by sep-
is classifying music into genres, which not only serves to arating the music signall as described above. We train a
ease organization of large music databases, but also drive§ultivariate autoregressive (MAR) model on the MFCCs
the general development of features for representing theffom the three signal types, and use it in a classifier.
various important aspects of music. The task of genre clas-
sification draws upon many different kinds of information
which. means that.one can either use features c;apable of ex- The MAR model has proven to be efficient for the task
pressing the music as a whole, or use many different types

of features, each describing specific aspects of the musicOf genre classification. First of all, the MAR model inte-
such as thé beat, melody ?imgre otc AF\)Iow level feature grates the short time feature frames temporally, and sec-

i o ondly it is capable of modelling the covariances between
frequently used for modelling music is the Mel-Frequency yI P 9

- - . the MFCCs. Since the ultimate goal of genre classifica-
Cepstral Coefficients (MFCC), originally proposed in [1], tion algorithms is to reach an accuracy of 100%, it is most

meaningful to analyse the model with the highest accuracy.
Permission to make digital or hard copies of all or part of this work for  Therefore the article will focus mostly on the results ob-
personal or classroom use is granted without fee provided that copies areained when using the MAR model for classification. Fur-
not made or distributed for profit or commercial advantage and that copiesthermore, by comparing performance of the MAR features
bear this notice and the full citation on the first page. calculated on the different signal types, it can be inferred
(© 2010 International Society for Music Information Retrieval. which aspects of the music the MAR model analyses.
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2. THE MEL-FREQUENCY CEPSTRAL
COEFFICIENTS

The Mel-Frequency Cepstral Coefficient (MFCC) feature
extraction is a useful way of extracting timbre information.
The music signal is divided into a number of short time
frames. For each frame&y,, coefficients are calculated,
thus yieldingNV,,, time series to be modelled by the MAR
model, described in section 3.

In the following we explain the motivation for includ-
ing a separation step by considering how the MFCCs are
calculated. In the Mel filter-bank analysis, the bandwidth
of each filter is linear for frequencies under around 1 kHz,
and thereafter grows logarithmically. Therefore each of
the lower Mel coefficients is the mean of a relatively nar-
row frequency band. If the spectrum is characterized by
narrow pitch spikes, the difference between two adjacent
Mel coefficients is likely to be large. Since the MFCCs are
obtained by applying the DCT transform, these differences
will be described by the high MFCCs. In other words, the
high MFCCs are capable of closely fitting the pitch present
in the frame on which they are calculated. Pitch is usually
not a very good indicator for music genre, and therefore
the high MFCCs should be discarded. On the other hand, if
the spectrum has a smooth envelope the high order MFCC
will not model pitch, and therefore may be usable for genre
classification. Most music signals contain both harmonics
(pitch spikes) and percussion (smooth spectral envelope)
Since the presence of pitch is harmful to the information

content of the high MFCCs, it seems feasible to separate

harmonics from percussion.
Furthermore it is possible that the shape of the spec-

ion Retrieval Conference (ISMIR 2010)

for prediction of signal. u,, is the offset vector and can be
omitted if each time series is subtracted by it's mean before
estimating the coefficient matrices. The model parameters
can be estimated by using the least mean squares approach.
The P weight matriced\; ... Ap and the the offset vector

u, are stacked into N2, + N,,, dimensional vector, and

this constitutes the feature vector used for classification.

A basic assumption of the MAR model is that the time
series upon which it is calculated has a stationary distribu-
tion. At first glance this assumption does not seem to go
well with the nature of the percussive signal since it does
not have a smooth time envelope. However, over longer pe-
riods roughly the same percussion sounds and thus MFCCs
will appear again and again, which can be interpreted as
stationarity. On the other hand, even though the harmonic
signal has a smooth time envelope for a given note, mean-
ing that the MFCCs will have a stationary distribution dur-
ing the note, the distribution will change as the next note is
struck. Since the exact same combination of harmonics, or
in other words the same pitch spikes which are modelled
by the high order MFCCs, is unlikely to occur more than
maybe a few times, the distribution cannot be assumed sta-
tionary.

High order models are characterized by a high variance

hich gives them the power to fit closely to a time series,
but also makes them prone to over-fitting. Low order mod-
els are more dominated by bias which makes them more
‘suitable in cases where the signal envelope is the desired
target. In [3], the MAR model was found to perform best
with P = 3 when the task was genre classification, but the
optimal value might differ according to the application for
the reasons listed above.

tral envelope of harmonics and percussion when they have

been separated is useful for genre classification, and tha
the information content of the lower MFCCs will be im-
proved by separating the music signal.

3. THE MULTIVARIATE AUTOREGRESSIVE
MODEL

The MAR model is similar to the normal autoregressive

model, in that it predicts the next sample of a time series
as a linear combination of past samples. The MAR model
extends the capabilities of the normal AR, as it capable
of making predictions for multiple time series and utilizes

correlations between time series for prediction. The pre-
diction of then'th NV, time series is calculated as

P
Xy = ZApxn_I(p) +u, (2)

p=1

wherex,, is alN,, x 1 vector containing the predictions, and
n is the frame indexP is the model order which specifies
the number of time lags used for prediction. The MAR
model is not constrained to using only time lags. . P,
but an arbitrary set of time lags = {7, ...7p} can be
chosenA; ... Ap are theN,, x N,, weight matrices for
time lagsr; ... 7p. Element/A]}/ is the weight that con-
trols how much of signaj, time-lagged,, samples, is used
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4. HARMONIC-PERCUSSION SIGNAL
SEPARATION

The Harmonic-Percussion Signal Separation (HPSS) algo-
rithm proposed in [5], is a simple and fast method of di-
viding a musical signal\, into two signalsH andP, each
containing only the harmonic and percussive elements re-
spectively. HPSS can be thought of as a two-cluster soft
clustering, where each spectrogram grid-point is assigned
a graded membership to a cluster representing harmonics
and a cluster representing percussion. The algorithm uses
the fact that percussion has a short temporal duration and is
rich in noise, while harmonic elements have a long tempo-
ral duration with most of the signal energy concentrated in
pitch spikes. Thus in the spectrogram, percussion appears
as vertical lines of high power, whereas harmonic elements
appear as horizontal lines.

In broad terms, the HPSS algorithm works by assuming
independence betweéhandP, and using Bayes formula
to calculatep(H, P|N)

log p(H, PIN) = log p(N[H, P)+log p(H)+log p(P) (2)

The prior distributiong(H) andp(P) are defined as func-
tions that measure the degree of smoothness in time and
frequency respectively.
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the number of MFCCs used to calculate the MAR features
has a great influence on performance, each combination

1 . .
logp(H) = Z P(HlT_1 - H[j’T)Q 3) of features was evaluated with 19 different values\of.
wr TOH For each combination aN,; x D data matrix was created
-1 by stacking theV, features vectors, each of dimensibn
— I 24 _ pY )2 s y
logp(P) = Z 202, (Pomrir = Bor) (4) For features containing only MAR combinations, the di-

w,T

mension isD = ¢(PN2 + N,,,), wherec € {1,2,3} is the
Whereoy, op and~ has been manually specified as in number of stacked MAR models.

[5]. Thus the prior forH will be high when each row of The classifier used was a support vector machine with
the spectrogram is characterized by slow fluctuations, anda Gaussian kernel. Kernel parameterand C' were not
similarly the prior forP will be high when this is the case tuned, but each column of the data matrix was normalized
for columns of the spectrogram. The likelihood function With respect to standard deviation. 500-fold cross valida-

has been defined by measuring the I-divergence betweeriion was used for each of the 19 values/df,, resulting

N andH + P: in a N x 19 matrix, where each column contained the av-
erage accuracy for each song for a givép. The overall
logp(N|H,P) = (5) performance for a givev,, was obtained by taking the
N o1 Ny .» N I P mean of that column.
- ; ( w,T 0g m - w,T + w,T + w,T)

oo . - 7. RESULTS
and so the likelihood is maximized whév, , = H,, - +

P, for all w and7. The log-likelihood function is max- In this section the results of the experiments described in
imized by using the EM-algorithm. The update equations Section 6 are presented and discussed.
have been omitted in this work, but can be found in [5].

It is important to realize that since the HPSS algorithm 7.1 Combining featuresfrom the separated signals

is not a source separation algorithm but rather a decompo-F. 1sh the classificati f fth
sition of the original signal, no criteria of success has been Igure 1 snows the classitication performance of In€ seven

defined, and so the algorithm cannot fail unless it fails to combinations When_ the classifiers were trained_c_jirectly on
converge. the MFCCs. The difference between the classifier trained
on the MFCCs calculated on the original signal to the best

performing featuregy,,, is 7.5%, corresponding to a rel-
5. DATASET ative error rate reduction of 20.0%. This is a significant

We used the TZGENRE dataset proposed in [8]. The datasdflProvement, and confirms that the MFCCs have prob-
hasN, = 1000 songs divided equally into 10 genres: blues, lems expressing both harmonic and percussive information
classic, country, disco, hip-hop, jazz, metal, pop, reggaeWhen present at the same time. _

and rock. Each song is a 30s sound snippet, and only one C» reaches its near peak performance for . This
MAR model is calculated for the whole song. Other meth- means that for the harmonic signal, very little usable infor-
ods for calculating multiple MAR models on a single song Mation is contained in the high MFCCs. The MFCCs are

fier is still able to achieve optimal performance, and thus

performance only degrades slightly. Performancec,of
keeps increasing when including more MFCCs, meaning
First the music signal was separated by using HPSS, andhat the higher MFCCs in the percussion signal contains
MAR features were calculated for each signal. If the MAR usable information. Furthermore, the performance gained
model is capable of using both harmonics and percussiveby including higher MFCCs is more than for the harmonics
elements at the same time, such a decomposition will notsignal but less than for the percussion signal. This confirms
result in higher performance. However, if for instance the that the presence of harmonics degrades the information
MAR model analyses the harmonic elements, then remov-quality of the higher MFCCs.
ing percussion will enable the MAR features to perform Next, we use the MAR model for classification and test
better. In the following, MAR features calculated on the performance ofn;, m, andm,, and of the combinations
harmonics, percussion and normal signals will be referred of them. The performance of the seven combination fea-
to asmy,, m,, m,, respectively, whereas MFCCs will be tures is shown on Figure 2, is the most powerful of the
referred to as;, ¢, andc,. In addition to the three sin-  three single model features peaking with a performance of
gle signal feature types, four combinations features of the 74.1%. Pleasingly, all three single model features have a
MAR features and four combinations of the MFCCs were lower performance than the combination features,,,
constructed:my,,, My, Mpn, Mppn, Chps Chn,y Cpn @nd had a peak performance of 77.6%, a gain of 3.6% com-
Chpn.- pared to the best single signal model.

