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Preface 
 
 
 
 
Welcome to the  11th International Society for Music Information Retrieval Conference (ISMIR 
2010). ISMIR 2010 will be convened in Utrecht, Netherlands, 9-13 August 2010 and is jointly 
organised by Utrecht University, the Utrecht School of the Arts, the Meertens Institute and Philips 
Research. The organisers have a strong conviction (which we believe is widely shared by the MIR 
community) that studying the human processing of music is a key issue in innovative MIR research.  
Therefore, MIR research and applications that model musical cognition and perception, that 
contribute to the human understanding and experience of music, or that make creative use of MIR 
research receive particular attention during ISMIR 2010. 
 
ISMIR conferences have a long tradition of high quality interdisciplinary scholarship. We hope that 
you will find that these proceedings have met the high standards of excellence reached by previous 
ISMIR Program Committees (PC) and participating Music Information Retrieval (MIR) researchers.  
Like earlier ISMIRs, the success of ISMIR 2010 is founded upon the hard work of its 24 PC 
members, the thoughtful adjudications of its 262 reviewers, and the large number (176) of first-rate 
submissions it received from its vibrant research community.    
 
ISMIR 2010 builds upon lessons learned from earlier ISMIR conferences and thus has carried on 
many practices from ISMIR’s past. ISMIR 2010 submissions were reviewed double-blind to avoid 
bias. Each accepted paper was allotted six pages of proceedings space. As in the past, there was no 
quality distinction made concerning the mode of presentation (whether poster or oral). Those papers 
chosen for oral presentation were selected solely on the grounds of providing ISMIR 2010 
participants with a conference programme that best reflected the wide-ranging interests, techniques 
and findings of ISMIR’s multidisciplinary world. Unlike recent ISMIRs, there was no rebuttal phase 
because of the shortened review timelines caused by ISMIR 2010’s earlier-than-usual August meeting 
date. 
 
New to ISMIR 2010, however, was the creation of a new kind of submission category. This year we 
introduced the State-of-the-Art Report (STAR) paper. STAR papers are intended to summarize for the 
community the current research questions, accomplishments, and open problems in one of MIR’s 
many subfields. STAR papers were allotted up to 12 pages to allow STAR authors to 
comprehensively cover their topics.  This year, we received seven excellent STAR submissions. 
Because of time and space considerations, we were only able to include two STAR papers in the 
programne on the topics of Music Emotion Recognition (Kim, et al.) and Audio-Based Music 
Structure Analysis (Paulus, Mueller and Klapuri). We hope that ISMIR attendees find this new class 
of paper useful and that STAR papers become part of the ISMIR tradition. 
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Table 1. ISMIR Publication Statistics 2000-2009 

  Presentations Total Total Total Unique Pages/ Authors/ U. Authors/ 

Year Location Oral Posters Papers Pages Authors Authors Paper Paper Paper 
2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 
2001 Bloomington 25 16 41 222 100 86 5.4 2.4 2.1 
2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 
2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 
2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2.0 
2005 London 57 57 114 697 316 233 6.1 2.8 2.1 
2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 
2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.4 
2008 Philadelphia 24 105 105 630 296 253 6.0 2.8 2.4 
2009 Kobe 38 85 123 729 375 292 5.9 3.0 2.4 
2010 Utrecht 24  86  110  656  314  263  6.0  2.9  2.4 

  
As stated before, ISMIR 2010 received 176 papers for review (not including the seven STAR papers). 
We were very pleased to see that ISMIR retained its international following as the submissions came 
from 29 different countries. The reviewers generated 696 reviews and meta-reviews.  Of these, 108 
papers were selected for publication. This yielded an acceptance rate of 61% which is in line with 
previous ISMIR rates.  Twenty-two papers were selected for oral presentation. When combined with 
the two STAR papers, the total number of oral presentations comes to 24 as shown in Table 1. Eighty-
six papers were chosen for poster presentation. Not shown in Table 1 (to keep the data consistent 
across years) are the six extra posters presented by those giving oral presentations. Also missing from 
Table 1 are the two informative papers from the 2nd Future of MIR—f(MIR)—workshop held in 
conjunction with ISMIR 2010 and included in the proceedings.  Table 1 statistics do not include the 
many posters that were presented as part of the 2010 Music Information Retrieval Evaluation 
eXchange (MIREX) 2010 poster session. Finally, the 30 late-breaking poster/demo abstracts that have 
been made available via the ISMIR 2010 website are not part of the Table 1 data. 
 
We are very proud to have two distinguished special speakers on the programme. Music psychologist 
Carol L. Krumhansl, giving the Keynote Lecture, is famous for her research into the perception of 
tonality, and her work is probably the most widely-used music-psychological source for MIR 
research. Joris de Man, our Invited Speaker, is the composer of the music for the computer game 
Killzone 2. He will discuss the merge of music and technology from a seemingly different point of 
view that may nevertheless have many implications for future MIR research and applications. 
 
ISMIR 2010 is preceded by the one-week Utrecht Summer School in Music Information Retrieval 
(USMIR), which is jointly organised by the Department of Information and Computing Sciences of 
Utrecht University and the Institute for Psychoacoustics and Electronic Music of Ghent University 
(Belgium). This summer school follows the example on an earlier, highly successful event that 
preceded ISMIR 2004 in Barcelona. Twenty-eight students and 14 specialists from 15 different 
countries and will participate in this summer school, discussing and doing practical work on topics 
that range from melody retrieval to Wii-retrieval and from user-based music research method to 
toolboxes such as PHAT. As in ISMIR 2010, the human processing of music is the starting-point for 
the meaningful application of technology. 
 
This year’s social programme has been designed in such a way that it continues the broad themes of 
the conference in a more leisurely fashion. It confronts music technology, creativity and performance,  
and adds a historical and a Dutch dimension to mixture. You will come across street organs, carillons, 
prepared pianos,  human and mechanical performers, and in particular the precursor of that ubiquitous 
MIR tool, piano roll notation, in its authentic, material form, punched in cardboard. 
 
The Programme Chairs would like to express their deep gratitude to all those who have given so much 
to make ISMIR 2010 programme and proceedings a success. We thank the members of the 
Conference Committee, the Programme Committee, the reviewers, and the submitters. Many thanks 
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go to our sponsors, Gracenote, the City of Utrecht, the Province of Utrecht, the Netherlands 
Organisation for Scientific Research (NWO), Philips Research, Microsoft Research, Google Research 
and the Netherlands Research School for Information and Knowledge Systems (SIKS), for making 
many aspects of the programme possible and in particular for enabling us to fund a number of Student 
Travel Awards. Extra-special recognition goes to Drs. Bas de Haas, of Utrecht University, for his 
tireless efforts in making the managerial aspects of the whole conference programming process run as 
efficiently as possible. 
 
Frans Wiering 
General Chair, ISMIR 2010 
 
J. Stephen Downie and Remco Veltkamp 
Programme Chairs, ISMIR 2010 
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Music and Cognition: Links at Many Levels 
The talk presents research showing that music and cognition have strong links at many levels. 
An example of a link at a deep level is the empirical support found for deeply theorized 
properties of music such as Lerdahl’s theory of musical tension. Confirmation of this theory 
demonstrates that the cognitive representation of musical structure includes hierarchical trees 
similar to those proposed for language. At a somewhat higher level, sensitivity to statistically 
frequent patterns in the sounded events enables listeners to abstract a tonal framework for 
encoding and remembering music and generating expectations. Violations of these 
expectations contribute to the emotional response to music and produce neural responses in 
fMRI studies. Thus, statistical learning, found for language and other perceptual domains, 
extends to music where it has special significance. Finally, research on music recognition 
suggests a great deal of surface information is encoded in memory. Very short excerpts of 
popular music can be identified with artist, title, and release date. Even when an excerpt is not 
identified, emotion and style judgments are consistent. These results point to a long-term 
memory for music with large capacity and fine detail as well as schematic knowledge of style 
and emotional content. 
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ABSTRACT

We consider the problem of intra-opus pattern discovery,
that is, the task of discovering patterns of a specified type
within a piece of music. A music analyst undertook this
task for works by Domenico Scarlattti and Johann Sebas-
tian Bach, forming a benchmark of ‘target’ patterns. The
performance of two existing algorithms and one of our own
creation, called SIACT, is evaluated by comparison with
this benchmark. SIACT out-performs the existing algo-
rithms with regard to recall and, more often than not, pre-
cision. It is demonstrated that in all but the most care-
fully selected excerpts of music, the two existing algo-
rithms can be affected by what is termed the ‘problem of
isolated membership’. Central to the relative success of
SIACT is our intention that it should address this particu-
lar problem. The paper contrasts string-based and geomet-
ric approaches to pattern discovery, with an introduction to
the latter. Suggestions for future work are given.

1. INTRODUCTION

This paper discusses and evaluates algorithms that are in-
tended for the following task: given a piece of music in
a semi-symbolic representation, discover so-called transla-
tional patterns [14] that occur within the piece. Transla-
tional patterns (in the geometric sense) are discussed fur-
ther in Sec. 1.1. Although they are not the only type of pat-
tern that could matter in music analysis, many music ana-
lysts would acknowledge that such a discovery task forms
part of the preparation when writing an analytical essay
[6]. Even if the final essay pays little or no heed to the dis-
covery of translational patterns, neglecting this preparatory
task entirely could result in failing to mention something
that is musically very noticeable, or worse, very important.
Hence we are motivated by the prospect of automating the
discovery task, as it could have interesting implications for
music analysts (and music listeners in general), enabling
them to engage with pieces in a novel manner. We also
consider this task to be an open problem within music in-
formation retrieval (MIR), so attempting to improve upon
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current solutions is another motivating factor. The algo-
rithms are applied to Baroque keyboard pieces by Scarlatti
(Sonatas L1 and 10) and—to ensure common ground with
existing work [7, 13]—Bach (Preludes BWV849 and 854).
Two existing algorithms and one of our own creation are
evaluated by comparing their output with a music analyst’s
(the second author’s) independent findings for these same
keyboard pieces (Sec. 4).

1.1 Review of existing work

In MIR there do not seem to be clear distinctions between
the terms pattern ‘discovery’ [5,8,14,16], ‘extraction’ [10,
11, 17], ‘identification’ [7, 9] , and ‘mining’ [3], at least in
the sense that most of the papers just cited address very
similar discovery tasks to that stated at the beginning of
Sec. 1. Conklin & Bergeron [5] give the label ‘intra-opus’
discovery to concentrating on patterns that occur within
pieces. An alternative is ‘inter-opus’ discovery, where pat-
terns are discovered across many pieces of music [5, 9].
This makes it possible to gauge the typicality of a partic-
ular pattern relative to the corpus style. Terms that are
clearly distinguished in MIR are pattern ‘discovery’ and
‘matching’ [4]. Pattern matching is the central process in
‘content-based retrieval’ [18], where the user provides a
query and then the algorithm searches a music database
for more or less exact instances of the query. The out-
put is ranked by some measure of proximity to the origi-
nal query. This matching task is quite different from the
intra-opus discovery task, where there is neither a query
nor a database as such, just a single piece of music, and
no obvious way of ranking an algorithm’s output. While
we have stressed their differences, some authors attempt
to address both discovery and matching tasks in the same
paper [12, 13], suggesting that representations/algorithms
that work well for one task might be adapted and applied
fruitfully to the other.

Some attempts at pattern discovery have been made with
audio representations of music [15]. However, we, like
the majority of work cited in this section, begin with a
semi-symbolic representation, such as a MIDI file. Work
on semi-symbolic representations can be categorised into
string-based [2,3,5,8–11,16,17] and geometric approaches
[7, 12–14], and which approach is most appropriate de-
pends on the musical situation. For instance the string-
based method is more appropriate for the excerpt in Fig. 1.
We propose that the most salient pattern in this short ex-
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Figure 1. Bars 1-3 of the Introduction from The Rite of
Spring by Igor Stravinsky, annotated with MIDI note num-
bers and ontimes in crotchets starting from zero. For clar-
ity, phrasing is omitted and ornaments are not annotated.

cerpt consists of the notes C5, B4, G4, E4, B4, A4, ignor-
ing ornaments for simplicity. The simplest way to discover
the three occurrences of this pattern is to represent the ex-
cerpt as a string of MIDI note numbers and then to use an
algorithm for pattern discovery in strings. The string 72,
71, 67, 64, 71, 69, ought to be discovered, and the user re-
lates this back to the notes C5, B4, G4, E4, B4, A4. The
geometric method is not appropriate here because each oc-
currence of the pattern has a different rhythmic profile.

On the other hand, the geometric method is better suited
to finding the most salient pattern in Fig. 2a, consisting of
all the notes in bar 13 except the tied-over G4. This pattern
occurs again in bar 14, transposed up a fourth, and then
once more at the original pitch in bar 15. Each note is an-
notated with its relative height on the stave (or morphetic
pitch number [14]), taking C4 to be 60. Underneath the
stave, ontimes are measured in quaver beats starting from
zero. The first note in this excerpt, G3, can be represented
by the datapoint d1 = (0, 57), since it has ontime 0 and
morphetic pitch number 57. A scatterplot of morphetic
pitch number against ontime for this excerpt is shown in
Fig. 2b. Meredith et al. [14] call the set of all datapoints
representing an excerpt a dataset, denoted by D. Restrict-
ing attention to bars 13-15, we begin with the dataset

D = {d1,d2, . . . ,d26}. (1)

A pattern is defined as a non-empty subset of a dataset. In
our example, we will choose to look at the patterns

P = {d1, . . . ,d8}, and Q = {d9,d11, . . . ,d17}. (2)

The vector that translates d1 to d9 is

d9 − d1 = (3, 60)− (0, 57) = (3, 3) = v. (3)

We have given this vector a label v = (3, 3). It is this
same vector v that translates d2 to d11, d3 to d12, . . . ,d8

to d17. Recalling the definitions of P and Q from (2), it
is more succinct to say that ‘the translation of P by v is
equal to Q’. This translation is indicated in Fig. 2c.

Looking at Fig. 2c it is evident that as well as Q be-
ing a translation of P , pattern R is also a translation of P .
Meredith et al. [14] call {P,Q, R} the translational equiv-
alence class of P in D, notated

TEC(P,D) = {P,Q, R}. (4)

The TEC gives all the occurrences of a pattern in a
dataset.
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Figure 2. (a) Bars 13-16 of the Sonata in C major L3
by Scarlatti, annotated with morphetic pitch numbers and
ontimes; (b) each note from the excerpt is converted to a
point consisting of an ontime and a morphetic pitch num-
ber. Morphetic pitch number is plotted against ontime, and
points are labelled in lexicographical order d1 to d35; (c)
the same plot as above, with three ringed patterns, P,Q, R.
Arrows indicate that both Q and R are translations of P .

So P is an example of a translational pattern, as trans-
lations of P , namely Q and R, exist in the dataset D. The
formal definition of a translational pattern is as follows.

Definition. For a pattern P in a dataset D, the pattern P
is a translational pattern if there exists at least one sub-
set Q of D such that P and Q contain the same number
of elements, and there exists one non-zero vector v that
translates each datapoint in P to a datapoint in Q.

In the example in Fig. 2, two dimensions were considered
(ontime and morphetic pitch number). The definitions and
pattern discovery algorithms given by Meredith et al. [13]
extend to k dimensions; specifically MIDI note number
and duration are included as further dimensions.

The string-based method is not so well suited to Fig. 2a.
The first step would be voice separation, generating per-
ceptually valid melodies from the texture. Sometimes the
scoring of the music makes separation simple [9], but even
when voicing contains ambiguities, there are algorithms
that can manage [1, 3]. Supposing fragments of the pat-
tern in Fig. 2a were discovered among separated melodies,
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Figure 3. A Venn diagram (not to scale) for the number of
patterns (up to translational equivalence) in a dataset. The
total E is shown relative to the number typically returned
by SIATEC (F ), COSIATEC (G), and SIACT (H).

these fragments still would have to be correctly reunited.
In this instance, even the most sophisticated string-based
method [5] does not compare with the efficiency of the ge-
ometric method. The key difference between geometric
and string-based approaches is the binding of ontimes to
other musical information in the former, and the decou-
pling of this information in the latter. Both are valid meth-
ods for discovering patterns in music.

The reporting of existing intra-opus algorithms will of-
ten mention running time [3,8,12–14], occasionally recall
is given [11, 17], and sometimes precision [10]. With the
inter-opus discovery task an algorithm’s output is seldom
compared with a human benchmark [5,9]. The justification
is that ‘investigations of entire collections require consider-
able amounts of time and effort on the part of researchers’
[9, p. 171]. Still, is it not worth knowing how an algorithm
performs on a subset of the collection?

2. ALGORITHMS FOR PATTERN DISCOVERY

In equation 2, pattern P was introduced without explain-
ing how it is discovered. It could be discovered by cal-
culating all the TECs in the dataset D, and then certainly
TEC(P,D) will be among the output. However this ap-
proach is tremendously expensive and indiscriminate. It is
expensive in terms of computational complexity, as there
are 2n patterns to partition into equivalence classes, where
n = |D| is the size of the dataset. Moreover, it is indis-
criminate as no attempt is made to restrict the output in
terms of ‘musical importance’: while P is arguably of im-
portance, not all subsets of D are worth considering, yet
they will also be among the output. The set E in Fig. 3
represents the output of this expensive and indiscriminate
approach.

Therefore Meredith et al. [14] restrict the focus to a
smaller set F , by considering how a pattern like P is max-
imal. Recalling (1) and (2), the pattern P is maximal in
the sense that it contains all datapoints that are translatable
in the dataset D by the vector v = (3, 3). It is called a
maximal translatable pattern [14], written

P = MTP (v, D) = {d ∈ D : d + v ∈ D}. (5)

Meredith et al.’s [14] structural inference algorithm (SIA)
calculates all MTPs in a dataset, which requires O(kn2)
calculations. While the TEC of each MTP must still be de-
termined to give the set F in Fig. 3, this approach is enor-
mously less expensive than partitioning 2n patterns and
involves a decision about musical importance: ‘In music,
MTPs often correspond to the patterns involved in percep-
tually significant repetitions’ [14, p. 331]. SIA works by
traversing the upper triangle of the similarity matrix

A =


d1 − d1 d2 − d1 · · · dn − d1

d1 − d2 d2 − d2 · · · dn − d2

...
...

. . .
...

d1 − dn d2 − dn · · · dn − dn

 . (6)

If the vector w = dj − di is not equal to a previously cal-
culated vector then a new MTP is created, MTP (w, D),
with di as its first member. Otherwise w = u for some
previously calculated vector u, in which case di is included
in MTP (u, D). So it is possible to determine the set F for
a dataset D by first running SIA on the dataset and then
calculating the TEC of each MTP. The structural inference
algorithm for translational equivalence classes (SIATEC)
performs this task [14], and requires O(kn3) calculations.

To our knowledge there are two further algorithms that
apply the geometric method to pattern discovery: the cov-
ering structural inference algorithm for translational equiv-
alence classes (COSIATEC) [13] and a variant proposed by
Forth & Wiggins [7]. COSIATEC rates patterns accord-
ing to a heuristic for musical importance and produces a
smaller output than SIATEC, the set labelled G in Fig. 3.
The name COSIATEC derives from the idea of creating a
cover for the input dataset:

1. Run SIATEC on D0 = D, rate the discovered pat-
terns using the heuristic for musical importance, and
return the pattern P0 that receives the highest rating.

2. Define a new dataset D1 by removing from D0 each
datapoint that belongs to an occurrence of P0.

3. Repeat step 1 for D1 to give P1, repeat step 2 to de-
fine D2 from D1, and so on until the dataset DN+1

is empty.

4. The output is

G = {TEC(P0, D0), . . . , TEC(PN , DN )}. (7)

Forth & Wiggins’ variant on COSIATEC [7] uses a non-
parametric version of the heuristic for musical importance
and requires only one run of SIATEC. While only one run
reduces the computational complexity of their version, it
does mean that the output is always a subset of F , whereas
running SIATEC on successively smaller datasets (steps 2
and 3 above) makes it possible to discover patterns beyond
F (the portion G\F in Fig. 3).

3. THE PROBLEM OF ISOLATED MEMBERSHIP

In Sec. 2 we noted that pattern P from (2) could be dis-
covered by running SIA on the dataset D from (1). This
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is because P is the MTP (cf. equation 5) for the vector
v = (3, 3) and SIA returns all such patterns in a dataset.
However, D is a conveniently chosen example consisting
only of bars 13-15 of Fig. 2a. How might an MTP be af-
fected if the dataset is enlarged to include bar 16? Letting

D+ = {d1, . . . ,d35}, v = (3, 3), (8)

it can be verified that

P+ = MTP (v, D+) = {d1, . . . ,d8,d18,d19,d22}.
(9)

Unfortunately P+, the new version of P , contains three
more datapoints, d18, d19, d22, that are isolated tempo-
rally from the rest of the pattern. This is an instance of
what we call the ‘problem of isolated membership’. It
refers to a situation where a musically important pattern
is contained within an MTP, along with other temporally
isolated members that may or may not be musically im-
portant. Intuitively, the larger the dataset, the more likely
it is that the problem will occur. Isolated membership af-
fects all existing algorithms in the SIA family, and could
prevent them from discovering some translational patterns
that a music analyst considers noticeable or important (see
Sec. 4 for further evidence in support of this claim).

Our proposed solution to the problem of isolated mem-
bership is to take the SIA output and ‘trawl’ inside each
MTP from beginning to end, returning subsets that have a
compactness greater than some threshold a and that con-
tain at least b points. The compactness of a pattern is the
ratio of the number of points in a pattern to the number
of points in the region of the dataset in which the pattern
occurs [13]. Different interpretations of ‘region’ lead to
different versions of compactness. The version employed
here is of least computational complexity O(kn), and uses
the lexicographical ordering shown in Fig. 2b. The com-
pactness of a pattern P = {p1, . . . ,pl} in a dataset D is
defined by

c(P,D) = l/|{di ∈ D : p1 � di � pl}|. (10)

For instance, the compactness of pattern Q in Fig. 2c is
8/9, as there are 8 points in the pattern and 9 in the dataset
region {d9,d10, . . . ,d17} in which the pattern occurs.

One of Meredith et al.’s [14] suggestions for improv-
ing/extending the SIA family is to ‘develop an algorithm
that searches the MTP TECs generated by SIATEC and
selects all and only those TECs that contain convex-hull
compact patterns’ [p. 341]. The way in which our pro-
posed solution is crucially different to this suggestion is to
trawl inside MTPs. It will not suffice to calculate the com-
pactness of an entire MTP, since we know it is likely to
contain isolated members. Other potential solutions to the
problem of isolated membership are to:

• Segment the dataset before discovering patterns. The
issue is how to segment appropriately—usually the
discovery of patterns guides segmentation [2], not
the other way round.

• Apply SIA with a ‘sliding window’ of size r. Ap-
proximately, this is equivalent to traversing only the

elements on the first r superdiagonals of A in (6).
The issue is that the sliding window could prevent
the discovery of very noticeable or important pat-
terns, if their generating vectors lie beyond the first
r superdiagonals.

• Consider the set of all patterns that can be expressed
as an intersection of MTPs, which may not be as
susceptible to the problem of isolated membership.
The issue with this larger class is that it is more com-
putationally complex to calculate, and does not aim
specifically at tackling isolated membership.

The algorithmic form of our solution is called a com-
pactness trawler. It may be helpful to apply it to the exam-
ple of P+ in (9), using a compactness threshold of a = 2/3
and points threshold of b = 3. The compactness of succes-
sive subsets {d1}, {d1,d2}, . . . , {d1, . . . ,d8} of P+ re-
mains above the threshold of 2/3 but then falls below, to
9/18, for {d1, . . . ,d8,d18}. So we return to {d1, . . . ,d8},
and it is output as it contains 8 ≥ 3 = b points. The pro-
cess restarts with subsets {d18}, {d18,d19}, and then the
compactness falls below 2/3 to 3/5 for {d18,d19,d22}.
So we return to {d18,d19}, but it is discarded as it contains
fewer than 3 points. The process restarts with subset {d22}
but this also gets discarded for having too few points. The
whole of P+ has now been trawled. The formal definition
follows and has computational complexity O(kn).

1. Let P = {p1, . . . ,pl} be a pattern in a dataset D
and i = 1.

2. Let j be the smallest integer such that i ≤ j < l and
c(Pj+1, D) < a, where Pj+1 = {pi, . . . ,pj+1}. If
no such integer exists then put P ′ = P , otherwise
let P ′ = {pi, . . . ,pj}.

3. Return P ′ if it contains at least b points, otherwise
discard it.

4. If j exists in step 2, re-define P in step 1 to equal
{pj+1, . . . ,pl}, set i = j + 1, and repeat steps 2
and 3. Otherwise re-define P as empty.

5. After a certain number of iterations P will be empty
and the output can be labelled P ′1, . . . , P

′
N , that is N

subsets of the original P , where 0 ≤ N ≤ l.

We give the name ‘structural inference algorithm and
compactness trawler’ (SIACT) to the process of calculat-
ing all MTPs in a dataset (SIA), followed by the applica-
tion of the compactness trawler to each. The compactness-
trawling stage in SIACT requires O(kmn) calculations,
where m is the number of MTPs returned by SIA. If de-
sired, it is then possible to take the output of SIACT and
calculate the TECs. These TECs are represented by the set
H in Fig. 3. To our knowledge, this newest member of
the SIA family is the only algorithm intended to solve the
problem of isolated membership.
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4. COMPARATIVE EVALUATION

A music analyst (the second author) analysed the Sonata in
C major L1 and the Sonata in C minor L10 by Scarlatti, the
Prelude in C] minor BWV849 and the Prelude in E major
BWV854 by Bach. The brief was similar to the intra-opus
discovery task described in Sec. 1: given a piece of music
in staff notation, discover translational patterns that occur
within the piece. Thus, a benchmark of translational pat-
terns was formed for each piece, the criteria for benchmark
membership being left largely to the analyst’s discretion.
One criterion that was stipulated was to think in terms of
an analytical essay: if a pattern would be mentioned in
prose or as part of a diagram, then it should be included in
the benchmark. The analyst is referred to as ‘independent’
because of the relative freedom of the brief and because
they were not aware of the details of the SIA family, or
our new algorithm. The analyst was also asked to report
where aspects of musical interest had little or nothing to
do with translational patterns, as these occasions will have
implications for future work.

Three algorithms—SIA [14], COSIATEC [13] and our
own, SIACT—were run on datasets that represented L1,
L10, BWV849, and BWV854. For COSIATEC the non-
parametric version of the rating heuristic was used [7] and
for SIACT we used a compactness threshold of a = 2/3
and a points threshold of b = 3. The choice of a =
2/3 means that at the beginning of an input pattern, the
compactness trawler will tolerate one non-pattern point be-
tween the first and second pattern points, which seems like
a sensible threshold. The choice of b = 3 means that a
pattern must contain at least three points to avoid being
discarded. This is an arbitrary choice and may seem a lit-
tle low to some. Each point in a dataset consisted of an
ontime, MIDI note number (MNN), morphetic pitch num-
ber (MPN), and duration (voicing was omitted for simplic-
ity on this occasion). Nine combinations of these four di-
mensions were used to produce ‘projections’ of datasets
[14], on which the algorithms were run. These projections
always included ontime, bound to: MNN and duration;
MNN; MPN and duration; MPN; duration; MNN mod 12
and duration; MNN mod 12; MPN mod 7 and duration;
MPN mod 7. For the first time to our knowledge, the use
of pitch modulo 7 and 12 enabled the concept of octave
equivalence to be incorporated into the geometric method.

If a pattern is in the benchmark, it is referred to as a
target; otherwise it is a non-target. An algorithm is judged
to have discovered a target if a member of the algorithm’s
output is equal to the target pattern or a translation of that
pattern. In the case of COSIATEC the output consists of
TECs, not patterns. So we will say it has discovered a tar-
get if that target is a member of one of the output TECs. Ta-
ble 1 shows the recall and precision of the three algorithms
for each of the four pieces. Often COSIATEC did not dis-
cover any target patterns, so for these pieces it has zero
recall and precision. This is in contrast to the parametric
version’s quite encouraging results for Bach’s two-part in-
ventions [12,13]. When it did discover some target patterns
in L10, COSIATEC achieved a better precision than the

Piece→ L1 L10 BWV849 BWV854

Algorithm ↓ Recall
SIA .29 .22 .28 .22

COSIATEC .00 .17 .00 .00
SIACT .50 .65 .56 .61

Precision
SIA 1.5 e−5 1.1 e−5 1.3 e−5 1.8 e−5

COSIATEC .00 .02 .00 .00
SIACT 2.6 e−3 1.5 e−3 7.8 e−4 2.0 e−3

Table 1. Results for three algorithms on the intra-opus pat-
tern discovery task, applied to four pieces of music. Recall
is the number of targets discovered, divided by the sum of
targets discovered and targets not discovered. Precision is
the number of targets discovered, divided by the sum of
targets discovered and non-targets discovered.

other algorithms, as it tends to return far fewer patterns per
piece (168 on average compared with 8,284 for SIACT and
385,299 for SIA). Hence the two remaining contenders are
SIA and SIACT. SIACT, defined in Sec. 3, out-performs
SIA in terms of both recall and precision. Having exam-
ined cases in which SIA and COSIATEC fail to discover
targets, we attribute the relative success of SIACT to its
being intended to solve the problem of isolated member-
ship. Across the four pieces, the running times of SIA and
SIACT are comparable (the latter is always slightly greater
since the first stage of SIACT is SIA).

5. DISCUSSION

This paper has discussed and evaluated algorithms for the
intra-opus discovery of translational patterns. One of our
motivations was the prospect of improving upon current
solutions to this open MIR problem. A comparative eval-
uation was conducted, including two existing algorithms
and one of our own, SIACT. For the pieces of music con-
sidered, it was found that SIACT out-performs the existing
algorithms considerably with regard to recall and, more of-
ten than not, it is more precise. Therefore, our aim of im-
proving upon the best current solution has been achieved.
Central to this achievement was the formalisation of the
‘problem of isolated membership’. It was shown that for
a small and conveniently chosen excerpt of music, a maxi-
mal translatable pattern corresponded exactly to a percep-
tually salient pattern. However, when the excerpt was en-
larged by just one bar, the MTP gained some temporally
isolated members, and the salient pattern was lost inside
the MTP. Our proposed solution, to trawl inside an MTP,
returning compact subsets, led to the definition of SIACT.

The weight placed on the improved results reported here
is limited somewhat by the extent of the evaluation, which
includes only four pieces, all from the Baroque period,
and all analysed by one expert. Extending and altering
these conditions and assessing their effect on the perfor-
mance of the three algorithms is a clear candidate for fu-
ture work. There are also more sophisticated versions of

7

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



compactness and the compactness trawler algorithm that
could be explored, and alternative values for the compact-
ness and points thresholds, a and b. The discovery of ‘ex-
act repetition’ has provided a sensible starting point for
this research, but extending definitions such as (5) to al-
low for ‘inexact repetition’ is an important and challeng-
ing next step. Cases of failure, where SIACT does not dis-
cover targets, will be investigated. Perhaps some of these
cases share characteristics that can be addressed in a fu-
ture version of the algorithm. Although we have seen SIA
presented before as the sorting of matrix elements [14],
the connection that A in (6) makes with similarity matri-
ces [15, 16] may lead to new insights or efficiency gains.

We will be trying to elicit more knowledge about the
attributes of a pattern that matter to human analysts, so
as to rank output patterns and to compare these attributes
with the assumptions underlying SIACT. It could be that
current pattern discovery methods overlook particular as-
pects of musical interest. If so a string-based or geometric
method might be easily adapted, or very different meth-
ods may have to be developed. Could one focused algo-
rithm encompass the many and diverse categories of mu-
sical pattern? It seems improbable, and the discussion of
Figs. 1 and 2 in Sec. 1.1 could be interpreted as a coun-
terexample. Hence, given the improved voice separation
algorithms, and string-based and geometric methods that
now exist, another worthy topic for future work would be
the unification of a select number of algorithms within a
single user interface. This would bring us closer to achiev-
ing our opening, more ambitious aim, of enabling music
analysts, listeners, and students to engage with pieces of
their choice in a novel and rewarding manner. To this end,
the work reported here clearly merits further development.
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ABSTRACT

The automated extraction of chord labels from audio

recordings constitutes a major task in music information

retrieval. To evaluate computer-based chord labeling pro-

cedures, one requires ground truth annotations for the un-

derlying audio material. However, the manual generation

of such annotations on the basis of audio recordings is te-

dious and time-consuming. On the other hand, trained mu-

sicians can easily derive chord labels from symbolic score

data. In this paper, we bridge this gap by describing a pro-

cedure that allows for transferring annotations and chord

labels from the score domain to the audio domain and vice

versa. Using music synchronization techniques, the gen-

eral idea is to locally warp the annotations of all given data

streams onto a common time axis, which then allows for

a cross-domain evaluation of the various types of chord

labels. As a further contribution of this paper, we extend

this principle by introducing a multi-perspective evaluation

framework for simultaneously comparing chord recogni-

tion results over multiple performances of the same piece

of music. The revealed inconsistencies in the results do not

only indicate limitations of the employed chord labeling

strategies but also deepen the understanding of the under-

lying music material.

1. INTRODUCTION

In recent years automated chord recognition, which deals

with the computer-based harmonic analysis of audio

recordings, has been of increasing interest in the field of

music information retrieval (MIR), see e. g. [1, 4, 5, 7, 12,

14]. The principle of harmony is a central attribute of

Western tonal music, where the succession of chords over

time often forms the basis of a piece of music. Such har-

monic chord progressions are not only of musical impor-

tance, but also constitute a powerful mid-level representa-

tion for the underlying musical signal and can be applied

for various tasks such as music segmentation, cover song

identification, or audio matching [10, 13].

The evaluation of chord labeling procedures itself,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

which is typically done by comparing the computed chord

labels with manually generated ground truth annotations,

is far from being an easy task. Firstly, the assignment of

chord labels to specific musical sections is often ambigu-

ous due to musical reasons. Secondly, dealing with perfor-

mances given as audio recording, the ground truth annota-

tions have to be specified in terms of physical units such

as seconds. Thus, specifying musical segments becomes

a cumbersome task, which, in addition, has to be done for

each performance separately. On the other hand, musicians

trained in harmonics are familiar with assigning chord la-

bels to musical sections. However, the analysis is typically

done on the basis of musical scores, where the sections are

given in terms of musical units such as beats or measures.

When dealing with performed audio recordings, such an-

notations are only of limited use.

As one main contribution of this paper, we introduce

an automated procedure for transferring annotations and

chord labels from the score domain to the audio domain

and vice versa, thus bridging the above mentioned gap be-

tween MIR researchers and musicians. Given the score of

a piece of music, we assume that musical sections spec-

ified in terms of beats or measures are labeled using the

conventions introduced by Harte [4]. In case the score

is given in some computer-readable format such as Mu-

sicXML or LilyPond [6], recent software allows for ex-

porting the score into an uninterpreted MIDI file, where

the tempo is set to a known constant value. This allows for

directly transferring the score-based ground truth annota-

tions to a MIDI-based ground truth annotation. We then

use music synchronization techniques [9] to temporally

align the MIDI file to a given audio recording. Finally,

the resulting alignment information can be used to tempo-

rally warp the audio annotations onto a commonmusically

meaningful time axis, thus allowing a direct comparison to

the ground truth annotations.

As a second contribution, we extend this principle by

suggesting a novel multi-perspective evaluation frame-

work, where we simultaneously compare chord recogni-

tion results over multiple performances of the same piece

of music. In this way, consistencies and inconsistencies in

the chord recognition results over the various performances

are revealed. This not only indicates the capability of the

employed chord labeling strategy but also lies the basis for

a more detailed analysis of the underlying music material.

As a final contribution, we indicate the potential of our

framework by giving such detailed harmonic analyses by
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means of three representative examples.

The remainder of this paper is organized as follows.

First, in Sect. 2 we give an overview about music synchro-

nization. Then, in Sect. 3 we present the multi-perspective

evaluation framework. In Sect. 4 we demonstrate our frame-

work giving an in-depth analysis of typical chord recogni-

tion errors. Conclusions and prospects on future work are

given in Sect. 5.

2. MUSIC SYNCHRONIZATION

For the methods presented in the following sections the

concept of music synchronization is of particular impor-

tance. In general, the goal of music synchronization is to

determine for a given position in one version of a piece

of music, the corresponding position within another ver-

sion. Most synchronization algorithms rely on some vari-

ant of dynamic time warping (DTW) and can be summa-

rized as follows. First, two given versions of a piece of

music are converted into feature sequences, say X :=
(X1, X2, . . . , XN ) and Y := (Y1, Y2, . . . , YM ), respec-
tively. In this context, chroma features have turned out

to yield robust alignment results even in the presence of

significant artistic variations. In the following we em-

ploy CENS (Chroma Energy Normalized Statistics) fea-

tures, a variant of chroma features making use of short-

time statistics over energy distributions within the chroma

bands, for a detailed description see [9]. Additionally,

we consider non-standard tunings similar to Gómez [3].

Then, an N × M cost matrix C is built up by evaluat-

ing a local cost measure c for each pair of features, i. e.,

C(n, m) = c(xn, ym) for n ∈ [1 : N ] := {1, 2, . . . , N}
and m ∈ [1 : M ]. Each tuple p = (n, m) is called a
cell of the matrix. A (global) alignment path is a sequence

(p1, . . . , pL) of length L with pℓ ∈ [1 : N ] × [1 : M ]
for ℓ ∈ [1 : L] satisfying p1 = (1, 1), pL = (N, M)
and pℓ+1 − pℓ ∈ Σ for ℓ ∈ [1 : L − 1]. Here,
Σ = {(1, 0), (0, 1), (1, 1)} denotes the set of admissible
step sizes. The cost of a path (p1, . . . , pL) is defined as
∑L

ℓ=1
C(pℓ). A cost-minimizing alignment path, which

constitutes the final synchronization result, can be com-

puted via dynamic programming fromC. For a detailed ac-

count on DTW and music synchronization we refer to [9].

Based on this general strategy, we employ a synchro-

nization algorithm based on high-resolution audio features

as described in [2]. This approach, which combines the

high temporal accuracy of onset features with the robust-

ness of chroma features, generally yields robust music

alignments of high temporal accuracy.

3. MULTI-PERSPECTIVE VISUALIZATION

A score in a computer readable format such as LilyPond or

MusicXML is available for many classical pieces of music

[11]. For a trained musician it is muchmore intuitive to an-

notate the chords of a piece on the basis of the underlying

score than on the basis of an audio recording. However,

such an annotation is not directly transferable to an audio

recording of the same piece, as both use very different no-

tions of time. Furthermore, this also implies that this an-

notation cannot be used directly to evaluate the results of

an audio-based automatic chord labeling method. In this

section, we present a method integrating music synchro-

nization techniques, which allows for a direct comparison

of chord labels derived from different versions of a piece

of music. This approach has several advantages. Firstly,

the manual annotation becomes much more intuitive. Sec-

ondly, the position of a chord recognition error in an audio

recording can be easily traced back to the corresponding

position in the score. This allows for a very efficient in-

depth error analysis as we will show in Sect. 4. Thirdly, a

single score-based annotation can be transfered to an arbi-

trary number of audio recordings for the underlying piece.

In the following, we assume that an audio recording and

a score in computer readable format are given for a piece

of music. Additionally, chord labels manually annotated

by a trained musician on the basis of a score are given as

well as labels automatically derived from the audio record-

ing via some computer-based method. In a first step, we

export the score to a MIDI representation. This can be

done automatically using existing software. Beat and mea-

sure positions are preserved during the export, such that

the score-based annotations are still valid for the MIDI

file. In a next step, we derive CENS features from the

MIDI as well as from the audio as mentioned in Sect. 2,

say X := (X1, X2, . . . , XN ) and Y := (Y1, Y2, . . . , YM ),
respectively. Since each CENS feature corresponds to a

time frame, we can also create two binary chord vector se-

quences, A := (A1, . . . , AN ) and B := (B1, . . . , BM ),
which encode the given chord labels in a framewise fash-

ion. Here, An, Bm ∈ {0, 1}d for n ∈ [1 : N ] and
m ∈ [1 : M ]. The constant d equates the number of con-
sidered chords. A value of one in a vector component en-

codes the chord prevalent in the corresponding time frame.

As we consider in the following only the 24 major and mi-

nor chords (d = 24), we have to map the given chord labels
in a meaningful way to one of these. To this end, we em-

ploy the interval comparison of the dyad, which was used

for MIREX 2009 [8] and takes into account only the first

two intervals of each chord. Thus, augmented and dimin-

ished chords are mapped to major and minor respectively,

as well as any other label having a major or minor third as

its first interval. Using the first four measures of Chopin’s

Mazurka Op. 68 No. 3 as an example, we illustrate the

sequences A for the score and B for the audio in Fig.1(b)

and 1(c), respectively. Note that in Fig.1(b) the time is ex-

pressed in terms of measures, while in Fig.1(c) the time is

given in seconds. This different notion of time prevents a

comparison of A and B at this point.

The next step consists of synchronizing the two CENS

features sequencesX and Y as mentioned in Sect. 2. The

resulting alignment path p = (p1, . . . , pL) encodes tempo-
ral correspondences between elements of X and Y . Fol-

lowing the same time frame division, the alignment path

also encodes correspondences between the sequences A

and B. Using this linking information, we locally stretch

and contract the audio chord vector sequence B according

to the warping information supplied by p. Here, we have

to consider two cases. In the first case, p contains a subse-
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Figure 1. Various chord annotations visualized for the Chopin
Mazurka Op. 68 No. 3 (F major), mm. 1-4. (a) Score. (b) Score-
based ground truth chord labels. (c) Computed audio chord labels
(physical time axis). (d)Warped audio chord labels (musical time
axis). (e) Overlayed score and audio chord labels. (f) Multi-
perspective overlay of score and audio chord labels.

quence of the form

(n, m), (n + 1, m), . . . , (n + ℓ − 1, m)

for some ℓ ∈ N, i. e., the ℓ score-related vectors

An, . . . , An+ℓ−1 are aligned to the single audio-related

vector Bm. In this case, we duplicate the vector Bm by

taking ℓ copies of it. In the second case, p contains a sub-

sequence of the form

(n, m), (n, m + 1), . . . , (n, m + ℓ − 1)

for some ℓ ∈ N, i. e., the score-related vectorAn is aligned

to ℓ audio-related vectors Bm, . . . , Bm+ℓ−1. In this case,

we replace the ℓ vectors by the vector Bm+⌊ℓ/2⌋. The re-

sulting warped version of B is denoted by B̄. Note that

the length of B̄ equals the length N of A, see Fig. 1(d).

For the visualization we set all vectors in B̄ to 0, where no
groundtruth chord label is available, as for example in the

middle of measure (abbreviated mm.) 4, see Fig. 1(d).

Overall, we have now converted the physical time axis

of the audio chord vector sequence B to the musically

meaningful measure axis, as used for A. Finally, we

can visualize the differences between the score-based and

the audio-based chord labels by overlaying A and B̄, see

Fig. 1(e). Here, the vertical axis represents the 24 ma-

jor/minor chords, starting with the 12 major chords and

continuing with the 12 minor chords. Blue entries now in-

dicate areas, where the ground truth labels and the audio

chord labels coincide. On the contrary, green and red en-

code the differences between the chord labels. Here, green

entries correspond to the ground truth chord labels derived

from the score, whereas red entries correspond to the au-

dio chord labels. For example, at the beginning of mm. 2

the score as well as the audio chord labels indicate a C

major chord. On the contrary, at the end of mm. 2 there

is a C major chord specified in the score, while the chord

labels derived from the audio incorrectly specify an A mi-

nor chord. Using the measure-based time information, we

can look directly at the corresponding position in the score

and analyze the underlying reason for this error. We will

demonstrate this principle extensively in Sect. 4, where we

present an in-depth analysis of typical errors produced by

automatic chord labeling methods.

Next, we extend the just developed concept by introduc-

ing a multi-perspective visualization, see Fig. 1(f). Here,

we make use of the fact that for classical pieces usually

many different interpretations and recordings are available.

Visualizing the chord recognition results simultaneously

for multiple audio recordings of the same piece, we can an-

alyze the consistency of errors across these recordings. On

the one hand, if an error is not consistent, then this might

indicate a chord ambiguity at the corresponding position.

On the other hand, a consistent error might point to an in-

trinsic weakness of the automatic chord labeler, or an error

in the manual annotations. This way, errors might be auto-

matically classified before they are manually inspected.

In Fig. 1(f) the multi-perspective visualization for the

first four measures of the Chopin Mazurka is represented.

Here, we warped the automatically generated chord labels

for 51 different audio recordings onto the musical time axis
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using the steps described above. By overlaying the result-

ing chord vector sequences B̄ for all pieces, we get a vi-

sualization similar to the previous one in Fig. 1(e), so that

the visualization for one audio recording can be seen as a

special case of the multi-perspective visualization. In the

multi-perspective visualization, we distinguish two cases

using two different color scales: one color scale ranges

from dark blue to bright green, and the other color scale

ranges from dark red to yellow. The first color scale from

blue to green serves two purposes. Firstly, it encodes the

score-based ground truth chord labels. Secondly, it shows

the degree of consistency between the automatically gen-

erated audio labels and the score labels. For example, the

dark blue entries at the beginning of mm. 2 show, that a

C major chord is specified in the score labels, and most

audio-based labels coincide with the score label here. At

the end of mm. 2 the bright green shows that the score spec-

ifies a C major, but most audio-based results differ here

from the score label. Analogously, the second color scale

from dark red to yellow also fulfills two purposes. Firstly,

it encodes the audio-based chord labels that differ from the

score labels. Secondly, it shows how consistent an error

actually is. For example, at the beginning of mm. 2 there

are no red or yellow entries, since the score labels and the

audio labels coincide here. However, at the end of mm. 2,

most audio-based chord labels differ from the score labels.

Here most chord labels either specify an F major or an A

minor chord.

4. EVALUATION

None of the currently available automatic chord labeling

approaches works flawlessly. Errors can either be caused

by the inherent ambiguity in chord labeling, or by a weak-

ness special to the employed chord labeler. An in-depth

analysis allowing for a distinction between these error

sources is a very hard and time-consuming task. In this

section, we show how this process can be supported and

accelerated using the evaluation and visualization frame-

work presented in Sect. 3. To this end, we manually cre-

ated score-based chord annotations for several pieces of

music. Furthermore, we implemented a very simple base-

line chord labeler to study very common sources of error

in chord labeling.

4.1 Annotations

For the following evaluation, a trained musician (Verena

Konz) manually annotated the chords for three pieces of

Western classical music. Firstly, Mazurka in F major

Op. 68 No. 3 by Chopin. Secondly, Prelude in C ma-

jor BWV 846 by Bach. Thirdly, the first movement of

Beethoven’s Fifth Symphony, Op. 67. Using the under-

lying score, the annotations were created on the beat-level,

and in the case of the Bach Prelude on the measure-level.

The format and naming conventions used for the annota-

tion were proposed by Harte [4]. The annotator paid much

attention to capture even slight differences between adja-

cent chords. Hence, the bass tone as well as missing or

added tones in chords are marked explicitly using the cor-

responding shorthands.

4.2 Baseline-method for chord recognition

A baseline chord labeler can be implemented using only a

few simple operations. Given an audio recording, we first

extract CENS features (see Sect. 2) resulting in a feature

sequence Y := (Y1, Y2, . . . , YM ). We derive ten features
per second, with each feature considering roughly 1100ms

of the original audio signal. Non-standard tunings are con-

sidered as described in Sect. 2. Then, we define a total of

24 chord templates, 12 templates for the major chords and

12 for the minor chords. The considered templates are 12-

dimensional vectors, in which the respective three tones of

the corresponding major(minor) chord (the root note, the

major(minor) third and the fifth) are set to 1 and the rest to

0. Thus, we obtain e. g. for C major the template

(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)

and for C minor the template

(1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0).

Let T in the following denote the set of all 24 chord tem-
plates. In a next step, we choose a distance function d,

which measures the distance of the i-th feature vector Yi to

a template t ∈ T .

d : [0, 1]12 × [0, 1]12 7→ [0, 1]

d(t, Yi) = 1 −
〈t, Yi〉

‖t‖ · ‖Yi‖
,

where 〈·, ·〉 denotes the inner product and ‖·‖ the Euclidean
norm. By minimizing over t ∈ T we can find the best

matching chord template t∗ for the i-th feature vector.

t∗ = argmin
t∈T

d(t, yi)

The chord label associated with t∗ constitutes the final re-

sult for the i-th frame.

4.3 Experiments

We start our evaluation by looking again at our running

example, Chopin Mazurka Op. 68 No. 3. Our proposed

visualization method clearly reveals various chord recog-

nition errors, see Fig. 1(e). Making use of the musical

time axis, these errors can now easily be traced back to the

corresponding position in the score and analyzed further.

For example, at the beginning of the piece, the score-based

ground truth annotation corresponds to F major, whereas

the computed audio-based annotation corresponds to F mi-

nor. A mix-up of major and minor often appears in the

chord recognition task. The next misclassification occurs

at the end of mm. 1, where the ground truth still corre-

sponds to F major, but the computed annotation specifies

a C major, which is actually the subsequent chord in the

ground truth. This may be a boundary problem or an error

in the synchronization.
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In the middle of mm. 2, we note that the ground truth

chord is B minor, whereas the computed chord is C major.

Having a look at the score, one can see that the chord in

question is actually a B diminished chord. Due to the re-

duction of the manual annotation to major/minor chords,

this chord is mapped to a B minor chord in the ground

truth. Causing a misclassification here, this is often a prob-

lem in themajor/minor evaluation based on the comparison

of the dyad.

The next misclassifications are due to the musical am-

biguity of chords. At the end of mm. 2 we observe in the

score a C major chord, where the fifth is missing. Compar-

ing on the dyad level, this chord is mapped to a C major

chord in the ground truth. However, all the notes of the

chord (C,E) are also part of an A minor chord, which is ac-

tually computed at this position. A similar problem occurs

at the beginning and at the end of mm. 3, where the ground

truth annotation corresponds to D minor, whereas the com-

puted annotation corresponds to F major. The same phe-

nomenon appears a last time at the end of mm. 4, where F

major is recognized instead of A minor. This phenomenon

is caused by ambiguities inherent to the chord labeling task

and constitutes a very common problem. The chords in

classical music rarely are pure major or minor chords, be-

cause tones are often missing or added. Hence, the recog-

nition as well as the manual annotation process become a

hard task.

Next, we illustrate what kind of additional information

our multi-perspective visualization can provide compared

to the just discussed visualization that only makes use of

a single audio recording. Here, we consider again the first

four measures of the Chopin Mazurka. Instead of using

only one audio recording we overlay the chord recogni-

tion results for 51 different audio recordings in our multi-

perspective visualization, see Fig. 1(f). Looking for con-

sistencies and inconsistencies, it is possible to classify and

investigate single errors even further. For example, the

misclassified F minor chord in the beginning of mm. 1 (see

Fig. 1(e)) seems to be an exception for the specific record-

ing. This can be clearly seen from the multi-perspective

visualization where only for a few of the 51 audio record-

ings F minor is computed instead of F major. Also, the

misclassification at the end of mm. 4 (F major instead of A

minor) is not consistent across all considered audio record-

ings. On the contrary, some of the misclassifications which

we observed in the case of one audio recording (Fig. 1(e)),

are consistently misclassified for most of the other audio

recordings. For example, the diminished chord in the mid-

dle of mm. 2, the chord ambiguity problem occuring at

the end of mm. 2 (A minor instead of C major), the be-

ginning of mm. 3 (F major instead of D minor) and the

end of mm. 4 (F major instead of A minor). Overall, the

multi-perspective chord recognition allows for a classifica-

tion of recognition errors into those specific to a recording

and those independent of a recording.

As a further example we now consider the famous Bach

Prelude in C major, BWV 846. The multi-perspective vi-

sualization for 5 different audio recordings for mm. 19-24

(see Fig. 2) again reflects the chord recognition problems
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Figure 2. Bach BWV 846, mm. 19-24. (a) Score, (b) Multi-
perspective overlay of score and audio chord labels.

related to diminished chords. At the beginning of the ex-

cerpt (mm. 19-21) and at the end (mm. 24) the chord recog-

nition result for all audio recordings consistently agrees

more or less with the ground truth. However, one can

observe two passages with green entries in mm. 22-23.

Looking at the corresponding position in the score, we

find two diminished seventh chords, in mm. 22 an F#:dim7

and in mm. 23 an Ab:dim7. Due to the reduction to ma-

jor/minor chords these two chords are mapped to F# minor

and Ab minor in the ground truth annotation, respectively,

see Fig. 2. However, in most audio recordings an A minor

chord is detected instead of F#:dim7, having two tones (A

and C) in common. And instead of the Ab:dim7 chord an

F minor chord is found, for which even all three tones are

present (F, Ab and C) due to the additional passing note C

in the Ab:dim7. While the seventh chord in mm. 20 is rec-

ognized well for all recordings, we see that in mm. 21 the

F major seventh chord was mistaken for an A minor chord,

again due to chord ambiguity reasons.

As a last example we now consider the first move-

ment of Beethoven’s Fifth Symphony in 37 different audio

recordings. Actually, this piece of music is much more

complicated in terms of harmonic aspects than the pre-

viously considered Chopin and Bach examples. In the

Beethoven example, we can often find the musical prin-

ciples of suspension, passing notes or “unisono” passages.

Here, the automatic chord recognition as well as the man-

ual annotation are challenging and ambiguous tasks. One

example for the use of nonharmonic tones in chords can be

found in mm. 470-474, visualized in Fig. 3. Looking at the

score, we observe in the left hand a D major chord with a

missing fifth (mm. 470-473), but in the right hand a G is

added in octaves to this D major chord. Being the fourth

of D, the G can be seen as a nonharmonic tone in D major.

This causes a chord misclassification for about 15 record-

ings, where G major or alternatively G minor is computed.
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Figure 3. Beethoven’s Fifth, mm. 470-474. (a) Score, (b)Multi-
perspective overlay of score and audio chord labels.
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Figure 4. Beethoven’s Fifth mm. 484-490. (a) Score, (b)Multi-
perspective overlay of score and audio chord labels.

On the contrary, the G seventh chord in mm. 474 is recog-

nized very well for all recordings. Note that the first beats

of the measures 470-474 are not manually annotated, since

the octaves do not represent meaningful chords.

Another example of a musical pattern that is found to

be extremely problematic in the chord recognition task, is

the principle of suspension. We illustrate the problems re-

lated to this musical characteristic using another excerpt

(mm. 484-490) of Beethoven’s Fifth, see Fig. 4. In each

of the measures 484-488, one can find a suspension on the

first eighth, which resolves into a major chord on the sec-

ond eighth. This musical characteristic can easily be spot-

ted in the multi-perspective visualization. Here, we see

that at the beginning of each measure the number of au-

dio recordings for which the computed annotation agrees

with the ground truth is very low and gets higher after-

wards. In mm. 490 finally the first complete pure major

chord is reached. Note that the second beats of mm. 485-

487 consist of passing notes to the next suspension. Hence,

a meaningful chord cannot be assigned resulting in several

beats missing a ground truth annotation.

5. CONCLUSIONS

In this paper, we have introduced a multi-perspective eval-

uation framework that allows for comparing chord la-

bel annotations across different domains (e. g., symbolic,

MIDI, audio) and across different performances. This

bridges the gap between MIR researchers, who often work

on audio recordings, and musicologists, who are used to

work with score data. In the future, we plan to apply

our framework for a cross-modal evaluation of several

computer-based chord labeling procedures, some of which

working in the symbolic domain and others working in the

audio domain. Furthermore, in a collaboration with musi-

cologists, we are investigating how recurrent tonal centers

of a certain key can be determined automatically within

large musical works. Here, again, our multi-perspective

visualization based on a musically meaningful time axis

has turned out to be a valuable analysis tool.
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ABSTRACT

An interesting problem in music information retrieval is
how to combine the information from different sources in
order to improve retrieval effectiveness. This paper intro-
duces an approach to represent a collection of tagged songs
through an hidden Markov model with the purpose to de-
velop a system that merges in the same framework both
acoustic similarity and semantic descriptions. The former
provides content-based information on song similarity, the
latter provides context-aware information about individ-
ual songs. Experimental results show how the proposed
model leads to better performances than approaches that
rank songs using both a single information source and a
their linear combination.

1. INTRODUCTION

The widespread diffusion of digital music occurred dur-
ing the last years has brought music information retrieval
(MIR) to the general attention. A central goal of MIR is to
create systems that can efficiently and effectively retrieve
songs from a collection of music content according to some
sense of similarity with a given query. In information re-
trieval systems, the concept of similarity plays a key role
and can dramatically impact performances. Yet, in music
applications, the problem of selecting an optimal similar-
ity measure is even more difficult because of the intrinsic
subjectivity of the task: users may not consistently agree
upon whether, or at which degree, a pair of songs or artists
are similar.

In the last years, in order to deal with the subjective
nature of music similarity, it became very common to de-
scribe songs as a collection of meaningful terms, or tags,
as done in Last.fm 1 and Pandora 2 . In particular, tags are
often, directly or indirectly, provided by end users and can
represent a variety of different concepts including genre,
instrumentation, emotions, geographic origins, and so on.

1 http://www.last.fm
2 http://www.pandora.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Many approaches have been developed to collect tags, rang-
ing from mining the Web and exploiting social behavior of
users, to automatic annotation of music through machine
learning algorithms. Tags are useful because they contex-
tualize a song – for instance describing an historical pe-
riod, a geographical area, or a particular use of the song
– through an easy high-level representation. This infor-
mation can then be used to retrieve music documents, to
provide recommendations or to generate playlists.

Excluding the case of Pandora, where songs are anno-
tated by human experts to guarantee high quality and con-
sistency, in automatic systems or when the social behavior
of users is kept into account, the semantic descriptions may
be very noisy. In automatic approaches, for example, the
quality of the prediction strictly depends on the quality of
the training set, on the quality of the model, and on other
issues such as parameter overfitting or term normalization.
On the other hand, standard content-based music similar-
ity, computed directly on music features, can be exploited
to improve the quality of the retrieval, without requiring
additional training operations.

The goal of this paper is to provide a general model to
describe a music collection and easily retrieve songs com-
bining both content-based similarity and context-aware tag
descriptions. The model is based on an application of hid-
den Markov models (HMMs) and of the Viterbi algorithm
to retrieve music documents. The main applicative sce-
nario is cross-domain music retrieval, where music and text
information sources are merged.

1.1 Related Work

There has been a considerable amount of research devoted
to the topic of music retrieval, recommender systems and
music similarity. Some of the most well-known commer-
cial and academic systems have been described in [2]. The
model proposed in this paper fits the scenario of item-based
retrieval systems, combining pure acoustic similarity and
semantic descriptions.

Methodologies that merge different heterogeneous sour-
ces of information have been recently proposed in [1] for
the task of semantic discovery, in [9] for artist recommen-
dation and in [16] for music classification. All of these ap-
proaches learn a metric space to join and compare the dif-
ferent sources of information in order to provide the user
with a single ranking list. Our approach is consistently
different, because it is built on a graph-based representa-
tion of the collection that model both sources of informa-
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Figure 1. Overview of the proposed model. Songs si are states of a HMM: observation probabilities provide semantic
descriptions, transitions probabilities are ruled by acoustic similarity between songs.

tion and thus it does not rely on an additional processing
to combine them. Content-based music similarity can be
computed directly on music features as done in [4, 7] or
through a semantic space which describes music content
with meaningful words [12, 18]. In our work, we exploit
the properties of an HMM to combine these two descrip-
tions to improve retrieval performances.

As it is well known, HMMs have been extensively used
in many applications, which in particular involve processes
through time such as speech recognition [13]. In the music
information retrieval research area, they have been used
in different scenarios: query-by-example [15], automatic
identification [10], alignment [11], segmentation [14], and
chord recognition [5]. At the best of our knowledge, this is
the first application of HMMs in the task of cross-domain
retrieval where music and text information is modeled in a
single framework.

2. STATISTICAL MODELING OF A MUSIC
COLLECTION

The general goal of music search engines is to retrieve a
list of songs according to a particular principle. The prin-
ciple could be described either directly by a general seman-
tic indication, such as the tag “classic rock”, or indirectly
by a song, such as the set of tags assigned to “Yesterday”.
In both cases, the principle represents a user information
need, and it can be assumed that the goal of an user is to
observe consistently the application of this principle dur-
ing the time of his access to the music collection. In the
particular case of playlist generation, a system should be
able to retrieve a list of music documents that are acous-
tically similar to the music the user likes and, at the same
time, are relevant to one or more semantic labels that give
a context to his information need.

The methodology presented in this paper aims at pro-
viding a formal and general model to retrieve music docu-

ments combining acoustic similarity and semantic descrip-
tions given by social tags. That is, the goal is to propose a
model that encompasses both content-based similarity and
context-aware descriptors. To this end, HMMs are particu-
larly suitable because they allow us to model two different
sources of information. In fact, HMMs represent a dou-
bly embedded stochastic process where, at each time step,
the model performs a transition to a new state according to
transition probabilities and emits a new symbol according
to observation probabilities.

Thus HMMs can represent either content and context
information, under the following assumptions:

• if each state represents a song in the collection, acous-
tic content-based similarity can be modeled by tran-
sition probabilities

• if the symbols emitted by the HMM are semantic
labels, the context that describes each state can be
modeled by observation probabilities.

A suitably built HMM (see Section 2.1) may be ex-
ploited to address the examples provided at the beginning
of this section. On the one hand, the model can generate a
path across songs while observing, for a defined number of
time steps, the semantic label “classic rock”. On the other
hand, the model can start the path from the state associated
to “Yesterday” and proceed to new states while observing
the semantic labels associated to the seed song. In both
cases, the songs in the path are likely to have a similar
content because of transition probabilities and are likely to
be in the same context because of emission probabilities.

Since states of a HMM are not directly observable, the
paths across the song collection need to be computed by
a decoding step, which highlights the most probable state
sequence according to a sequence of observations. A rep-
resentation of the proposed model is depicted in Figure 1.
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2.1 Definition of the HMM

An HMM λ that represents a collections of tagged songs
can be formally defined by:

1. The number of songs N in the collection, each song
represented by a state of the HMM. The set of states
is denoted as S = {s1, s2, ..., sN}.

2. The number M of distinct tags that can be used to
describe a song. The set of symbols is denoted as
V = {v1, v2, ..., vM}.

3. The state transition probability distribution A = aij ,
which defines the probability to move from state i to
state j in a single step. Transition probabilities aij

depends to the similarity between songs si and sj .

4. The observation probability distribution of each state
j, B = bj(k), which defines the probability that tag
vk is associated to song j. Observation probabil-
ity values represent the strength of the relationships
song-tag, which is indicated as affinity value.

5. The initial state distribution π = {πi}, that defines
the probability to start a path across the model be-
ginning at state si. Differently from the standard
definition of HMMs, the initial state distribution is
computed dynamically at retrieval time, since it is
strictly connected to the type of information need,
as described in Section 2.3.

Although acoustic similarity is always a positive value,
implying aij > 0 ∀i, j, with the aim of improving scala-
bility, each state is directly connected to only the P most
similar songs in the collection, while the transition proba-
bilities with all the other states are set to 0. Heuristically,
we set P to be the 10% of the global number of songs.
At present, no deeper investigation has been carried out
to highlight an optimal value of P . In order to obtain a
stochastic model, both transition and emission probabili-
ties are normalized, that is

∑
j aij = 1 and

∑
k bj(k) = 1.

Because of these two steps, transition probabilities are usu-
ally not symmetric, then aij 6= aji

After setting all the parameters, the HMM can be used
to generate random sequences, where observed symbols
are tags. Dually, well known algorithms can be used to
decode the most probable state sequence according to a
given observation sequence.

2.2 Computing the Relevance of Songs

The task at retrieval time is to highlight a sub-set of songs
in the collection that are relevant to a particular query, ei-
ther expressed by semantic labels or by a seed song. In
the context of HMMs, the general problem can be stated
as follows [13]: “given the model λ, and the observation
sequence Ō = {o(1), . . . , o(T )} with oj ∈ V , the goal is
to choose a state sequence S̄ = {s(1), . . . , s(T )} which
is optimal in some sense”. Clearly, the observations se-
quence represents the semantic description specified by the
user need.

In literature, this problem is solved using the max-sum
algorithm, which in HMMs applications is known as the
Viterbi algorithm. The algorithm efficiently searches in
the space of paths, in order to find the most probable one,
with a computational cost that grows only linearly with the
length of the chain. The algorithm is composed by a for-
ward computation to find the maximization for the most
probable path, and by a backward computation to decode
the sequence of states. Although the general structure of
the algorithm has been maintained, some key modifica-
tions in the recursion part of the forward computation have
been introduced. Following the notation and the algorithm
description provided in [13] the normal initialization and
the modified recursion steps follow, for 1 ≤ j ≤ N :

Initialization: for t = 1

δt(j) = πj · obsj(t) (1)

ψt(j) = 0 (2)

Recursion: for 2 ≤ t ≤ T

δt(j) = max
1≤i≤N

[δt−1(i) · aij ] · obsj(t) (3)

ψt(j) = arg max
1≤i≤N

[δt−1(i) · aij ] (4)

akj =
akj

d
with k = ψt(j) (5)

As it can be seen, we introduce obsj(t), defined in the
next section, which is a general function that indicates how
the semantic description is considered during the retrieval
process. This function plays the role of observations in
typical decoding applications.

Equation 5 introduces a variation of the role of transi-
tion probabilities. In fact, because of the structure of the
model, it could happen that the optimal path enters a loop
between the same subset of songs or, in the worst case,
jumps back and forth between two states. Clearly, this is a
problem because the retrieved list would present the same
set of songs multiple times. Moreover, the loop could be
infinite, meaning that the algorithm cannot exit from it and
the retrieval list would be composed by only few songs. We
addressed this problem by introducing a decreasing factor
d, which is applied to the transitions probabilities when
they are selected in the forward step. So, when a transition
is chosen, the probability aij is decreased by factor d (we
set d = 10), as shown in Equation 5, in order to make un-
likely that the state sequence would pass again through the
corresponding edge. It has to be noted that the attenuation
is carried out locally, meaning that it affects the structure
of the model only during the current retrieval operation.

Another issue that has to be addressed is a limitation
in the structure of standard HMMs. Because of the first-
order Markov chain assumption, HMMs are generally poor
at capturing long-range correlations between the observed
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variables, that is between variables that are separated by
many steps [3]. Earlier experiments showed that this limi-
tation involved a decrease in precision when decoding long
paths. In order to solve this problem, we considered the re-
trieval composed by many sub-retrieval operations, each
one retrieving a sub-list of songs. Instead of performing a
single backward decoding, the algorithm works for a sub-
set of iterations, from which an optimal sub-path is built.
Only the first n songs of this sub-path are considered in the
final ranking list; at the end of each iteration the algorithm
restarts from the last state of the n suggested. Given the lo-
cality of the approach, in this way we aim to keep constant
the quality along the retrieved list, avoiding a decrease in
precision.

2.3 Querying the Model

As often assumed in the interaction with music search en-
gines, in our scenario a user can submit a query in two dis-
tinct ways: by providing a tag or by selecting a seed song
in the collection. According to the kind of query, some of
the model parameters are set differently.

In the tag-based scenario, the goal is to rank the songs
according to their relevance with the provided tag and, at
the same time, to their acoustic similarity. In this case, the
observation sequence is composed simply by the chosen
tag. We decided to set the initial state probability equal
for all the states, in order to let the algorithm decide the
beginning of the retrieved list. This scenario is very related
to the standard HMMs case, then the function obsj(t) of
Equations 1 and 3 is defined as

obsj(t) = bj(ot) (6)

for a generic state j, where observations ot may be the
same tag for all the time steps or it may change over time in
case of playlist generation through more complex patterns.

In the seed-song scenario, when the query is submit-
ted as a song q, the system is required to provide the user
with a list of songs potentially similar to the query. In this
case, the initial state distribution is forced to be 1 for the
state representing the seed song and 0 for all the others.
The observation sequence to be decoded is modeled as the
vector of observations characterizing the seed song. The
function obsj(t) of Equations 1 and 3 is proportional to the
inverse of the Kullback-Leibler (KL) divergence between
the semantic description of the seed song and the chosen
state [6]. The choice of the KL divergence aims at gener-
alizing the terms used for the tags, because it is related to
the similarity of concepts associated to the tags rather than
to the pure distance between lists of tags. It is important to
note that the KL divergence is required also because each
song is described by a set of tags. Clearly, we consider
the inverse because the goal is to maximize the probability
when the divergence is small. Therefore,

obsj(t) ' 1
KL(bj(·), bq(·)) (7)

for the generic state j and the initial seed state q; clearly,
observations of q do not change over time t being linked

to observations of the seed song. Since it is an observation
probability, the actual value of obsj(t) undergoes a nor-
malization process. It is worth noting that the use of KL
divergence can be extended also to the tag-based scenario
when the user provides a set of tags (instead of a single
one) although this extension has not been tested yet.

3. EXPERIMENTAL EVALUATION

A big challenge when designing a music retrieval system
is how to evaluate a novel methodology. Although several
efforts have been made within the MIREX campaigns, be-
cause of well-known copyright issues, data of past cam-
paigns are not always available to test new approaches.
Ideally, the list of retrieved songs should be evaluated by
humans, in order to consider effectively the subjective na-
ture of the concept of music similarity. Being human evalu-
ation a time consuming task, we use an automatic approach
considering that reliable annotations on songs can be ex-
ploited to measure the quality of a ranking list.

We tested our model through the Computer Audition
Lab (CAL500) dataset [18]: 502 songs played by 502 uni-
que artists, each one annotated by a minimum of 3 individ-
uals using a vocabulary of 174 tags. A song is considered
to be annotated with a tag if 80% of the human annotators
agreed that the tag would be relevant. CAL500 is a reason-
able ground truth because annotations are highly reliable,
complete and redundant – i.e., multiple persons explicitly
evaluated the relevance of every tag for each song. So far,
it has been mainly used to evaluate automatic music anno-
tation systems, but we believe that it could be a reasonable
ground truth also to evaluate qualitatively a retrieval task.
Although the size of the dataset does not allow to perform
experiments in terms of scalability, we argue that, at this
point, it is more significant to test the effectiveness of the
approach, to show if the model can provide improvements
in the retrieval process.

In the experiments reported in this section, we require
that each tag is associated with at least 30 songs and re-
move some tags that seemed to be redundant or overly sub-
jective. The semantic space is then composed by 62 tags
describing information about: genre, instrument, acoustic
qualities, vocal characteristic, emotion, and usage.

Retrieval is evaluated with metrics considering both per-
formances at the top and along the whole ranking list. Since
a music retrieval system should maximize the quality of the
retrieved items in the first positions, we evaluate the preci-
sion at the first 3, 5 and 10 positions (P3, P5, P10). Beside,
we include the mean average precision (MAP) measure, in
order to have also an evaluation along the whole ranking
list. All these metrics are extensively used in the literature
to assess the effectiveness of a retrieval system [8].

3.1 Acoustic Content-based Similarity

A number of methodologies have been proposed in litera-
ture to compute direct acoustic content-based similarity. In
this set of experiments, we rely on the algorithm proposed
in [7], which uses a single Gaussian with full covariance to
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model a song. Although, some alternative approaches have
been recently proposed [4], we use this one because of
its efficiency and simplicity in the implementation. Songs
are represented through vectors of Mel-Frequency Cepstral
Coefficients together with their first and second derivatives
(MFCC + delta) extracted from about one minute of mu-
sic content, and the similarity between songs is computed
using a symmetrized version of the KL divergence.

Section 2.1 describes how transition probabilities are
computed from these similarity values, in particular by se-
lecting for each state si the first P most similar songs and
performing the normalization

∑
j aij = 1 with sj ∈ P .

It is important to note that we aim at proposing a general
approach, which is independent on the way acoustic sim-
ilarity is actually computed and which can be applied to
other audio descriptors and other similarity measures. For
this reason the computation of acoustic similarity is pre-
sented within the experimental evaluation section.

3.2 Semantic space

There are several approaches to collect tags for music, each
with its own advantages and disadvantages [17]. Among
all, we chose two different representations.

A first semantic description has been computed from
the music content. We used the supervised multiclass la-
beling (SML) model described in [18] to automatically an-
notate songs with tags based on an audio content analysis.
For a given song, the output of this algorithm is a vector
of posterior probabilities named semantic multinomial that
represents the strength of the relationship tag-song.

A second representation has been created by gather-
ing the social tags from Last.FM, as reported on February
2010. For each song of the dataset, we collected two lists
of social tags using their public data sharing AudioScrob-
bler 3 website. We gathered both the list of tags related to a
song, and the list of tags related to an artist. The relevance
score between a song and a tag is given by the sum of the
scores in both lists, plus the tag score for any synonym
or other wild matches of the tag in both lists [1]. Social
tag scores are then mapped to the equivalent class in our
semantic description. If no gathered tag for a given song
belonged to the semantic space, the semantic description
is represented by a uniform distribution, where all the tags
share the same score. This lead to a very sparse and noisy
description, which is useful to test the effectiveness of our
approach.

We addressed these descriptions with two different eval-
uations, although they could be combined together in a sin-
gle richer semantic description [1].

3.3 Tag-based Retrieval

In this first experiment, the model is queried using a tag; a
semantic concept is provided to the system, and the goal is
to rank all the songs according to their relationships with
that term. Metrics are then averaged through all the terms
in the vocabulary. Retrieval performances are measured

3 http://ws.audioscrobbler.com/2.0/

Semantic Model P3 P5 P10 MAP

SML
HMM 0.516 0.488 0.452 0.361

Tag 0.419 0.431 0.405 0.332

Last.fm
HMM 0.347 0.331 0.268 0.225

Tag 0.303 0.297 0.218 0.207

Table 1. Results of the tag-based retrieval experiments.

by finding the positions, along the ranking list, of the doc-
uments annotated with the considered tag in the ground
truth. HMM-based retrieval is compared with the retrieval
performed by simply ranking the songs according to their
affinity value for that tag. Results are reported in Table 1,
considering both types of semantic description.

As it can be seen, HMM-based retrieval clearly outper-
forms the retrieval based on a single tag, with a major im-
provement in the quality at the top of the ranking list. On
the other hand, retrieval along the full list tends to decrease
its effectiveness, as it can be inferred by the lower improve-
ment achieved by MAP. This is probably due to the prob-
lem, discussed in Section 2.2, of HMMs generally poor
at capturing long-range correlations between the observed
variables. Still we believe that the most important aspect
to consider in a retrieval system is the quality on the top
of the ranking list. Results based on Last.fm tags tend to
have lower performances in terms of absolute values. This
likely depends on the fact that the semantic descriptions
are rather sparse and noisy and that sometimes songs were
represented through a uniform distribution.

3.4 Seed Song Retrieval

In this experiment, retrieval is carried out by submitting to
the system 50 randomly selected seed songs and consider-
ing the sequence of states highlighted by the optimal path
as a ranking list of retrieved documents. A ground truth,
against which retrieval results are compared, has been cre-
ated for each query song by selecting the 30 most similar
songs according to their human-based annotations. Seman-
tic similarity has been computed using an application of the
KL divergence to the set of tags for each pair of songs.

We compare different approaches: the HMM-based re-
trieval, a direct content-based retrieval where songs have
been ranked according to their acoustic similarity with the
seed (“Content”), a semantic similarity measured as KL
divergence between the semantic descriptions of the seed
song and each document in the collection (“Tags”), and a
linear combination between the two distances (“LinComb”).

As it can be seen from the results reported in Table 2,
even in this case the proposed model leads to outperform-
ing results; the same consideration reported in Section 3.3
can be extend to the current evaluation. The only different
aspect is that, in this case, the Last.fm tags better quantize
the similarity relationships among songs; thus, the abso-
lute values of the metrics is not very different between the
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Semantic Model P3 P5 P10 MAP

SML

Tag 0.266 0.270 0.246 0.211

Content 0.237 0.234 0.236 0.187

LinComb 0.280 0.278 0.244 0.204

HMM 0.295 0.288 0.258 0.225

Last.fm

Tag 0.273 0.272 0.262 0.191

Content 0.237 0.234 0.236 0.187

LinComb 0.305 0.292 0.262 0.198

HMM 0.304 0.299 0.284 0.219

Table 2. Results of the song-based retrieval experiments.

two semantic representations.

4. CONCLUSIONS

We introduce a novel methodology that represents a mu-
sic collection through an hidden Markov model with the
purpose to build a music retrieval system that combines
content-based acoustic similarity and context-aware seman-
tic descriptions. In the model, each state represents a song,
transitions probabilities depend on acoustic similarity and
observation probabilities represent semantic descriptions.
An application of the Viterbi algorithm allows us to cre-
ate paths across the model, which provides a ranking list
of the songs. This approach represents an application of
cross-domain retrieval combining audio content and text
for item-based retrieval. It is important to note that the ap-
proach can be generalized also to other multimedia tasks
where content can be combined with context, such as video
or image retrieval.

Some issues are still open and will be addressed in fu-
ture work. First of all, evaluation tested only the effective-
ness of the model; scalability needs to be evaluated with
a larger collection, in terms of number of songs and tags.
Moreover, future research will be also devoted to the anal-
ysis of the effects introduced by different content descrip-
tors and similarity measures. Finally, the extension to other
music retrieval tasks, such as music recommendation and
playlist generation, will be explored.
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ABSTRACT

In this paper we present a general probabilistic model suit-
able for transcribing single-channel audio recordings con-
taining multiple polyphonic sources. Our system requires
no prior knowledge of the instruments in the mixture, al-
though it can benefit from this information if available.
In contrast to many existing polyphonic transcription sys-
tems, our approach explicitly models the individual instru-
ments and is thereby able to assign detected notes to their
respective sources. We use a set of training instruments to
learn a model space which is then used during transcrip-
tion to constrain the properties of models fit to the target
mixture. In addition, we encourage model sparsity using a
simple approach related to tempering.

We evaluate our method on both recorded and synthe-
sized two-instrument mixtures, obtaining average frame-
level F-measures of up to 0.60 for synthesized audio and
0.53 for recorded audio. If knowledge of the instrument
types in the mixture is available, we can increase these
measures to 0.68 and 0.58, respectively, by initializing the
model with parameters from similar instruments.

1. INTRODUCTION

Transcribing a piece of music from audio to symbolic form
remains one of the most challenging problems in music in-
formation retrieval. Different variants of the problem can
be defined according to the number of instruments present
in the mixture and the degree of polyphony. Much research
has been conducted on the case where the recording con-
tains only a single (monophonic) instrument and reliable
approaches to pitch estimation in this case have been de-
veloped [3]. However, when polyphony is introduced the
problem becomes far more difficult as note harmonics of-
ten overlap and interfere with one another. Although there
are a number of note properties that are relevant to poly-
phonic transcription, to date most research has focused on
pitch, note onset time, and note offset time, while the prob-
lem of assigning notes to their source instruments has re-
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ceived substantially less attention. Determining the source
of a note is not only important in its own right, but it is
likely to improve overall transcription accuracy by helping
to reduce cross-source interference. In order to distinguish
between different instruments, we might wish to employ
instrument-specific models. However, in general, we do
not have access to the exact source models and so must es-
timate them directly from the mixture. This unsupervised
learning problem is particularly difficult when only a sin-
gle observation channel is available.

Non-negative Matrix Factorization (NMF) [8] has been
shown to be a useful approach to single-channel music
transcription [10]. The algorithm is typically applied to the
magnitude spectrum of the target mixture, V , for which it
yields a factorization V ≈ WH where W corresponds to
a set of spectral basis vectors and H corresponds to the set
of activation vectors over time. There are, however, several
issues that arise when using NMF for unsupervised tran-
scription. First, it is unclear how to determine the number
of basis vectors required. If we use too few, a single ba-
sis vector may be forced to represent multiple notes, while
if we use too many some basis vectors may have unclear
interpretations. Even if we manage to choose the correct
number of bases, we still face the problem of determining
the mapping between bases and pitches as the basis order
is typically arbitrary. Second, although this framework is
capable of separating notes from distinct instruments as in-
dividual columns of W (and corresponding rows of H),
there is no simple solution to the task of organizing these
individual columns into coherent blocks corresponding to
particular instruments.

Supervised transcription can be performed when W is
known a priori. In this case, we know the ordering of the
basis vectors and therefore how to partition H by source.
However, we do not usually have access to this informa-
tion and must therefore use some additional knowledge.
One approach, which has been explored in several recent
papers, is to impose constraints on the solution of W or its
equivalent. Virtanen and Klapuri use a source-filter model
to constrain the basis vectors to be formed from source
spectra and filter activations [13]. Vincent et. al impose
harmonicity constraints on the basis vectors by modeling
them as combinations of narrow-band spectra [12]. In prior
work, we proposed the Subspace NMF algorithm which
learns a model parameter subspace from training examples
and then constrains W to lie in this subspace [5].
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Figure 1. Illustration of the Probabilistic Eigeninstrument
Transcription (PET) system. First, a set of training instru-
ments are used to derive the eigeninstruments. These are
then used by the PET model to learn the probability dis-
tribution P (p, t|s), which is post-processed into source-
specific binary transcriptions, T1, T2, . . . , TS .

Recently, it has been shown [4, 9] that NMF is very
closely related to Probabilistic Latent Semantic Analysis
(PLSA) [6]. In this paper, we extend the Subspace NMF
algorithm to a probabilistic setting in which we explicitly
model the source probabilities, allow for multi-component
note models, and use sparsity constraints to improve sep-
aration and transcription accuracy. The new approach re-
quires no prior knowledge about the target mixture other
than the number of instruments present. If, however, in-
formation about the instrument types is available, it can be
used to seed the model and improve transcription accuracy.

Although we do not discuss the details here due to a
lack of space, we note that our system effectively performs
instrument-level source-separation as a part of the tran-
scription process: once the model parameters have been
solved for, individual sources can be reconstructed in a
straightforward manner.

2. METHOD

Our system is based on the assumption that a suitably-
normalized magnitude spectrogram, V , can be modeled
as a joint distribution over time and frequency, P (f, t).
This quantity can be factored into a frame probability P (t),
which can be computed directly from the observed data,
and a conditional distribution over frequency bins P (f |t);
spectrogram frames are treated as repeated draws from an
underlying random process characterized by P (f |t). We
can model this distribution with a mixture of latent factors
as follows:

P (f, t) = P (t)P (f |t) = P (t)
∑
z

P (f |z)P (z|t) (1)

Note that when there is only a single latent variable
z this is the same as the PLSA model and is effectively
identical to NMF. The latent variable framework, however,
makes it much more straightforward to introduce additional
parameters and constraints.

Suppose now that we wish to model a mixture of S in-
strument sources, where each source hasP possible pitches,
and each pitch is represented by a set of Z components.
We can extend the model described by (1) to accommo-
date these parameters as follows:

P̃ (f |t) =
∑
s,p,z

P (f |p, z, s)P (z|s, p, t)P (s|p, t)P (p|t)

(2)
where we have used the notation P̃ (f |t) to denote the fact
that our model reconstruction approximates the true dis-
tribution, P (f |t). Notice that we have chosen to factor
the distribution such that the source probability depends
on pitch and time. Intuitively, this may seem odd as we
might expect the generative process to first draw a source
and then a pitch conditioned on that source. The reason
for this factorization has to do with the type of sparsity
constraints that we wish to impose on the model. This is
discussed more fully in Section 2.2.2.

2.1 Instrument Models

P (f |p, z, s) represents the instrument models that we are
trying to fit to the data. However, as discussed in Section 1,
we usually don’t have access to the exact models that pro-
duced the mixture and a blind parameter search is highly
under-constrained. The solution proposed in [5], which we
extend here, is to model the instruments as mixtures of ba-
sis models or “eigeninstruments”. This approach is similar
in spirit to the eigenvoice technique used in speech recog-
nition [7].

Suppose that we have a set of instruments modelsM for
use in training. Each of these modelsMi ∈ M has FPZ
parameters, which we concatenate into a super-vector, mi.
These super-vectors are then stacked together into a matrix,
Θ, and NMF with some rank K is used to find Θ ≈ ΩC. 1

The set of coefficient vectors, C, is typically discarded at
this point, although it can be used to initialize the full tran-
scription system as well (see Section 3.4). The K basis
vectors in Ω represent the eigeninstruments. Each of these
vectors is reshaped to the F -by-P -by-Z model size to form
the eigeninstrument distribution, P̂ (f |p, z, k). Mixtures of
this distribution can now be used to model new instruments
as follows:

P (f |p, z, s) =
∑
k

P̂ (f |p, z, k)P (k|s) (3)

where P (k|s) represents an instrument-specific distribu-
tion over eigeninstruments. This model reduces the size of
the parameter space for each source instrument in the mix-
ture from FPZ, which is typically tens of thousands, to
K which is typically between 10 and 100. Of course the
quality of this parametrization depends on how well the
eigeninstrument basis spans the true instrument parameter
space, but assuming a sufficient variety of training instru-
ments are used, we can expect good coverage.

1 Some care has to be taken to ensure that the bases in Ω are properly
normalized so that each section of F entries sums to 1, but so long as
this requirement is met, any decomposition that yields non-negative basis
vectors can be used.
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2.2 Transcription Model

We are now ready to present the full transcription model
proposed in this paper, which we refer to as Probabilistic
Eigeninstrument Transcription (PET) and is illustrated in
Figure 1. Combining the probabilistic model in (2) and the
eigeninstrument model in (3), we arrive at the following:

P̃ (f |t) =
∑

s,p,z,k

P̂ (f |p, z, k)P (k|s)P (z|s, p, t)P (s|p, t)P (p|t)

(4)
Once we have solved for the model parameters, we cal-

culate the joint distribution over pitch and time conditional
on source:

P (p, t|s) =
P (s|p, t)P (p|t)P (t)∑
p,t P (s|p, t)P (p|t)P (t)

(5)

This distribution represents the transcription of source
s, but still needs to be post-processed to a binary pianoroll
representation so that it can be compared with ground truth
data. This is done using a simple threshold γ (see Sec-
tion 3.3). We refer to the final pianoroll transcription of
source s as Ts.

2.2.1 Update Equations

We solve for the parameters in (4) using the Expectation-
Maximization algorithm. This involves iterating between
two update steps until convergence. In the first (expecta-
tion) step, we calculate the posterior distribution over the
hidden variables s, p, z, and k, for each time-frequency
point given the current estimates of the model parameters:

P (s, p, z, k|f, t) = P̂ (f |p, z, k)P (k|s)P (z|s, p, t)P (s|p, t)P (p|t)
P̃ (f |t)

(6)
In the second (maximization) step, we use this poste-

rior to maximize the expected log-likelihood of the model
given the data:

L =
∑
f,t

Vf,t log
(
P (t)P̃ (f |t)

)
(7)

where Vf,t are values from our original spectrogram. This
results in the following update equations:

P (k|s) =

∑
f,t,z P (s, p, z, k|f, t)Vf,t∑
f,k,t,z P (s, p, z, k|f, t)Vf,t

(8)

P (z|s, p, t) =

∑
f,k P (s, p, z, k|f, t)Vf,t∑
f,k,z P (s, p, z, k|f, t)Vf,t

(9)

P (s|p, t) =

∑
f,k,z P (s, p, z, k|f, t)Vf,t∑
f,k,s,z P (s, p, z, k|f, t)Vf,t

(10)

P (p|t) =

∑
f,k,s,z P (s, p, z, k|f, t)Vf,t∑
f,k,p,s,z P (s, p, z, k|f, t)Vf,t

(11)

2.2.2 Sparsity

The update equations given in Section 2.2.1 represent a
maximum-likelihood solution to the model. However, in
practice it can be advantageous to introduce additional con-
straints. The idea of parameter sparsity has proved to be
useful for a number of audio-related tasks [1, 11]. For
multi-instrument transcription, there are several ways in
which it might make sense to constrain the model solu-
tion in this way. First, it is reasonable to expect that if
pitch p is active at time t, then only a small fraction of the
instrument sources are responsible for it. This belief can
be encoded in the form of a sparsity prior on the distribu-
tion P (s|p, t). Similarly, we generally expect that only a
few pitches are active in each time frame, which implies a
sparsity constraint on P (p|t).

One way of encouraging sparsity in probabilistic mod-
els is through the use of the entropic prior [2]. This tech-
nique uses an exponentiated negative-entropy term as a
prior on parameter distributions. Although it can yield
good results, the solution to the maximization step is com-
plicated, as it involves solving a system of transcendental
equations. As an alternative, we have found that simply
modifying the maximization steps in (10) and (11) as fol-
lows gives good results:

P (s|p, t) =

[∑
f,k,z P (s, p, z, k|f, t)Vf,t

]α
∑
s

[∑
f,k,z P (s, p, z, k|f, t)Vf,t

]α (12)

P (p|t) =

[∑
f,k,s,z P (s, p, z, k|f, t)Vf,t

]β
∑
p

[∑
f,k,s,z P (s, p, z, k|f, t)Vf,t

]β (13)

When α and β are less than 1, this is closely related to
the Tempered EM algorithm used in PLSA [6]. However, it
is clear that when α and β are greater than 1, the P (s|p, t)
and P (p|t) distributions are “sharpened”, thus decreasing
their entropies and encouraging sparsity.

3. EVALUATION

3.1 Data

Two data sets were used in our experiments, one contain-
ing both synthesized and recorded audio and the other con-
taining just synthesized audio. There are 15 tracks, 3256
notes, and 18843 frames in total. The specific properties of
the data sets are summarized in Table 1. All tracks had two
instrument sources, although the actual instruments varied.
For the synthetic tracks, the MIDI versions were synthe-
sized at an 8kHz sampling rate using timidity and the SGM
V2.01 soundfont. A 1024-point STFT with 96ms window
and 24ms hop was then taken and the magnitude spectro-
gram retained.

The first data set is based on a subset of the woodwind
data supplied for the MIREX Multiple Fundamental Fre-
quency Estimation and Tracking task. 2 The first 21 sec-

2 http://www.music-ir.org/mirex/2009/index.
php/Multiple_Fundamental_Frequency_Estimation_&_
Tracking
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Type # Tracks # Notes # Frames
Woodwind S/R 6 1266 5424
Bach S 3 724 7995

Table 1. Summary of the two data sets used. S and R
denote synthesized and recorded, respectively.

onds from the bassoon, clarinet, oboe, and flute tracks were
manually transcribed. These instrument tracks were then
combined in all 6 possible pairings. It is important to note
that this data is taken from the MIREX development set
and that the primary test data is not publicly available. In
addition, most authors of other transcription systems do
not report results on the development data, making com-
parisons difficult.

The second data set is comprised of three pieces by J.S.
Bach arranged as duets. The pieces are: Herz und Mund
und Tat und Leben (BWV 147) for acoustic bass and pic-
colo, Ich steh mit einem Fuß im Grabe (BWV 156) for tuba
and piano, and roughly the first half of Wachet auf, ruft uns
die Stimme (BWV 140) for cello and flute. We chose in-
struments that were, for the most part, different from those
used in the woodwind data set while also trying to keep the
instrumentation as appropriate as possible.

3.2 Instrument Models

We used a set of 33 instruments of varying types to de-
rive our instrument model. This included a roughly equal
proportion of keyboard, plucked string, bowed, and wind
instruments. The instrument models were generated with
timidity, but in order to keep the tests with synthesized au-
dio as fair as possible, a different soundfont (Papelmedia
Final SF2 XXL) was used. 3 Each instrument model con-
sisted of 58 pitches (C2-A6#), which were built as follows:
notes of duration 1s were synthesized at an 8kHz sampling
rate, using velocities 40, 80, and 100. A 1024-point STFT
was taken of each, and the magnitude spectra were aver-
aged across velocities to make the model more robust to
differences in loudness. The models were then normal-
ized so that the frequency components (spectrogram rows)
summed to 1 for each pitch. Next, NMF with rank Z (the
desired number of components per pitch) was run on this
result with H initialized to a heavy main diagonal struc-
ture. This encouraged the ordering of the bases to be “left-
to-right”.

One potential issue with this approach has to do with
the differences in the natural playing ranges of the instru-
ments. For example, a violin generally cannot play below
G3, although our model includes notes below this. There-
fore, we masked out (i.e. set to 0) the parameters of the
notes outside the playing range of each instrument used in
training. Then, as described in Section 2.1, the instrument
models were stacked into super vector form and NMF with
a rank of K = 30 (chosen empirically) was run to find the
instrument bases, Ω. These bases were then unstacked to
form the eigeninstruments, P̂ (f |p, z, k).

3 http://www.papelmedia.de/english/index.htm
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Figure 2. Example PET (β = 2) output distribution
P (p, t|s) and ground truth data for the bassoon-clarinet
mixture from the recorded woodwind data set.

In preliminary experiments, we did not find a significant
advantage to values of Z > 1 and so the full set of exper-
iments presented below was carried out with only a single
component per pitch.

3.3 Metrics

We evaluate our method using precision (P), recall (R),
and F-measure (F) on both the frame and note levels. Note
that each reported metric is an average over sources. In ad-
dition, because the order of the sources in P (p, t|s) is arbi-
trary, we compute sets of metrics for all possible permuta-
tions (two in our experiments since there are two sources)
and report the set with the best frame-level F-measure.
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When computing the note-level metrics, we consider a
note onset to be correct if it falls within +/- 50ms of the
ground truth onset. At present, we don’t consider offsets
for the note-level evaluation, although this information is
reflected in the frame-level metrics.

The threshold γ used to convert P (p, t|s) to a binary
pianoroll was determined empirically for each algorithm
variant and each data set. This was done by computing
the threshold that maximized the average frame-level F-
measure across tracks in the data set.

3.4 Experiments

We evaluated several variations of our algorithm so as to
explore the effects of sparsity and to assess the perfor-
mance of the eigeninstrument model. For each of the three
data sets, we computed the frame and note metrics using
the three variants of the PET model: PET without spar-
sity, PET with sparsity on the instruments given the pitches
P (s|p, t) (α = 2), and PET with sparsity on the pitches at
a given time P (p|t) (β = 2). In these cases, all parame-
ters were initialized randomly and the algorithm was run
for 100 iterations.

Although we are primarily interested in blind transcrip-
tion (i.e. no prior knowledge of the instruments present
in the mixture), it is interesting to examine cases where
more information is available as these can provide upper-
bounds on performance. First, consider the case where we
know the instrument types present in the mixture. For the
synthetic data, we have access not only to the instrument
types, but also to the oracle models for these instruments.
In this case we hold P (f |p, s, z) fixed and solve the ba-
sic model given in (2). The same can be done with the
recorded data, except that we don’t have oracle models for
these recordings. Instead, we can just use the appropriate
instrument models from the training setM as approxima-
tions. This case, which we refer to as “fixed” in the experi-
mental results, represents a semi-supervised version of the
PET system.

We might also consider using the instrument modelsM
that we used in eigeninstrument training in order to initial-
ize the PET model in the hope that the system will be able
to further optimize their settings. We can do this by taking
the appropriate eigeninstrument coefficient vectors cs and
using them to initialize P (k|s). Intuitively, we are trying
to start the PET model in the correct “neighborhood” of
eigeninstrument space. These results are denoted “init”.

Finally, as a baseline comparison, we consider generic
NMF-based transcription (with generalized KL divergence
as a cost function) where the instrument models (submatri-
ces of W ) have been initialized with a generic model de-
fined as the average of the instrument models in the train-
ing set.

3.5 Results

The results of our approach are summarized in Tables 2–4.
As a general observation, we can see that the sparsity fac-
tors have helped improve model performance in almost all
cases, although different data sets benefit in different ways.

Frame Note
P R F P R F

PET 0.56 0.64 0.56 0.42 0.73 0.51
PETα=2 0.60 0.61 0.60 0.46 0.73 0.56
PETβ=2 0.57 0.64 0.56 0.51 0.79 0.58
PETinit 0.71 0.68 0.68 0.64 0.86 0.71
PEToracle 0.84 0.84 0.84 0.82 0.93 0.87
NMF 0.34 0.48 0.39 0.19 0.59 0.29

Table 2. Results for the synthetic woodwind data set. All
values are averages across sources and tracks.

Frame Note
P R F P R F

PET 0.52 0.52 0.50 0.41 0.73 0.50
PETα=2 0.49 0.57 0.51 0.41 0.78 0.51
PETβ=2 0.58 0.53 0.53 0.46 0.72 0.55
PETinit 0.60 0.60 0.58 0.48 0.82 0.58
PETfixed 0.57 0.58 0.55 0.45 0.77 0.54
NMF 0.35 0.55 0.42 0.27 0.77 0.38

Table 3. Results for the recorded woodwind data set. All
values are averages across sources and tracks.

For the synthetic woodwind data set, sparsity on sources,
P (s|p, t), increased the average F-measure on the frame-
level, but at the note-level, sparsity on pitches, P (p|t), had
a larger impact. For the recorded woodwind data, sparsity
on P (p|t) benefited both frame and note-level F-measures
the most. With the Bach data, we see that encouraging
sparsity in P (p|t) was much more important than it was for
P (s|p, t) on both the frame and note-level. In fact, impos-
ing sparsity on P (s|p, t) seems to have actually hurt frame-
level performance relative to the non-sparse PET system.
This may be explained by the fact that the instrument parts
in the Bach pieces tend to be simultaneously active much
of the time.

As we would expect, the baseline NMF system per-
forms the worst in all test cases – not surprising given
the limited information and lack of constraints. Also un-
surprising is the fact that the oracle models are the top-
performers on the synthetic data sets. However, notice
that the randomly-initialized PET systems perform about

Frame Note
P R F P R F

PET 0.50 0.65 0.54 0.21 0.60 0.30
PETα=2 0.50 0.57 0.51 0.22 0.51 0.30
PETβ=2 0.55 0.66 0.59 0.24 0.65 0.34
PETinit 0.53 0.58 0.53 0.23 0.50 0.30
PEToracle 0.91 0.85 0.87 0.53 0.83 0.64
NMF 0.36 0.50 0.42 0.09 0.46 0.14

Table 4. Results for the synthetic Bach data set. All values
are averages across sources and tracks.
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as well as the fixed model on recorded data. This im-
plies that the algorithm was able to discover appropriate
model parameters even in the blind case where it had no
information about the instrument types in the mixture. It
is also noteworthy that the best performing system for the
recorded data set is the initialized PET variant. This sug-
gests that, given good initializations, the algorithm was
able to further adapt the instrument model parameters to
improve the fit to the target mixture.

While the results on both woodwind data sets are rel-
atively consistent across frame and note levels, the Bach
data set exhibits a significant discrepancy between the two
metrics, with substantially lower note-level scores. This
is true even for the oracle model which achieves an aver-
age note-level F-measure of 0.64. There are two possible
explanations for this. First, recall that our determination
of both the optimal threshold γ as well as the order of the
sources in P (p, t|s) was based on the average frame-level
F-measure. We opted to use frame-level metrics for this
task as they are a stricter measure of transcription quality.
However, given that the performance is relatively consis-
tent for the woodwind data, it seems more likely that the
discrepancy is due to instrumentation. In particular, the al-
gorithms seem to have had difficulty with the soft onsets of
the cello part in Wachet auf, ruft uns die Stimme.

4. CONCLUSIONS

We have presented a probabilistic model for the challeng-
ing problem of multi-instrument polyphonic transcription.
Our method makes use of training instruments in order to
learn a model parameter subspace that constrains the solu-
tions of new models. Sparsity terms are also introduced to
help further constrain the solution. We have shown that
this approach can perform reasonably well in the blind
transcription setting where no knowledge other than the
number of instruments is assumed. In addition, knowl-
edge of the types of instruments in the mixture (informa-
tion which is relatively easy to obtain) was shown to im-
prove performance significantly over the basic model. Al-
though the experiments presented in this paper only con-
sider two-instrument mixtures, the PET model is general
and preliminary tests suggest that it can handle more com-
plex mixtures as well.

There are several areas in which the current system could
be improved. First, the thresholding technique that we
have used is extremely simple and results could probably
be improved significantly through the use of pitch depen-
dent thresholding or more sophisticated classification. Sec-
ond, and perhaps most importantly, although early experi-
ments did not show a benefit to using multiple components
for each pitch, it seems likely that the pitch models could
be enriched substantially. Many instruments have complex
time-varying structures within each note that would seem
to be important for recognition. We are currently explor-
ing ways to incorporate this type of information into our
system.
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ABSTRACT

The automatized beat detection and localization have been
the subject of multiple research in the field of music infor-
mation retrieval. Most of the methods are based on onset
detection. We propose an alternative approach:

Our method is based on the “Forward-Backward seg-
mentation”: the segments may be interpreted as attacks,
decays, sustains and releases of notes. We process the seg-
ment boundaries as a weighted Dirac signal. Three meth-
ods devived from its spectral analysis are proposed to find
a periodicity which corresponds to the tempo.

The experiments are carried out on a corpus of 100 songs
of the RWC database. The performances of our system on
this base demonstrate a potential in the use of a “ Forward-
Backward Segmentation” for temporal information retrieval
in musical signals.

1. INTRODUCTION

The automatized beat detection and localization have been
the subject of multiple research in the field of music in-
formation retrieval. The study of beat is indeed important
as the structure of a music piece lies in the beat. West-
ern music uses however different levels in the hierarchy of
scale measuring time. We have to distinguish the tatum
which is “the regular time division that mostly coincides
with all note onsets” [3] from the tactus which is defined
as the rate at which most people would clap their hands
when listening to the music [8]. Here, we look for the tac-
tus, which will be named tempo and measured in beat per
minute (BPM).

Several methods have been suggested in order to extract
the tempo information from an audio signal. Most of them
use an onset detection method as onset localization carries
the temporal structure that leads to the estimation of the
tempo. Theses methods use different observation features
in order to propose a list of onset positions. They are very
dependent on that detection. Dixon’s first algoritm [4] uses
an energy based detector in order to track the onset posi-

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

tions. Then a clustering is performed on the inter-onset-
interval values. Some best clusters are chosen as possible
hypothesis. A hypothesis is finally validated with a beat
tracking.

In Alonso’s algorithm [1], onset positions are deducted
by using a time-frequency representation and a differen-
tiator FIR filter to detect sudden changes in the dynamics,
timbre or harmonic structure. The tempo is then deduced
using either the autocorrelation or spectral product.

Klapuri [9] proposes a more complex way of extract-
ing the onset positions. The loudness differentials in fre-
quency subbands are computed and combined in order to
create four accent bands. This aims at detecting harmonic
or melodic changes as well as percussive changes. Using
comb filter resonators to extract features, and probalistic
models, the values of tatum, tactus and measure meter are
computed.

Uhle [12] suggests a method based on the segmenta-
tion of the signal into long-term segments corresponding
to its musical structure (for example, the verses and cho-
rus of a song). The amplitude envelope of logarithmically
spaced frequency subbands is computed; its slope signal
aims to represent accentuation on the signal. The analysis
of an autocorrelation function on 2.5 second segments in-
side each long-term segment gives the tatum estimator. A
larger-scale analysis over 7.5 second segments is then per-
formed in order to give values corresponding to the mea-
sure. The local maxima positions of the autocorrelation
function are finally compared with a bank of pre-defined
patterns in order to define the best value of the tempo on
the long term segment.

Dixon [5] has proposed an alternative method to onset
calculation. The signal is splitted into 8 frequency bands
and autocorrelation is performed on each smoothed and
downsampled subband. The three highest peaks of each
band are selected and combined in order to determine the
final tempo estimation.

Another algorithm is that of Scheirer [10]. This algo-
rithm performs a comb filterbank that seeks for periodi-
cally spaced clock pulse that best matches the envelope of
6 frequency subbands.

Tzanetakis [11] suggests a method based on a wavelet
transform analysis. This analysis is performed over 3 sec-
ond signal segments with 50% of overlap. On each seg-
ment, amplitude envelope of 5 octave-spaced frequency
bands is extracted. Autocorrelation is then computed. Three
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kind of autocorrelation analysis are computed in order to
estimate the value of the tempo. The first one is the me-
dian of highest peak of the sum of the envelopes over every
window. The second one returns the median value of the
highest peak on each subband and each segment. The last
one computes several best peaks from the autocorrelation
on the sum of every envelope and then chooses the most
frequent value.

Our method is based on the analysis of an automatic
segmentation of the signal into quasi-stationary segments :
the segments may be interpreted as attacks, decays, sus-
tains and releases of notes. So we propose to process the
segment boundaries in order to find a periodicity which
would correspond to the tempo.

In section 2, we describe the segmentation used as a
front-end, the analysis of this segmentation in the frequency
domain and the different methods we use to extract the
value of the tempo in BPM. In the last part, we present
the results of our experiments on the RWC [6, 7] corpus.

2. METHOD

Our method relies on the detection of quasi-stationnary
segments in the audio signal waveform. A frequency anal-
ysis of the boundaries is then performed in order to find the
most present periodicities and thereby estimate the tempo
consequently.

The algorithm is based on three steps :

• Segmentation

• Boundary frequencial analysis

• Tempo extraction

2.1 Segmentation

We segment the signal using the “Forward Backward Di-
vergence” [2]. The signal is assumed to be a sequence of
quasi-stationnary units, each one characterized by the fol-
lowing gaussian autoregressive model :{

yn =
∑
aiyn−i + en

var(en) = σ2
n

(1)

where yn is the signal and en an uncorrelated zero mean
Gaussian sequence.
As the variance σn is constant over an unit and equals σ,
the model of each area is parametered by the following
vector :

(AT , σ) = (a1, ..., ap, σ) (2)

The strategy is to detect changes in the parameters, using a
distance based on the mutual conditional entropy. A sub-
jective analysis of the segmentation shows a sub note seg-
mentation and the location of attacks, sustains and releases.

For a solo musical sound, the segments of the signal
correspond to the different steps of a note. On Figure 1,
we present a solo note of trombone. The note is segmented
into four parts, which correspond to the attack, the sustain
and the release. Note that the attack and decay phases of

some notes are often grouped together into a single seg-
ment. In such cases, the attack period is too short for the
segmentation algorithm as it imposes a minimal length to
initiate the autoregressive model.

Figure 1. Segmentation of a trombone note. a) Waveform,
b) Spectrogram, c) Time. 1) Attack, 2) Sustain, 3 & 4)
Release. The vertical lines are the boundaries of the seg-
ments. The first boundary correspond to the onset.

As they represent a rupture point of the signal, we as-
sume that onset localizations, containing the tempo infor-
mation, are included in the list of boundaries time. We
therefore focus on positions of the boundaries.

2.2 Boundary Frequencial analysis

The main objective is to find a periodicity in the localiza-
tion of the boundaries that would be the effect of the song’s
rythmical pattern. In order to find the periodicity, a signal
bw(t) is created. This signal is a weighted Dirac signal,
where each Dirac is positioned at the time of a boundary
tk.

The Diracs are weighted in order to give more influence
to the boundaries located at times that are most likely to be
onsets. Asuming that at onset times, an increase of energy
is observed, each Dirac is weighted by the difference be-
tween the energy of the spectrum computed on 20 ms after
and before tk ( resp. e+k and e−k ).

w(tk) = e+k − e
−
k (3)

We obtain bw(t) (see an example on Figure 2) :

bw(t) =
N∑
k=1

δ(t− tk)w(tk) (4)

where N is the count of boundaries, tk is the time of the
kth boundary.

We compute Bw, the Fourier transform of bw to extract
frequency information of this signal.
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Figure 2. Representation of a bw(t)

The expression of the Fourier transform Bw(f) is :

Bw(f) =
∫

R

N∑
k=1

δ(t− tk)e−2iπftw(tk)dt

=
N∑
k=1

e−2iπftkw(tk)

(5)

This formula offers the advantage of being fast to cal-
culate.

2.3 Tempo extraction

2.3.1 Spectrum analysis

We analyse the spectrum Bw on the range of frequencies
30 - 400 BPM (an example is given on Figure 3). We find
the positions of the highest peaks as a base for each deci-
sion.

We then extract the positions and energies of the main
peaks in terms of energy. As it is computed over a long
time, the peaks of the spectrum are high and narrow, which
makes the localization easier.

Figure 3. Spectrum |(Bw(f)|2 of a whole song.

This localization is obtained by detecting the local max-
ima. This algorithm considers a point p and its two direct
neighbors. p is a local maxima if

|Bw(p− 1)|2 < |Bw(p)|2

|Bw(p+ 1)|2 < |Bw(p)|2
(6)

We then choose several of the highest peaks with the
only constraint that the distance between two peaks has to
be greater than 3 BPM. Only a few peaks are really higher
than others in the spectrum, so we choose to select only
the four greatest peaks in terms of energy, the position se-
lected for further peaks would be considered as noise. Let
P = {p1 p2 p3 p4} be the list of selected peak positions
under the constraint : |Bw(pi)|2 > |Bw(pi+1)|2. We ob-
serve that every selected peak carries information that can
be exploited in order to find out the value of the correct
tempo. We finally apply a decision algorithm on P to find
the tempo.
Two strategies are concidered. The first one looks for the
correlation between the length of the segments and each
value p in the temporal domain. The second one tries to
find the best comb matching the spectrum.

2.3.2 “Inter-Boundaries-Intervals decision”

The first approach is in the temporal domain, and uses the
boundaries of the segmentation. Theses boundaries are fil-
tered on their weights in order to keep only the boundaries
where a high increase of energy is experienced: we only
keep the boundaries with a significant weight. This filter-
ing is computed in order to keep instants which are most
likely onset instants. The set I of intervals between each
couple of following boundaries is then computed.

For each pi, we perform the pseudo periods correspond-
ing to 1/4, 1/3, 1/2, 1, 2, and 3 times pi. These pseudo
periods have been chosen as they correspond to the period
of half, quarter, eighth and sixteenth note in duple meter or
triple meter.

The scoreNum(pi) is the number of intervals in I whose
durations correspond to one of these pseudo periods.

The estimated tempo p̂b is given by :

p̂b = argmax
pi,i=1,...,4

(Num(pi)) (7)

2.3.3 “Comb decision”

The second method uses the spectrum and is in frequency
domain. This method is based on the first peak p1, as we
assume that it is always significant for the tempo detection.
We then consider 7 tempi, which are 1

4p1, 1
3p1, 1

2p1, 2p1,
3p1 and 4p1 , as well as p1 itself, noted tpi, i = 1, ..., 7
. We only keep, among this list of tempi, those which are
in the range 30 - 240 BPM, assuming that a value outside
of these bounds would hardly be considered as the main
tempo.
For each tempo value tpi, we compute the product of the
spectrum and a Dirac comb with the 10 harmonic teeth cor-
responding to the tempo value.

The mean amplitude value of the so filtred spectrum
gives a score Ampl(tpi).

The estimated tempo p̂c is given by

p̂c = argmax
tpi,i=1,...,7

(Ampl(tpi)) (8)
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2.3.4 Combination of the strategies

In order to take advantage of both methods, we propose a
combined decision algorithm. Using pc1 and pc2 the two
best tempi returned by the “Comb decision” algorithm, we
apply the “Inter-Boundaries-Intervals” strategy to compare
the two values Num(pc1) and Num(pc2).

The tempo with the best Num is chosen as a final deci-
sion.

3. EXPERIENCE

3.1 Corpus

We choose to test our method on the part of the RWC
database [6, 7] that is BPM-annotated. This corpus has
been created in order to provide a benchmark for experi-
mentation on music information retrieval and is now well
known and widely used in this research field. It therefore
seems interesting to use it in order to facilitate comparisons
between our algorithm’s results and others. This corpus is
a compilation of 100 tracks of Japanese Pop songs. Each
song lasts from 2 minutes 50 seconds to 6 minutes 07 sec-
onds.
As the method needs no learning, our experiment protocol
consists in applying our algorithm on each full track.

3.2 Experiments

The methods are based on the Forward Backward diver-
gence segmentation: in order to implement this algorithm,
we choose to use the parameters defined in [2] for voiced
speech signal. No specific adaptation is performed for mu-
sic.

As previously mentioned, we observe that the highest
peak of the spectrums has a strong link with the tempi.
Over the 100 tracks computed, the highest peak position
is linked with the tempo 98 times: it is located twice on
a position corresponding to the half of the ground-truth
tempo, 3 times on the correct position, 60 times on the
double tempo and 32 times on a position corresponding to
4 times the tempo.

To assess quantitatively each version of our method, we
introduce a confident interval : the tempo value is con-
sidered as “Correct” if its difference with the ground-truth
value at strictly less than 4 BPM. The ratios and multiples
are considered good when their distance to 2, 3, 4, 1/3 or
1/2 is strictly less than 0.03.

Two metrics are computed in order to evaluate the accu-
racy of each method. The first one is the ratio of correctly
estimated tempi over the whole corpus.

Accuracy1 =
# of correctly estimated tempi

L
(9)

where L is the number of evaluated tracks.
The second one is more flexible and assumes that the

tempi corresponding to half, third double and three time
the annotated tempo are correct. This metric is computed
taking take into account that tempo value is subjective and
can vary from one listener to another.

Accuracy2 =
# of correct or multiple tempi

L
(10)

3.2.1 “Inter-Boundaries-Intervals decision”

The filltring of the boundaries involves a threshold: the se-
lectionned boundaries have a weight greater than 10% of
the maximum weight among the boundaries. The detailled
results of the Inter-Boundaries-Intervals decision are visi-
ble in Table 1. The global result are 56 % of Accuracy1
and 95% of Accuracy2.

Ratios with the correct tempo
1/2 1 2 4 No link Acc1 Acc2
7 56 28 1 5 56 95

Table 1. “Inter-Boundaries decision Decision” : Number
of music tracks in function of the ratios between the esti-
mated tempo and the ground truth value. Accuracy1 and
Accuracy2 are deducted.

3.2.2 Comb decision

In order to optimize the results of this method and to be
sure to get the peak value on each hypothesis multiple, the
returned value is the maximum of 7 equally spaced tempi
in a neighborhood of ±1 BPM around each p multiple
value. Applying this method to our corpus and returning
the best two hypothesis, we observe that the ground-truth
tempo is present for 98 of the tracks. The global result of
this method, choosing only the best comb as result, is 64%
for Accuracy1 and 96% for Accuracy2. The detailled re-
sults are visible in Table 2.

Ratios with the correct tempo
1/2 1 2 3 No link Acc1 Acc2
3 64 29 0 4 64 96

Table 2. “Comb Decision” : Number of music tracks in
function of the ratios between the estimated tempo and the
ground truth value. Accuracy1 and Accuracy2 are de-
ducted.

3.2.3 Combination of the strategies

As shown in Table 3, the combination of the two previous
methods largely improves the results. The results in terms
of Accuracy1 is 78% and 93% in terms of Accuracy2.

Ratios with the correct tempo
1/2 1 2 3 No link Acc1 Acc2
13 78 2 0 7 78 93

Table 3. Percentage of the returned values ratio of the
ground truth for the Fusion of the two algorithms
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The differences between their results is essentially due
to the detection of the “double tempo”. This type of error
dissapears. The number of serious errors is stable.

3.3 Discussion

The 2004 MIREX evaluation was the last MIREX session
which the task of tempo estimation was evaluated. These
results were obtained on a corpus of 3199 tempo-annotated
files ranging from 2 to 30 seconds, akd divided into three
kinds : loops, ballroom music and songs exerpts.

The algorithms evaluated during this campaign are de-
tailed and compared in [8]. The Klapuri’s algorithm [9] ob-
tained the best score on this evaluation with an Accuracy1
of 67.29% and an Accuracy2 of 85.01% among the total
set of evaluated signals and reaching 91.18% ofAccuracy2
on the song’s subset.

An exhaustive search for the best combination of five
algorithms, using a voting mechanism, has also be com-
puted. The best combination achieved 68% in terms of
Accuracy1, whereas the best Accuracy2 reached 86%.

The MIREX corpus and the RWC part we use are dif-
ferent (in particular in terms of length). Nevertheless, our
results are comparable and experiments will be realized on
short extracts of the songs in order to define the robustness
of our method.

4. CONCLUSIONS

In this paper, we presented a tempo estimator based on an
automatic segmentation of the signal into quasi-stationnary
zones. The use of this segmentation for the tempo induc-
tion seems to be rather significant: the spectrum of the
Dirac signal derivate from the segmentation shows a pre-
dominant value directly linked with the tempo on 98% of
our tests. The three methods which exploit this property
have good performence. These methods are still rather
simple, so we will investigate some potential improvements:

• Some experiments will be realized in order to eval-
uate the sensitiveness of our method to the use of
short extract. Good results would allow the use of
this method on slipping windows of few dozens of
second. Such treatment could be realized in order to
detect changes in the tempo.

• The use of the phase of Bw(p) seems promissing for
the developpement of a precise onset localizator.
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ABSTRACT

A large variety of research tools is available now for mu-
sic information retrieval tasks. In this paper we present a
further framework which aims to facilitate the interaction
between these applications. Since the available tools are
very different in target domain, range of available meth-
ods, learning efforts, installation and runtime characteris-
tics etc., it is not easy to find software which is optimal
for certain research goals. Another problematic issue is
that many incompatible data formats exist, so it is not al-
ways possible to use output from one tool just as input for
another one. At first we describe some of the available
projects and outline our motivation starting the develop-
ment of AMUSE framework for audio data analysis. Re-
quirements and application purposes are given. The struc-
ture of our framework is introduced in detail and the in-
formation for efficient application is provided. Finally we
discuss several ideas for further work.

1. INTRODUCTION AND MOTIVATION FOR A
NEW FRAMEWORK

During the recent years more and more scientific tools for
music information retrieval and related research areas have
been developed. To name just a few, Marsyas is one of
the oldest available MIR projects for different analysis and
synthesis tasks [12]. jMIR tools refer to different applica-
tions from feature extraction to data mining methods [7].
MusicMiner established new navigation techniques for lar-
ge music collections based on self-organized maps and three-
dimensional landscapes [9]. MIR Toolbox includes a large
number of different adjustable Matlab functions for extrac-
tion of features from time signal characteristics to com-
plex harmony and major/minor key descriptors [4]. The
Chroma Toolbox provides advanced features related to chro-
ma and pitch [10]. RapidMiner is aimed to solve a wide
range of different data mining tasks (not only for music
and audio classification domain) and supports numerous
methods [8].
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The motivation to start our own project developing a
new software framework arose after the discussion and def-
inition of several promising MIR applications and in-depth
comparison of different above mentioned and further tools.
Typically each existing tool has several main focus points
as well as certain application advantages and disadvan-
tages. Therefore the choice of software to use depends
strongly on the defined scenario. Possible three exam-
ples could be: If the researcher develops own classification
methods, it may be interesting for her/him to gather many
available audio features from the corresponding tools. If
the aim is to run advanced low-level signal analysis and
create the features by himself, the researcher would create
this code and use some ready products, e.g. WEKA tool-
box [13] for the revision, how well the novel features are
suited for audio classification. The last example is that for
different reasons multi-objective evaluation of algorithmic
chain can be significant. Here the focus point is to col-
lect different metrics (confusion matrix-based measures,
runtime and disc space demands etc.) and to run multi-
objective optimization algorithms searching for the best
tradeoff between several solutions.

Another aspect is that many tools which are very help-
ful for MIR research are either too specific and concentrate
on limited audio retrieval domains, e.g. Chroma Toolbox
(so we may need several of them!) or are on the other side
too powerful and generic (e.g. RapidMiner) and it is not
easy to create the appropriate solution. The input and out-
put data formats differ from tool to tool and even the sup-
port of the WEKA ARFF format does not mean, that the
written attributes are the same. Therefore it made sense
for us to develop a multi-tool framework, which provides
own data interchange formats and own evaluation methods.
The integration of further tools and also the extension of
methods with own code belonged to requirements. Further
consideration was that some fields had been underrepre-
sented in many available tools and it was important for us
to emphasize them as independent tasks in music retrieval
chain: feature processing is an intermediate step between
the extracted raw features and ready classifier input. The
way how the labeled vector is built from the frame-based
signal features for training of classification models can be
very different and has a strong impact on classification re-
sult quality. Another issue is the inclusion of optimization
methods, e.g. heuristics, to search for the best parametriza-
tion of the algorithm chain, for example the estimation of
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satisfactory time frame size or pruning of feature set.
The current version of AMUSE made possible to run

different large experiment studies including feature extrac-
tion from several tools, processing with many methods,
classification for user-defined music categories and also
optimization of some parameters [3, 14, 15].

2. FRAMEWORK STRUCTURE

2.1 Background, Requirements and Functionality

AMUSE (Advanced MUSic Explorer) is a GPL-licensed
framework implemented in Java 1 . Therefore the main com-
ponent can be run on any operating system which supports
the Java Runtime Environment. The integrated tools have
no usage restrictions with regard to their source codes. If
they are not available as Java libraries, executable versions
must be provided. In that case it may certainly lead to the
dependence on the running operating system.

The AMUSE core provides different functionalities. With
own sound processing methods mp3s can be converted to
waves. Downsampling and stereo to mono conversion meth-
ods are included as well. It is possible to split automaticly
the wave files (we had experiences that very long songs
supplied to some tools led to memory problems or unac-
ceptable running time). Scalability is supported either us-
ing multi-threading on one machine or providing the tasks
to grid systems like Sun Grid Engine or LSF Batch. Ef-
ficient data set management which directly supports the
WEKA ARFF format (well-established for various data
mining tasks) and a logger component are integrated.

Several user interfaces are available: Definition and ap-
plication of tasks can be easily done within a graphical user
interface, see Figure 5 for screenshots. In command-line
mode AMUSE runs one or more tasks from given configu-
ration files. In loop mode AMUSE is pre-loaded in mem-
ory and waits for new tasks by scanning for corresponding
configuration files in a task folder.

Project packages are organized in the way so that the
core and extendable components are strictly separated. In-
tegration of external tools requires writing of adapter classes
which take care of input / output conversion and start these
tools as library or by system call. AMUSE plugins allow
to create such integrations without changes on the main
project and be easily installed and deinstalled.

2.2 Music Retrieval Chain and Integrated Methods

We distinguish between subtasks in a MIR chain. Figure 1
gives a complete overview. The rectangles correspond to
AMUSE tasks which are run by the related node compo-
nent. Each task can adhere to the larger number of AMUSE
jobs which can be calculated on several processing units -
e.g. a feature extraction task for a hundred music files can
be distributed to several machines as one hundred jobs.

2.2.1 Feature Extraction

Feature extraction provides low-level or high-level numer-
ical descriptors from the audio signal. It can be a com-

1 http://amuse-framework.sourceforge.net

plete task (melody extraction) or a part of a longer chain,
where audio files are categorized using the extracted fea-
tures. AMUSE provides a generic mechanism to select the
features which must be extracted by external tools. For
each tool a so called base script must exist which allows
to extract all supported features. After the AMUSE extrac-
tion task is loaded into memory, some parts of these base
scripts are omitted, if the corresponding transforms or fea-
tures should not be extracted this time.

2.2.2 Feature Processing

Feature processing is an intermediate step between raw ex-
tracted features and ready-labeled input for classification.
Starting with a matrix of M features over N time frames at
the beginning, different methods change this matrix. Some
of them extend the dimensionality (e.g. calculating the
derivations for all features) or reduce the dimensionality
(pruning the features or deselecting time frames using spe-
cific information like temporal structure of a song). The
last step is the conversion of the feature matrix to a vec-
tor which can be labeled for supervised classification. This
can be done e.g. by Gaussian, histogram or autoregres-
sive models. Since the source time frames may differ be-
tween features, the matrix is automaticly adjusted using
the smallest existing time frame. For example if the first
feature is calculated from 1024 sample frames and the sec-
ond one from larger windows (number of beats per minute)
and the third from the complete song (music track length),
N will be set to the number of 1024 sample frames in the
complete song. A music track length feature will then have
the same values for all corresponding matrix entries.

2.2.3 Classification and Training

Supervised classification training creates models from given
data and requires the ground truth information. Classifica-
tion applies the previously learned models and computes
the list of relations to the given categories for the provided
music tracks. Unsupervised classification techniques cate-
gorize data without any given information by e.g. cluster-
ing. It is possible to run preprocessing before the classi-
fication, for example removing the outliers. Since Rapid-
Miner [8] and WEKA [13] are also Java-based projects,
they are integrated into AMUSE directly as libraries. It is
also possible to connect to Matlab or R engines starting
further classification methods.

2.2.4 Validation

The classification validator is responsible for evaluation
of classification results. Confusion matrix-based metrics
and error rates are well known and measure the quality
of classification results. Other measures relate to the bal-
ance aspect - if a data set contains too much positive in-
stances, accuracy may be high inspite of the poorly de-
signed algorithm which tends to categorize everything as
positive. Further it is possible to measure correlation be-
tween ground truth and predicted category relationships.
All these metrics can be either calculated on the lower data
level (measuring the classification success for smaller au-
dio intervals as data instances) or on the higher data level
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Figure 1. AMUSE task chain.

(evaluating classification averaged for the complete music
tracks). Other metric group (data reduction rate) calculates
the amount of data used for training related to the size of
the original feature matrix.

2.2.5 Optimization

Each of the above mentioned tasks has more or less param-
eters and it is obviously, that it is not a simple task to find
an optimal combination of them. For example the larger
time frames for low-level feature extraction allow a more
precise frequency resolution up to the Nyquist frequency.
But if they are too long, different notes are mixed together
and it becomes harder to learn anything. The optimization
of the music data analysis chain is very rarely supported
by related MIR tools. Indeed many optimization toolboxes
exist (e.g. CILIB [11], SPOT [1] etc.) but the application is
often too generic and must be adapted to the MIR domain.
Therefore the goal of the optimization node is to run meth-
ods searching for optimal parameter settings. Currently
several evolution strategies [2] are directly implemented in
AMUSE and can be used for optimization.

2.3 Database Structure and Data Formats

Information provided by user (ground truth, music tracks)
and the generated output are stored in folders called AMUSE
databases. Most of the data is currently saved as text ARFF
format [13] for several reasons: It is very comprehensible,
is supported by most tools and is much more compact than
XML. However it is an option to support further formats
in future using e.g. MySQL database which requires more
storage place but provides a very fast searching routine.

Music and category folders store the songs provided by
the user and the corresponding ground truth for any related
categories (music genres, information about harmony and
melody etc.). Feature folders save the extracted features,
the folder processed features stores the unlabeled feature

Figure 2. Example ARFF file with extracted features.

vectors for classification. Binary classification models are
placed in the model directory, metric database is used for
evaluation of music data analysis experiments. Optimiza-
tion database contains of optimization logs in search for
optimal parameter settings. Currently AMUSE does not
support any visualization methods, but the data can be eas-
ily read into well-established tools like Gnuplot or Matlab.

An example for a feature file is given in Figure 2. Here
the extended ARFF format is used: AMUSE attributes are
placed as comments after the relation description and store
the information about the data set size, sampling frequency
and time frame size. Since for each feature the correspond-
ing time frame is saved in attribute WindowNumber, it is
simple to detect the time intervals from which the features
have been extracted.

The AMUSE experiments are also saved as ARFFs.
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Figure 3. Data flow in AMUSE.

Figure 4. Package structure.

3. DETAILS FOR DEVELOPERS

The data flow during an AMUSE experiment is shortly de-
picted in Figure 3. User starts the main SCHEDULER com-
ponent either from GUI or from the command line. Af-
ter the configuration of the experiment the tasks are com-
pletely described in the corresponding TASKCONFIGURA-
TION objects which are provided to the appropriate TASK-
STARTER component. Here one or more AMUSE jobs are
generated. These jobs are run on the same machine or are
processed to a grid system. During the runtime of a single
AMUSE instance the scheduler counts up the jobs. After
they are ready, the next experiment can be started.

3.1 Package Structure

The most important AMUSE Java packages are shown in
Figure 4. Scheduler and GUI packages interact with user,
the computing of jobs is done in objects which are placed
in nodes package and extend an abstract class NODESCHED-
ULER. Data package handles AMUSE data objects and
ARFF input / output routines. Preferences store different
configuration parameters (database folders, downsampling
rate, path to grid scripts etc.). The util package contains
logger and audio processing methods.

3.2 Guidelines for Tool Integration

Here we give a brief overview for several steps needed to
extend AMUSE with new tools:

• Tool setup: Software which should be integrated into
AMUSE must be tested for execution on the current
operating system. It must be possible to start it either
as Java library or by system call using a previously
configured batch file.

• Writing an adapter class: Here the tool will be started.
The functions which convert input and output data
to AMUSE format must be implemented. If e.g. a
feature extractor program saves the data as XML, it
has to be converted into ARFF format for features as
given in Figure 2.

• Plugin definition: The default way to integrate a new
tool into AMUSE is to create the corresponding plu-
gin. Several plugin installation files (mostly ARFFs)
must describe the changes in AMUSE which will be
applied after the installation. Each feature and each
method used in AMUSE has a unique id number.
The configuration file featureTable.arff lists all cur-
rently available features with given ids. If a new tool
allows the extraction of several new features, this file
must be updated. The same procedure is essential for
further algorithms. There is a list with all available
classification methods, validation metrics, process-
ing and preprocessing algorithms etc.

• Plugin installation and integration should be tested.
After the successful evaluation the job is done!

4. ONGOING WORK

The core framework has been already developed, however
a lot of work remains. In the near future we will provide
comprehensive introduction and developer manuals. Inte-
gration of further tools and extension with own methods
belongs to the current and ongoing activities. Especially
the optimization node will be extended with new methods
related to multi-objective evaluation and computational in-
telligence algorithms.

As further steps we plan to add some visualization pos-
sibilities for experiment results and navigation possibilites
through given music collections. The algorithms for sym-
bolic and community-based retrieval can be also integrated.
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Figure 5. AMUSE GUI: Management of experiments (top); Feature extraction experiment setup (middle); Feature pro-
cessing experiment setup (bottom).
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6. APPENDIX: LIST WITH INTEGRATED TOOLS

Here we give an alphabetically sorted list of currently inte-
grated tools. In AMUSE it is easy to create complex exper-
iments using different algorithms, e.g. extracting features
with jAudio and MIR Toolbox, preprocessing them with
Matlab, classifying with WEKA and validating them with
metrics available in AMUSE.

• Chroma Toolbox: Extraction of different novel chroma
and pitch features [10].

• CMRARE: A set of cepstral modulation ratio regres-
sion (CMRARE) parameters for audio signal [5].

• jAudio: Java application for audio feature extraction
[6].

• Matlab: Corresponding AMUSE adapter allows to
run Matlab code. Path to the installed Matlab ver-
sion must be set in AMUSE configuration.

• MIR Toolbox: A large set of Matlab fuctions for ex-
traction of low-level and high-level audio descrip-
tors [4].

• R: Corresponding AMUSE adapter allows to run R
code. Path to the installed R version must be set in
AMUSE configuration.

• RapidMiner (former Yale): Java framework for data
mining [8]. A large number of different classifi-
cation and data processing algorithms is available,
audio feature extraction is provided by ValueSeries
plugin.

• WEKA: An established framework for machine learn-
ing which is integrated as library in RapidMiner [13].
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[11] G. Pamparà, A.P. Engelbrecht and T. Cloete: “CIlib:
A collaborative framework for Computational Intelli-
gence algorithms - Part I,” Proceedings of the 2008
IEEE World Congress on Computational Intelligence
(WCCI), pp. 1750–1757, 2008.

[12] G. Tzanetakis and P. Cook: “Marsyas: A framework
for Audio Analysis,” Organised Sound, Vol. 4, No. 3,
pp. 169–175, 2000.

[13] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes
and S.J. Cunningham: “Weka: Practical Machine
Learning Tools and Techniques with Java Implementa-
tions,” Proceedings of the ICONIP/ANZIIS/ANNES’99
Workshop on Emerging Knowledge Engineering and
Connectionist-Based Information Systems, pp. 192–
196, 1999.

[14] I. Vatolkin and W. Theimer: “Optimization of Feature
Processing Chain in Music Classification by Evolu-
tion Strategies,” Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature
(PPSN), Dortmund, pp. 1150-1159, 2008.

[15] I. Vatolkin, W. Theimer and G. Rudolph: “Design and
Comparison of Different Evolution Strategies for Fea-
ture Selection and Consolidation in Music Classifica-
tion,” Proceedings of the 2009 IEEE Congress on Evo-
lutionary Computation (CEC 2009), IEEE Press, Pis-
cataway (NJ), 2009.

38

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



AN IMPROVED HIERARCHICAL APPROACH FOR
MUSIC-TO-SYMBOLIC SCORE ALIGNMENT

Cyril Joder, Slim Essid, Gaël Richard
Institut TELECOM, TELECOM ParisTech, CNRS LTCI

{cyril.joder, slim.essid, gael.richard}@telecom-paristech.fr

ABSTRACT

We present an efficient approach for an off-line alignment
of a symbolic score to a recording of the same piece, us-
ing a statistical model. A hidden state model is built from
the score, which allows for the use of two different kinds
of features, namely chroma vectors and an onset detec-
tion function (spectral flux) with specific production mod-
els, in a simple manner. We propose a hierarchical prun-
ing method for an approximate decoding of this statistical
model. This strategy reduces the search space in an adap-
tive way, yielding a better overall efficiency than the tested
state-of-the art method.

Experiments run on a large database of 94 pop songs
show that the resulting system obtains higher recognition
rates than the dynamic programming algorithm (DTW),
with a significantly lower complexity, even though the rhyth-
mic information is not used for the alignment.

1. INTRODUCTION

We address the problem of synchronizing a polyphonic
musical score with an audio performance of this score, in
the “off-line” version of this task. This allows one to con-
sider the whole recording before estimating the positions
of the score notes. We are interested in an alignment at the
“symbolic level”, which means that the result is the time
indexes of the score notes or chords.

Applications of such a system can be a score retrieval
from a musical query, or the ability to use both the audio
and symbolic (score) content for music indexing. Some
musical content analysis tasks, such as motif detection or
chord transcription, may indeed be easier on symbolic data
than on raw audio files.

While most on-line score following systems use statis-
tical models which can be rather complex [4, 8, 14], many
off-line algorithms simply rely on the DTW algorithms or
refinements of it [6, 9]. These latter algorithms are often
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faster than the former and can also be applied to audio-to-
audio synchronization.

However, their complexity (in time and space) is quadratic
in the number of audio frames. This complexity problem
has been addressed in [10], where a “short-time” DTW is
proposed, which reduces the memory space requirement,
at the cost of a greater time complexity. In [11], Müller et
al introduce a “multi-scale” DTW (MsDTW) which allows
for an efficient pruning strategy in a coarse-to-fine fashion.

To the authors’ knowledge, hierarchical approaches have
not been used for music synchronization, appart from [11].
In [3], Cont exploits a Hierarchical Hidden Markov Model.
However, although its advantage in terms of interpretation,
this structure is equivalent to a “flat” HMM [12].

With a dynamic programming framework, the use of
different kinds of descriptors can be difficult. Hence such
systems use a single feature representation, generally chroma
vectors. A notable exception can be found in [6], where a
strategy is proposed to combine local distances resulting
from chroma vectors and onset features in a DTW scheme.
The use of a statistical model makes the fusion of different
pieces of information more natural. This structure is often
used in real-time systems [2, 5], which model each feature
distribution with a Gaussian mixture.

The hidden state model presented here exploits a differ-
ent model for two different sets of features: a “histogram
model” (see Sec. 2.1.1) for chroma vectors and a logistic
model (see 2.1.2) for an onset indicator feature. This sys-
tem obtains a very good alignment precision with a signif-
icantly lower complexity than the DTW algorithm.

We also introduce a hierarchical approach for search
space reduction, which performs a pruning of the unlikely
states in a hierarchical way. We take advantage of struc-
tural information given by the score (namely beat and bars),
which allows for a meaningful hierarchical segmentation
of the music. This method provides an alternative to the
commonly used beam search strategy, which consists in
maintaining only a fixed (small) number of paths at each
decoding step. Our approach proves advantageous com-
pared to both beam search and MsDTW, in terms of global
search space size and runtime, without affecting the align-
ment performance in practice.

In the next section we present our baseline models for
audio-to-score alignment. Then, a hierarchical pruning method
for an approximate decoding of these models is proposed
in Section 3. We expose the results of our experiments in
Section 4 before suggesting some conclusions in Section 5.
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Figure 1. Score Representations. Top: The original graph-
ical score. Middle: The score as a sequence of chord. Bot-
tom: The finite state machine representing the score.

2. BASELINE MODELS FOR AUDIO-TO-SCORE
ALIGNMENT

Similarly to [15], we segment the musical score into chords,
which are sets of notes that sound at the same time. Every
time a note appears or disappears, a new chord is created.
We can then fit a hidden state model to the audio signal, the
states of which are defined by the chords of the score. The
score is seen as an automaton, as represented in Figure 1.

In this work, we chose not to take into account the rhyth-
mic information given by the score, as we consider that we
have no prior knowledge of the tempo. We use the Maxi-
mum Likelihood (ML) path in the automaton as the align-
ment path. Let y=y1, . . . , yN be the feature sequence ex-
tracted from the signal. Let Sn be the random variables de-
scribing the current state at time n. The ML path Ŝ, which
can be efficiently computed by the Viterbi algorithm, is:

Ŝ = argmax
S∈S

P
(
y
∣∣S) = argmax

S∈S

N∏
n=1

P (yn|Sn), (1)

where S is the set of acceptable paths. We consider as ac-
ceptable the paths which go through all the states in the
right order. This model is thus a left-right Hidden Markov
Model whose only transitions are self-transitions and tran-
sitions from one state to the following one. All these tran-
sitions have the same probabilities.

2.1 Observation Models

Similarly to [13], two kinds of information are used in this
work: the pitch content and the onset information. Thus,
we use two types of features in order to take them into
account. Chroma vectors are used in order to model the
pitch content of the signal, and the spectral flux is supposed
to detect the note onsets.

2.1.1 Chroma Vectors

As observed in [9], chroma vectors provide a compact, yet
efficient representation of the pitched content of a musical
signal for music-to-score matching. A chroma vector is a
twelve-dimension vector, each of whose component repre-
sent the “power” in all the frequency bands of a chromatic
class (from A to G#). The chroma vectors we use are com-
puted according to [16], with a 50 Hz time resolution.

For each state s, a probability distribution {g̃(i)}i=1...12

over the 12 chroma components is built, as the superpo-
sition of one-note distributions which correspond to the

notes that are present in the state. A one-note distribu-
tion is a simple Kronecker function {δ(i, j)}i=1...12 where
j is the pitch class of the considered note. Then, a constant
component q is added in order to model noise, and we ob-
tain a distribution g defined by g(i) = (1 − q)g̃(i) + q

12 .
A value of 0.7 has been found satisfactory for the noise
parameter q. For example, the distribution values corre-
sponding to the chord

{
C3,E3,G3,C4

}
are (represented

in a vector) 1−q
4 (0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0)+ q

121, where
1 is a vector of ones.

In order to calculate the likelihood of each state, we use
the model exposed in [15]. The values of the chroma vec-
tor v extracted from the audio is considered as a histogram
of random samples drawn from the distribution g (corre-
sponding to chord c). The probability of having v as a
result of such a sampling is:

p
(
v|c
)

= Z(v)
12∏
i=1

g(i)αv(i). (2)

Here, α is a scaling parameter. Since the value of this pa-
rameter has no effect on the decoding result, it is fixed to
1. Z(v) is a positive number which only depends on the
observation v, hence it is the same for every path and its
value is not considered.

2.1.2 Spectral Flux Feature

In order to render the “burst of energy” which appears at a
note onset, we exploit the spectral flux feature, which has
been proven efficient in a beat tracking task [1]. We use
this feature for a “probabilistic” onset detector.

The spectral flux values are first normalized so that their
maximum is 1. A local threshold is then computed by ap-
plying a 67% rank filter of length 200 ms to the output.
We then obtain an “onset feature” by subtracting this local
threshold to the normalized spectral flux. Finally, a simple
logistic model is used in order to calculate the likelihood
of an onset. We denote by A the random variable repre-
senting the attack (onset) indicator ({A = 1} means that
there is an attack). For a value f of the onset feature, we
have:

p
(
A = 1|f

)
=

ebf

1 + ebf
(3)

where b is a positive parameter, which controls the “confi-
dence” of the onset detector: when the value increases, the
decision is closer to a deterministic detector (with proba-
bilities 0 or 1).

2.2 Chord and Onset Models

Two structures of HMMs are evaluated in this work. In the
Chord structure, a chord is represented by a single state,
and only the pitch information (described by the chroma
vectors) is taken into account. The spectral flux is not con-
sidered.

The Onset model is a refinement of the previous struc-
ture which takes the onset information into account. In this
model, a lower “level of hierarchy” is added in order to
model two possible phases of a chord: attack and sustain.
Earch chord corresponding to an onset is split into two suc-
cessive phase states: attack (A = 1) and sustain (A = 0),
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Figure 2. State Structure of the chord and onset models for
the previous score (A and S stand for respectively attack
and sustain).

which share the same chroma vector model. The two types
of features are supposed to be independent. The chroma
feature is assumed to depend only on the chord state while
the onset feature only depends on the phase state. Hence,
if we assume an uninformative prior about the phase state,
i.e. p(A = a) = 1

2 , we have:

p
(
v, f |c, a

)
∝ p
(
v|c
)
p
(
A = a|f

)
(4)

where these other probabilities are expressed in (2) and (3).
Each state of the model is then the combination of a chord
and a phase: we write Sn = (Cn, An). Equation (1) is
then:

Ŝ = argmax
S∈S

N∏
n=1

p(vn|Cn)p(An|fn). (5)

Six different values are tested for the parameter b of eq. (3):
0, 0.1, 1, 10, 50 and 100.

The structures of the two models are compared in Fig. 2.
For the Onset model, the lower level states are represented
inside the “chord super-states”. In the example, the fourth
super-state contains only a sustain state, because the tran-
sition from the previous chord to the fourth one does not
correspond to an onset, but to the extinction of one note.

3. A NOVEL HIERARCHICAL PRUNING
APPROACH

In order to speed up the decoding phase, we use a hierar-
chical pruning approach, inspired by the multi-scale Dy-
namic Time Warping (MsDTW) algorithm [11]. The idea
is to first obtain a coarse alignment and then use the result
to prune the search space at a more precise level.

For these coarse alignments, we take advantage of higher
musical structures than what we call chords, namely beat
and bars. These structures, given by the score, allow for
a meaningful hierarchical segmentation of the music. At
each of these levels, a HMM can be built, whose states
correspond respectively to the beats and to the bars of the
score. As the considered temporal units are larger and the
precision needed at these levels is lower, the observations
used for the alignment are calculated over longer windows,
with a smaller time resolution. Figure 3 illustrates the con-
struction of the automata and the calculation of the obser-
vations, at the three levels of hierarchy.

The algorithm proceeds as follows: on the highest level
automaton, we calculate for every state s and every frame
n, the maximum likelihood that can be obtained by going

Score: automaton

Chords

Beats

Bars

Audio: integration windows

1

1 2 3 4

2: 4:3: 5: 6: 7:1:

Figure 3. Finite state machines (modeling the score) and
integration windows (over which are calculated the obser-
vations) at the three considered levels of hierarchy.

through state s at time n. This value is written

P̄ (s, n) = max
S∈S,Sn=s

{
P (y|S)

}
(6)

where S is the set of acceptable paths and y is the ob-
servation sequence. This calculation can be done by a
“forward-backward version” of the Viterbi algorithm. It
is very similar to the forward-backward algorithm, and can
be deduced from it by replacing the sum operation by a
max. This algorithm allows for the calculation of the opti-
mal path Ŝ = Ŝ1, . . . , ŜN at the same time.

The values P̄ (s, n) are then used to prune the low-score
paths. We do not use the posterior probabilities P (Sn|y)
instead of P̄ (s, n) for the pruning process since we are in-
terested in the path’s scores and not in the states’. Since a
state probability is the sum of the probabilities of the path
going through this state, there is a risk that some states
containing many average-score paths may be favored com-
pared to a state containing an isolated high-score path.

This “pruning score” P̄ (s, n) constitutes an important
difference with the beam search strategy. Indeed, beam
search operates directly at the low level and it uses the par-
tial Viterbi score

P̃n(s, n) = max
S∈S,Sn=s

{
P (y1, . . . , yn|S1, . . . , Sn)

}
(7)

in order to prune the low-score path. Hence it only con-
siders the observation up to the current frame, whereas our
approach takes into account the whole signal.