The sample-rate of the songs was 22.05 kHz. The MFCCs As was also seen when using the MFCCs in the clas-
were calculated on 20 ms windows with an overlap of 10 mssifier, m;,,, performs significantly better tham,,. This
40 filter-banks were used in the MFCC calculation. Since shows that the autoregressive modelling of the MFCCs cal-

6. EXPERIMENTAL SETUP

89



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

0.8 T T T T T T T 0.8

o

@

a
T

Performance
Mean accuracy
o
e o 2
ul o (=2
T

N
»
5]

I
~

123456178 9&0111214161820222428
m

Figure 1. Performance curves for the classifier trained on Figure 2. Performance curves for the classifier trained on

MFCCs MAR features
culatedon the original signal cannot compensate for the 08
MFCCs’ inability to handle the mixture of harmonic and

percussive information. 07y

An important difference between using MFCCs or MAR
features in the classifier is thaty,,, outperformedmy,,,
whereas,,,, andcy, had the same level of performance.
Thus the MAR model is capable of modelling some prop-
erties of the original signall, which are present in neither
H nor P. More specifically, the MAR model can in some
cases predict percussion from harmonics or vice versa, due
to the autoregressive modelling. This is a reasonable claim m,.rock ]
when keeping in mind that the HPSS algorithm is not a R B s
source separation algorithm, and that some instruments will i 234567809 101112141618 20 22 24 28
produce both harmonics and percussive sounds. n

As an example, when a note is played on a piano the »
hammer hits the string causing it to vibrate, resulting in a Fi9ure 3. Examples of genre specific performance, only
sound with a high attack part and a slowly declining en- MAR features
velope. Since this will happen every time the piano is
used, the MAR model can use the attack part to make a

prediction about the rest of the sound. When using HPSSeasy songs which can be classified by all signal models,

to separate the signal however, percussion is assumed tQy'some hard songs that only the features with an overall
be independent from harmonics, and the attack part, Wh'Chhigh performance can classify.

is rich in noise and has a short temporal duration, is as- Analvsis is carried out by finding the point where all
signed to the percussion signal while the rest of the soundSi nal rzodels have a roxi?/natel tghe sarF;e accuracy. and
is assigned to the harmonic signal. When this happens the g PP y 4

MAR model can no longer model the dependencies, so in_;:alcu\latTgrthlet svorrelztlo?\/b((ajt\t/\rl]e??hthre T( 1 Isov?/g ar(iClIJ-ti N
cluding MAR features calculated on the original signal in- acy vectors. as observed that Inere s a low correlatio

creases performance. between Which songs;, andm, c!assif_y. This _suggest_s
that the two signal models contains different information
which allows for the classification of different songs, and
thus are efficient with different kinds of music. For most
In this section we analyse some of the differences betweengenresm,, is slightly better tharm,, with m; being the
the MAR features calculated on each of the separated sig-worst performing of the three. However, for some genres
nals. m,, achieves the best performance when the high MFCCs
An important step towards understanding the MAR fea- were discarded, as can be seen on Figure 3. Furthermore,
tures and specify their application domain is to investigate the fact that the correlation of the song classification vec-
to which degree features calculated on the different signaltors ofm, andm,, was high, means that they classify more
types classify the same songs or not. In the former caseof the same songs than; andm,,, which is consistent
classification accuracy with different signal types is largely with the fact thatm;,, andm,, classify more of the same
genre dependent, and in the latter case there will be somesongs thamm,,,, andm,,. These results suggest that MAR
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7.2 Differences between the signal type MAR features
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Feature Performance| Relative ERR
Cn 61.1% N/A 08 Comb., same N‘NMFCC
Chpy constr. 68.9% 20.0% 0.791 x  Comb., individual N 1o I
m 74.1% N/A . + Original signal

n ’ 0.78 Moy
Mppn, CONSLr. 77.6% 13.5% P
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Table 1. Overview of the best performing features. Constr.
or N.Constr. refer to the constraint dv,,.
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features calculated on the original music reflect the per- ‘ ‘
cussive elements to a higher degree than the harmonics el 0 1000 2000
ements.

The fact thatm,,, is even higher tham,,, seems like
a contradiction to the statement made earlier thatis
more correlated witim,, than withm;. The explanation
to this is most likely that the gains from combining un-
correlated features, i.emy;, andm,,, cannot match the
penalty caused by the low performancenof. Although 8. PERFORMANCE DEMONSTRATION

m, andm,, are somewhat correlated, there are still some Thi . . hort d . fth ¢
differences in what songs they classify, and this seems to 1S sectlon_ contains a s °Tt. emon_stratlon of the per or-
. . . mance obtained when combining the improved features with
results in a performance gain when combined. I .
two other features types, each describing different aspects
of music. The first type is the Rhythm Map features, pro-
7.3 Selecting N,,, for each signal type posed in [6], which are calculated on the percussion signal.
A song is represented as a ten dimensional vector, each el-
Figure 2 in section 7.1 shows that the MAR features cal- ement describing the membership to a rhythm|c tempia‘[e
culated on the different signal types perform best for dif- extracted from the entire dataset. The second feature type,
ferent values ofV,,,. In this section we investigate if per- henceforth referred to as TZ-features, represents a song as
formance can be improved by removing the constraint that 3 68-dimensional vector containing a set of timbre related
the number Of MFCCs Used to Calculate the MAR mOdel features proposed in [8] The Rhythm Map is Of Speciai
must be the same for all signal types. Since it is possiblejnterest since it is calculated on the percussive signal pro-
that simply combining the best performing models does yjded by the HPSS algorithm, and thus provide no infor-
not achieve the highest performance, the five best modelsyation about the harmonics. The TZ-features were cho-
of each signal type were used to form a number of combi- sen pecause they were tested in combination with Rhythm
nation features. Map (see [7]), where it was shown that the two feature
Figure 4 shows the performance plotted versus the di-types compliment each other well. An accuracy of 75.0%
mensionality of the feature vector, using the same numberwas obtained on the dataset by the combination of Rhythm
of MFCCs, and with different number of MFCCs. The fig- Map and TZ-features. When the MAR features calculated
ure makes it easy to compare feature efficiencies, as a poinbn the original signal were included as well, a performance
that is situated higher and on the left side of another point of 80.1% was achieved. Finally, by separating the signal
of the same type, means that a feature of lower dimension-with HPSS and calculating MAR features on the three sig-
ality had higher performance. nals as proposed, a performance of 82.46% was obtained,
From Figure 4 it seems that the method of seleciifyg corresponding to a relative error rate reduction of 12.0%.
for each single MAR model is not particularly capable of
producing low dimensional features, but the method do
achieve the highest overall performance. However, since
it is in general infeasible to try all combinations 6f,, In this work we proposed that separating the music signal
before selecting the best one, a general tendency must b&nto more signals, each containing certain characteristics
discovered. In section 2 it was suggested that the highof the original signal, could produce better features, lead-
MFCCs calculated on the harmonics signal should be dis-ing to increased performance in the task of music genre
carded, whereas high MFCCs from the percussion signalclassification. Based on the observation that the presence
could be used. This was the case when the classifier waof harmonics causes the high MFCCs to be noisy, we used
trained directly on the MFCCs, and when the classifier was the HPSS algorithm to separate the signal into two signals,
trained on the MAR features. It is not surprising therefore, one containing harmonics and the other containing percus-
that the best performance of 78.3% was obtained by dis-sion. The separation increased performance significantly,
carding the high MFCCs for the harmonic signal and using both when the classifier was trained on the MFCCs and
high MFCCs from the percussion signal. when it was trained on the MAR features. The best perfor-

A

+

3000 4000 5000 6000
Dimensionality

Figure4. Performance and dimensionality of combination
models

9. CONCLUSION
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mance obtained with the MAR features was 78.3%, corre-
spondingo a relative error rate reduction of 16.2%. It was
seen that the MAR model uses both harmonic and percus-
sive information to make predictions, but that the percus-
sive information seems to be the dominating. The fact that
the best performance was reached when the MAR features
from the separated signals were combined with the origi-
nal signal showed us that the MAR-model could, to some
extend, model dependencies between harmonic and per-
cussive elements. The combination of MFCCs calculated
on the harmonics signal and MFCCs calculated on the per-
cussion signal performed better than MFCCs calculated on
the original signal, and this was interpreted as an inability
of the MFCCs to model the presence of both harmonics
and percussion in the same signal. An important conclu-
sion of this is that separating the music signal as proposed
simply creates better low level features, which means that
models trained on these features will also be improved.
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ABSTRACT classification results in genre and artist classification tasks.

Within the field of Computational Ethnomusicology (CE)

In this paper, we compare two approaches for automatic[19], the automatic detection of the playing styles of the
classification of bass playing styles, one based on high-participating instruments such as the bass constitutes a
level features and another one based on similarity mea-meaningful approach to unravel the fusion of different mu-
sures between bass patterns. For both approaches, we congical influences of a song. This holds true for many con-
pare two different strategies: classification of patterns as atemporary music genres and especially for those of a global
whole and classification of all measures of a pattern with a music background.

subsequent accumulation of the classification results. Fur-  The remainder of this paper is organized as follows. Af-

thermore, we investigate the influence of potential tran- ter outlining the goals and challenges in Sec. 2 and Sec. 3,
scription errors on the classification accuracy, which tend e provide a brief overview over related work in Sec. 4.
to occur when real audio data is analyzed. We achieve besin sec. 5, we introduce novel high-level features for the
classification accuracy values of 60.8% for the analysis of transcribed bass lines. Furthermore, we pro-
feature-based classification and 68.5% for the classifica-pose different classification strategies, which we apply and
tion based on pattern similarity based on a taxonomy con-compare later in this paper. We introduce the used data set
sisting of 8 different bass playing styles. and describe the performed experiments in Sec. 6. After
the results are discussed, we conclude this paper in Sec. 7.

1. MOTIVATION

Melodic and harmonic structures were often studied in the 2. GOALS
field of Music Information Retrieval. In genre discrimi-
nation tasks, however, mainly timbre-related features areThe goal of this publication is to compare different ap-
somewhat satisfying to the present day. The authors asproaches for automatic playing style classification. For
sume, that bass patterns and playing styles are missinghis purpose, we aim at comparing different classification
complementaries. Bass provides central acoustic feature@pproaches based on common statistical pattern recogni-
of music as a social phenomenon, namely its territorial tion algorithms as well as on the similarity between bass
range and simultaneous bodily grasp. These qualities comedatterns. In both scenarios, we want to investigate the ap-
in different forms, which are what defines musical genres plicability of a aggregation classification based on the sub-
to a large degree. Western popular music with its world- patterns of an unknown pattern.
wide influence on other styles is based upon compositional
principles of its classical roots, harmonically structured
around the deepest note. African styles also often use tonal 3. CHALLENGES
bass patterns as ground structure, while Asian and Latin_l_h . .

! - . e extraction of score parameters such as note pitch and
American styles traditionally prefer percussive bass sounds,

: : : onset from real audio recordings requires reliable auto-
In contrast to the melody (which can easily be interpreted . - ) .
o L d matic transcription methods, which nowadays are still error-
in “cover versions” of different styles), the bass pattern

. ) - ; prone when it comes to analyzing multi-timbral and poly-
most often carries the main harmonic information as well ; N : :
. ) . phonic audio mixtures [4, 13]. This drawback impedes a
as a central part of the rhythmic and structural information. = _. : . .
. o o ~ " reliable extraction of high-level features that are designed
A more detailed stylistic characterization of the bass in-

rument within music recordings will inevitably improv to capture important rhythmic and tonal properties for a
strume usic recordings evitably Improve description of an instrumental track. This is one problem

addressed in our experiments. Another general challenge
Permission to make digital or hard copies of all or part of this work for s the translation of musical high-level terms such as syn-
personal or classroom use is granted without fee provided that copies arecopations, scale, or pattern periodicity into parameters that
not made or distributed for profit or commercial advantage and that copies are automatically retrievable by algorithms. Information
bear this notice and the full citation on the first page. regarding micro-timing, which is by the nature of things
(© 2010 International Society for Music Information Retrieval. impossible to encompass in a score [9], is left out.
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4. PREVIOUS APPROACHES Features related to tonality

We derive features to measure if a certagaleis applied

in a bass pattern. Therefore, we take different binary scale
?emplates for natural minor (which includes the major scale),

Within the last years, the use of score-based high-level
features became more popular for tasks such as automati

genre classification. To derive a score-based representatioHarmoniC minor, melodic minor, pentatonic minor (subset

f_rom real .aUd'O recordings, various automatic transcrip- of natural minor which also includes the pentatonic major
tion algorithms have been proposed so far. The authors

) . scale), blues minor, whole tone, whole tone half tone, ara-
of [18]_, [13], and_ [4] p_resented algorithms to transcribe bian, minor gypsy and hungarian gypsy [21] into account.
bf’iSS lines. MU.S'(:aI hlgh-le\{el feature_s allow to capiure Each scale template consists of 12 values representing all
different properties from musical domains such as melody,

h d rhvthm 1. 3. 10.111. B lated audio f semitones of an octave. The value 1 is set for all semi-
armony, and rhythm [1, 3, ]'. ass-re ated audio fea-, o that are part of the scale, the value 0 for those that
tures we used for genre classification in [18], [1], and [17].