The structure of the automaton is left-right, thus the re-
lation defined on the set of states by: s ≤ s′ iff there is
a path from s to s′, is a total order. It is then possible to
define the “furthest admissible states” S−n and S+

n for each
time n by:

S−n = min
{
s
∣∣ P̃ (s, n) ≥ P (y|Ŝ)

η

}
(8)

S+
n = max

{
s
∣∣ P̃ (s, n) ≥ P (y|Ŝ)

η

}
, (9)

where η is a parameter which controls the minimum likeli-
hood of the paths that are kept in the pruning process. We
define the tolerance radii δ− and δ+ as the maximum num-
ber of states that separate respectively S−n from Ŝn and Ŝn
from S+

n , for n ∈ {1, . . . , N}.
These tolerance radii specify a set of states around the

alignment path, which allows for a reduction of the search
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Figure 4. Principle of the hierarchical pruning method.
The grey scale of a cell correspond to the maximum likek-
ihood of the paths going through this cell. At the beat level,
only the domain delimited by the black lines is explored.

space at the lower level. Hence, the alignment at the lower
level is calculated by exploring only this domain. Figure 4
illustrates this pruning process. The same procedure is re-
peated at each level.

The observations used in the higher levels are integrated
(moving average) versions of the chroma vectors, with a
lower time resolution. This use of averaged observations is
musically justified since the harmony (and thus the chroma
information) is in general homogeneous over a whole beat
(or bar) duration. The spectral flux is not considered in
these levels. The integration windows are chosen in order
to take into account the fastest reasonable tempi. For the
beat level, this duration is 200 ms, corresponding to a very
fast tempo of 300 beats per minute. For the bar level, the
integration window is 1 s, that is a four-four time with a
tempo of 240 bpm. A 50% overlap is used, yielding time
resolutions of respectively 10 Hz and 2 Hz. The histogram
model exposed in Sec. 2 is used and the distribution g
corresponding to a state (beat or bar) is the superposition
of the distributions associated to the chords that it contains,
weighted by their theoretical durations (in beat).

The main difference between the MsDTW pruning ap-
proach and ours is that the tolerance widths δ are not given
as a parameter, but they are computed from the data in an
adaptive way, controlled by the parameter η. It is often
more advantageous to set the tolerance in terms of like-
lihood (parameter η) than in terms of deviation from the
alignment path (parameter δ). Indeed, it is possible that
a wrong path obtains a slightly higher score than the right
one at a coarse level (for example a path following a differ-
ent repetition of a musical phrase). If this wrong path is far
(in terms of states) from the right alignment, the latter one

will be discarded by the fixed-radii pruning process. On
the other hand, it is reasonable to suppose that the “real”
alignment path always obtains a high likelihood, and thus
is not pruned out by our method.

4. EXPERIMENTS

4.1 Database and Evaluation Measure

The database used in this work comprises 94 songs of the
RWC-pop database [7]. These songs are polyphonic multi-
instrumental pieces of length 2 to 6 minutes, most of which
contain percussion. The alignment ground-truth is given
by the synchronized MIDI files provided with the record-
ings. The same MIDI files are exploited as target scores.
However, as we intend to be able to handle any type of
score, in particular scores with missing or unreliable tempo
indications, we artificially introduce (rather extreme) tempo
modifications in these MIDI files: every 4 bars, a random
tempo change (between 40 and 240 bpm) is added.

The chosen evaluation measure is the recognition rate,
defined as the fraction of onsets which are correctly de-
tected less than θ = 300 ms away from the real onset time.
This threshold is based on the MIREX’06 contest 1 .

4.2 Reference System: DTW

We compare our alignment models to a reference DTW
(Dynamic Time Warping) system. The DTW algorithm
searches for the alignment between two sequences which
minimizes the cumulative costs along the alignment path.

This method is used to synchronize the sequence of ob-
servations (chroma vectors and spectral flux) extracted from
the audio with a sequence built from the score. This “pseudo-
synthesis” is performed by associating to each chord a chroma
vector template (having the same values as the probabil-
ity distributions of Sec. 2.1.1) and a duration given by the
score. The obtained sequence is then linearly stretched so
that its length is the same as the recording. For the onset
detection feature, the reference sequence is a sequence of
zeros and ones, the ones correponding to the onset loca-
tions in the “pseudo-synthesis”.

For this system, the spectral flux sequence is locally
normalized so that its maximum is 1 on a 2-s sliding win-
dow. The local distance between the observation (v, f̄)
(respectively chroma vector and locally normalized spec-
tral flux) and the template counterpart (g, a) is given by:

D
(

(v, f), (g, a)
)

=
v · g
‖v‖‖g‖

+ w |f − a| , (10)

where · denotes the inner product and w is a non-negative
parameter which controls the weight given to the onset de-
tection feature. Between three different values which have
been tested { 1

2 , 1, 2}, the value w = 1 has been found
the most efficient on our database. A DTW system which
considers only the chroma observation (corresponding to
w = 0) is also evaluated.

1 Music Information Retrieval Evaluation eXchange 2006, score
following task: http://www.music-ir.org/mirex/2006/
index.php/Score_Following_Proposal
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System Recognition Rate Search Space
DTW (only chroma) 78.77% 100%DTW (chroma+onset) 86.07%

Chord 64.49% 16.2%
Onset (b = 0) 69.70%

26.3%

Onset (b = 0.1) 70.49%
Onset (b = 1) 73.14%

Onset (b = 10) 82.90%
Onset (b = 50) 87.16%

Onset (b = 100) 84.71%

Table 1. Recognition rate and mean search space (fraction
of the DTW algorithm search space) as a function of the
alignment system.

4.3 Performances of the Baseline Systems

The recognition rates and average search space of several
settings are summed up in Table 1. The search space is
the number of explored cells (state/frame pairs, or audio
frame/pseudo-synthesis frame pairs, depending on the sys-
tem) over the total number of cells required for the DTW
algorithm (the square of the number of audio frames).

First, it can be seen that the DTW which considers only
the chroma observations performs better than the chord
model. This is easily explained by the fact that the former
system implicitly models the note durations in the pseudo-
synthesis stage, whereas the statistical models do not take
them into account. This increases the precision, but also
the search space (from 16.2% to 100%).

However, the use of the onset information allows the
onset model to overcome this shortcoming and to obtain a
slighty better precision than the DTW systems, with a still
lower complexity. Indeed, a recognition rate of 87.16% is
obtained with a value of b = 50, against 86.07% for the
DTW system wich takes into account the onset observa-
tion, whereas the mean search space is 26.3%.

The increase of accuracy induced by the onset observa-
tion is smaller in the DTW system than in the statistical
models. This is probably due to the difficulty of modeling
the spectral flux process. Indeed, this onset detection func-
tion is not very well modeled by our binary templates, and
the logistic model of (3) seems to be more relevant to this
process than the local distance of (10).

The increase of search space in the onset model is bene-
ficial to the alignment precision. Indeed, even with a value
of b = 0 (which means that the onset information is not
used) the recognition rate increases from 64.49% (chord
model) to 69.70%. The explanation lies in the fact that
most chords are then represented by two states. Thus the
minimum duration of each chord is two frames instead of
one, which prevents the system from rapidly skipping sev-
eral states and leads to a smoother alignment path.

4.4 Pruning Evaluation

This hierarchical pruning method is run on the RWC pop-
ular music database. The lowest-level model uses the on-
set structure with parameter b = 50. Several values of the
pruning parameter η have been tested and the experimental
results are summed up in Table 2. The mean search space

System Search Space Run time Errors
Beats Onsets (in s) (nb)

Onset b = 50 – 26.26% 482 0
BS Nh = 700 – 5.74% 733 0

MsDTW δ=150 2.24% 14.02% 1180 0
δ = 60 0.81% 7.93% 362 0
η = 1000 0.42% 4.53% 300 0
η = 200 0.35% 4.07% 276 0
η = 100 0.33% 3.82% 265 0
η = 50 0.30% 3.59% 256 0
η = 20 0.26% 3.22% 240 0
η = 10 0.23% 2.97% 229 2
η = 5 0.19% 2.59% 215 2

Table 2. Performance of our implementation of the align-
ment algorithm using different settings of the hierarchical
pruning method.

sizes are displayed for each pruning setting at the beat and
chord level, as the fraction of explored cells over the total
number of cells used by the DTW algorithm. At the bar
level, it is 0.16% for MsDTW and 0.04% for all the other
systems. For each setting, the total run-time is also pre-
sented, as well as the number of “pruning errors” on the
whole database (94 songs). A pruning error occurs when a
part of the ground truth alignment path is discarded by the
pruning process. The implementation of the algorithms is
in MATLAB, and was run on a Intel Core2, 2.66 GHz with
3.6 Go RAM under Linux.

The performance of three additional reference systems
is displayed. This first one is the baseline onset model with
no pruning. The second reference system uses beam search
(BS). This algorithm performs the decoding of the statisti-
cal model similarly to the Viterbi algorithm, but maintains
only the best Nh paths, according to the partial Viterbi
score of (7). The minimum value of Nh for which the de-
coded path is the same as without pruning is Nh = 700.

The third reference system is a MsDTW (multi-scale
DTW) system [11]. This system performs a DTW align-
ment, but it uses a coarse-to-fine pruning process in order
to keep only a fixed neighborhood around the alignment
path, at each level. The same three levels as in 3 are used.
The deviation parameter value δ = 150 is the minimum
value yielding no pruning error on our database.

Finally, the last one uses constant tolerance radii δ− =
δ+ = 60. This value δ is the lowest one for which no
pruning errors are made.

In terms of alignment precision, all the systems which
do not make pruning errors obtain the same scores as the
reference system (87.16%). Thus, the reduction of the
search space does not affect the alignment precision.

The results show the benefits of this pruning method,
since the search space and run time of all the tested systems
which use it are lower than the reference system (without
pruning). As expected, the explored space decreases with
the value of η. No pruning error occurs until a value of η =
20, whose corresponding run-time is half of the reference
system (240 s against 484 s).

The benefit of this method compared to a fixed radius
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Figure 5. Number of explored states per audio frame at
the onset level for each song of the database, without and
with pruning (onset model with b = 50).

δ can also be seen: the tested system with δ = 60 (the
minimum value for no pruning error) runs in 362 s, and
requires more space than our “adaptive” pruning strategy.

The hierarchical strategy allows our approach to be more
effective than beam search (3.53% search space against
5.74%). Hence, considering the whole signal (although
at a coarse level) seems to reduce the risk of following
a promising path which will eventually come to a “dead-
end”. This problem could be adressed by estimating a
tempo process in a beam search approach, such as in [15]
or [4]. However the complexity of these models would be
much higher.

In Fig. 5 are displayed the numbers of explored states
per audio frame in each song of our database, for three
different pruning strategies: the reference system (without
pruning), the system using a fixed radius δ = 60 and the
system using our adaptive approach with η = 20. Both
pruning strategies achieve a significant reduction of the
search space on all the songs. More interestingly, we can
see that the search space width obtained with our pruning
strategy can greatly vary from songs to songs, whereas it
is more or less constant with a fixed δ (only affected by
the number of onset states in a beat). This variability is
uncorrelated to the original number of states in the score,
indicating that our approach manages to adapt the pruning
process to the data. Thus, whereas in some cases, the width
obtained with our method is greater than with a constant δ,
it is most of the time significantly smaller.

5. CONCLUSION

In this paper, we show that a novel hierarchical pruning
approach for the approximate decoding of a hidden state
model leads to a good precision in our alignment task,
with a low complexity. In our experiments, we find that
the recognition rate is even higher than a DTW system
when a description of note onsets is used additionally to
the chroma vectors, while keeping a lower complexity than
this algorithm in the decoding phase.

The proposed hierarchical pruning method further re-
duces the complexity without affecting the accuracy of the
system. The main advantage of this strategy compared to

the one used in [11] is that the tolerance radii can adapt to
the data, yielding a better overall efficiency.

In the continuation of this work, we will address the use
of a more elaborate model at the lowest level, which is now
feasible thanks to the pruning strategy. We will also try to
further reduce the number of states in the model, by taking
advantage of the repetitions in the musical structure.
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ABSTRACT 

This paper proposes an improved query by sing-

ing/humming (QBSH) system using both melody and lyr-

ics information for achieving better performance. Sing-

ing/humming discrimination (SHD) is first performed to 

distinguish singing from humming queries. For a hum-

ming query, we apply a pitch-only melody recognition 

method that has been used for QBSH task at MIREX with 

rank-1 performance. For a singing query, we combine the 

scores from melody recognition and lyrics recognition to 

take advantage of the extra lyrics information. Lyrics rec-

ognition is based on a modified tree lexicon that is com-

monly used in speech recognition. The performance of 

the overall QBSH system achieves 39.01% and 23.53% 

error reduction rates, respectively, for top-20 recognition 

under two experimental settings, indicating the feasibility 

of the proposed method. 

1. INTRODUCTION 

Query by singing/humming (QBSH) is an intuitive me-

thod for music retrieval. With a QBSH system, users are 

able to retrieve intended songs by singing or humming a 

portion of the intended song in order to retrieve it. Most 

of the QBSH researches so far utilize melody information 

as the only cue for retrieval [1-3]. Ghias et al. [1] pro-

posed one of the early papers of query by humming, 

which used three different characters („U‟, „D‟, and „S‟) 

are to represent pitch contours. McNab et al. [2] enhanced 

the representation by considering rhythm information of 

segmented notes.  Jang and Gao [3] proposed the first 

QBSH system using dynamic time warping (DTW) over 

frame-based pitch contours, which accommodates natural 

singing/humming for better performance. More recently, 

QBSH task is held in MIREX since 2006 and quite a few 

related methods and corresponding performance can be 

found therein [12]. 

Lyrics are also an important part of a song which serve 

the cue for detecting the song's identity, or its mood or 

genre. However, the use of lyrics for content-based music 

analysis appears much later. Wu et al. [4] and Chen [14] 

used lyrics to enhance music mood estimation. Wang et 

al. [5] proposed one of the few music information retriev-

al systems which used both lyrics and melody informa-

tion. However, queried lyrics were input by the user in-

stead of decoded from the user's acoustic input. Xu et al. 

[6] suggested that acoustic distance must be considered 

for a lyrics search when the user input approximate lyrics 

query. Our method also takes advantage of the extra in-

formation provided by the lyrics, except that we attempt 

to decode the queried lyrics from the user's singing input 

directly, which does not impose extra efforts on the user. 

Suzuki et al. [13] also proposed a similar system which 

took singing input for lyrics recognition, and the results 

were verified by the corresponding melody information. 

However, their system could not handle humming input, 

which is likely to happen in a music retrieval system. 

Moreover, the corpus used for their experiments is too 

small to justify the method‟s feasibility. 

The proposed QBSH system uses singing/humming 

discrimination (SHD) to detect whether there exists lyrics 

information. If yes, we apply speech recognition to de-

code the lyrics information and come up with a lyrics 

score. The lyrics score is combined with the melody score 

to enhance the recognition performance. 

The remainder of this paper is organized as follows. 

The proposed QBSH system is introduced in section 2. 

Experimental results are shown in section 3. We conclude 

this paper and address directions for future work in sec-

tion 4. 

2. SYSTEM OVERVIEW 

Figure 1 shows the schematic diagram of the proposed 

system, in which blocks enclosed by thicker lines are the 

methods proposed by this paper. In the offline part, 

acoustic models and test corpus are used to obtain the 

model similarity, where each model is characterized by 

an RCD (right-context dependent) bi-phone. Phone-level 

similarity is used for SHD, and syllable-level similarity 

is used for lyric scoring. Lexicon network is also created 

in this part for lyrics recognition. In the online part, SHD 

is first performed to decide if the acoustic input is sing-

ing or humming. If the input is classified as humming, 

the result is based on melody recognition alone. On the 

other hand, if the input is classified as singing, lyrics 

recognition is performed to obtain a decoded string of 

lyrics. The output of our system then uses the combined 

scores of melody and lyrics. The melody recognition 

module uses UPDUDP [11] for pitch extraction and li-

near scaling (LS) [7] for comparison, which achieved the 
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best performance during QBSH task in MIREX2009 [12]. 

The other components will be explained in detail in the 

following subsections. 

 

Figure 1. The proposed system. 

 

2.1 Phone and Syllable Similarity 

An intuitive approach to SHD is based on the number of 

distinct phones decoded in the user's acoustic input. The 

more distinct phones in an acoustic query, the more likely 

the query is singing instead of humming. In counting dis-

tinct phones, we also need to take phone similarity into 

consideration for achieve most robust results. Moreover, 

we also need to have similarity between syllables for ob-

taining lyrics score. The procedure for computing phone 

and syllable similarity is explained next. 

Firstly, we can obtain the confusion matrix of 156 bi-

phone models by performing free phone decoding on a 

speech corpus by HTK [8]. Then we can use the accuracy 

rates of the confusion matrix as the similarity measure 

between any two phone models. It should be noted that 

the similarity is not symmetric, but this does not affect 

the proposed methods.  

After defining phone similarity 𝐾, the similarity matrix 

of 423 Mandarin syllables can be computed via dynamic 

programming (DP) as follows. Considering two syllables 

𝑆𝑦𝑙𝐴  and 𝑆𝑦𝑙𝐵 , with phone sequence 𝑎1, 𝑎2 ,… , 𝑎𝑚  and 

𝑏1 , 𝑏2,… , 𝑏𝑛 , respectively, the definition of the similarity 

between 𝑆𝑦𝑙𝐴  and 𝑆𝑦𝑙𝐵  is: 

 

𝑠𝑖𝑚 𝑆𝑦𝑙𝐴 , 𝑆𝑦𝑙𝐵 =  
𝑡𝐴,𝐵(𝑚 ,𝑛)

max (𝑚 ,𝑛)
 ,                  (1) 

 

where the recursive formula of 𝑡𝐴,𝐵 is: 

 

𝑡𝐴,𝐵 𝑖, 𝑗 = max 

𝑡𝐴,𝐵 𝑖 − 1, 𝑗 

𝑡𝐴,𝐵 𝑖, 𝑗 − 1 

𝐾(𝑎𝑖 , 𝑏𝑗 )+𝑡𝐴,𝐵 𝑖 − 1, 𝑗 − 1 

 ,     (2) 

 

with boundary conditions : 

 

𝑡𝐴,𝐵 𝑖, 𝑗 =  0, 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0.                 (3) 

 

Figure 2 shows the image of 423 x 423 similarity matrix 

in gray scale, where white points represent 1, and black 

points represent 0. 

 

Figure 2. The similarity matrix of 423 Mandarin syl-

lables displayed as a gray-scale image. 

 

2.2 Singing/Humming Discrimination 

The basic rationale behind SHD is that the number of dis-

tinct phones occurring in humming is often less than that 

in singing. Thus, free phone decoding is performed on the 

singing input to obtain a phone sequence. If these phones 

are similarity in acoustics, then the effective count of dis-

tinct phones should be less. Assume there are n distinct 

phones 𝑎1 , 𝑎2,… , 𝑎𝑛  in the decoded phone sequence, then 

the effective count is defined as follows. Let 𝑃 to be a sub 

matrix of 𝑠𝑖𝑚 for 𝑎1𝑎2 ,… , 𝑎𝑛 , then we can calculate the 

effective phone count in the sequence: 

 

𝑟 = 𝑛 + 1−𝑚𝑒𝑑𝑖𝑎𝑛(𝑠)                   (4) 

 

where 𝑟 is the effective phone count, and 𝑠 is the column 

sum of 𝑃.  A lower effective phone count indicates that 

the acoustic query is more likely to be humming instead 

of singing. In particular, when 𝑎1𝑎2,… , 𝑎𝑛  are very dif-

ferent in pronunciation, then 𝑚𝑒𝑑𝑖𝑎𝑛 𝑠  is close to 1 and 

𝑟 is close to 𝑛. On the other hand, if these phones are 

very similar in pronunciation, then 𝑚𝑒𝑑𝑖𝑎𝑛 𝑠  is close to 

𝑛 and 𝑟 is close to 1. 

Thus an optimum threshold of effective phone count 

can be set for SHD for minimizing classification error. 

2.3 Lyrics Recognition 

If an acoustic query is classified as singing, we can apply 

lyrics recognition for better performance. Since the aver-
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age length of a singing query is about 7 seconds, the first 

30 syllables of each song are used to build up the recogni-

tion network. (Without loss of generality, here we assume 

the anchor position of each query is the beginning of a 

song. If not, then we can simply use the phrase onset as 

the beginning to select the first 30 syllables for building 

the network.) By considering the recognition network as a 

finite state machine, this network is determinized and 

minimized by AT&T FSM tool [9]. Moreover, to handle 

the case of "stop in the middle", an epsilon transition is 

added between each internal state and the terminal state. 

Figure 3 shows an example of the network, consisting of 

the first 3 syllables of 2 songs, where Song-𝑖-Syl-𝑗 de-

notes the 𝑗-th syllable of the 𝑖-th song, and <eps> denotes 

the epsilon transition. 

 

Figure 3. An example of the recognition network. 

 

2.4 Lyrics Scoring and Combination 

After running Viterbi search over the recognition network, 

we can decode a syllable sequence that has the maximum 

likelihood. To obtain the similarity score based on lyrics, 

we then compare the decoded syllable sequence with the 

30 syllables of each song. This is again achieved by DP 

instead of using exact string matching since we want to 

have a score indicating the similarity. Consider two sylla-

bles sequences, 𝑆𝑒𝑞𝐴  and 𝑆𝑒𝑞𝐵  containing syllables 

𝐴1,𝐴2,… ,𝐴𝑚  and 𝐵1 ,𝐵2 ,… ,𝐵𝑛  respectively. The recur-

sive formula for DP is: 

 

𝑡(𝑖, 𝑗) = 𝑚𝑎𝑥  

𝑡(𝑖 − 1, 𝑗)

𝑡(𝑖, 𝑗 − 1)

𝑠𝑖𝑚 𝐴𝑖 ,𝐵𝑗  + 𝑡(𝑖 − 1, 𝑗 − 1)
  ,  (5) 

 

with boundary conditions : 

 

𝑡 𝑖, 𝑗 =  0, 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0               (6) 

 

Thus, 𝑡(𝑚,𝑛) can be taken as a similarity score between 

the decoded string from the query and the lyrics of each 

song in the database. In implementation, we let 𝑆𝑒𝑞𝐴  to 

be the decoded string, and the first 𝑘 syllables of the lyr-

ics (with 𝑘 equal to the length of 𝑆𝑒𝑞𝐴 ) to be 𝑆𝑒𝑞𝐵  for 

computing the score. 

For score combination, we need to normalize each in-

dividual score. For a given query to a song database of 

2000 songs, we will eventually obtain vector 𝐿  of size 

2000 representing the lyrics raw similarity scores, and 

vector 𝑀 of size 2000 representing the melody raw dis-

tance measures (computed by LS).  We than linearly 

normalize 𝑀  and −𝐿 , respectively, to the range [0, 1]. 

The normalized distance vectors 𝑀′ and 𝐿′ are then com-

bined via the following formula:  

 

   𝐶 = 𝑝 × log𝑀′ + (1 − 𝑝) × log𝐿′            (7) 

 

Then the minimum entry in C corresponds to the most 

likely song considering both lyrics and melody. Note that 

if 𝑝 is equal to 0, only the lyric information is considered. 

On the other hand, if 𝑝 is equal to 1, only the melody in-

formation is considered. The value of 𝑝 was set to 0.5 

empirically in our experiments. 

 

3. EXPERIMENT 

3.1 The Dataset 

The public corpus MIR-QBSH [10] is used extensively in 

our experiment, where the anchor positions for all queries 

are from the beginning. Since our speech recognition en-

gine is for Mandarin, therefore we selected 2469 clips 

from the corpus which correspond to 23 Mandarin songs. 

To increase the complexity of the comparison, we added 

2131 noise songs to the database, such that the total size 

of the database is 2154. 

First of all, 80 clips are selected from the corpus with 

evenly distributed gender and types (singing/humming). 

These clips were hand labeled to have the ground truth, 

and then used to train the threshold-based classifier for 

SHD. The remaining 2389 clips are used for testing the 

overall performance of our QBSH system.  

Acoustic models of RCD bi-phones for computing 

phone/syllable similarity were obtained by training over a 

normal Mandarin speech of 80 subjects. 

3.2 Experimental Results 

3.2.1 Results of SHD 

Figure 4 shows the detection error tradeoff (DET) curve 

of SHD using the training data of 80 clips, where singing 

clips are viewed as positive while humming clips nega-

tive. Based on this plot, the threshold of effective count is 

set to 20.4958 for SHD to achieve equal error rates of 

false positive and false negative. Figure 5 gives the dis-

tribution of the effective phone counts of the training data, 

together with the identified Gaussian models via maxi-

mum likelihood estimate. The Gaussian models for posi-

tive data (of size 𝑛1)  and negative data (of size 𝑛2) are 

denoted as 𝑔1 and 𝑔1, respectively, in the figure. 
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Figure 4. The DET curve of the training data for SHD. 

 

  

Figure 5. The distribution of the effective phone counts 

of the training data of SHD. The Gaussian models for 

positive data (of size 𝑛1)  and negative data (of size 𝑛2) 

are 𝑔1 and 𝑔1, respectively. 

 

To evaluate the performance of SHD over unseen data, 

1183 clips were selected (out of the 2389 clips) and hand 

labeled as singing or humming. Table 1 shows confusion 

matrix of SHD, with a recognition rate of 78.61%. In par-

ticular, 10.99% of the humming clips are misclassified as 

singing, which may generate erroneous output in lyrics 

recognition. Initial error analysis indicates that some of 

the misclassified humming clips are caused by a variety 

of pronunciation during the humming. On the other hand, 

24.51% of the singing clips are misclassified as humming, 

which is not so detrimental to the overall performance 

since the accuracy of melody recognition is already high. 

 

 

 

recognition results 

ground truth 
singing humming 

singing 
75.49% 

(687) 

24.51% 

(223) 

humming 
10.99% 

(30) 

89.01% 

(243) 

Table 1. Recognition result of SHD. 

 

3.2.2 Lyrics recognition and Combined Results 

When we applied SHD to 2389 clips, 1477 of them were 

classified as singing. Figure 6 shows the top-20 recogni-

tion rate of these 1477 clips over a song database of size 

2154. The top-20 recognition rate is 72.99%. 

 

Figure 6. The top-20 lyrics recognition rate of 1477 clips 

classified as singing. 

 

The value of 𝑝 in Eq. (7) was set to 0.5 empirically. 

Now it is time to do a post analysis by plotting the overall 

recognition rates versus the values of 𝑝, as shown in Fig-

ure 7. Apparently the performance stays much the same 

for these two cases of LS resolution equal to 11 and 51, 

respectively, as long as the value of p lies within [0.3, 

0.9]. This confirms our selection of p value of 0.5. 
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Figure 7. The plots of overall recognition rates with re-

spect to the value of 𝑝, for two cases of different LS reso-

lutions. The maximum of these two curves are labeled 

with circles. 

 

Figure 8 shows the overall performance of the pro-

posed QBSH system. Different values of resolution in LS, 

11 and 51, were used in this experiment. The lower and 

upper ratios of LS were set to be 0.5 and 2. The top-20 

recognition rates of resolution 11 and 51 are 92.80% and 

96.19%, respectively, which outperform the baseline sys-

tem (88.20% and 95.02%). The error reduction rates are 

39.01% and 23.53%, respectively. 

 

 

Figure 8. The top-N recognition rate of 2389 clips. 

 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed an improved QBSH sys-

tem that distinguishes singing queries from humming 

ones, and then applies different procedures in order to 

take advantage of the lyric information of singing input. 

The experimental results demonstrate the effectiveness of 

the proposed system, with error reduction rates of 39.01% 

and 23.53% for LS with resolutions of 11 and 51,  respec-

tively. 

Several directions for immediate future work are under 

way. Currently, our acoustic models were obtained by 

training on normal speech corpus. This can be improved 

by training or simply adapting using singing corpora in-

stead. Moreover, it would be desirable to incorporate 

multi-lingual speech recognition since there are quite a 

few famous songs with the same tune but different lyrics 

in different languages.  
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ABSTRACT 

Page appearance and layout for music notation is a 
critical component of the overall musical information 
contained in a document. To capture and transfer this 
information, we outline an interchange format for OMR 
applications, the OMR Interchange Package (OIP) 
format, which is designed to allow layout information 
and page images to be preserved and transferred along 
with semantic musical content. We identify a number of 
uses for this format that can enhance digital 
representations of music, and introduce a novel idea for 
distributed optical music recognition system based on this 
format. 

1. INTRODUCTION 
Page appearance and layout for music notation is a 
critical component of the overall musical information 
contained in a document. For example, musically 
semantic information, such as note duration, is often 
visually augmented by adjusting horizontal spacing to 
reflect a spatial representation of note duration [1]. Some 
scholars infer geographical origin or time period based on 
note shapes, or even, in the case of handwritten 
manuscripts, by the particular “hand” of a scribe [2, 3]. 
The layout may also reveal some subtle intent of the 
composer, especially in sketches and autograph 
manuscripts [4]. 

To date, however, there has been little effort to 
attempt to preserve this information when a page is 
scanned and processed by optical music recognition 
(OMR) software. This presents several opportunities for 
improvement. By maintaining a direct relationship 
between recognized musical symbols and the original 
image it was extracted from, we contend that musicians 
and music scholars will be better able to understand and 
interpret digital facsimiles of musical documents while 

simultaneously providing the ability to index, search, and 
retrieve these documents. 

For OMR researchers, this also presents an 
opportunity to build large global ground-truth datasets. 
By maintaining the relationship between the graphical 
representation and the semantic interpretation of a 
musical symbol, we can build sets of training data which 
exemplar-based adaptive supervised-learning software 
can use to train and test its recognition models. 
Furthermore, by allowing for these datasets to be shared 
between different adaptive OMR platforms, we can take 
advantage of work done by others who have created 
different datasets to further improve recognition software. 
This is discussed further in Section 4. 

In this paper, we present the OMR Interchange 
Package (OIP) format, a common interchange format for 
OMR applications that bundles notation, images, and 
metadata together in a single file. Work on this format 
was inspired by functionality present in large, established 
digitization projects, most notably Google Books and the 
Internet Archive. These projects use file formats designed 
to preserve layout information in textual materials. We 
discuss two such formats, hOCR and DjVu, and examine 
them for ideas of how we might construct a similar music 
notation-specific format. 

Rather than build a completely separate set of 
specifications, the OIP format combines established 
standards into an application profile—that is, we provide 
specifications on how these standards should be 
combined. These standards concern music, image, and 
metadata encoding formats, contained within an 
established standard for packaging and serializing these 
files into a single file, for easy transport across multiple 
systems. By taking an application profile approach, 
instead of establishing a new, monolithic standard, we 
hope to take advantage of existing software to manipulate 
component files, e.g., reading and writing images, and 
delegate the maintenance and improvement of the 
component standards to their respective communities. 

One of the goals for developing the OIP format is to 
provide a mechanism for interchange between different 
elements in an OMR digitization workflow, from capture 
through recognition and into any number of potential 
uses. Specific design considerations were made to ensure 
that non-common practice notation systems are 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. 

© 2010 International Society for Music Information Retrieval  

51

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  
 

accommodated, to allow for encoding earlier musical 
print and manuscript sources. 

2. BACKGROUND 
2.1 Optical Character Recognition 
The Google Books project [5] and the Internet Archive 
[6] are industrial-scale initiatives to convert physical 
textual items, e.g., books, magazines, and newspapers, to 
searchable digital representations. As items in these 
collections are digitized, their page images are processed 
by OCR software, extracting the textual content, and 
facilitating full-text searching of their collections. 

Within the OCR workflow, the precise location on the 
page where a word occurs is saved through the use of a 
bounding box that defines a region around the word. 
When the words on the page are converted to searchable 
text, the bounding box coordinates are stored, along with 
the word itself. In some cases, similar coordinates can be 
stored to outline higher-level page elements such as lines, 
columns, or paragraphs. Figure 1 shows an example from 
the Internet Archive of a page image returned from a full-
text search with the phrase “Them will I gild with my 
treasure” highlighted in reference to its position on the 
original page scan. 

 

 
Figure 1: Document with search terms high-
lighted in situ. (Source: Internet Archive) 

In contrast, we can find little evidence to suggest 
similar techniques are in widespread use for databases of 
music documents. Instead, collections either choose to 
simply display the page image with no transcription of 
the source available (e.g., [7, 8]), or transcribe the content 
into a searchable and manipulable digital format without 
reference to the original page layout (e.g., [9]). For music 
documents, where the layout of the symbols can play a 
critical role in determining the intended interpretation of 
the music, we posit that a hybrid approach is needed, 
similar to that demonstrated by Google Books or the 
Internet Archive. 

Critical to the development of these systems is a 
common standard that allows various systems in an OMR 
workflow to capture and preserve images, layout, and 
music semantics. To help inform our development of 
such a standard, we identified formats used in the textual 
domain for encoding layout information: The hOCR 

format, developed as an output format for the Google-
sponsored OCRopus document analysis software, and 
DjVu, a third-party document imaging solution adopted 
by the Internet Archive for displaying its digitized texts. 

2.1.1 hOCR 
hOCR [10] is a format that uses standard HTML tags, but 
embeds OCR-specific information that can be read and 
manipulated by other OCR software. According to the 
authors of the hOCR specification, it can be used to 
encode “layout information, character confidences, 
bounding boxes, and style information” [11]. For generic 
HTML rendering software, like a web browser, the OCR-
specific information is ignored and the page is rendered 
without interference. 

For the developers of hOCR, HTML was preferred 
over the definition of a new XML format since the 
HTML specification already contains many tags for 
defining document elements, such as headings, tables, 
paragraphs, and page divisions. Furthermore, the files can 
be viewed, manipulated, and processed with a wide range 
of existing tools, such as browsers, editors, converters, 
and indexers. 

To encode information about a page layout, hOCR 
uses the “class” and “title” attributes of HTML tags. For 
example, a bounding box outlining a paragraph may be 
defined as: 

 
 
<div class=”ocr_par” id=”par_7” 

title=”bbox 313 324 733 652”> 
   ...paragraph text... 

</div> 
 

Figure 2: hOCR format defining a paragraph 
bounding box 

The bounding box is given as two sets of pixel co-
ordinates corresponding to the upper-left and lower-right 
corners of the box, relative to the upper-left corner of the 
image. 

Page images corresponding to the text output are 
linked from the hOCR document with either a local path 
name or an HTTP URL. The identity and integrity of the 
image file can be verified by embedding the MD5 
checksum of the image file in the hOCR file. 

2.1.2 DjVu 
DjVu is primarily designed as a highly efficient method 
of compressing and transferring images and documents. 
Included in its specification, however, is the ability to 
include a “hidden” text layer within a binary DjVu file. 

The DjVu format specification [12] defines seven 
different types of document “zones,” each featuring a 
bounding box defined by an offset co-ordinate from a 
previously defined zone and a given width and height. 
These zones can define boundaries for pages, columns, 
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regions, paragraphs, lines, words, or characters. Text is 
encoded as UTF-8. 

2.2 Music Applications 
hOCR and DjVu are not the only formats that can provide 
positional information about text. The popular PDF 
standard allows for this functionality as well. They serve, 
however, as examples of existing formats in the textual 
domain from which we can begin to discuss similar 
approaches in the musical domain. 

To begin building our standard, we define five basic 
criteria that the OIP format should conform to: 

2.2.1 Must be self-contained 
Files conforming to the OIP format should be self-
contained in a single file. The choices here are between 
defining a unique binary format, as the DjVu format 
does, or allowing multiple files to be packaged as a single 
file. 

2.2.2 Must encapsulate multi-page documents 
Both hOCR and DjVu encode multiple pages in a single 
file. hOCR provides only the textual content of those 
pages and links to externally stored images, while DjVu 
stores both image and content for multiple pages within a 
single file.  

2.2.3 Must encapsulate notation, images, and metadata 
For each page in the document our format must include a 
page image, the notation content, and, if available, any 
other metadata about that page. Here, the music domain 
requires a different approach than the text domain, owing 
largely to the complexity of encoding music notation over 
encoding text. In Section 3, we discuss the specific 
standards chosen for this criteria. 

2.2.4 Must use existing standards 
Drawing largely on the arguments made by the hOCR 
developers to justify their use of HTML over creating a 
new format [10], we specify that, wherever possible, 
existing standards must be used in preference to creating 
one. This is especially true for encoding notation, where 
new formats are introduced every few years, often 
designed to meet very specific needs, and fall out of use 
within a few years of being introduced. By using existing 
standards, we hope to ensure a broader support 
community beyond our specific application. 

2.2.5 Must allow extended information 
Beyond the required notation, images, and metadata 
storage, we see the OIP format as a general-purpose 
container for storing any extra information about the page 
content. However, this extra information should be 
opaque to clients that do not support it, and should not 
interfere with their ability to read and write OIP files. For 
example, a specific application could save extended 
colour-space information about an image in the OIP, 

available to applications that can use it, but ignored by 
clients that cannot use it. 

3. FORMAT SPECIFICATION 
As discussed in the previous sections, we have chosen to 
combine existing standards into an application profile. In 
this section we will discuss our specific choices of 
standards and how they should be combined to create an 
OIP-compliant file. In the interests of space we will 
specifically avoid any in-depth explanation about the 
component standards themselves, since they are freely 
available for consultation. 

3.1 Packaging 
An OIP file is, at its most basic representation, a 
collection of files and folders serialized as a single file. 
Rather than simply allowing an ad hoc method of 
bundling these files and folders together, we chose to use 
a very minimal standard for organizing the content of 
these files. 

There are several ways to approach this problem. One 
type of solution is exemplified by formats such as the 
Metadata Encoding and Transmission Standard (METS). 
Data typically represented in binary formats (e.g., 
images) can be stored, for example, within an XML file 
by Base64 encoding. A single METS file containing 
many high-quality images could potentially be many 
gigabytes in size, however. 

A second approach is the file bundle approach. This is 
used by many formats, including Microsoft’s XML-based 
Office formats (e.g., DOCX) and the Java JAR format. 
These files are simple file and folder hierarchies 
containing component files, such as images or text files. 
They appear as a single file archive by using a well-
known file archiving system (e.g., ZIP or TAR). Once 
these bundles have been uncompressed, read and write 
operations on the smaller component files can be done 
directly via the native file system and not on the single 
monolithic XML file. 

The BagIt format is a lightweight file bundling 
specification. It was created and is maintained by the 
Library of Congress and the California Digital Library. It 
is currently in the process of becoming an IETF standard 
[13]. The name refers to a colloquial rendering of the 
Enclose and Deposit method [14], also known as the “bag 
it and tag it” method. 

This format defines a simple hierarchy of files and 
folders, known as a “bag.” These can be represented 
plainly on any computer system as standard files and 
folders, or they can be converted into a single file using 
ZIP or TAR packaging. 

Minimally, one directory and two files must be 
present in every bag in order to be considered compliant 
to the standard. A data directory contains any 
arrangement of files or folders are stored. This is the 
bag’s “payload.” One of the required files is a bagit.txt 
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file that simply stores the version of the BagIt 
specification to which that bag conforms and the 
character encoding used for the metadata files. The 
second required file is a manifest file listing checksums 
for each file within the data directory, helping to ensure 
the integrity and identity of each of the files in the bag. 
Other optional files are outlined in the BagIt 
specification [13]. 

Figure 3: A generalized OIP structure. 

For the OIP format, we further specify a file hierarchy 
within the data directory of a bag. A folder is created in 
the data directory for each page in a multi-page 
document, allowing the format to accommodate 
documents of any size. In each page folder, we store files 
relating to this page. A generalized example of the OIP 
structure is given in Figure 3. 

This does not create incompatibilities with the 
original BagIt specification, as there is no structure to 
which the data directory must conform. Software for 
processing BagIt files will guarantee the integrity and 
identity of each file in the bag without needing to 
understand the OIP format. 

3.2 Notation 
There are many file formats for encoding music notation, 
but for this specific application we require a format that 
can encode positional coordinates for every musical 
element on the page. This eliminates many traditional 
formats used for notation interchange, such as MIDI. The 
Notation Interchange File Format (NIFF) fits this 
requirement, but is no longer actively maintained and is 
considered an obsolete standard [15]. The SharpEye 
output format (MRO) [16] also encodes this information 
and is used by [17] to provide positioning information for 
musical elements. This format, however, is specifically 
designed for use with common Western notation (CWN), 
limiting its usefulness for older or alternative notation 
systems. MusicXML [18] and NeumesXML [19] focus 

respectively on CWN and neumed notation, limiting their 
applicability for a broad range of notation systems. 

For OIPs, we recommend the use of the Music 
Encoding Initiative (MEI) format as a notation encoding 
scheme. MEI inherits many features of the Text Encoding 
Initiative (TEI), a format specifically designed for 
scholars representing original text sources in digital form. 
MEI can also adequately represent CWN as well as other 
notation systems [20]. 

MEI allows for bounding boxes, or “zones,” to be 
defined for a given image and identified with a unique 
ID. These id’s can then be attached to semantically 
defined musical elements in MEI. A brief example is 
shown in Figure 4. 

Figure 4: A MEI-formatted example showing 
bounding box definitions. 

In MEI, the <graphic> element defines a link to a 
page image, while subsequent <zone> elements outline 
regions of this image, identified with a unique xml:id 
attribute. These zones are then used later within the music 
notation markup, as illustrated in Figure 4 by the 
<measure> tag. It uses the facs attribute to link a 
defined bounding box to a measure definition. This 
attribute is available to all music notation elements. 

3.3 Images 
For image formats, we follow the guidelines given in [21] 
for musical master archival images. These guidelines 
recommend lossless file encoding formats such as TIFF 
or PNG for archival formats. While there is no technical 
reason for not using other formats such as lossy JPEG, 
we suggest lossless formats to maintain the highest 
possible image quality. 

One issue we have not yet addressed is how to 
reconcile the differences between an original image and 
an image file that has been cropped, de-skewed, and 
prepared for processing by an OMR package. Since any 
geometric manipulation will affect the co-ordinates of the 
musical elements on the page, it would be difficult to 
automatically reconcile the position of musical elements 
in an original image, when the notation was extracted 

<bag-directory> 
     |- bagit.txt 
     |- manifest-md5.txt 
     |- [other optional bagit files] 
     |- data 
         |- [page 1] 
         |     |- [image files] 
         |     |- [notation files] 
         |     |- [metadata files] 
         |- [page 2] 
         |     |- [image files] 
         |     |- [notation files] 
         |     |- [metadata files] 
         |- [etc.] 

 

<facsimile source="s2"> 
   <surface> 
     <graphic xml:id="s2p1"    
xlink:href="m000001719_0001.tif"/> 
     <zone xml:id="s2p1z1" lrx="0" 
lry="0" ulx="0" uly="0"/> 
     <zone xml:id="s2p1z2" lrx="1" 
lry="1" ulx="10" uly="10"/> 
   </surface> 
</facsimile> 

<!-- ... --> 

<measure n="1" xml:id="d1e656" 
facs="s2p1z1"/> 
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using a processed image. This becomes especially 
important when considering the OIP format as an 
interchange format between multiple OMR systems, each 
of which may use different image processing techniques, 
or even require that certain elements of an image be 
removed prior to recognition, such as staff lines. 

To reconcile this, we specify that, at a minimum, an 
OIP should contain the original page image, and a page 
image that the OMR system used during the recognition 
stage prior to removing any musically relevant elements. 
The additional inclusion of any intermediary images used 
by OMR software is permitted, but not required. For an 
OIP that has been processed by multiple OMR packages, 
each package should save its source image and 
recognized notation in MEI. 

3.4 Metadata 
MEI has the facilities to capture bibliographic, analytic, 
and editorial metadata. There is also the possibility that 
other metadata can be captured and stored within the file 
hierarchy. While we do not require any further metadata 
beyond what can be captured in MEI, we do not prevent 
the inclusion of other files with metadata formats 
describing, for example, detailed image processing 
techniques, historical and archival information, or library-
specific local information. 

4. APPLICATIONS 
We have formulated the OIP format as an interchange 
format between multiple elements of an OMR workflow, 
from digitization through recognition, and finally into a 
delivery format specifically designed to capture and 
transfer page layout along with the semantic music 
content. In this section, we identify three specific 
applications where OIP files can be implemented as a 
standardized format for constructing tools useful for 
music scholars and OMR research. 

4.1 Diplomatic Facsimiles 
While there is some disagreement on the actual definition 
of the term, we define diplomatic facsimile as “a 
visualization (on-screen or in print) from the digital 
transcription of a source artifact, such that it has the same 
semantic content as the source, and its glyphs and layout 
are similar to the original source” [22]. 

For notation styles outside of the CWN tradition, a 
diplomatic facsimile provides the ability to transcribe a 
musical source with its original layout and symbols, 
without interpreting it by using modern music notation 
symbols. Barton, Caldwell, and Jeavons provide an 
excellent overview of the importance of this distinction 
[23]. Diplomatic facsimiles also allow libraries and 
archives to withhold distribution of original images due 
to copyright restrictions, while simultaneously allowing 
scholars access to a faithful electronic reproduction of the 

original musical content, including precise positioning for 
each musical element in the document. 

4.2 Online Music Document Databases 
An online database of music documents, similar to Goo-
gle Books or the Internet Archive’s display of textual 
documents, could be constructed with OIP as a source 
format for these documents. In an OMR workflow, OIP 
files would serve as an interchange format between the 
OMR software and a database system designed to orga-
nize, index, and display these documents. 

As mentioned in the introduction, music scholars 
often use visual cues in the layout of a page of music to 
determine how a piece of music might be performed, or 
where it came from. Viewing these documents in their 
original form, while still making them available for 
content-specific searching and indexing, would provide a 
valuable research tool for many music scholars. 

Furthermore, an online music document database 
could highlight relevant musical phrases matching a 
user’s query, displayed as an invisible layout on the 
original image. Advanced computer processing could 
potentially provide links between similar passages within, 
or across, musical pieces, allowing users to navigate a 
document by musical phrase. 

4.3 Distributed Optical Music Recognition 
The extent, variety, and variability of musical symbols 
pose a unique problem to optical music recognition 
software. These symbols encompass indications of pitch, 
duration, dynamics, tempo, or performer interpretation 
(e.g., turns and trills). Different printing practices or fonts 
also introduce variations in these shapes.  

Adaptive OMR (AOMR) software attempts to 
account for this variability by using machine-learning 
methods for understanding and interpreting new shapes, 
or variations on known shapes. These systems are often 
trained using human annotators or correctors, who 
provide a system with the correct musical interpretation 
of a graphical shape [24]. 

This training process is often the most tedious and 
expensive part of the OMR process. Developing training 
sets of sufficient quantity and variety is an expensive and 
labour-intensive process. Similarly, a poorly trained 
recognition system will require more human intervention, 
leading to lower overall throughput for any digitization 
and recognition initiative. For large digitization projects, 
this can have a significant impact on the overall cost of 
digitizing these materials [25]. 

With a common interchange format, however, these 
data sets could be built cumulatively. As new pieces of 
music are recognized and corrected, this work can be 
saved and used to train other AOMR clients with no 
further intervention by a human annotator. 

Perhaps more importantly, this concept can be used to 
build a distributed global network of AOMR clients. 
Sharing training data with other networked OMR clients 
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would allow them to build their recognition models using 
data previously provided by other members of the 
network. For example, an archive that has provided a data 
set of examples from a 16th-Century Italian music printer 
can make this data set available immediately to other 
members of the network, allowing these clients to 
immediately re-train their recognition systems to take 
advantage of this new data and increase their accuracy on 
this particular repertoire. 

5. CURRENT AND FUTURE WORK 
To date, we have finished the initial release of an open 
source Python library for reading and writing BagIt files, 
available at [26]. This is part of a larger project to 
develop a distributed optical music recognition system, a 
networked collection of adaptive OMR clients. 
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ABSTRACT

Social tags are receiving growing interests in informa-
tion retrieval. In music information retrieval previous re-
search has demonstrated that tags can assist in music clas-
sification and clustering. This paper studies the problem of
combining tags and audio contents for artistic style clus-
tering. After studying the effectiveness of using tags and
audio contents separately for clustering, this paper pro-
poses a novel language model that makes use of both data
sources. Experiments with various methods for combining
feature sets demonstrate that tag features are more useful
than audio content features for style clustering and that the
proposed model can marginally improve clustering perfor-
mance by combing tags and audio contents.

1. INTRODUCTION

The rapid growth of music the Internet both in quantity and
in diversity has raised the importance of music style analy-
sis (e.g., music style classification and clustering) in music
information retrieval research [10]. Since a music style is
generally included in a music genre (e.g., the style Progres-
sive Rock within the genre of Rock) a style provides finer
categorization of music than its enclosing genre. Also, for
much the same reason that all music in a single genre has
some commonality, all music in a single style has some
commonality belonging to a same style, and the degree
of commonality is stronger within a style than within its
enclosing genre. These properties suggest that by way of
appropriate music analysis, it is possible to computation-
ally organize music sources into not only musicologically
meaningful groups but also into hierarchical clusters that
reflect style and genre similarities. Such organizations are
likely to enable efficient browsing and navigation of music
items.

Much of the past work on music style analysis meth-
ods is based solely on audio contents and various feature
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extraction methods have been tested. For example, [32]
presents a study on music classification using short-time
analysis along with data mining techniques to distinguish
among five music styles. Pampalk et al. [17] combine
different similarity sources based on fluctuation patterns
and use a nearest neighbor classifier to categorize music
items. More recently Chen and Chen [3] use long-term
and short-term features that represent the time-varying be-
havior of music and apply support vector machines (SVM)
to classify music into genres. Although these audio-
content-based classification methods are successful, music
style classification and clustering are difficult problems to
tackle, in part because music style classes are more nu-
merous than music genres and thus computation quickly
reaches a limit in terms of the number of styles to classify
music into. One then naturally asks whether adding non-
audio features push style classification/clustering beyond
the limit of audio-feature-based analysis.

Fortunately, the rapid development of web technologies
has made available a large quantity of non-acoustic infor-
mation about music, including lyrics and social tags, latter
of which can be collected by a variety of approaches [24].
There has already been some work toward social tag based
music information retrieval [1,11,13,16,23]. For example,
Levy and Sandler [16] demonstrate that the co-occurrence
patterns of words in social tags are highly effective in
capturing music similarity, Bischoff et al. [1] discuss the
potential of different kinds of tags for improving music
search, and Symeonidis et al. [23] propose a music recom-
mendation system by performing latent semantic analysis
and dimensionality reduction using the higher order SVD
technique on a user-tag-item tensor.

In this paper we consider social tags as the source of
non-audio information. We naturally ask whether we can
effectively combine the non-audio and audio information
sources to improve performance of music retrieval. Some
prior work has demonstrated that using both text and audio
features can improve the ranking quality in music search
systems. For example, Turnbull et al. [25] successfully
combine audio-content features (MFCC and Chroma) with
social tags via machine learning methods for music search-
ing and ranking. Also, Knees et al. [12] incorporate au-
dio contents into a text-based similarity ranking process.
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However, few efforts have been made to examine the ef-
fect of combining tags and audio-contents for music style
analysis. We thus the question of, given tags and repre-
sentative pieces for each artist of concern, whether the tags
and the audio-contents of the representative pieces com-
plement each other with respect to artist style clustering,
and if so, how efficiently those pieces of information can
be combined.

In this paper, we study the above questions by treat-
ing the artist style clustering problem as an unsupervised
clustering problem. We first apply various clustering algo-
rithms using tags and audio features separately, and exam-
ine the usefulness of the two data sources for style cluster-
ing. Then we propose a new tag+content (TC) model for
integrating tags and audio contents. A set of experiments
is conducted on a small data set to compare our model with
other methods, and then we explore whether combining the
two information sources can improve the clustering perfor-
mance or not.

The rest of this paper is organized as follows. In Section
2 we briefly discuss the related work. In Section 3 we intro-
duce our proposed TC model for combining tags and con-
tents for artist style clustering. We conduct comprehensive
experiments on a real world dataset and the experimental
results are presented in Section 4. Section 5 concludes.

2. RELATED WORK

Audio content based automatic music analysis (clustering,
classification, and similarity search in particular) is one of
the most important topics in music information retrieval.
The most widely used audio features are timbral texture
features (see, e.g., [26]), which usually consist of Short
Term Fourier Transform (STFT) and Mel-Frequency Cep-
stral Coefficients (MFCC) [20]. Researchers have applied
various data mining and statistically methods on these fea-
tures for classifying or clustering artists, albums, and songs
(see, e.g., [3, 5, 18, 19, 26]).

Music social tags have recently emerged as a popular
information source for curating music collections on the
web and for enabling visitors of such collections to express
their feelings about particular artists, albums, and pieces.
Social tags are free-text descriptions of any length (though
in practice there sometimes is a limit in terms of number of
characters) with no restriction on the words that are used.
Social tags thus can be as simple as a single word and as
complicated as a long, full sentence. Popular short tags
include heavy rock, black metal, and indie pop and long
tags can be like “I love you baby, can I have some more?”

As can be easily seen social tags are not as formal as
descriptions that experts such as musicologists provide.
However, by collecting a large number of tags for one sin-
gle piece of music or for one single artist, it seems pos-
sible to gain understanding of how the song or the artist
is received by the general listeners. As Lamere and Pam-
palk point out [13] social tags are widely used to enhance
simple search, similarity analysis, and clustering of music
items [13]. Lehwark, Risi, and Ultsi [15] use Emergent-
Self-Organizing-Maps (ESOM) and U-Map techniques on

tagged music data to conduct clustering and visualization
in music collections. Levy and Sandler [16] apply latent
semantic dimension reduction methods to discover new se-
mantics from social tags for music. Karydisi et al. [11] pro-
pose a tensor-based algorithm to cluster music items using
3-way relational data involving song, users, and tags.

In the information retrieval community a few attempts
have been made to complement document clustering us-
ing user-generated tags as an additional information source
(see, e.g., [21]). In such work the role that social tags play
is only supplementary because the texts appearing in the
original data are, naturally, highly more informative than
tags.

The situation in the MIR community seems different
from this and the use of tags seems to show much stronger
promise. This is because audio contents, which are the
standard source of information, have to go through feature
extraction for syntactic or semantic understanding and thus
the distance between the original data source and the tag
in terms of informativeness appears to be much smaller in
MIR than in IR.

There has been some work exploring the effectiveness
of joint use of the two types of information sources for re-
trieval, including including the work in [25] and [12] where
audio contents and tags are combined for searching and
ranking and the work in [30] that attempts to integrate au-
dio contents and tags for multi-label classification of mu-
sic styles. These prior efforts are concerned with super-
vised learning (i.e., classification) while the present paper
is concerned with unsupervised learning (i.e., clustering).

3. TAG+CONTENT MODEL (TC)

Here we present our novel language model for integrating
tags and audio contents and how to use the model for artis-
tic style clustering.

3.1 The Model

Let A be the set of artists of interest, S the set of styles of
interest, and T the set of tags of interest. We assume that
for each artist, for each style, and for each artist-style pair,
its tag set (as a multiset in which same elements may be re-
peated more than once) is generated by mutually indepen-
dent selections. That is, for each artist a ∈ A and for each
nonempty set of tags t = (t1, . . . , tn), t1, . . . , tn ∈ T , we
define the language model, p(t | a), by

p(t | a) =
n∏

i=1

p(ti | a)

Similarly, for each style s ∈ S, we define its language
model p(t | s), by

p(t | s) =
n∏

i=1

p(ti | s)

Although we might want to consider the artist-style joint
language model p(t | a, s), we assume that the model is

58

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



dictated only by the style and that it is independent of the
artist. Thus, we assume

p(t | a, s) = p(t | s)
for all tags t ∈ T . Then the artist language model can be
decomposed into several common style language models:

p(t | a) =
∑

s∈S
p(t | s)p(s | a).

Instead of directly choosing one style for artist a, we as-
sume that the style language models are mixtures of some
models for the artists linked to a, i.e.,

p(s | a) =
∑

b∈A
p(s | b)p(b | a),

where b is an artist linked to artist a. Combining these
yields the following model:

p(~t | a) =
n∏

i=1

∑

s∈S

∑

b∈A
p(ti | s)p(s | b)p(b | a).

We use the empirical distribution of the observed artists
similarity graph for p(b | a) and let Bb,a = p̃(b | a). The
model parameters are (U,V), where

Ut,s = p(t | s), Vb,s = p(b | s).
Thus, p(ti | a) = [UV>B]t,a.

The artist similarity graph can be obtained using meth-
ods described in Section 3.2. Now we take the Dirichlet
distribution, the conjugate prior of multinomial distribu-
tion, as the prior distribution of U and V. The parame-
ter estimation is maximum a posteriori (MAP) estimation.
The task is

U,V = arg min
U,V

`(U,V), (1)

where `(U,V) = KL
(
A‖UV>B

)
− ln Pr(U,V).

Using an algorithm similar to the nonnegative matrix
factorization (NMF) algorithm in [14], we obtain the fol-
lowing updating rules:

Uts ← Uts

[
CB>V

]
ts

Vbs ← Vbs

[
BC>U

]
bs

where Cij = Aij/[UV>B]ij . The computational algo-
rithm is given in Section 3.3.

3.2 Artist Similarity Graph Construction

Based on the audio content features, we can construct the
artist similarity graph using one of the following popular
methods, which is due to Zhu [33].

ε NN graphs A strategy for artist graph construction is the
ε-nearest neighbor algorithm based on the distance
between the feature values of two artists. For a pair
of artists i and j, if the distance d(i, j) is at most ε,
draw an edge between them. The parameter ε con-
trols the neighborhood radius. For the distance mea-
sure d, the Euclidean distance is used throughout the
experiments.

exp-weighted graphs This is a continuous weighting
scheme where Wij = exp(−d(i, j)2/α2). The pa-
rameter α controls the decay rate and is set to 0.05
empirically.

3.3 The Algorithm

Algorithm 1 is our method for estimating the model pa-
rameters.

Algorithm 1 Parameter Estimation
Input: A: tag-artist matrix.

B: artist-artist relation matrix;
Output: U: tag-style matrix;

V: artist-style matrix.
begin
1. Initialization:

Initialize U and V randomly,
2. Iteration:

repeat
2.1 Compute Cij = Aij/[UV>B]ij ;

2.2 Assign Uts ← Uts

[
CB>V

]
ts

,

2.3 Compute Cij = Aij/[BUV>]ij ;

2.4 Assign Vbs ← Vbs

[
BC>U

]
bs

,

until convergence
3. Return V
end

3.4 Relations with Other Models

The TC model uses mixtures of some existing base lan-
guage models as topic language models. The model is dif-
ferent with some well-known topic models such as Prob-
abilistic Latent Semantic Indexing (PLSI) [8] or Latent
Dirichlet Allocation (LDA) [2] since they assume the topic
distribution of each object is independent of those of oth-
ers. However, this assumption does not always hold in
practice since in music style analysis, artists (as well as
songs) are usually related to each other in certain ways.
Our TC model incorporates an external information source
to model such relationships among artists. Also, when the
base matrix B is an identity matrix, this model is iden-
tical to PLSI (or LDA), and the algorithm is the same
as the NMF algorithm with Kullback-Leibler (KL) diver-
gence loss [6, 29].

4. EXPERIMENTS

4.1 Data Set

For experimental purpose, we use the data set in [30]. The
data set consists of 403 artists and one representative song
per artist. The style and tag descriptions are obtained re-
spectively from All Music Guide and Last.fm, as described
below.
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4.1.1 Music Tag Information

Tags were collected from Last.fm (http://www.last.fm). A
total of 8,529 tags were collected. The number of tags
for an artist ranged from 3 to 100. On average an artist
had 89.5 tags. Note that, the tag set is a multiset in that
the same tag may be assigned to the same artist more than
once. For example, Michael Jackson was assigned “80s”
for 453 times.

4.1.2 Audio Content Features

For each song we extracted 30 seconds of audio after the
first 60 seconds. Then from each of the 30-second audio
clips, we extracted 12 timbral features using short-term
Fourier transform following the method described in [27].
The twelve features are based on Spectral Centroid, Spec-
tral Rolloff, and Spectral Flux. For each of these three
spectral dynamics, we calculate the mean and the standard
deviation over a sliding window of 40 frames. Then from
these means and variances we compute the mean and the
standard deviation across the entire 30 seconds, which re-
sults in 2× 2× 3 = 12 features. We mention here that we
actually began our exploration with a much larger feature
set of size 80, which included STFT, MFCC, and DWCH,
but in an attempt to improve results all the features but
STFT were consolidated which was consistent with the ob-
servations in [9].

4.1.3 Style Information

Style information was collected from All Music Guide
(http://www.allmusic.com). All Music Guide’s data are all
created by musicologists. Style terms are nouns like Rock
& Roll, Greek Folk, and Chinese Pop as well as adjec-
tives like Joyous, Energetic, and New Romantic. Styles
for each artist/track are different from the music tags de-
scribed in the above, since each style name appears only
once for each artist. We group the styles into five clus-
ters, and assign each artist to one style cluster. In the ex-
periments, the five groups of styles are: (1) Dance-Pop,
Pop/Rock, Club/Dance, etc., consisting of 100 artists in-
cluding Michael Jackson; (2) Urban, Motown, New Jack
Swing, etc., consisting of 72 artists including Bell Biv De-
Voe; (3) Free Jazz, Avant-Garden, Modern Creative, etc.,
consisting of 51 artists including Air Band; (4) Hip-Hop,
Electronica, and etc., consisting 70 artists including Afrika
Bambaataa; (5) Heavy Metal, Hard Rock, etc., consisting
of 110 artists including Aerosmith.

4.2 Baselines

We compare our proposed method with several state-of-
the-art clustering methods including K-means, spectral
clustering (Ncuts) [31], and NMF [14]. For each cluster-
ing method, we perform it on two data matrices, i.e., the
tag-artist matrix and the content-artist matrix, respectively.
We also perform them on an artist similarity graph which is
the linear combination of two similarity graphs generated
based on tags and contents respectively using the graph
construction method described in Section 3.2. NMF is not
suitable for symmetric similarity matrices, there exists its

clustering methods tags only content only both
K-means

√ √ √
Ncuts

√ √ √
NMF

√ √
SNMF

√
PHITS-PLSA

√

Table 1. The implemented baseline methods.

K-means Ncuts NMF
Accuracy 0.2953 0.4119 0.4020

NMI 0.0570 0.1166 0.1298

Table 2. Clustering results using tag information only.

symmetric matrix version, SNMF [28]. We use SNMF to
deal with the artist similarity matrix. We also use PHITS-
PLSI, a probabilistic model [4] which is a weighted sum of
PLSI and PHITS, to integrate tag and audio content infor-
mation for artist clustering. The summary of the baseline
methods is listed in Table 4.2.

4.3 Evaluation Methods

To measure the clustering quality, we use accuracy and
normalized mutual information (NMI) as performance
measures.

• Accuracy measures the relationship between each
cluster and the ground truth class assignments. It is
the total matching degree between all pairs of clus-
ters and classes. The greater accuracy, the better
clustering performance.

• NMI [22] measures the amount of statistical infor-
mation shared by two random variables representing
cluster assignment and underlying class label.

4.4 Experimental Results

4.4.1 Tags-only or Content-only

Tables 2 and 3 respectively show the clustering perfor-
mance using tag information only and the performance us-
ing content features only. We observe that the tags are
more effective than the audio content features for artist
style clustering. Figure 1 better illustrates this observation.

4.4.2 Combining Tags and Content

Table 4.4.2 show the performance of different clustering
methods using both tag and content information. Since the

K-means Ncuts NMF
Accuracy 0.2407 0.2803 0.2878

NMI 0.0168 0.0317 0.0349

Table 3. Clustering results using content features only.
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Figure 1. Clustering performance using tag or content in-
formation.

first three clustering algorithms are originally designed for
clustering one data matrix, we first construct an artist sim-
ilarity graph as follows. (1) We compute the pairwise Eu-
clidean distances of artists using the tag-artist matrix (nor-
malized by tags (rows)) to obtain a symmetric distance ma-
trix dt, and another distance matrix dc can be calculated in
the similar way using the content- artist matrix. (2) Since
dt and dc are in the same scale, we can simply combine
them linearly to obtain the pairwise artist distance. (3) The
corresponding artist similarity graph can be constructed us-
ing the strategies introduced in Section 3.2. Once the artist
similarity graph is generated, the clustering can be con-
ducted using any clustering method. Since both PHITS-
PLSI and our proposed method are designed to combine
two types of information, we can directly use the tag-artist
matrix as the original data matrix, and the similarity graph
is constructed based on content features. Figure 2 illus-
trates the results visually.

From the results, we observe the following:

• The artist clustering performance is not necessarily
improved by incorporating content features. This
means that the tags are more informative than con-
tents for clustering artist styles.

• Advanced methods, e.g. PHITS-PLSI and our pro-
posed method, can naturally integrate different types
of information and they outperform other tradi-
tional clustering methods. In addition, our proposed

method outperforms PHITS-PLSI because PHITS-
PLSI is more suitable for incorporating explicit link
information while our method is more suitable for
handling implicit links (graph).

• Continuous similarity graph construction such as
exp-weighted method performs better than discrete
methods, e.g. ε NN.

• Our proposed method with combined tags and con-
tents using ε NN graph construction outperforms
all the methods using only tag information. This
demonstrates our model is effective for combining
different sources of information, although the con-
tent features do not contribute much.
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(b) NMI

Figure 2. Clustering performance combining tags and con-
tents.

5. CONCLUSION

In this paper, we study artistic style clustering based on two
types of data sources, i.e., user-generated tags and audio
content features. A novel language model is also proposed
to make use of both types of information. Experimental re-
sults on a real world data set demonstrate that tag informa-
tion is more effective than music content information for
artistic style clustering, and our model-based method can
marginally improve the clustering performance by combin-
ing tags and contents. However, other simple combination
methods fail to enhance the clustering results by incorpo-
rating content features into tag-based analysis.
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K-means Ncuts SNMF PHITS-PLSI TC
ε NN Acc 0.2680 0.2804 0.2630 0.3152 0.3648
graph NMI 0.0193 0.0312 0.0261 0.0709 0.1587

exp-weighted Acc 0.2730 0.2903 0.2953 0.3316 0.4417
graph NMI 0.0226 0.0321 0.0389 0.1347 0.2008

Table 4. Clustering results combining tags and content.
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ABSTRACT 

In this paper, we propose a system which automatically 
generates slideshows for music, by utilizing images re-
trieved from photo sharing web sites, based on query 
words extracted from song lyrics. The proposed system 
consists of two major steps: (1) query extraction from 
song lyrics, (2) image selection from web image search 
results. Moreover, in order to improve the display dura-
tion of each image in the slideshow, we adjust image tran-
sition timing by analyzing the duration of each lyric line 
in the input song. We have conducted subjective evalua-
tion experiments, which prove that the proposal can gen-
erate impressive music slideshows for any input song.  

1. INTRODUCTION 

Music video, i.e., a series of visual content displayed with 
music, is a popular and effective way to increase the en-
tertainability of the music listening experience. The syn-
ergetic effect generated by combining visual and audio 
signals is known as the sympathy phenomenon in the field 
of psychology [1]. While it is easy to enjoy music videos 
created by others (usually by experts), it is extremely dif-
ficult for common users to create music video by them-
selves. Namely, the cost to collect video and/or image 
material that is suitable for the selected music is expen-
sive. Furthermore, the editing process to fuse the material 
with music also requires much intensive effort.  

An important factor which reflects the image of a song 
is its lyrics. Many songs have lyrics which impressively 
represent its visual scenery, which are difficult to be ex-
tracted from their acoustic features. Numerous research 
efforts focusing on song lyric analysis have been pre-
sented recently. For example, extraction of song genre, 
topic and mood, have been investigated in recently pre-
sented work [2-5]. 

This paper proposes a system which generates a music 
slideshow automatically, by using images retrieved from 
the web based on query words that are derived from song 
lyrics. By utilizing images from the web, which provides 
an abundant and diverse resource of images, our proposal 

is able to generate slideshows of wide variety, without 
applying any burden to the user. In order to generate such 
a system, we focus on two major issues. One is the auto-
matic extraction of words from the lyrics that are appro-
priate for web image search. The other is to select an op-
timal image to be displayed with each lyric line, from the 
set of candidate images obtained by web image search. 

In this paper, we firstly propose a query extraction me-
thod from song lyrics based on the frequency of social 
tags attached to retrieved images. This method is effective 
to generate appropriate queries to avoid the retrieval of 
images that are unsuitable for slideshows. Secondly, we 
propose a method which selects images from the search 
results, based on entire impression of the song lyrics. This 
method is expected to increase the unity among the im-
ages within the slideshow. Moreover, we apply a method 
to adjust image transition time within the slideshow, by 
analysis of the duration time per lyric line. Subjective us-
er evaluations will show that the proposal is capable of 
generating high-quality music slideshows automatically.  

2. RELATED WORK 

Mainly, two types of methods have been proposed for au-
tomatic generation of visual content from music. One is to 
generate visual contents using personal videos and/or 
photos [6-8], and the other is to utilize web images 
[9][10]. An advantage for using personal videos/photos is 
that the resulting slideshow will be more familiar to the 
user. However, in order to generate high-quality slide-
shows, a sufficient amount of personal material must be 
prepared, which is a heavy burden for casual users. 

The web image-based approach has two major issues: 
query selection and image selection. Appropriate selec-
tion of query words is expected to be effective for the re-
trieval of images for slideshows. However, existing works 
[9][10] have utilized naive methods for query word selec-
tion, such as stop word rejection, and selection of specific 
parts of speech (e.g., nouns). Using values to measure the 
significance of words, e.g. TF*IDF, can be utilized to se-
lect query words which are significant within the lyrics. 
However, it is unclear whether or not such measures are 
appropriate to select query words for web image search to 
generate slideshows.  

For the image selection problem, an idea has been pro-
posed in [10] to select images containing human faces and 
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outdoor scenery. However, no evidence has been pro-
vided that such images are optimal for music slideshows. 
A naive approach is to use the top-ranked images in the 
search results for the image selection. In this case though, 
highly ranked images are expected to be selected repeti-
tively for the same query, hence, the same image may be 
used for different songs with similar lyrics. Therefore, this 
approach is expected to generate slideshows with a lack 
of diversity, which may cause boredom for system users.  

3. SYSTEM CONFIGURATION 

The configuration of the proposed system is illustrated in 
Figure 1. The system selects one image for each lyric line 
of the input song. The selected image is displayed on the 
slideshow application (Figure 2) during music play. Im-
ages for the slideshow are collected from Flickr, a highly 
popular photograph sharing site [11], by using the Flickr 
API. As illustrated in Figure 1, we assume that a database 
which contains songs with their corresponding lyrics and 
timing information is prepared beforehand, as in the case 
of karaoke systems.  

 

Figure 1. System configuration 

The process flow of the system consists of the following 
three steps.  
1.  Candidate Image Retrieval 

This step extracts a candidate set of images per lyric 
line, by selecting appropriate query words from each 
line of the lyrics of the input song. 

2.  Image Selection 
This step selects an image from the previously ex-
tracted candidate image set for each line, to compose 
the slide show.  
 

3.  Synchronized Playback 
Selected images for each line are displayed with the 
song, according to the prepared timing information. 

 

Figure 2. A screenshot of the proposed system 

The following section explains the slideshow genera-
tion method, namely the candidate image retrieval and 
image selection steps, in detail.  

4. SLIDESHOW GENERATION METHOD 

4.1 Candidate Image Retrieval 

In this step, the system generates a query (set of words) 
for each lyric line of the input song. The image search re-
sult from Flickr, obtained by the generated query is uti-
lized as the candidate image set for the lyric line. The 
query is generated by analyzing the frequency of query 
words that are applied to the images in the search result, 
as social tags. This method is based on the hypothesis that, 
query words which are frequently used as social tags in 
Flickr have a significant meaning in the web image data-
base, thus are expected to be effective to retrieve images 
which are expressive of the song lyrics. This method ex-
tracts the optimum combination of query words for each 
lyric line, based on the following three ideas: 
 Words used in a lyric line should be prioritized, since 

such words accurately represent the content of the line. 
 The query should be composed with as many words as 

possible, since such queries are more specific than sin-
gle word queries, thus should result in more accurate 
image retrieval.  

 Multiple words within a query tend to co-occur as im-
age social tags.  

4.1.1 Process Flow of Social Tag-Based Query Selection 

Let Nline(li) represent the set of nouns used at the i-th line 
of the lyrics, Npara(li) represent the nouns used in the pa-
ragraph which contains the i-th line, and Nall(m) represent 
the word set which describes the general impression of 
song m (hereafter referred to as “general impression 
words”, details explained in Section 4.1.2). Furthermore, 
when W expresses the set of words used as the query for 

ARTIST 
TITLE 

LYRICS 
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the Flickr API, let DF(W) (Document Frequency) 
represent the number of images in the search results, and 
UF(W) (User Frequency) represent the number of unique 
users (counted by the user ID information of the Flickr 
images) in the search results.  

The proposed method extracts candidate query words 
for the i-th line in lyrics of music piece m, from Nline(li) 
and Npara(li). Words which have DF or UF value less than 
a pre-defined threshold are omitted. The thresholds for 
DF and UF are empirically set as 40 and 10, respectively. 

Next, let P(Nline(li)) express the power set of Nline(li): 
P(Nline(li))={Wline,1, Wline,2, … Wline,x}, where Wline,x ex-
presses the x-th set of words in P(Nline(li)). From 
P(Nline(li)), Wmax is selected under the condition that 
DF(Wmax) is not zero and that |Wmax| is the highest in 
P(Nline(li)), where |W| expresses the number of words in 
W. If more than one Wmax can be selected, the set which 
has the highest UF(Wmax) is selected. In this way, Wmax is 
regarded as the set of queries for the i-th line, Qline(li).  

Then, in order to maximize the number of query words 
(which is assumed to reduce the number of candidate im-
ages, and improve search accuracy), we expand the query 
by using words in Npara(li). Namely, expanded sets of 
words, which are composed of the power set of Npara(li), 
plus the previously derived Qline(li) are generated as 
P’(Npara(li))={Wpara,1+Qline(li), Wpara,2+Qline(li), … Wpa-

ra,y+Qline(li)} = {W’para,1, W’para,2, … W’para,y}. Then, in 
the same way as explained above, W’max is selected from 
P’(Npara(li)).  

Finally, by sending the all elements of W’max under the 
condition of ‘AND’ combination to Flickr, the system re-
trieves the candidate images for each line. If W’max has no 
elements, Nall(m) is used as the query. 

4.1.2 Estimation of General Song Impression 

As mentioned above, Nall(m) is the general impression 
word set, i.e., a set of words which expresses the collec-
tive impression of song m. This word set can be used for 
lyric lines from which no effective query words could be 
extracted. Furthermore, the general impression word set is 
also effective to generate slideshows with a sense of unity, 
as will be described in the next section.  

 The general impression of a song is estimated by text-
based classification based on its entire lyrics. Namely, 
song classifiers are preliminarily constructed by SVM 
[12] for each of the categories showed in Table 1. The 
categories are divided into three concepts: Season, 
Weather, and Time. Each concept consists of several cat-
egories. The concepts/categories in Table 1 are selected 
because they all represent important aspects of song lyrics, 
and are expressed by discriminative words. For the clas-
sifier, we used the software SVMlight [13] with a linear 
kernel for learning. Here, lyrics have been vectorized by 
TF*IDF, and the training data for the classifiers learning 

have been obtained by a manually collected database of 
Japanese pop songs with human-applied labels. If the 
classifier determines that a song m is positive for its re-
spective category, the name of the category is added to 
Nall(m). Note that multiple words may be included in 
Nall(m).  
 

Concepts Category labels 
Season Spring, Summer, Autumn, Winter 

Weather Sunny, Cloudy, Rain, Snow, Rainbow 
Time Morning, Daytime, Evening, Night 

Table 1. Concepts and category labels for describing 
general impression of music.  

4.2 Image Selection 

The next step is to select an image to compose the slide-
show from the candidate image set for each lyric line. We 
propose an image selection method based on an impres-
sion score, which represents strength of association be-
tween the image and the general impression words of the 
input song. Consideration of the impression score is ex-
pected to select images that are more fitting to the overall 
theme of the input song, thus increases the sense of unity 
among the images which compose the slideshow.  

4.2.1 Relevant Tag Extraction Based on Co-occurrence 
Probability 

Relevant tags for calculating the impression score are ex-
tracted based on co-occurrence probability of social tags 
on Flickr. In this paper, the co-occurrence probability is 
calculated based on UF instead of DF, since there are 
many tags with unusually high DF on Flickr, due to users 
who upload many images with the exact same tag set, 
while UF is more robust to the effect of such user beha-
vior.  

The relevance score between a general impression 
word nall ∈  Nall(m), and a given tag t, is calculated by the 
co-occurrence probability of t and nall, and also the im-
pression words which belong to the same concept as nall. 
For example, when the relevance score between “sum-
mer” and tag t is calculated, the same score for all other 
general impression words in the “Season” concept, i.e., 
“spring”, “autumn”, and “winter”, are also calculated. In 
this way, it is possible to extract tags which have specifi-
cally high relevance to nall, and decrease the score of gen-
erally popular tags, i.e., words which co-occur frequently 
with many other words.  

The co-occurrence score between general impression 
word nall and tag t, CoScore(t,nall), is defined as: 

( ) ( )
( )all
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Then, the relevance score R between nall and t is defined 
as: 
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where C is the set of general impression words which be-
long to the same concept of nall. For example, when nall = 
“spring”, C = {“spring”, “summer”, “autumn”, “winter”}, 
since “spring” belongs to the “Season” concept. In the 
definition of the relevance score in Eq.(2), the first term 
increases the score of tags which have high co-occurrence 
probability with nall. Subtraction of the second term de-
creases the score of tags with high co-occurrence proba-
bility of impression words which belong to the same con-
cept as nall. Note that wgt is a coefficient to adjust the im-
pact of the second term. This coefficient is set to 3, em-
pirically. 

Based on Eq.(2), the relevance score between each 
general impression word, and all tags which co-occur 
with the general impression word, are calculated. Tags 
whose relevance scores are over 0.024, and UF value ex-
ceeds 5, are regarded as relevant tags of each impression 
word. 

4.2.2 Definition of Impression Score 

For image selection, we calculate the impression score for 
all images in the candidate image set, based on the tags 
applied to the image, and the above relevance score. The 
object of this method is to select images with tags which 
have high relevance to the general impression words of 
the input song. As a result of this process, the impression 
score of images with “noisy” tags, i.e., tags with low re-
levance to the general impression of the input song, will 
be degraded.  

The impression score of image i is determined by 
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where Ti is the set of tags applied to image i, Trelated(nall) 
is the relevance tag set of general impression word nall, 
and R(t, nall) is the relevance score between nall and tag t.  

This impression score is computed for each candidate 
image, and the image with the highest score is selected to 
be displayed with its respective lyric line, during the sli-
deshow. 

4.3 Image Transition Timing Adjustment 

In the proposed system, the images obtained per lyric line 
are displayed in synchronization with each line during the 
song playback. Adequate usage of the line information 
leads to natural image transition during the slideshow, 

since lines represent a semantic unit in the lyrics. Howev-
er, display duration of each image may be too short/long 
when using the line information naively. For example, in 
a rap song with many lines, the image display time maybe 
too short, so that users may not be able to comprehend the 
images in the slideshow. On the other hand, in a slow bal-
lad song, images may be displayed for a long time, which 
may cause boredom.  

In order to improve the overall quality of the slideshow, 
we propose an image transition timing adjustment method, 
which adjusts the display time of images according to the 
duration of each lyric line. In this process, we first esti-
mate the typical duration time of images in a song. Then, 
the line of lyrics is “combined” or “divided”, based on the 
difference of the duration of the line and the typical dura-
tion time of the input song. In the “combining” process, 
lines with short duration time are combined with their ad-
jacent lines, and a single image is displayed for the com-
bined set of lines. In the “dividing” process, lines with 
long duration time are “divided” into plural sub-lines, and 
an image is to be displayed along with each sub-line.  

The process flow for image transition timing adjust-
ment consists of the following steps. 
1. Typical duration time of song m is calculated from the 

lyrics data. Namely, the mode value of the line dura-
tion time is used as the typical image duration time Im. 

2. Lines which have less than 4 [sec] duration time are 
“combined” with the next line. If there is no next line, 
it is “combined” with the previous line. However, lines 
are “combined” only if they belong to the same para-
graph. An image is retrieved for the newly combined 
line. 

3. A line which has more than 12 [sec] duration time is 
“divided” equally. The number of divisions is con-
trolled so that approximate duration time of the new 
“divided” line is equivalent to Im. When the line is “di-
vided” into n lines, n images are displayed from the 
candidate image set, which is retrieved based on the 
lyrics of the original line.  

4. Interlude sections (which generally have no lyrics) are 
divided by the same process as step 3. The general im-
pression words are used as query for image retrieval. 

5. EXPERIMENTS 

5.1 Outline 

In order to evaluate the quality of the proposed method, 
we have conducted a subjective evaluation experiment. 
This experiment compares the proposed method with oth-
er conventional methods, by asking 42 subjects to rate the 
slideshows generated by all methods. The subjects are 
asked to view the music slideshows of the same song, 
which are generated by the proposed and comparative 
methods (details of the methods are explained in Section 
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5.2). Then, each subject is asked to apply a five-ranked 
rating for each slideshow, based on the following evalua-
tion measures: 

a) Accordance between lyrics and images [content] 
b) Appropriateness of image display time [duration] 
c) Unity of all images in slideshow [unity] 
d) Overall quality [quality] 

In this experiment, we use 10 Japanese pop songs and 
28 ~ 29 subjects have provided evaluation results for each 
song. In order to evaluate the method described in Section 
4.3, we have selected songs so that half of these songs in-
clude “combined” lyric lines (hereafter referred to as the 
“combined set”) in the process of adjustment of image 
transition timing explained in Section 4.3, and the other 
half include “divided” lines (hereafter referred to as the 
“divided set”). 

5.2 Evaluated Methods 

The next three methods were evaluated and compared. 

A) MusicStory [9] 
The first comparative method generates slideshows 

based on the method proposed for MusicStory [9]. Name-
ly, all nouns are extracted from the entire lyrics of the in-
put song, and are sent to the Flickr API under the ‘OR’ 
combination. The images in the search result are dis-
played according to the transition timing determined by 
the BPM (beats per minute) of the input song 

B) TF*IDF based method 
The second comparative method extracts query words 

from the lyrics based on TF*IDF. The process flow to ob-
tain the image for the i-th line in the lyrics is described as 
follows. First, the nouns extracted from the i-th line in the 
lyrics, are sent to Flickr as query under the condition of 
‘AND’ combination. If the result has no images, the noun 
with the smallest TF*IDF is removed, and the rest of the 
nouns are sent to Flickr again. This process is repeated 
until a set of images are obtained. If the system is unable 
to retrieve images by any of the nouns in the line, the im-
ages from the previous line are re-used. Finally, the high-
est-ranked image in the search result (according to the 
Flickr “interestingness” ranking) is selected. Images are 
obtained for each line and switched in synchronization 
with line appearance within input song. In this paper, the 
DF element of TF*IDF is calculated based on our data-
base, which contains 3062 Japanese pop songs. 

C) Proposed method 
The third method is our proposal. Queries are generat-

ed from the lyrics by the social tag-based method, images 
are selected from the image search results based on the 
impression score, and the image transition timing is ad-
justed by the method described in Section 4.3. 

5.3 Experimental Results 

Figure 3 shows the average rating of all subjects, for each 
evaluation measure and method. The results in this Figure 
show that the proposed method has received the highest 
ratings, compared to the other methods for all evaluation 
measures. Most significantly, the proposed method has 
received the best rating for the overall quality, a differ-
ence which is statistically significant to the others based 
on t-test (p<0.001). These results prove that the proposed 
method is capable of generating high-quality slideshows.  
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Figure 3. Average ratings of each evaluation measure. 

 
Lyrics 

line 
“If this separation means departure, I will 
give my all smiles to you.” 

Query TF*IDF based “departure” (line word) 
Proposal “smile” (line word) 

Lyrics 
line 

“Will the memory of our encounter and the 
town we’d walked in be kept in our heart?” 

Query TF*IDF based “heart” (line word) 
Proposal “town” (line word) 

Lyrics 
line 

“I wish I could stay with you for even a 
moment.” 

Query 
TF*IDF based “moment” (line word) 

Proposal “car” and “night scene” 
(paragraph words) 

Lyrics 
line 

“But the shining days will never return to 
me today or tomorrow.” 

Query 
TF*IDF based “today” (line word) 

Proposal “evening” 
(general impression word) 

Table 2. Examples of image search queries generated by 
TF*IDF based and proposed methods. 

In order to analyze the query selection process of the 
proposed method, we compare the queries generated by 
the proposal to those of the TF*IDF based method. Ex-
amples are written in Table 2. This table shows examples 
of lyrics lines (English translations by the authors from 
the original Japanese lyrics) and the queries generated 
from the lines by the two methods. In the first two exam-
ples in this table, it is clear that the proposal has success-
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fully selected words which represent visual concepts. 
Contrarily, the TF*IDF method has selected words which 
are important, but also are difficult to be represented in a 
visual manner. This is due to the characteristic of the pro-
posed method, which considers the UF values of the 
words in Flickr. Furthermore, when there are no “visual” 
words in the lyrics, the proposal can appropriately gener-
ate queries, either from the lyric paragraph, or general 
impression words, as shown in the last two examples. 
These examples indicate that the proposed method is ef-
fective to generate good queries from any song lyric. 

Moreover, even when the queries generated by the 
both methods are the same, the proposal is capable of se-
lecting more suitable images for the song. For example, 
when both methods retrieve images by the query “town” 
for a winter song, the proposal appropriately selects an 
image of a town with falling snow, while the TF*IDF 
based method selects a general image of a town. Exam-
ples like this indicate that the proposed image selection 
method based on impression score can generate suitable 
slideshows which represent the overall theme of the song.  

Additionally, in the “duration” measure, the proposal 
has achieved ratings superior to the TF*IDF based me-
thod for 9 songs, indicating that the proposed adjustment 
method has succeeded in improving slideshow quality. 
The difference of the average ratings between the propos-
al and the TF*IDF based method for “combined sets” is 
0.21, while the difference for “divided sets” is 0.61. This 
result implies that the proposed method is more effective 
to improve slideshows for songs with lyrics that are slow-
ly sung, as in slow ballads.  

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a system to generate sli-
deshows for any given song, by using words in their lyrics 
to retrieve web images. We have proposed a query gener-
ation method for image search and an image selection me-
thod to compose slideshows from the image search results. 
Moreover, we proposed a method to adjust image transi-
tion timing based on the lines of lyrics. Results of subjec-
tive evaluations have shown that our system can generate 
highly satisfactory music slideshows. 

In the future, we plan to expand our system to utilize 
not only the lyrics, but also the acoustic features of the 
input song. For example, displaying slideshows with vari-
ous effects, such as zooming and panning, in accordance 
with the excitement of the song; as well as the use of beat 
information for image transition all are expected to im-
prove the impression of the generated slideshows.  
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ABSTRACT

A computational rhythm analysis system is proposed to
characterize the suitability of musical recordings for rhyth-
mic auditory stimulation, a neurologic music therapy tech-
nique that uses rhythm to entrain periodic physical motion.
Current applications of RAS are limited by the general in-
ability to take advantage of the enormous amount of dig-
ital music that exists today. The system aims to identify
motor-rhythmic music for the entrainment of neuromuscu-
lar activity for rehabilitation and exercise, motivating the
concept of musical “use-genres.” This work builds upon
prior research in meter and tempo analysis to establish a
representation of rhythm chroma and alternatively describe
beat spectra.

1. INTRODUCTION

Digital multimedia is now an integral, and somewhat in-
escapable, aspect of modern life. Personal handheld de-
vices are designed to streamline the acquisition, manage-
ment and playback of large volumes of content as cutting-
edge computing devices approach ubiquity. This trend, in
tandem with the commercial success of devices like the
iPod and iPhone, has encouraged an environment where
both content providers and end-consumers have access to
enormous digital music collections. As a result, individ-
uals are consuming and purveying more music than ever
before and this realization introduces the classic logisti-
cal issue of content navigation; when a library becomes
sufficiently large, more complex paradigms must be devel-
oped to facilitate the searching, indexing, and retrieval of
its items.

Conventional music library systems employ metadata
to organize the content maintained within them, but are
typically limited to circumstantial information regarding
each music track – such as the artist’s name or the year
it was produced – in addition to the somewhat amorphous
attribute of genre. Understandably, stronger information
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concerning the specific nature of a track allows for more
insightful and context-driven organizations or queries of a
library.

The need for content-specific metadata introduces the
challenge that someone, or something, must extract the rel-
evant information necessary. One approach, like the one
taken by the Music Genome Project, is to manually anno-
tate a predetermined set of attributes by a diligent group
of human listeners, a scheme with clear benefits and draw-
backs. While this method is substantiated by the obser-
vation that no computational system has yet matched it-
sreliability, it simply takes a human listener far too much
time to parse music. As an example, it would require about
68 years to listen to every track currently available in the
iTunes Store, 1 which now contains some 12 million tracks.

Needless to say, the development of computational al-
gorithms to extract meaningful information from digital
music provides the ability to process content as fast as an
implementing machine can manage. Many efforts over the
last twenty years proceed to these ends in varying levels
of scope and success. As mentioned however, no single
solution has been able to rival the performance and ver-
satility of even moderately skilled human listeners. It has
been proposed previously that, in this period of continued
research toward improved machine-listening technologies,
algorithms are likely to perform best when developed for a
specific application.

It is in this spirit that a computational system is pro-
posed to characterize the suitability of musical recordings
for rhythmic auditory stimulation, a neurologic music ther-
apy technique that uses rhythm to entrain periodic physi-
cal motion. The remainder of the paper is structured as
follows: Section II addresses the background of motor-
rhythmic music as a use-genre and the physiological moti-
vations; Section III briefly reviews relevant computational
models of human rhythm perception and details the pro-
posed system; Section IV explores the evaluation and visu-
alization of the algorithm results; and Section V discusses
the system behavior, observations, and directions of future
work.

1 With an average track duration of 3 minutes.
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2. BACKGROUND

Music and motion share a long and intertwined relation-
ship throughout human history. Dance comprised an in-
tegral role in many ancient civilizations for spiritual and
social purposes and work song served to synchronize the
physical labor of crews, as was common on sea-faring ves-
sels. In modern times, physical exercise is often tightly
coupled with music, ranging from joggers with personal
media players to fitness classes.

Many individuals empirically find that music facilitates
exercise, and recent advances in music therapy and neuro-
science give this notion credence. Through an increased
understanding of the underlying mechanisms involved in
a human’s physiological response to music, current knowl-
edge supports the position that rhythm serves as a powerful
external timing mechanism capable of entraining gait pa-
rameters and neuromuscular activity [1]. Building upon
this principle, rhythmic auditory stimulation (RAS) is “a
neurological technique using the physiological effects of
auditory rhythm on the motor system to improve the con-
trol of movement in rehabilitation and therapy” [2].

The impact of rhythmic auditory stimuli on movement
can be summarized as three primary components. Sensory
motor control provides priming and timing cues to indi-
vidual in guiding a motor response. Motor programs are
thought to be developed in the brain to control complex
motor movement, where rhythmic stimuli encourage the
creation of more efficient and fluid programs for cyclical
movement. Also, RAS supports goal-directed movement
where motion is cued by anticipation, a key musical ele-
ment, rather than by explicit events like heel strikes.

Appropriate music to achieve RAS, best described as
motor-rhythmic, must exhibit certain criteria: a strong beat-
percept, regular meter, little to no tempo deviation, and
maintain a tempo that encourages the desired entrainment
frequency, referred to in the literature as an individual’s
resonant frequency or limit cycle. The ability to succinctly
describe a class of musical content for a specific applica-
tion motivates its distinction as a use-genre.

A fundamental problem faced in RAS-based research
and applications is the inability to harness the abundance
of available digital music as external entrainment stimuli,
as no solution exists to characterize music for this purpose.
It is for this reason that nearly all uses of RAS are confined
to closely-monitored clinical settings that heavily rely on
human supervision to provide, and sometimes compose,
appropriate motor-rhythmic music. An automated system
would not only facilitate the practice of RAS as a clinical
rehabilitation technique, but also allow the integration of
RAS methodologies on a significantly broader scale, such
as exercise classes or personal fitness technologies.

Some previous systems attempt to link the rhythm, and
more specifically the tempo, of music and physical motion
in the form of running [3]. Each effort, however, incor-
porates the assumption that all content is accurately and
sufficiently described by a single tempo value. Quickly
considering the great diversity of musical content avail-
able, it is intuitive to conclude that this is inadequate. With

these goals in mind, we seek to develop a system capable
of quantifying the motor-rhythmic attributes of digital mu-
sic content for use in applications of RAS.

3. PROPOSED SYSTEM

Computational rhythm analysis algorithms for digital mu-
sic recordings have been extensively researched over the
last twenty years. Early systems were developed to per-
form tempo extraction of individual tracks and excerpts to
ascertain a single tempo value, and beat tracking to an-
notate the location of musical pulses in a recording, both
achieving notable success. More recent efforts aim to im-
prove upon these results by employing alternate mecha-
nisms to fulfill various system tasks or seek to determine
further information, such as meter [4] and beat spectrum
[5]. A more thorough review of recent leading systems is
provided in [6].

Being that human rhythm analysis remains the best per-
forming system, explicit modeling of the human auditory
system would appear to be a viable approach toward the
development of a machine-listening algorithm for rhyth-
mic analysis. By reducing the task of rhythm perception
to the functional components of the overall biological pro-
cess, each stage can be approximated computationally. At
the most rudimentary level, human rhythm perception is
achieved in a two-stage process of event perception and
periodicity estimation.

The idea of determining meaningful events in music
perception is admittedly a loaded topic. However, a seman-
tic debate can be mostly avoided in considering that there
are arguably three orthogonal dimensions in basic music
perception: rhythmic, tonal and timbral. In the context of
characterizing the suitability of music for RAS, the focus
of meaningful events can – and should – be constrained
primarily to rhythmic, or energy-based, events. Neglecting
the other two dimensions serves to emphasize the impor-
tance of rhythmic content.

Periodicity estimation can be computationally achieved
in a variety of different manners depending on performance
concerns, such as causality and complexity. One common
school of thought regarding human beat induction claims
that the phenomena of felt-beat it is achieved through the
resonating, or entrainment, of oscillator banks in the brain
as an interval-period based process [2]. This is a particu-
larly attractive option given the correlation between the os-
cillations of the human body as a dynamic mechanical sys-
tem during movement and those of a mathematical model.

Coincidentally, these are essentially the main system
components presented by Scheirer in [7] and Klapuri et
al in [4]. Building upon the work outlined therein, the pro-
posed system proceeds in the following manner: an input
signal is first decomposed into twenty-two subband com-
ponents via a maximally-decimated filterbank closely ap-
proximating the critical bands of the cochlea and rhyth-
mic events are derived for each. These onset events are
reduced to a single stream of pulses and periodicity esti-
mation is performed using a bank of modified comb-filter
oscillators. The resulting beat spectra is transformed into
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a human listener would easily discern between the two tones and perceive a

rhythm, a computer model using only a filterbank for segregation will not.

Alternatively, tonal or timbral onsets are not necessarily indicative of

motor-rhythmic music, but rather transient energy that can be traced to the

transduction of acoustic events in the cochlea.

With this in mind, a higher-resolution filterbank is presented to

decompose the acoustic waveform into a more accurate representation of motor

rhythmic music perception. Approximating the critical bandwidths of the

cochlea, a multi-level dyadic filterbank is designed to produce twenty-two

maximally decimated channels, as shown in Figure 14.
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Figure 14. A Perceptually–Motivated Dyadic Filterbank - Diagram of the
multi-rate decomposition of an input audio waveform using two complementary
half-band filters.

There are several noteworthy advantages in this signal-decomposition

approach. While the desire for a high-resolution filterbank that models human

Figure 1. A perceptually-motivated dyadic filterbank for
the decomposition of an input audio waveform.

Band Range (Hz) Band Range (Hz)
1 0 – 125 12 1750 – 2000
2 125 – 250 13 2000 – 2500
3 250 – 375 14 2500 – 3000
4 375 – 500 15 3000 – 3500
5 500 – 625 16 3500 – 4000
6 625 – 750 17 4000 – 5000
7 750 – 875 18 5000 – 6000
8 875 – 1000 19 6000 – 8000
9 1000 – 1250 20 8000 – 10000
10 1250 – 1500 21 10000 – 12000
11 1500 – 1750 22 12000 – 16000

Table 1. Frequency ranges for the resulting subband com-
ponents.

rhythm chroma over time, from which global features are
calculated to compactly describe the entirety of a music
track.

3.1 Cochlear Modeling

At this point in time, it is commonly held that the hu-
man auditory system is reasonably understood so far as the
point where electrical signals are encoded and transmitted
to the brain via the auditory nerve. Most stages prior to
neural processing though, such as diffraction of the pinnae
or dynamic compression from the bones of the inner ear,
are not overly integral to the perception of rhythm. How-
ever, the cochlea does perform a coarse frequency decom-
position as transduction occurs across the critical bands of
the organ. Scheirer observed that the perception of rhythm
is maintained when amplitude modulating white noise with
the envelopes of as few as four subbands of an audio wave-
form [7]. Therefore, it is proposed that monitoring the fluc-
tuation of energy in each critical band serves as a reason-
able approximation of preconscious observation of mean-
ingful rhythmic events.

Motivated in part by the system developed by Tzane-
takis et al [8], a multi-resolution time-domain filterbank
is used to decompose an input waveform into twenty-two
subbands. Whereas wavelet processing implements com-
plimentary half-band filters and a true pyramidal structure,
the filterbank divides frequency content similarly to the
cochlea, the ranges of which are listed in Table 1 and dia-
gramed in Figure 1.

It is important to note that, given the cascaded nature of

the structure, non-linear phase distortion introduced by IIR
filters is unacceptable and errors will propagate differently
in each band. This is particularly troublesome in the con-
text of a system developed to analyze the temporal relation-
ship between events. Therefore, half-band FIR filters of
Daubechies’ coefficients are chosen, and appropriate all-
pass filters are designed to flatten the group delay at each
successive level to ensure alignment of the resulting sub-
band components. The accumulative delay and complexity
of the filterbank decomposition is mainly dependent on the
length of the Daubechies’ filter shape selected (N = 40 in
our experiments), though the impact of using different fil-
ter lengths on performance has yet to be explored.

3.2 Rhythm Event Detection

Following decomposition, each subband signal is processed
identically to identify rhythm event candidates. Consistent
with [7] and [4], subband envelopes are calculated by half-
wave rectifying and low-pass filtering each subband wave-
form with a half-Hanning window, defined by Equations 1
and 2.

XHWRk [n] = max(Xk[n], 0) (1)

Ek[n] =

Nk−1∑
i=0

XHWRk [n] ∗Wk[i− n] (2)

Subband envelopes are then uniformly down-sampled
to 250 Hz, influenced by the temporal resolution of the hu-
man auditory system, and compression is applied to the re-
sulting signals according to Equation 3. Event candidates
are calculated by filtering the subband envelopes with the
Canny operator defined in Equation 4, commonly used in
digital image processing for edge detection and first ap-
plied to audio processing in [9]. The frequency response
of the Canny operator is more desirable than that of a first-
order differentiator, being band-limited in nature and serv-
ing to attenuate high-frequency content.

ECk [n] =
log10(1 + µ ∗ Ek[n])

log10(1 + µ)
(3)

C[n] =
−n
σ2

exp(−n
2

2σ2 ), where n = [−L,L] (4)

At this stage, event candidates effectively represent the
activation potential of their respective critical bands in the
cochlea. Though there are multiple hair cell transduction
theories concerning the significance of place and rate on
pitch perception, the fact remains that temporal masking
is caused by the necessary restoration time inherent to the
chemical reaction associated with neural encoding. Known
as the precedence effect, sounds occurring within a 50 mil-
lisecond window–about 10 milliseconds before and 40 mil-
liseconds behind–are perceived as a single event. This phe-
nomena is modeled by a sliding window to eliminate im-
perceptible or unlikely event candidates.

Rhythm event detection concludes with the summation
of subband events to a single train of pulses and a zero-
order hold to reduce the effective frequency of the pulses.
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Figure 2. Magnitude response of a typical comb-filter
(dashed line) and cascaded with a Canny filter (solid line).

A single-sample pulse is the half-wave rectified counter-
part to a single period of the highest frequency that can be
represented by the current sampling rate. Rhythmic fre-
quency content, such as the tactus or felt-beat, typically
exists on the range of .25–4 Hz (or 30–240 BPM), with
tatum and metrical levels falling just above and below that
range, respectively. Therefore, a zero-order hold of 50 ms
is applied to band-limit the signal, constraining frequency
content to 20Hz while maintaining the temporal accuracy
necessary.

3.3 Periodicity Estimation

In continuing with modeling preconscious rhythm audi-
tion, periodicity estimation is performed using a set of tuned
comb-filters spanning the frequency range of interest. This
method was pioneered as a computational model of rhythm
induction by Scheirer in [7], and has since been incorpo-
rated in a variety of derivative works due to reliability and
modest computational complexity. Importantly, modifica-
tions are introduced here to improve performance and tai-
lor the model to better suit the target application.

Unlike previous systems that aim to set a constant reso-
nance half-life across each oscillator, we propose that per-
ceived resonance of a pulse train is dependent not on time
but the number of pulses observed. It seems intuitive that
a 40 BPM click track at 40BPM should take longer to per-
ceive at the same strength as one at 180 BPM. Though
a more perceptually-motivated method may better capture
this nuance, the value of α is set at 0.825 to require a pe-
riod of regularity before resonating, while maintaining the
capacity to track modulated tempi.

Beat spectra is computed over time for each delay lag T ,
as defined by the comb-filter difference equation in Equa-
tion 5, varied linearly from 50–500 samples, inversely span-
ning the range of 30–300 BPM. Each comb-filter is also
cascaded with a band-pass filter – the Canny operator –
to augment the frequency response of the periodicity es-
timation stage. As shown in Figure 2, this attenuates the
steady-state behavior of the comb-filter effectively lower-
ing the noise floor, while additionally suppressing reso-
nance of frequency content in the range of pitch perception
over 20Hz. The Canny filter is also corrected by a scalar
multiplier to achieve a passband gain of 0 dB.

yk[n] = (1 − α) ∗ x[n] + α ∗ yk[n− Tk] (5)
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Figure 3. Example of a tempogram and chroma for
bonus5.wav, from the MIREX practice data set.

Instantaneous tempo is calculated by low-pass filtering
the energies of each oscillator over time. Scheirer previ-
ously described this process of determining the energy in
the delay line over the length of the resonance period, and
is analogous to computing an unweighted-average. A Han-
ning window of length Wk, set corresponding to the de-
lay lag of its respective comb-filter channel and given in
Equation 6, serves as an estimation of “resonance mem-
ory.” This time-frequency representation is referred to as
a tempogram and estimates perceived tempo strength over
time, an example of which is shown in Figure 3.

Rk[n] =
1

Wk

Tk−1∑
i=0

wk[i] ∗ (yk[n− i])2 (6)

3.4 Chroma Transformation

As observed by Kurth et al [5], the duality of pitch and
rhythm allows the representation of beat spectra in terms of
chroma. In the same way that all pitches can be described
as having a height and class, various metrical levels exhibit
a similar relationship. Octave errors, a typical issue faced
in tempo extraction, are mitigated by eliminating the sub-
jective aspect of rhythm and reducing the task to a purely
objective one. Fundamental tempo class is especially im-
portant to RAS-applications, and is the ultimate focus of
the system.

Rhythm chroma is computed by first transforming beat
spectra to a function of frequency, rather than period, scaled
by the base-2 logarithm and referenced to 30 BPM. Three
tempo octaves (30–60, 60–120, and 120–240 BPM) are
collapsed by summing beat spectra with identical chroma,
as detailed in Equation 7. Understanding this representa-
tion is facilitated by plotting amplitude as a function of
log2 tempo class in the polar coordinate system, shown in
Figure 3, such that the harmonic structure of a given input
becomes readily apparent.

For clarity, rhythm chroma consists of a radial ampli-
tude and an angular frequency, referred to as a class and
measured in units of degrees or radians. The transforma-
tion from tempo, in BPM, to class, in normalized radians,
is defined by Equation 8. This is a many-to-one mapping,
and is not singularly invertible. Visualizing rhythm chroma
in this alternative manner allows for deeper insight into the
nature of musical content and the extraction of novel fea-
tures, and will be discussed in greater detail shortly.
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Figure 4. Chroma diagrams for a 148 BPM click track,
before and after tempo automation. Note the difference in
scale and amplitude of the fundamental.

Ψn[ω] =
1

L

L−1∑
i=0

Rn[ω + 2π ∗ k] (7)

ωclass = log2

BPM

BPMreference
(8)

3.5 Feature Vector Representation

A single rhythm chroma is obtained for a track by sum-
ming over time and normalizing by the length. Several key
features of interest are emphasized by producing a global
chroma, though this set presented is not intended to be
exhaustive by any means. Beat strength is effectively de-
scribed by the amplitude of the largest lobe, and fundamen-
tal tempo class is given by the angle of this peak. Other
lobes are actually subharmonics of the fundamental, and
provide further information about the rhythmic composi-
tion. It is important to note that the radius and angle of all
harmonics, the fundamental as well as the partials, are sig-
nificant, as they describe what is best referred to as rhyth-
mic timbre. Amplitude ratios between the fundamental and
the various partials serve as a metric of beat salience– the
clarity of the prevailing rhythmic percept– as well as a con-
fidence interval regarding system reliability.

An added benefit of averaging the rhythm chroma is
found in the fact that frequency modulations of the funda-
mental chroma manifest as a widening of the primary lobe.
Due to the behavior of comb-filter resonance, tempo devi-
ations will inherently attenuate the amplitude of the funda-
mental. From these observations, optimal music for RAS
will exhibit a large, narrow and clearly-defined fundamen-
tal with smaller, though still clearly-defined, partials.

4. EVALUATION

Since there are, to our knowledge, no previous attempts to
mathematically quantify the motor-rhythmic attributes of
musical content, system behavior is explored for a small
set of content defined as ground-truths. Initially, we ex-
amine the responses for a constant-tempo click track and a
frequency-modulated version of itself. For familiarity, se-
lect content from the MIREX tempo tracking practice data
is then processed by the proposed system.

Time

BP
M

Figure 5. Image of the tempo automation used to mod-
ulate the tempo of the click track, and the corresponding
chromagram after analysis.

The prominent role of metronomes and click tracks in
past RAS research is indicative of the fact that they are
the most basic form of motor-rhythmic stimuli. A thirty-
second audio click track was created using a sampled clave
in Propellorhead’s Reason software and the tempo was set
at 148 BPM. The software also offers the capability of
tempo automation and allowed for the creation of a sec-
ond, frequency-modulated click track to model an expres-
sive performance. As shown in Figure 4, the constant-
tempo click track produces a chroma with clearly defined
fundamental and several smaller subharmonics, while the
chroma lobes of the frequency-modulated click track are
smeared and roughly half the amplitude. While salient,
given the ratio of the significant peaks, the widening of the
lobes is a direct result of the tempo variance in over time.
Importantly, a chromagram is shown above the tempo au-
tomation curve used to modulate the tempo of the click
track in Figure 5. Though the chromagram incurs some
delay in tracking the modulation of the click track, the sys-
tem is able to follow the tempo throughout.

Though informative and worthwhile examples to con-
sider, click tracks are not the primary focus of this system
and it is necessary to also examine the chroma of real mu-
sic data. For ease of access and familiarity within the re-
search community, musical content is selected from prac-
tice data available on the MIREX website [10]. The set
of excerpts contains a variety of different styles, but there
are two tracks in particular – train8.wav and train12.wav
– that serve as prime examples of what is and what is not
motor-rhythmic music.

Figure 6 shows the chroma for the two separate tracks.
It is evident from the diagram that train8.wav, an elec-
tronic piece by Aphex Twin, is significantly more motor-
rhythmic than train12.wav, an orchestral performance of a
composition by J. S. Bach, with a beat strength nearly 40
times greater in amplitude. Despite the lack of harmonic
definition in the chroma of the orchestral track, this system
is capable of identifying the correct fundamental class for
both excerpts according to metadata provided.

73

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  0.05

  0.1

  0.15

  0.2

  0.25

30

210

60

240

90

270

120

300

150

330

180 0

  0.002

  0.004

  0.006

30

210

60

240

90

270

120

300

150

330

180 0

Figure 6. Instances of good (left) and poor (right) motor-
rhythmic music.
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Figure 7. Chroma representations for non-binary meter
tracks performed in 6/8 (left) and 7/8 (right).

5. DISCUSSION

Content analysis algorithms for the computation of feature-
specific metadata will no doubt play a vital role in the fu-
ture as digital music libraries continue to increase in vol-
ume seemingly without bound. The system presented here
details one such application of a relatively straightforward
use-genre that extends previous machine listening efforts.
The task of characterizing music for RAS benefits greatly
from the circumstances of the context in which it is used,
wherein the most relevant attributes of motor-rhythmic mu-
sic are objectively quantifiable.

Furthermore, representing the global rhythm in terms of
chroma allows for a compact description of the temporal
structure of music. Succinctly stated, the degree of tempo
variation inherent in a track influences both the width and
height of the chroma partials. Any music track can be rea-
sonably approximated as a set of rhythmic partials with
corresponding amplitudes, angles, and widths.

5.1 Future Work

One of the more interesting observations to result from
this work is the realization that the harmonic structure of
rhythm chroma may provide information about the meter
and other time segmentations. Figure 7 shows the global
chroma of two tracks of note from the MIREX practice
data set: train5.wav and bonus3.wav. These tracks are of
particular interest as they are not binary meter; the former
is 6/8 and the latter is 7/8. The chroma of train5.wav
is really only comprised of a fundamental and a closely-
competing subharmonic at a difference angle of about 150◦.

Alternatively, bonus3.wav is comprised of a variety of sub-
harmonics, but the partial located 70◦ from the fundamen-
tal is not even remotely present in any other chroma repre-
sentations observed. More work is necessary to determine
the true depth of the information contained within these
data.
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ABSTRACT

This paper presents the outcomes of research into using

lingual parts of music in an automatic mood classification

system. Using a collection of lyrics and corresponding

user-tagged moods, we build classifiers that classify lyrics

of songs into moods. By comparing the performance of

different mood frameworks (or dimensions), we examine

to what extent the linguistic part of music reveals adequate

information for assigning a mood category and which as-

pects of mood can be classified best.

Our results show that word oriented metrics provide a

valuable source of information for automatic mood clas-

sification of music, based on lyrics only. Metrics such as

term frequencies and tf*idf values are used to measure rel-

evance of words to the different mood classes. These met-

rics are incorporated in a machine learning classifier setup.

Different partitions of the mood plane are investigated and

we show that there is no large difference in mood predic-

tion based on the mood division. Predictions on the va-

lence, tension and combinations of aspects lead to similar

performance.

1. INTRODUCTION

With the current boost in music sharing (alongside sharing

files in other formats) [6], Celma and Lamere [4] state that

we see a transformation from albums to individual MP3s

and mixes. This also changes the way people interact with

their music collection and the demands they place on the

software that allows this interaction.

Due to the increasing size of online or digital music col-

lections, users would like to be able to access their collec-

tions through more and more advanced means [13]. For in-

stance, users would like to be able to search for songs based

on various properties, such as year, genre, play count, on-

line recommendation (Web 2.0) or even based on a set

of songs used as seed to find similar ones. One partic-

ular property that people use when creating playlists is
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bear this notice and the full citation on the first page.
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mood [17]. Currently, this is often done manually by se-

lecting songs that belong to a particular mood and nam-

ing the playlist according to the mood, such as “relaxing”.

Here we investigate the possibility of assigning such infor-

mation automatically, without user interaction.

In recent years, automatic playlist generation has been

introduced to cope with the problem of the tedious and

time consuming manual playlist selection. Furthermore,

browsing the entire music library manually to select songs

for the playlist is felt to be difficult by most music listen-

ers. This becomes especially difficult if music collections

become prohibitively large, as the user will not know or

remember all songs in it.

In fact, it turns out that people have large amounts of

music in their music collection that they never even listen

to. This phenomenon is called The Long Tail [2] as many

songs fall in the region of songs that are hardly ever lis-

tened to, which is visualized as a long tail on the right size

in a histogram. Automatically generating playlists based

on certain properties, such as mood, can expose songs from

the long tail and allow for the user to explore “lost music”

in their music collections.

Here, we will focus on the automatic classification of

music into moods, which is sometimes called “music emo-

tion classification” [18]. Given a music collection contain-

ing songs that do not yet have these moods assigned to

them (or when adding a new, untagged song to the collec-

tion), the process automatically adds the mood tags to the

song, allowing selection of songs based on moods.

We think the melodic part of songs contains important

information that can help the mood classification [10]. How-

ever, we will currently focus on the linguistic aspects of

songs only. The idea is that lyrics contain lexical items

that emphasize a certain mood and as such can be used

to identify the underlying mood. Even though in spoken

language, just like in music, other aspects such as loud-

ness and pitch may also be important triggers to identify

the song’s emotion, we assume here that the actual words

can have an emotional load without being spoken or sung.

For instance, words such as “happy” or “dead” do not have

to be pronounced to have an emotional load. This corre-

sponds to Beukeboom and Semin’s idea [3] that mood af-

fects word choice and that lexical items can express moods.

There has been previous work on the influence of lyrics

on the mood of a song, such as approaches that concen-
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trate on more generic properties present in the lyrics [7],

combining music and lyrics using LSA and vector space

models [12] or using only the musical aspects [9]. Our ap-

proach is quite similar to the work presented in [8], where

multi-label classification is performed, resulting in a differ-

ent classification task. In this paper we concentrate on the

influence of the different divisions of classes on the final

results.

2. APPROACH

In this article, we describe the development of a machine

learning approach to classifying songs, based on lyrics only,

into classes that describe the mood of the song [11]. For

this, we need several components. Firstly, we need to iden-

tify which classes (moods) we are going to classify into.

Secondly, we need to select a collection of features that

allow us to describe properties of the lyrics. Using these

components, we can take a collection of lyrics (describing

songs), extract the features and classify the lyrics into their

mood class. This mood information can be used to auto-

matically create mood-oriented playlists.

2.1 Class divisions

When building a system that can classify songs into moods,

we require a set of classes that describes the allowable

moods. For this, we follow [15] in which two dimensions

are identified: arousal and valence. These dimensions cre-

ate a two-dimensional plane with four areas, dividing the

plane in positive and negative parts on both dimensions.

The moods in this plane range from “angry” and “nervous”

(negative valence, positive arousal) to “happy” and “ex-

cited” (positive valence and arousal) and from “sad” and

“sleepy” (negative valence and arousal) to “relaxed” and

“calm” (positive valence, negative arousal). These words

used here are only used as examples, indicative of the area

in the plane. Other emotionally-laden words can also be

placed in this plane.

To be able to work with a more fine grained set of classes,

we partition the arousal/valence plane into sixteen parts.

This divides both arousal and valence axes into four parts

(two on the positive and two on the negative side of the

axis). The arousal parts are called A–D and the valence

parts 1–4, which leads to individual classes described by a

letter and a number. Based on this division, we investigate

four different class divisions. The first division uses all six-

teen classes. This division is called fine-grained and ranges

from A1–D4. The second, arousal, and third, valence, fo-

cus only on one aspect of the emotional plane. These class

divisions are created by merging four classes. They corre-

spond to only using A–D and 1–4 of the fine-grained divi-

sion, respectively. Finally, we will use the Thayer division,

which clusters all fine-grained classes into four areas based

on the positive/negative areas in Thayer’s arousal/valence

plane.

2.2 Features

We will experiment with a collection of features. These

are divided into two classes: global and word-based. The

global features describe an aspect of the lyric as a whole.

Here, we have experimented with very simple features,

which should be treated as an informed baseline. We con-

sider character count cc (the number of characters in a

lyric), word count wc (the number of words in a lyric) and

line count lc (the number of lines in a lyric).

The word-based features are more complex and use in-

formation of the specific words used and their typical oc-

currence in the lyrics of a particular mood. These features

are heavily influenced by metrics from the field of informa-

tion retrieval [16]. In particular, we use the tf*idf metric

and its components. This is a powerful technique to em-

phasize the importance of a term (word) compared to all

documents in a large document collection [14]. Originally,

tf*idf was devised to search for relevant documents in large

document collections given one or more search terms. The

metric is used to compute relevance of the documents with

respect to the search terms.

In this research, we consider the use of tf*idf to de-

scribe the relative importance of a word for a particular

mood class. In contrast to the typical context, however, we

start with the lyrics of a song instead of search keywords.

The tf*idf value of each word in the lyrics under consider-

ation is used as weights to indicate relevance with respect

to mood classes. This allows us to compute which mood

is most relevant given lyrics, where the mood is described

by the combined lyrics of all songs that have that particular

mood assigned.

The approach sketched indicates that we take the lyrics

of all songs of a particular mood and combine them as if

they are one document. This “document” can be seen as

describing a particular mood. This means that there will

be as many documents as there are moods. Each mood

class corresponds to one document.

The tf*idf metric consists of two components: term fre-

quency (tf) and the inverse document frequency (idf). These

components are multiplied when computing the tf*idf.

The first word-based feature is the term frequency (tf).

This metric measures the importance of word ti in docu-

ment, i.e. mood, dj with ni,j occurrences of the word in

document dj , divided by the sum of the number of occur-

rences of all words in document dj .

tfi,j =
ni,j∑
k nk,j

(1)

In this situation, it measures the number of times a word

occurs with a particular document (or mood). Words oc-

curring more often in the lyrics of a particular mood will

have a higher tf for that mood.

The problem with using term frequency is that most

words that typically occur very often are function words,

such as “the”, “a” or “in”. These words are not likely to

help in classifying lyrics to moods as they do not represent

terms that typically describe a mood. What we are really

interested in are words that occur in only a sub-set (or only
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one) of the moods. The inverse document frequency (idf)

measures the importance of the word with respect to a doc-

ument.

idfi = log
|D|

|{dj : ti ∈ dj}|
(2)

The total number of documents (representing moods)

D is divided by the number of documents in which the

word (ti) appears, and taking the logarithm of that quo-

tient. The idf measures the importance of a word combined

with a specific mood against all moods. In this particular

situation, idf will be high if it occurs in the text of one or

only few moods and will be low when it occurs in multiple

moods (or even zero when it occurs with all moods).

The idf value by itself is not particularly useful as it is

too course-grained (especially when there are only a hand-

ful of moods), but can be multiplied to weigh the tf value,

resulting in the tf*idf.

tf ∗ idfi,j = tfi,j × idfi (3)

The tf*idf is used to calculate the relevance of a word for a

particular mood: high tf*idf values indicate high relevance

of the word to the mood.

The tf*idf provides for one particular word, a score or

weight for each of the classes. Lyrics typically contain

more than one word, which allows for a more robust com-

putation of the relevance of the mood document for the

lyrics under consideration. Practically, we can combine the

tf*idf values of all the words in the lyrics for classification

by adding the values of the separate words.

Taking the lyrics of all songs of a particular mood as one

document results in having between four and sixteen doc-

uments (depending on the mood division). This is signifi-

cantly less than the amount of documents normally under

consideration in a tf*idf setting. In fact, many words will

occur in all moods, which means that in those cases the

idf will be zero which results in a zero tf*idf for all mood

classes for that word. This turns out to be a very useful

aspect of tf*idf weights in small document collections. In

particular, words that do not help in deciding the correct

mood of lyrics, such as function words, are automatically

filtered out, as their tf*idf value will be zero. There is no

way these words can contribute to the final weight of the

lyrics, so there is no need to consider these words when

analyzing the lyrics.

To investigate whether the zero tf*idf scores really are

useful, we also experimented with Laplace smoothing, also

known as “add-one smoothing”, which reduces the amount

of words that have a zero tf*idf. Before computing idf, one

is added to the total number of documents. This means that

the idf will now always be non-zero, albeit very small. In

the case where normally the idf would be zero, the idf will

now be small and the same for all classes, but this allows

the system to use the information from the tf (which is not

possible if idf is zero).

A potential advantage of the smoothed tf*idf is that in

the case of all words having a zero non-smoothed tf*idf

(for example in the case of very short lyrics), which leads

to a zero tf*idf for all classes (and requiring a random

choice for the class), the smoothing lets the system back-

off to using tf. By not multiplying tf with zero (idf), the tf

is retained in the final score, which makes it still possible

to classify using tf.

Another extension that is implemented normalizes over

the length of the lyrics. The tf can be larger if longer lyrics

are used (simply because more words are present in those

lyrics). The normalized tf*idf simply divides the tf*idf val-

ues computed from the lyrics by the length (i.e. number of

words) of the lyrics. This should remove the preference for

higher tf in longer lyrics.

Using tf*idf has several advantages. No linguistically

motivated tools are required and the approach is inherently

language independent. There is no need for the lyrics to be

English (or any other language). The simple occurrence of

the same words in the training data and in the test data will

allow for classification. Obviously, it may be the case that

certain words in one language may also occur in another

language, but we expect that lyrics in different languages

typically use different words. However, more research into

the impact of language dependency needs to be done.

3. RESULTS

To measure the effectiveness (and illustrate the feasibility)

of using tf*idf in classifying songs into moods, we set up a

set of experiments. Taking a collection of songs of which

the mood class is known, we extract the lyrics and apply a

machine learning classifier to these, allowing us to classify

the lyrics into classes based on the different class divisions.

For each of these combinations, we discuss the results.

3.1 Experimental settings

To be able to train a machine learning classifier and to

evaluate our experiments, we require a data set contain-

ing a set of pairs of song (or at least the lyrics) and the

corresponding mood. The data set is provided by Cray-

onroom (http://www.crayonroom.com/), a small

company creating music applications. The data set comes

from their Moody application.

Moody lets users tag songs in iTunes in order to gener-

ate mood-based playlists. The tagging is done by manually

assigning colors to songs where each color corresponds to

a particular mood. The user can choose between 16 moods,

which are presented in a four by four square. The colors

provided are similar to the hue colors of mood [1]. Note

that according to Voong and Beale [17] it is easier for a

user to tag using colors instead of tagging using keywords.

The mood information is stored in the comment field of

the song’s ID3-tag and is exported to Moody’s database.

The information stored in Moody’s database, which con-

tains artist and song title information combined with the

mood tag can also be used to automatically tag new songs.

This application relies on user input to collect the mood

information, but using that information it also helps users

tag more songs in their personal collection. As such, it can

be seen as a Web 2.0 application, which relies on collabo-

rative tagging of songs.
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The mood set used by Moody corresponds well with the

two dimensional mood plane by Thayer [15]. The sixteen

classes, placed in a four by four grid, can be mapped ex-

actly on the plane with four mood tags in each of the areas

in the plane.

Crayonroom provided us with a set of 10,000 random

entries from the Moody database. This is a subset of the

entire database containing mostly popular songs in differ-

ent genres. Most of the songs have an English title, but

there has not been an explicit selection of songs that have

lyrics (as this information is not present in the database it-

self).

The information we received is a list of pairs of artist

and song title, combined with the corresponding mood tag.

Based on this information we started collecting the lyrics

of the songs. Many lyrics can be found online, so we used

the artist and song titles to find the lyrics automatically.

This was done by automatically searching a collection of

lyrics databases given the artist and song information.

Unfortunately, all spaces were removed from the artist

and title fields in the database. This makes automatically

finding lyrics hard. Furthermore, there are situations such

as “AC/DC” which may be spelled in different ways, such

as “ACDC”, “AC-DC”, or “ACDC”.We experimented with

several heuristics to re-introduce spaces and reduce the punc-

tuation problems in the artist and song fields. Applying

these heuristics and trying to find the resulting artists and

song titles led to 5,631 lyrics to be found in the online

databases.

The lyrics were then cleaned up and normalized. All

HTML information was removed, leaving plain text lyrics.

Furthermore, labels such as “chorus”, “repeat until fade

out” and “4x” were removed as they are not properly part

of the lyrics. We realize that this may influence the count

of certain words in the lyrics. However, it is often unclear,

for instance, where the chorus ends exactly. Similarly, it is

often unclear how many repeats are required (in the case

of “repeat until fade out”). Simply removing these labels

will affect the tf, but apart from manually analyzing the

music and correcting all lyrics, we do not see an easy solu-

tion. Manual correction is not a feasible alternative at the

moment.

From the found lyrics we extracted features and com-

bined them together with their mood tag into machine learn-

ing instances. Each instance corresponds to one song. This

information is then used for training and testing (allowing

for evaluation) in a machine learning setting. The differ-

ent class divisions and the distributions of instances can be

found in Table 1 and Table 2.

Each of the experiments is computed using ten fold cross-

validation. This meant that the collection of songs is di-

vided into ten parts and ten experiments are performed,

leaving out one part for evaluation. It is important to re-

alize that for the tf*idf features, the tf*idf values for each

of the words are recomputed for each experiment. This

is needed, because the distribution of words in the train-

ing data may be different for each experiment. Intermedi-

ate tf*idf tables are computed from the training data first,

Fine- Arousal

grained A B C D

1 295 236 248 182 961

2 387 575 564 261 1,787

3 360 650 531 205 1,746

V
al
en
ce

4 253 413 338 133 1,137

1,295 1,874 1,681 781 5,631

Table 1. Distribution of instances: fine-grained (16

classes), Valence and Arousal (both 4 classes).

1 = A3+A4+B3+B4 1,676

2 = A1+A2+B1+B2 1,493

3 = C1+C2+D1+D2 1,255

4 = C3+C4+D3+D4 1,207

Table 2. Distribution of instances: Thayer division (4

classes).

which are then used to compute the actual tf*idf values for

the lyrics to be classified. Similarly, the tf*idf tables will

be different for each of the different class divisions.

Also keep in mind that for the computation of the tf*idf

values, all lyrics belonging to a particular class are com-

bined to serve as one document as described above. When

computing the features for each instance separately, the

tf*idf values that have been computed beforehand (and stored

in a tf*idf table) are used to compute tf*idf scores for each

of the classes.

To classify the test data we used TiMBL, a k-NN classi-

fier [5]. This classifier has been developed at Tilburg Uni-

versity and contains a collection of algorithms with many

parameters to set. In the experiments described here, we

simply used the default parameter setting. This means that

the IB1 algorithm (k nearest distances with k = 1) is used

with the weighted overlap metric and GainRatio weighting.

This means that higher accuracy scores may be reached

when fine-tuning the classifier parameters. In this paper,

we are mostly interested in the feasibility of the approach.

3.2 Experimental results

The results of applying TiMBL to the mood data are sum-

marized in Table 3. The table shows results on the four

different mood divisions and different feature settings.

The baseline shown in the table is the majority class

baseline. This shows that the data is relatively well bal-

anced as can also be seen from Tables 1 and 2. Keep

in mind that the Arousal, Valence, and Thayer divisions

all contain four classes, whereas fine-grained is a 16 class

division. A completely random distribution of instances

would lead to a baseline of 25.00 (four classes) and 6.25

(sixteen classes).

All global features and all of their combinations have

worse performance with respect to the baseline. It turns

out that the information present in these features is simply

not specific enough. For instance, one of the initial ideas

we had before we started this research, that the length of

the lyrics may be different for lyrics in the different classes,
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Arousal Valence Thayer Fine-grained

Baseline 33.28 31.74 29.76 11.54

cc 30.12 (1.77) 29.02 (1.08) 28.15 (1.92) 9.73 (0.67)

wc 31.44 (0.84) 32.59 (1.62) 28.16 (1.65) 11.06 (1.09)

lc 31.81 (1.45) 29.37 (1.69) 27.58 (0.85) 9.85 (0.84)

cc+wc 29.02 (2.26) 28.84 (1.71) 28.47 (2.00) 8.77 (0.90)

cc+lc 29.61 (1.13) 27.77 (1.74) 26.94 (1.74) 8.12 (0.78)

wc+lc 28.92 (1.28) 28.43 (2.05) 27.01 (1.08) 7.74 (0.91)

cc+wc+lc 28.42 (1.69) 27.65 (1.96) 27.03 (1.84) 8.08 (0.84)

tf 33.36 (0.18) 31.77 (0.13) 29.85 (0.15) 11.45 (0.12)

tf*idf 77.18 (1.02) 76.26 (2.03) 75.79 (1.34) 70.89 (1.51)

tf+tf*idf 77.23 (1.02) 76.29 (2.07) 75.85 (1.37) 70.89 (1.50)

Table 3. Mean accuracy and standard deviation of different feature settings and class divisions.

is not true. This is also reflected in the other features used.

To allow for classification into moods, more specific infor-

mation is required.

All advanced features based on tf*idf (apart from tf by

itself) significantly outperform the baseline. The tf by it-

self does not help to classify songs into the correct mood

class. The reason for this is that the words that occur most

frequently (typically function words, such as “the”) greatly

outnumber the content words. Even when function words

occur approximately the same for each class, minor vari-

ations still have a large impact with respect to otherwise

more useful content words, which normally do not occur

very often. For classification purposes, we are mostly in-

terested in words that help identifying the mood of the

lyrics. Words that occur in the lyrics of all moods have

limited usefulness. Unfortunately, because function words

occur most frequent, they have a large impact on the tf.

When adding idf, which happens with the tf*idf fea-

tures, the accuracy goes up dramatically. Adding idf re-

moves (or reduces) all weights for words that occur in lyrics

of all or several classes. This means that only words that

do not occur in lyrics of all moods remain or have a higher

impact. This metric seems to coincide with the notion of

usefulness that we are trying to implement.

The words with the highest tf*idf score for a particular

class are not what we expected. These are words that occur

very frequently in only one song. Examples of words with

high idf and tf are: “aaah”, “dah”, or “yoy”. However,

these words are not often used in classification either.

The results of the experiments using a combination of

the tf*idf metric and the tf metric is slightly better than

simply using the tf*idf metric only. We expect that this has

to do with the situation where there are none or not many

words with a non-zero tf*idf in the lyrics. This may oc-

cur, for instance, when a song contains non-English lyrics.

In that case, the tf*idf values are too often zero, but the

tf features allow for a back-off strategy. The differences,

however, are minor and non-significant.

As mentioned earlier, we have also implemented a nor-

malized (dividing by the number of words in all the lyrics

of a particular mood) and a Laplace smoothed version of

the metrics. Since the normalization and smoothing can

also be applied together, this leads to three more versions

of all the tf and tf*idf experiments described so far. The

results of these experiments are not shown in Table 3 as

these experiments yield exactly the same mean accuracy

and standard deviation as the normal tf and tf*idf features.

Obviously, the tf and tf*idf values for each of the words

are different in each case, but the classification is the same.

We think that length normalization does not help in clas-

sification because the length of the lyrics in each class is

too similar. This means that all tf*idf values are divided

by a (near) constant. Effectively, similar figures are then

used to classify. Furthermore, Laplace smoothing does not

help because most of the time the lyrics contain enough

non-zero idf words to allow for correct classification. Ad-

ditionally, when smoothing, words occurring in all classes

are used as well, but since they occur in all classes, they do

not have a large impact in deciding the correct class.

The different class divisions (arousal, valence, Thayer,

and fine-grained) were devised to show which aspect of

emotion is easiest to classify. The results show that at least

using the technique described here, there is no clear differ-

ence. We originally thought that valence would be easier

to classify. Positive or negative moods can easily be de-

scribed using words such as “happy” and “sad”. However,

the intensity (described by arousal) can just as easily be

classified. Most interesting is the fact that the fine-grained

class division can be classified effectively as well. Re-

member that the fine-grained division has sixteen classes

whereas the other divisions only have four.

4. CONCLUSION AND FUTURE WORK

This paper describes an attempt to design, implement and

evaluate a mood-based classification system for music based

on lyrics. The ultimate aim is the automatic assignment

of mood-based tags for songs in a users’ music database,

based on lyrics only. By automatically assigning mood

tags to songs, users do not have to assign mood properties

to all songs in a potentially large music collection man-

ually. Having access to the mood information ultimately

allows for the easy creation of playlists based on moods.

To measure the usefulness of words in lyrics with re-

spect to the mood classes, we used a standard information

retrieval metric: tf*idf. This metric is normally used to
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measure relevance of terms with respect to documents in

a large document collection, but when the same metric is

used in a very small set of documents, it shows some inter-

esting and useful properties. The main property used here

is that in very small document collections, the tf*idf filters

out words occurring in all documents. These are words

that are not useful for finding out which document (mood

in our case) fits best.

The results show that the tf*idf feature improves the re-

sults significantly with respect to the majority class base-

line. This shows that tf*idf can be used effectively to iden-

tify words that typically describe mood aspects of lyrics.

This outcome shows that the lingual part of music reveals

useful information on mood.

One has to keep in mind that the experiments reported

here only take the linguistic aspects of songs into account.

In order to improve results further, other characteristics,

such as tempo, timbre or key, should be taken into con-

sideration as well. However, using these aspects requires

access to the music (in addition to the lyrics).

The evaluation of the current system is against the mood

tags provided by Moody. These tags are based on human

annotation. However, it may be that different people assign

(slightly) different tags to the songs. We do not know ex-

actly how this is handled in the Moody application, but this

may have an impact on the evaluation of the system. Also,

we do not know what the inter-annotator agreement is. In

future research we need to consider this potential spread of

human annotation, for example by taking the confidence of

the system for the different moods into account.

A related problem is that the boundaries between the

different moods is not clear-cut. A possible solution to this

problem and that of the possible variation of annotation

is to evaluate using a metric that takes distances between

moods in to account. For instance, classifying A2 instead

of A1 is better than classifying D4.
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ABSTRACT
State-of-the-art systems for automatic music tagging
model music based on bag-of-feature representations
which give little or no account of temporal dynamics, a
key characteristic of the audio signal. We describe a novel
approach to automatic music annotation and retrieval that
captures temporal (e.g., rhythmical) aspects as well as tim-
bral content. The proposed approach leverages a recently
proposed song model that is based on a generative time
series model of the musical content — the dynamic tex-
ture mixture (DTM) model — that treats fragments of au-
dio as the output of a linear dynamical system. To model
characteristic temporal dynamics and timbral content at the
tag level, a novel, efficient hierarchical EM algorithm for
DTM (HEM-DTM) is used to summarize the common in-
formation shared by DTMs modeling individual songs as-
sociated with a tag. Experiments show learning the seman-
tics of music benefits from modeling temporal dynamics.

1. INTRODUCTION
This paper concernsautomatic tagging of music with de-
scriptive keywords (e.g., genres, emotions, instruments,
usages, etc.), based on the content of the song. Music
annotations can be used for a variety of purposes, such
as searching for songs exhibiting specific qualities (e.g.,
“jazz songs with female vocals and saxophone”), or re-
trieval of semantically similar songs (e.g., generating play-
lists based on songs with similar annotations).

State-of-the-art music “auto-taggers” model a song as
a “bag of audio features” [7, 9–11, 14]. The bag of fea-
tures representation extracts audio features from the song
at a regular time interval, but then treats these features in-
dependently, ignoring the temporal order or dynamics be-
tween them. Hence, this representation fails to account for
the longer term musical dynamics (e.g. tempo and beat)
or temporal structures (e.g. riffs and arpeggios), which are
clearly important characteristics of a musical signal.

We address this limitation by adopting the dynamic tex-
ture (DT) model [6], a generative,time-series model of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

musical content that captures longer-term time dependen-
cies. The DT model is similar to the Hidden Markov model
(HMM) which has proven robust in music identification
[12]. The difference is that HMMs require to quantize the
audio signal into a fixed number of discrete “phonemes”,
while the DT has a continuous state space that is a more
flexible model for music.

Musical time series often show significant structural
changes within a single song and have dynamics that are
only locally homogeneous. Hence, [1] proposes to model
the audio fragments from a single song as a dynamic tex-
ture mixture (DTM) model [3], for the task of automatic
music segmentation. These results demonstrated that the
DTM provides an accurate segmentation of music into ho-
mogeneous, perceptually similar segments (corresponding
to what a human listener would label as ‘chorus’, ‘verse’,
‘bridge’, etc.) by capturingtemporal as well astextural
aspects of the musical signal.

In this paper, we adopt the DTM model to propose a
novel approach to the task of automatic musicannotation
that accounts for both the timbral content and the tempo-
ral dynamics that are predictive of a semantic tag. We
first model all songs in a music database as DTMs, cap-
turing longer-term time dependencies and instantaneous
spectral content at thesong-level. Second, the character-
istic temporal and timbral aspects of musical content that
are commonly associated with a semantic tag are identified
by learning atag-level DTM that summarizes the common
features of a (potentially large) set of song-level DTMs
for the tag. Given all song-level DTMs associated with a
particular tag, the common information is summarized by
clustering similar song-level DTs using a novel, efficient
hierarchical EM (HEM-DTM) algorithm. This gives rise
to a tag-level DTM with few mixture components (as op-
posed to tag-level Gaussian mixture models in [14], which
do not capture temporal dynamics). Experimental results
show that the proposed time-series model improves anno-
tation and retrieval, in particular for tags with temporal dy-
namics that unfold in the time span of a few seconds.

The remainder of this paper is organized as follows. In
Section 2, we present the annotation and retrieval system
using time-series data, while in in Section 3, we present
an efficient hierarchical EM algorithm for dynamic texture
mixtures. Finally, in Sections 4 and 5, we present experi-
ments using DTM for music annotation and retrieval.
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2. ANNOTATION AND RETRIEVAL
In this section we formulate the tasks of annotation and
retrieval of audio data as a semantic multi-class labeling
(SML) problem [2] in the context of time-series models.

2.1 Notation
A songs is represented as a collection ofT overlapping
time seriesY = {y11:τ , . . . , y

T
1:τ}, where eachyt1:τ repre-

sentsτ sequential audio feature vectors extracted by pass-
ing a short-time window over the audio signal (also called
an audiofragment). The number of fragments,T , depends
on the length of the song. The semantic content of a song
with respect to a vocabularyV of size |V| is represented
in an annotation vectorc = [c1, . . . , c|V|], whereck > 0
only if there is a positive association between the song and
the wordwk, otherwiseck = 0. Eachsemantic weight,
ck, represents the degree of association between the song
and wordwk. The data setD is a collection of|D| song-
annotation pairs(Yd, cd).

2.2 Music Annotation
We treat annotation as a semantic multi-class problem [2,
14] in which each class is a wordw, from a vocabularyV of
unique tags (e.g., “bass guitar”, “hip hop”, “boring”). Each
wordwk is modeled with a probability distribution over the
space of audio fragments,p(yt1:τ |wk). The annotation task
is to find the subsetW = {w1, . . . , wA} ⊆ V of A words
that best describe a novel songY.

Given the audio fragments of a novel songY, the most
relevant words are the ones with highest posterior proba-
bility, computed using Bayes’ rule:

p(wk|Y) =
p(Y|wk) p(wk)

p(Y)
, (1)

wherep(wk) is the prior of thekth word, andp(Y) =∑|V|
k=1 p(Y|wk)p(wk) is the song prior. To promote an-

notation using a diverse set of words, we assume an uni-
form prior, p(wk) = 1/|V|. We follow [14] in estimat-
ing the likelihood term in (1) with the geometric aver-
age of the individual sequence likelihoods,p(Y|wk) =∏T

t=1 (p(y
t
1:τ |wk))

1
T . Note that, unlike bag-of-features

models that discard any dependency between audio fea-
tures vectors (each describing milliseconds of audio), we
only assume independence between differentsequences of
audio feature vectors (describing seconds of audio). Cor-
relations within a single sequence are accounted for by the
model presented in Section 3.

The probability that the songY can be described by
wordwk is

pk = p(wk|Y) =

∏T

t=1 (p(y
t
1:τ |wk))

1
T

∑|V|
l=1

∏T

t=1 (p(y
t
1:τ |wl))

1
T

. (2)

Finally, the song can be represented as a semantic multi-
nomial,p = [p1, . . . , p|V|], where eachpk = p(wk|Y)
represents the relevance of thekth word for the song, and∑|V|

i=1 pi = 1. We annotate a song with the most likely
tags according top, i.e., we select the tags with the words
with the largest probability.

2.3 Music Retrieval
Given a query word, songs in the database can be re-
trieved based on their relevance to the semantic query
word1 . In particular, the song’s relevance to the query
word wk is equivalent to the posterior probability of the
word, p(wk|Y) in (2). Hence, retrieval involves rank-
ordering the songs in the database based on the k-th entry
(pk) of the semantic multinomialsp.

2.4 Learning DTM tag models
In this paper, we model the tag-level distributions,
p(yt1:τ |wk), as dynamic texture mixture models. The tag-
level distributions are estimated from the set of training
songs associated with the particular tag. One approach is
to extract all the audio fragments from the relevant train-
ing songs, and then run the EM algorithm [3] directly on
this data to learn the tag-level DTM. This approach, how-
ever, requires storing large amounts of audio fragments in
memory (RAM) for running the EM algorithm. For even
modest-sized databases, the memory requirements can ex-
ceed the RAM capacity of most computers.

To allow efficient training in both computation time and
memory requirements, we propose to break the learning
procedure into two steps. First, a DTM is estimated for
each song using the standard EM algorithm [3]. Next, each
tag-level model is estimated using the hierarchical EM al-
gorithm on all the song-level DTMs associated with the
particular tag. Because the database is first processed at the
song-level, the computation can be easily done in parallel
(over the songs) and the memory requirement is greatly re-
duced to that of processing a single song. The memory
requirements for computing the tag-level models is also
reduced, since each song is succinctly modeled by the pa-
rameters of a DTM.

Such a reduction in computational complexity also
ensures that the tag-level models can be learned from
cheaper, weakly-labeled data (i.e., missing labels, labels
without segmentation data, etc.) by pooling over large
amounts of audio data to amplify the appropriate attributes.
In summary, adopting DTM, or time-series models in gen-
eral, as a tag-model for SML annotation requires an appro-
priate HEM algorithm for efficiently learning the tag-level
models from the song-level models. In the next section, we
review the DTM and present the HEM algorithm for DTM.

3. HIERARCHICAL EM FOR DTMS
In this section, we first review the dynamic texture (DT)
and dynamic texture mixture (DTM) models for modeling
musical time-series. We then present the hierarchical EM
algorithm for efficiently learning a tag-level DTM from a
set of song-level DTMs.

3.1 The Dynamic Texture Model
A dynamic texture [6] (DT) is a generative model that takes
into account both the acoustics and the dynamics of audio
sequences [1]. The model consists of two random vari-
ables,yt, which encodes the acoustic component (audio

1 Notethat although this work focuses on single-word queries, our rep-
resentation easily extends to multiple-word queries [13].
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feature vector) at timet, andxt, which encodes the dynam-
ics (evolution) of the acoustic component over time. The
two variables are modeled as alinear dynamical system,

xt = Axt−1 + vt, (3)

yt = Cxt + wt + ȳ, (4)

wherext ∈ R
n andyt ∈ R

m are real vectors (typically
n ≪ m). Using such a model, we assume that the dy-
namics of the audio can be summarized by a more parsi-
monious (n < m)hidden state process xt, which evolves
as a first order Gauss-Markov process, and eachobserva-
tion variable yt, which encodes the acoustical component
(audio feature vector at timet) is dependent only on the
current hidden statext.

The matrixA ∈ R
n×n is a state transition matrix,

which encodes the dynamics or evolution of the hidden
state variable (e.g., the evolution of the audio track), and
the matrixC ∈ R

m×n is an observation matrix, which
encodes the basis functions for representing the audio se-
quence. The vector̄y ∈ R

n is the mean of the dy-
namic texture (i.e. the mean audio feature vector).vt is
a driving noise process, and is zero-mean Gaussian dis-
tributed , e.g.,vt ∼ N (0, Q), whereQ ∈ R

n×n is a
covariance matrix. wt is the observation noise and is
also zero-mean Gaussian, e.g.,wt ∼ N (0, R), where
R ∈ R

m×m is a covariance matrix. Finally, theinitial
condition is specified asx1 ∼ N (µ, S), whereµ ∈ R

n is
the mean of the initial state, andS ∈ R

n×n is the covari-
ance. The dynamic texture is specified by the parameters
Θ = {A,Q,C,R, µ, S, ȳ}.

Intuitively, the columns ofC can be interpreted as the
principal components (or basis functions) of the audio fea-
tures vectors over time. Hence, each audio feature vector
yt can be represented as a linear combination of principal
components, with corresponding weights given by the cur-
rent hidden statext. In this way, the DT can be interpreted
as a time-varying PCA representation of an audio feature
vector time-series.