I ) o hes for th are not. All notes within a given pattern, which are related
Aln e_xcefent overview over_eX|st|nfg approac ez orthe 4 a certain scale, are accumulated by adding their normal-
analysis of expressive music performance and artist-i,oq note loudness ValUu@By /Oy mas With Oy.,mes be-

specific playing styles is provided in [23] and [24]. In [7], ing the maximum note loudness in a pattern. The same is
different melodic and rhythmic high-level features are ex- yone for all notes, which are not contained in the scale.
tracted before the performed melody is modeled with an g 1atio of hoth sums is calculated over all investigated
evolutionary regression tree model. The authors of [15] scales and over all 12 possible cyclic shifts of the scale

also used features derived from the onset, inter-onsetenhiate This cyclic shift is performed to cope with each
interval and loudness values of note progression to quan'possible root note position. The maximum ratio value over
tify the performance style of piano players in terms of their all shifts is determined for each scale template and used as
timing, articulation and dynamics. To compare different ; ¢oatre value, which measures the presence of each con-
performances in terms of rhythmic anq dynamic similarity, sidered scale. We obtain the relative frequenpiesf all

the authors of [14] proposed a numerical method based Orlpossible values in the vector that contains the interval di-

the correlation at different timescales. rections @@%D)) as well as the vector that contains the

functional interval typesz(;@EDF)) and use them as fea-
5. NOVEL APPROACH tures to characterize the variety of different pitch transi-
51 Feature extraction tions between adjacent notes.
In this paper, we use 23 multi-dimensional high-level fea- Features related to rhythm
tures that capture various musical properties for the tonal Syncopatiorembodies an important stylistic means in dif-
and rhythmic description of bass lines. The feature vec- ferent music genres. It represents the accentuation on weak
tor consists of 136 dimensions in total. Thasic note  beats of a measure instead of an accentuation on a neigh-
parameters which we investigate in this paper, are the bored strong beat that usually would be emphasized. To
absolute pitch® p, the loudnes®y, the onse’@B]and detect syncopated note sequences within a bass-line, we

eg\ﬂ, and the duratiorﬁ-)g]and@%w]of each note. The mvesUga_tg d_lfferent_temporal grids in ter_ms of equidis-
tant partitioning of single measures. For instance, for an

indices [s] and [M] indicate that both the onset and the du- X e
ration of a note can be measured in seconds as well as irf!9Nt-note grid, we map all notes inside a measure towards
nts according to their onset position in-

lengths of measures. All these parameters are extracted®"® of eight segme

from symbolic MIDI files by using the MIDI-Toolbox for side the measure. In ? time signature, these segmgnts
MATLAB [5]. correspond to all 4 quarter notes (on-beats) and their off-

beats in between. If at least one note is mapped to a seg-
ment, it is associated with the value 1, otherwise with O.
; ; : For each grid, we count the presence of the following seg-
ferencesA® p between adjacent notes in semitones, we '
. ol . ) . L (D) ment sequences - (1001), (0110), (0001), or (0111). These
obtain vectors containing the interval directioAsd .
sequences correspond to sequences of alternating on-beat

(t_)emg (_a|ther ascer_1d|ng, constant, or descgndmg), and th%md off-beat accentuations that are labeled as syncopations.
pitch differences in terms of functional interval types

(F) , , _ The ratios between the number of syncopation sequences
A®3} ’. To derive the functional type of an interval, we

> ) : and the number of segments are applied as features for the
map its size to a maximum absolute value of 12 Sem'tonesrhythmical grids 4, 8, 16, and 32.

or one octave by using the modulo 12 operation in case it

is larger than one octave upwards or downwards (12 semi- We calculate the rati@%m(k:)/A@(OM) (k) betweenthe

tones). Then each interval is assigned to a function intervalduration value of the k-th note in measure lengths and the

type (prime, second, third etc.) according to well known inter-onset-interval between the k-th note and its succeed-

music principles. In addition to the high-level features pre- ing note. Then we derive the mean and the variance of

sented in [1], we use various additional features related tothis value over all notes as features. A high or low mean

tonality and rhythm in this paper, which are explained in value indicates whether notes are playegato or stac-

the following subsections. cato. The variance over all ratios captures the variation
between these two types dfythmic articulationwithin a

Afterwards, furtheradvanced note parametesse de-
rived before features are extracted. From the pitch dif-
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given bass pattern. To measure if notes are mostly playedderived from the Levenshtein distance between the onset
on on-beatsor off-beats we investigate the distribution of Gg\/”and the pitch®p as explained in the previous sec-
notes towards the segments in the rhythmical grids as ex-ion. Furthermore, we investigate

plained above for the syncopation feature. For example,

the segments 1, 3, 5, and 7 are associated to on-beat posi- g _JSLr ,SLrZ=SLT 5

tions for an eight-note grid andtime signature. Again, L,RT,Mazx Ser . Spr>Sir (2)

this ratio is calculated over all notes and mean and vari-

ance are taken as feature values. As additional rhythmicand

properties, we derive the frequencies of occurrence of all SI RT Mean = E(SL r+SLT) (3)
commonly used note lengths from half notes to 64th notes, - 20 ’

each in its normal, dotted, and triplet version. In addition, by using the maximum and the arithmetic mean between
the relative frequencies from all note-note, note-break andof Sy, r andSy, r as aggregated similarity measures.
break-note sequences over the complete pattern are takeg 32 Pairwi imilari

as features. .3.2 Pairwise similarity measures

In general, we derive a pairwise similarity measure
5.2 Classification based on statistical pattern

recognition Sp = % <N]G;lm N ]\]]\;nmn> 4

We investigate the applicability of the well-established Sup-

port Vector Machines (SVM) using the Radial Basis Func- N,..., denotes the number of notes in patterrfor which

tion (RBF) as kernel combined with a preceding feature at least one note in pattern exists that have the same
selection using the Inertia Ratio Maximization using Fea- absolute pitch value (for the similarity measiw§e 1) or

ture Space Projection (IRMFSP) as a baseline experimentonset value (for the similarity measup r). Ny p iS

The feature selection is applied to choose the most discrim-defined vice versa. By applying the constraint that both
inative features and thus to reduce the dimensionality of onset and absolute pitch need to be equal in Eq. 4, we
the feature space prior to the classification. Therefore, wegbtain the measurgp zr. Furthermore, we derive the ag-
calculate the high-level features introduced in 5.1 for each gregated similarity measuré% zr rrax andSp rr arean
bass pattern, which results in an 136 dimensional featureanalogous to Eq. 2 and Eq. 3.

space. Details on both the SVM and the IRMFSP can be
found for instance in [1]. 6. EVALUATION
5.3 Classification based on pattern similarity 6.1 Data-set

In this paper, we apply 2 different kinds of pattern similar- We assembled a novel dataset from instructional bass lit-
ity measurespairwise similarity measureandsimilarity erature [12, 21], which consists of bass patterns from the
measures based on the Levenshtein distaoecompute 8 genresSwing(SWI), Funk(FUN), Blues(BLU), Reggae
similarity values between patterns, the values of the on- (REG), Salsa & MambdSAL), Rock(ROC),Soul & Mo-

set vecto®and the absolute pitch vect@rp are sim-  town(SOU) andAfrica (AFR), a rather general term which

ply converted into character strings. In the latter case, wehere signifies Sub-Saharan Popular Music Styles [16]. For
initially subtract the minimum value o® p for each pat- ~ €ach genre, 40 bass-lines of 4 measure length have been
tern separately to remain independent from pitch transposi-stored as symbolic audio data as MIDI files. Initial listen-
tions. This approach can of course be affected by potentialing tests revealed that in this data set, which was assem-

outliers, which do not belong to the pattern. bled and categorized by professional bass players, a certain
amount of stylistic overlap and misclassification between

5.3.1 Similarity measures based on the Levenshtein genres as for instance Blues and Swing or Soul & Motown

distance and Funk occurs. The overlap is partly inherent to the ap-

The Levenshtein distande; offers a metric for the com-  Proach of the data sets, which treat all example_s of a style
putation of the similarity of strings [6]. It measures the (€-9- Rock) as homogenous although the sets include typ-
minimum number of edits in terms of insertions, deletions, i@l patterns of several decades. In some features, early
and substitutions, which are necessary, to convertone stringt0cK patterns might resemble early Blues patterns more
into the other. We use the Wagner-Fischer algorithm [20] than they resemble late patterns of their own style [22].

to computeD; and derive a similarity measurg;, be- Thus, the data set will be extended further and revised by
tween two strings of length andl, from educated musicologists for future experiments.
S, =1—D1/Dpmas - (1) 6.2 Experiments & Results

The lengths, andi, correspond to the number of notes 6.2.1 Experiment 1 - Feature-based classification

in both patterns.Dy, 4, €quals the maximum value of As described in Sec. 5.2, we performed a baseline experi-
l; andls. In the experiments, we use the rhythmic simi- ment that consists of IRMFSP for chosing the bEst 80
larity measureSy, r and the tonal similarity measufg, features and the SVM as classifier. The paramatdras
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AFRr |57.412.1 |64 |17 |64 |0 (85 [2.1
BLUF |42 |50 (4.2 |18.8|2.1 [6.3 [4.2 |10.4
FUNF |44 |67 |62.2(11.1122 |67 [4.4 [2.2
MOTF 1o |o o 0 |0 |24 |24
REGF |47 |0 |7 [11.6]654(7 [2.3 [2.3
ROCr lo |47 |0 |14 |0 |69.8(2.3 |9.3
SALf |6.8 |45 |45 (6.8 |45 |0 [68.2|4.5
SWIF o [125]0 |75 Jo [0 [o [80

AFR BLU FUN MOT REG ROC SAL Swi
AFR BLU FUN MOT REG ROC SAL SWwiI Bass Playing Style (classified)

Bass Playing Style (classified)

AFR" [66.2(59 |2 |88 |10.8|0 (6.4 |0
BLUF |o |464]0 [224]0 [11.8|39 |157
FUNF |74 |42 |72.8(1.4 |106|36 |0 |0
MOTF |2 |29 |69 |51.6(4.6 |21.8]10.3|0
REGF 121 |0 |42 [10.6|49.4|83 |65 |0

0

0

ROCI 126 |0 |0 |10.7]0 [70.4]16.2
SALF |25 |0 |12 |56 |67 |14 |475
SWIF o [176]0 Jo Jo Jo |o |82.4

Bass Playing Style (correct)

Bass Playing Style (correct)