3.2 The Dynamic Texture Mixture Model
A song is a combination of heterogeneous sequences
with significant structural variations, and hence is not
well represented as a single DT model. To address
this lack of global homogeneity, [1] proposed to repre-
sent audio fragments, extracted from a song, as sam-
ples from a dynamic texture mixture (DTM) [3], effec-
tively modeling local structure of the song. The DTM
model [3] introduces an assignment random variablez ∼
multinomial(π1, · · · , πK), which selects one of theK
dynamic texture components as the source of the audio
fragment. Each mixture component is parameterized by
Θz = {Az, Cz, Qz, Rz, µz, Sz, ȳz}, and the DTM model
is parameterized byΘ = {πz,Θz}

K
z=1.

Given a set of audio samples, the maximum-likelihood
parameters of the DTM can be estimated with recourse to
the expectation-maximization (EM) algorithm [3], which
is an iterative optimization method that alternates between
estimating the hidden variables with the current parame-
ters, and computing new parameters given the estimated

hidden variables (the “complete data”). The EM algo-
rithm for DTM alternates between estimating second-order
statistics of the hidden-states, conditioned on each audio
sequence, with the Kalman smoothing filter (E-step), and
computing new parameters given these statistics (M-step).

Previous work in [1] has successfully used the DTM for
the task of segmenting the structure of a song into acous-
tically similar sections (e.g., intro, verse, chorus, bridge,
solo, outro). In this work, we demonstrate that the DTM
can also be used as a tag-level annotation model for mu-
sic annotation and retrieval. We next present a hierarchi-
cal EM algorithm for efficiently estimating these tag-level
DTMs from large sets of song-level DTMs, previously es-
timated for the set of training songs associated with a tag.

3.3 Hierarchical EM for learning DTM hierarchies
Given a DTM model of each training song as learned in the
previous section, the goal now is to learn a tag-level DTM
model that summarizes the common features of the corre-
sponding song-level DTMs. First, all song-level DTMs
with a particular tag are pooled together into a single, large
DTM. Next, the common information is summarized by
clustering similar DT components together, forming a new
tag-level DTM with fewer mixture components.

The DT components are clustered using the hierarchi-
cal expectation-maximization (HEM) algorithm [15]. At
a high level, this is done by generatingvirtual samples
from each of the song-level component models, merging
all the samples, and then running the standard EM algo-
rithm on the merged samples to form the reduced tag-level
mixture. Mathematically, however, using the virtual sam-
ples is equivalent to marginalizing over the distribution of
song-level models. Hence, the tag model can be learned di-
rectly and efficiently from the parameters of the song-level
models, without generating any virtual samples.

The HEM algorithm was originally proposed in [15]
to reduce a Gaussian mixture model (GMM) with many
components to a representative GMM with fewer com-
ponents and has been successful in learning GMMs from
large datasets for the annotation and retrieval of images [2]
and music [14]. We next present an HEM algorithm for
mixtures with components that aredynamic textures [4].

3.3.1 HEM Formulation
Formally, letΘ(s) = {π

(s)
i ,Θ

(s)
i }K

(s)

i=1 denote the com-

bined song-level DTM withK(s) components, whereΘ(s)
i

are the parameters for theith DT component. The like-
lihood of observing an audio sequencey1:τ with lengthτ
from the combined song-level DTMΘ(s) is given by

p(y1:τ |Θ
(s)) =

K(s)∑
i=1

π
(s)
i p(y1:τ |z

(s) = i,Θ(s)), (5)

where z ∼ multinomial(π
(s)
1 , · · ·π

(s)

K(s)) is the hid-
den variable that indexes the mixture components.
p(y1:τ |z

(s) = i,Θ(s)) is the likelihood of the audioy1:τ
under theith DT mixture component, andπ(s)

i is the prior
weight for theith component. The goal is to find a tag-
level annotation DTM,Θ(a) = {π

(a)
j ,Θ

(a)
j }K

(a)

j=1 , which
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represents (5) using fewer number of mixture components,
K(a), (i.e.,K(a) < K(s)). The likelihood of observing an
audio sequencey1:τ from the tag-level DTMΘ(a) is

p(y1:τ |Θ
(a)) =

K(a)∑
j=1

π
(a)
j p(y1:τ |z

(a) = j,Θ(a)), (6)

wherez(a) ∼ multinomial(π
(a)
1 , · · · , π

(a)

K(a)) is the hid-
den variable for indexing components inΘ(a). Note that
we will always usei and j to index the components of
the song-level model,Θ(s), and the tag-level model,Θ(a),
respectively. To reduce clutter, we will also use the short-
handΘ(s)

i andΘ(a)
j to denote theith component ofΘ(s)

and thejth component ofΘ(a), respectively. For example,
we denotep(y1:τ |z(s) = i,Θ(s)) = p(y1:τ |Θ

(s)
i ).

3.3.2 Parameter estimation
To obtain the tag-level model, HEM [15] considers a set of
N virtual observations drawn from the song-level model
Θ(s), such thatNi = Nπ

(s)
i samples are drawn from the

ith component. We denote the set ofNi virtual audio sam-
ples for theith component asYi = {y

(i,m)
1:τ }Ni

m=1, where

y
(i,m)
1:τ ∼ Θ

(s)
i is a single audio sample andτ is the length

of the virtual audio (a parameter we can choose). The en-
tire set ofN samples is denoted asY = {Yi}

K(s)

i=1 . To
obtain a consistent hierarchical clustering, we also assume
that all the samples in a setYi are eventually assigned to
the same tag-level componentΘ

(a)
j . The parameters of the

tag-level model can then be estimated by maximizing the
likelihood of the virtual audio samples,

Θ(a)∗ = argmax
Θ(a)

log p(Y |Θ(a)), (7)

where

log p(Y |Θ(a)) = log

K(s)∏
i=1

p(Yi|Θ
(a)) (8)

= log

K(s)∏
i=1

K(a)∑
j=1

π
(a)
j

∫
p(Yi, Xi|Θ

(a)
j )dXi (9)

andXi = {x
(i,m)
1:τ } are the hidden-state variables corre-

sponding toYi. Computing the log-likelihood in (9) re-
quires marginalizing over the hidden assignment variables
z
(a)
i and hidden state variablesXi. Hence, (7) can also be

solved with recourse to the EM algorithm [5]. In particular,
each iteration consists of

E-Step:Q(Θ(a), Θ̂(a)) = E
X,Z|Y,Θ̂(a) [log p(X,Y, Z|Θ(a))]

M-Step:Θ(a)∗ = argmax
Θ(a)

Q(Θ(a), Θ̂(a))

whereΘ̂(a) is the current estimate of the tag-level model,
p(X,Y, Z|Θ(a)) is the “complete-data” likelihood, and
E

X,Z|Y,Θ̂(a) is the conditional expectation with respect to
the current model parameters.

As is common with the EM formulation, we introduce a
hidden assignment variablezi,j , which is an indicator vari-
able for when the audio sample setYi is assigned to thejth

component ofΘ(a), e.g., whenz(a)i = j. The complete-
data log-likelihood is then

log p(X,Y, Z|Θ(a)) (10)

=

K(s)∑
i=1

K(a)∑
j=1

zi,j log π
(a)
j + zi,j log p(Yi, Xi|Θ

(a)
j ).

TheQ function is then obtained by taking the conditional
expectation of (10), and using the law of large numbers to
remove the dependency on the virtual samples. The result
is aQ function that depends only on the parameters of the
song-level DTsΘ(s)

i .
The HEM algorithm for DTM is summarized in Algo-

rithm 1. In the E-step, the expectations in Eq. (11) are
computed for each song-level DTΘ(s)

i and current tag-

level DT Θ̂
(a)
j . These expectations can be computed using

“suboptimal filter analysis” or “sensitivity analysis” [8] on
the Kalman smoothing filter (see [4]). Next, the probabil-
ity of assigning the song-level DTΘ(s)

i to the tag-level DT

Θ̂
(a)
j is computed according to (12), and the expectations

are aggregated over all the song-level DTs in (14). In the
M-step, the parameters for each tag-level componentΘ̂

(a)
j

are recomputed according to the update equations in (15).
More details are available in [4].

4. MUSIC DATA
In this section we describe the music collection and the
audio features used in our experiments.

The CAL500 [14] dataset consists of 502 Western pop-
ular songs from the last 50 years from 502 different artists.
Each song has been annotated by at least 3 humans, using
a semantic vocabulary of 174 words that includes genres,
instruments, vocal characteristics, emotions, acoustic char-
acteristics, and song usages. CAL500 provides hard binary
annotations, which are 1 when a tag applies to the song and
0 when the tag does not apply. We find empirically that ac-
curately fitting the HEM-DTM model requires a significant
number of training examples so we restrict our attention to
the 78 tags with at least 50 examples.

A popular feature for content-based music analysis,
Mel-frequency cepstral coefficients (MFCCs) concisely
summarize the short-time content of an acoustic waveform
by using the discrete cosine transform (DCT) to decorre-
late the bins of a Mel-frequency spectral histogram2 . In
Section 3.1 we noted how the DT model can be viewed as
a time varying PCA representation of the audio features.
This idea suggests that we can represent the spectrum over
time as the output of the DT modelyt. In this case,
the columns of the observation matrixC (PCA matrix)
are analogous to the DCT basis functions, and the hidden
statesxt are the coefficients (analogous to the MFCCs).
The advantage with this formulation is that a differentC
matrix, i.e., basis functions, can be learned to best rep-
resent the particular song or semantic concept of interest.

2 Thisdecorrelation is usually convenient in that it reduces the number
of parameters to be estimated.
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Algorithm 1 HEM algorithm for DTM

1: Input: combined song-level DTM{Θ(s)
i , π

(s)
i }K

(s)

i=1 , number
of virtual samplesN .

2: Initialize tag-level DTM,{Θ̂(a)
j , π

(a)
j }K

(a)

j=1 .
3: repeat
4: {E-step}
5: Compute expectations using sensitivity analysis for each

Θ
(s)
i andΘ̂(a)

j (see [4]):

x̂
(i)

t|j = E
y|Θ

(s)
i

[

E
x|y,Θ̂

(a)
j

[xt]

]

,

P̂
(i)

t,t|j = E
y|Θ

(s)
i

[

E
x|y,Θ̂

(a)
j

[xtx
T
t ]

]

,

P̂
(i)

t,t−1|j = E
y|Θ

(s)
i

[

E
x|y,Θ̂

(a)
j

[xtx
T
t−1]

]

,

Ŵ
(i)

t|j = E
y|Θ

(s)
i

[

(yt − ȳj)E
x|y,Θ̂

(a)
j

[xt]
T

]

,

Û
(i)

t|j = E
y|Θ

(s)
i

[

(yt − ȳj)(yt − ȳj)
T
]

,

û
(i)
t = E

y|Θ
(s)
i

[yt] ,

ℓi|j = E
Θ

(s)
i

[log p(y1:τ |Θ̂
(a)
j )].

(11)

6: Compute assignment probability and weighting:

ẑi,j =
π
(a)
j exp

(

Niℓi|j
)

∑K(a)

j′=1 π
(a)

j′
exp

(

Niℓi|j′
)

(12)

ŵi,j = ẑi,jNi = ẑi,jπ
(s)
i N (13)

7: Computed aggregate expectations for eachΘ̂
(a)
j :

N̂j =
∑

i
ẑi,j , ηj =

∑

i
ŵi,jP̂

(i)

1,1|j ,

M̂j =
∑

i
ŵi,j , γj =

∑

i
ŵi,j

∑τ

t=1 û
(i)
t ,

ξj =
∑

i
ŵi,j x̂

(i)

1|j , βj =
∑

i
ŵi,j

∑τ

t=1 x̂
(i)

t|j ,

Φj =
∑

i
ŵi,j

∑τ

t=1 P̂
(i)

t,t|j ,

Ψj =
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ŵi,j

∑τ

t=1 Û
(i)

t|j ,

Γj =
∑

i
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8: {M-step}
9: Recompute parameters for each componentΘ̂

(a)
j :

C∗
j = ΓjΦ

−1
j , R∗

j = 1

τM̂j
(Λj − C∗

j Γj),

A∗
j = Ψjφ

−1
j , Q∗

j = 1

(τ−1)M̂j
(ϕj −A∗

jΨ
T
j ),

µ∗
j = 1

M̂j
ξj , S∗

j = 1

M̂j
ηj − µ∗

j (µ
∗
j )

T ,

π∗
j =

∑K(s)

i=1 ẑi,j

K(s) , ȳ∗
j = 1

τM̂j
(γj − C∗

j βj).

(15)

10: until convergence

11: Output: tag-level DTM{Θ
(a)
j , π

(a)
j }K

(a)

j=1 .

Furthermore, since we explicitly model the temporal evo-
lution of the spectrum, we do not need to include the in-
stantaneous deltas of the MFCCs.

Our experiments use 34 Mel-frequency bins, computed
from half-overlapping, 46ms audio segments. Each audio
fragment is described by a time seriesyt1:τ of τ = 450
sequential audio feature vectors, which corresponds to
10 seconds. Song-level DTM models are learned from
a dense sampling of audio fragments of 10 seconds, ex-
tracted every 1 second.

Model P R F-score AROC MAP P10

HEM-GMM 0.49 0.23 0.26 0.66 0.45 0.47

CBA 0.41 0.24 0.29 0.69 0.47 0.49

HEM-DTM 0.47 0.25 0.30 0.69 0.48 0.53

Table 1. Annotation and retrieval results for HEM-DTM
andHEM-GMM.

5. EVALUATION
Song-level DTMs were learned withK = 16 compo-
nents and state-space dimensionn = 7, using EM-DTM.
Tag-level DTMs were learned by pooling together all song
models associated with a given tag and reducing the result
to a DTM with K(r) = 2 components with HEM-DTM.
To reduce the effect of low likelihoods in high dimen-
sions, we normalize the single-segment likelihood terms,
e.g.,p(yt1:τ |wk), by the length of the sequenceτ .

To investigate the advantage of the DTM’s temporal
representation, we compare the auto-tagging performance
of our model (HEM-DTM) to the hierarchically trained
Gaussian mixture models (HEM-GMM) from [14], a gen-
erative model that ignores temporal dynamics. A compar-
ison to the CBA model of [9] is provided as well. We fol-
low the procedure of [14] for training HEM-GMMs, and
our CBA implementation follows [9], with the modifica-
tion that the codebook is constructed using only songs from
the training set. All reported metrics are the results of 5-
fold cross validation where each song appeared in the test
set exactly once.

5.1 Annotation and Retrieval
Annotation performance is measured following the proce-
dure in [14]. Test set songs are annotated with the 10 most
likely tags in their semantic multinomial (Eq. 2). Anno-
tation accuracy is reported by computing precision, recall
and F-score for each tag, and then averaging over all tags.
For a detailed definition of the metrics, see [14].

To evaluate retrieval performance, we rank-order test
songs for each single-tag query in our vocabulary, as de-
scribed in Section 2. We report mean average precision
(MAP), area under the receiver operating characteristic
curve (AROC) and top-10 precision (P10), averaged over
all the query tags. The ROC curve is a plot of true positive
rate versus false positive rate as we move down the ranked
list. Random guessing would result in an AROC of 0.5.
The top-10 precision is the fraction true positives in the
top-10 of the ranking. MAP averages the precision at each
point in the ranking where a song is correctly retrieved.

5.2 Results
Annotation and retrieval results are presented in Table 1,
demonstrating superior performance for HEM-DTM, com-
pared to HEM-GMM,for all metrics except for precision.
This indicates that HEM-DTM is slightly more aggressive
when annotating songs, but still its annotations are more
accurate, as evidenced by the higher F-score. HEM-DTM
performs better than CBA in all metrics. For retrieval, al-
though AROC scores are comparable for CBA and HEM-
DTM, HEM-DTM clearly improves the top of the ranked
list more, as evidenced by the higher precision-at-10 score.
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Tag HEM-DTM HEM-GMM

F-score MAP F-score MAP

HEM-DTM better than HEM-GMM

male lead vocals 0.44 0.87 0.08 0.81

femalelead vocals 0.58 0.69 0.42 0.44

fast rhythm 0.40 0.48 0.20 0.42

classic rock 0.41 0.37 0.18 0.36

acoustic guitar 0.44 0.43 0.31 0.44

electric guitar 0.32 0.35 0.14 0.34

HEM-GMM better than HEM-DTM

mellow 0.34 0.41 0.37 0.49

slow rhythm 0.45 0.60 0.44 0.62

weak 0.22 0.26 0.26 0.25

light beat 0.36 0.58 0.53 0.61

sad 0.13 0.23 0.28 0.30

negative feelings 0.27 0.33 0.35 0.36

Table 2. Annotation and retrieval results for some tags
with HEM-DTM and HEM-GMM.

HEM-DTM
classic rock, driving, energy, fast, male
lead vocals, electric guitar, electric, indif-
ferent, powerful, rough

HEM-GMM
boring, major, acoustic,driving, not like-
able, female lead vocals,recording quality,
cold, synthesized, pop , guitar

Table 3. Automatic 10-word annotations for ‘Every little
thingshe does is magic’ by Police.

HEM-DTM performs better on average by capturing
temporal dynamics (e.g., tempo, rhythm, etc.) over sec-
onds of audio content. Modeling temporal dynamics can
be expected to prove beneficial for some tags, while adding
no benefit for others. Indeed, some tags might either be
modeled adequately by instantaneous characteristics alone
(e.g., timbre), or require a global song model. Table 2
lists annotation (F-score) and retrieval (MAP) results for a
subset of our vocabulary. As expected, HEM-DTM shows
strong improvements for tags associated with a clear tem-
poral structure. For the genre “classic rock”, which has
characteristic tempo and rhythm, HEM-DTM achieves an
F-score of approximately 0.4, doubling the performance
of HEM-GMM. Similarly, HEM-DTM proves particularly
suitable for tags with significant temporal structure, e.g.,
“male lead vocals” and “fast rhythm”, or the instruments
such as electric or acoustic guitar. Conversely, our HEM-
DTM shows no improvement over HEM-GMM when pre-
dicting tags for which temporal structure is less significant,
such as “mellow” and “negative feelings”.

Finally, Tables 3 and 4 show example annotations and
retrieval rankings for both HEM-DTM and HEM-GMM.
Ground truth results are marked in bold.

6. CONCLUSIONS
We have presented the dynamic texture mixture model; a
principled approach for capturing the temporal, as well as
timbral qualities of music. We derived a hierarchical al-

Rank HEM-DTM

1 James Taylor ‘Fire and rain’
2 Arlo Guthrie ‘Alices restaurant massacree’
3 Zombies ‘Beechwood park’
4 Crosby, Stills, Nash and Young ‘Teach your children’
5 Donovan ‘Catch the wind’
6 American music club ‘Jesus hands’
7 Aaron Neville ‘Tell it like it is’
8 10cc ‘For you and i’
9 Byrds ‘Wasn’t born to follow’
10 Beautiful south ‘One last love song’

Rank HEM-GMM

1 Stranglers ‘Golden brown’
2 Crosby, Stills, Nash and Young ‘Teach your children’
3 Pet shop boys ‘Being boring’
4 Counting crows ‘Speedway’
5 Beth quist ‘Survival’
6 Beautiful south ‘One last love song’
7 Neutral milk hotel ‘Where you’ll find me now’
8 Police ‘Every little thing she does is magic’
9 Eric clapton ‘Wonderful tonight’
10 Belle and Sebastian ‘Like Dylan in the movies’

Table 4. Top retrieved songs for ‘acoustic guitar’.

gorithm for efficiently learning DTM models from large
training sets, enabling its usage as a tag model for seman-
tic annotation and retrieval. Experimental results demon-
strate that the new model improves accuracy over current
bag-of-feature approaches.
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ABSTRACT

In this work we improve accuracy of MFCC-based genre
classification by using the Harmonic-Percussion Signal Sep-
aration (HPSS) algorithm on the music signal, and then
calculate the MFCCs on the separated signals. The choice
of the HPSS algorithm was mainly based on the observa-
tion that the presence of harmonics causes the high MFCCs
to be noisy. A multivariate autoregressive (MAR) model
was trained on the improved MFCCs, and performance in
the task of genre classification was evaluated. By combin-
ing features calculated on the separated signals, relative er-
ror rate reductions of 20% and 16.2% were obtained when
an SVM classifier was trained on the MFCCs and MAR
features respectively. Next, by analyzing the MAR features
calculated on the separated signals, it was concluded that
the original signal contained some information which the
MAR model was capable of handling, and that the best per-
formance was obtained when all three signals were used.
Finally, by choosing the number of MFCCs from each sig-
nal type to be used in the autoregressive modelling, it was
verified that the best performance was reached when the
high MFCCs calculated on the harmonic signal were dis-
carded.

1. INTRODUCTION

Music information retrieval (MIR) is a diverse research
field with many different areas of interest, such as chord
detection, melody extraction etc. One of the popular tasks
is classifying music into genres, which not only serves to
ease organization of large music databases, but also drives
the general development of features for representing the
various important aspects of music. The task of genre clas-
sification draws upon many different kinds of information
which means that one can either use features capable of ex-
pressing the music as a whole, or use many different types
of features, each describing specific aspects of the music,
such as the beat, melody, timbre etc. A low level feature
frequently used for modelling music is the Mel-Frequency
Cepstral Coefficients (MFCC), originally proposed in [1],
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(see [2] for a comprehensive review). The MFCCs are of-
ten calculated on the unaltered spectrum, thus containing
information of all aspects of the music. The MFCCs ef-
fectively function as a lossy compression of a short part
of the music signal into a small number of coefficients. It
may happen that certain characteristics of the music signal
which could be useful for genre classification are blurred
by the compression. A possible way to resolve this issue
is to break down the music signal into several signals, each
containing a specific kind of information about the signal,
and then calculate the MFCCs on the new signals. An ex-
ample could be to separate the instruments and then cal-
culate the MFCCs for the signals, each containing only a
single instrument. However, it is possible that such a sepa-
ration will fail, thus generating unpredictable results which
might actually be worse than just using the original signal
for classification. In this work we have used a simple algo-
rithm that separates the music signal into two signals, one
containing harmonics and the other containing percussion.
The choice of this algorithm is based on some observations
about the nature of the MFCCs, discussed in section 2.

After the music signal has been separated, MFCCs can
be calculated on all three signals (original signal, harmon-
ics and percussion). A classifier can be trained directly on
the MFCCs, or more elaborate models can be constructed
and used for classification. In this paper we investigate if
higher classification performance can be achieved by sep-
arating the music signal as described above. We train a
multivariate autoregressive (MAR) model on the MFCCs
from the three signal types, and use it in a classifier.

The MAR model has proven to be efficient for the task
of genre classification. First of all, the MAR model inte-
grates the short time feature frames temporally, and sec-
ondly it is capable of modelling the covariances between
the MFCCs. Since the ultimate goal of genre classifica-
tion algorithms is to reach an accuracy of 100%, it is most
meaningful to analyse the model with the highest accuracy.
Therefore the article will focus mostly on the results ob-
tained when using the MAR model for classification. Fur-
thermore, by comparing performance of the MAR features
calculated on the different signal types, it can be inferred
which aspects of the music the MAR model analyses.
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2. THE MEL-FREQUENCY CEPSTRAL
COEFFICIENTS

The Mel-Frequency Cepstral Coefficient (MFCC) feature
extraction is a useful way of extracting timbre information.
The music signal is divided into a number of short time
frames. For each frame,Nm coefficients are calculated,
thus yieldingNm time series to be modelled by the MAR
model, described in section 3.

In the following we explain the motivation for includ-
ing a separation step by considering how the MFCCs are
calculated. In the Mel filter-bank analysis, the bandwidth
of each filter is linear for frequencies under around 1 kHz,
and thereafter grows logarithmically. Therefore each of
the lower Mel coefficients is the mean of a relatively nar-
row frequency band. If the spectrum is characterized by
narrow pitch spikes, the difference between two adjacent
Mel coefficients is likely to be large. Since the MFCCs are
obtained by applying the DCT transform, these differences
will be described by the high MFCCs. In other words, the
high MFCCs are capable of closely fitting the pitch present
in the frame on which they are calculated. Pitch is usually
not a very good indicator for music genre, and therefore
the high MFCCs should be discarded. On the other hand, if
the spectrum has a smooth envelope the high order MFCCs
will not model pitch, and therefore may be usable for genre
classification. Most music signals contain both harmonics
(pitch spikes) and percussion (smooth spectral envelope).
Since the presence of pitch is harmful to the information
content of the high MFCCs, it seems feasible to separate
harmonics from percussion.

Furthermore it is possible that the shape of the spec-
tral envelope of harmonics and percussion when they have
been separated is useful for genre classification, and that
the information content of the lower MFCCs will be im-
proved by separating the music signal.

3. THE MULTIVARIATE AUTOREGRESSIVE
MODEL

The MAR model is similar to the normal autoregressive
model, in that it predicts the next sample of a time series
as a linear combination of past samples. The MAR model
extends the capabilities of the normal AR, as it capable
of making predictions for multiple time series and utilizes
correlations between time series for prediction. The pre-
diction of then’th Nm time series is calculated as

xn =

P∑

p=1

Apxn−I(p) + un (1)

wherexn is aNm×1 vector containing the predictions, and
n is the frame index.P is the model order which specifies
the number of time lags used for prediction. The MAR
model is not constrained to using only time lags1 . . . P ,
but an arbitrary set of time lagsI = {τ1 . . . τP } can be
chosen.A1 . . . AP are theNm × Nm weight matrices for
time lagsτ1 . . . τP . Element[A]i,jp is the weight that con-
trols how much of signalj, time-laggedτp samples, is used

for prediction of signali. un is the offset vector and can be
omitted if each time series is subtracted by it’s mean before
estimating the coefficient matrices. The model parameters
can be estimated by using the least mean squares approach.
TheP weight matricesA1 . . . AP and the the offset vector
un are stacked into aPN2

m + Nm dimensional vector, and
this constitutes the feature vector used for classification.

A basic assumption of the MAR model is that the time
series upon which it is calculated has a stationary distribu-
tion. At first glance this assumption does not seem to go
well with the nature of the percussive signal since it does
not have a smooth time envelope. However, over longer pe-
riods roughly the same percussion sounds and thus MFCCs
will appear again and again, which can be interpreted as
stationarity. On the other hand, even though the harmonic
signal has a smooth time envelope for a given note, mean-
ing that the MFCCs will have a stationary distribution dur-
ing the note, the distribution will change as the next note is
struck. Since the exact same combination of harmonics, or
in other words the same pitch spikes which are modelled
by the high order MFCCs, is unlikely to occur more than
maybe a few times, the distribution cannot be assumed sta-
tionary.

High order models are characterized by a high variance
which gives them the power to fit closely to a time series,
but also makes them prone to over-fitting. Low order mod-
els are more dominated by bias which makes them more
suitable in cases where the signal envelope is the desired
target. In [3], the MAR model was found to perform best
with P = 3 when the task was genre classification, but the
optimal value might differ according to the application for
the reasons listed above.

4. HARMONIC-PERCUSSION SIGNAL
SEPARATION

The Harmonic-Percussion Signal Separation (HPSS) algo-
rithm proposed in [5], is a simple and fast method of di-
viding a musical signal,N, into two signals,H andP, each
containing only the harmonic and percussive elements re-
spectively. HPSS can be thought of as a two-cluster soft
clustering, where each spectrogram grid-point is assigned
a graded membership to a cluster representing harmonics
and a cluster representing percussion. The algorithm uses
the fact that percussion has a short temporal duration and is
rich in noise, while harmonic elements have a long tempo-
ral duration with most of the signal energy concentrated in
pitch spikes. Thus in the spectrogram, percussion appears
as vertical lines of high power, whereas harmonic elements
appear as horizontal lines.

In broad terms, the HPSS algorithm works by assuming
independence betweenH andP, and using Bayes formula
to calculatep(H, P|N)

log p(H, P|N) = log p(N|H, P)+log p(H)+log p(P) (2)

The prior distributionsp(H) andp(P) are defined as func-
tions that measure the degree of smoothness in time and
frequency respectively.
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log p(H) =
∑

ω,τ

−1

2σ2
H

(H
γ
ω,τ−1 − Hγ

ω,τ )2 (3)

log p(P) =
∑

ω,τ

−1

2σ2
P

(P
γ
ω−1,τ − P γ

ω,τ )2 (4)

WhereσH , σP andγ has been manually specified as in
[5]. Thus the prior forH will be high when each row of
the spectrogram is characterized by slow fluctuations, and
similarly the prior forP will be high when this is the case
for columns of the spectrogram. The likelihood function
has been defined by measuring the I-divergence between
N andH + P:

log p(N|H, P) = (5)

−
∑

ω,τ

(
Nω,τ log

Nω,τ

Hω,τ + Pω,τ

− Nω,τ + Hω,τ + Pω,τ

)

and so the likelihood is maximized whenNω,τ = Hω,τ +

Pω,τ for all ω andτ . The log-likelihood function is max-
imized by using the EM-algorithm. The update equations
have been omitted in this work, but can be found in [5].

It is important to realize that since the HPSS algorithm
is not a source separation algorithm but rather a decompo-
sition of the original signal, no criteria of success has been
defined, and so the algorithm cannot fail unless it fails to
converge.

5. DATASET

We used the TZGENRE dataset proposed in [8]. The dataset
hasNs = 1000 songs divided equally into 10 genres: blues,
classic, country, disco, hip-hop, jazz, metal, pop, reggae
and rock. Each song is a 30s sound snippet, and only one
MAR model is calculated for the whole song. Other meth-
ods for calculating multiple MAR models on a single song
and combining them afterwards can be found in [3] and [4].

6. EXPERIMENTAL SETUP

First the music signal was separated by using HPSS, and
MAR features were calculated for each signal. If the MAR
model is capable of using both harmonics and percussive
elements at the same time, such a decomposition will not
result in higher performance. However, if for instance the
MAR model analyses the harmonic elements, then remov-
ing percussion will enable the MAR features to perform
better. In the following, MAR features calculated on the
harmonics, percussion and normal signals will be referred
to asmh, mp, mn respectively, whereas MFCCs will be
referred to asch, cp andcn. In addition to the three sin-
gle signal feature types, four combinations features of the
MAR features and four combinations of the MFCCs were
constructed:mhp, mhn, mpn, mhpn, chp, chn, cpn and
chpn.

The sample-rate of the songs was 22.05 kHz. The MFCCs
were calculated on 20 ms windows with an overlap of 10 ms.
40 filter-banks were used in the MFCC calculation. Since

the number of MFCCs used to calculate the MAR features
has a great influence on performance, each combination
of features was evaluated with 19 different values ofNm.
For each combination anNs × D data matrix was created
by stacking theNs features vectors, each of dimensionD.
For features containing only MAR combinations, the di-
mension isD = c(PN2

m +Nm), wherec ∈ {1, 2, 3} is the
number of stacked MAR models.

The classifier used was a support vector machine with
a Gaussian kernel. Kernel parametersσ andC were not
tuned, but each column of the data matrix was normalized
with respect to standard deviation. 500-fold cross valida-
tion was used for each of the 19 values ofNm, resulting
in aNs × 19 matrix, where each column contained the av-
erage accuracy for each song for a givenNm. The overall
performance for a givenNm was obtained by taking the
mean of that column.

7. RESULTS

In this section the results of the experiments described in
section 6 are presented and discussed.

7.1 Combining features from the separated signals

Figure 1 shows the classification performance of the seven
combinations when the classifiers were trained directly on
the MFCCs. The difference between the classifier trained
on the MFCCs calculated on the original signal to the best
performing feature,chp, is 7.5%, corresponding to a rel-
ative error rate reduction of 20.0%. This is a significant
improvement, and confirms that the MFCCs have prob-
lems expressing both harmonic and percussive information
when present at the same time.

ch reaches its near peak performance for lowNm. This
means that for the harmonic signal, very little usable infor-
mation is contained in the high MFCCs. The MFCCs are
fairly low-dimensional which means that the SVM classi-
fier is still able to achieve optimal performance, and thus
performance only degrades slightly. Performance ofcp

keeps increasing when including more MFCCs, meaning
that the higher MFCCs in the percussion signal contains
usable information. Furthermore, the performance gained
by including higher MFCCs is more than for the harmonics
signal but less than for the percussion signal. This confirms
that the presence of harmonics degrades the information
quality of the higher MFCCs.

Next, we use the MAR model for classification and test
performance ofmh, mp andmn, and of the combinations
of them. The performance of the seven combination fea-
tures is shown on Figure 2.mn is the most powerful of the
three single model features peaking with a performance of
74.1%. Pleasingly, all three single model features have a
lower performance than the combination features.mhnp

had a peak performance of 77.6%, a gain of 3.6% com-
pared to the best single signal model.

As was also seen when using the MFCCs in the clas-
sifier, mhp performs significantly better thanmn. This
shows that the autoregressive modelling of the MFCCs cal-
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Figure 1. Performance curves for the classifier trained on
MFCCs

culatedon the original signal cannot compensate for the
MFCCs’ inability to handle the mixture of harmonic and
percussive information.

An important difference between using MFCCs or MAR
features in the classifier is thatmhpn outperformedmhp,
whereaschpn andchp had the same level of performance.
Thus the MAR model is capable of modelling some prop-
erties of the original signalN, which are present in neither
H nor P. More specifically, the MAR model can in some
cases predict percussion from harmonics or vice versa, due
to the autoregressive modelling. This is a reasonable claim
when keeping in mind that the HPSS algorithm is not a
source separation algorithm, and that some instruments will
produce both harmonics and percussive sounds.

As an example, when a note is played on a piano the
hammer hits the string causing it to vibrate, resulting in a
sound with a high attack part and a slowly declining en-
velope. Since this will happen every time the piano is
used, the MAR model can use the attack part to make a
prediction about the rest of the sound. When using HPSS
to separate the signal however, percussion is assumed to
be independent from harmonics, and the attack part, which
is rich in noise and has a short temporal duration, is as-
signed to the percussion signal while the rest of the sound
is assigned to the harmonic signal. When this happens the
MAR model can no longer model the dependencies, so in-
cluding MAR features calculated on the original signal in-
creases performance.

7.2 Differences between the signal type MAR features

In this section we analyse some of the differences between
the MAR features calculated on each of the separated sig-
nals.

An important step towards understanding the MAR fea-
tures and specify their application domain is to investigate
to which degree features calculated on the different signal
types classify the same songs or not. In the former case,
classification accuracy with different signal types is largely
genre dependent, and in the latter case there will be some
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Figure 2. Performance curves for the classifier trained on
MAR features
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Figure 3. Examples of genre specific performance, only
MAR features

easy songs which can be classified by all signal models,
and some hard songs that only the features with an overall
high performance can classify.

Analysis is carried out by finding the point where all
signal models have approximately the same accuracy, and
calculating the correlation between theNs × 1 song accu-
racy vectors. It was observed that there is a low correlation
between which songsmh andmp classify. This suggests
that the two signal models contains different information
which allows for the classification of different songs, and
thus are efficient with different kinds of music. For most
genresmn is slightly better thanmp, with mh being the
worst performing of the three. However, for some genres
mh achieves the best performance when the high MFCCs
were discarded, as can be seen on Figure 3. Furthermore,
the fact that the correlation of the song classification vec-
tors ofmp andmn was high, means that they classify more
of the same songs thanmh and mn, which is consistent
with the fact thatmhn andmp classify more of the same
songs thanmpn andmh. These results suggest that MAR
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Feature Performance Relative ERR
cn 61.1% N/A
chp, Constr. 68.9% 20.0%
mn 74.1% N/A
mhpn, Constr. 77.6% 13.5%
mhpn, N.Constr. 78.3% 16.2%

Table 1. Overview of the best performing features. Constr.
or N.Constr. refer to the constraint onNm.

features calculated on the original music reflect the per-
cussive elements to a higher degree than the harmonics el-
ements.

The fact thatmpn is even higher thanmhp seems like
a contradiction to the statement made earlier thatmn is
more correlated withmp than withmh. The explanation
to this is most likely that the gains from combining un-
correlated features, i.e.mhp andmhn, cannot match the
penalty caused by the low performance ofmh. Although
mp andmn are somewhat correlated, there are still some
differences in what songs they classify, and this seems to
results in a performance gain when combined.

7.3 Selecting Nm for each signal type

Figure 2 in section 7.1 shows that the MAR features cal-
culated on the different signal types perform best for dif-
ferent values ofNm. In this section we investigate if per-
formance can be improved by removing the constraint that
the number of MFCCs used to calculate the MAR model
must be the same for all signal types. Since it is possible
that simply combining the best performing models does
not achieve the highest performance, the five best models
of each signal type were used to form a number of combi-
nation features.

Figure 4 shows the performance plotted versus the di-
mensionality of the feature vector, using the same number
of MFCCs, and with different number of MFCCs. The fig-
ure makes it easy to compare feature efficiencies, as a point
that is situated higher and on the left side of another point
of the same type, means that a feature of lower dimension-
ality had higher performance.

From Figure 4 it seems that the method of selectingNm

for each single MAR model is not particularly capable of
producing low dimensional features, but the method do
achieve the highest overall performance. However, since
it is in general infeasible to try all combinations ofNm

before selecting the best one, a general tendency must be
discovered. In section 2 it was suggested that the high
MFCCs calculated on the harmonics signal should be dis-
carded, whereas high MFCCs from the percussion signal
could be used. This was the case when the classifier was
trained directly on the MFCCs, and when the classifier was
trained on the MAR features. It is not surprising therefore,
that the best performance of 78.3% was obtained by dis-
carding the high MFCCs for the harmonic signal and using
high MFCCs from the percussion signal.
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Figure 4. Performance and dimensionality of combination
models

8. PERFORMANCE DEMONSTRATION

This section contains a short demonstration of the perfor-
mance obtained when combining the improved features with
two other features types, each describing different aspects
of music. The first type is the Rhythm Map features, pro-
posed in [6], which are calculated on the percussion signal.
A song is represented as a ten dimensional vector, each el-
ement describing the membership to a rhythmic template
extracted from the entire dataset. The second feature type,
henceforth referred to as TZ-features, represents a song as
an 68-dimensional vector containing a set of timbre related
features proposed in [8]. The Rhythm Map is of special
interest since it is calculated on the percussive signal pro-
vided by the HPSS algorithm, and thus provide no infor-
mation about the harmonics. The TZ-features were cho-
sen because they were tested in combination with Rhythm
Map (see [7]), where it was shown that the two feature
types compliment each other well. An accuracy of 75.0%
was obtained on the dataset by the combination of Rhythm
Map and TZ-features. When the MAR features calculated
on the original signal were included as well, a performance
of 80.1% was achieved. Finally, by separating the signal
with HPSS and calculating MAR features on the three sig-
nals as proposed, a performance of 82.46% was obtained,
corresponding to a relative error rate reduction of 12.0%.

9. CONCLUSION

In this work we proposed that separating the music signal
into more signals, each containing certain characteristics
of the original signal, could produce better features, lead-
ing to increased performance in the task of music genre
classification. Based on the observation that the presence
of harmonics causes the high MFCCs to be noisy, we used
the HPSS algorithm to separate the signal into two signals,
one containing harmonics and the other containing percus-
sion. The separation increased performance significantly,
both when the classifier was trained on the MFCCs and
when it was trained on the MAR features. The best perfor-
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mance obtained with the MAR features was 78.3%, corre-
spondingto a relative error rate reduction of 16.2%. It was
seen that the MAR model uses both harmonic and percus-
sive information to make predictions, but that the percus-
sive information seems to be the dominating. The fact that
the best performance was reached when the MAR features
from the separated signals were combined with the origi-
nal signal showed us that the MAR-model could, to some
extend, model dependencies between harmonic and per-
cussive elements. The combination of MFCCs calculated
on the harmonics signal and MFCCs calculated on the per-
cussion signal performed better than MFCCs calculated on
the original signal, and this was interpreted as an inability
of the MFCCs to model the presence of both harmonics
and percussion in the same signal. An important conclu-
sion of this is that separating the music signal as proposed
simply creates better low level features, which means that
models trained on these features will also be improved.
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ABSTRACT

In this paper, we compare two approaches for automatic
classification of bass playing styles, one based on high-
level features and another one based on similarity mea-
sures between bass patterns. For both approaches, we com-
pare two different strategies: classification of patterns as a
whole and classification of all measures of a pattern with a
subsequent accumulation of the classification results. Fur-
thermore, we investigate the influence of potential tran-
scription errors on the classification accuracy, which tend
to occur when real audio data is analyzed. We achieve best
classification accuracy values of 60.8% for the
feature-based classification and 68.5% for the classifica-
tion based on pattern similarity based on a taxonomy con-
sisting of 8 different bass playing styles.

1. MOTIVATION

Melodic and harmonic structures were often studied in the
field of Music Information Retrieval. In genre discrimi-
nation tasks, however, mainly timbre-related features are
somewhat satisfying to the present day. The authors as-
sume, that bass patterns and playing styles are missing
complementaries. Bass provides central acoustic features
of music as a social phenomenon, namely its territorial
range and simultaneous bodily grasp. These qualities come
in different forms, which are what defines musical genres
to a large degree. Western popular music with its world-
wide influence on other styles is based upon compositional
principles of its classical roots, harmonically structured
around the deepest note. African styles also often use tonal
bass patterns as ground structure, while Asian and Latin
American styles traditionally prefer percussive bass sounds.
In contrast to the melody (which can easily be interpreted
in “cover versions” of different styles), the bass pattern
most often carries the main harmonic information as well
as a central part of the rhythmic and structural information.

A more detailed stylistic characterization of the bass in-
strument within music recordings will inevitably improve
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classification results in genre and artist classification tasks.
Within the field of Computational Ethnomusicology (CE)
[19], the automatic detection of the playing styles of the
participating instruments such as the bass constitutes a
meaningful approach to unravel the fusion of different mu-
sical influences of a song. This holds true for many con-
temporary music genres and especially for those of a global
music background.

The remainder of this paper is organized as follows. Af-
ter outlining the goals and challenges in Sec. 2 and Sec. 3,
we provide a brief overview over related work in Sec. 4.
In Sec. 5, we introduce novel high-level features for the
analysis of transcribed bass lines. Furthermore, we pro-
pose different classification strategies, which we apply and
compare later in this paper. We introduce the used data set
and describe the performed experiments in Sec. 6. After
the results are discussed, we conclude this paper in Sec. 7.

2. GOALS

The goal of this publication is to compare different ap-
proaches for automatic playing style classification. For
this purpose, we aim at comparing different classification
approaches based on common statistical pattern recogni-
tion algorithms as well as on the similarity between bass
patterns. In both scenarios, we want to investigate the ap-
plicability of a aggregation classification based on the sub-
patterns of an unknown pattern.

3. CHALLENGES

The extraction of score parameters such as note pitch and
onset from real audio recordings requires reliable auto-
matic transcription methods, which nowadays are still error-
prone when it comes to analyzing multi-timbral and poly-
phonic audio mixtures [4, 13]. This drawback impedes a
reliable extraction of high-level features that are designed
to capture important rhythmic and tonal properties for a
description of an instrumental track. This is one problem
addressed in our experiments. Another general challenge
is the translation of musical high-level terms such as syn-
copations, scale, or pattern periodicity into parameters that
are automatically retrievable by algorithms. Information
regarding micro-timing, which is by the nature of things
impossible to encompass in a score [9], is left out.
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4. PREVIOUS APPROACHES

Within the last years, the use of score-based high-level
features became more popular for tasks such as automatic
genre classification. To derive a score-based representation
from real audio recordings, various automatic transcrip-
tion algorithms have been proposed so far. The authors
of [18], [13], and [4] presented algorithms to transcribe
bass lines. Musical high-level features allow to capture
different properties from musical domains such as melody,
harmony, and rhythm [1,3,10,11]. Bass-related audio fea-
tures we used for genre classification in [18], [1], and [17].

An excellent overview over existing approaches for the
analysis of expressive music performance and artist-
specific playing styles is provided in [23] and [24]. In [7],
different melodic and rhythmic high-level features are ex-
tracted before the performed melody is modeled with an
evolutionary regression tree model. The authors of [15]
also used features derived from the onset, inter-onset-
interval and loudness values of note progression to quan-
tify the performance style of piano players in terms of their
timing, articulation and dynamics. To compare different
performances in terms of rhythmic and dynamic similarity,
the authors of [14] proposed a numerical method based on
the correlation at different timescales.

5. NOVEL APPROACH

5.1 Feature extraction

In this paper, we use 23 multi-dimensional high-level fea-
tures that capture various musical properties for the tonal
and rhythmic description of bass lines. The feature vec-
tor consists of 136 dimensions in total. Thebasic note
parameters, which we investigate in this paper, are the
absolute pitchΘP , the loudnessΘV , the onsetΘ[s]

O and

Θ
[M ]
O , and the durationΘ[s]

D andΘ
[M ]
D of each note. The

indices [s] and [M] indicate that both the onset and the du-
ration of a note can be measured in seconds as well as in
lengths of measures. All these parameters are extracted
from symbolic MIDI files by using the MIDI-Toolbox for
MATLAB [5].

Afterwards, furtheradvanced note parametersare de-
rived before features are extracted. From the pitch dif-
ferences∆ΘP between adjacent notes in semitones, we
obtain vectors containing the interval directions∆Θ

(D)
P

(being either ascending, constant, or descending), and the
pitch differences in terms of functional interval types
∆Θ

(F )
P . To derive the functional type of an interval, we

map its size to a maximum absolute value of 12 semitones
or one octave by using the modulo 12 operation in case it
is larger than one octave upwards or downwards (12 semi-
tones). Then each interval is assigned to a function interval
type (prime, second, third etc.) according to well known
music principles. In addition to the high-level features pre-
sented in [1], we use various additional features related to
tonality and rhythm in this paper, which are explained in
the following subsections.

Features related to tonality
We derive features to measure if a certainscaleis applied
in a bass pattern. Therefore, we take different binary scale
templates for natural minor (which includes the major scale),
harmonic minor, melodic minor, pentatonic minor (subset
of natural minor which also includes the pentatonic major
scale), blues minor, whole tone, whole tone half tone, ara-
bian, minor gypsy and hungarian gypsy [21] into account.
Each scale template consists of 12 values representing all
semitones of an octave. The value 1 is set for all semi-
tones that are part of the scale, the value 0 for those that
are not. All notes within a given pattern, which are related
to a certain scale, are accumulated by adding their normal-
ized note loudness valuesΘV /ΘV,max with ΘV,max be-
ing the maximum note loudness in a pattern. The same is
done for all notes, which are not contained in the scale.
The ratio of both sums is calculated over all investigated
scales and over all 12 possible cyclic shifts of the scale
template. This cyclic shift is performed to cope with each
possible root note position. The maximum ratio value over
all shifts is determined for each scale template and used as
a feature value, which measures the presence of each con-
sidered scale. We obtain the relative frequenciespi of all
possible values in the vector that contains the interval di-
rections (∆Θ

(D)
P ) as well as the vector that contains the

functional interval types (∆Θ
(F )
P ) and use them as fea-

tures to characterize the variety of different pitch transi-
tions between adjacent notes.

Features related to rhythm
Syncopationembodies an important stylistic means in dif-
ferent music genres. It represents the accentuation on weak
beats of a measure instead of an accentuation on a neigh-
bored strong beat that usually would be emphasized. To
detect syncopated note sequences within a bass-line, we
investigate different temporal grids in terms of equidis-
tant partitioning of single measures. For instance, for an
eight-note grid, we map all notes inside a measure towards
one of eight segments according to their onset position in-
side the measure. In a44 time signature, these segments
correspond to all 4 quarter notes (on-beats) and their off-
beats in between. If at least one note is mapped to a seg-
ment, it is associated with the value 1, otherwise with 0.
For each grid, we count the presence of the following seg-
ment sequences - (1001), (0110), (0001), or (0111). These
sequences correspond to sequences of alternating on-beat
and off-beat accentuations that are labeled as syncopations.
The ratios between the number of syncopation sequences
and the number of segments are applied as features for the
rhythmical grids 4, 8, 16, and 32.

We calculate the ratioΘ(M)
D (k)/∆Θ

(M)
O (k) between the

duration value of the k-th note in measure lengths and the
inter-onset-interval between the k-th note and its succeed-
ing note. Then we derive the mean and the variance of
this value over all notes as features. A high or low mean
value indicates whether notes are playedlegato or stac-
cato. The variance over all ratios captures the variation
between these two types ofrhythmic articulationwithin a
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given bass pattern. To measure if notes are mostly played
on on-beatsor off-beats, we investigate the distribution of
notes towards the segments in the rhythmical grids as ex-
plained above for the syncopation feature. For example,
the segments 1, 3, 5, and 7 are associated to on-beat posi-
tions for an eight-note grid and a44 time signature. Again,
this ratio is calculated over all notes and mean and vari-
ance are taken as feature values. As additional rhythmic
properties, we derive the frequencies of occurrence of all
commonly used note lengths from half notes to 64th notes,
each in its normal, dotted, and triplet version. In addition,
the relative frequencies from all note-note, note-break and
break-note sequences over the complete pattern are taken
as features.

5.2 Classification based on statistical pattern
recognition

We investigate the applicability of the well-established Sup-
port Vector Machines (SVM) using the Radial Basis Func-
tion (RBF) as kernel combined with a preceding feature
selection using the Inertia Ratio Maximization using Fea-
ture Space Projection (IRMFSP) as a baseline experiment.
The feature selection is applied to choose the most discrim-
inative features and thus to reduce the dimensionality of
the feature space prior to the classification. Therefore, we
calculate the high-level features introduced in 5.1 for each
bass pattern, which results in an 136 dimensional feature
space. Details on both the SVM and the IRMFSP can be
found for instance in [1].

5.3 Classification based on pattern similarity

In this paper, we apply 2 different kinds of pattern similar-
ity measures,pairwise similarity measuresandsimilarity
measures based on the Levenshtein distance. To compute
similarity values between patterns, the values of the on-
set vectorΘ[M ]

O and the absolute pitch vectorΘP are sim-
ply converted into character strings. In the latter case, we
initially subtract the minimum value ofΘP for each pat-
tern separately to remain independent from pitch transposi-
tions. This approach can of course be affected by potential
outliers, which do not belong to the pattern.

5.3.1 Similarity measures based on the Levenshtein
distance

The Levenshtein distanceDL offers a metric for the com-
putation of the similarity of strings [6]. It measures the
minimum number of edits in terms of insertions, deletions,
and substitutions, which are necessary, to convert one string
into the other. We use the Wagner-Fischer algorithm [20]
to computeDL and derive a similarity measureSL be-
tween two strings of lengthl1 andl2 from

SL = 1 − DL/DL,max . (1)

The lengthsl1 and l2 correspond to the number of notes
in both patterns.DL,max equals the maximum value of
l1 and l2. In the experiments, we use the rhythmic simi-
larity measureSL,R and the tonal similarity measureSL,T

derived from the Levenshtein distance between the onset
Θ

[M ]
O and the pitchΘP as explained in the previous sec-

tion. Furthermore, we investigate

SL,RT,Max =

{
SL,R , SL,R ≥ SL,T

SL,T , SL,T > SL,R

(2)

and

SL,RT,Mean =
1

2
(SL,R + SL,T ) (3)

by using the maximum and the arithmetic mean between
of SL,R andSL,T as aggregated similarity measures.

5.3.2 Pairwise similarity measures

In general, we derive a pairwise similarity measure

SP =
1

2

(
Nn,m

Nn

+
Nm,n

Nm

)

(4)

Nn,m denotes the number of notes in patternn, for which
at least one note in patternm exists that have the same
absolute pitch value (for the similarity measureSP,T ) or
onset value (for the similarity measureSP,R). Nm,n is
defined vice versa. By applying the constraint that both
onset and absolute pitch need to be equal in Eq. 4, we
obtain the measureSP,RT . Furthermore, we derive the ag-
gregated similarity measuresSP,RT,Max andSP,RT,Mean

analogous to Eq. 2 and Eq. 3.

6. EVALUATION

6.1 Data-set

We assembled a novel dataset from instructional bass lit-
erature [12, 21], which consists of bass patterns from the
8 genresSwing(SWI), Funk(FUN), Blues(BLU), Reggae
(REG),Salsa & Mambo(SAL), Rock(ROC),Soul & Mo-
town(SOU) andAfrica (AFR), a rather general term which
here signifies Sub-Saharan Popular Music Styles [16]. For
each genre, 40 bass-lines of 4 measure length have been
stored as symbolic audio data as MIDI files. Initial listen-
ing tests revealed that in this data set, which was assem-
bled and categorized by professional bass players, a certain
amount of stylistic overlap and misclassification between
genres as for instance Blues and Swing or Soul & Motown
and Funk occurs. The overlap is partly inherent to the ap-
proach of the data sets, which treat all examples of a style
(e.g. Rock) as homogenous although the sets include typ-
ical patterns of several decades. In some features, early
Rock patterns might resemble early Blues patterns more
than they resemble late patterns of their own style [22].
Thus, the data set will be extended further and revised by
educated musicologists for future experiments.

6.2 Experiments & Results

6.2.1 Experiment 1 - Feature-based classification

As described in Sec. 5.2, we performed a baseline experi-
ment that consists of IRMFSP for chosing the bestN = 80
features and the SVM as classifier. The parameterN has
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Figure 1. Exp. 1 - Confusion matrix for the feature-based
pattern-wise classification (all values given in %). Mean
classification accuracy is 60.8% with a standard deviation
of 2.4%.

been determined to perform best in previous tests on the
data-set. A 20-fold cross validation was applied to de-
termine the mean and standard deviation of the classifi-
cation accuracy. For a feature extraction and classification
based on complete patterns, we achieved 60.8% of accu-
racy with a standard deviation of 2.4%. The correspond-
ing confusion matrix is shown in Fig. 1. It can be seen,
that best classification results were achieved for the styles
Funk, Rock, and Swing. Strong confusions between Blues
and Motown respectively Swing, Motown and Rock, Reg-
gae and Africa as well as between Salsa and Africa can
be identified. These confusions support the musicological
assessment of the data-set given in Sec. 6.1. In addition,
they coincide with historical relations between the styles in
Africa, the Caribbean, and Latin America, as well as rela-
tions within North America as it is common musicological
knowledge [8].

As a second classification strategy, we performed the
feature extraction and classification based on sub-patterns.
Therefore, we divided each pattern within the test set into
N = 4 sub-patterns of one measure length. It was en-
sured, that no sub-patterns of patterns in the test set were
used as training data. After all sub-patterns were classi-
fied, the estimated playing style for the corresponding test
set pattern was derived from a majority decision over all
sub-pattern classifications. In case of multiple winning
classes, a random decision was applied between the win-
ning classes. For the accumulated measure-wise classifi-
cation, we achieved only 56.4% of accuracy. Thus, this
approach did not improve the classification accuracy. We
assume that the majority of the applied high-level features
that are based on different statistical descriptors (see Sec. 5.1
for details), can not provide a appropriate characterization
of the sub-patterns, which themselves only consist of 6 to
9 notes in average.

6.2.2 Experiment 2 - Pattern Similarity

This experiment is based on a leave-one-out cross-
validation scheme and thus consists ofN = 320 evalu-
ation steps according to the 320 patterns in the data-set.
Within each evaluation step, the current patternPk is used
as test data while all remaining patternsPl with l 6= k are
used as training data. We derive the class estimateĉk of
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Figure 2. Exp. 2 - Confusion matrix for the best similarity-
based configuration (measure-wise classification using the
SP,RT,Max similarity measure - all values given in %).
Mean classification accuracy is 68.5% with a standard de-
viation of 3.1%.

Pk from the class label̂c of the best-fitting pattern̂P as

ĉk = c
l̂
⇔ l̂ = arg max

l
Sk,l (5)

with Sk,m representing the similarity measure betweenPk

andPm in the given case. As in Sec. 6.2.1, if multiple
patterns have the same (highest) similarity, we perform
a random decision among these candidates. This experi-
ment is performed for all similarity measures introduced
in Sec. 6.2.2.

Exp. 2a: Pattern-wise classification.The basic approach
for a pattern-based classification is to use each pattern of 4
measures length as one item to be classified.

Exp. 2b: Accumulated measure-wise classification. Bass
patterns are often structured in a way, that the measure or
a part of the measure, which precedes the pattern repeti-
tion, is often altered rhythmically or tonally and thus often
varies greatly from the pattern. These figures separating or
introducing pattern repetition are commonly referred to as
pickupsor upbeats, meaning that they do not vary or over-
lap the following pattern repetition which starts on the first
beat of the new measure. A pattern-wise classification as
described above thus might overemphasize the difference
between the last measure because the patterns are com-
pared over their complete length. Hence, we investigate
another decision aggregation strategy in this experiment.

As described in Sec. 6.2.1, we divide each bass pattern
into sub-patterns of one measure length each. Within each
fold k, we classify each sub-patternSPk,l of the current
test patternPk separately. At the same time, we ensure
that only sub-patterns of the other patternsPi with i 6= k
are used as training set for the current fold. To accumulate
the classification results in each fold, we add all similarity
valuesSk,l between each sub-patternSPk,l towards their
assigned winning pattern(s)Pk,l,win. The summation is
done for each of the 6 genres separately. The genre that
achieve the highest sum is considered as the winning genre.

As depicted in Fig. 3, the proposed accumulated
measure-wise classification strategy led to higher classifi-
cation accuracy values (blue bars) in comparison to a
pattern-wise classification (red bars). This approach can
be generalized and adopted to patterns of arbitrary length.
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Figure 4. Exp. 3 - Mean classification accuracy vs. per-
centageε of pattern variation (dotted line - pattern-wise
similarity, solid line - accumulated measure-wise similar-
ity).

The similarity measureSP,RT,Max clearly outperforms the
other similarity measures by over 10 percent points of ac-
curacy. The corresponding confusion matrix is shown in
Fig. 2. We therefore assume that it is beneficial to use sim-
ilarity information both based on pitch and onset similarity
of bass patterns. For the pattern-wise classification, it can
be seen that similarity measures based on tonal similar-
ity generally achieve lower accuracy results in comparison
to measures based on the rhythmic similarity. This might
be explained by the frequently occurring tonal variation of
patterns according to the given harmonic context such as a
certain chord of a changed key in different parts of a song.
The most remarkable result in confusion matrix is the very
high accuracy of 95.1% for the Motown genre.

6.2.3 Experiment 3 - Influence of pattern variations

For the extraction of bass-patterns from audio recordings,
two potential sources of error exist. In most music gen-
res, the dominant bass patterns are object of small vari-
ations throughout a music piece. An automatic system
might recognize the basic pattern or a variation of the basic
pattern. Furthermore, automatic music transcription sys-
tems are prone to errors in terms of incorrect pitch, onset,
and duration values of the notes. Both phenomena directly
have a negative effect on the computed high-level features.
We therefore investigate the achievable classification accu-
racy dependent on the percentage of notes with erroneous
note parameters.

We simulate the mentioned scenarios by manipulating
a random selection ofε percents of all notes from each
unknown pattern and varyε from 0% to 50%. The ma-

nipulation of a single note consists of either a modifica-
tion of the onsetΘ[M ]

O by a randomly chosen difference

−0.25 ≤ ∆Θ
(M)
O ≤ 0.25 (which corresponds to a maxi-

mum shift distance of one beat for a44 time signature), a
modification of the absolute pitchΘP by a randomly cho-
sen difference−2 ≤ ∆ΘP ≤ 2 (which corresponds to a
maximum distance of 2 semitones), or a simple deletion of
the current note from the pattern. Octave pitch errors that
often appear in automatic transcription algorithms were not
considered because of the mapping of each interval to a
maximum size of one octave as described in Sec. 5.1. In-
sertions in terms of additional notes, which are not part of
the pattern will be taken into account in future experiments.

As depicted in Fig. 4, the accuracy curve of the three
different pair-wise similarity measuresSP,R, SP,T and
SP,RT,Max falls until about 40% for a transcription er-
ror rate of 50% Interestingly, the pattern-wise classifica-
tion based onSP,R seems to be more robust to transcrip-
tion errors above 15% in comparison to the accumulated
measure-wise classification even though it has a lower ac-
curacy rate for the assumption of a perfect transcription.

6.2.4 Comparison to the related work

The comparison of the achieved results to the related work
is not directly feasible. On one side, it is caused by the
fact, that different data sets have been utilized. Tsunoo
et al. [18] reported an accuracy of 44.8% for the GZTAN
data set1 while using only bass-line features. On the other
side, the performance of only bass-line features was not
every time stated. The work of Tsuchihashi et al. [17]
showed an improvement of classification accuracy from
53.6% to 62.7% while applying bass-line features compli-
mentary to other timbre and rhythmical features, but the
results of genre classification with only bass features were
not reported.

7. CONCLUSIONS & OUTLOOK

In this paper, different approaches for the automatic de-
tection of playing styles from score parameters were com-
pared. These parameters can be extracted from symbolic
audio data (e.g. MIDI) or from real audio data by means of
automatic transcription. For the feature-based appraoch,
a best result of 60.8% of accuracy was achieved using a
combination of feature selection (IRMFSP) and classifier
(SVM) and a pattern-wise classification. Regarding the
classification based on pattern similarity, we achieved
68.5% of accuracy using the combined similarity measure
SP,RT,Max and a measure-wise aggregation strategy based
on the classification of sub-patterns. The random baseline
is 12.5%. This approach outperformed the common ap-
proach to classify the complete pattern as once.

For analyzing real-world audio recordings, further mu-
sical aspects such as micro-timing, tempo range, applied
plucking & expression styles [2], as well as the interac-

1 G. Tzanetakis and P. Cook. Musical genre classification of audio
signals. IEEE Transaction on Speech and Audio Processing, 10(5):293-
302, 2002.

97

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



tion with other participating instruments need to be incor-
porated into a all-embracing style description of a specific
instrument in a music recording. The results of experiment
4 emphasize the need for a well-performing transcription
system for a high-level classification task such as playing
style detection.
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ABSTRACT

Computational models of beat tracking of musical au-
dio have been well explored, however, such systems often
make “octave errors”, identifying the beat period at dou-
ble or half the beat rate than that actually recorded in the
music. A method is described to detect if octave errors
have occurred in beat tracking. Following an initial beat
tracking estimation, a feature vector of metrical profile sep-
arated by spectral subbands is computed. A measure of
subbeat quaver (1/8th note) alternation is used to compare
half time and double time measures against the initial beat
track estimation and indicate a likely octave error. This er-
ror estimate can then be used to re-estimate the beat rate.
The performance of the approach is evaluated against the
RWC database, showing successful identification of octave
errors for an existing beat tracker. Using the octave error
detector together with the existing beat tracking model im-
proved beat tracking by reducing octave errors to 43% of
the previous error rate.

1. STRUCTURAL LEVELS IN BEAT
PERCEPTION

The psychological and computational representation of lis-
teners experience of musical time is of great application to
music information retrieval. Correctly identifying the beat
rate (tactus) facilitates further understanding of the impor-
tance of other elements in musical signals, such as the rel-
ative importance of tonal features.

Considerable research has proposed theories of an hi-
erarchical structuring of musical time [12–14, 18, 20, 27],
with the favouring of particular temporal levels. The tac-
tus has been shown to be influenced by temporal prefer-
ence levels [10], proposed as a resonance or inertia to vari-
ation [25]. At the metrical level 1 , [21] argue that pre-
established mental frameworks (“schemas”) for musical me-
ter are used during listening. They found a significant dif-
ference in performance between musicians and non-music-

1 A periodic repetition of perceived accentuation, notated in music as
4
4

,3
4

etc.
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ians, arguing that musicians hold more resilient represen-
tations of meter, which favours hierarchical subdivision of
the measure, than the non-musicians.

The fastest pulse has been used in ethnomusicology [16,
24] or reciprocally, the tatum in cognitive musicology [1]
as a descriptive mechanism for characterising rhythmic struc-
ture. While it is not assumed to be a model of perception
used by listeners and performers [16], the tatum is used to
form a rhythmic grid of equally spaced intervals. It there-
fore represents the limit of hierarchical temporal organisa-
tion in complex rhythmic structures.

2. ERRORS IN BEAT TRACKING

Beat tracking or foot-tapping has a long history [7, 19],
spurred on by the demands of music information retrieval
[8, 15, 22, 23]. Common methods of beat tracking involve
extraction of a mid-level representation, or onset detec-
tion function [23], typically derived from the spectral flux,
thereby avoiding the requirement of identifying each indi-
vidual onset. A number of methods have been proposed to
then determine a time varying frequency analysis of the
onset detection function, including comb filterbanks [6,
15, 23], autocorrelation [2, 9], dynamic time warping [8],
Bayesian estimation [3], combined frequency and time lag
analysis [22], coupled oscillators [17] and wavelet analy-
sis [4].

Despite reporting very good results, there are areas for
improvement to these approaches. A common task faced
by many of these approaches is selecting the appropriate
structural level from several viable candidates. It is a com-
mon occurance to select a beat rate which is twice as fast
as the actual performed rate, termed an “octave error”. For
many of these systems, a reselection of the correct struc-
tural level from the candidates would be possible if the oc-
tave error could be detected.

The concept of fastest pulse can be used as an indica-
tor of the highest structural level and therefore a datum.
This appears in terms of the fastest alternation of events.
Checking for quaver (1/8 note) alternation indicates if there
is evidence of the fastest pulse appearing at the expected
structural level, given the assumed tactus level. This pa-
per proposes a method to evaluate the beat tracking and
identify octave errors using an analysis of metrical pro-
files. This forms a combined feature vector of metrical
profile over separate spectral subbands, described in Sec-
tion 3. The behaviour of the metrical profile is analysed in
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terms of quaver alternation to identify beat tracking which
has performed an octave error. This approach is evaluated
against an annotated dataset for beat tracking and tempo
estimation as described in Section 4. The results of eval-
uation against datasets of recorded music are reported in
Section 5.

3. METHOD

To identify the fastest pulse or tatum requires identifying
the higher level rhythmic structural levels. To do so, the
beat period (tactus) and metrical period (duration of the
bar) is computed from the audio signal of the musical ex-
ample using a beat-tracker, in this case as developed by
Peeters [22]. From the nominated beat times, a metrical
profile is computed.

3.1 Metrical Profile

The metrical profile, indicating the relative occurrence of
events in each metrical position within the measure, has
been demonstrated by [21] to represent metrical structure
and matches closely with listeners judgements of metrical
well-formedness. The metrical profile is computed from
the likelihood of an onset at each tatum (shortest temporal
interval) within a measure. The likelihood of onsets are
determined from the presence of onset detection function
(ODF) energy e described in [22]. The probability of an
onset ot at each tatum location t is

ot =

{
ēt

ē+γσe+ε , ot < 1
1 ot > 1

(1)

where ēt is the mean energy of the ODF over the region of
the tatum t, ē and σe are the mean and standard deviation
of the entire ODF energy respectively, ε is a small value to
guard against zero ē, and γ is a free parameter determin-
ing the maximum number of standard deviations above the
mean to assure an onset has occurred. By informal testing,
γ = 2. The onset likelihoods are then used to create an
histogram mt, for t = 1, . . . , n, of the relative amplitude
and occurrence at each tatum, by averaging each ot across
all M measures

mt =

∑M
µ=0 ot+nµ

M
. (2)

To normalise for varying tempo across each piece and
between pieces, the duration of each measure is derived
from the beat-tracker [22]. Using the beat locations iden-
tified by the beat-tracker, each beat duration is uniformly
subdivided into 1/64th notes (hemi-demi-semiquavers), that
is 0 < t < 64 for a measure of a semibreve (whole note)
duration. Such a high subdivision attempts to categorise
swing timing occurring within the measure and to provide
sufficient resolution for accurate comparisons of metrical
structure. Using the tatum duration set to equal subdivi-
sions of each beat duration does not capture expressive tim-
ing occuring within that time period. However, the error
produced from this is minimal since the expressive timing
which modifies each beat and measure period is respected.

Channel c Low band ωc (Hz) High band ω′
c (Hz)

1 60 106
2 106 186
3 186 327
4 327 575
5 575 1012
6 1012 1781
7 1781 3133
8 3133 5512

Table 1. Sub-band channel frequency ranges used to calcu-
late local spectrum onset detection functions in Equation 3.

The effect of this error is to blur the peak of each tatum
onset. The metrical profile is then downsampled (by local
averaging of 4 tatums) to semiquavers (1/16 notes).

3.2 Spectral Sub-band Profiles

Listeners categorise sounds using their individual spectral
character, and the identification of their reoccurance aids
rhythmic organisation. To distinguish the possibly com-
peting timing of different instruments and in order to match
categorization used by listeners, metrical profiles are sep-
arated by spectral energy. This is produced by computing
spectral sub-bands of the half wave rectified spectral en-
ergy. The sub-bands are computed by summing over non-
overlapping frequencies:

Fc,t =
b′

c∑
b=bc

eHWR(ωb, t), (3)

where Fc,t is the spectral flux for the sub-band channel
c = 1, . . . , C at time t, over the spectral bands b = [ωc, ω

′
c]

of the half-wave rectified spectral energy eHWR(ωb, t) at
frequency band ωb computed as described by [22]. The
sub-band channels used are listed in Table 1 for C = 8.
These form logarithmically spaced spectral bands that ap-
proximate different time keeping functions in many forms
of music. A set of subband metrical profiles is then mtc

for t = 1, 2, . . . , n, c = 1, . . . , C.

3.3 Quaver Alternation

With the metrical profile reduced to semiquavers, a mea-
sure of the regularity of variation at the supposed qua-
ver period can be calculated. Since the tatums at strong
metrical locations are expected to vary strongly regard-
less of metrical level, only the variation for the sub-beats
falling at metrically weaker locations is used. For exam-
ple, in a 4

4 measure, n = 16, metrically strong semiqua-
vers are r = {1, 5, 9, 13}. The subbeat vector of length S
is defined as s = r 6∩ t. Using the same example meter,
s = {2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16}.

The average quaver alternation q for a rhythm is the nor-
malised first order difference of subbeat profiles m′

s

q =
∑C

c=1

∑
i∈s |m′

ic|
SC max(ms)

. (4)
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Figure 1. Metrical profiles of an example from the RWC dataset
which was beat tracked with octave error. The top plot displays
a metrical profile of 16 semiquavers per measure for each of the
spectral subands (c = 1, . . . , 8). The second, third and fourth
plots displays the subband metrical profiles created for half time,
half time counterphase and double time interpretations respec-
tively.

A low quaver alternation measure indicates that varia-
tion between adjacent sub-beat semiquavers is low. This
is most likely either in the case that there is little activity
in the music, or the structural level chosen as the quaver
is incorrect, i.e an octave error has occurred. To identify
the case of an octave error, the quaver alternation of the
metrical profile of a track is compared to metrical profiles
of the same track formed from half and double the number
of beats. The half tempo profile q̇ is formed from simply
skipping every second beat identified by the beat tracker.
A similar counter-phase half tempo profile q́ is formed by
also skipping the initial beat. The double time profile q̈ is
formed from sampling at onsets ot linearly bisecting each
original inter-beat interval.

Comparisons between metrical profiles of an example
rhythm is shown in Figure 1. The metrical pattern is dis-
played on the top plot, with n = 16 tatums per measure,
the C = 8 subband profiles arranged adjacent in increasing
frequency band. On the lower plots, the patterns created by
assuming half tempo, half tempo counterphase, and dou-
ble tempo are displayed. It can be seen that the alternation
which occurs on the half tempo and half tempo counter-
phase plots is more regular than the original metrical pat-
tern or the double time pattern. This indicates that for this
example, an octave error has occurred.

A measure of octave error e is computed by comparing
the ratio of the half tempo quaver alternation to original
quaver alternation and the ratio of double tempo to original
quaver alternation,

e =
q̇ + q́

2q
+

q̈

q
. (5)

Equation 5 represents the degree that the alternation at
the half or double tempo exceeds the original quaver al-
ternation. Values of q̇+q́

2q > 1 or q̈
q > 1 indicates there is

an octave error from either the double or half quaver alter-
nation being greater, but in practice, the threshold e > e′

needs to be higher. The threshold was determined exper-

imentally as half a standard deviation above ē as derived
from the RWC dataset at e′ = 3.34.

3.4 Reestimation of Tempo

The beat tracking for each piece which was nominated by
the algorithm as being an octave error is then recomputed
with the prior tempo estimate set to half the tempo first
computed. In the case of the Viterbi decoding of the beat
tracker used [22], this prior tempo estimate weights the
likely path of meter and tempo selection towards the half
rate. In this case, even if the prior tempo is set at half, it
is not guaranteed to be chosen as half the rate, if the orig-
inal tempo is a more likely path which outweighs the new
reestimation. This makes the beat tracker robust to false
positive classifications from the beat critic.