Figure 1. Exp. 1 - Confusion matrix for the feature-based Figure 2. Exp. 2 - Confusion matrix for the best similarity-
pattern-wise classification (all values given in %). Mean based configuration (measure-wise classification using the

classification accuracy is 60.8% with a standard deviation 5P.R7.Maz Similarity measure - all values given in %).
of 2.4%. Mean classification accuracy is 68.5% with a standard de-

viation of 3.1%.

been determined to perform best in previous tests on the N
data-set. A 20-fold cross validation was applied to de- Pk from the class label of the best-fitting patter® as
termine the mean and standard deviation of the classifi- A .
cation accuracy. For a feature extraction and classification Gp=c e l=arg max Skl ()
based on complete patterns, we achieved 60.8% of accu-
racy with a standard deviation of 2.4%. The correspond- With S ., representing the similarity measure betwétn
ing confusion matrix is shown in Fig. 1. It can be seen, andP,, in the given case. As in Sec. 6.2.1, if multiple
that best classification results were achieved for the stylespatterns have the same (highest) similarity, we perform
Funk, Rock, and Swing. Strong confusions between Bluesa random decision among these candidates. This experi-
and Motown respectively Swing, Motown and Rock, Reg- ment is performed for all similarity measures introduced
gae and Africa as well as between Salsa and Africa canin Sec. 6.2.2.
be identified. These confusions support the musicological ~Exp. 2a: Pattern-wise classificatiofhe basic approach
assessment of the data-set given in Sec. 6.1. In additionfor a pattern-based classification is to use each pattern of 4
they coincide with historical relations between the styles in measures length as one item to be classified.
Africa, the Caribbean, and Latin America, as well as rela-  Exp. 2b: Accumulated measure-wise classificati®ass
tions within North America as it is common musicological patterns are often structured in a way, that the measure or
knowledge [8]. a part of the measure, which precedes the pattern repeti-
As a second classification strategy, we performed thetion, is often altered rhythmically or tonally and thus often
feature extraction and classification based on sub-patternsvaries greatly from the pattern. These figures separating or
Therefore, we divided each pattern within the test set into introducing pattern repetition are commonly referred to as
N = 4 sub-patterns of one measure length. It was en- pickupsor upbeatsmeaning that they do not vary or over-
sured, that no sub-patterns of patterns in the test set werdap the following pattern repetition which starts on the first
used as training data. After all sub-patterns were classi-beat of the new measure. A pattern-wise classification as
fied, the estimated playing style for the corresponding testdescribed above thus might overemphasize the difference
set pattern was derived from a majority decision over all between the last measure because the patterns are com-
sub-pattern classifications. In case of multiple winning pared over their complete length. Hence, we investigate
classes, a random decision was applied between the winanother decision aggregation strategy in this experiment.
ning classes. For the accumulated measure-wise classifi- As described in Sec. 6.2.1, we divide each bass pattern
cation, we achieved only 56.4% of accuracy. Thus, this into sub-patterns of one measure length each. Within each
approach did not improve the classification accuracy. We fold &, we classify each sub-patte§®;,; of the current
assume that the majority of the applied high-level featurestest patterriP,, separately. At the same time, we ensure
that are based on different statistical descriptors (see Sec. &Hat only sub-patterns of the other pattefswith ¢ # &
for details), can not provide a appropriate characterizationare used as training set for the current fold. To accumulate
of the sub-patterns, which themselves only consist of 6 to the classification results in each fold, we add all similarity
9 notes in average. valuesSy, ; between each sub-patteftP;, ; towards their
assigned winning pattern($«i,win- The summation is
done for each of the 6 genres separately. The genre that
This experiment is based on a leave-one-out cross-achieve the highestsumis considered as the winning genre.
validation scheme and thus consists/éf= 320 evalu- As depicted in Fig. 3, the proposed accumulated
ation steps according to the 320 patterns in the data-setmeasure-wise classification strategy led to higher classifi-
Within each evaluation step, the current pattBgnis used cation accuracy values (blue bars) in comparison to a
as test data while all remaining pattefRswith [ # k are pattern-wise classification (red bars). This approach can
used as training data. We derive the class estifaiaf be generalized and adopted to patterns of arbitrary length.

6.2.2 Experiment 2 - Pattern Similarity
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1=}
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nipulation of a single note consists of either a modifica-
tion of the onseegw] by a randomly chosen difference

—0.25 < A®Y" < 0.25 (which corresponds to a maxi-
mum shift distance of one beat forf‘;atime signature), a
modification of the absolute pitd® p by a randomly cho-
sen difference-2 < AB©p < 2 (which corresponds to a
maximum distance of 2 semitones), or a simple deletion of
the current note from the pattern. Octave pitch errors that
often appear in automatic transcription algorithms were not
considered because of the mapping of each interval to a
maximum size of one octave as described in Sec. 5.1. In-
sertions in terms of additional notes, which are not part of
the pattern will be taken into account in future experiments.
As depicted in Fig. 4, the accuracy curve of the three
different pair-wise similarity measureSp r, Spr and
Sp.rr,Maez Talls until about 40% for a transcription er-
ror rate of 50% Interestingly, the pattern-wise classifica-
tion based ortp r seems to be more robust to transcrip-
tion errors above 15% in comparison to the accumulated
measure-wise classification even though it has a lower ac-
curacy rate for the assumption of a perfect transcription.

[l Accumulated measure-wise classification|
[ Pattern-wise classification
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Figure 3. Mean classification accuracy results for experi-
ment 2

10 20 30 40 50
Percentage ¢ of transcription errors

Figure 4. Exp. 3 - Mean classification accuracy vs. per-
centages of pattern variation (dotted line - pattern-wise
similarity, solid line - accumulated measure-wise similar-

ity).

6.2.4 Comparison to the related work

The comparison of the achieved results to the related work
is not directly feasible. On one side, it is caused by the
fact, that different data sets have been utilized. Tsunoo
et al. [18] reported an accuracy of 44.8% for the GZTAN

her similari , p data set while using only bass-line features. On the other
other similarity measures by over 10 percent points of ac- side, the performance of only bass-line features was not

curacy. The corresponding confusion matrix is Shown in g ery time stated. The work of Tsuchihashi et al. [17]
Fig. 2. We therefore assume that it is beneficial to use sim-gp, 64 an improvement of classification accuracy from
ilarity information both based on plt(?h and onset §|m|I§1r|ty 53.6% to 62.7% while applying bass-line features compli-
of bass patterns. For the pattern-wise classification, it Canmentary to other timbre and rhythmical features, but the

be seen that similarity measures based on tonal similar- e, ts of genre classification with only bass features were
ity generally achieve lower accuracy results in comparison not reported

to measures based on the rhythmic similarity. This might
be explained by the frequently occurring tonal variation of
patterns according to the given harmonic context such as a
certain chord of a changed key in different parts of a song.
The most remarkable result in confusion matrix is the very
high accuracy of 95.1% for the Motown genre.

The similarity measur8p, rr, aqq Clearly outperforms the

7. CONCLUSIONS & OUTLOOK

In this paper, different approaches for the automatic de-
tection of playing styles from score parameters were com-
pared. These parameters can be extracted from symbolic
audio data (e.g. MIDI) or from real audio data by means of
automatic transcription. For the feature-based appraoch,
For the extraction of bass-patterns from audio recordings,a best result of 60.8% of accuracy was achieved using a
two potential sources of error exist. In most music gen- combination of feature selection (IRMFSP) and classifier
res, the dominant bass patterns are object of small vari-(SVM) and a pattern-wise classification. Regarding the
ations throughout a music piece. An automatic system classification based on pattern similarity, we achieved
might recognize the basic pattern or a variation of the basic68.5% of accuracy using the combined similarity measure
pattern. Furthermore, automatic music transcription sys- Sp,rT,ma- @Nd @ Measure-wise aggregation strategy based
tems are prone to errors in terms of incorrect pitch, onset,on the classification of sub-patterns. The random baseline
and duration values of the notes. Both phenomena directlyis 12.5%. This approach outperformed the common ap-
have a negative effect on the computed high-level features proach to classify the complete pattern as once.

We therefore investigate the achievable classification accu-  For analyzing real-world audio recordings, further mu-
racy dependent on the percentage of notes with erroneousical aspects such as micro-timing, tempo range, applied
note parameters. plucking & expression styles [2], as well as the interac-

We simulate the mentioned scenarios by manipulating

6.2.3 Experiment 3 - Influence of pattern variations

1G. Tzanetakis and P. Cook. Musical genre classification of audio

a random selection of percents of all notes from each
unknown pattern and vary from 0% to 50%. The ma-
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tion with other participating instruments need to be incor- [9] Gerhard Kubik.Zum Verstehen afrikanischer Musik

porated into a all-embracing style description of a specific Lit Verlag, Wien, 2004.

instrument in a music recording. The results of experiment . i .

4 emphasize the need for a well-performing transcriptiorLlo] C. McKay and |. Fujinaga. Automatic genre classifi-

system for a high-level classification task such as playing cation using large h|gh-|_evel musm_al feature §ets. In
style detection. Proc. of the Int. Symposium of Music Information Re-

trieval (ISMIR) 2004.
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ABSTRACT

Computational models of beat tracking of musical au-
dio have been well explored, however, such systems often
make “octave errors”, identifying the beat period at dou-
ble or half the beat rate than that actually recorded in the
music. A method is described to detect if octave errors
have occurred in beat tracking. Following an initial beat
tracking estimation, a feature vector of metrical profile sep-
arated by spectral subbands is computed. A measure of
subbeat quaver (1/8th note) alternation is used to compare
half time and double time measures against the initial beat
track estimation and indicate a likely octave error. This er-
ror estimate can then be used to re-estimate the beat rate.
The performance of the approach is evaluated against the
RWC database, showing successful identification of octave
errors for an existing beat tracker. Using the octave error
detector together with the existing beat tracking model im-
proved beat tracking by reducing octave errors to 43% of
the previous error rate.

1. STRUCTURAL LEVELS IN BEAT
PERCEPTION

The psychological and computational representation of lis-
teners experience of musical time is of great application to
music information retrieval. Correctly identifying the beat
rate (factus) facilitates further understanding of the impor-
tance of other elements in musical signals, such as the rel-
ative importance of tonal features.

Considerable research has proposed theories of an hi-
erarchical structuring of musical time [12-14, 18, 20, 27],
with the favouring of particular temporal levels. The tac-
tus has been shown to be influenced by temporal prefer-
ence levels [10], proposed as a resonance or inertia to vari-
ation [25]. At the metrical level ', [21] argue that pre-
established mental frameworks (“schemas’’) for musical me-
ter are used during listening. They found a significant dif-
ference in performance between musicians and non-music-

! A periodic repetition of perceived accentuation, notated in music as
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ians, arguing that musicians hold more resilient represen-
tations of meter, which favours hierarchical subdivision of
the measure, than the non-musicians.

The fastest pulse has been used in ethnomusicology [16,
24] or reciprocally, the tatum in cognitive musicology [1]
as a descriptive mechanism for characterising rhythmic struc-
ture. While it is not assumed to be a model of perception
used by listeners and performers [16], the tatum is used to
form a rhythmic grid of equally spaced intervals. It there-
fore represents the limit of hierarchical temporal organisa-
tion in complex rhythmic structures.

2. ERRORS IN BEAT TRACKING

Beat tracking or foot-tapping has a long history [7, 19],
spurred on by the demands of music information retrieval
[8,15,22,23]. Common methods of beat tracking involve
extraction of a mid-level representation, or onset detec-
tion function [23], typically derived from the spectral flux,
thereby avoiding the requirement of identifying each indi-
vidual onset. A number of methods have been proposed to
then determine a time varying frequency analysis of the
onset detection function, including comb filterbanks [6,
15, 23], autocorrelation [2, 9], dynamic time warping [8],
Bayesian estimation [3], combined frequency and time lag
analysis [22], coupled oscillators [17] and wavelet analy-
sis [4].

Despite reporting very good results, there are areas for
improvement to these approaches. A common task faced
by many of these approaches is selecting the appropriate
structural level from several viable candidates. It is a com-
mon occurance to select a beat rate which is twice as fast
as the actual performed rate, termed an “octave error”. For
many of these systems, a reselection of the correct struc-
tural level from the candidates would be possible if the oc-
tave error could be detected.

The concept of fastest pulse can be used as an indica-
tor of the highest structural level and therefore a datum.
This appears in terms of the fastest alternation of events.
Checking for quaver (1/8 note) alternation indicates if there
is evidence of the fastest pulse appearing at the expected
structural level, given the assumed tactus level. This pa-
per proposes a method to evaluate the beat tracking and
identify octave errors using an analysis of metrical pro-
files. This forms a combined feature vector of metrical
profile over separate spectral subbands, described in Sec-
tion 3. The behaviour of the metrical profile is analysed in
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terms of quaver alternation to identify beat tracking which
has performed an octave error. This approach is evaluated
against an annotated dataset for beat tracking and tempo
estimation as described in Section 4. The results of eval-
uation against datasets of recorded music are reported in
Section 5.

3. METHOD

To identify the fastest pulse or tatum requires identifying
the higher level rhythmic structural levels. To do so, the
beat period (tactus) and metrical period (duration of the
bar) is computed from the audio signal of the musical ex-
ample using a beat-tracker, in this case as developed by
Peeters [22]. From the nominated beat times, a metrical
profile is computed.

3.1 Metrical Profile

The metrical profile, indicating the relative occurrence of
events in each metrical position within the measure, has
been demonstrated by [21] to represent metrical structure
and matches closely with listeners judgements of metrical
well-formedness. The metrical profile is computed from
the likelihood of an onset at each tatum (shortest temporal
interval) within a measure. The likelihood of onsets are
determined from the presence of onset detection function
(ODF) energy e described in [22]. The probability of an
onset o; at each tatum location ¢ is

|

where ¢; is the mean energy of the ODF over the region of
the tatum ¢, € and o, are the mean and standard deviation
of the entire ODF energy respectively, € is a small value to
guard against zero €, and <y is a free parameter determin-
ing the maximum number of standard deviations above the
mean to assure an onset has occurred. By informal testing,
v = 2. The onset likelihoods are then used to create an
histogram my, for t = 1,...,n, of the relative amplitude
and occurrence at each tatum, by averaging each o; across
all M measures

Ot<1
o > 1

[
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To normalise for varying tempo across each piece and
between pieces, the duration of each measure is derived
from the beat-tracker [22]. Using the beat locations iden-
tified by the beat-tracker, each beat duration is uniformly
subdivided into 1/64th notes (hemi-demi-semiquavers), that
is 0 < ¢t < 64 for a measure of a semibreve (whole note)
duration. Such a high subdivision attempts to categorise
swing timing occurring within the measure and to provide
sufficient resolution for accurate comparisons of metrical
structure. Using the tatum duration set to equal subdivi-
sions of each beat duration does not capture expressive tim-
ing occuring within that time period. However, the error
produced from this is minimal since the expressive timing
which modifies each beat and measure period is respected.

my =

100

Channel ¢ | Low band w. (Hz) | High band w/, (Hz)
1 60 106
2 106 186
3 186 327
4 327 575
5 575 1012
6 1012 1781
7 1781 3133
8 3133 5512

Table 1. Sub-band channel frequency ranges used to calcu-
late local spectrum onset detection functions in Equation 3.

The effect of this error is to blur the peak of each tatum
onset. The metrical profile is then downsampled (by local
averaging of 4 tatums) to semiquavers (1/16 notes).

3.2 Spectral Sub-band Profiles

Listeners categorise sounds using their individual spectral
character, and the identification of their reoccurance aids
rhythmic organisation. To distinguish the possibly com-
peting timing of different instruments and in order to match
categorization used by listeners, metrical profiles are sep-
arated by spectral energy. This is produced by computing
spectral sub-bands of the half wave rectified spectral en-
ergy. The sub-bands are computed by summing over non-
overlapping frequencies:

b,
Fer =Y enwr(ws 1), 3)
b=b

where F,; is the spectral flux for the sub-band channel
c¢=1,...,C attime ¢, over the spectral bands b = [w,, W]
of the half-wave rectified spectral energy epw r(ws,t) at
frequency band w; computed as described by [22]. The
sub-band channels used are listed in Table 1 for C = 8.
These form logarithmically spaced spectral bands that ap-
proximate different time keeping functions in many forms
of music. A set of subband metrical profiles is then m,
fort=1,2,...,n,c=1,...,C.

3.3 Quaver Alternation

With the metrical profile reduced to semiquavers, a mea-
sure of the regularity of variation at the supposed qua-
ver period can be calculated. Since the tatums at strong
metrical locations are expected to vary strongly regard-
less of metrical level, only the variation for the sub-beats
falling at metrically weaker locations is used. For exam-
ple, in a : measure, n = 16, metrically strong semiqua-
vers are r = {1,5,9,13}. The subbeat vector of length S
is defined as s = r (At. Using the same example meter,
s=1{2,3,4,6,7,8,10,11,12,14,15,16}.

The average quaver alternation ¢ for a rhythm is the nor-
malised first order difference of subbeat profiles m/,

25:1 Dics [Mic
SC max(ms)

q= “
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Figure 1. Metrical profiles of an example from the RWC dataset
which was beat tracked with octave error. The top plot displays
a metrical profile of 16 semiquavers per measure for each of the
spectral subands (¢ = 1,...,8). The second, third and fourth
plots displays the subband metrical profiles created for half time,
half time counterphase and double time interpretations respec-
tively.

A low quaver alternation measure indicates that varia-
tion between adjacent sub-beat semiquavers is low. This
is most likely either in the case that there is little activity
in the music, or the structural level chosen as the quaver
is incorrect, i.e an octave error has occurred. To identify
the case of an octave error, the quaver alternation of the
metrical profile of a track is compared to metrical profiles
of the same track formed from half and double the number
of beats. The half tempo profile ¢ is formed from simply
skipping every second beat identified by the beat tracker.
A similar counter-phase half tempo profile ¢ is formed by
also skipping the initial beat. The double time profile g is
formed from sampling at onsets o; linearly bisecting each
original inter-beat interval.

Comparisons between metrical profiles of an example
rhythm is shown in Figure 1. The metrical pattern is dis-
played on the top plot, with n = 16 tatums per measure,
the C' = 8 subband profiles arranged adjacent in increasing
frequency band. On the lower plots, the patterns created by
assuming half tempo, half tempo counterphase, and dou-
ble tempo are displayed. It can be seen that the alternation
which occurs on the half tempo and half tempo counter-
phase plots is more regular than the original metrical pat-
tern or the double time pattern. This indicates that for this
example, an octave error has occurred.

A measure of octave error e is computed by comparing
the ratio of the half tempo quaver alternation to original
quaver alternation and the ratio of double tempo to original
quaver alternation,

e= ite + 4

2¢ ¢

Equation 5 represents the degree that the alternation at
the half or double tempo exceeds the original quaver al-
ternation. Values of ‘%‘j > 1lor g > 1 indicates there is
an octave error from either the double or half quaver alter-
nation being greater, but in practice, the threshold e > ¢’
needs to be higher. The threshold was determined exper-

&)
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imentally as half a standard deviation above € as derived
from the RWC dataset at ¢’ = 3.34.

3.4 Reestimation of Tempo

The beat tracking for each piece which was nominated by
the algorithm as being an octave error is then recomputed
with the prior tempo estimate set to half the tempo first
computed. In the case of the Viterbi decoding of the beat
tracker used [22], this prior tempo estimate weights the
likely path of meter and tempo selection towards the half
rate. In this case, even if the prior tempo is set at half, it
is not guaranteed to be chosen as half the rate, if the orig-
inal tempo is a more likely path which outweighs the new
reestimation. This makes the beat tracker robust to false
positive classifications from the beat critic.

4. EVALUATION

Two evaluation strategies for octave errors are possible: 1)
evaluation of beat tracking, where the phase of the beat
tracking is correct, but the beat frequency is twice the true
rate and 2) evaluation of tempo alone, where the beat fre-
quency is twice the true rate and the phase of the beat track-
ing is not assessed. These two evaluations meet different
needs, the former if beat tracking accuracy is required, the
latter if a correct median tempo measure is sufficient.

To evaluate the discrimination of the algorithm, the com-
monly used RWC dataset was used [11]. This dataset con-
sists of 328 tracks in 5 sets (Classical, Jazz, Popular, “Genre”
and “Royalty Free”) annotated for beat times. A subset of
284 tracks was produced by eliminating pieces whose an-
notations were incorrect or incomplete in the RWC dataset.

Since the algorithm evaluates metrical profiles, this re-
quires meter changes to be accurately identified by the beat
tracker, which currently lacks that capability. Therefore
pieces with changing meters are expected to reduce the
performance of the algorithm. However since this would
have reduced the dataset further, and added beats or time
signature changes are common in many genres of music,
the dataset was used with these potential noise sources.

To evaluate octave error detection independent of the
quality of the beat tracking, pieces which were incorrectly
beat tracked were eliminated from the test set. This was
defined as a beat tracking F-score below 0.5 using a tem-
poral window of each annotated beat position within 15%
of each inter-beat interval [5,26]. A ground truth set of oc-
tave error examples was produced by comparing the ratio
of the beat tracking recall R to precision P measures, with:

é=|R/P+05], (6)

where é = 2 indicates an octave error. These ground truth
candidates were then manually auditioned to verify that
they were truly octave errors.

This produced a resulting dataset of 195 pieces, termed
“Good”, with 46 pieces identified as actually being beat
tracked at double time (an octave error). This formed the

2 For several of the Jazz examples and the Genre examples, only the
minim (half note) level was annotated.
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Dataset | C. | True | S. | Prec. Rec. F
Good 30 46 | 55 | 0.545 | 0.652 | 0.594
Full 29 46 | 82 | 0.354 | 0.630 | 0.453

Table 2. Results of octave error detection by metrical pro-
file analysis (beat critic). “C.” indicates the number of
tracks correctly identified as an octave error, “True” as the
ground truth number of octave errors manually identified.
“S.” indicates the number of tracks selected as being an oc-
tave error. “Prec.”, “Rec.” and “F” indicates the precision,
recall and F-score measures respectively.

Pre-Reest. | Post-Reest.
Dataset | Meth. | Size | OE | NE | OE NE | %
Good BT 195 | 46 20 43
Good | BPM | 195 | 44 | 10 | 24 12 | 54
Full BT 284 | 63 37 58
Full BPM | 284 | 57 | 42 | 38 46 | 66

Table 3. Number of tracks with beat tracking octave er-
rors (OE) before (Pre) and after (Post) reestimation using
the beat critic. The column labelled “%” indicates the re-
duction in octave errors. NE columns indicates non-octave
errors.

ground truth to evaluate the octave error identification al-
gorithm. From these, standard precision, recall and F-score
measures can be computed [26]. The entire set of 284
pieces (termed “Full”) was also used to evaluate perfor-
mance when beat tracking does not perform optimally.