4. EVALUATION

Two evaluation strategies for octave errors are possible: 1)
evaluation of beat tracking, where the phase of the beat
tracking is correct, but the beat frequency is twice the true
rate and 2) evaluation of tempo alone, where the beat fre-
quency is twice the true rate and the phase of the beat track-
ing is not assessed. These two evaluations meet different
needs, the former if beat tracking accuracy is required, the
latter if a correct median tempo measure is sufficient.

To evaluate the discrimination of the algorithm, the com-
monly used RWC dataset was used [11]. This dataset con-
sists of 328 tracks in 5 sets (Classical, Jazz, Popular, “Genre”
and “Royalty Free”) annotated for beat times. A subset of
284 tracks was produced by eliminating pieces whose an-
notations were incorrect or incomplete in the RWC dataset. 2

Since the algorithm evaluates metrical profiles, this re-
quires meter changes to be accurately identified by the beat
tracker, which currently lacks that capability. Therefore
pieces with changing meters are expected to reduce the
performance of the algorithm. However since this would
have reduced the dataset further, and added beats or time
signature changes are common in many genres of music,
the dataset was used with these potential noise sources.

To evaluate octave error detection independent of the
quality of the beat tracking, pieces which were incorrectly
beat tracked were eliminated from the test set. This was
defined as a beat tracking F-score below 0.5 using a tem-
poral window of each annotated beat position within 15%
of each inter-beat interval [5,26]. A ground truth set of oc-
tave error examples was produced by comparing the ratio
of the beat tracking recall R to precision P measures, with:

ê = bR/P + 0.5c, (6)

where ê = 2 indicates an octave error. These ground truth
candidates were then manually auditioned to verify that
they were truly octave errors.

This produced a resulting dataset of 195 pieces, termed
“Good”, with 46 pieces identified as actually being beat
tracked at double time (an octave error). This formed the

2 For several of the Jazz examples and the Genre examples, only the
minim (half note) level was annotated.
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Dataset C. True S. Prec. Rec. F
Good 30 46 55 0.545 0.652 0.594
Full 29 46 82 0.354 0.630 0.453

Table 2. Results of octave error detection by metrical pro-
file analysis (beat critic). “C.” indicates the number of
tracks correctly identified as an octave error, “True” as the
ground truth number of octave errors manually identified.
“S.” indicates the number of tracks selected as being an oc-
tave error. “Prec.”, “Rec.” and “F” indicates the precision,
recall and F-score measures respectively.

Pre-Reest. Post-Reest.
Dataset Meth. Size OE NE OE NE %
Good BT 195 46 20 43
Good BPM 195 44 10 24 12 54
Full BT 284 63 37 58
Full BPM 284 57 42 38 46 66

Table 3. Number of tracks with beat tracking octave er-
rors (OE) before (Pre) and after (Post) reestimation using
the beat critic. The column labelled “%” indicates the re-
duction in octave errors. NE columns indicates non-octave
errors.

ground truth to evaluate the octave error identification al-
gorithm. From these, standard precision, recall and F-score
measures can be computed [26]. The entire set of 284
pieces (termed “Full”) was also used to evaluate perfor-
mance when beat tracking does not perform optimally.

To determine the improvement the beat critic makes to
beat tracking, pieces which were determined to be beat
tracked with octave error were recomputed with half the
prior tempo. This would occur for false as well as true
positives. The beat tracker would then use the new weight-
ing towards the half tempo, but could produce the same
result as the original beat tracking if the Viterbi decoding
still biased towards the original tempo estimate [22].

The Good and Full datasets were also assessed for their
fidelity to the annotated median tempo measurement τ of
each track. This was computed as τ = 60/̃i, where ĩ is
the median inter-beat interval in seconds. A beat tracked
tempo which was within 3% of the annotated tempo was
deemed a successful tempo estimation.

5. RESULTS

The results of evaluating the beat critic with the Good and
Full RWC datasets appear in Table 2. On the “Good”
dataset, while the critic is able to identify 65% of the pieces
with octave errors (the recall), it produces a sizeable num-
ber of false positives (the precision) which reduces the F-
score. As to be expected, with the “Full” dataset, the per-
formance is worse. The substantially higher number of
false positives for this dataset indicate that the octave er-
ror measure is sensitive to beat tracking error. As the al-
gorithm is defined, the measure of sub-beat alternation is

probably too reliant on the expectation that the beat is cor-
rectly tracked.

Despite the relatively low scoring results, Table 3 in-
dicates the success of the beat critic when used to rees-
timate the beat tracker. The column “Meth.” describes
the method of evaluation, either “BT” for beat tracking,
comparing each beat location against annotated beats, or
“BPM”, comparing estimated tempo against annotated tempo.
“Size” describes the number of tracks in the dataset. “OE”
indicates the number of tracks that were beat tracked that
are evaluated to have been an octave error. “Pre” and “Post”
indicates the number of tracks before and after reestimat-
ing using the beat critic to bias prior tempo of the beat
tracker. “NE” indicates the number of tracks that were not
beat tracked correctly but were not octave errors. While it
is possible to identify non-octave errors with BPM evalu-
ation within a perceptually meaningful tolerance (3%, see
Section 4), this can not be defined properly when the mea-
sure of beat tracking is calculated in terms of precision,
recall and F-score.

In the case of the BT evaluation, the number of oc-
tave errors were reduced to 43% and 58% of the former
number of errors for the Good and Full datasets respec-
tively. This indicates that the Viterbi decoding of the beat
tracker has benefitted from reestimation and is reasonably
robust to the false positives identified as octave errors. The
tempo evaluation also showed similar improvements, re-
ducing octave errors to 54% and 66% (Good and Full). The
slight increase in non-octave errors after reestimation indi-
cates cases where the false positives have lead to mistrack-
ing. Depending on the application, this may be an unac-
ceptable deterioration in performance despite an increase
in the overall number of correctly tracked pieces.

6. CONCLUSIONS

A method for the detection of octave errors in beat track-
ing has been proposed and evaluated. The approach was
evaluated with an audio dataset that represents a variety of
genres of music. This approach, while currently applied
to only one beat tracker, depends only on the presence of a
mid-level representation, and the determination of beat and
meter periods, commonly produced by many beat trackers.
It is applicable to beat trackers which benefit from reesti-
mation or convergence in the selection of the beat tracking
frequency.

While the performance of the beat critic is well below
perfection, when applied to a beat tracker, it has been shown
to improve overall performance, reducing the number of
octave errors, at the cost of a slight increase in mistracking.
The beat critic’s applicability and usefulness is ultimately
dependent on the cost of false positives.

A number of improvements are possible. The use of
a threshold for the octave error classification is simplistic
and possibly difficult to set accurately. A machine learning
classifier promises to perform better in this task. However,
the best features to be used are not yet clear, preliminary
experiments with the quaver alternation measures q, q́, q̇
and q̈ indicate that these are insufficient features to dis-
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criminate the octave error classification. The alternative,
using the entire profiles, or reductions thereof, as features
produces too high a dimensionality for accurate learning.
Another issue is the relative computational cost of such an
approach, when the current threshold approach is compu-
tationally low. In principle the approach could be used
to identify beat tracking at half the correct rate, although
such beat tracking errors did not occur using the dataset
and therefore have not been evaluated.

The beat critic exploits knowledge of rhythmic behaviour
as represented in musicologically based models of metrical
profiles to compare temporal levels. The comparison of the
relative activity of levels is used to identify octave errors.
By examining the behaviour of events in the time domain,
the goal has been to circumvent limitations in the temporal
resolution of frequency based analysis in the identification
of beat levels.
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ABSTRACT 

With the explosive growth of music recordings, automatic 
classification of music emotion becomes one of the hot 
spots on research and engineering. Typical music emotion 
classification (MEC) approaches apply machine learning 
methods to train a classifier based on audio features. In 
addition to audio features, the MIDI and lyrics features of 
music also contain useful semantic information for pre-
dicting the emotion of music. In this paper we apply 
AdaBoost algorithm to integrate MIDI, audio and lyrics 
information and propose a two-layer classifying strategy 
called Fusion by Subtask Merging for 4-class music emo-
tion classification. We evaluate each modality respec-
tively using SVM, and then combine any two of the three 
modalities, using AdaBoost algorithm (MIDI+audio, 
MIDI+lyrics, audio+lyrics). Moreover, integrating this in 
a multimodal system (MIDI+audio+lyrics) allows an im-
provement in the overall performance. The experimental 
results show that MIDI, audio and lyrics information are 
complementary, and can be combined to improve a clas-
sification system. 
Key Words: Music Emotion Classification, Mul-
ti-Modal, AdaBoost, Fusion by Subtask Merging 

1. INTRODUCTION AND RELATED WORKS 

Music Information Retrieval is a sub-area of information 
retrieval. Important research directions include for exam-
ple similarity retrieval, musical genre classification, or 
music analysis and knowledge representation. As the mu-
sic databases grow, classification and retrieval of music 
by emotion [2]-[7] has recently received increasing atten-
tion. 

Traditionally music emotion classification (MEC) ap-
plies algorithms of machine learning on audio features, 
such as Mel frequency cepstral coefficient (MFCC), to 
recognize the emotion embedded in the audio signal. 
Meanwhile we can also use some mid-level audio fea-
tures such as chord [5] or rhythmic patterns [8] for this 
problem, but sometimes it can’t get a promising result 
because of the semantic gap. 

Complementary to audio features, lyrics are semanti-
cally rich and expressive and have profound impact on 
human perception of music [17]. It is often easy for us to 
tell from the lyrics whether a song expresses love, sad-
ness, happiness, or something else. Incorporating lyrics in 
the analysis of music emotion is feasible because most 
popular songs sold in the market come with lyrics and 
because most lyrics are composed in accordance with 
music signal [18].  

Besides music’s audio and lyrics features, the MIDI 
features of music have been ever used in music instru-
ment classification and retrieval. As a popular file format 
for storing music, MIDI carries more abstract music in-
formation than audio. In this paper we firstly apply the 
music’s MIDI file to the music emotion classification. 

A multi-modal analysis approach using audio and lyr-
ics features has been proposed and evaluated in music 
genre classification by Mayer and Neumayer [1]. And 
promising results have been achieved by combining the 
audio and lyrics using various types of machine learning 
algorithms such as SVM and k-NN. Besides, several mul-
ti-modal fusion methods using audio and lyrics for music 
emotion classification are proposed by Yang [2]. Howev-
er, little has been reported in the literature that applies 
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AdaBoost to multi-modal automatic music emotion clas-
sification. In this paper, we propose a new multi-modal 
fusing approach that uses features extracted from MIDI 
files, audio signal and lyrics for 4-class music emotion 
classification. We focus on how to combine the three 
modalities: MIDI, audio and lyrics using AdaBoost.   

The remainder of the paper is organized as follows. 
Section 2 describes the MIDI, audio and lyrics features 
we need respectively. Section 3 describes the details of 
the proposed multi-modal approach. Section 4 provides 
the result of a performance study, and Section 5 con-
cludes the paper. 

2. FEATURES 

In our experiment we use a free program jMIR1.0 with 
default parameter values to extract MIDI and audio fea-
tures. jAudio and jSymbolic are two important compo-
nents of jMIR for extracting audio and MIDI features. 
jAudio is a software package for extracting features from 
audio files. These extracted features can then be used in 
many areas of music information retrieval (MIR) research. 
jSymbolic is a software package for extracting high-level 
musical features from symbolic music representations, 
specifically MIDI files. 

2.1 MIDI Features 

The MIDI music files are firstly transformed from the 

corresponding waveform files by a computer tool WIDI 

Recognition System Professional 4.1 which could be 

found on the internet [19]. And then we use jSymbolic 

with default parameter values to extract MIDI features 

from the MIDI files. The extracted MIDI features, which 

are listed in Table 1, are adopted in our experiments. 

# Feature Dimensions 

1 Duration 1 

2 Acoustic Guitar Fraction 1 

3 Average Melodic Interval 1 

……   

101 Voice Separation 1 

102 Woodwinds Fraction 1 

Table 1. MIDI features extracted by jSymbolic. 

From Table 1 we can see there are 102 features ex-

tracted by jSmbolic from each MIDI music file. As each 

feature just has one dimension, a whole MIDI feature 

vector has 102 dimensions. 

2.2 Audio Features 

We use jAudio to extract a number of low-level audio 

features from the waveform files. The extracted features, 

which are listed in Table 2, have been commonly used 

for MEC in pervious works [3]-[5]. 

# Feature Dimensions

1 Magnitude Spectrum Variable 

2 FFT Bin Frequency Labels Variable 

3 Spectral Centroid 1 

……   

25 Zero Crossings 1 

26 Beat Sum 1 

Table 2. Audio features extracted by jAudio. 

From Table 2 we can see there are 26 features ex-

tracted by jAudio from each audio file. Among these 26 

features, there are 5 features such as Magnitude Spectrum 

and MFCC with variable dimensions, other ones with 1 

dimension. In our experiment, an audio feature vector has 

79 dimensions. 

2.3 Lyrics Features 

Lyrics are normally available on the web and downloada-

ble with a simple crawler. The acquired lyrics are pre-

processed with traditional information retrieval operations 

such as stopword removal, stemming, and tokenization. 

In our experiment, two algorithms are adopted to generate 

textual features. 
Uni-gram A standard textual feature representation 
counts the occurrence of uni-gram terms (words) in each 
document, and constructs the bag-of-words model [10], 
which represents a document as a vector of terms 
weighted by a tf-idf function defined as: 

)(#
||log),(#),(
i

jiji tD
Ddtdttfidf =    (1) 

where  ),(# ji dt   denotes the frequency of term it oc-
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curs in document jd , )(# itD the number of documents 

in which it occurs, and || D the size of the corpus. We 

compute the tf-idf for each term and select the M most 
frequent terms as our features (M is empirically set to 
2000 in this work by a validation set). 
Bi-gram N-gram is sequences of N consecutive words 
[10]. An N-gram of size 1 is a uni-gram (single word), 
size 2 is a bi-gram (word pairs). N-gram models are 
widely used to model the dependency of words. Since 
negation terms often reverse the meaning of the words 
next to them, it seems reasonable to incorporate word 
pairs to the bag-of-words model to take the effect of ne-
gation terms into account. To this end, we select the M 
most frequent uni-gram and bi-gram in the bag-of-words 
model and obtain a new feature representation. 

3. TAXONOMY 

We adopt Thayer’s arousal-valence emotion plane [15] as 
our taxonomy and define four emotion classes happy, 
angry, sad, and relaxing, according to the four quadrants 
of the emotion plane, as shown in Figure 1. As arousal 
(how exciting/calming) and valence (how positive/ nega-
tive) are the two basic emotion dimensions found to be 
most important and universal [16], we can also view the 
four-class emotion classification problem as the classifi-
cation of high/low arousal and positive/negative valence. 
This view will be used in mutli-modal music emotion 
classification. 

 

Figure 1.Thayer’s arousal-valence emotion plane. We define 

four emotion classes according to the four quadrants of the 

emotion plane. We can also subdivide the four-class emotion 

classification to binary arousal classification and valence clas-

sification. 

4. PROPOSED APPROACH 

In this paper, we use AdaBoost, an ensemble learning 
algorithm, to train a classifier by integrating MIDI, audio 
and lyrics features. Boosting is a method to combine a 
collection of weak classification functions (weak learner) 
to form a stronger classifier [21]. AdaBoost is an adaptive 
algorithm to boost a sequence of classifiers, in that the 
weights are updated dynamically according to the errors 
in previous learning [22].  

Tieu and Viola [12] adapted AdaBoost algorithm for 
natural image retrieval. They made the weak learner work 
in a single feature each time. So after T   rounds of 
boosting, T features are selected together with the T  

weak classifiers. We adapted AdaBoost algorithm of Tieu 
and Viola’s version for music emotion classification and 
retrieval. In each iteration, we made the weak learner 
work on each modality independently. So we can get 
three classifiers which are trained according to MIDI, 
audio and lyrics features respectively each time. And then 
we select the classifier of the minimum learning error as 
the representative of this iteration. After  T   rounds of 
boosting,  T   weak classifiers are produced in the end. 

The classic AdaBoost algorithm is only used for binary 
classification. In a 4-class scenario, we propose a 
two-layer classifying strategy called Fusion by Subtask 
Merging.  
•Fusion by Subtask Merging (FSM): Use AdaBoost to 
classify arousal and valence separately and then merge 
the result. To enhance readability, we denote the classifi-
cation model trained by AdaBoost for classifying arousal 
and valence as MA and MV, respectively. For example, a 
negative arousal (predicted by MA) and negative valence 
(predicted by MV) would be merged to class 3. We make 
the three modalities focus on different emotion classifica-
tion subtasks because empirical test reveals MIDI, audio 
and text clues are complementary and useful for different 
subtasks. In addition, training models for arousal and va-
lence separately has been shown adequate. 

4.1 AdaBoost 
The AdaBoost algorithm We adapted in our experiment 
as follows: 
Input: 1)  n training examples 

),(,),,( 11 nn yxyx K with 1=iy or 0 ;  
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2) the number of iterations T . 

Initialize weights 
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4.2 Support Vector Machine 
Support vector machine (SVM) learns an optimal sepa-
rating hyperplane (OSH) given a set of positive and nega-
tive examples. Kernel functions are used for SVM to 
learn a non-linear boundary if necessary. See Vapnik [14] 
for a detailed introduction of SVM. Li and Guo [13] tried 
to use the SVM for audio classification and retrieval. In 
this paper, SVM is selected as our weak learner. In our 
experiment we use the SMO which is a fast implementa-
tion of SVM algorithm provided by WEKA3.6.1 [20].  

5. EXPERIMENTS 

The music database is made up of 500 Chinese pop songs, 
whose emotions are labeled through a subjective test 
conducted by 8 participants. The corresponding lyrics are 
downloaded from the Internet by a web crawler. Classifi-
cation accuracy is evaluated by randomly selecting 400 
songs as training data and 100 songs as testing data. We 
conducted 2 experiments. To assure the confidence, we 
performed the experiments based on a five-fold cross 
validation. We use the features extracted by jSymbolic for 
MIDI feature representation, the features extracted by 
jAudio for audio feature representation and the uni-gram 
and bi-gram based bag-of-words model for lyrics feature 
representation.  

5.1 Single Feature Sets 
In our first experiment, we apply SVM to mono-modal 
based music emotion 4-class classification (MEC) using 
MIDI, audio and lyrics information respectively. There-
fore, we got three SVM classifiers which are trained on 
each mono-modality. Our SVM implementation is the 
SMO algorithm provided by WEKA3.6.1 and the kernel 
function is Polynomial. To enhance readability, we de-
note the classification model trained by MIDI, audio and 
textual features as MO, AO and LO respectively. 
• MIDI-Only (MO): Use MIDI features only and apply 
SVM to classify emotion. This serves as a baseline. MO 
is used to assess the importance of the MIDI modality. 
• Audio-Only (AO): Use audio features only and apply 
SVM to classify emotion. This serves as a baseline be-
cause many existing MEC work adopts it [1-2]. AO is 
used to assess the importance of the audio modality. 
• Lyrics-Only (LO): Use lyrics features only and apply 
SVM to classify emotion. This serves as a baseline be-
cause many existing MEC work adopts it [1-2]. LO is 
used to assess the importance of the text modality. 

The Results of experiment 1 are shown in Table 3: 

Classifier Name Features Accuracy(4-class)

MO MIDI 0.586 

AO audio 0.598 

LO lyrics 0.491 

Table 3. Results of mono-modal method using SVM for 

4-class emotion classification. 
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5.2 Multi-Modal Feature Set Combinations 
In our second experiment, we apply AdaBoost to mul-
ti-modal based music emotion classification. And we se-
lect SVM as the weak learner in AdaBoost. We develop 
and evaluate the following method for fusing MIDI, audio 
and lyrics. To enhance readability, we denote the classi-
fication model trained by MIDI and audio features set, 
MIDI and lyrics features set, audio and lyrics features set, 
MIDI, audio and lyrics features set as MA, ML, AL and 
MAL respectively. 
• MIDI+Audio (MA): Use MIDI and audio features and 
apply AdaBoost to classify emotion. The weak learner is 
SVM. 
• MIDI+Lyrics (ML): Use MIDI and lyrics features and 
apply AdaBoost to classify emotion. The weak learner is 
SVM. 
• Audio+Lyrics (AL): Use audio and lyrics features and 
apply AdaBoost to classify emotion. The weak learner is 
SVM. 
• MIDI+Audio+Lyrics (MAL): Use MIDI, audio and 
lyrics features and apply AdaBoost to classify emotion. 
The weak learner is SVM. 

The Results of experiment 2 are shown in Table 4: 

Classifier 

Name 

Features Accuracy(4-class)

MA MIDI+audio 0.616 

ML MIDI+lyrics 0.712 

AL audio+lyrics 0.72 

MAL MIDI+audio+lyrics 0.724 

Table 4. Results of multi-modal fusion method using 

AdaBoost for 4-class emotion classification. 

4.3 Comparison and Analysis of Experimental Results 
Because of the different database, it is difficult to quanti-
tatively compare the proposed approach with existing 
ones. Alternatively, we treat MO, AO and LO as the three 
baselines, and compare the classification accuracy of 
mono-modal and multi-modal approaches.  

It can be observed from row 2 to 4 of Table 3 that 
MIDI features, audio features and textual features per-
forms very poor on 4-class emotion classification, with 
MO’s accuracy 58.6%, AO’s accuracy 59.8%, LO’s ac-
curacy 49.1%. But from row 2 to 4 of Table 4, we can 
see MIDI features, audio features and lyrics features are 

fairly complementary, because the combination of any 
two of them outperforms the mono-modal approach, with 
MA’s accuracy 61.6%, ML’s accuracy 71.2%, AL’s ac-
curacy 72.0%. Table 4 also indicates that the 4-class 
emotion classification accuracy can be significantly im-
proved by fusing all the three modalities. Among the fu-
sion methods (rows 2-5 of Table 4), MAL achieves the 
best classification accuracy (72.4%) and contributes a 
23.3% relative improvement over the lyrics-only (LO) 
baseline. This seems to imply the individual strength of 
the three modalities should be emphasized separately.  

6. CONCLUSION 

In this paper we have described a preliminary mul-
ti-modal approach to music emotion classification that 
exploits features extracted from the MIDI, audio and the 
lyrics of a song. We apply AdaBoost algorithm to ensem-
ble the three modalities. A new approach of multi-modal 
fusion method called Fusion by Subtask Merging (FSM) 
is developed and evaluated. Experiments on a moderately 
large-scale database show that MIDI, audio and lyrics 
indeed carry semantic information complementary to 
each other. By the proposed fusion by subtask merging 
strategy, we can improve the classification accuracy from 
49.1% to 72.4%. Using lyrics features also significantly 
improves the accuracy of valence classification from 
61.6% to 72.4%. Meanwhile, we find that MIDI and au-
dio features contribute fairly to the music emotion classi-
fication. From the result, we can see that the accuracy of 
MO is 58.6%, while that of AO is 59.8%. Besides, the 
accuracy of ML is 71.2%, while that of AL is 72.0%. An 
explanation for this phenomenon is that there exists some 
redundancy between MIDI and audio information. As 
well, an exploration of more natural language processing 
algorithms and more effective features for modeling the 
characteristics of lyrics is underway. Besides, we’re try-
ing to verifying more ensemble learning algorithms on 
multi-modal music emotion classification. 
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ABSTRACT

A musical style or genre implies a set of common con-
ventions and patterns combined and deployed in different
ways to make individual musical pieces; for instance, most
would agree that contemporary pop music is assembled
from a relatively small palette of harmonic and melodic
patterns. The purpose of this paper is to use a database
of tens of thousands of songs in combination with a com-
pact representation of melodic-harmonic content (the beat-
synchronous chromagram) and data-mining tools (cluster-
ing) to attempt to explicitly catalog this palette – at least
within the limitations of the beat-chroma representation.
We use online k-means clustering to summarize 3.7 mil-
lion 4-beat bars in a codebook of a few hundred prototypes.
By measuring how accurately such a quantized codebook
can reconstruct the original data, we can quantify the de-
gree of diversity (distortion as a function of codebook size)
and temporal structure (i.e. the advantage gained by joint
quantizing multiple frames) in this music. The most popu-
lar codewords themselves reveal the common chords used
in the music. Finally, the quantized representation of mu-
sic can be used for music retrieval tasks such as artist and
genre classification, and identifying songs that are similar
in terms of their melodic-harmonic content.

1. INTRODUCTION

The availability of very large collections of music audio
present many interesting research opportunities. Given mil-
lions of examples from a single, broad class (e.g. con-
temporary commercial pop music), can we infer anything
about the underlying structure and common features of this
class? This paper describes our work in this direction.

What are the common features of pop music? There
are conventions of subject matter, instrumentation, form,
rhythm, harmony, and melody, among others. Our interest
here is in the tonal content of the music – i.e. the harmony
and melody. As a computationally-convenient proxy for a
richer description of the tonal content of audio, we use the
popular chroma representation, which collapses an acous-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

tic spectrum into a 12-dimensional description, with one
bin for each semitone of the western musical octave. In
addition, we simplify the time axis of our representation to
take advantage of the strong beat present in most pop mu-
sic, and record just one chroma vector per beat. This beat-
synchronous chromagram representation represents a typ-
ical music track in a few thousand values, yet when resyn-
thesized back into audio via modulation of octave-invariant
“Shepard tones”, the melody and chord sequences of the
original music usually remain recognizable [7]. To the ex-
tent, then, that beat-chroma representations preserve tonal
content, they are an interesting domain in which to search
for patterns – rich enough to generate musically-relevant
results, but simplified enough to abstract away aspects of
the original audio such as instrumentation and other stylis-
tic details.

Specifically, this paper identifies common patterns in
beat-synchronous chromagrams by learning codebooks from
a large set of examples. The individual codewords consist
of short beat-chroma patches of between 1 and 8 beats, op-
tionally aligned to bar boundaries. The additional temporal
alignment eliminates redundancy that would be created by
learning multiple codewords to represent the same motive
at multiple beat offsets. The codewords are able to rep-
resent the entire dataset of millions of patterns with min-
imum error given a small codebook of a few hundred en-
tries. Our goal is to identify meaningful information about
the musical structure represented in the entire database by
examining individual entries in this codebook. Since the
common patterns represent a higher-level description of
the musical content than the raw chroma, we also expect
them to be useful in other applications, such as music clas-
sification and retrieving tonally-related items.

Prior work using small patches of chroma features in-
cludes the “shingles” of [3], which were used to identify
“remixes”, i.e., music based on some of the same underly-
ing instrument tracks, and also for matching performances
of Mazurkas [2]. That work, however, was not concerned
with extracting the deeper common patterns underlying dif-
ferent pieces (and did not use either beat- or bar-synchronous
features). Earlier work in beat-synchronous analysis in-
cludes [1], which looked for repeated patterns within single
songs to identify the chorus, and [7], which cross-correlated
beat-chroma matrices to match cover versions of pop mu-
sic tracks. None of these works examined or interpreted
the content of the chroma matrices in any detail. In con-
trast, here we hope to develop a codebook whose entries
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Figure 1: A typical codeword from a codebook of size 200
(code 7 in Figure 4), corresponding to a tonic-subdominant chord
progression. The patch is composed of 2 bars and the pattern
length was set to 8 beats.

are of interest in their own right.

2. APPROACH

2.1 Features

The feature analysis used throughout this work is based on
Echo Nest analyze API [4]. For any song uploaded to their
platform this analysis returns a chroma vector (length 12)
for every music event (called “segment”), and a segmen-
tation of the song into beats and bars. Beats may span or
subdivide segments; bars span multiple beats. Averaging
the per-segment chroma over beat times results in a beat-
synchronous chroma feature representation similar to that
used in [7]. Echo Nest chroma vectors are normalized to
have the largest value in each column equal to 1.

Note that none of this information (segments, beats, bars)
can be assumed perfectly accurate. In practice, we have
found them reasonable, and given the size of the data set,
any rare imperfections or noise can be diluted to irrele-
vance by the good examples. We also believe that patch
sizes based on a number of beats or bars are more meaning-
ful than an arbitrary time length. This is discussed further
in Section 5.1.

2.2 Beat-Chroma Patches

We use the bar segmentation obtained from the Echo Nest
analysis to break a song into a collection of beat-chroma
“patches”, typically one or two bars in length. Because
the bar length is not guaranteed to be 4 beats, depending
on the meter of a particular song, we resample each patch
to a fixed length of 4 beats per bar (except where noted).
However, the majority (82%) of our training data consisted
of bars that were 4 beats long, so this resampling usually
had no effect. Most of the remaining bars (10%) were 3
beats in length. The resulting patches consist of 12 × 4 or
12× 8 matrices.

Finally, we normalize the patches with respect to trans-
position by rotating the pattern matrix so that the first row
contains the most energy. This can be seen in the example
codeword of Figure 1. Each patch within a song is normal-

ized independently, so reconstruction of the original song
requires knowledge of the rotation index for each patch.

The representation resulting from this process is invari-
ant to both the key and meter of the original song. This en-
ables the study of broad harmonic patterns found through-
out the data, without regard for the specific musical con-
text. In the context of clustering this avoids problems such
as obtaining separate clusters for every major triad for both
duple and triple meters.

2.3 Clustering

We use an online version of the vector quantization algo-
rithm [8] to cluster the beat-chroma patches described in
the previous section. For each sample from the data, the
algorithm finds the closest cluster in the codebook and up-
dates the cluster centroid (codeword) to be closer to the
sample according to a learning rate `. The clusters are up-
dated as each data point is seen, as opposed to once per it-
eration in the standard k-means algorithm. The details are
explained in Algorithm 1. As in standard k-means clus-
tering, the codebook is initialized by choosing K random
points from our dataset. Note that this algorithm, although
not optimal, scales linearly with the number of patches
seen and can be interrupted at any time to obtain an up-
dated codebook.

Algorithm 1 Pseudocode for the online vector quantization
algorithm. Note that we can replace the number of iterations
by a threshold on the distortion over some test set.

` learning rate
{Pn} set of patches
{Ck} codebook of K codes

Require: 0 < ` ≤ 1
for nIters do

for p ∈ {Pn} do
c← minc∈Ck

dist(p, c)
c← c+ (p− c) ∗ `

end for
end for
return {Ck}

3. EXPERIMENTS

In this section we present different clustering experiments
and introduce our principal training and test data. Some
detailed settings of our algorithm are also provided. As for
any clustering algorithm, we measure the influence of the
number of codewords and the training set size.

3.1 Data

Our training data consists of 43, 300 tracks that were up-
loaded to morecowbell.dj, 1 an online service based on the
Echo Nest analyze API which remixes uploaded music by
adding cowbell and other sound effects synchronized in

1 http://www.morecowbell.dj/
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Figure 2: Distortion for a codebook of size 100 encoding one
bar at a time with by 4 columns. Therefore, each codeword has
12 × 4 = 48 elements. Distortion is measured on the test set.
Training data sizes range from 0 (just initialization) to 500, 000.
Patterns were selected at random from the dataset of approxi-
mately 3.7 million patterns.

time with the music. The 43.3K songs contain 3.7 mil-
lion non-silent bars which we clustered using the approach
described in the previous section.

For testing, we made use of low quality (32kbps, 8 kHz
bandwidth mono MP3) versions of the songs from the us-
pop2002 data set [5]. This data set contains pop songs from
a range of artists and styles. uspop2002 serves as test set
to measure how well a codebook learned on the Cowbell
data set can represent new songs. We obtained Echo Nest
features for the 8651 songs contained in the dataset.

3.2 Settings

We take one or two bars and resample the patches to 4 or
8 columns respectively. We learn a codebook of size K
over the Cowbell dataset using the online VQ algorithm
(Algorithm 1). We use a learning rate of ` = 0.01 for 200
iterations over the whole dataset. We then use the resulting
codebook to encode the test set. Each pattern is encoded
with a single code. We can measure the average distance
between a pattern and its encoding. We can also measure
the use of the different codes, i.e., the proportion of pat-
terns that quantize to each code.

We use the average squared Euclidean distance as the
distortion measure between chroma patches. Given a pat-
tern p1 composed of elements p1(i, j), and a similar pat-
tern p2, the distance between them is:

dist(p1, p2) =
∑
i,j

(p1(i, j)− p2(i, j))
2

size(p1)
(1)

We assume p1 and p2 have the same size. This is enforced
by the resampling procedure described in Section 2.

3.3 Codebook properties

This section presents some basic results of the clustering.
While unsurprising, these results may be useful for com-
parison when reproducing this work.

• Encoding performance improves with increasing train-
ing data (Figure 2). Distortion improvements plateau
by around 1000 samples per codeword (100, 000 sam-
ples for the 100-entry codebook of the figure).

Codebook size Distortion

1 0.066081
10 0.045579
50 0.038302
100 0.035904
500 0.030841

Table 1: Distortion as a function of codebook size for a fixed
training set of 50, 000 samples. Codebook consists of 1 bar (4
beat) patterns.

• Encoding performance improves with increasing code-
book size (Table 1). Computation costs scales with
codebook size, which limited the largest codebooks
used in this work, but larger codebooks (and more
efficient algorithms to enable them) are clearly a promis-
ing future direction.

• Larger patterns are more difficult to encode, thus re-
quiring larger codebooks. See Figure 3. The in-
crease is steepest below 4 beats (1 bar), although
there is no dramatic change at this threshold.

4. VISUALIZATION

4.1 Codebook

We trained a codebook containing 200 patterns sized 12×
8, covering 2 bars at a time. The results shown are on the
artist20 test set described in Section 5.2.

The 25 most frequently used codewords in the test set
are shown in Figure 4. The frequency of use of these code-
words is shown in Figure 5. The codewords primarily con-
sist of sustained notes and simple chords. Since they are
designed to be key-invariant, specific notes do not appear.
Instead the first 7 codewords correspond to a single note
sustained across two bars (codeword 0), perfect fifth (code-
words 1 and 2) and fourth intervals (codewords 3 and 6,
noting that the fourth occurs when the per-pattern transpo-
sition detects the fifth rather than the root as the strongest
chroma bin, and vice-versa), and a major triads transposed
to the root and fifth (codewords 5 and 4, respectively).
Many of the remaining codewords correspond to common
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Figure 3: Encoding patterns of different sizes with a fixed size
codebook of 100 patterns. The size of the pattern is defined by
the number of beats. Downbeat (bar alignment) information was
not used for this experiment.
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Code 0 (1.28%) Code 1 (1.18%) Code 2 (1.07%) Code 3 (1.01%) Code 4 (0.97%)

Code 5 (0.96%) Code 6 (0.93%) Code 7 (0.89%) Code 8 (0.87%) Code 9 (0.87%)

Code 10 (0.85%) Code 11 (0.85%) Code 12 (0.84%) Code 13 (0.82%) Code 14 (0.81%)

Code 15 (0.80%) Code 16 (0.79%) Code 17 (0.78%) Code 18 (0.78%) Code 19 (0.77%)

Code 20 (0.77%) Code 21 (0.77%) Code 22 (0.76%) Code 23 (0.75%) Code 24 (0.74%)

Figure 4: The 25 codes that are most commonly used for the
artist20 test set. Codes are from the 200-entry codebook trained
on 2 bar, 12 × 8 patches. The proportion of patches accounted
for by each pattern is shown in parentheses.
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Figure 5: Usage proportions for all 200 codewords on the
artist20 test set (which comprises 71, 832 patterns). Also shown
are the usage proportions for the training set (“cowbell”), which
are similar. Note that even though all codewords are initialized
from samples, some are used only once in the training set, or not
at all for test set. This explains why the curves drop to 0.

transitions from one chord to another, e.g. a V-I transition
in codes 7 and 9 (e.g., Gmaj → Cmaj, or G5 → C5 as a
guitar power chord) and the reverse I-V transition in code
21 (e.g., Cmaj→ Gmaj).

In an effort to visualize the span of the entire codebook,
we used Locally linear embedding (LLE) [9] 2 to arrange
the codewords on a 2D plane while keeping similar pat-
terns as neighbors. Figure 6 shows the resulting distribu-
tion along with a sampling of patterns; notice sustained
chords on the top left, chord changes on the bottom left,
and more complex sustained chords and “wideband” noisy
patterns grouping to the right of the figure.

Noting that many of the codewords reflect sustained
patterns with little temporal variation, Figure 7 plots the
average variance along time of all 200 patterns. Some 26%
of the codewords have very low variance, corresponding to
stationary patterns similar to the top row of Figure 4.

We made some preliminary experiments with codebooks
based on longer patches. Figure 8 presents a codewords
from an 8 bar (32 beat) codebook. We show a random
selection since all the most-common codewords were less
interesting, sustained patterns.

2 implementation: http://www.astro.washington.edu/
users/vanderplas/coding/LLE/
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Figure 6: LLE visualization of the codebook. Shown patterns
are randomly selected from each neighborhood.
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Figure 7: Average variance of codewords along the time dimen-
sion. The vertical axis cuts at the 53rd pattern, roughly the num-
ber of codewords consisting entirely of sustained chords. Repre-
sentative patterns are shown in each range.

4.2 Within-cluster behavior

In addition to inspecting the codewords, it is important to
understand the nature of the cluster of patterns represented
by each codeword, i.e., how well the centroid describes
them, and the kind of detail that has been left out of the
codebook. Figure 9 shows a random selection of the 639
patterns from the artist20 test set that were quantized to
codeword 7 from Figure 4, the V-I cadence. Figure 10 il-
lustrates the difference between the actual patterns and the
quantized codeword for the first three patterns; although
there are substantial differences, they are largely unstruc-

Code 0 (0.68%) Code 1 (0.68%)

Code 2 (1.01%) Code 3 (5.41%)

Code 4 (1.01%) Code 5 (3.72%)

Figure 8: Sample of longer codewords spanning 8 bars. Code-
words were randomly selected from a 100-entry codebook. Per-
centages of use are shown in parentheses. Most patterns consist
of sustained notes or chords, but code 0 shows one-bar alterna-
tions between two chords, and code 4 contains two cycles of a
1→1→1→2 progression.
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Figure 9: Cluster around centroid presented in Figure 1. Taken
from the artist20 dataset, the cluster size is actually 639. Shown
samples were randomly selected. This gives an intuition of the
variance in a given cluster.

Figure 10: First three patterns of figure 9 (2nd line) presented
with the centroid from Figure 1 (1st line) and the absolute differ-
ence between both (3rd line).

tured, indicating that the codebook has captured the impor-
tant underlying trend.

4.3 Example song encoding

Figure 11 gives an example of encoding a song using the
codebook, showing both the full, original data, and the re-
construction using only the quantized codewords (at the
correct transpositions). The quantized representation re-
tains the essential harmonic structure of the original fea-
tures, but has smoothed away much of the detail below the
level of the 2 bar codewords.

5. APPLICATIONS

We present two applications of the beat-chroma codebooks
to illustrate how the “natural” structure identified via un-
supervised clustering can provide useful features for sub-
sequent supervised tasks. We will discuss how the code-
words can be used in bar alignment, and artist recognition.

5.1 Bar Alignment

Since the clustering described in Section 2 is based on the
segmentation of the signal in to bars, the codewords should
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Figure 11: Good Day Sunshine by The Beatles. Original song
and encoding with a 200 entry codebook of 2 bar patterns.

Offset % of times chosen

0 62.6
1 16.5
2 9.4
3 11.5

Table 2: Bar alignment experiment: offsets relative to ground-
truth 4-beat bar boundaries that gave minimum distortion encod-
ings from the bar-aligned codebook.

contain information related to bar alignment, such as the
presence of a strong beat on the first beat. In this section
we investigate using the codebook to identify the bar seg-
mentation of new songs. We train a codebook of size 100
on bars resampled to 4 beats. Then, we take the longest
sequence of bars of 4 beats for each song in the test set
(to avoid the alignment skew that results from spanning
irregularly-sized bars). We then encode each of these se-
quences using an offset of 0, 1, 2 or 3 beats, and record
for each song the offset giving the lowest distortion. The
results in Table 2 show that the “true” offset of 0 beats
is chosen in 62% of cases (where a random guess would
yield 25%). Thus, the codebook is useful for identifying
bar (downbeat) alignments. A more flexible implementa-
tion of this idea would use dynamic programming to align
bar-length patterns to the entire piece, including the pos-
sibility of 3- or 5-beat bars (as are sometimes needed to
accommodate beat tracking errors) with an appropriate as-
sociated penalty.

5.2 Artist Recognition

We apply our codebook to a simple artist recognition task.
We use the artist20 data set, composed of 1402 songs from
20 artists, mostly rock and pop of different subgenres. Pre-
viously published results using GMMs on MFCC features
achieve an accuracy of 59%, whereas using only chroma
as a representation yields an accuracy of 33% [6].

Although beat-chroma quantization naturally discards
information that could be useful in artist classification, it
is interesting to investigate whether some artist use certain
patterns more often than others.

The dataset is encoded as histograms of the codewords
used for each song, with frequency values normalized by
the number of patterns in the song. We test each song in a
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Figure 12: Confusion matrix for the artist recognition task.
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Suzanne Vega

Figure 13: Typical patterns for different artists.

leave-one-out setting, and represent each of the 20 artists
by the average of their (remaining) song-histograms. The
test song is matched to an artist based on minimum Eu-
clidean distance to these per-artist averages. This gives an
accuracy of 23.4%, where the random baseline is around
5%. The confusion matrix can be seen in Figure 12, show-
ing that certain artists are recognized at an accuracy far
above the average.

It is interesting to inspect the most “discriminative” pat-
terns for individual artists. To find these patterns, we com-
pare a pattern’s use by one artist and divide by its use
across all artists. Figure 13 shows the dominant patterns
for Metallica, and for Tori Amos and Suzanne Vega (who
shared a ‘favorite’ pattern). These three artists were eas-
ily identified. Artists like Metallica are characterized by
“wideband” patterns, with energy spread across multiple
adjacent chroma bins, indicative of noise-like transients in
the audio.

6. CONCLUSION AND FUTURE WORK

We have presented a practical method to perform large-
scale clustering of tonal patterns, and assessed the basic
properties of the method through experiments on a large
collection of music. We have explored several ways to in-
spect and interpret the data and suggested the merit of the
representation through further experiments. We have dis-
cussed the possibility to move to even larger scales and we
provide our source code for other interested researchers 3 .

Future work may include more sophisticated clustering
that moves beyond simple Euclidean-distance-based quan-

3 See Papers section at www.columbia.edu/˜tb2332/

tization, perhaps by separately modeling the spread within
each cluster (i.e., a Gaussian mixture or other generative
model). Summarizing patches with Gaussians, and then
comparing the distance between those Gaussians, could re-
duce the influence of the noise in the distance measure.

Moving on to larger scales, we would like to pursue a
scheme of incrementally splitting and merging codewords
in response to a continuous, online stream of features, to
create an increasingly-detailed, dynamic model. We could
also cluster codebooks themselves, in a fashion similar to
hierarchical Gaussian mixtures [10].
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ABSTRACT

Predicting artists that are popular in certain regions of the
world is a well desired task, especially for the music indus-
try. Also the cosmopolitan and cultural-aware music afi-
cionado is likely be interested in which music is currently
“hot” in other parts of the world. We therefore propose
four approaches to determine artist popularity rankings on
the country-level. To this end, we mine the following data
sources: page counts from Web search engines, user posts
on Twitter, shared folders on the Gnutella file sharing net-
work, and playcount data from last.fm. We propose meth-
ods to derive artist rankings based on these four sources
and perform cross-comparison of the resulting rankings via
overlap scores. We further elaborate on the advantages and
disadvantages of all approaches as they yield interestingly
diverse results.

1. INTRODUCTION

To determine popular artists for a certain country or cul-
tural region of the world, one can obviously look into pub-
licly available music charts, such as the “Billboard Hot
100”, released weekly for the United States of America
by the Billboard Magazine [6]. However, this straightfor-
ward strategy is hardly feasibly when we aim at broaden
the scope to the whole world. The reasons are manifold.

First, not all countries do release music charts for vari-
ous reasons. Causes may be, for example, a lack of capa-
bility to determine music sales or an underdevelopment of
music distribution at large. Even if data is available, it is
often not publicly accessible, and even if so, not always in
an easy-to-use format, e.g., via a Web service.
Second, even if charts are available for a specific country,
they often cover only certain ways of music distribution.
Commonly they are strongly biased towards sales figures
of music albums. In some countries, however, they also
include digital music sales via online stores. This inho-
mogeneity between countries, i.e., the in- or exclusion of
certain distribution channels, make such data hardly com-
parable between different countries of the world. Another
aspect to be considered here are possible heavy distortions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

caused by (illegal) music sharing channels, since legisla-
tion in this area varies severely between countries. In fact,
the majority of today’s music distribution is affected via
file sharing networks [2]. Thus, traditional charts, such as
the “Billboard Hot 100”, are becoming less and less rele-
vant.
Third, if the aim is to come up with a list of the most pop-
ular artists ever, countries lacking solid historical records
constitute an obvious problem.

Summarizing these challenges, we conclude that ana-
lyzing which kind of music is popular in a specific coun-
try or cultural region necessitates taking a deeper look into
various distribution channels and data sources. In this pa-
per, we therefore present four different approaches to esti-
mate artist popularity rankings on the country-level, each
of which makes use of a different data source. The first
one is based on page count estimates of Web search en-
gines, the second approach analyzes Twitter posts, the third
one derives information from meta-data of users’ shared
folders in a Peer-to-Peer network, and the fourth one uses
playcount data from last.fm.

In the remainder of this paper we review related lit-
erature (Section 2), present four approaches to determine
artist popularity on the country-level (Section 3), elabo-
rate on the conducted evaluation experiments and discuss
their results (Section 4), and finally draw conclusions (Sec-
tion 5).

2. RELATED WORK

Related work falls into two categories: literature that par-
ticularly tackles the task of chart prediction, and work that
relates to the four approaches we propose for this task.

Targeting the problem of predicting music charts, Koe-
nigstein and Shavitt [26] present an approach to predict the
charts based on search queries issued within the Peer-to-
Peer (P2P) file sharing network Gnutella [35]. The authors
show that a song’s popularity in the P2P network highly
correlates with its ranking in the Billboard charts. The au-
thors’ approach can further predict upcoming charts with
high accuracy. However, for their analysis Koenigstein and
Shavitt only consider the United States.
Pachet and Roy [33] try to predict the popularity of a song
based on audio features and a variety of manual labels. The
authors’ conclusion is, however, that even state-of-the-art
machine learning techniques fail to learn factors that de-
termine a song’s popularity, irrespective of whether they
are trained on signal-based features or on high-level hu-
man annotations.
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In [38] Schedl et al. propose several heuristics to determine
which artists are popular within a certain genre. They re-
late occurrence counts of artist names on Web pages via
an approach similar to Google’s backlink and forward link
analysis [34]. The authors show that downranking factors
for artist names equaling common speech terms improve
accuracy when comparing the resulting rankings against a
ground truth popularity categorization extracted from all-
music.com [3].
In [22] Grace et al. derive popularity rankings from user
comments in the social network MySpace [32]. To this end,
the authors apply various annotators to crawled MySpace
artist pages in order to spot, for example, names of artists,
albums, and tracks, sentiments, and spam. Subsequently,
a data hypercube (OLAP cube) is used to represent struc-
tured and unstructured data, and to project the data to a
popularity dimension. A user study showed that the list
generated by this procedure was on average preferred to
the Billboard charts.

Previous work that relates to the four approaches pro-
posed here comprise the following.
Our heuristic that uses page counts returned by search en-
gines builds upon work from [20, 39], where Web co-oc-
currences of artist names and terms specific to the mu-
sic domain are used to categorize artists, a process also
known as “autotagging” [13]. In [37] Schedl et al. propose
a similar approach to estimate artist similarity. The authors
suggest a simple probabilistic model that defines similarity
between two artists a and b as the conditional probability
of a to be mentioned on a Web page known to relate to b
and vice versa. Accuracies of up to 85% were reported for
genre classification.
To the best of our knowledge, Twitter [41] has not been
scientifically investigated for music information extraction
and retrieval yet. Although there do exist certain commer-
cial services, such as BigChampagne [7] and Band Met-
rics [9], which seem to incorporate microblogging data
into their artist and song rankings, no details on their ap-
proach are available. Furthermore, they strongly focus their
services on the USA. A general study on the use of Twit-
ter can be found in [24]. Java et al. report that Twitter is
most popular in North America, Europe, and Asia (Japan),
and that same language is an important factor for cross-
connections (“followers” and “friends”) over continents.
The authors also distill certain categories of user intentions
to microblog. Employing the HITS algorithm [25] on the
network constructed by “friend”-relations, Java et al. de-
rive user intentions from structural properties. They iden-
tified the following categories: information sharing, infor-
mation seeking, and friendship-wise relationships. Ana-
lyzing the content of Twitter posts, the authors distill the
following intentions: daily chatter, conversations, sharing
information/URLs, and reporting news.
Using Peer-to-Peer networks as data source for music in-
formation retrieval, [8, 14, 31, 43] rely on data extracted
from OpenNap to derive music similarity information. All
of these papers seem to build upon the same data set, which
comprises of metadata on shared content (approximately
3,000 shared music collections were analyzed). Logan et
al. [31] compare similarities defined by artist co-occur-
rences in shared folders, by expert opinions from allmu-
sic.com, by playlist co-occurrences from Art of the Mix [4],
by data gathered from a Web survey, and by MFCC fea-
tures [5]. To this end, they calculate a “ranking agree-
ment score”, i.e., the pairwise overlap between the N most
similar artists according to each data source. The main

findings are that the co-occurrence data from OpenNap
and from Art of the Mix show a high degree of overlap,
the experts from allmusic.com and the participants of the
Web survey show a moderate agreement, and the signal-
based MFCC measure had a rather low agreement with the
music context-based data sources. More recently, in [40]
Shavitt and Weinsberg mine the Gnutella file sharing net-
work to derive artist and song similarities. The authors
gathered metadata of shared music files from about one
million Gnutella users in November 2007, which yielded
information on half a million songs. Analyzing the 2-mode
graph of users and songs revealed that most users share
similar files. The authors further propose a method for
artist recommendation based on the gathered data.
Taking a closer look at the data source of music informa-
tion systems, which corresponds to the fourth approach,
not only last.fm [28] provides popularity rankings via their
API [29]. Echonest [15] offers a function to retrieve a rank-
ing based on the so-called “hotttness” of an artist [17]. This
ranking is based on editorial, social, and mainstream as-
pects [16]. However, this Web service does not provide
country-specific information.

3. DETERMINING ARTIST POPULARITY ON
THE COUNTRY LEVEL

We propose the following four heuristics to determine an
artist’s popularity in a certain country, and consequently
create an artist popularity ranking. To this end, we first
retrieve a list of 240 countries from last.fm [30], based on
which the following approaches operate.

3.1 Search Engine Page Counts

This approach makes use of a search engine’s number of
indexed Web pages for a given query, a count usually re-
ferred to as page count. These page counts are, however,
only rough estimates of the real number of available Web
pages related to the query. Nevertheless, for the purpose
of classifying music artists into genres [20, 37, 39] and for
classifying general instances according to a given ontol-
ogy as well as for learning sub- and superconcept rela-
tions [11, 12], this method yielded respectable results.

For the paper at hand, we queried the search engines
Google [21] and Exalead [18], using their API or issu-
ing HTTP requests. The page count values returned for
all 〈artist, country〉 tuples were retrieved. To avoid ex-
cessive bandwidth consumption, we restrict the number of
search results to be transmitted to the smallest value (this
is usually one result). Since we are only interested in the
page count estimates, this restriction effectively reduces
network traffic without effecting the results.
The two main challenges of this approach are directing the
search towards pages related to the music domain and al-
leviating the distortions caused by artist names that equal
common speech words. We address these issues by using
queries of the form

"artist name" "country name" music

and weighting the resulting page count values with a fac-
tor resembling the inverse document frequency (idf) [46].
The final ranking score is thus calculated according to For-
mula 1, where pcc,a is the page count value returned for the
country-specific query for artist a and country c, N is the
total number of countries for which data is available, and
dfa is the number of countries in which artist a is known
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according to the data source (i.e., the number of countries
with pcc,a > 0).

popularity pcc,a = pcc,a · log2

(
1 +

N

dfa

)
(1)

3.2 Twitter Posts

Many Twitter posts reveal information about what people
are doing or thinking right now. We are interested in posts
containing information about which music is currently be-
ing played by users in a given country. To accomplish this,
we retrieve posts using the Twitter Search API [42]. The
posts are then narrowed in two ways. First, we only search
for posts containing the hashtag #nowplaying. This restric-
tion is directly supported by the Twitter API. As a second
restriction, the search is narrowed to a specific country.
Not being aware of a more direct implementation for the
second restriction, we search only for posts whose users
are located within a certain radius around a GPS coordi-
nate. More specifically, for a given country, we determine
the coordinates of larger cities (with more than 100,000
inhabitants) and search for posts originating from a circle
of 100 kilometers around the respective coordinates. The
names of the cities are taken from Wikipedia, e.g., [45], and
the coordinates are determined by using Freebase [19]. For
each city location for which geolocation data is resolved
successfully, all Twitter posts available through the Twitter
API are retrieved, which yields a maximum of about 1,500
posts per city location.

One of the advantages of using this kind of data is cer-
tainly its recentness. Thus, the retrieved data may contain
artists that do not appear in our list of most popular artists
(cf. Section 4.1). A first look at the format of the texts
reveals that automatic tokenization seems not easily to ac-
complish due to the large variation of wording and creative
methods to use the available number of characters. We
therefore opt to scan the retrieved texts for the artists con-
tained in the artist list, and we count the number of their ap-
pearances for a given country c. This count equals the term
frequency (tfc,a) of a in an aggregated document compris-
ing all posts gathered for cities in country c. Formula 2
gives the ranking score. The rightward term again repre-
sents an idf -factor that downranks artists that are popular
everywhere, and thus not specific to country c. N is the
total number of countries, and dfa is the number of aggre-
gated country documents in which artist a occur.

popularity twic,a = tfc,a · log2

(
1 +

N

dfa

)
(2)

3.3 Shared Folders in a P2P Network

Collecting shared folder data from Gnutella users is a two-
staged-process. First, a crawler needs to discover the cur-
rent network topology (which is very dynamic). Subse-
quently, a browser queries the active users for their shared
folders data. The crawler treats the network as a graph, and
performs a breadth-first exploration, where newly discov-
ered nodes are enqueued in a list of un-crawled addresses.
The crawler provides a list of active IP addresses to the
browser, which sends Gnutella “Query” messages [1] to
the clients. The clients reply with “QueryHit” messages,
that lists their shared folder content. These messages are
the basis for our P2P data set.

The system described above is a different system than
the one used by Koenigstein and Shavitt in [26], which col-
lected Gnutella search queries for song ranking. One ad-
vantage of a shared folder data set over queries is the avail-
ability of ID3 tags and hash keys, which simplifies the pro-
cess of associating the digital content with a musical artist.
However, when singles ranking is considered (as in [26]),
queries tend to better reflect the changing popularity trends
of pop songs over short time intervals. In this study, we as-
sociate artists with digital content by matching the artist
names against the content of the ID3 tags. Occasionally,
the content in ID3 tags is missing or misspelled. We there-
fore, match the artists names against the file names as well.

In order to build popularity charts for specific countries,
one needs to resolve the geographical location of the users.
The geo-identification is based on the IP addresses. First,
we generate a list of all unique IP addresses in the data
set (typically over a million). We resolve the geography
of IP addresses using the commercial IP2Location [23]
database. Each IP address is bounded with its country
code, city name, and latitude-longitude values. This accu-
rate geographical information pin points artists’ fans and
enables tracking spatial diffusion of artists popularity [27].

After the digital files are associated with artists names
and geography, building popularity charts is straightfor-
ward. For each country, we aggregate the total number of
digital content that is associated with each artist. Ranking
is then performed according to frequency.

3.4 Last.fm Playcounts

We further estimate country-specific artist popularity based
on the community of last.fm users. Despite the issues of
hacking and vandalism as well as the community bias [36],
which are inherent to collaborative music information sys-
tems, the playcounts of last.fm users can be expected to
reflect to a certain extent which music is currently popu-
lar. We therefore gathered the top 400 listeners of each
country at the end of 2009. We subsequently extracted the
top-played artists for each of the resulting top-listeners-
sets. 1 Aggregating the playcounts for each artist over a
country’s top listeners finally yielded a popularity ranking
for the country under consideration.

4. EVALUATION

4.1 Test Set

We used last.fm’s Web API [29] to gather the most popular
artists for each country of the world, as of November 2009.
We then aggregated this data into a single list of 201,135
unique artist names.

4.2 Experiments

As we aim at assessing the pros and cons of the various
approaches, without yet having an established ground truth
for this kind of experiments, we choose to perform a pair-
wise comparison of the approaches. Each approach pro-
duces a ranked list of artists for the various countries. Ex-
pecting that the absolute numbers obtained by the various
approaches are not immediately comparable, we compare
the produced artist popularity rankings of two approaches

1 In the meantime, last.fm has extended its API with a
Geo.getTopArtists function, which can be used to directly
retrieve the top-played artists among a certain country’s users. Quick
empirical comparisons showed that the implementation behind this
function seems to resemble our approach.
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Aj and Ak. This comparison is done separately for each
country c. In the next subsections, we describe the applied
data preprocessing steps and the used evaluation measure
in detail.

4.2.1 Preprocessing

We start our analysis by processing the artist names in
the artist popularity list for country c of each approach
in a basic way (e.g., each artist name is represented in
lower case, repeated whitespace characters are removed,
and UTF-8-encoded characters are transformed to canoni-
cal ASCII representations).

Instead of using raw artist counts directly, we normalize
them, attempting to avoid dominance of common-speech
words, or globally popular artists whose popularity is not
highly country specific. For each artist, the number of
countries this artist appears in is counted. Each country-
specific artist count acc,a is then normalized as indicated
in Equation 1.

Artist names appearing in the two lists (given by the pair
of approaches under investigation) are matched against each
other, and only artists appearing in both lists are kept. Based
on this data, we calculate the overlap between the rankings
obtained with the two prediction approaches, as described
next.

4.2.2 Evaluation Measures

The top-n rank overlap for country c between approaches
Aj and Ak is calculated as

roc,Aj ,Ak,n =
1
n
·
∣∣{a|max

(
rAj ,c,a, rAk,c,a

)
≤ n}

∣∣ (3)

where rAj ,c,a denotes the ranking of artist a in country
c according to approach Aj , only considering the artists
for which both approaches (Aj and Ak) yield a ranking
score. In other words, the top-n rank overlap is the fraction
of artists appearing within the top n ranked artists in both
approaches. For example, if one artist is within the top-2
ranked artists of both approaches, the top-2 rank overlap
is 0.5. Obviously, n can take values up to the number of
artists nmax,c for which both approaches deliver rank data
for country c, and the top-nmax,c rank overlap is always 1.

To obtain an overall measure for two approaches and a
given country, we define the country-wise rank overlap as

croc,Aj ,Ak
=

1
nmax,c

nmax,c∑
n=1

roc,Aj ,Ak,n (4)

which has a trivial (random) baseline of about 0.5 and
a maximum value of 1.0 when both rankings are identical.
The country-wise rank overlaps are further combined to
obtain one overall scalar value for approaches Aj and Ak.
To account for the different quantity of available informa-
tion, we weight the overlap score of each country with the
number of artists for which information is available. We
define the overall overlap measure between approaches Aj

and Ak as

ov (Aj , Ak) =

∑
c∈C

nmax,c · croc,Aj ,Ak∑
c∈C

nmax,c
(5)

The measure ov also has a trivial baseline of about 0.5
and a maximum value of 1.0.

Figure 1. Top 8 countries for pc google vs p2p.

To give an illustrative example, Figure 1 shows for the
comparison of approach pc google and p2p the 8 countries
with highest ro value, as a chart from 1..nmax,c.

4.3 Results and Discussion

Each approach offers at least a slightly different view on
reality since the data sources are of distinct nature. There
is also no such thing as a “ground truth” for this task, as
each data source (even “Billboard”-style charts) is biased,
as elaborated below. Nevertheless, we would like to point
out certain interesting observations.
Looking at Figure 2, the highest overlap score of 0.67 is
found between Google page counts and P2P. One reason
may be that the two sources have broadest coverage. An-
other explanation may be the time dependency. Twitter
and last.fm are much more time dependent, whereas P2P
shared folders and amounts of Web pages change much
slower. In fact, the content of the data sources behind P2P
networks and Web search engines, i.e., users’ music col-
lections and Web pages, respectively, is accumulated over
years. Microblogging posts and last.fm data, in contrast,
change much faster and are therefore more likely to reflect
trends.
Second, the page counts approach using Google and the
same approach using Exalead do not produce similar re-
sults, as we would have expected. In fact, the rankings
reveal a non-significant overlap of 0.51. A possible expla-
nation is that the two search engine providers may use very
different page count estimation techniques.
Exalead shows the lowest overlap with other sources. Its
highest overlap is realized, not surprisingly, with Google
and with P2P, but it remains slightly above the baseline
(0.53). An explanation for Exalead’s low overlap score
becomes apparent when looking at Figure 3. Exalead has
by far the highest number of matching artists, which may
induce a high noisiness.
In terms of country coverage (cf. Figure 3), the last.fm
and the page counts approaches offer data for nearly ev-
ery country in the world.

To account for the different nature and scope of the pro-
posed approaches (and underlying data sources), we com-
pare them according to several aspects in Table 1, elaborat-
ing on specific advantages and disadvantages. One issue is
that certain approaches are prone to a specific bias. For
example, the average last.fm user does not represent the
average music listener of a country, i.e., last.fm data is dis-
torted by a “community bias”. The same is true for Twitter,
which is biased towards artists with very active fans. On
the other hand, some very popular artists may have fans
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Figure 2. Overlap ov between each pair of approaches.

Figure 3. Number of countries with non-empty overlap.

that twitter to a much lower degree. This issue becomes
especially apparent when thinking of live artists vs. dead
ones: The live ones keep making new headlines, and prob-
ably also have many more active fans, while the dead ones
have an inherent problem with this. Traditional charts are
biased towards the data the music industry uses to derive
them, usually record sales figures.
Another aspect according to which the approaches differ
considerably is the availability of data. While page count
estimates are available for all countries of the world, the
P2P and Twitter approaches suffer from a very unbalanced
coverage, strongly depending on the country under con-
sideration. Also traditional music charts vary strongly be-
tween countries and continents with respect to availability.
According to [44], only one country in Africa publishes
official music charts, while this number amounts to 19 for
Europe.
A big advantage of traditional charts is their virtual im-
munity against noise. Page count estimates, in contrast,
are easily distorted by ambiguous artist or country names.
last.fm data suffers from hacking and vandalism [10], as
well as from unintentional input of wrong information and
misspellings.
In the dimension of time dependence, the approaches can
be categorized into “current” and “accumulating”, depend-
ing on whether they reflect the instantaneous popularity, or
a general, all-time popularity in that they accumulate pop-
ularity levels over time.

Figure 4. Average number of artists per country (nmax,c).

5. CONCLUSIONS AND FUTURE WORK

We presented four approaches to determine country-specific
artist popularity rankings based on different data sources
(search engine’s page counts, Twitter posts, shared folders
in the Gnutella network, and playcounts of last.fm users).
In the absence of a standardized ground truth, we performed
pairwise comparison of the approaches and elaborated on
particular advantages and disadvantages. Most approaches
showed only weak overlaps, probably due to the different
nature of their data sources. We found, however, a con-
siderable overlap between Google page counts and P2P
data, which is probably explained by the similar time scope
the two data sources cover. As a general conclusion, we
can state that artist popularity can be derived from various,
quite inhomogeneous data sources. The remarkably weak
overlap between most of them indicates that the quest for
artist popularity is a multifaceted and challenging task, in
particular in today’s era of multi-channel music distribu-
tion. To derive one overall popularity measure, we will
need to combine the different sources.
Future work will hence foremost aim at elaborating hybrid
approaches that account for the different quantity and qual-
ity of information output by the four heuristics. We will
also work on refining our approaches to capture artist pop-
ularity within certain genres, e.g., by incorporating meth-
ods similar to [38]. We will further look at the various
processing steps in more detail. Most of the current imple-
mentations were created in an ad-hoc manner, and some of
the choices might degrade the performance. For example,
better string comparison algorithms may improve results
for artists whose names may be spelled in various ways.
Alternative ways of normalizing artist counts for the indi-
vidual approaches are also likely to yield improvements.
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ABSTRACT

We describe an unsupervised, data-driven, method for auto-
matically identifying repeated patterns in music by analyz-
ing a feature matrix using a variant of sparse convolutive
non-negative matrix factorization. We utilize sparsity con-
straints to automatically identify the number of patterns and
their lengths, parameters that would normally need to be
fixed in advance. The proposed analysis is applied to beat-
synchronous chromagrams in order to concurrently extract
repeated harmonic motifs and their locations within a song.
Finally, we show how this analysis can be used for long-
term structure segmentation, resulting in an algorithm that
is competitive with other state-of-the-art segmentation algo-
rithms based on hidden Markov models and self similarity
matrices.

1. INTRODUCTION

Repetition has been widely-recognized to be a ubiquitous
feature of music, closely related to structural units in music,
such as beats, bars, motives and sections [10]. This applies
both to popular music, often composed of nearly exact rep-
etitions of a small number of sections, e.g. verse, chorus,
and bridge; and to more sophisticated genres, e.g. jazz or
orchestral music, where recurrences are often masked by
complex transformations, including key modulations and
tempo variations. The analysis of repeated patterns and their
temporal organization is central to the understanding of mu-
sic. However, while repetitions are apparent in symbolic
representations of music, their extraction from musical au-
dio poses a number of challenges stemming from factors
such as the presence of background noise, the influence of
multiple instruments and sonic textures, timing variations
and other attributes of musical expression, etc.

The automatic analysis of repetition in music audio has
been an important focus of attention in MIR, with appli-
cations including thumbnailing [1], retrieval [2], and, no-
tably, long-term segmentation using methods such as self-
similarity matrices and hidden Markov models [11, 8, 5].
However, with a few exceptions [7, 1], the emphasis has
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been on locating repetitions rather than on extracting of
characteristic, repetitive patterns. Previous research on de-
tecting motif occurrences across a collection [9] and cover-
song retrieval based on short-snippets [3], illustrate the
utility of extracting such patterns.

In this paper we propose a novel approach for the auto-
matic extraction and localization of repeated patterns in mu-
sic audio. The approach is based on sparse shift-invariant
probabilistic latent component analysis [14] (SI-PLCA),
a probabilistic variant of convolutive non-negative matrix
factorization (NMF). The algorithm treats a musical record-
ing as a concatenation of a small subset of short, repeated
patterns, and is able to simultaneously estimate both the
patterns and their repetitions throughout the song. The anal-
ysis naturally identifies the long-term harmonic structure
within a song, while the short-term structure is encoded
within the patterns themselves. Furthermore, we show how
it is possible to utilize sparse prior distributions to learn
the number of patterns and their respective lengths, min-
imizing the number of parameters that must be specified
exactly in advance. Finally, we explore the application of
this approach to long-term segmentation of musical pieces.

The remainder of this paper is organized as follows:
Section 2 reviews the proposed analysis based on SI-PLCA
and describes its relationship to NMF. Sections 3 and 4
describe prior distributions over the SI-PLCA parameters
and the expectation maximization algorithm for parameter
estimation. Sections 5 and 6 discuss how the proposed
analysis can be used for structure segmentation and provide
experimental results. Finally, we conclude in Section 7.

2. PROPOSED APPROACH

2.1 From NMF to PLCA

Conventional NMF decomposes a non-negative matrix V
into the product of two non-negative matrices W and H:

V ≈WH (1)

In the context of audio analysis, if V represents a time-
frequency decomposition of an audio signal, each column
of W can be thought of as a frequency template used re-
peatedly throughout V , and each row of H can be thought
of as the activations of the corresponding basis in time. In
this paper we focus on the analysis of beat-synchronous
chromagrams [4], but the method is equally applicable to
any non-negative time-frequency representation such as a
magnitude spectrogram.
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Figure 1. Demonstration of the SI-PLCA analysis of a chromagram. The decomposition was initialized with L = 40, and
K = 10 with αz = 0.98, and no sparsity on Wk or hTk . The parameter estimation algorithm pruned out most of the initial
bases due to the sparse prior on z, converging on only 4 bases.

Probabilistic Latent Component Analysis (PLCA) [14]
recasts this analysis in a probabilistic framework. PLCA
represents each column of W and each row of H as multi-
nomial probability distributions and adds an additional dis-
tribution over each basis, i.e. a mixing weight. The decom-
position can be rewritten in NMF terms as follows:

V ≈WZH =
K−1∑
k=0

wk zkhTk (2)

where Z = diag(z) is a diagonal matrix of mixing weights
z and K is the rank of the decomposition (i.e. the number
of bases in W ). Contrary to standard NMF, each of V , wk,
z, and hTk are normalized to sum to 1 since they correspond
to probability distributions.

The probabilistic foundation makes for a convenient
framework for imposing constraints on the parameters wk,
hTk , and z through the use of prior distributions. This will
be discussed in detail in Section 3.

2.2 Adding shift-invariance

A shift-invariant extension to the PLCA model which allows
for convolutive bases is described in [14]. Unlike the single
frame bases wk described in Section 2.1, each SI-PLCA
basis is expanded to form a fixed duration template Wk

containing L frames. Therefore, the F × K matrix W
becomes an F × L × K tensor W , and the normalized
basis wk becomes a normalized matrix Wk. The factorsW
and H are combined via a convolution operation instead of
matrix multiplication in a process analogous to equation (2):

V ≈
∑
k

Wk ∗ zkhTk (3)

Figure 1 shows an example SI-PLCA decomposition of a
chromagram using K = 4 basis patterns of length L = 40.

3. SPARSE PRIOR DISTRIBUTIONS

A common strategy used throughout the NMF literature is
to favor sparse settings, i.e. one containing many zeros, for
W or H in order to learn parsimonious, parts-based decom-
positions of the data. Sparse solutions can be encouraged
when estimating the parameters in equation (3) by impos-
ing constraints using an appropriate prior distribution. In
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Figure 2. Typical behavior of the automatic relevance de-
termination effect of a sparse prior on z. The initial rank of
the decomposition is set to K = 15, and as the estimation
algorithm iterates it is pruned down to a final effective rank
(the number of bases with non-zero zk) of 4.

the following sections we describe how this process can be
used to automatically learn the number and length of the
repeated patterns within a song.

3.1 Learning the number of patterns K

The Dirichlet distribution is conjugate to the multinomial
distributions Wk, z, and hTk , making it a natural choice for
a prior. The Dirichlet prior on z has the following form:

P
(
z |αz

)
∝
∏
k

zαz−1
k , αz ≥ 0 (4)

where the hyperparameter αz is fixed across all K compo-
nents. If αz < 1 this prior favors solutions where many
components are zero, i.e. where the distributions are sparse.

If z is forced to be sparse, the learning algorithm will
attempt to use as few bases as possible. This enables an
automatic relevance determination strategy in which: (a)
the algorithm is initialized to use many bases (large K),
and (b) the sparse prior on z prunes out bases that do not
contribute significantly to the reconstruction of V . Only the
most relevant patterns “survive” to the end of the parameter
estimation process, as is shown in the example in Figure 2.
This approach is useful because it removes the need to spec-
ify the exact rank of the decomposition K in advance. The
parameter estimation simply learns the underlying num-
ber of patterns needed by the data. A similar approach
to automatically determining the rank of a standard NMF
decomposition is described in [15].
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The Beatles/07-Revolver/08-Good_Day_Sunshine

*

Figure 3. Demonstration of the SI-PLCA decomposition of
a chromagram using L = 60 and sparsity in all parameters
(αz = 0.98, c = 16, m = −10−8, and αh = 1− 10−5).

3.2 Learning the pattern length L

The other parameter that must be specified in advance is the
length L of the convolutive bases. In fact, different patterns
within the same piece often have different intrinsic lengths,
e.g. if the chorus uses a shorter riff than the verse or if the
time signature changes. Therefore it is useful to automati-
cally identify the length of each basis independently instead
of using a fixed length across all bases.