To determine the improvement the beat critic makes to
beat tracking, pieces which were determined to be beat
tracked with octave error were recomputed with half the
prior tempo. This would occur for false as well as true
positives. The beat tracker would then use the new weight-
ing towards the half tempo, but could produce the same
result as the original beat tracking if the Viterbi decoding
still biased towards the original tempo estimate [22].

The Good and Full datasets were also assessed for their
fidelity to the annotated median tempo measurement 7 of
each track. This was computed as 7 60 /2, where 7 is
the median inter-beat interval in seconds. A beat tracked
tempo which was within 3% of the annotated tempo was
deemed a successful tempo estimation.

5. RESULTS

The results of evaluating the beat critic with the Good and
Full RWC datasets appear in Table 2. On the “Good”
dataset, while the critic is able to identify 65% of the pieces
with octave errors (the recall), it produces a sizeable num-
ber of false positives (the precision) which reduces the F-
score. As to be expected, with the “Full” dataset, the per-
formance is worse. The substantially higher number of
false positives for this dataset indicate that the octave er-
ror measure is sensitive to beat tracking error. As the al-
gorithm is defined, the measure of sub-beat alternation is
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probably too reliant on the expectation that the beat is cor-
rectly tracked.

Despite the relatively low scoring results, Table 3 in-
dicates the success of the beat critic when used to rees-
timate the beat tracker. The column “Meth.” describes
the method of evaluation, either “BT” for beat tracking,
comparing each beat location against annotated beats, or
“BPM”, comparing estimated tempo against annotated tempo.
“Size” describes the number of tracks in the dataset. “OE”
indicates the number of tracks that were beat tracked that
are evaluated to have been an octave error. “Pre” and “Post”
indicates the number of tracks before and after reestimat-
ing using the beat critic to bias prior tempo of the beat
tracker. “NE” indicates the number of tracks that were not
beat tracked correctly but were not octave errors. While it
is possible to identify non-octave errors with BPM evalu-
ation within a perceptually meaningful tolerance (3%, see
Section 4), this can not be defined properly when the mea-
sure of beat tracking is calculated in terms of precision,
recall and F-score.

In the case of the BT evaluation, the number of oc-
tave errors were reduced to 43% and 58% of the former
number of errors for the Good and Full datasets respec-
tively. This indicates that the Viterbi decoding of the beat
tracker has benefitted from reestimation and is reasonably
robust to the false positives identified as octave errors. The
tempo evaluation also showed similar improvements, re-
ducing octave errors to 54% and 66% (Good and Full). The
slight increase in non-octave errors after reestimation indi-
cates cases where the false positives have lead to mistrack-
ing. Depending on the application, this may be an unac-
ceptable deterioration in performance despite an increase
in the overall number of correctly tracked pieces.

6. CONCLUSIONS

A method for the detection of octave errors in beat track-
ing has been proposed and evaluated. The approach was
evaluated with an audio dataset that represents a variety of
genres of music. This approach, while currently applied
to only one beat tracker, depends only on the presence of a
mid-level representation, and the determination of beat and
meter periods, commonly produced by many beat trackers.
It is applicable to beat trackers which benefit from reesti-
mation or convergence in the selection of the beat tracking
frequency.

While the performance of the beat critic is well below
perfection, when applied to a beat tracker, it has been shown
to improve overall performance, reducing the number of
octave errors, at the cost of a slight increase in mistracking.
The beat critic’s applicability and usefulness is ultimately
dependent on the cost of false positives.

A number of improvements are possible. The use of
a threshold for the octave error classification is simplistic
and possibly difficult to set accurately. A machine learning
classifier promises to perform better in this task. However,
the best features to be used are not yet clear, preliminary
experiments with the quaver alternation measures ¢, ¢, ¢
and ¢ indicate that these are insufficient features to dis-
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criminate the octave error classification. The alternative,
using the entire profiles, or reductions thereof, as features
produces too high a dimensionality for accurate learning.
Another issue is the relative computational cost of such an
approach, when the current threshold approach is compu-
tationally low. In principle the approach could be used
to identify beat tracking at half the correct rate, although
such beat tracking errors did not occur using the dataset
and therefore have not been evaluated.

The beat critic exploits knowledge of rhythmic behaviour
as represented in musicologically based models of metrical
profiles to compare temporal levels. The comparison of the
relative activity of levels is used to identify octave errors.
By examining the behaviour of events in the time domain,
the goal has been to circumvent limitations in the temporal
resolution of frequency based analysis in the identification
of beat levels.
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ABSTRACT

With the explosive growth of music recordings, automatic
classification of music emotion becomes one of the hot
spots on research and engineering. Typical music emotion
classification (MEC) approaches apply machine learning
methods to train a classifier based on audio features. In
addition to audio features, the MIDI and lyrics features of
music also contain useful semantic information for pre-
dicting the emotion of music. In this paper we apply
AdaBoost algorithm to integrate MIDI, audio and lyrics
information and propose a two-layer classifying strategy
called Fusion by Subtask Merging for 4-class music emo-
tion classification. We evaluate each modality respec-
tively using SVM, and then combine any two of the three
modalities, using AdaBoost algorithm (MIDI+audio,
MIDI+lyrics, audio+lyrics). Moreover, integrating this in
a multimodal system (MIDI+audio+lyrics) allows an im-
provement in the overall performance. The experimental
results show that MIDI, audio and lyrics information are
complementary, and can be combined to improve a clas-
sification system.

Key Words: Music Emotion Classification, Mul-
ti-Modal, AdaBoost, Fusion by Subtask Merging

1. INTRODUCTION AND RELATED WORKS

Music Information Retrieval is a sub-area of information
retrieval. Important research directions include for exam-
ple similarity retrieval, musical genre classification, or
music analysis and knowledge representation. As the mu-
sic databases grow, classification and retrieval of music
by emotion [2]-[7] has recently received increasing atten-
tion.
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Traditionally music emotion classification (MEC) ap-
plies algorithms of machine learning on audio features,
such as Mel frequency cepstral coefficient (MFCC), to
recognize the emotion embedded in the audio signal.
Meanwhile we can also use some mid-level audio fea-
tures such as chord [5] or rhythmic patterns [8] for this
problem, but sometimes it can’t get a promising result
because of the semantic gap.

Complementary to audio features, lyrics are semanti-
cally rich and expressive and have profound impact on
human perception of music [17]. It is often easy for us to
tell from the lyrics whether a song expresses love, sad-
ness, happiness, or something else. Incorporating lyrics in
the analysis of music emotion is feasible because most
popular songs sold in the market come with lyrics and
because most lyrics are composed in accordance with
music signal [18].

Besides music’s audio and lyrics features, the MIDI
features of music have been ever used in music instru-
ment classification and retrieval. As a popular file format
for storing music, MIDI carries more abstract music in-
formation than audio. In this paper we firstly apply the
music’s MIDI file to the music emotion classification.

A multi-modal analysis approach using audio and lyr-
ics features has been proposed and evaluated in music
genre classification by Mayer and Neumayer [1]. And
promising results have been achieved by combining the
audio and lyrics using various types of machine learning
algorithms such as SVM and k-NN. Besides, several mul-
ti-modal fusion methods using audio and lyrics for music
emotion classification are proposed by Yang [2]. Howev-
er, little has been reported in the literature that applies
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AdaBoost to multi-modal automatic music emotion clas-
sification. In this paper, we propose a new multi-modal
fusing approach that uses features extracted from MIDI
files, audio signal and lyrics for 4-class music emotion
classification. We focus on how to combine the three
modalities: MIDI, audio and lyrics using AdaBoost.

The remainder of the paper is organized as follows.
Section 2 describes the MIDI, audio and lyrics features
we need respectively. Section 3 describes the details of
the proposed multi-modal approach. Section 4 provides
the result of a performance study, and Section 5 con-
cludes the paper.

2. FEATURES

In our experiment we use a free program jMIR1.0 with
default parameter values to extract MIDI and audio fea-
tures. jAudio and jSymbolic are two important compo-
nents of jMIR for extracting audio and MIDI features.
jAudio is a software package for extracting features from
audio files. These extracted features can then be used in

many areas of music information retrieval (MIR) research.

jSymbolic is a software package for extracting high-level
musical features from symbolic music representations,
specifically MIDI files.

2.1 MIDI Features

The MIDI music files are firstly transformed from the
corresponding waveform files by a computer tool WIDI
Recognition System Professional 4.1 which could be
found on the internet [19]. And then we use jSymbolic
with default parameter values to extract MIDI features
from the MIDI files. The extracted MIDI features, which
are listed in Table 1, are adopted in our experiments.

# Feature Dimensions
1 Duration 1
2 Acoustic Guitar Fraction 1
3 Average Melodic Interval | 1
101 Voice Separation 1
102 Woodwinds Fraction 1

Table 1. MIDI features extracted by jSymbolic.
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From Table 1 we can see there are 102 features ex-
tracted by jSmbolic from each MIDI music file. As each
feature just has one dimension, a whole MIDI feature
vector has 102 dimensions.

2.2 Audio Features

We use jAudio to extract a number of low-level audio
features from the waveform files. The extracted features,
which are listed in Table 2, have been commonly used
for MEC in pervious works [3]-[5].

# Feature Dimensions
1 Magnitude Spectrum Variable

2 FFT Bin Frequency Labels | Variable

3 Spectral Centroid 1

25 Zero Crossings 1

26 Beat Sum 1

Table 2. Audio features extracted by jAudio.

From Table 2 we can see there are 26 features ex-
tracted by jAudio from each audio file. Among these 26
features, there are 5 features such as Magnitude Spectrum
and MFCC with variable dimensions, other ones with 1
dimension. In our experiment, an audio feature vector has
79 dimensions.

2.3 Lyrics Features

Lyrics are normally available on the web and downloada-
ble with a simple crawler. The acquired lyrics are pre-
processed with traditional information retrieval operations
such as stopword removal, stemming, and tokenization.
In our experiment, two algorithms are adopted to generate
textual features.

Uni-gram A standard textual feature representation
counts the occurrence of uni-gram terms (words) in each
document, and constructs the bag-of-words model [10],
which represents a document as a vector of terms
weighted by a tf-idf function defined as:

|D]

1
D)

tfidf (t,,d ) =#(t,,d ) log

where #(t;,d;) denotes the frequency of termt; oc-
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curs in documentd ; , # D(t;) the number of documents

in which t; occurs, and| D |the size of the corpus. We

compute the tf-idf for each term and select the M most
frequent terms as our features (M is empirically set to
2000 in this work by a validation set).

Bi-gram N-gram is sequences of N consecutive words
[10]. An N-gram of size 1 is a uni-gram (single word),
size 2 is a bi-gram (word pairs). N-gram models are
widely used to model the dependency of words. Since
negation terms often reverse the meaning of the words
next to them, it seems reasonable to incorporate word
pairs to the bag-of-words model to take the effect of ne-
gation terms into account. To this end, we select the M
most frequent uni-gram and bi-gram in the bag-of-words
model and obtain a new feature representation.

3. TAXONOMY

We adopt Thayer’s arousal-valence emotion plane [15] as
our taxonomy and define four emotion classes happy,
angry, sad, and relaxing, according to the four quadrants
of the emotion plane, as shown in Figure 1. As arousal
(how exciting/calming) and valence (how positive/ nega-
tive) are the two basic emotion dimensions found to be
most important and universal [16], we can also view the
four-class emotion classification problem as the classifi-
cation of high/low arousal and positive/negative valence.
This view will be used in mutli-modal music emotion
classification.