We employ a similar strategy to that described in Sec-
tion 3.1 by setting L to an upper bound on the expected
pattern length and constructing a prior distribution that en-
courages the use of shorter bases. This is accomplished by
using a Dirichlet prior onWk with a parameter that depends
on the time position τ within each basis:

P
(
Wk |αw

)
∝
∏
τ

∏
f

wαwτ−1
kfτ (5)

αw is constructed as a piecewise function which is uninfor-
mative for small τ and then becomes increasingly sparse:

αwτ =

{
1, τ < c

1 +m (τ − c), τ ≥ c
(6)

This prior only effects patterns longer than c frames with a
penalty that increases with the pattern length.

An example of the effect of this prior is shown in Fig-
ure 3. Most of the information in the top basis is contained
within the first 12 columns, while the other bases have
effective lengths between 30 and 40.

3.3 Basis/activation trade-off

It is often worthwhile to enforce sparsity on hTk using a
similar approach to equation (4), with a single parameter
αh tied across all points within hTk . The rationale is that
if most of the activations in hTk are zero, then more of the
information in V will be captured by Wk, and vice versa.
A sparse hTk promotes more parsimonious patterns for Wk,
at the cost of a reduced time resolution.

This is illustrated by the example in Figure 1. The second
basis pattern is relatively sparse, while the corresponding
row of H contains many non-zero entries. In fact, the

spacing between adjacent activations in hT1 is smaller than
the length of the pattern; i.e. it is continually mixed with
delayed versions of itself. The pattern repeats about every
8 beats, roughly corresponding to the underlying meter.

In contrast, the bottom two bases contain significantly
more information while the corresponding rows of H con-
tain only about 4 peaks. The sparsity setting αh, in combi-
nation with αwτ , control the trade-off between these quali-
tatively different solutions. A sparse H leads to more musi-
cally meaningful bases that are exactly repeated throughout
the piece, while a sparseW leads to temporal patterns in H
that are organized according to to the underlying rhythm.

4. PARAMETER ESTIMATION

The decomposition of equation (3) can be computed itera-
tively using an expectation maximization (EM) algorithm.
The full derivation of the algorithm can be found in [13].
Here we extend it to incorporate the prior distributions de-
scribed in Section 3. Since we are using conjugate prior
distributions, this extension is straightforward to derive.

In the E-step, the posterior distribution over the hidden
variables k and τ is computed for each cell in V . For
notational convenience we represent this distribution as a
set of matrices {Rkτ} for each setting of k and τ . Each
point in the F×T matrixRkτ corresponds to the probability
that the corresponding point in V was generated by basis k
at time delay τ . It can be computed as follows:

Rkτ ∝ wkτ ⊗ zk
→τ
hTk (7)

where ⊗ denotes the outer product, and
→t
x shifts x t places

to the right. The set of Rkτ matrices are normalized such
that each point in

∑
kτ Rkτ is one.

Given this posterior distribution, the parameters can be
updated in the M-step as follows:

zk ∝
∑
τ

∑
ft

V ·Rkτ + αz − 1 (8)

wkτ ∝
∑
t

V ·Rkτ + αwτ − 1 (9)

hTk ∝
∑
τ

∑
f

←τ
V ·

←τ
Rkτ + αh − 1 (10)

where · denotes the element-wise matrix product and the
parameters are normalized so that z, Wk, and hTk sum to 1.

The overall EM algorithm proceeds by initializing Wk,
z, and hTk randomly, and then iterating equations (7) to (10)
until convergence. This algorithm is only guaranteed to con-
verge to a local optimum, so the quality of the factorization
is somewhat dependent on initialization. In our experiments
we found that initializing z and hTk uniformly while setting
the initial Wk randomly leads to more consistent results.

5. STRUCTURE SEGMENTATION

As mentioned in the introduction, the analysis described
in this paper can be applied to the task of music structure
segmentation. It naturally identifies the long-term temporal
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Figure 4. Song structure segmentation using the SI-PLCA
decomposition shown in Figure 1. The pairwise F-measure
of the estimated segmentation is 0.52.

structure within a song, encoded by H . At the same time,
the short-term structure is captured within the basesW .

We use the beat-synchronous chroma feature extraction
from [4]. Each frame of V is normalized so that the max-
imum energy is one. Analysis of these features identifies
repeated motifs in the form of chord patterns. We assume a
one-to-one mapping between these chord patterns and the
underlying song structure, i.e. we assume that each pattern
is used within only one segment. The mapping is derived by
computing the contribution of each pattern to the chroma
gram by summing equation (3) across all pitch classes:

`k(t) =
∑
f

Wk ∗ zkhTk (11)

The segmentation labels are then found by smoothing theK
“pattern usage” functions `k(t) using a rectangular window,
and finding the most active pattern at each frame:

`(t) = argmax
k

`k(t) ∗ 1S (12)

where 1S is a length S vector of ones. Finally, the per-frame
segment labels `(t) are post-processed to remove segments
shorter than a given minimum segment length.

5.1 Examples

An example of this segmentation procedure is shown in
Figure 4. The top panel shows the original chromagram of
the song. The following four panels show the contribution

V

The Beatles/07-Revolver/08-Good_Day_Sunshine

W
0
∗
z 0

h
T 0

W
1
∗
z 1

h
T 1

W
2
∗
z 2

h
T 2

W
3
∗
z 3

h
T 3

0 100 200 300 400 500 600 700
Time (beats)

Se
gm

en
ts

Estimated

Ground Truth

Figure 5. Song structure segmentation using the SI-PLCA
decomposition shown in Figure 3 (PFM = 0.69).

of each pattern to the chromagram, and the bottom two
panels show the smoothed `k(t) and the final segmentation.

There are some interesting differences between the ground
truth segmentation and that derived from the proposed al-
gorithm in Figure 4. For example, the proposed algorithm
breaks the beginning of the song into repeated subsections:
basis 2 (mid-gray) → basis 0 (white), while the ground
truth labels this sequence as a single segment. When in-
specting the actual patterns it is clear that these segments
are composed of distinct chord patterns, despite serving a
single musical role together (“intro/verse” as annotated in
the ground truth). In fact the mid-gray and white segments
are reused in different contexts throughout the song in re-
gions with different ground-truth annotations. The analysis
has no notion of musical role, so it tends to converge on
solutions in which bases are reused as often as possible.

One way to address this limitation is to increase the
length L of the convolutive bases (or the corresponding pa-
rameters of αwτ ), in which case the repeated sub-segments
would be merged into a single long segment. This highlights
an inherent trade-off in the proposed analysis between iden-
tifying simple chord patterns that are frequently repeated
(short Wk, many activations in hTk ) as opposed to deriv-
ing long-term musical structure (longer Wk, sparser hTk ).
This trade-off is a recognized ambiguity in the concept of
musical segmentation [12].

When high-level segments are more closely correlated
with the harmonic structure identified by our method, the
proposed analysis leads to good segmentation. An exam-
ple of this is shown in Figure 5. Note that the ground
truth labels make a distinction between “verse”(white) and
“verse/break” (black) which is not present in our analysis.

126

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



0.95 0.96 0.97 0.98 0.99 1.00 1.01
αz

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Pa

irw
is

e 
F-

m
ea

su
re 1.3±0.5

2.7±0.6
3.2±0.5

3.9±0.8

5.4±1.2

8.9±2.1

14.5±1.3 15

4

6

8

10

K=15

K=4

K=6

K=8

K=10

Figure 6. PFM as a function of αz (solid line). K = 15,
L = 60, and no other priors are used. The average effective
rank for each setting of αz is displayed. Also plotted is
PFM for αz = 1 for different settings of K (dashed lines).

6. EXPERIMENTS

In this section we evaluate the proposed approach to struc-
ture segmentation. We quantify the effect of the various
prior distributions described in Section 3 and compare our
approach to other state-of-the-art algorithms. The test set
consists of 180 songs from the recorded catalog of The
Beatles, annotated into verse, chorus, refrain, etc. sections
by the Centre for Digital Music. 1 Each song contains an
average of about 10 segments and 5.6 unique labels.

Segmentation performance is measured using the pair-
wise recall rate (PRR), precision rate (PPR), and F-measure
(PFM) metrics proposed in [5] which measure the frame-
wise agreement between the ground truth and estimated
segmentation regardless of the exact segment label. We
also report the entropy-based over- and under-segmentation
scores (So and Su, respectively) as proposed in [6].

6.1 Number of patterns

Since our segmentation algorithm assumes a one-to-one
relationship between patterns and segments, the appropriate
choice of the number of patterns K is critical to obtaining
good performance. We evaluate this effect by segmenting
the data set with varying settings for K with αz = 1, and
by fixing K to 15 and varying αz . No smoothing of the
resulting labels is performed (S = 1).

The results are shown in Figure 6. For αz = 1, segmen-
tation performance decreases as K increases, peaking at
K = 4. Performance improves when the sparse prior is
applied for most settings of αz . The average effective rank
and its standard deviation both increase with decreasing αz
(increasing sparsity). The best performance is obtained for
αz = 0.98, leading to an average effective rank of 3.2±0.5.
These results demonstrate the advantage of allowing the
number of patterns to adapt to each song.

6.2 Pattern length

As described in Section 5.1, the length of the patterns used
in the decomposition has a large qualitative effect on the

1 http://isophonics.net/content/reference-annotations-beatles
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Figure 7. PFM as a function of the pattern length L. The
rank is fixed at K = 6 and no sparse priors are used.

segmentation. To measure this effect, we segmented the
entire corpus varying L between 10 and 120 beats. No spar-
sity was enforced, so the pattern length remained fixed for
all bases and all songs. The results are shown in Figure 7.

As predicted, segmentation performance is poor for
small L since the ground truth segments are often divided
into many distinct short segments. Performance improves
with increasing L, until it reaches a peak at L = 70. When
L grows larger than the average segment length in the
ground truth (78 beats) the performance decreases.

Enforcing sparsity on Wk and varying c leads to similar
results. However, we have found that allowing for vary-
ing pattern length has negligible effect on segmentation
performance, despite often resulting in qualitatively better
patterns. Following this trend, we have also found that
αh 6= 1 has minimal effect on performance, so it is set
to 1 in the remaining experiments. These results are not
surprising since the segmentation is derived from the com-
bination ofW and H . Shifting the sparsity from one factor
to another should not have significant impact on `k(t).

6.3 Comparison to the state-of-the-art

We compare the proposed segmentation system with other
state-of-the-art approaches, including Levy and Sandler’s
HMM-based segmentation system 2 [5] (QMUL) and a
more recent system from Mauch et al [8] based on analysis
of self-similarity matrices derived from beat-synchronous
chroma. As in Section 6.1, we found that QMUL has opti-
mal PFM when the number of segments is set to 4.

We compare these to the proposed system using fixed
rank K = 4 (SI-PLCA) and a variant using sparse z with
αz = 0.995 and K = 15 (SI-PLCA-αz). L was fixed at 70
for both systems, and the minimum segment length S was
set to 32. Also included is a baseline random segmentation
where each frame is given one of 4 randomly selected labels.

The results are shown in Table 1. The system from
Mauch et al performs best, followed by SI-PLCA-αz , SI-
PLCA, and QMUL. All systems perform significantly better
than the baseline. All of the segmentation systems have
roughly comparable pairwise precision and Su. The differ-
ences are primarily in the recall (and So) with Mauch et al

2 Available: http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html

127

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



System PFM PPR PRR So Su

Mauch et al [8] 0.66 0.61 0.77 0.76 0.64
SI-PLCA-αZ 0.60 0.58 0.68 0.61 0.56
SI-PLCA 0.58 0.60 0.59 0.56 0.59
QMUL [5] 0.54 0.58 0.53 0.50 0.57
Random 0.30 0.36 0.26 0.07 0.24

Table 1. Segmentation performance on the Beatles data set.
The number of labels per song was fixed to 4 for SI-PLCA,
QMUL, and Random. The average effective ranks for SI-
PLCA-αz and Mauch et al were 3.9 and 5.5, respectively.

outperforming SI-PLCA-αz by 12% (15%), and SI-PLCA-
αz in turn outperforming QMUL by 15% (11%).

Aside from our algorithm’s tendency to over-segment,
the most obvious qualitative difference between Mauch et
al’s and the proposed system lies in more accurate boundary
detection in the former system. This is partially a result
of the smoothing performed in equation (12) which tends
to blur out the segmentation. A more sophisticated set of
heuristics for deriving segment labels from the SI-PLCA
decomposition might not suffer from this problem.

7. CONCLUSION

We have described an algorithm for identifying repeated
patterns in music using shift-invariant probabilistic com-
ponent analysis and shown how it can be applied to music
segmentation. The source code is freely available online. 3

We demonstrate that the use of simple sparse prior distri-
butions on the SI-PLCA parameters can be used to automat-
ically identify the bases that are most relevant for modeling
the data and discard those whose contribution is small. We
also demonstrate a similar approach to estimating the opti-
mal length of each basis. The use of these prior distributions
enables a more flexible analysis and eliminates the need to
specify these parameters exactly in advance.

Although this paper has focused on structure segmenta-
tion, the proposed analysis has many other potential applica-
tions. For example, basis patterns could be extracted from
a collection of pieces to search for common motifs used
throughout a corpus of music, e.g. retrieval of cover songs
or musical variations. Similarly, Mauch et al demonstrate
that chord recognition performance can be improved by
pooling data from repeated sections to smooth over vari-
ations [8]. In the context of the proposed analysis this
amounts to simply analyzing the bases Wk.

Other potential future work includes extracting the hier-
archical structure within a piece by repeating the SI-PLCA
analysis at different time scales. Finally, we mention that
it is possible to extend the SI-PLCA decomposition to be
key-invariant by using the 2D extension to SI-PLCA which
allow for shifts in pitch class/frequency as well as time [14].
Such an extension would allow for structure segmentation
that is insensitive to key modulations within a piece.

3 http://marl.smusic.nyu.edu/resources/siplca-segmentation/
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ABSTRACT

An approach is presented which provides the tune change loca-
tions within a set of Irish Traditional tunes. Also provided are
semantic labels for each part of each tune within the set. A set
in Irish Traditional music is a number of individual tunes played
segue. Each of the tunes in the set are made up of structural seg-
ments called parts. Musical variation is a prominent characteris-
tic of this genre. However, a certain set of notes known as ‘set
accented tones’ are considered impervious to musical variation.
Chroma information is extracted at ‘set accented tone’ locations
within the music. The resulting chroma vectors are grouped to
represent the parts of the music. The parts are then compared
with one another to form a part similarity matrix. Unit kernels
which represent the possible structures of an Irish Traditional
tune are matched with the part similarity matrix to determine the
tune change locations and semantic part labels.

1. INTRODUCTION

The approach presented here is specific to Irish Traditional Mu-
sic. This music type consists of structural segments called ‘tunes’
which are concatenated to form ‘sets’. The tunes are themselves
made up of shorter structural segments called ‘parts’. The struc-
ture of Irish Traditional Music is illustrated in Figure 1. Within
this music type performers are encouraged to introduce musical
variation. Parts which are notated as equivalent are aurally dif-
ferent due to this musical variation. The approach presented in
this paper has two aims. The first is to determine the locations
where tune changes occur within ‘sets’ of Irish Traditional tunes.
The second aim is to assign a semantic label to each of the parts
of each of the tunes within the music.

The information provided by a structural segmentation can be
used for audio browsing. Instead of browsing through the mu-
sic manually, using the structural segmentation information the
user can browse directly to the part of interest within the music.
Looping is a further application of the information provided by
structural segmentation. Once a user has browsed to the required
part within the music, the part can be looped to facilitate repeated
playback of a certain segment. The structural segmentation in-
formation can provide exact loop points so that the start and end

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Figure 1. A representation of the structure present within a piece
of Irish Traditional music. There are two distinct hierarchical
levels of segmentation. The piece of music consists of segments
called tunes, and each tune consists of further segments called
parts.

of the selected loop will align rhythmically. This promotes aural
learning which is common practice for Irish Traditional musi-
cians. Structural segmentation information can also be used to
create an audio thumbnail. For popular music, an audio thumb-
nail is the most repeated segment, often considered to be the
chorus. For Irish Traditional Music however there is no chorus
and no segment which repeats more often than others. Using the
structural segmentation information a reduced form of the music
can be created by discarding repeated sections.

Detailed in this paper is an approach which aims to extract
tune change locations within sets of Irish Traditional music. The
approach also provides a semantic labelling for each part of the
tunes within each set. A set of notes known as ‘set accented
tones’ [17] are utilised which are considered impervious to any
musical variation. These notes are extracted and are used to rep-
resent the music. Using the harmonic information of these notes,
sets are segmented into separate tunes, semantic labels are pro-
vided for each part of each resulting tune using a kernel matching
technique.

The remainder of this paper is divided as follows: Section 2
details previous relevant approaches toward the structural seg-
mentation of music. In Section 3 an overview of the structure of
Irish Traditional Music is provided. The proposed approach to-
ward locating tune changes and providing a semantic labelling of
sets of Irish Traditional tunes is detailed in Section 4. Section 5
provides the results of testing the approach on a database of Irish
Traditional tunes. The presented approach is compared directly
with a previous approach which also attempts to locate the tune
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change locations within sets of Irish Traditional tunes. Finally,
in Section 6 conclusions based on the results are provided.

2. LITERATURE REVIEW

Approaches which provide a structural segmentation of music
aim to search for similarities within the audio signal. The signal
is divided into audio frames and certain audio features are ex-
tracted for each of the resulting audio frames. Low level audio
features such as zero crossings or spectral centroid are extracted
and are combined to produce an aggregated description of the
audio signal such as in [8, 11, 16, 21]. Mel Frequency Cepstral
Co-efficients (MFCCs) are a further example of a low level audio
feature which is commonly used for approaches which attempt
to extract structure from music. In [13] MFCCs are extracted for
each audio frame and the resulting frames are clustered in order
to locate the repeated phrase or chorus within a ‘rock’ or ‘pop’
song. Certain heuristics are then used to choose a key phrase
which corresponds to the chorus. These low level audio features
are indicators of the timbre and loudness of the music. For Irish
Traditional music, the timbre and loudness often remain constant
throughout an entire musical piece therefore using these features
is not suitable for this musical genre.

The audio features used for structural segmentation approaches
may also be of a higher level of abstraction, such as pitch [2,14]
or chroma [1, 7] (See Section 4.3). Sections of the audio which
share similar audio feature values are grouped together. The re-
sulting groups of frames indicate the overall structure of the mu-
sic. Extracting pitch or chroma values for every audio frame of
an Irish Traditional music piece would include any musical vari-
ation present within the piece. This increases the difficulty of
determining which structural segments are similar.

In [5], an approach is presented which segments audio us-
ing a measure of audio novelty. A Short Time Fourier Trans-
form (STFT) is applied to the signal and each resulting frame
is compared with every other frame to create an audio similar-
ity matrix. The method of comparison used in [5] is the co-
sine distance measure. Points of significant musical change are
determined by using kernel correlation. In [5], a checkerboard
unit kernel is correlated along the diagonal of the resulting self-
similarity matrix. Locations which result in a high correlation
value are considered to be points of significant musical change
which themselves are considered possible structural segmenta-
tion boundaries.

Structural segmentation of Irish Traditional music has attracted
the attention of researchers. There have been a number of ap-
proaches which have attempted to structurally segment this mu-
sic type [3, 4, 9, 10].

In [9] an approach is presented which aims to segment Irish
Traditional tunes into their constituent parts and to provide a se-
mantic labelling for the resulting parts. The ‘set accented tones’
which are considered impervious to variation are located within
the music using a beat tracker. Pitch values are determined at
these specific locations using a pitch detector. This results in a
selective pitch contour. Melodic patterns are searched for amongst
this pitch contour to determine the overall structure of the music.
This approach was tested on a database of monophonic pieces
of Irish Traditional music. The approach presented in [9] is ex-
tended further in [10] where chroma is calculated at ‘set accented
tone’ locations rather than single pitch values. Following this,
the chroma vectors are grouped according to heuristics specific
to Irish Traditional Music. The resulting groups of chroma vec-

tors correspond to the structural segments of the music and are
compared using three different distance measures to determine
which of the segments are similar. Extracting chroma rather than
single pitch values at ‘set accented tone’ locations allows the ap-
proach in [10] to be applied to polyphonic music rather than only
monophonic music as in [9].

In [4] an approach is presented which aims to provide the lo-
cations of tune changes (see Section 3) within a set of Irish Tra-
ditional tunes. This approach relies on a pre-existing database
of transcribed Irish Traditional tunes. The music is transcribed
using a pitch detection algorithm and is converted into a format
consistent with the ABC music notation language [20]. Sections
of the audio are compared with tunes contained within a database
of ABC notated tunes using the edit distance algorithm [12].
Once the identity of the tune contained within the section has
been determined the version of the tune from the database is
compared with every possible section of the transcribed music
again using the edit distance. This allows the algorithm to de-
termine where the end of the current tune is located within the
music. This process repeats for subsequent tunes within the set
until all tunes have been processed.

The approaches presented in both [9] and [10] were tested on
a database of pieces of Irish Traditional music containing one
tune only. There is no attempt made to structurally segment sets
of Irish Traditional tunes. The approach presented in [4] specif-
ically addresses the problem of segmenting a set of Irish Tradi-
tional tunes by providing the locations of tune changes within the
music. However in [4] the requirement of a pre-existing database
of Irish Traditional tunes is a notable limitation. If a tune within
a set is not contained within the pre-existing database of tunes,
the segmentation of that set will not be successful. The approach
presented in Section 4 attempts to provide a semantic labelling
of a piece of Irish Traditional music as in [9]. However, un-
like [9] the approach presented in Section 4 aims to provide this
semantic labelling for sets of tunes rather than single tunes. Sec-
tion 4 also details a method to locate each tune change within
a set of Irish Traditional tunes as in [4]. A method using unit
kernels is detailed which overcomes the requirement in [4] of a
pre-existing database of transcribed tunes.

3. IRISH TRADITIONAL MUSIC

Irish Traditional Music is comprised of short musical pieces called
tunes. Each tune is made up of two or more ’parts’ which are
notated using upper case letters as can be seen in Figure 1. Al-
though each tune is quite short (a typical two part tune consists
of sixteen bars), the parts are repeated to extend the tune and the
tune itself can also be repeated in its entirety.

In both studio recordings and live performances of this mu-
sic type often two or more tunes are concatenated into ‘sets’ to
extend the music even further as shown in Figure 1. For exam-
ple, a piece of music consisting of a two part tune followed by a
three part tune may be played with a musical structure of AAB-
BAABB/AABBCCAABBCC.

While two renditions of the same ’A’ part may be notated
identically, they are rarely performed identically. This is due to
the large presence of musical variation inherent with this music
type. Embellishments introduced by a musician will render two
identical parts as being aurally different.

Despite the considerable presence of musical variation within
this genre, for each tune there are a certain set of notes which
are left unchanged by the musician. These notes are called the
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Figure 2. A block diagram of the proposed approach.

‘set accented tones’ of the tune [9, 17]. In order to avoid the in-
fluence which musical variation has on determining which parts
are equivalent, the ‘set accented tones’ are used to characterise
the music for this approach.

4. PROPOSED APPROACH

4.1 Overview

An approach toward locating tune changes and providing a se-
mantic labelling of sets of Irish Traditional tunes is detailed in
this section. This approach is illustrated in the block diagram
in Figure 2. The locations of the ‘set accented tones’ are deter-
mined using a beat tracker. Following this, chroma vectors are
calculated at the resulting ‘set accented tone’ locations and are
compared to create a part similarity matrix. Kernel matching is
performed on the resulting matrix using unit kernels which rep-
resent the various musical structures present within this genre.
The kernel matching technique presented here provides a solu-
tion to both determining the location of tune changes within a set
and also to assigning a semantic label to each resulting part.

4.2 Beat Tracking and Set Accented Tone Identification

To extract chroma at ‘set accented tone’ locations within the mu-
sic, the locations of the ‘set accented tones’ must be defined.
Within Irish Traditional Music these notes are considered to be
the first note of each beat. Therefore a beat tracker is employed
to determine the location of each beat within the music. The beat
tracker used for this approach is detailed in [6]. The beat tracker
provides the location of each beat of the music along with an
onset detection function which provides the locations of each
note within the music. To encapsulate each ‘set accented tone’
a window is created extending from the start of each beat to the
next detected onset as illustrated in Figure 3. This maximises
the available harmonic information when determining chroma

Figure 3. An onset detection function of one bar of Irish Tra-
ditional music. Each ‘set accented tone’ is located between the
start of the beat and the next detected onset. For each ‘set ac-
cented tone’ a window is created between these two points of
the onset detection function. Chroma is calculated for each re-
sulting window.

values at each ‘set accented tone’ location. Following the cre-
ation of each ‘set accented tone’ window, chroma information is
extracted at each of these locations.

4.3 Chroma Calculation

To create the part similarity matrix detailed in Section 4.6 chroma
must be calculated at each ‘set accented tone’ location. In [10]
results showed that extracting chroma at ‘set accented tone’ lo-
cations provide better structural segmentation results than ex-
tracting a single pitch value. As such, for this approach chroma
will also be used to represent each ‘set accented tone’. Chroma
is a spectral representation of music in which frequencies are
mapped onto a set of 12 chroma values which correspond to the
12 notes of the equal tempered scale [18].

To calculate the chroma a Harmonic Pitch Class Profile (HPCP)
approach is employed [19]. For each ‘set accented tone’ win-
dow (the section denoted as ‘SAT’ in Figure 3), a Short Time
Fourier Transform is applied with a frame length of 2048 sam-
ples. The local maxima contained within each of the resulting
STFT frames are identified using a peak picking algorithm. Fol-
lowing this, the magnitudes of each frequency at each result-
ing peak location are added to the appropriate chroma bin ac-
cording to the note of the musical scale to which the frequency
most closely corresponds. Only frequencies between 130Hz and
3140Hz are considered for this approach as 130Hz is the fre-
quency of the lowest note on a banjo which is the lowest note
likely to be present within an Irish Traditional tune and 3140Hz
is the third harmonic of the highest note of a standard tin whistle,
the highest note likely to be present within an Irish Traditional
tune. This gives an appropriately rich description of the fre-
quency content of a given audio frame. This results in a chroma
vector of twelve elements each containing the amount of each
note which was present in the given ‘set accented tone’ window.

4.4 Part Length Calculation

Following chroma calculation at each ‘set accented tone’ loca-
tion, it is necessary to determine how many ‘set accented tones’
per part there are in the piece of music. This is required in order
to determine the correct groups of chroma vectors to use when
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creating the part similarity matrix in Section 4.5. According to
the Irish Traditional Music heuristics detailed in [9] there can
only be 12, 16 or 24 ‘set accented tones’ per part (SATpp) in an
Irish Traditional tune. Consequently, each of these three con-
ditions are tested and a confidence score is calculated for each
possible SATpp value. Following this, the chroma vectors repre-
senting the ‘set accented tones’ are divided into groups accord-
ing to the SATpp value currently being tested. For example, if
the current SATpp value is equal to 12, the chroma vectors are
divided into groups of 12. The resulting groups of chroma vec-
tors now represent potential parts of a tune. Following this, each
potential part is compared with every other potential part and a
confidence score is calculated based on these part comparisons.
The SATpp value which results in the highest confidence score is
the value used when creating the part similarity matrix in Section
4.5.

Individual chroma vectors are compared using the Euclidean
Distance formula given in Equation (1).

D(v1, v2) =
√

(
12∑

i=1

(v1(i)− v2(i))2) (1)

where v1 and v2 are the two chroma vectors being compared.

Entire parts are compared with one another using Equation
(2). The resulting value S is low if the two parts being compared
are similar, therefore S is a measure of the dis-similarity between
two parts.

S =
∑N−1

n=0 D(v1(n), v2(n))
N

(2)

where N is equal to the SATpp value currently being tested.

Finally, a confidence value C for the SATpp value being tested
is calculated according to Equation (3).

C = 1/

∑M−1
m=0 SSATpp

M
(3)

where M is equal to the total number of part comparisons. The
SATpp value which results in the greatest confidence value C is
the value used to create the part similarity matrix in Section 4.5.

4.5 Part Similarity Matrix

As detailed in Section 4.4, once the number of ‘set accented
tones’ per part has been determined, the part similarity matrix
is created according to this SATpp value. The values of S (cal-
culated in Section 4.4 using Equation (2)) associated with this
particular SATpp value are used to create the part similarity ma-
trix. These values of S indicate the similarity of each part of
length SATpp with every other part of length SATpp within the
music.

Positioning these values into a matrix results in a part similar-
ity matrix of size P by P where P is equal to the total number of
parts within the music. An example of a part similarity matrix is
shown in Figure 5. The part similarity matrix is used along with
unit kernels to determine the structure of the music as described
in Section 4.6.

4.6 Kernel Matching

The following section details how unit kernels are matched with
the part similarity matrix created in Section 4.5. Firstly, the ker-

Figure 4. A unit kernel representing the structure of two tunes.
The first tune represented has a structure of AABBCCAABBCC
the second tune represented has a structure of AABBAABB. Black
represents similar parts and white represents dis-similar parts.

nels that are used for matching are described, along with justifi-
cations for using these particular kernels. The process of how the
unit kernels are matched with the part similarity matrix is then
detailed.

Kernel matching relies on the availability of pre-existing unit
kernels which each represent a specific musical structure. A unit
kernel is a matrix consisting of ones and zeros which represent
the pattern of a musical structure. A total of 24 unit kernels
which represent a single tune are used here. Kernels representing
the structure of more than a single tune are created by combining
the kernels which represent a single tune. An example of a two-
tune kernel is shown in Figure 4. There are 24 kernels used to
represent the possible structures of one tune. As such combining
each one-tune kernel with every other one-tune kernel results
in 576 possible combinations for a two-tune kernel. The unit
kernels represent the musical structures which are most common
within Irish Traditional Music.

The kernels that are used limit the number of possible parts
per tune to four. According to [15], tunes containing two, three
and four parts make up 97% of the volume of tunes within this
genre. Both one-tune kernels and two-tune kernels are utilised
to give a total number of kernels of 600. The unit kernels are
correlated with sections of the part similarity matrix as illustrated
in Figure 5. The kernel which yields the highest matching value
is the kernel which represents the most likely musical structure
present within the given section of the part similarity matrix. The
following steps describe the kernel matching technique:

1. At location (i,i) of the part similarity matrix, each K x K
unit kernel is matched with a K x K section of the part
similarity matrix using inner matrix multiplication. For
the first iteration only, i = 1.

2. The kernel which results in the highest match value is
deemed to represent the structure of that section of the part
similarity matrix.

3. The value i is updated to be (i + K) where K is equal to
the length of the kernel in step 2.

4. Steps 1-3 are repeated until the entire part similarity ma-
trix has been processed.

The outcome of this kernel matching as outlined in Figure 2
is the location of each tune change within the set of Irish Tradi-
tional tunes along with a semantic label for each resulting part.

132

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 5. The section of a part similarity matrix with which a
unit kernel is correlated. Each cell of the part similarity matrix
corresponds to a part of an Irish Traditional tune. This section
of the part similarity matrix is correlated with each unit kernel.
The unit kernel which results in the highest matching value cor-
responds to the structure of this section of the part similarity
matrix.

The semantic part labels are represented by the concatenation of
the descriptions of the unit kernels which were matched to each
tune. The locations of each tune change are determined by the
beat locations of the start of each successfully matched unit ker-
nel. Results for the approach which has been presented here are
detailed in Section 5.

5. RESULTS

The evaluation of this approach was carried out on a hand an-
notated database of 30 sets of Irish Traditional music. These 30
musical pieces consist of 75 separate Irish traditional tunes with
34 tune changes and a total of 589 parts. The results of detect-
ing the location of tune changes and determining labels for each
structural segment were calculated separately. A tune change lo-
cation was considered correct if the automatically detected tune
change locations were within 1 second of the hand annotated
tune change locations. Table 1 details the results of labelling the
parts of the music and also details the results of locating tune
changes within the music. In Table 1, N is equal to the number
of annotations, GP is equal to Good Positives, FP is equal to
False Positives and FN is equal to False Negatives. Results were
calculated using three different measures, precision, recall and
accuracy. These three measures are defined by Equations (4),
(5) and (6).

Precision =
GP

GP + FP
(4)

Recall =
GP

GP + FN
(5)

Accuracy =
N − FP − FN

N
(6)

The results show that the approach can label the parts con-
tained in a piece of Irish Traditional Music with an accuracy of
86% along with a precision value of 90% and a recall value of

N GP FP FN Prec Rec Acc
Part

Labels
589 479 51 31 90% 94% 86%

Tune
Change

Locations
34 24 7 6 77% 80% 62%

Table 1. Results of the part labelling and locating tune changes
produced by the presented approach.

Tolerance Prec Rec
1 second 69.7% 64.79%
2 seconds 87% 81%

Table 2. Results of the approach presented in [3] and [4] toward
locating tune changes within a set of Irish Traditional tunes.

94%. Additionally, this approach can correctly identify the loca-
tion of tune changes within a set of Irish Traditional tunes with
an accuracy of 62% along with a precision value of 77% and a
recall value of 80%.

The accuracy value is higher for labelling parts than for de-
tecting tune changes. This is because even when a tune change
is not accurately detected, the algorithm may still correctly iden-
tify subsequent parts contained within the music. This is due
to many kernels having common part locations. The high recall
values should be noted, this indicates that the algorithm detects
most tune changes present in the music.

An approach is presented in [4] which also attempts to cal-
culate the tune change locations within sets of Irish Traditional
music. In [4] a tune change location is considered to be correct
if the automatically generated tune change locations are within 2
seconds of the equivalent hand annotated tune change locations.
The approach presented in [4] is detailed further in [3] where re-
sults are also provided for a tolerance of 1 second. The results
of detecting tune change locations as detailed in [3] and [4] can
be seen in Table 2 for a tolerance window of both 1 second and
2 seconds. The results detailed in Table 1 were obtained from
testing on the same database used in [3].

When detecting tune changes within a set the approach de-
tailed in [3] claims a precision value of 69.7% and a recall value
of 64.79% for a tolerance of 1 second. The approach presented
in Section 4 has improved these values by 7.3% and 15.21% re-
spectively and also does not require the database of Irish Tradi-
tional tunes which is utilised in [3]. In [3], to correctly detect the
tune changes within a set of Irish Traditional tunes, each tune in
the set must also be in a pre-existing database of tunes.

6. CONCLUSIONS

This paper presented an approach toward locating tune changes
and providing a semantic labelling of sets of Irish Traditional
tunes. This music type consists of sets of tunes, the tunes them-
selves are made up of parts. This approach utilised certain notes
within the music which remain constant despite the presence of
musical variation. Chroma was extracted at these specific note
locations and was compared to create a part similarity matrix.
Unit kernels representing common structures present within Irish
Traditional Music were then matched with sections of the part
similarity matrix. The unit kernel which resulted in the high-
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est match value corresponds to the structure of the music at the
given location within the part similarity matrix.

Using chroma at the ‘set accented tone’ locations within the
music significantly reduces the amount of data required to pro-
duce a structural segmentation. This reduced representation of
the music also filters out musical variation which can affect the
process of determining which parts are equivalent. The approach
presented here was tested on a database of 30 sets of Irish Tra-
ditional tunes. The results of the approach presented here were
compared with a similar approach toward detecting tune change
locations within a set of Irish Traditional tunes by testing on the
same database of Irish Traditional music. When a tolerance of
1 second between automatically detected tune changes and hand
annotated tune changes is used, the approach presented here per-
forms significantly better than a previous approach toward the
same goal. For this approach, increasing the tolerance window
will not result in an increase in performance as tune change lo-
cation times are calculated using part locations and are not cal-
culated on a scale which is sensitive to increments of less than
the length of a part.

The approach presented in this paper relies on correctly calcu-
lating the amount of ‘set accented tones’ per part (SATpp). If this
value is calculated incorrectly, the resulting part similarity ma-
trix will not accurately reflect the parts which are present within
the set of Irish Traditional tunes. Consequently, it would not
be possible to identify the correct tune change locations or de-
termine the correct semantic part labelling. This approach also
relies on the accuracy of the beat tracker in order to correctly
identify the ‘set accented tone’ locations.

Future work will aim to combine the approach presented here
with the approach presented in [4] to identify tune change loca-
tions within a set. Firstly, the method detailed in [4] would be
used to determine the tune change locations. If there are tunes
present within a set that are not present within the pre-existing
database used in [4] the tune change locations cannot be calcu-
lated using this method. In this case, the approach presented in
Section 4 would be used as an alternative, as there is no pre-
existing knowledge required of the particular tunes within the
set for this approach.
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[15] Donncha Seán Ó’Maidı́n. A Programmer’s Environment for
Music Analysis. PhD thesis, University College Cork, 1995.

[16] Bee Suan Ong and Perfecto Herrera. Semantic segmentation
of music audio contents. In International Computer Music
Conference, Barcelona, Spain, 2005.

[17] Mı́cháel Ó’Súilleabháin. Innovation and Tradition in the
Music of Tommie Potts. PhD thesis, Queen’s University,
1987.

[18] Steffen Pauws. Musical key extraction from audio. In In-
ternational Conference on Music Information Retrievals,
Barcelona, Spain, 2004.

[19] Joan Serra, Emilia Gomez, Perfecto Herrera, and Xavier
Serra. Chroma binary similarity and local alignment applied
to cover song identification. IEEE Transactions on Audio,
Speech, and Language Processing, 2008.

[20] Chris Walshaw. Abc notation - an introduction,
http://abcnotation.com/. Accessed March 2010.

[21] Yibin Zhang and Jie Zhou. Audio segmentation based on
multi-scale audio classification. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, Mon-
treal, Quebec, Canada, 2004.

134

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



APPROXIMATE NOTE TRANSCRIPTION FOR THE IMPROVED
IDENTIFICATION OF DIFFICULT CHORDS

Matthias Mauch and Simon Dixon
Queen Mary University of London, Centre for Digital Music

{matthias.mauch,simon.dixon}@elec.qmul.ac.uk

ABSTRACT

The automatic detection and transcription of musical
chords from audio is an established music computing task.
The choice of chord profiles and higher-level time-series
modelling have received a lot of attention, resulting in
methods with an overall performance of more than 70% in
the MIREX Chord Detection task 2009. Research on the
front end of chord transcription algorithms has often con-
centrated on finding good chord templates to fit the chroma
features. In this paper we reverse this approach and seek
to find chroma features that are more suitable for usage in
a musically-motivated model. We do so by performing a
prior approximate transcription using an existing technique
to solve non-negative least squares problems (NNLS). The
resulting NNLS chroma features are tested by using them
as an input to an existing state-of-the-art high-level model
for chord transcription. We achieve very good results of
80% accuracy using the song collection and metric of the
2009 MIREX Chord Detection tasks. This is a significant
increase over the top result (74%) in MIREX 2009. The na-
ture of some chords makes their identification particularly
susceptible to confusion between fundamental frequency
and partials. We show that the recognition of these diffcult
chords in particular is substantially improved by the prior
approximate transcription using NNLS.

Keywords: chromagram, chord extraction, chord de-
tection, transcription, non-negative least squares (NNLS).

1. INTRODUCTION

Chords are not only of theoretical interest for the under-
standing of Western music. Their practical relevance lies
in the fact that they can be used for music classification,
indexing and retrieval [2] and also directly as playing in-
structions for jazz and pop musicians. Automatic chord
transcription from audio has been the subject of tens of
research papers over the past few years. The methods usu-
ally rely on the low-level feature called chroma, which is a
mapping of the spectrum to the twelve pitch classes C,...,B,
in which the pitch height information is discarded. Never-
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theless, this feature is often sufficient to recognise chords
because chord labels themselves remain the same whatever
octave the constituent notes are played in. An exception is
the lowest note in a chord, the bass note, whose identity
is indeed notated in chord labels. Some research papers
have taken advantage of the additional information con-
veyed by the bass note by introducing special bass chro-
magrams [18, 12] or prior bass note detection [21].

There is much scope in developing musical models to
infer the most likely chord sequence from the chroma fea-
tures. Many approaches use models of metric position
[16], the musical key [8, 21], or combinations thereof [12],
as well as musical structure [13], to increase the accuracy
of the chord transcription. Although in this work we will
also use such a high-level model, our main concern will be
the low-level front end.

Many previous approaches to chord transcription have
focussed on finding a set of chord profiles, each chord pro-
file being a certain chroma pattern that describes best the
chroma vectors arising while the chord is played. It usu-
ally includes the imperfections introduced into the chro-
magram by the upper partials of played notes. The shape
of each pattern is either theoretically motivated (e.g. [15])
or learned, usually using (semi-) supervised learning (e.g.
[8, 9]). A few approaches to key and chord recogni-
tion also emphasise the fundamental frequency compo-
nent before producing the chromagrams [5, 18] or use a
greedy transcription step to improve the correlation of the
chroma with true fundamental frequencies [19]. Emphasis-
ing fundamental frequencies before mapping the spectrum
to chroma is preferable because here all spectral informa-
tion can be used to determine the fundamental frequencies
– before discarding the octave information.

However, in order to determine the note activation, the
mentioned approaches use relatively simple one-step trans-
forms, a basic form of approximate transcription. A dif-
ferent class of approaches to approximate transcription as-
sumes a more realistic linear generative model in which the
spectrum (or a log-frequency spectrum) Y is considered to
be approximately represented by a linear combination of
note profiles in a dictionary matrix E, weighted by the ac-
tivation vector x, with x ≥ 0:

Y ≈ Ex (1)

This model conforms with our physical understanding of
how amplitudes of simultaneously played sounds add up 1 .

1 Like the one-step transforms, the model assumes the absence of si-
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Approaches to finding the activation vector x in (1) dif-
fer from the one-step transforms in that they involve it-
erative re-weighting of the note activation values [1]. To
our knowledge, such a procedure has not been used to
generate chromagrams or otherwise conduct further auto-
matic harmony analysis. Unlike traditional transcription
approaches, we are not directly interested in note events,
and the sparsity constraints required in [1] need not be
taken into account. This allows us to use a standard proce-
dure called non-negative least squares (NNLS), as will be
explained in Section 2.

The motivation for this is the observation that the par-
tials of the notes played in chords compromise the correct
recognition of chords. The bass note in particular usually
has overtones at frequencies where other notes have their
fundamental frequencies. Interestingly, for the most com-
mon chord type in Western music, the major chord (in root
position), this does not pose a serious problem, because the
frequencies of the first six partials of the bass note coincide
with the chord notes: for example, a C major chord (con-
sisting of C, E and G) in root position has the bass note C,
whose fist six partials coincide with frequencies at pitches
C, C, G, C, E, G. Hence, using a simple spectral mapping
works well for major chords. But even just considering the
first inversion of the C major chord (which means that now
E is the the bass note), leads to a dramatically different sit-
uation: the bass note’s first six partials coincide with E, E,
B, E, G], B – of which B and G] are definitely not part of
the C major triad. Of course, the problem does not only
apply to the bass note, but to all chord notes 2 .

This is a problem that can be eliminated by a perfect
prior transcription because no partials would interfere with
the signal. Section 2 focusses mainly on describing our ap-
proach to an approximate transcription using NNLS, and
also gives an outline of the high-level model we use. In
Section 3 we demonstrate that the problem does indeed
exist and show that the transcription capabilities of the
NNLS algorithm can improve the recognition of the af-
fected chords. We give a brief discussion of more general
implications and future work in Section 4, before present-
ing our conclusions in Section 5.

2. METHOD

This section is concerned with the technical details of
our method. Most importantly, we propose the use of
NNLS-based approximate note transcription, prior to the
chroma mapping, for improved chord recognition. We
call the resulting chroma feature NNLS chroma. To ob-
tain these chroma representations, we first calculate a
log-frequency spectrogram (Subsection 2.2), pre-process
it (Subsection 2.3) and perform approximate transcrip-
tion using the NNLS algorithm (Subsection 2.4). This
transcription is then wrapped to chromagrams and beat-
synchronised (Section 2.5). Firstly, however, let us briefly
consider the high-level musical model which takes as input

nusoid cancellation.
2 For example, a major third will create some energy at the major 7th

through its third partial.

metric pos.

key

chord

bass

bass chroma

treble chroma

Mi−1

Ki−1

Ci−1

Bi−1

Xbs
i−1

Xtr
i−1

Mi

Ki

Ci

Bi

Xbs
i

Xtr
i

1

Figure 1: High-level dynamic Bayesian network, repre-
sented as two slices corresponding to two generic consecu-
tive beats. Random variables are shown as nodes, of which
those shaded grey are observed, and the arrows represent
direct dependencies (inter-slice arrows are dashed).

the chroma features, and which we use to test the effect of
different chromagrams on chord transcription accuracy.

2.1 High-level Probabilistic Model

We use a modification of a dynamic Bayesian network
(DBN) for chord recognition proposed in [10], which in-
tegrates in a single probabilistic model the hidden states
of metric position, key, chord, and bass note, as well as
two observed variables: chroma and bass chroma. It is an
expert model whose structure is motivated by musical con-
siderations; for example, it enables to model the tendency
of the bass note to be present on the first beat of a chord,
and the tendency of the chord to change on a strong beat.
The chord node distinguishes 121 different states: 12 for
each of 10 chord types (major, minor, major in first inver-
sion, major in second inversion, major 6th, dominant 7th,
major 7th, minor 7th, diminished and augmented) and one
“no chord” state. With respect to the original method, we
have made some slight changes in the no chord model and
the metric position model 3 . The DBN is implemented us-
ing Murphy’s BNT Toolbox [14], and we infer the jointly
most likely state sequence in the Viterbi sense.

2.2 Log-frequency Spectrum

We use the discrete Fourier transform with a frame length
of 4096 samples on audio downsampled to 11025 Hz. The
DFT length is the shortest that can resolve a full tone in the
bass region around MIDI note 44 4 , while using a Ham-

3 The no chord model has been modified by halving the means of the
multivariate Gaussian used to model its chroma, and the metric position
model is now fully connected, i.e. the same low probability of 0.0167 is
assigned to missing 1, 2 or three beats.

4 Smaller musical intervals in the bass region occur extremely rarely.
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ming window. We generate a spectrogram with a hop size
of 2048 frames (≈0.05s).

We map the magnitude spectrum onto bins whose cen-
tres are linearly-spaced in log frequency, i.e. they corre-
spond to pitch (e.g. [17]), with bins spaced a third of a
semitone apart. The mapping is effectuated using cosine
interpolation on both the linear and logarithmic scales:
first, the DFT spectrum is upsampled to a highly over-
sampled frequency representation, and then this intermedi-
ate representation is mapped to the desired log-frequency
representation. The two operations can be performed as
a single matrix multiplication. This calculation is done
separately on all frames of a spectrogram, yielding a log-
frequency spectrogram Y = (Yk,m).

Assuming equal temperament, the global tuning of the
piece is now estimated from the spectrogram. Rather than
adjusting the dictionary matrix we then update the log-
frequency spectrogram via linear interpolation, such that
the centre bin of every semitone corresponds to the cor-
rect frequency with respect to the estimated tuning [10].
The updated log-frequency spectrogram Y has 256 1/3 -
semitone bins (about 7 octaves), and is hence much smaller
than the original spectrogram. The reduced size enables us
to model it efficiently as a sum of idealised notes, as will
be explained in Subsection 2.4.

2.3 Pre-processing the Log-frequency Spectrum

We use three different kinds of pre-processing on the log-
frequency spectrum:

o : original – no pre-processing,

sub : subtraction of the background spectrum [3], and

std : standardisation: subtraction of the background spec-
trum and division by the running standard deviation.

To estimate the background spectrum we use the running
mean µk,m, which is the mean of a Hamming-windowed,
octave-wide neighbourhood (from bin k − 18 to k + 18).
The values at the edges of the spectrogram, where the full
window is not available, are set to the value at the closest
bin that is covered. Then, µk,m is subtracted from Yk,m,
and negative values are discarded (method sub). Addition-
ally dividing by the respective running standard deviation
σk,m, leads to a running standardisation (method std). This
is similar to spectral whitening (e.g. [6]) and serves to dis-
card timbre information. The resulting log-frequency spec-
trum of both pre-processing methods can be calculated as

Y ρk,m =

{
Yk,m−µk,m

σρk,m
if Yk,m − µk,m > 0

0 otherwise,
(2)

where ρ = 0 or ρ = 1 for the cases sub and std, respec-
tively.

2.4 Note Dictionary and Non-Negative Least Squares

In order to decompose a log-frequency spectral frame into
the notes it has been generated from, we need two basic in-

gredients: a note dictionaryE, describing the assumed pro-
file of (idealised) notes, and an inference procedure to de-
termine the note activation patterns that result in the closest
match to the spectral frame.

We generate a dictionary of idealised note profiles in the
log-frequency domain using a model with geometrically
declining overtone amplitudes [5],

ak = sk−1 (3)

where the parameter s ∈ (0, 1) influences the spectral
shape: the smaller the value of s, the weaker the higher
partials. Gomez [5] favours the parameter s = 0.6 for her
chroma generation, in [13] s = 0.9 was used. We will test
both possibilities, and add a third possibility, where s is
linearly spaced (LS) between s = 0.9 for the lowest note
and s = 0.6 for the highest note. This is motivated by the
fact that resonant frequencies of musical instruments are
fixed, and hence partials of notes with higher fundamental
frequency are less likely to correspond to a resonance. In
each of the three cases, we create tone patterns over seven
octaves, with twelve tones per octave: a set of 84 tone pro-
files. The fundamental frequencies of these tones range
from A0 (at 27.5 Hz) to G]6 (at approximately 3322 Hz).
Every note profile is normalised such that the sum over all
the bins equals unity. Together they form a matrix E, in
which every column corresponds to one tone.

We assume now that—like in Eqn. (1)—the individual
frames of the log-frequency spectrogram Y are generated
approximately as a linear combination Y·,m ≈ Ex of the
84 tone profiles. The problem is to find a tone activation
pattern x that minimises the Euclidian distance

||Y·,m − Ex|| (4)

between the linear combination and the data, with the con-
straint x ≥ 0, i.e. all activations must be non-negative.
This is a well-known mathematical problem called the non-
negative least squares (NNLS) problem. Lawson and Han-
son [7] have proposed an algorithm to find a solution, and
since (in our case) the matrix E has full rank and more
rows than columns, the solution is also unique. We use
MATLAB’s implementation of this algorithm. Again, all
frames are processed separately, and we finally obtain an
NNLS transcription spectrum S in which every column
corresponds to one audio frame, and every row to one
semitone. Alternatively, we can choose to omit the approx-
imate transcription step and copy the centre bin of every
semitone in Y to the corresponding bin of S [17].

2.5 Chroma, Bass Chroma and Beat-synchronisation

The DBN we use to estimate the chord sequence requires
two different kinds of chromagram: one general-purpose
chromagram that covers all pitches, and one bass-specific
chromagram that is restricted to the lower frequencies. We
emphasise the respective regions of the semitone spectrum
by multiplying by the pitch-domain windows shown in
Figure 2, and then map to the twelve pitch classes by sum-
ming the values of the respective pitches.
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log-freq. NNLS
spectrum no NNLS s = 0.6 s = 0.9 LS

o 38.6 43.9 43.1 47.5
sub 74.5 74.8 71.5 73.8
std 79.0 80.0 76.5 78.6

(a) MIREX metric – correct overlap in %

log-freq. NNLS
spectrum no NNLS s = 0.6 s = 0.9 LS

o 31.0 35.1 33.9 37.4
sub 58.1 58.2 56.1 57.3
std 61.3 62.7 62.0 63.3

(b) metric using all chord types – correct overlap in %

Table 1: Results of the twelve methods in terms of the percentage of correct overlap. Table (a) shows the MIREX metric,
which distinguishes only 24 chords and a “no chord” state, Table (b) is shows a finer metric that distinguishes 120 chords
and a “no chord” state.

20 30 40 50 60 70 80 90 100 110
0

1

MIDI note

fa
ct

or

Figure 2: Profiles applied to the log-frequency spectrum
before the mapping to the main chroma (solid) and bass
chroma (dashed).

Beat-synchronisation is the process of summarising
frame-wise features that occur between two beats. We use
the beat-tracking algorithm developed by Davies [4], and
obtain a single chroma vector for each beat by taking the
median (in the time direction) over all the chroma frames
between two consecutive beat times. This procedure is ap-
plied to both chromagrams, for details refer to [10]. Fi-
nally, each beat-synchronous chroma vector is normalised
by dividing it by its maximum norm. The chromagrams
can now be used as observations in the DBN described in
Section 2.1.

3. EXPERIMENTS AND RESULTS

Our test data collection consists of the 210 songs used
in the 2009 MIREX Chord Detection task, together with
the corresponding ground truth annotations [11]. We run
12 experiments varying two parameters: the preprocessing
type (o, sub or std, see Section 2.3), and the kind of NNLS
setup used (s = 0.6, s = 0.9, LS, or direct chroma map-
ping, see Section 2.4).

3.1 Overall Accuracy

The overall accuracy of the 12 methods in terms of the
percentage of correct overlap

duration of correctly annotated chords
total duration

× 100%

is displayed in Table 1: Table 1a shows results using the
MIREX metric which distinguishes only two chord types
and the “no chord” label, and 1b shows results using a finer

evaluation metric that distinguishes all 121 chord states
that the DBN can model; see also [10, Chapter 4].

When considering the MIREX metric in Table 1a it
is immediately clear that one of the decisive factors has
been the spectral standardisation: all four std methods
clearly outperform the respective analogues with sub pre-
processing or no preprocessing. We performed a 95%
Friedman multiple comparison analysis on the song-wise
results of the std methods: except for the difference be-
tween no NNLS and LS all differences are significant, and
in particular the NNLS method using s = 0.6 significantly
outperforms all other methods, achieving 80% accuracy.
With a p-value of 10−10 in the Friedman test, this is also a
highly significant increase of nearly 6 percentage points
over the 74% accuracy achieved by the highest scoring
method [20] in the 2009 MIREX tasks.

In Table 1b the results are naturally lower, because a
much finer metric is used. Again, the std variants per-
form best, but this time the NNLS chroma with the linearly
spaced s has the edge, with 63% accuracy. (Note that this
is still higher than three of the scores in the MIREX task
evaluated with the MIREX metric.) According to a 95%
Friedman multiple comparison test, the difference between
the methods std-LS and std-0.6 is not significant. However,
both perform significantly better than the method without
NNLS for this evaluation metric which more strongly em-
phasises the correct transcription of difficult chords.

The reason for the very low performance of the o meth-
ods without preprocessing is the updated model of the “no
chord” state in the DBN. As a result, many chords in nois-
ier songs are transcribed as “no chord”. However, this
problem does not arise in the sub and std methods, where
the removal of the background spectrum suppresses the
noise. In these methods the new, more sensitive “no chord”
model enables very good “no chord” detection, as we will
see in the following subsection.

3.2 Performance of Individual Chords

Recall that our main goal, as stated in the introduction, is to
show an improvement in those chords that have the prob-
lem of bass-note induced partials whose frequencies do not
coincide with those of the chord notes. Since these chords
are rare compared to the most frequent chord type, ma-
jor, differences in the mean accuracy are relatively small
(compare the std methods with NNLS, s = 0.6, and with-
out in Table 1a). For a good transcription, however, all
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(b) improvement of std with NNLS chroma (s = 0.6) over baseline
std method.

Figure 3: Percentage of correct overlap of individual chord types.

chords are important, and not only those that are most fre-
quently used. First of all we want to show that the prob-
lem does indeed exist and is likely to be attributed to the
presence of harmonics. As a baseline method we choose
the best-performing method without NNLS chroma (std),
whose performance on individual chords is illustrated in
Figure 3a. As expected, it performs best on major chords,
achieving a recognition rate of 72%. This is rivalled only
by the “no chord” label N (also 72%), and the minor chords
(68%). All other chords perform considerably worse. This
difference in performance may of course have reasons
other than the bass note harmonics, be it an implicit bias in
the model towards simpler chords, or differences in usage
between chords. There is, however, compelling evidence
for attributing lower performance to the bass note partials,
and it can be found in the chords that differ from the major
chord in only one detail: the bass note. These are the major
chord inversions (denoted maj/3, and maj/5): while the
chord model remains the same otherwise, performance for
these chords is around 40 percentage points worse than for
the same chord type in root position.

To find out whether the NNLS methods suffer less from
this phenomenon, we compare the baseline method dis-
cussed above to an NNLS method (std, with the chord dic-
tionary parameter s = 0.6). The results of the compari-
son between the baseline method and this NNLS method
can be seen in Figure 3b. Recognition rates for almost all
chords have improved by a large margin, and we would like
to highlight the fact that the recognition of major chords in
second inversion (maj/5) has increased by 12 percentage
points. Other substantial improvements can be found for
augmented chords (also 12 percentage points), and major
chords in first inversion (9 percentage points). These are all
chords in which even the third harmonic of the bass note
does not coincide with the chord notes (the first two always
do), which further assures us that our hypothesis was cor-
rect. Note that, conversely, the recognition of major chords
has remained almost stable, and only two chords, major
7th and the “no chord” label, show a slight performance
decrease (less than 3 percentage points).

4. DISCUSSION

While the better performance of the difficult chords is eas-
ily explainable by approximate transcription, there is some
scope in researching why the major 7th chord performed
slightly worse in the method using NNLS chroma. Our
hypothesis is that the recognition of the major 7th chord
actually benefits from the presence of partials: not only
does the bass note emphasise the chord notes (as it does in
the plain major chord), but the seventh itself is also empha-
sised by the third harmonic of the third; e.g. in a C major
7th chord (C, E, G, B), the E’s third harmonic would em-
phasise the B. In future work, detailed analyses of which
major 7th chords’ transcriptions change due to approxi-
mate transcription could reveal whether this hypothesis is
true.

Our findings provide evidence to support the intuition
that the information which is lost by mapping the spectrum
to a chroma vector cannot be recovered completely: there-
fore it seems vital to perform note transcription or calculate
a note activation pattern before mapping the spectrum to a
chroma representation (as we did in this paper) or directly
use spectral features as the input to higher-level models,
which ultimately may be the more principled solution.

Of course, our approximate NNLS transcription is only
one way of approaching the problem. However, if an ap-
proximate transcription is known, then chord models and
higher-level musical models can be built that do not mix
the physical properties of the signal (“spectrum given a
note”) and the musical properties (“note given a musical
context”). Since the components of such models will rep-
resent something that actually exists, we expect that train-
ing them will lead to a better fit and eventually to better
performance.

5. CONCLUSIONS

We have presented a new chroma extraction method using
a non-negative least squares (NNLS) algorithm for prior
approximate note transcription. Twelve different chroma
methods were tested for chord transcription accuracy on a
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standard corpus of popular music, using an existing high-
level probabilistic model. The NNLS chroma features
achieved top results of 80% accuracy that significantly ex-
ceed the state of the art by a large margin.

We have shown that the positive influence of the ap-
proximate transcription is particularly strong on chords
whose harmonic structure causes ambiguities, and whose
identification is therefore difficult in approaches without
prior approximate transcription. The identification of these
difficult chord types was substantially increased by up to
twelve percentage points in the methods using NNLS tran-
scription.

6. ACKNOWLEDGEMENTS

This work was funded by the UK Engineering and Physical
Sciences Research Council, grant EP/E017614/1.

7. REFERENCES

[1] S. A. Abdallah and M. D. Plumbley. Polyphonic music
transcription by non-negative sparse coding of power
spectra. In Proceedings of the 5th International Con-
ference on Music Information Retrieval (ISMIR 2004),
2004.

[2] M. Casey, R. Veltkamp, M. Goto, M. Leman,
C. Rhodes, and M. Slaney. Content-Based Music Infor-
mation Retrieval: Current Directions and Future Chal-
lenges. Proceedings of the IEEE, 96(4):668–696, 2008.

[3] B. Catteau, J.-P. Martens, and M. Leman. A proba-
bilistic framework for audio-based tonal key and chord
recognition. In R. Decker and H.-J. Lenz, editors,
Proceedings of the 30th Annual Conference of the
Gesellschaft für Klassifikation, pages 637–644, 2007.

[4] M. E. P. Davies, M. D. Plumbley, and D. Eck. Towards
a musical beat emphasis function. In Proceedings of
the IEEE Workshop on Applications of Signal Process-
ing to Audio and Acoustics (WASPAA 2009), 2009.

[5] E. Gomez. Tonal Description of Audio Music Signals.
PhD thesis, Universitat Pompeu Fabra, Barcelona,
2006.

[6] A. P. Klapuri. Multiple fundamental frequency estima-
tion by summing harmonic amplitudes. In Proceedings
of the 7th International Conference on Music Informa-
tion Retrieval (ISMIR 2006), pages 216–221, 2006.

[7] C. L. Lawson and R. J. Hanson. Solving Least Squares
Problems, chapter 23. Prentice-Hall, 1974.

[8] K. Lee and M. Slaney. Acoustic Chord Transcription
and Key Extraction From Audio Using Key-Dependent
HMMs Trained on Synthesized Audio. IEEE Trans-
actions on Audio, Speech, and Language Processing,
16(2):291–301, February 2008.

[9] N. C. Maddage. Automatic structure detection for pop-
ular music. IEEE Multimedia, 13(1):65–77, 2006.

[10] M. Mauch. Automatic Chord Transcription from Audio
Using Computational Models of Musical Context. PhD
thesis, Queen Mary University of London, 2010.

[11] M. Mauch, C. Cannam, M. Davies, S. Dixon, C. Harte,
S. Kolozali, D. Tidhar, and M. Sandler. OMRAS2
metadata project 2009. In Late-breaking session at the
10th International Conference on Music Information
Retrieval (ISMIR 2009), 2009.

[12] M. Mauch and S. Dixon. Simultaneous estimation of
chords and musical context from audio. to appear in
IEEE Transactions on Audio, Speech, and Language
Processing, 2010.

[13] M. Mauch, K. C. Noland, and S. Dixon. Using musical
structure to enhance automatic chord transcription. In
Proceedings of the 10th International Conference on
Music Information Retrieval (ISMIR 2009), pages 231–
236, 2009.

[14] K. P. Murphy. The Bayes Net Toolbox for Matlab.
Computing Science and Statistics, 33(2):1024–1034,
2001.

[15] L. Oudre, Y. Grenier, and C. Févotte. Template-based
chord recognition: Influence of the chord types. In Pro-
ceedings of the 10th International Society for Music In-
formation Retrieval Conference (ISMIR 2009), pages
153–158, 2009.

[16] H. Papadopoulos and G. Peeters. Simultaneous estima-
tion of chord progression and downbeats from an au-
dio file. In Proceedings of the 2008 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2008), pages 121–124, 2008.

[17] G. Peeters. Chroma-based estimation of musical key
from audio-signal analysis. In Proceedings of the 7th
International Conference on Music Information Re-
trieval (ISMIR 2006), 2006.

[18] M. Ryynänen and A. P. Klapuri. Automatic Transcrip-
tion of Melody, Bass Line, and Chords in Polyphonic
Music. Computer Music Journal, 32(3):72–86, 2008.

[19] M. Varewyck, J. Pauwels, and J.-P. Martens. A novel
chroma representation of polyphonic music based on
multiple pitch tracking techniques. In Proceedings of
the 16th ACM International Conference on Multime-
dia, pages 667–670, 2008.

[20] A. Weller, D. Ellis, and T. Jebara. Structured pre-
diction models for chord transcription of music
audio. In MIREX Submission Abstracts. 2009.
http://www.cs.columbia.edu/˜jebara/papers/

icmla09adrian.pdf.

[21] T. Yoshioka, T. Kitahara, K. Komatani, T. Ogata, and
H. G. Okuno. Automatic chord transcription with con-
current recognition of chord symbols and boundaries.
In Proceedings of the 5th International Conference on
Music Information Retrieval (ISMIR 2004), pages 100–
105, 2004.

140

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



CONCURRENT ESTIMATION OF CHORDS AND KEYS FROM AUDIO

Thomas Rocher, Matthias Robine, Pierre Hanna
LaBRI, University of Bordeaux

351 cours de la Libration
33405 Talence Cedex, France

{rocher,robine,hanna}@labri.fr

Laurent Oudre
Institut TELECOM, TELECOM ParisTech

37-39 rue Dareau
75014 Paris, France

oudre@telecom-paristech.fr

ABSTRACT

This paper proposes a new method for local key and chord
estimation from audio signals. A harmonic content of the
musical piece is first extracted by computing a set of chroma
vectors. Correlation with fixed chord and key templates
then selects a set of key/chord pairs for every frame. A
weighted acyclic harmonic graph is then built with these
pairs as vertices, and the use of a musical distance to weigh
its edges. Finally, the output sequences of chords and keys
are obtained by finding the best path in the graph.

The proposed system allows a mutual and beneficial
chord and key estimation. It is evaluated on a corpus com-
posed of Beatles songs for both the local key estimation
and chord recognition tasks. Results show that it performs
better than state-of-the art chord analysis algorithms while
providing a more complete harmonic analysis.

1. INTRODUCTION

Harmony, like rhythm, melody or timbre, is a central as-
pect of Western music. This paper focuses on chord se-
quences and key changes, which are strong components of
the harmony. Audio chord transcription has been a very
active field for the past recent years. In particular, the in-
creasing popularity of Music Information Retrieval (MIR)
with applications using mid-level tonal features, has estab-
lished chord transcription as useful and challenging task.
Among the numerous chord recognition methods, we can
distinguish four main types of systems. The first ones can
be referred as template-based methods [6, 9, 14], since a
central information they need to perform the transcription
is the definition of the chords they want to detect. Working
just like pattern recognition methods, they choose for ev-
ery frame the chord whose template fits the best the data.
The temporal structure of the song is often captured thanks
to post-processing methods working either on the sequence
of detected chords or on the calculated fitness features.
Other methods rely on musical information (such as rhythm
or musical structure) in order to capture a harmonically
relevant chord transcription. These music-based methods
[2, 12], implicitly or explicitly exploit information from
music theory in the construction of their systems. In partic-
ular, the transitions between chords or the rhythmic struc-
ture are often modeled with parameters reflecting musical
knowledge, by estimating the likelihood of a given chord
being followed by a different chord, for example. Some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

data-driven methods [10, 17], use completely or partially
annotated data in order to build a system which fits the
audio data. In these methods, all the parameters are eval-
uated with training. Finally, some systems merge music-
and data-based approaches in order to build hybrid meth-
ods [15, 16], which combine the use of training data and
music theory knowledge.

All these methods have the opportunity to compare to
each other in the MIREX [4], which is an annual community-
based framework for the evaluation of MIR systems and
algorithms. In 2009, the results for the audio chord detec-
tion were pretty close and the different methods seemed
to compete at the same level of accuracy. The aim of this
to work is to offer a chord estimation with a comparable
level of accuracy, and estimating a sequence of local keys
as well as chords.

Fewer works were achieved to estimate musical keys
from audio, and the vast majority of them only consider
the main key (or global key) of a piece of music [8, 13].
In these works, because only the main key is handled, key
changes are ignored (songs having different local keys are
either ignored or considered to be in the first local key en-
countered). Chai [3] presented one of the few studies on
key change from audio. In this work, local key tracking
was performed by a HMM-based approach, and evaluated
on ten classical piano pieces.

The main contribution of this paper relies in the fact that
both chord and key can benefit from each other’s estima-
tion, as chords bring out information about local key and
vice versa. We present a new system estimating simulta-
neously both chord and key sequences from audio. The
proposed method is both template-based and music-based
and no training is required.

We begin to present our work by describing the system
used for both key and chord estimation in Section 2. Sec-
tion 3 presents the experiments performed to evaluate the
accuracy of the proposed method. Conclusion and future
work follow in Section 4.

2. SYSTEM DESCRIPTION

In this section, we provide the description of the proposed
method, which is adapted for audio from the proposed sys-
tem in [anonymous self-reference]. The overall process is
illustrated in Figure 1. The system works in four major
steps: (1) chroma vectors are computed from audio sig-
nal; (2) a set of harmonic candidates are selected for each
frame (Figure 1(a)); (3) a weighted acyclic graph of har-
monic candidates is built (Figure 1(b)), (4) the dynamic
process takes place (Figure 1(c)) and the final sequence
of chords/keys corresponding to the best path is outputted
(Figure 1(d)).
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An additional step consists in post-filtering the outputted
sequence, to correct some analysis errors remaining.

2.1 Chroma Computation

The input audio file of the analysis system proposed is rep-
resented as sequences of chromas. This mid-level feature
captures the tonal information since it represents the short-
time energy related to each pitch class independently of
octave [5]. Indeed, information about octave is not neces-
sary for chord and key analysis purposes.

2.1.1 Tuning Issues

The chromas are computed on each frame. One of the main
problem when analyzing audio musical piece is the varia-
tion in tuning. All the instruments are not always tuned to
the same value, and this value often varies in time. Two
options are possible. The tuning value may be analyzed,
but tuning analysis assumes a stationarity. We choose to
avoid this analysis by computing chroma on 36 bins and by
shifting chroma at each frame according to possible tuning
variations. This way, two chords played with different tun-
ing result in two different 36 bin chromas, but results in
almost the same 12 bin chroma [5].

2.1.2 Multi-Scale Approach

Instead of relying exclusively on one chromagram (sequence
of chroma vectors over time), the proposed method in-
cludes a set of chromagrams. Each one has its own param-
eters but all share a common multiple hop size, to combine
information at the same times during the piece of music.
These chromagrams bring out different kinds of informa-
tion, and may be subject to different treatments. Longer
chromas may bring out information for key analysis, and
different set of sizes for shorter chromas may fit different
tempos and carry out different information useful for chord
identification.

2.1.3 Filter

In order to reduce the influence of the noise, transients or
sharp edges, we filter the chromagram on several frames [2,
6]. The filtering method used here is the median filtering,
which has been widely used in image processing in order
to correct random errors.

2.2 Selection of Harmonic Candidates

An harmonic candidate is a pair (Ci,Ki), where Ci (resp.
Ki) represents a potential chord (resp. local key) for the
ith frame of audio signal. Ci is then considered as a chord
candidate (among possible others), and Ki as a key candi-
date. This section presents the processes allowing to select
one or several chord/key pairs as harmonic candidate(s),
and discard others.

2.2.1 Chord

The chords studied here are major and minor triads (12
major and 12 minors). Lots of works [6, 9, 14] have used
chord templates to determine the likelihood of each of the
24 chords according to a chroma vector. With 12 dimen-
sional vectors, major/minor triadic chord profile may be
defined like the following:

Major-triad = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)

Minor-triad = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
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Figure 1. (a) Enumeration of harmonic candidates Ci,j

for consecutive audio frames Fi. Ci,j represents the jth
harmonic candidate for frame Fi. Time appears from left
to right. (b) Creation of the edges of a weighted acyclic
graph. An edge is built from each of the first frame’s can-
didates to each of the second frame. (c) Dynamic process
selects an unique path to each candidate of a given frame
(here, frame n). (d) Selection of final path. The final
chord/key sequences is then outputted from the sequence
of chosen harmonic candidates.

142

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



All the major (resp. minor) chord templates can be ob-
tained by rotation of the major (resp. minor) profile.

For each of the 24 chord templates, we compute a cor-
relation score by scalar product. The following details the
correlation C between a chord template T and a 12 dimen-
sional chroma vector V .

CT,V =
12∑

i=1

(T [i].V [i])

The higher the correlation is, the more likely the chord
corresponding to the template is played in the considered
frame. A direct way to get chord candidates is thus by
selecting the chords whose templates get the higher corre-
lation score with the chroma of a given audio frame. In the
multi-scale approach as exposed in Section 2.1.2, it is pos-
sible to consider different highest correlated chords from
different windowed chromas as candidate for the same frame.
The different chord candidates may thus be carrying differ-
ent kind of information.

2.2.2 Key

Key selection is carried out with the same approach as for
chords, but with larger time frame as keys have a larger
time persistence than chords. The key profiles used are
presented in [18]:

Major = (5, 2, 3.5, 2, 4.5, 4, 2, 4.5, 2, 3.5, 1.5, 4)

Minor = (5, 2, 3.5, 4.5, 2, 4, 2, 4.5, 3.5, 2, 1.5, 4)

As for chord candidate computation, the correlation of
each of the 24 keys (12 minors + 12 majors) are computed
using a scalar product between shifted key template and
chroma vectors.