(high) |Arousal
2 1
Angry Happy
Anxious Exciting Valence
(negative) Sad Relaxing (positive)
Bored Serene
3 4
(low)

Figure 1.Thayer’s arousal-valence emotion plane. We define
four emotion classes according to the four quadrants of the
emotion plane. We can also subdivide the four-class emotion
classification to binary arousal classification and valence clas-

sification.
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4. PROPOSED APPROACH

In this paper, we use AdaBoost, an ensemble learning
algorithm, to train a classifier by integrating MIDI, audio
and lyrics features. Boosting is a method to combine a
collection of weak classification functions (weak learner)
to form a stronger classifier [21]. AdaBoost is an adaptive
algorithm to boost a sequence of classifiers, in that the
weights are updated dynamically according to the errors
in previous learning [22].

Tieu and Viola [12] adapted AdaBoost algorithm for
natural image retrieval. They made the weak learner work
in a single feature each time. So after T rounds of
boosting, T features are selected together with the T
weak classifiers. We adapted AdaBoost algorithm of Tieu
and Viola’s version for music emotion classification and
retrieval. In each iteration, we made the weak learner
work on each modality independently. So we can get
three classifiers which are trained according to MIDI,
audio and lyrics features respectively each time. And then
we select the classifier of the minimum learning error as
the representative of this iteration. After T rounds of
boosting, T weak classifiers are produced in the end.

The classic AdaBoost algorithm is only used for binary
classification. In a 4-class scenario, we propose a
two-layer classifying strategy called Fusion by Subtask
Merging.
eFusion by Subtask Merging (FSM): Use AdaBoost to
classify arousal and valence separately and then merge
the result. To enhance readability, we denote the classifi-
cation model trained by AdaBoost for classifying arousal
and valence as Ma and My, respectively. For example, a
negative arousal (predicted by Ma) and negative valence
(predicted by Mv) would be merged to class 3. We make
the three modalities focus on different emotion classifica-
tion subtasks because empirical test reveals MIDI, audio
and text clues are complementary and useful for different
subtasks. In addition, training models for arousal and va-
lence separately has been shown adequate.

4.1 AdaBoost

The AdaBoost algorithm We adapted in our experiment
as follows:

Input: 1) nNtraining examples

(X, Y1)h-- (X, Y, ) with y, =1or0;
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2) the number of iterations T .
1 1
Initialize weights W,; = —or——fory; =1or0,
21 2m
with I+m=n.

Dofor t=1,...,T &&¢,<0.5:

1. Train one hypothesis hj for each modality j with W, ,
and error &; = Z:inzl(hj (X)) = Yi) =W

2.Choose h,(-) =h, () suchthatVj = k, &, < &, .Let
& =&

Wt +1,i

3. Update: =W,; B, where & =1or0for
example X; classified correctly or incorrectly respec-

&y

tively, and S, = 1

&y

4. Normalize the weights so that they are a distribution,

W, .
t+1,i
Wt+1,i <~ n
j=1 Wt+l, j

Output the final hypothesis,

] T j—
hf (X) — 1 If thlathl(X) ZE tzlat (2)
0 otherwise

1
where o, =log—.
t

4.2 Support Vector Machine

Support vector machine (SVM) learns an optimal sepa-
rating hyperplane (OSH) given a set of positive and nega-
tive examples. Kernel functions are used for SVM to
learn a non-linear boundary if necessary. See Vapnik [14]
for a detailed introduction of SVM. Li and Guo [13] tried
to use the SVM for audio classification and retrieval. In
this paper, SVM is selected as our weak learner. In our
experiment we use the SMO which is a fast implementa-
tion of SVM algorithm provided by WEKA3.6.1 [20].
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5. EXPERIMENTS

The music database is made up of 500 Chinese pop songs,
whose emotions are labeled through a subjective test
conducted by 8 participants. The corresponding lyrics are
downloaded from the Internet by a web crawler. Classifi-
cation accuracy is evaluated by randomly selecting 400
songs as training data and 100 songs as testing data. We
conducted 2 experiments. To assure the confidence, we
performed the experiments based on a five-fold cross
validation. We use the features extracted by jSymbolic for
MIDI feature representation, the features extracted by
JAudio for audio feature representation and the uni-gram
and bi-gram based bag-of-words model for lyrics feature
representation.

5.1 Single Feature Sets
In our first experiment, we apply SVM to mono-modal
based music emotion 4-class classification (MEC) using
MIDI, audio and lyrics information respectively. There-
fore, we got three SVM classifiers which are trained on
each mono-modality. Our SVM implementation is the
SMO algorithm provided by WEKA3.6.1 and the kernel
function is Polynomial. To enhance readability, we de-
note the classification model trained by MIDI, audio and
textual features as MO, AO and LO respectively.
« MIDI-Only (MO): Use MIDI features only and apply
SVM to classify emotion. This serves as a baseline. MO
is used to assess the importance of the MIDI modality.
« Audio-Only (AO): Use audio features only and apply
SVM to classify emotion. This serves as a baseline be-
cause many existing MEC work adopts it [1-2]. AO is
used to assess the importance of the audio modality.
 Lyrics-Only (LO): Use lyrics features only and apply
SVM to classify emotion. This serves as a baseline be-
cause many existing MEC work adopts it [1-2]. LO is
used to assess the importance of the text modality.

The Results of experiment 1 are shown in Table 3:

Classifier Name Features Accuracy(4-class)
MO MIDI 0.586
AO audio 0.598
LO lyrics 0.491

Table 3. Results of mono-modal method using SVM for
4-class emotion classification.
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5.2 Multi-Modal Feature Set Combinations
In our second experiment, we apply AdaBoost to mul-
ti-modal based music emotion classification. And we se-
lect SVM as the weak learner in AdaBoost. We develop
and evaluate the following method for fusing MIDI, audio
and lyrics. To enhance readability, we denote the classi-
fication model trained by MIDI and audio features set,
MIDI and lyrics features set, audio and lyrics features set,
MIDI, audio and lyrics features set as MA, ML, AL and
MAL respectively.
* MIDI+Audio (MA): Use MIDI and audio features and
apply AdaBoost to classify emotion. The weak learner is
SVM.
e MIDI+Lyrics (ML): Use MIDI and lyrics features and
apply AdaBoost to classify emotion. The weak learner is
SVM.
» Audio+Lyrics (AL): Use audio and lyrics features and
apply AdaBoost to classify emotion. The weak learner is
SVM.
e MIDI+Audio+Lyrics (MAL): Use MIDI, audio and
lyrics features and apply AdaBoost to classify emotion.
The weak learner is SVM.

The Results of experiment 2 are shown in Table 4:

Classifier | Features Accuracy(4-class)
Name

MA MiIDIl+audio 0.616

ML MIDI+lyrics 0.712

AL audio+lyrics 0.72

MAL MIDI+audio+lyrics | 0.724

Table 4. Results of multi-modal fusion method using
AdaBoost for 4-class emotion classification.

4.3 Comparison and Analysis of Experimental Results
Because of the different database, it is difficult to quanti-
tatively compare the proposed approach with existing
ones. Alternatively, we treat MO, AO and LO as the three
baselines, and compare the classification accuracy of
mono-modal and multi-modal approaches.

It can be observed from row 2 to 4 of Table 3 that
MIDI features, audio features and textual features per-
forms very poor on 4-class emotion classification, with
MO’s accuracy 58.6%, AO’s accuracy 59.8%, LO’s ac-
curacy 49.1%. But from row 2 to 4 of Table 4, we can
see MIDI features, audio features and lyrics features are
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fairly complementary, because the combination of any
two of them outperforms the mono-modal approach, with
MA’s accuracy 61.6%, ML’s accuracy 71.2%, AL’s ac-
curacy 72.0%. Table 4 also indicates that the 4-class
emotion classification accuracy can be significantly im-
proved by fusing all the three modalities. Among the fu-
sion methods (rows 2-5 of Table 4), MAL achieves the
best classification accuracy (72.4%) and contributes a
23.3% relative improvement over the lyrics-only (LO)
baseline. This seems to imply the individual strength of
the three modalities should be emphasized separately.

6. CONCLUSION

In this paper we have described a preliminary mul-
ti-modal approach to music emotion classification that
exploits features extracted from the MIDI, audio and the
lyrics of a song. We apply AdaBoost algorithm to ensem-
ble the three modalities. A new approach of multi-modal
fusion method called Fusion by Subtask Merging (FSM)
is developed and evaluated. Experiments on a moderately
large-scale database show that MIDI, audio and lyrics
indeed carry semantic information complementary to
each other. By the proposed fusion by subtask merging
strategy, we can improve the classification accuracy from
49.1% to 72.4%. Using lyrics features also significantly
improves the accuracy of valence classification from
61.6% to 72.4%. Meanwhile, we find that MIDI and au-
dio features contribute fairly to the music emotion classi-
fication. From the result, we can see that the accuracy of
MO is 58.6%, while that of AO is 59.8%. Besides, the
accuracy of ML is 71.2%, while that of AL is 72.0%. An
explanation for this phenomenon is that there exists some
redundancy between MIDI and audio information. As
well, an exploration of more natural language processing
algorithms and more effective features for modeling the
characteristics of lyrics is underway. Besides, we’re try-
ing to verifying more ensemble learning algorithms on
multi-modal music emotion classification.
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ABSTRACT

A musical style or genre implies a set of common con-
ventions and patterns combined and deployed in different
ways to make individual musical pieces; for instance, most
would agree that contemporary pop music is assembled
from a relatively small palette of harmonic and melodic
patterns. The purpose of this paper is to use a database
of tens of thousands of songs in combination with a com-
pact representation of melodic-harmonic content (the beat-
synchronous chromagram) and data-mining tools (cluster-
ing) to attempt to explicitly catalog this palette — at least
within the limitations of the beat-chroma representation.
We use online k-means clustering to summarize 3.7 mil-
lion 4-beat bars in a codebook of a few hundred prototypes.
By measuring how accurately such a quantized codebook
can reconstruct the original data, we can quantify the de-
gree of diversity (distortion as a function of codebook size)
and temporal structure (i.e. the advantage gained by joint
quantizing multiple frames) in this music. The most popu-
lar codewords themselves reveal the common chords used
in the music. Finally, the quantized representation of mu-
sic can be used for music retrieval tasks such as artist and
genre classification, and identifying songs that are similar
in terms of their melodic-harmonic content.

1. INTRODUCTION

The availability of very large collections of music audio
present many interesting research opportunities. Given mil-
lions of examples from a single, broad class (e.g. con-
temporary commercial pop music), can we infer anything
about the underlying structure and common features of this
class? This paper describes our work in this direction.
What are the common features of pop music? There
are conventions of subject matter, instrumentation, form,
rhythm, harmony, and melody, among others. Our interest
here is in the tonal content of the music — i.e. the harmony
and melody. As a computationally-convenient proxy for a
richer description of the tonal content of audio, we use the
popular chroma representation, which collapses an acous-
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tic spectrum into a 12-dimensional description, with one
bin for each semitone of the western musical octave. In
addition, we simplify the time axis of our representation to
take advantage of the strong beat present in most pop mu-
sic, and record just one chroma vector per beat. This beat-
synchronous chromagram representation represents a typ-
ical music track in a few thousand values, yet when resyn-
thesized back into audio via modulation of octave-invariant
“Shepard tones”, the melody and chord sequences of the
original music usually remain recognizable [7]. To the ex-
tent, then, that beat-chroma representations preserve tonal
content, they are an interesting domain in which to search
for patterns — rich enough to generate musically-relevant
results, but simplified enough to abstract away aspects of
the original audio such as instrumentation and other stylis-
tic details.

Specifically, this paper identifies common patterns in
beat-synchronous chromagrams by learning codebooks from
a large set of examples. The individual codewords consist
of short beat-chroma patches of between 1 and 8 beats, op-
tionally aligned to bar boundaries. The additional temporal
alignment eliminates redundancy that would be created by
learning multiple codewords to represent the same motive
at multiple beat offsets. The codewords are able to rep-
resent the entire dataset of millions of patterns with min-
imum error given a small codebook of a few hundred en-
tries. Our goal is to identify meaningful information about
the musical structure represented in the entire database by
examining individual entries in this codebook. Since the
common patterns represent a higher-level description of
the musical content than the raw chroma, we also expect
them to be useful in other applications, such as music clas-
sification and retrieving tonally-related items.

Prior work using small patches of chroma features in-
cludes the “shingles” of [3], which were used to identify
“remixes”, i.e., music based on some of the same underly-
ing instrument tracks, and also for matching performances
of Mazurkas [2]. That work, however, was not concerned
with extracting the deeper common patterns underlying dif-
ferent pieces (and did not use either beat- or bar-synchronous
features). Earlier work in beat-synchronous analysis in-
cludes [1], which looked for repeated patterns within single
songs to identify the chorus, and [7], which cross-correlated
beat-chroma matrices to match cover versions of pop mu-
sic tracks. None of these works examined or interpreted
the content of the chroma matrices in any detail. In con-
trast, here we hope to develop a codebook whose entries
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chroma bins

beats

Figure 1: A typical codeword from a codebook of size 200
(code 7 in Figure 4), corresponding to a tonic-subdominant chord
progression. The patch is composed of 2 bars and the pattern
length was set to 8 beats.

are of interest in their own right.

2. APPROACH
2.1 Features

The feature analysis used throughout this work is based on
Echo Nest analyze API [4]. For any song uploaded to their
platform this analysis returns a chroma vector (length 12)
for every music event (called “segment”), and a segmen-
tation of the song into beats and bars. Beats may span or
subdivide segments; bars span multiple beats. Averaging
the per-segment chroma over beat times results in a beat-
synchronous chroma feature representation similar to that
used in [7]. Echo Nest chroma vectors are normalized to
have the largest value in each column equal to 1.

Note that none of this information (segments, beats, bars)
can be assumed perfectly accurate. In practice, we have
found them reasonable, and given the size of the data set,
any rare imperfections or noise can be diluted to irrele-
vance by the good examples. We also believe that patch
sizes based on a number of beats or bars are more meaning-
ful than an arbitrary time length. This is discussed further
in Section 5.1.

2.2 Beat-Chroma Patches

We use the bar segmentation obtained from the Echo Nest
analysis to break a song into a collection of beat-chroma
“patches”, typically one or two bars in length. Because
the bar length is not guaranteed to be 4 beats, depending
on the meter of a particular song, we resample each patch
to a fixed length of 4 beats per bar (except where noted).
However, the majority (82%) of our training data consisted
of bars that were 4 beats long, so this resampling usually
had no effect. Most of the remaining bars (10%) were 3
beats in length. The resulting patches consist of 12 x 4 or
12 x 8 matrices.

Finally, we normalize the patches with respect to trans-
position by rotating the pattern matrix so that the first row
contains the most energy. This can be seen in the example
codeword of Figure 1. Each patch within a song is normal-
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ized independently, so reconstruction of the original song
requires knowledge of the rotation index for each patch.

The representation resulting from this process is invari-
ant to both the key and meter of the original song. This en-
ables the study of broad harmonic patterns found through-
out the data, without regard for the specific musical con-
text. In the context of clustering this avoids problems such
as obtaining separate clusters for every major triad for both
duple and triple meters.

2.3 Clustering

We use an online version of the vector quantization algo-
rithm [8] to cluster the beat-chroma patches described in
the previous section. For each sample from the data, the
algorithm finds the closest cluster in the codebook and up-
dates the cluster centroid (codeword) to be closer to the
sample according to a learning rate ¢. The clusters are up-
dated as each data point is seen, as opposed to once per it-
eration in the standard k-means algorithm. The details are
explained in Algorithm 1. As in standard k-means clus-
tering, the codebook is initialized by choosing K random
points from our dataset. Note that this algorithm, although
not optimal, scales linearly with the number of patches
seen and can be interrupted at any time to obtain an up-
dated codebook.

Algorithm 1 Pseudocode for the online vector quantization
algorithm. Note that we can replace the number of iterations
by a threshold on the distortion over some test set.
{ learning rate
{P,} set of patches
{C}} codebook of K codes
Require: 0 < (<1
for nlters do
forp e {P,} do
¢ < min.cc, dist(p, c)
c—c+(p—c)xt
end for
end for
return {C}

3. EXPERIMENTS

In this section we present different clustering experiments
and introduce our principal training and test data. Some
detailed settings of our algorithm are also provided. As for
any clustering algorithm, we measure the influence of the
number of codewords and the training set size.

3.1 Data

Our training data consists of 43, 300 tracks that were up-
loaded to morecowbell.dj, ! an online service based on the
Echo Nest analyze API which remixes uploaded music by
adding cowbell and other sound effects synchronized in

Uhttp://www.morecowbell.dj/
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Encoding error per training data size for certain conditions
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Figure 2: Distortion for a codebook of size 100 encoding one
bar at a time with by 4 columns. Therefore, each codeword has
12 x 4 = 48 elements. Distortion is measured on the test set.
Training data sizes range from O (just initialization) to 500, 000.
Patterns were selected at random from the dataset of approxi-
mately 3.7 million patterns.

time with the music. The 43.3K songs contain 3.7 mil-
lion non-silent bars which we clustered using the approach
described in the previous section.

For testing, we made use of low quality (32kbps, 8 kHz
bandwidth mono MP3) versions of the songs from the us-
pop2002 data set [5]. This data set contains pop songs from
a range of artists and styles. uspop2002 serves as test set
to measure how well a codebook learned on the Cowbell
data set can represent new songs. We obtained Echo Nest
features for the 8651 songs contained in the dataset.

3.2 Settings

We take one or two bars and resample the patches to 4 or
8 columns respectively. We learn a codebook of size K
over the Cowbell dataset using the online VQ algorithm
(Algorithm 1). We use a learning rate of £ = 0.01 for 200
iterations over the whole dataset. We then use the resulting
codebook to encode the test set. Each pattern is encoded
with a single code. We can measure the average distance
between a pattern and its encoding. We can also measure
the use of the different codes, i.e., the proportion of pat-
terns that quantize to each code.

We use the average squared Euclidean distance as the
distortion measure between chroma patches. Given a pat-
tern p; composed of elements p; (4, j), and a similar pat-
tern ps, the distance between them is:

(pl(l,]) — pg(i,j))2
size(p1)

dist(p17p2) = Z

(2]

ey

We assume p; and ps have the same size. This is enforced
by the resampling procedure described in Section 2.

3.3 Codebook properties

This section presents some basic results of the clustering.
While unsurprising, these results may be useful for com-
parison when reproducing this work.

e Encoding performance improves with increasing train-

ing data (Figure 2). Distortion improvements plateau
by around 1000 samples per codeword (100, 000 sam-
ples for the 100-entry codebook of the figure).
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Codebook size  Distortion
1 0.066081
10 0.045579
50 0.038302
100 0.035904
500 0.030841

Table 1: Distortion as a function of codebook size for a fixed
training set of 50,000 samples. Codebook consists of 1 bar (4
beat) patterns.

e Encoding performance improves with increasing code-
book size (Table 1). Computation costs scales with
codebook size, which limited the largest codebooks
used in this work, but larger codebooks (and more

efficient algorithms to enable them) are clearly a promis-

ing future direction.

Larger patterns are more difficult to encode, thus re-
quiring larger codebooks. See Figure 3. The in-
crease is steepest below 4 beats (1 bar), although
there is no dramatic change at this threshold.

4. VISUALIZATION
4.1 Codebook

We trained a codebook containing 200 patterns sized 12 X
8, covering 2 bars at a time. The results shown are on the
artist20 test set described in Section 5.2.

The 25 most frequently used codewords in the test set
are shown in Figure 4. The frequency of use of these code-
words is shown in Figure 5. The codewords primarily con-
sist of sustained notes and simple chords. Since they are
designed to be key-invariant, specific notes do not appear.
Instead the first 7 codewords correspond to a single note
sustained across two bars (codeword 0), perfect fifth (code-
words 1 and 2) and fourth intervals (codewords 3 and 6,
noting that the fourth occurs when the per-pattern transpo-
sition detects the fifth rather than the root as the strongest
chroma bin, and vice-versa), and a major triads transposed
to the root and fifth (codewords 5 and 4, respectively).
Many of the remaining codewords correspond to common

Encoding error per number of beats (bar information ignored)
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Figure 3: Encoding patterns of different sizes with a fixed size
codebook of 100 patterns. The size of the pattern is defined by
the number of beats. Downbeat (bar alignment) information was
not used for this experiment.
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Code 0 (1.28%) Code 1 (1.18%) Code 2 (1.07%) Code 3 (1.01%) Code 4 (0.97%)
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Code 5 (0.96%) Code 6 (0.93%) Code 7 (0.89%) Code 8 (0.87%) Code 9 (0.87%)
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Code 10 (0.85%) Code 11 (0.85%) Code 12 (0.84%) Code 13 (0.82%) Code 14 (0.81%)
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Figure 4: The 25 codes that are most commonly used for the
artist20 test set. Codes are from the 200-entry codebook trained
on 2 bar, 12 x 8 patches. The proportion of patches accounted
for by each pattern is shown in parentheses.

— frequency on artist20
o - - frequency on cowbell

100 150

0 50

200

Figure 5: Usage proportions for all 200 codewords on the
artist20 test set (which comprises 71, 832 patterns). Also shown
are the usage proportions for the training set (“‘cowbell”), which
are similar. Note that even though all codewords are initialized
from samples, some are used only once in the training set, or not
at all for test set. This explains why the curves drop to 0.

transitions from one chord to another, e.g. a V-I transition
in codes 7 and 9 (e.g., Gmaj — Cmaj, or G5 — C5 as a
guitar power chord) and the reverse I-V transition in code
21 (e.g., Cmaj — Gmaj).

In an effort to visualize the span of the entire codebook,
we used Locally linear embedding (LLE) [9]? to arrange
the codewords on a 2D plane while keeping similar pat-
terns as neighbors. Figure 6 shows the resulting distribu-
tion along with a sampling of patterns; notice sustained
chords on the top left, chord changes on the bottom left,
and more complex sustained chords and “wideband” noisy
patterns grouping to the right of the figure.

Noting that many of the codewords reflect sustained
patterns with little temporal variation, Figure 7 plots the
average variance along time of all 200 patterns. Some 26%
of the codewords have very low variance, corresponding to
stationary patterns similar to the top row of Figure 4.

‘We made some preliminary experiments with codebooks
based on longer patches. Figure 8 presents a codewords
from an 8 bar (32 beat) codebook. We show a random
selection since all the most-common codewords were less
interesting, sustained patterns.

2 implementation: ~ http://www.astro.washington.edu/
users/vanderplas/coding/LLE/
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Figure 6: LLE visualization of the codebook. Shown patterns
are randomly selected from each neighborhood.

average variance of the codes in the codebook
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Figure 7: Average variance of codewords along the time dimen-
sion. The vertical axis cuts at the 53rd pattern, roughly the num-
ber of codewords consisting entirely of sust