2.2.3 Harmonic candidates

The harmonic candidates finally enumerated are all the pos-
sible combination of previously selected keys and chords.
If n chords and m keys are selected for a given audio
frame, n x m pairs are enumerated. For example, with CM

and Am as selected chords and CM and GM as compat-
ible keys, the harmonic candidates enumerated would be
(CM , CM ), (CM , GM ), (Am, CM ) and (Am, GM ). A dif-
ferent choice can be made, by considering a compatibility
between chords and keys. But an incorrect chord selected
may discard the correct key (and vice versa), because the
two are not compatible. For this reason, adding a compat-
ibility between chords and keys has led to a decrease of
accuracy.

2.3 Weighted Acyclic Harmonic Graph

Once the harmonic candidates are enumerated for two con-
secutive frames, an edge is built from each of the first
frame’s candidates to each of the second frame. This edge
is weighted by a transition cost between the two chord can-
didates. This transition cost must take into account both
the different selected chords, and the different selected lo-
cal keys.

We thus choose to use Lerdahl’s distance [11] as transi-
tion cost. If (Cx,Kx) represents the chord Cx in the key
Kx, Lerdahl defines the transition cost from x = (Cx,Kx)
to y = (Cy,Ky) as follows:

δ(x → y) = i + j + k

where i is the distance between Kx and Ky in the circle
of fifths, j is the distance between Cx and Cy in the circle
of fifths and k is the number of non-common pitch classes
in the basic space of y compared to those in the basic space
of x (see [11] for more details).

The distance thus provides an integer cost from 0 to
13, and is adequate for a transition cost in the proposed
method, since both compatible chords and keys are in-
volved in the cost computation. Nevertheless, this distance
offers a small range of possible values. As we need to
compare different paths between harmonic candidates, this
small range induces a lot of equality scenarios. The Ler-
dahl’s distance is thus slightly modified and the cost be-
tween two consecutive candidate is set to iα + jβ + k,
with i, j and k defined in Section 2.3. We choose α > 1
to discourage immediate transitions between distant keys,
and encourage progressive key changes, since modulations
often involve two keys close to each other in the circle of
fifths. For the same reason with chords, we also choose
β > 1. After experiment, α and β have been set to 1.1 and
1.01.

2.4 Finding the Best Path

Once the graph between all the harmonic candidates is
formed, the best path has to be found. This task is achieved
by dynamic programming [1]. In the graph, from left to
right, only one edge to each harmonic candidate is pre-
served. Several ways to select this edge can be considered.
We choose to preserve the edge minimizing the total sum
of weights along the path leading to each candidate, as il-
lustrated in Figure 1(c). The number of final paths is the
number of harmonic candidates for the last frame. The fi-
nal selected path is the path minimizing its total cost along
its edges. This path is outputted by the program.

2.5 Post-smoothing computation

Among the selected sequence of chord/key, some errors
may still be corrected by applying a post-smoothing treat-
ment. For example, if an instrument (or a singer) plays a
flattened third (Eb) as a blue note, it may induce a mode
error on the selected chord (making Cm as a chord can-
didate and discarding CM for the considered frame). The
outputted chord sequence may thus present several con-
secutive frames analyzed as CM are followed by a single
frame analyzed as Cm, and then by another several CM . A
simple post treatment on the outputted sequence of chords
may resolve this kind of errors.

3. EXPERIMENTS

This section presents the database used for experiments,
the evaluation procedure, and the influence on the different
parameters on the system accuracy. Once the best settings
determined, we compare the system to a state-of-the-art
method for chord estimation, and a direct template-based
method for key estimation.

3.1 Database

As both local key and chord ground truth were needed,
we choose to evaluate the proposed system on the Beat-
les audio discography (174 songs) with a 44100 Hz sam-
pling rate. In this database, the average number of chord
changes by song is 69, with an average of 7.7 different
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chords by song. The average number of different local
keys by song is 1.69. Chords transcriptions were checked
by Christopher Harte and the MIR community, and keys
annotations were provided by the Centre for Digital Mu-
sic (C4DM). Both sets of transcriptions are available at
http://www.isophonics.net.

3.2 Evaluation

In the transcriptions, chords have a root note and a type
which belongs to a vast dictionary [7]. In this paper, we
only focus on the root note (C, C#, D, ..., B) and the mode
(maj/min) of chords. All the ground truth chords of the
database have thus been mapped to min/maj triads. When
the chord has no third and cannot be mapped to a min/maj
triad, only the root note is considered and later compared
to the corresponding estimated root note. Silences and no-
chords (part of a song when no chord is defined) are ig-
nored, as the chord/no-chord detection issue has not yet
been addressed in the proposed system. The other compo-
nents of the evaluation are the same as for the evaluation
led in the 2009 MIREX audio chord detection task 1 . The
audio signal is divided in frames of approximately 100 ms
(4096 audio samples). The estimated chord is compared
for each frame to the ground truth at the time correspond-
ing to the center of the frame. The final score for a song is
the number of frames where estimated chord matches the
ground truth divided by the number of frames analyzed.
For the local key evaluation, the procedure is identical. For
each frame, the estimated key is compared to the ground
truth key at the center of the frame.

3.3 Chord Estimation

Following the multi-scale approach presented in 2.1.2, we
need to use different size of chromas vectors for chord es-
timation. The parameters for the different chroma scales
are the following:

• ”long” chromas: 32768 samples as window length
(approximately 0.8 sec) and 8192 (approximately 0.2
sec) as hop size,

• ”medium” chromas: 8192 samples as window length
(approximately 0.2 sec) and 8192 (approximately 0.2
sec) as hop size,

• ”short” chromas: 4096 samples as window length
(approximately 0.1 sec) and 4096 (approximately 0.1
sec) as hop size.

3.3.1 Influence of Filtering

A first experiment has been carried out on long chromas
to measure the influence of chroma filtering on chord es-
timation. For each frame, we set as chord candidate the
n highest correlated chords with the maj/min chord tem-
plates . Tests go from n = 1 to n = 4. For each value
of n, we compute the ratio of correctness as the number of
frames for which the correct chord is among the selected
candidates over the total number of frames. This ratio rep-
resents the system theoretical maximum accuracy, and is
reached if every correct chord candidate is present in the
final chord sequence outputted. Obviously, the higher the
number of considered chord candidates is, the higher the
chance is for one of them to be the correct chord, and thus
the higher the ratio of correctness is. In the other hand,

1 http://www.music-ir.org/mirex/2009/index.php/
Audio Chord Detection Results

No filtering
Nb. of chord candidates 1 2 3 4

Ratio of correct. (%) 58.3 71.5 78.6 82.9
System (%) 58.3 64.9 64.1 62.2

Filtering
Nb. of chord candidates 1 2 3 4

Ratio of correct. (%) 68.4 79.1 85.5 88.9
System (%) 68.4 70.0 64.3 59.3

Table 1. Percentage of correct chord in harmonic candi-
dates and system output accuracy depending on the num-
ber of candidates and chroma filtering. Best results are
achieved by limiting the number of candidates and filter-
ing chromas.

more chord candidates considered increase the likelihood
of the system to pick a incorrect chord. Finding the bal-
ance between these two parameters is thus a real need. Ta-
ble 1 presents the ratio of correctness and the system score
with or without chroma filtering and for different values
of n (number of chord candidates). Best chroma filtering
setting is achieved by taking into account a window of 9
chromas, centered on the considered chroma.

These first results shows that filtering leads to an im-
provement of the ratio of correctness, from 6% with four
selected candidates (82.9% to 88.9%) to more than 10%
with one (58.3% to 68.4%). Filtering thus seems to correct
some errors due to chroma vectors, by taking into account
information from adjacent frames.

3.3.2 Influence of the Number of Chord Candidates

In Table 1, we notice the drop of the system’s performance
when the number of selected candidates per frame exceeds
two. This can be explained by the close relationship ex-
isting among the highest correlated chord candidate of a
given chroma vector. Indeed, chord templates of two major
and minor chords sharing the same root note often induce
a close correlation score for a given chroma. The same
goes for any couple of chords close to each other in terms
of Lerdahl’s distance. In 80% of the frames, top 2 corre-
lated chord candidate have a distance less or equal to 1 on
the circle of fifths. Considering different candidates from
the same chroma thus does not seem profitable to gain a
maximum system accuracy.

3.3.3 Influence of the Multi-Scale Approach

Since a drop of accuracy is noticed when too many candi-
dates from the same chroma are selected as candidates, we
propose a new approach by considering top correlated can-
didates from different sized chromas. Table 2 presents the
ratio of correctness as well as the system score depending
on the combination of chroma size, and filtering. The gen-
eral idea is to add highest correlated chord candidates from
shorter chromas to the highest chord candidate of a given
long chroma. Tri-candidate means the combination of the
two best candidates from the two adjacent short chromas
centered in a long chroma with the best candidate from
the long chroma. Bi-candidate means the combination of
the best candidate from the medium chroma centered in a
long chroma with the best candidate from the long chroma.
Since top correlated chords of two different sized chroma
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Tri-candidate (1 long and 2 short chromas)
Filtering none long short both

Ratio of correct. (%) 69.8 78.2 76.6 79.1
Distinct chords (av.) 1.86 1.95 1.43 1.36

System (%) 64.5 72.2 71.8 73.7

Bi-candidate (1 long and 1 medium chromas)
Filtering none long medium both

Ratio of correct. (%) 65.1 75.1 73.5 76.7
Distinct chords (av.) 1.38 1.46 1.29 1.23

System (%) 62.8 71.6 70.7 72.8

Table 2. Percentage of correct chord in harmonic candi-
dates and system score depending on the selection of can-
didates from different sized chromagrams. Each time, the
average number of distinct chord candidates is mentioned.
Best results are reached by filtering both long and short
chromagrams, and by combining their information. Tri-
candidate means the two best candidates from the two ad-
jacent short chromas centered in a long chroma with the
best candidate from the long chroma. Bi-candidate means
the best candidates from the medium chroma centered in a
long chroma with the best candidate from the long chroma.

may be identical, we also show the average number of dis-
tinct chord candidates per frame. As for the previous ex-
periment, best filtering is achieved by taking into account
a windows of 9 chromas and centered on the considered
chroma, whatever its length.

Filtering effective in each case. If filtering is applied to
only one scale, the system accuracy and ratio of correct-
ness both benefit a little more of the long chroma filtering
than the short (resp. medium) for the tri-candidate (resp.
bi-candidate). Nevertheless, the best overall filtering effi-
ciency is reached by combining the filter on both chromas
size. Compared to no filter, the double sized-filter leads
to an increase of around 10% for the ratio of correctness
and the system accuracy, both in the tri-candidate and the
bi-candidate cases. The difference between the ratio of cor-
rectness and the system score is less important by consider-
ing candidates from different chromas than by considering
several candidates from the same chroma. With filtering,
this difference is of 5.4% (79.1 - 73.7) for the tri-candidate
configuration and of 2.9% (76.7 - 72.8) for the bi-candidate
(see Table 2), when it is more than 9% (79.1 - 70) with 2
candidates from the same long chromas (see Table 1). A
first way to explain this improvement is by considering the
decrease of average number of distinct chord candidates,
which is always lesser than 2 in both tri-candidate and bi-
candidate configuration. This decrease means fewer chord
candidates to consider for the system, thus decreasing the
likelihood to select an incorrect chord.

Maximum accuracy is reached with tri-candidate con-
figuration, with a system accuracy of 73.7%.

3.3.4 Post-Smoothing Treatment

We decide to apply a post-smoothing treatment to the out-
put of the system with the best settings, which performs
a 73.7% accuracy (see Table 2). The post-smoothing filter
looks for output chord sequence in the form of ...AABAA...
(resp. ...AAABCAAA...) and corrects it in ...AAAAA...
(resp. ...AAAAAAAA...). By applying the post-smoothing

Method Root Root and Mode
OGF2 (%) 78.9 72.3

Proposed System (%) 77.9 74.9

Table 3. Comparison of the proposed method with the
OGF2 method, which scored 1st (resp 2nd) in the 2009
MIREX Audio Chord Detection ”root estimation” task
(resp. root and mode task).

treatment with the system best previous settings, chord de-
tection reaches a 74.9% accuracy.

3.3.5 Comparison to a state-of-the-art Method

We compare the best configuration of our system to one of
the best methods of the 2009 MIREX Audio Chord Esti-
mation task, evaluated on the same database with the same
evaluation procedure. The comparison is made with the
OGF2 method, proposed by Oudre et al. Results are shown
in Table 3. On the root estimation only, OGF2 is 1% more
accurate than the proposed method (78.9% compared to
77.9%). On the root and mode estimation, the proposed
system performs better than the OGF2 method and im-
proves by almost 3% the accuracy of the detected chords
(74.9% compared to 72.3%). This comparison shows that
the proposed method is comparable, and maybe even more
accurate than one of the best methods presented at the 2009
MIREX when it comes to chord estimation, and compares
the local key sequence as well as the chord sequence.

3.4 Local Key Estimation

Key estimation is performed on the same database than for
chord estimation. We compare the key sequence output
of the proposed system to a direct template-based method
(DTBM). The same settings are used for the two compared
methods, as we wish to evaluate the system’s contribution.
The window size is set to 30 sec approximately. For the
proposed method, the number of key candidates per frame
is set to 3. Results, shown in Table 4, detail the estimated
key error made by the two compared method, by presenting
relative and neighbor errors as well as correct key accuracy.
Relative keys share the same key signature (for example,
CM and Am are relative keys of each other). A neighbor
key differs from the original key by an accidental. Each
key has two neighbors (for instance, CM has FM and GM

as neighbors).
The system performs better than the DTBM method by

estimating more correct keys (62.4% compared to 57.6%).
Moreover, the number of errors due to non related key (dif-
ferent from neighbor or relative) is less important when the
analysis is performed by the system (17.3% compared to
21.9%).

3.5 Reciprocal Benefit of Simultaneous Estimation

We present here an evaluation to measure the reciprocal in-
fluence of the chord and key simultaneous estimation. We
compared the proposed system, which takes into account
harmonic candidates (i.e. pairs of chord AND key candi-
dates), to the same system with only chord OR key can-
didates. When only chord (resp.) are considered, the dis-
tance used to weigh edges in the harmonic graph is edited
to take only chord (resp. key) into account. Results are
shown in Table 5.
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Key estimation Correct Rel. Nei. Oth.
System (%) 62.4 2.9 17.4 17.3
DTBM (%) 57.6 1.6 18.9 21.9

Table 4. DTBM: Direct Template-Based Method. Keys
scores are shown in % and are split among possible errors:
correct keys, relative keys (Rel.), neighbor keys (Nei.) and
others (Oth.). The system performs the highest accuracy in
terms of correct key detected. The number of due to non
related keys is also less important with the system analysis
than with the DTBM.

Harmonic Chord Key Both
Candidate C • • K C K

System (%) 73.1 • • 57.8 74.9 62.4

Table 5. System accuracy considering (chord,key), only
chord and only key as harmonic candidates. The system
performs better in chord and key estimation when taking
into account both information simultaneously.

We note that both key and chord estimation are bet-
ter when the harmonic candidate is the (chord,key) pair.
Chord estimation accuracy drops of almost 2% (74.9 com-
pared to 73.1) and key estimation accuracy drops of almost
5% (62.4 compared to 57.8).

4. CONCLUSION AND FUTURE WORK

This paper presents a new method for chord and local key
estimation where the analysis of chord sequence and key
changes are performed simultaneously. A multi-scale ap-
proach for chroma vectors is proposed, and we show an
increase in accuracy when the chords are selected from dif-
ferent sized chromas. While the key estimation performs
better than a direct template-based method, the chord ac-
curacy shows better results than a state-of-the-art method.

Future work will involve analysis of different chord types,
silence and no-chord detection as well weighing the har-
monic graph of the proposed method in a probabilistic ap-
proach. Applications for MIR using both local key and
chord information are also studied. For example, harmonic
information may be helpful for estimating the musical struc-
ture of pieces since changes of local key generally occur
at the beginning of new patterns. Furthermore, we aim at
investigating the possible improvements induced by a re-
trieval system based on all the harmonic information, com-
pared to existing systems that only consider chord progres-
sions.

5. REFERENCES

[1] R. Bellman. Dynamic Programming. Princeton Univer-
sity Press, 1957.

[2] J.P. Bello and J. Pickens. A robust mid-level represen-
tation for harmonic content in music signals. In Proc.
of the International Symposium on Music Information
Retrieval (ISMIR), pages 304–311, London, UK, 2005.

[3] W. Chai and B. Vercoe. Detection of key change in
classical piano music. In Proc. of the International
Symposium on Music Information Retrieval (ISMIR),
pages 468–473, London, UK, 2005.

[4] J. Stephen Downie. The music information retrieval
evaluation exchange (2005–2007): A window into mu-
sic information retrieval research. Acoustical Science
and Technology, 29(4):247–255, 2008.
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ABSTRACT

Music listeners often mishear the lyrics to unfamiliar
songs heard from public sources, such as the radio. Since
standard text search engines will find few relevant results
when they are entered as a query, these misheard lyrics
require phonetic pattern matching techniques to identify
the song. We introduce a probabilistic model of mishear-
ing trained on examples of actual misheard lyrics, and
develop a phoneme similarity scoring matrix based on
this model. We compare this scoring method to simpler
pattern matching algorithms on the task of finding the
correct lyric from a collection given a misheard query. The
probabilistic method significantly outperforms all other
methods, finding 5-8% more correct lyrics within the first
five hits than the previous best method.

1. INTRODUCTION

Though most Music Information Research (MIR) work
on music query and song identification is driven by audio
similarity methods, users often use lyrics to determine the
artist and title of a particular song, such as one they have
heard on the radio. A common problem occurs when the
listener either mishears or misremembers the lyrics of the
song, resulting in a query that sounds similar to, but is not
the same as, the actual words in the song she wants to find.

Furthermore, entering such a misheard lyric query into
a search engine often results in many practically identical
hits caused by various lyric sites having the exact same ver-
sions of songs. For example, a Google search for “Don’t
walk on guns, burn your friends” (a mishearing of the line
“Load up on guns and bring your friends” from Nirvana’s
“Smells Like Teen Spirit”) gets numerous hits to “Shotgun
Blues” by Guns N’ Roses (Figure 1). A more useful search
result would give a ranked list of possible matches to the
input query, based on some measure of similarity between
the query and text in the songs returned. This goal suggests
a similarity scoring measure for speech sounds: which po-
tential target lyrics provide the best matches to a misheard

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c⃝ 2010 International Society for Music Information Retrieval.

Figure 1. Search for misheard lyrics from “Smells Like
Teen Spirit” returning results for Guns N’ Roses.

lyric query?
The misheard lyric phenomenon has been recognized

for quite some time. Sylvia Wright coined the autological
term “Mondegreen” in a 1954 essay. This name refers to
the lyric “They hae slain the Earl O’ Moray / And laid him
on the green,” misheard to include the murder of one Lady
Mondegreen as well [1]. However, the problem has only
recently been tackled in the MIR community.

Ring and Uitenbogerd [2] compared different pattern-
matching techniques to find the correct target lyric in a
collection given a misheard lyric query. They found that
a method based on aligning syllable onsets performed the
best at this task, but the increase in performance over sim-
pler methods was not statistically significant. Xu et al. [3]
developed an acoustic distance metric based on phoneme
confusion errors made by a computer speech recognizer.
Using this scoring scheme provided a slight improvement
over phoneme edit distance; both phonetic methods signif-
icantly outperformed a standard text search engine.

In this paper, we describe a probabilistic model of
mishearing based on phonetic confusion data derived
from pairs of actual misheard and correct lyrics found
on misheard lyrics websites. For any pair of phonemes
a and b, this model produces a log-odds score giving the
likelihood of a being (mis)heard as b. We replicate Ring
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and Uitenbogerd’s experiments using this model, as well
as phonetic edit distance as described in Xu et al.’s work,
on misheard lyric queries from the misheard lyrics site
KissThisGuy.com. Our statistical method significantly
outperforms all other techniques, and finds up to 8% more
correct lyrics than phonetic edit distance.

2. RELATED WORK

Ring and Uitenbogerd [2] compared three different
pattern-matching techniques for finding the correct lyrics
or matches judged to be relevant given a misheard lyric
query. The first is a simple Levenshtein edit distance per-
formed on the unmodified text of the lyrics. The second,
Editex, groups classes of similar-sounding letters together
and does not penalize substitutions of characters within
the same class as much as ones not in the same class.

The third algorithm is a modified version of Syllable
Alignment Pattern Searching they call SAPS-L [4]. In this
method, the text is first transcribed phonetically using a
set of simple text-to-phoneme rules based on the surround-
ing characters of any letter. It is then parsed into sylla-
bles, with priority given to consonants starting syllables
(onsets). Pattern matching is performed by local align-
ment where matching syllable onset characters receive a
score of +6, mismatching onsets score -2, and other char-
acters score +1 for matches and -1 for mismatches. On-
sets paired with non-onset characters score -4, encouraging
the algorithm to produce alignments in which syllables are
matched before individual phonemes. SAPS is especially
promising since it is consistent with psychological models
of word recognition in which segmentation attempts are
made at the onsets of strong syllables [5].

They found that the phonetic based methods, Editex and
SAPS-L, did not outperform the simple edit distance for
finding all lyrics judged by assessors to sound similar to
a given query misheard lyric but SAPS-L most accurately
determined its single correct match. However, due to the
size of the test set of misheard lyric queries, they did not
establish statistical significance for these results.

In a similar work, Xu et al. [3] first performed an
analysis of over 1000 lyric queries from Japanese question
and answer websites and determined that 19% of these
queries contained misheard lyrics. They then developed an
acoustic distance based on phoneme confusion to model
the similarity of misheard lyrics to their correct versions.
This metric was built by training a speech recognition
engine on phonetically balanced Japanese telephone con-
versations and counting the number of phonemes confused
for others by the speech recognizer. They then evaluated
different search methods to determine the correct lyric in
a corpus of Japanese and English songs given the query
misheard lyrics. Phonetic pattern matching methods sig-
nificantly outperformed Lucene, a standard text search
engine. However, their acoustic distance metric only
found 2-4% more correct lyrics than a simpler phoneme
edit distance, perhaps due to its basis on machine speech
recognition. They also implemented an indexed version of
the search which reduced the running time by over 85%

with less than 5% loss of accuracy.

3. METHOD

3.1 A Scoring Approach

Similar to our method for identifying rhymes in rap
lyrics [6], we use a model inspired by protein homology
detection techniques, in which proteins are identified as
sequences of amino acids. In the BLOSUM (BLOcks of
amino acid SUbstitution Matrix) local alignment scoring
scheme, pairs of amino acids are assigned log-odds scores
based on the likelihood of their being matched in align-
ments of homologous proteins – those evolving from a
shared ancestor [7]. In a BLOSUM matrix M, the score
for any two amino acids i and j, is calculated as

M[i, j] = log2(Pr[i, j|H]/ Pr[i, j|R]), (1)

where Pr[i, j|H] is the likelihood of i being matched to j in
an alignment of two homologous proteins, while Pr[i, j|R]
is the likelihood of them being matched by chance. These
likelihoods are based on the co-occurrence frequencies of
amino acids in alignments of proteins known to be homol-
ogous. A positive score indicates a pair is more likely
to co-occur in proteins with common ancestry; a nega-
tive score indicates the pair is more likely to co-occur ran-
domly. Pairs of proteins with high-scoring aligned regions
are labeled homologous.

In the song lyric domain, we treat lines and phrases as
sequences of phonemes and develop a model of mishear-
ing to determine the probability of one phoneme sequence
being misheard as another. This requires a pairwise scor-
ing matrix which produces log-odds scores for the likeli-
hood of pairs of phonemes being confused. The score for
a pair of phonemes i and j is calculated as in Equation
(1), where Pr[i, j|H] is the likelihood of i being heard as
j, and Pr[i, j|R] is the likelihood of i and j being matched
by chance.

As for the proteins that give rise to the BLOSUM
matrix, these likelihoods are calculated using frequencies
of phoneme confusion in actual misheard lyrics. Given a
phoneme confusion frequency table F, where Fi,j is the
number of times i is heard as j (where j may equal i), the
mishearing likelihood is calculated as

Pr[i, j|H] = Fi,j/
∑
m

∑
n

Fm,n. (2)

This corresponds to the proportion of phoneme pairs in
which i is heard as j. The match by chance likelihood
is calculated as

Pr[i, j|R] = Fi × Fj/(
∑
m

Fm ×
∑

n

Fn), (3)

where Fi is the total number of times phoneme i appears
in the lyrics. This is simply the product of the background
frequencies of each phoneme in the pair.

We note that our work is in some ways similar to that of
Ristad and Yianilos [8], for learning string edit distance.
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3.2 Training Data for the Model

To produce the phoneme confusion frequency table F, we
require a training set of misheard lyrics aligned to their
correct versions. Our corpus contains query and target
pairs from two user-submitted misheard lyrics websites,
KissThisGuy.com and AmIRight.com. In both cases, the
first phrase in the pair is the song lyric heard by the sub-
mitter and the second phrase is the true lyric in the song.

The KissThisGuy.com pairs were provided by Hu-
morBox Entertainment, the parent company of KissThis-
Guy.com, and consist of 9,527 pairs randomly selected
from the database and comprising 10% of the total num-
ber of misheard lyrics on the website. The pairs from
AmIRight.com were selected from the pages for the top
10 artists (by number of misheard lyrics submitted) on the
site and total 11,261 pairs, roughly corresponding to 10%
of the misheard lyrics on the site. The artists included are
The Beatles, Michael Jackson, Elton John, Nirvana, Red
Hot Chili Peppers, Queen, Metallica, Madonna, traditional
songs, and Green Day.

3.3 Producing Transcriptions

We first use the Carnegie Mellon University pronouncing
dictionary to obtain phonetic transcriptions of the lyrics.
The CMU pronouncing dictionary has phonetic transcrip-
tions for over 100,000 words and is tailored specifically
for North American English, the language used by the
majority of artists in our data [9]. We use the Naval
Research Laboratory’s text-to-phoneme rules to transcribe
any words not found in the dictionary [10].

The transcriptions contain 39 phonemes, consisting of
24 consonants, including affricates such as /tS/ and /dZ/,
and 15 vowels, including diphthongs like /OI/ and /aI/ [11].
Additionally, metrical stress is included for the vowels to
indicate whether they are part of syllables with primary
(1), secondary (2), or no (0) stress. To avoid overfitting
due to the relatively small number of secondary stressed
syllables in the dictionary, we combine primary and sec-
ondary stresses into strong stress to contrast with weak or
unstressed syllables. This results in a set of 54 phonemes:
24 consonants and 30 stress-marked vowels.

To better model actual prosody in singing, we reduce
the stress in common single-syllable words with less met-
rical importance such as “a,” “and,” and “the.” To allow
for variation in the likelihood of different phonemes be-
ing missed (deleted) or misheard without having been sung
(inserted), we introduce an additional symbol for gaps in
alignment and treat it like any other phoneme. This would
let a “softer” approximant such as /r/ get a lesser penalty
when missed than a “harder” affricate such as /tS/.

3.4 Iterated Training

We perform an iterated alignment method with the lyric
pairs to determine the confusion frequencies. In the first
phase, phonemes are lined up sequentially starting from
the left end of each phrase in the pair. This may seem to be
too rough an alignment method, but it results in the highest

frequencies for identical phoneme pairs since most of the
misheard lyrics contain some correct lyrics within them.
For example, “a girl with chestnut hair” being misheard
as “a girl with just no hair” from Leonard Cohen’s “Dress
Rehearsal Rag” would be aligned as
@ g "Çl w I T dZ "2 s t n oU h "eI r

@ g "Çl w I T tS "E s t n @ t h "eI r,
with all phonemes matching exactly until the /tS/ heard

as /dZ/, then the /"E/ heard as /"2/, etc. From these simple
alignments, we construct an initial phoneme confusion fre-
quency table F’.

Since gaps do not appear explicitly in any lyrics, we
approximate their occurrence by adding gap symbols to the
shorter phrase in each pair to ensure the phrases are of the
same length. In the example above, we would count one
gap, and have it occurring as an /r/ being missed in the F’
table. This approximation results in an essentially random
initial distribution of gap likelihood across phonemes.

Now, given the initial frequency table, we calculate an
initial scoring matrix M’ using Equations (1) to (3) above.
We then use the scores found in M’ to align the pairs in
the second phase of training. In this stage, we use dy-
namic programming to produce the optimum global align-
ment between each misheard lyric and its corresponding
correct version, which may include gaps in each sequence.
We then trace back through the alignment and update the
phoneme co-occurrences in a new confusion frequency ta-
ble F. For the example cited above, the new alignment
would look like
@ g "Çl w I T dZ "2 s t n oU h "eI r

@ g "Çl w I T tS "E s t n @ t h "eI r.
The gap occurs earlier and results in a missed /t/ in the F

table. After all the pairs have been processed, we calculate
a final scoring matrix M from frequency table F, as above.

3.5 Structure of the Phonetic Confusion Matrix

One interesting property of the phonetic confusion matrix
is that, from first principles, we discover perceptual sim-
ilarities between sounds: if two phonemes a and b have
positive scores in our confusion matrix, then they sound
similar to the real people who have entered these queries
into our database.

Table 1 shows all of the pairs of distinct consonant
phonemes a and b such that M [a, b] is positive. These
consist mainly of changes in voicing (e.g., /g/ versus /k/)
or moving from a fricative to a plosive (e.g., /f/ versus /p/);
the only distinct consonant pairs scoring above +1.0 are
pairs of sibilants (such as /tS/ versus /dZ/ or /Z/ versus /S/).
All of these similarities are discovered without knowledge
of what sounds similar; they are discovered by the training
process itself.

When examining stressed vowel scores in detail, it be-
comes evident that vowel height is the least salient articu-
latory feature for listeners to determine from sung words,
as most of the confused vowels differ mainly in height.
These pairs include /A/ and /2/, /2/ and /U/, /æ/ and /E/, and
/E/ and /I/. Other common confusions include vowels dif-
fering mainly in length and diphthongs confused with their
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Query Phoneme Target Phoneme
/b/ /f/,/p/,/v/
/tS/ /dZ/,/k/,/S/,/t/,/Z/
/f/ /b/,/p/,/T/
/g/ /dZ/,/k/
/dZ/ /tS/,/S/,/y/,/Z/
/k/ /g/
/N/ /n/
/p/ /b/,/f/,/T/,/v/
/s/ /z/
/S/ /tS/,/dZ/,/s/,/Z/
/T/ /f/
/z/ /s/,/Z/
/Z/ /dZ/,/S/

Table 1. Non-identical consonants with positive scores.

constituent phonemes, such as /I/ with /i/, /A/ with /aU/, and
/O/ with /OU/.

When examining differences in gap scores, we find that
the phonemes most likely to be missed (deleted) or heard
without being sung (inserted) are /r/, /d/, /N/, and /z/. Al-
though the model is trained without any domain knowl-
edge, a semantic explanation is likely for this finding since
/d/ and /z/ are often added to words to form past tenses
or plurals which could be easily confused. /N/ is often
changed to /n/ in verb present progressive tenses in popu-
lar music; for example, “runnin’ ” could be sung for “run-
ning.” The phonemes least likely to be missed are /Z/, /S/,
/OI/, and /I/, probably (with the surprising exception of /I/)
due to their relative “length” of sound. Similarly, /S/, /U/,
/I/, and /Ç/ were least likely to be heard without being sung.

3.6 Searching Method

To perform phonetic lyric search with this model, we use
matrix M to score semi-local alignments [12] between the
query phrase (sequence of phonemes) and all candidate
songs in the database. The highest scoring alignment in-
dicates the actual song lyric most likely to be heard as the
query, according to our model.

In addition to this phonemic model, we develop a
syllable-based model which produces a log-likelihood
score for any syllable being (mis)heard as another. For any
pair of syllables a and b, we calculate this score as

S[a, b] = align(ao, bo) + M[av, bv] + align(ae, be), (4)

where av is the vowel in syllable a and M[av, bv] is de-
fined in Equation ?? above. align(ao, bo) is the score for
the optimal global alignment between the onset consonants
of a and b, and ae is the ending consonants (or coda) for
syllable a.

Searching and training are performed in the same way
as with the phonemic method, except that syllables are
aligned instead of phonemes. Essentially, this ensures that
vowels only match with other vowels and consonants only
match with other consonants.

4. EXPERIMENT

To compare the performance of the probabilistic model of
mishearing with other pattern matching techniques, we re-
produced the experiment of Ring and Uitenbogerd [2] find-
ing the best matches for a query set of misheard lyrics in a
collection of full song lyrics containing the correct version
of each query.

4.1 Target and Query Sets

We used Ring and Uitenbogerd’s collection, comprising
a subset of songs from the lyrics site lyrics.astraweb.com
containing music from a variety of genres by artists such
as Alicia Keys, Big & Rich, The Dave Matthews Band,
Queensrÿche, and XTC. After removing duplicates, it con-
tained 2,345 songs with a total of over 486,000 words. This
formed our set of targets.

We augmented their original query set of 50 misheard
lyrics from AmIRight.com with 96 additional misheard
lyrics from the KissThisGuy.com data. These additional
queries have corresponding correct lyric phrases that
match exactly with a phrase from a single song in the
collection. They do not necessarily match the same song
the query lyric was misheard from, but only had one
unique match in the collection. For example, “you have
golden eyes” was heard for “you’re as cold as ice” from
Foreigner’s “Cold As Ice,” a song which does not appear
in the collection. However, the same line occurs in 10cc’s
“Green Eyed Monster,” which is in the collection. We
included at most one query for each song in the collec-
tion. In practice, misheard lyric queries may have correct
counterparts which appear in multiple songs, potentially
making our results less generalizable for large corpora.

4.2 Methods Used in Experiments

We implemented three different pattern-matching algo-
rithms in addition to the probabilistic mishearing models
described above: SAPS-L and simple edit distance as the
best methods from Ring and Uitenbogerd’s paper, and
phonemic edit distance to estimate a comparison with Xu
et al.’s Acoustic Distance. (The actual scoring matrix used
in that work was unavailable.) We removed all test queries
from the training set for the probabilistic models.

4.3 Evaluation Metrics

For each method, we found the top 10 best matches for
each misheard lyric in our query set and use these results
to calculate the Mean Reciprocal Rank (MRR10) as well as
the hit rate by rank for the different methods. The MRR10

is the average of the reciprocal ranks across all queries,
where reciprocal rank is one divided by the rank of the
correct lyric if it is in the top ten, and zero otherwise. Thus,
if the second returned entry is the correct lyric, we score
0.5 for that query and so on. The hit rate by rank is the
cumulative percentage of correct lyrics found at each rank
in the results.
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Pattern Matching Method Mean Reciprocal Rank
Probabilistic Phoneme Model 0.774
Phoneme Edit Distance 0.709
Probabilistic Syllable Model 0.702
SAPS-L 0.655
Simple Edit Distance 0.632

Table 2. Mean reciprocal rank after ten results for different
search techniques.

5. RESULTS

The probabilistic model of phoneme mishearing signifi-
cantly outperformed all other methods in the search task,
achieving an MRR of 0.774 and ranking the correct an-
swer for 108 of the 146 queries (74.0%) first. The next
best methods were phonemic edit distance and probabilis-
tic syllable alignment, receiving MRRs of 0.709 and 0.702,
respectively. Performing a paired t-test on the recipro-
cal rankings of the probabilistic phoneme model and the
phonemic edit distance returned a p-value less than 0.001,
strongly indicating that the results were drawn from dif-
ferent distributions. There was no statistically significant
difference between the probabilistic syllable model and the
phonemic edit distance results. Both these methods were
found to significantly outperform SAPS-L, with p-values
less than 0.05 on the t-tests. SAPS-L produced an MRR of
0.655, which was marginally better than the simple edit
distance’s MRR of 0.632. However, the difference be-
tween these two was again not found to be statistically sig-
nificant. The Mean Reciprocal Rank results are shown in
Table 2.

The hit rate by rank (Figure 2) further illustrates the ef-
fectiveness of the probabilistic phoneme model as it ranks
between 5% and 8% more correct lyrics within the top five
matches than phonemic edit distance and the probabilistic
syllable model. These next two methods appear to perform
equally well and considerably better than SAPS-L and edit
distance. SAPS-L seems to improve in performance over
simple edit distance moving down the ranks, indicating
that it may be better at finding less similar matches.

5.1 Analysis of Errors

We also observe that the performance of the probabilistic
phoneme model plateaus at a hit rate of 83%. This corre-
sponds to 121 of the 146 misheard lyric queries, and we
provide a brief analysis of some of the 25 queries missed.

5.1.1 Differences Among Methods

The phoneme edit distance method did not return any cor-
rect lyrics not found by the probabilistic phoneme model.
The one query for which SAPS-L returned a hit in the top
10 and the statistical model did not was “spoon aspirator”
for “smooth operator,” from Sade’s song of the same name.
In SAPS-L, this was transcribed as “SPoon AsPiRaTor,”
getting a score of 24 when matched with “Smooth OPeRa-
Tor.” The relatively high number of matching syllable on-

Figure 2. Cumulative percentage of correct lyrics found
by rank for different search methods. The probabilistic
phoneme model finds 5-8% more correct targets in the first
five matches than the next best method. The probabilistic
syllable model and phoneme edit distance perform nearly
identically, and significantly better than SAPS-L and sim-
ple edit distance.

sets (S, P, R, and T) in the short query gave SAPS-L the
advantage since it heavily emphasizes onsets. On the other
hand, the probabilistic method produced higher scores for
results such as “spoon in spoon stir(ring)” and “I’m res-
pirating” due to the high number of exactly matching and
similar phonemes.

The probabilistic syllable model also returned a hit for
one query for which the phoneme model did not. The mis-
heard lyric in this case was “picture Mona runnin’ ” heard
for “get your motor runnin’ ”, presumably from Steppen-
wolf’s “Born to be Wild.” This was likely due to the pars-
ing of the phonetic transcription so that paired syllables
had high scores at both the onset and ending consonants
(“Mon” and “mot”, “run” and “run”). The top ranking
match using the phoneme model was “picture on your but-
ton.” When the phrases are transcribed without word or
syllable boundaries, the only large differences are an in-
serted /m/ from “Mona” and a missed /b/ from “button.”

5.1.2 Common Types of Errors

Though syllable parsing and alignment may have helped
for the two misheard lyrics described above, the majority
of the queries not returning results tended to be quite dis-
similar from their target correct lyrics. Some examples of
these include a young child hearing “ooh, Tzadee, I’m in a
cheerio” for “we are spirits in the material” from The Po-
lice’s “Spirits in the Material World;” “Girl, I wanna yo-
del” for “You’re The One That I Want” from Grease; “Ap-
ple, dapple, and do” for Prince’s “I Would Die 4 U;” and
“Swingin’ the bat” for the Bee Gees’ “Stayin’ Alive.” In
other interesting cases the listener superfluously heard the
singer’s name within the song lyrics: “Freddie time!” for
“and turns the tides” in Queen’s My Fairy King, and “Oh,
Lionel (Oh Line’)” for Lionel Richie’s “All Night Long (all
night”). Without knowledge of the song artist, it would be
hard to consider these similar to their originals.

The other common problem preventing the algorithms
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Pattern Matching Method Correlation
Probabilistic Phoneme Model 0.45
Phoneme Edit Distance 0.54
Probabilistic Syllable Model 0.55
SAPS-L 0.53
Simple Edit Distance 0.51

Table 3. Correlation between misheard query length and
reciprocal rank of correct answer returned. The positive
correlations indicate that longer queries are more likely to
have the correct lyric ranked higher, though this effect is
least pronounced for the probabilistic phoneme model.

from finding the correct matches for many misheard lyrics
stems from the short length of such queries. Some of
these include “chew the bug” for “jitterbug,” “can of tuna”
for “can’t hurt you now,” “rhubarb” for “move out”, and
“wow thing” for “wild thing.” While these tend to be fairly
similar to their correct counterparts, their short length
makes it much easier to find exact partial matches which
score highly enough to balance the dissimilar remaining
portions. Though the models are trained on mishearing,
most misheard lyrics tend to have parts heard correctly, so
matching identical phonemes will usually give the highest
scores. For all methods, longer queries were more likely
to have their correct lyrics found in the top 10, resulting in
a positive correlation between the length of the query and
the reciprocal rank of the correct result. Table 3 details
these correlations for the different algorithms. Note that
this correlation is smallest for the probabilistic phoneme
model: it is the least fragile in this way.

5.2 Running Time

The current implementation of the search algorithm is an
exhaustive dynamic programming search over the entire
collection of lyrics, resulting in O(mn) computing com-
plexity per query, where m is the length of the query and
n is the size of the collection. This would likely not be
feasible in a commercial application due to the long search
time required (about 3 seconds per query on a 1.6 GHz
laptop). Xu et al. [3] did demonstrate the effectiveness
of using n-gram indexing to reduce the running time by
pre-computing the distances from 90% of all syllable 3-
grams in their collection and pruning off the most dissimi-
lar lyrics. However, this is simpler with Japanese pronun-
ciation than English due to the relatively limited number
of possible syllables. Determining the effectiveness of En-
glish phoneme n-gram indexing while balancing speed, ac-
curacy, and memory use remains an open problem.

6. CONCLUSION

We introduce a probabilistic model of mishearing based
on phoneme confusion frequencies calculated from align-
ments of actual misheard lyrics with their correct coun-
terparts. Using this model’s likelihood scores to perform
phoneme alignment pattern matching, we were better able

to find the correct lyric from a collection given a misheard
lyric query. Tested on 146 misheard lyric queries with
correct target lyrics in a collection of 2,345 songs, the
probabilistic phoneme model produces a Mean Reciprocal
Rank of 0.774 and finds up to 8% more correct lyrics than
the previous best method, phoneme edit distance, which
achieves an MRR of 0.709.
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ABSTRACT

Peer-to-Peer (P2P) networks are used by millions of peo-
ple for sharing music files. As these networks become ever
more popular, they also serve as an excellent source for
Music Information Retrieval (MIR) tasks. This paper re-
views the latest MIR studies based on P2P data-sets, and
presents a new file sharing data collection system over the
Gnutella. We discuss several advantages of P2P based
data-sets over some of the more “traditional” data sources,
and evaluate the information quality of our data-set in com-
parison to other data sources (Last.fm, social tags, biog-
raphy data, and MFCCs). The evaluation is based on an
artists similarity task using Partial Order Embedding (POE).
We show that a P2P based Collaborative Filtering data-
set performs at least as well as “traditional” data-sets, yet
maintains some inherent advantages such as scale, avail-
ability and additional information features such as ID3 tags
and geographical location.

1. INTRODUCTION

The usage of P2P based information for music information
retrieval (MIR) tasks is gaining momentum. The process
of collecting Collaborative Filtering (CF) data from P2P
networks is typically more complex than from more “tra-
ditional” sources such as Last.fm or social networks, but
there are several advantages that significantly undermine
this small impairment.

Barrington et al. [2] compared different approaches for
music recommendation with a user study of 185 subjects.
They concluded that approaches based on collaborative fil-
tering which essentially capture the “wisdom of the crowds”,
outperform content-based approaches so long as the data-
set used is sufficiently comprehensive. However, when the
data-set is insufficient, or the artists are less popular (those
in the long tail), we are compelled to use content-based ap-
proaches. The scale of a CF data-set is therefore of great
importance. Using a crawler of the Gnutella file-sharing
network, we were able to record 281,865,501 user-to-song
relations of over 1.3 million users in a single 24 hours
crawl. Such scales far exceed the “traditional” CF data-
sets such as the well-established Last.fm data-set provided

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

by [6] (17,559,530 records from 359,347 users).
Another advantage of P2P data-sets over traditional data-

sets is the availability of information, mitigating the need
for agreements with website operators and various restric-
tions they pose on the amount of data collected or its usage.
Due to their decentralized nature and open protocols, P2P
networks are a source for independent large scale data col-
lection. Anyone who overcomes the initial technological
barrier can crawl the network and collect valuable infor-
mation.

Data-sets based on shared folders typically include ID3
tags that reveal information such as the title, artist, album
and track number. Although sometimes these records are
absent or conflicting, it is often still possible to restore the
correct values. In this paper for example, we used ma-
jority voting to decide on the correct artist names for dif-
ferent files. P2P data-sets typically include also the IP
addresses of the users. The IP address can be used as a
unique user identifier for short time spans, but more im-
portantly, it also allows for geographical classification of
users. IP-based geographical classification is highly accu-
rate and can reveal not only the user’s country and state,
but also the user’s city and sometimes even smaller areas
like the boroughs of New-York City. Such geographical
resolution was used by [14] for identifying emerging local
musical artists with high potential for a breakthrough.

Despite all their advantages, P2P networks are quite
complex, making the collection of a comprehensive data-
set far from being trivial, and in some cases practically un-
feasible. First, P2P networks have high user churn, caus-
ing users to constantly connect and disconnect from the
network, being unavailable for changing periods. Second,
users in P2P networks often do not expose their shared data
in order to maintain high privacy and security measures,
therefore disabling the ability to collect information about
their shared folders. Finally, users often delete content af-
ter using it, leaving no trace of its usage.

A different complexity involves the usage of meta-data,
which was shown to be particulary useful for finding simi-
larity between performing artists [17]. The content on file
sharing networks is mostly ripped by individual users for
consumption by other users. User based interactions are a
desirable property in IR data-sets, however when it comes
to meta-data, its the main source for ambiguities and noise.
Be it a movie, a song, or any other file type, typically there
would be several similar duplications available on the net-
work. The files may be digitally identical, thus having the
same hash signature, yet bearing different file names, and
meta-data tags. Duplication in meta-data tags typically
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caused by spelling mistakes, missing data, and different
variations on the correct values. In the Gnutella network
for example, only 7-10% of the queries are successful in
returning useful content [30]. A common hash signature
can facilitate similar files grouping, nonetheless it does not
solve the problem of copies that are not digitally identical.
The problem of meta-data ambiguities in P2P data-set is
addressed in [16].

2. BACKGROUND

MIR studies based on P2P networks belong to one of two
categories:

• Studies Based on Queries: Queries in a file-sharing
network represent the current tastes and interests of
users. A query is issued upon a request by a user
searching for a specific file, or content relevant to the
search string. Query data-sets are time dependent,
and because of dynamic IP assignments, it can be
difficult to track a single user over time. Therefore,
query-based studies tend to focus on temporal trends
such as predicting artists success or artists ranking.
Queries are generally ineffective for predicting artist
similarity and general recommendation systems be-
cause the information gathered per user is limited to
a short time period, and thus only a few files per user
are usually available.

• Studies Based on Shared Folders: The content of a
user’s shared folder accumulates over time. It can be
viewed as an integration of a user’s taste over an ex-
tended period of time. Data-sets derived from shared
folders are therefore the preferred choice for similar-
ity tasks such as recommender systems.

2.1 Previous Query-based Studies

In [14], geographically identified P2P queries were used in
order to detect emerging musical talents. The detection al-
gorithm is based on the observation that emerging artists,
especially rappers, have a discernible stronghold of fans in
their hometown area, where they are able to perform and
market their music. In a file-sharing network, this is re-
flected as a spike in the spatial distribution of queries. The
algorithm mimics human scouts by looking for performers
which exhibit a sharp increase in popularity within a small
geographic region.

The algorithm in [14] is effective for predicting the suc-
cess of emerging artists, but it cannot be applied on well-
established artists. Bhattacharjee et al. [4,5] have used P2P
activity to predict an album’s life cycle and trends on the
Billboard’s top 200 albums chart. Both papers used the
WinMx file-sharing network. In [4], they showed that P2P
sharing activity levels provide leading indicators for the di-
rection of movement of albums on the Billboard charts. In
[5], a linear regression model was used to show that shar-
ing activity may be used to predict an album’s life cycle.
More recently, [17] used the C4.5 [22] and BFTree [8, 26]
algorithms on queries collected from the Gnutella network
in order to predict a song’s top rank on the Billboard sin-
gles chart.

A different approach for using P2P queries was taken
by [13]. Grace et al. [10] noticed that although music sales
are losing their role as means for music dissemination, they
are still used by the music industry for ranking artist suc-
cess, e.g., in the Billboard Magazine chart. They therefore
suggested using social networks as an alternative ranking
system; a suggestion which is problematic due to the ease
of manipulating the list and the difficulty of implementa-
tion. Koenigstein et al. [13] used Gnutella queries in or-
der to build an alternative to the Billboard song ranking
chart. They compared trends in sales and air-play counts,
to piracy popularity trends, and showed that piracy popu-
larity of singles by well-established artists, is highly corre-
lated with the Billboard charts.

2.2 Previous Shared Folders Studies

First attempts to use P2P shared folders for artist similar-
ity were presented in [3,7]. The centralized and somewhat
undersized OpenNap network was used in order to gener-
ate a similarity measurement that was based on artists co-
occurrences in shared folders. The authors compared the
P2P information to other similarity measurements such as
social tags in [7], and also Gaussian mixtures over MFCCs
and playlists co-occurrences in [3]. The evaluation was
done against survey data, and similarities were measured
by a pre-determined similarity function.

We took the same approach of evaluating data against a
human based survey. The evaluation in this paper is based
on the Partial Order Embedding (POE) algorithm of [18],
which learns an optimized artist similarity space from la-
beled (partially ordered) examples. The key difference be-
tween the evaluation in [3] and the present work is that
we report accuracy achievable by an optimized similar-
ity function, whereas [3] relies on a fixed similarity func-
tion. The results in Section 4 emphasize the importance
of training the embedding before evaluating with a human
based survey. The scale of the data-set used here (13.8
million user-to-song relations after processing), is much
higher than in [3,7] (400K user-to-song relations after pro-
cessing), although our experimental results are restricted
to a subset for evaluation purposes.

The first working recommender system based on P2P
information was demonstrated in [25]. Shared folders data
from the Gnutella network was used in order to generate
a user-to-artists matrix. The artists were clustered using
k-means algorithm, and recommendations were done from
the centroid or from the nearest neighbor.

3. DATA COLLECTION METHODOLOGY

The practice of collecting information from file-sharing
networks is relatively common in the field of computer
communication. P2P measurement techniques fall into five
basic categories:

1. Passive Monitoring: Monitoring P2P activity by
analyzing data from a gateway router.

2. Participate: Developing a client software that can
capture and log interesting information [13, 14, 17].
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Figure 1. Crawling and Browsing in a Two-Tier Gnutella Segment

3. Crawl: Developing a crawler which recursively “walks”
the network by asking each peer for a list of its neigh-
bors [15, 16, 25].

4. Sample: Sampling a set of peers and gathering static
peer properties [4, 5].

5. Central: Study information gathered from a central
entity in the network [3, 7].

The data collection system described here belongs to the
third category. We crawled the Gnutella file-sharing net-
work as described below.

3.1 The Gnutella Network

Gnutella started its operations on March 2000, as the first
decentralized file-sharing network. It is arguably the most
academically studied file-sharing network [1, 9, 11, 23, 24,
27, 28].In late 2007, it was the most popular file-sharing
network on the Internet with an estimated market share of
more than 40% [21], serving millions of users.

Modern Gnutella, as well as other popular P2P file-
sharing applications, adopted a two-tier topology. In this
architecture, a small fraction of nodes, called ultrapeers,
form an ad-hoc top-level overlay whereas the remaining
nodes, called leaves, each connect to the overlay through
a small number of ultrapeers. Ultrapeers belong to regular
users with higher computing and network resources. These
nodes route search requests and respond to other users who
connected to them. Ultrapeers typically have a high degree
(i.e., maintain 30 neighbors) in order to keep a short path
lengths between participating peers [28]. We crawl both
leaves and ultrapeers in a similar manner.

3.2 Crawling the Network

P2P crawlers operate in a similar way to web crawlers. The
crawler treats the network as a graph. The starting points of
the crawling operation are taken from an offline initializa-
tion list of known hosts. This initialization list must con-
tain some redundancies, because unlike web crawling, the

Gnutella nodes might be offline and therefore unrespon-
sive. To maximize the performance of the highly paral-
lelized architecture of the crawler, we used a very large
initialization list of 104,767 IP addresses. This allows us
to make use of all the crawling clients right at the begin-
ning of the crawling operation 1 .

Figure 1 depicts the crawling and browsing operations
in a two-tier Gnutella segment. The crawling process is a
breadth-first exploration, where newly discovered leaves
and ultrapeers are enqueued in a list of un-crawled ad-
dresses (The IPs Queue). The parallel crawling threads
constantly ask the Crawling Manager for new IP addresses
from the queue, and send back newly received results. The
results are stored in text log files, and new IPs are enqueued
in the IPs Queue.

Gnutella’s “Ping-Pong” protocol is used by the crawl-
ing threads to discover new Gnutella nodes in the network.
A node receiving a “Ping” message is expected to respond
with one or more “Pong” messages. A “Pong” message in-
cludes the address of a connected Gnutella node and infor-
mation regarding the amount of data it is making available
to the network. An incoming Ping message with TTL = 2
and Hops = 0 is a “Crawler Ping” used to scan the network.
It should be replied to with Pongs containing information
about the node receiving the Ping and all other nodes it is
connected to. More details about the the Gnutella protocol
can be found in [29].

The crawling of large scale dynamic networks, such as
file-sharing networks never reaches a full stop. As clients
constantly connect and disconnect from the network, the
crawler will always discover new IP addresses. We thus
use two stopping conditions: A time constraint (typically
1 hour), or reaching a low rate of newly discovered nodes,
which indicates the completion of a crawl. In the begin-
ning of a crawl, the rate of newly discovered nodes in-
creases dramatically and typically reaches over 300,000
new clients per minute. As the crawling process proceeds,

1 Such a large list of IP addresses can be easily generated from the
results of a previous crawling operation.
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discovery rate slows down until it reaches a few hundreds
per minute. At this point, the networks is almost fully cov-
ered, and the newly discovered nodes are mostly the ones
that have joined the network only after the crawling opera-
tion started.

3.3 Browsing Shared Folders

The browsing operation begins shortly after the crawling
operation started. Once the first crawling log file is created,
the Browsing Manager can start assigning IP addresses
(taken from the crawling logs) to the browsing threads.
The browsing threads send “Query” messages to the Gnutella
nodes, and wait for a “QueryHit” message in return. Query
messages with TTL=1, hops=0 and Search Criteria=“ ”
(four spaces) are used to index all files a node is sharing.
A node should reply to such queries with all of its shared
files. The sharing information is stored by the Browsing
Manager in the browsing logs. These files are used to gen-
erate the CF data.

4. EVALUATION

To evaluate the information content of the present P2P data,
we test its performance on an artist similarity prediction
task. [18,19] developed the Partial Order Embedding (POE)
algorithm for integrating multiple data sources to form an
optimized artist similarity space, and applied it to acoustic
models (Gaussian mixtures over MFCCs and chroma vec-
tors), semantic models (semantic multinomial auto-tags,
and social tags from Last.fm 2 ), and text models (biogra-
phy data) 3 . By applying the same algorithm to collabora-
tive filtering data, we can evaluate the amount of high-level
artist similarity information captured by P2P collaborative
filtering data, and quantitatively compare it to alternative
data sources.

In general, collaborative filtering has been repeatedly
demonstrated to be an effective source of information for
recommendation tasks (see, e.g., [2, 12]). One may then
wonder how one source of collaborative filtering data com-
pares to another. Because [18] did not include collabora-
tive filtering in their experiments, there is no existing base-
line to compare against for the artist similarity task. We
therefore repeat the experiment with the Last.fm collabo-
rative filtering data provided by [6], allowing us to quan-
titatively compare P2P data to a more conventional source
of collaborative filtering information.

We sampled 100K (7.69%) users out of over 1.3 million
Gnutella users recorded on a single 24 hours crawl. We fil-
tered the files that correspond to musical files according to
file suffix (.mp3 files). In the entire (1.3 million users) data
set, we identified 531,870 different songs. In our 100K
users sample, we identified 511K songs, a value that is not
much lower than the total number. Ambiguities in artist
names due to typos and misspellings were corrected by
majority voting. After this step, we had 13,839,361 user-
to-song relations, which was the base for a collaborative
matrix (ARTISTSxUSERS). The artist names are the same
as in the aset400 data set of Ellis and Whitman [7]. These

2 http://last.fm/
3 The data from [18] can be found at http://mkl.ucsd.edu/.

373,555,801 user-to-file
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Artists-by-users
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Filtered Musical 

Content
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Figure 2. A quantitative summary of the data-set scale
after each processing stage

artists were found in the shared folders of 80,119 users.
The above numbers are summarized in Figure 2. Our sim-
ilarity matrix will be available on the authors website by
publication time.

4.1 The embedding problem

Formally, the goal in this experiment is to learn an embed-
ding function g : X → Rn, which maps a set of artists
X into Euclidean space. The embedding is trained to re-
produce relative comparison measurements (i, j, k), where
(i, j) are more similar to each-other (i.e., closer) than (i, k).

Each artist is represented as a vector in some feature
space, and the embedding function is parameterized as a
linear projection from that feature space to the embedding
space. This can be expressed in terms of inner products:

g(i) = NKi,

where N is a linear projection matrix to be learned, and Ki

is a vector containing the inner product of i’s feature vec-
tor with each other point in the training set. As described
in [18], this readily generalizes to non-linear kernel func-
tions and heterogeneous data sources, but we do not make
use of these extensions in the present experiment.

To summarize, given a set of training artists, relative
similarity measurements between the artists, and a feature
representation of each artist (equivalently, a kernel matrix
over the training artists), the algorithm finds a linear pro-
jection matrix N which attempts to satisfy the similarity
measurements under Euclidean distance calculations:

(i, j, k) ⇔ ‖N(Ki −Kj)‖ < ‖N(Ki −Kk)‖.

The matrix N is found by solving a convex optimization
problem, which involves three competing terms:

max
W

∑

i,j

‖Ki −Kj‖2W − β ·
∑

ijk

ξijk − γ · tr(WK)

‖Ki −Kj‖2W .= (Ki −Kj)TW (Ki −Kj),

where W is a positive semi-definite matrix which can be
factored to recover the projection matrix: W = NTN .
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The first term maximizes the variance of the data in the
embedding space, which prevents points from being col-
lapsed onto each-other.

The second term tries to minimize the number of or-
dering mistakes made by the embedding function. This is
accomplished by using a slack variable ξijk ≥ 0 for each
triplet constraint (as in support vector machines), allowing
for margin violations:

‖Ki −Kj‖2W ≤ ‖Ki −Kk‖2W + 1− ξijk.

Finally, the third term limits the complexity of the learned
space by penalizing a convex approximation to the rank of
the embedding space. For more details about the optimiza-
tion procedure, see [18].

At test time, similarity queries are presented in a similar
form: (q, i, j), where q is previously unseen, and i and j
come from the training set. The query artist is mapped into
the embedding space by first computing inner products to
the training set, resulting in a vector Kq , and then project-
ing by N : g(q) = NKq . Once in the embedding space,
distances are calculated to i and j, and the similarity pre-
diction is counted as correct if the distance to i is smaller
than the distance to j.

4.2 From P2P to artist similarity

In order to apply the POE algorithm to collaborative fil-
tering data, we need to define a kernel function between
artists in terms of the collaborative filtering matrix. One
straightforward choice of kernel function is to simply count
the number of users shared between two artists i and j.
However, this may suffer from popularity bias if i has many
users and j has relatively few. To counteract this, we nor-
malize each artist by the number of users to which it is
matched. This gives rise to the kernel function:

k(i, j) =
#users for i and j

(#users for i) · (#users for j)
.

Equivalently, we can interpret this kernel function as the
cosine-similarity between bag-of-users representations of
artists i and j, i.e., an artist is represented by a binary vec-
tor where coordinate z is 1 if user z is present and 0 oth-
erwise. This is similar to the bag-of-words representation
commonly used in text applications, and like in text, the
dimensionality of the feature representation is much larger
than the number of data points (i.e., there are many more
users than artists). Consequently, it is more economical to
use the kernel matrix representation than to work directly
on the feature vectors.

4.3 Results

We reproduced the main experiment of [18], using P2P
collaborative filtering data, as well as listener data from
Last.fm [6]. We first pruned both data sets down to the
412 artists of aset400 [7]. Of these artists, 23 were missing
from P2P, and 5 were missing from Last.fm. Nonetheless,
we retain similarity measurements for these artists to main-
tain comparability with the previously published results.

As in [18], the artists (and corresponding similarity mea-
surements) are split by 10-fold cross-validation, and the

Data source Native Learned Restricted
P2P 0.561 0.728 0.741
Last.fm 0.570 0.760 0.763
MFCC 0.535 0.620
Biography 0.514 0.705
Tags 0.705 0.776

Table 1. Test accuracy for artist similarity. Native corre-
sponds to similarity measurements taken from the raw ker-
nel matrix, and learned corresponds to similarities learned
by POE. The restricted column reports accuracy achieved
by testing only on artists observed in the data (389 artists
for P2P and 407 for Last.fm). See Section 4.3 for details.

training and test procedure is repeated for each fold. We
then calculate the accuracy of the learned embeddings, av-
eraged across all folds. Results are presented in Table 1.

The accuracy of similarity predictions may be skewed
due to testing on artists for which the data source may have
no information (i.e., no users shared songs by that artist).
To quantify this effect, we also computed accuracy on sim-
ilarity measurements restricted to include only those artists
observed in collaborative filtering data. These results are
given in the restricted column of Table 1.

Overall, Table 1 indicates that both P2P and Last.fm
collaborative filtering data captures a great deal of high-
level artist similarity information. Both sources perform
comparably to highly detailed social tags (Tags), and both
outperform similarity models derived from artist biogra-
phies (Biography) or acoustic content (MFCCs) as reported
in [18].

In this experiment, the Last.fm data achieves slightly
higher accuracy than the P2P data. However the difference
is quite small, and might be eliminated by using a larger
sample of P2P users (we only used 7.69%). Also note that
the results dramatically improve once the embedding is
trained. This emphasizes the importance of learning an op-
timal similarity space, rather than using a pre-determined
similarity function as in [3].

5. SUMMARY

We reviewed the latest P2P based MIR studies, and pre-
sented a new Gnutella-based data collection system. We
evaluated the information content of our P2P data-set on
an artist similarity prediction task based on the Partial Or-
der Embedding (POE) presented in [18], and compared it
to the “traditional” data sources, such as Last.fm collabora-
tive filtering, tags, and acoustic models. We showed that a
P2P based Collaborative Filtering data-set performs com-
parably to “traditional” data-sets, yet maintains some in-
herent advantages such as scale, availability and additional
information features such as ID3 tags and geographical lo-
cation.

According to the International Federation of the Phono-
graphic Industry (IFPI) 95% of all music is downloaded in
file sharing networks [20]. We expect that as the practice
of file-sharing becomes even more widespread, the usage
of P2P based data-sets will become increasingly relevant.
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ABSTRACT

This paper presents a multi-modal approach to automat-
ically identifying guitar chords using audio and video of
the performer. Chord identification is typically performed
by analyzing the audio, using a chroma based feature to
extract pitch class information, then identifying the chord
with the appropriate label. Even if this method proves per-
fectly accurate, stringed instruments add extra ambiguity
as a single chord or melody may be played in different
positions on the fretboard. Preserving this information is
important, because it signifies the original fingering, and
implied “easiest” way to perform the selection. This chord
identification system combines analysis of audio to deter-
mine the general chord scale (i.e. A major, G minor), and
video of the guitarist to determine chord voicing (i.e. open,
barred, inversion), to accurately identify the guitar chord.

1. INTRODUCTION

The ability of an instrument to produce multiple notes si-
multaneously, or chords, is a crucial element of that instru-
ment’s musical versatility. When trying to automatically
identify chords, stringed instruments, such as the guitar,
add extra difficulty to the problem, because the same note,
chord, or melody can be played at different positions on the
fretboard. Figure 1 depicts a musical passage in staff no-
tation, followed by three representations in tablature form
(the horizontal lines represent the strings of the guitar, and
number is the fret of that string). All of these tablature
notations are valid transcriptions, in that they produce the
correct fundamental frequencies as the staff notation when
performed. However, only one of these positions may cor-
respond to the original, perhaps easiest fingering

Guitar lessons are more accessible now than ever with
the rise of streaming Internet video and live interactive
lessons. The research presented in this paper has direct ap-
plications to these multimedia sources. A system which
can automatically transcribe chord diagrams from audio
and video lessons between student and teacher would be
an invaluable tool to aid in the learning process.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.
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Figure 1. Three voicings of a C major scale in staff and
tablature notation, shown in various positions along the
guitar fretboard.

Automatic chord identification algorithms have tradi-
tionally used the chroma feature introduced by Fujishima
[1]. The chroma based approach, though intuitive and eas-
ily implemented, presents many problems due to the ex-
istence of overtones in the signal. This paper avoids this
problem by using a polyphonic pitch estimation method
named Specmurt Analysis which filters out the overtones
in the log-frequency spectrum to yield only a chord’s fun-
damental frequencies [2].

Visual approaches to guitar chord and melody transcrip-
tion have been attempted. Most of these methods, while
accurate, are obtrusive to the guitarist; cameras must be
mounted to the guitar [3], or the guitarist must wear col-
ored fingertips to be tracked [4]. The method presented
here uses brightly colored dots placed at various points
along the guitar’s fretboard to be tracked by the camera.
These dots, which are unobtrusive to the guitarist, are used
as reference points to isolate the fretboard within the im-
age, so that principal components analysis may be used to
identify the guitarist’s particular voicing of that chord.

The multi-modal guitar chord identification algorithm
presented in this paper is as follows: first, using Specmurt
Analysis, fundamental frequency information will be re-
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trieved and the general chord scale identified (i.e. G ma-
jor, A# minor, etc.). Next, using video analysis, the gui-
tarist’s particular chord voicing (i.e. open, barred, inver-
sion, etc.) will be identified using principal components
analysis (PCA) of the guitarist’s fretting hand.

2. RELATED WORK

The chromagram or pitch class profile (PCP) feature has
typically been used as the starting point for most chord
recognition systems. Fujishima first demonstrated that de-
composing the discrete Fourier transform (DFT) of a signal
into 12 pitch classes and then using template matching of
various known chords produces an accurate representation
of a song’s chord structure [1].

The main problem with chroma is apparent when us-
ing template matching for various chords. For example,
a C Major triad would have an ideal chroma vector of
[1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]. The existence of overtones in
the signal cause the ideal 0’s and 1’s to fluctuate and create
false chord identifications.

Modified versions of the chromagram, such as the En-
hanced Pitch Class Profile by Lee have been introduced to
ease the effects of overtones in the signal [5]. This method
computes the chroma vector from the harmonic product
spectrum rather than the DFT, suppressing higher harmon-
ics making the chroma vector more like the ideal binary
template. However, this method fails to identify the voic-
ing of the chord, such as a first or second inversion.

Burns et al. developed a visual system for left-hand fin-
ger position tracking with respect to a string/fret grid [3].
Their method relies on the circular shape of fingertips, us-
ing a circular Hough transform on an image of the left-
hand to detect fingertip locations with respect to the under-
lying fretboard. However, this method requires mounting
a camera on the headstock of the guitar, which poses many
problems: it can be obtrusive to the guitar player’s natu-
ral method of playing, and also only captures information
about the first five frets of the guitar.

Kerdvibulvech et al. proposed to track the fingering po-
sitions of a guitarist relative to the guitar’s position in 3D
space [4] . This is done by using two cameras to form a
3D model of the fretboard. Finger position was tracked
using color detection of bright caps placed on each of the
guitarist’s fingertips. Again, this can hinder the physical
capabilities and creative expression of the guitarist, which
should not happen in the transcription process.

3. AUDIO ANALYSIS

When playing a single note, instruments produce natural
harmonics (overtones) in addition to the note’s fundamen-
tal frequency. Therefore, when playing multiple notes, the
frequency spectrum of the audio appears cluttered, mak-
ing detection of the fundamental frequencies (the actual
notes) hard to locate. Saito et al. have proposed a tech-
nique called Specmurt analysis, which will be used to ex-
tract the notes of a guitar chord from the audio signal [2].

Log-frequency multipitch spectrum 

ˆ f 

c( ˆ f )

ˆ f 
1

ˆ f 
2

ˆ f 
3

Common harmonic structure 

ˆ f 

h( ˆ f )

Fundamental frequency pattern 

ˆ f 
ˆ f 
1

ˆ f 
2

g( ˆ f )

ˆ f 
3

G(ˆ s )

H(ˆ s )

C(ˆ s )

Log-frequency Specmurt Domain 

F
!1

Figure 2. Log-spaced frequency domain c(f̂) as a con-
volution of common harmonic structure h(f̂) with funda-
mental frequency distribution g(f̂).

3.1 Specmurt Analysis

Multiple fundamental frequency estimation using Spec-
murt analysis is performed by inverse filtering the log-scale
frequency domain with a common harmonic structure of
that instrument [2]. The resulting log-frequency spectrum
contains only impulses located at the log-fundamental fre-
quencies.

Harmonics of a fundamental frequency f0 normally oc-
cur at integer multiples of the fundamental, nf0. Further-
more, if the fundamental frequency changes by some ∆f ,
the change in frequency of its respective higher harmonics
will also be n∆f . By resampling the frequency domain to
have a log-scaled axis, this allows the harmonics of a given
fundamental to be consistently spaced by log n + log f0,
independent of fundamental frequency.

f̂ = log f (1)

3.1.1 Common Harmonic Structure

Using the log-scale frequency axis, we can assume that
the harmonic frequencies are located at f̂ + log 2, f̂ +
log 3, ..., f̂ + log n. When a chord is played on an in-
strument, each note will presumably contain these same
harmonic frequencies, beginning at different f̂ ’s. There-
fore, we can assume that the log-scaled multipitch spec-
trum, c(f̂), is a combination of these harmonic structures,
shifted and weighted differently per note. Specifically, the
resulting log-scale frequency spectrum, c(f̂), is equal to
the convolution of a common harmonic structure, h(f̂),
with a fundamental frequency distribution, g(f̂).

c(f̂) = h(f̂) ∗ g(f̂) (2)
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The harmonic structure can be written in terms of its log-
frequency axis spacing, f̂0n, and its harmonic weights,
Wn, where n = 1, 2...N harmonics.

h(f̂ ,W ) =
N∑

n=1

Wnδ(f̂ − f̂0n) (3)

The harmonic weights will initially be a guess, which will
be refined later using an iterative process to minimize the
overall error of Specmurt analysis.

3.1.2 Specmurt Domain

In order to determine the desired fundamental frequency
distribution, g(f̂), one can solve (2) by deconvolving the
log-spectrum with the common harmonic structure. An
easier way of obtaining g(f̂) would utilize the duality of
the time/frequency-convolution/multiplication relationship
(shown in Figure 2). Therefore, taking the inverse Fourier
transform would yield the relationship

F−1{c(f̂)} = F−1{h(f̂) ∗ g(f̂)} (4)

C(ŝ) = H(ŝ)G(ŝ) (5)

where ŝ is a temporary Specmurt domain variable. Simple
algebra followed by a Fourier tranform of G(ŝ) will yield
the resulting fundamental frequency spectrum.

G(ŝ) =
C(ŝ)
H(ŝ)

(6)

F{G(ŝ)} = g(f̂) (7)

The squared error after performing Specmurt analysis
can be defined as

E(Wn) =
∫ +∞

−∞

{
c(f̂)− h(f̂ ,Wn) ∗ g(f̂)

}2

df̂ (8)

Minimizing the error of Specmurt is done by refining
the harmonic weights, Wn, of the harmonic structure. This
is done by setting the error’s N partial derivatives ∂E

∂Wn
=

0, n = 1...N , and solving the system of equations forWn.
The original Specmurt formulation assumed that the

first weight,W1 = 1, of the normalized common harmonic
structure. After experimentation with various guitar sig-
nals, the higher harmonics were sometimes of larger mag-
nitude than the fundamental frequency. By allowing the
first harmonic’s magnitude to vary, the algorithm was able
to better identify fundamental frequencies.

4. VIDEO ANALYSIS

In order to visually identify the performing guitarist’s
chord voicing, the guitar fretboard must first be located
and isolated within the image. However, the guitar can be
held in many different orientations relative to the camera,
making it difficult to find the location or coordinates of the
fretboard in the image plane.

The frets of a guitar are logarithmically spaced to pro-
duce the 12 tones of the western scale. The coordinates
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Figure 3. Ideal fretboard (top) with logarithmic x spacing
of n frets, and arbitrary neck width in y direction, and seen
image (bottom) with warped spacing.

in the (x, y) plane are plotted in Figure 3, where the xi

coordinates are related by

xi =
i∑

k=0

x0 × 2
k
12 (9)

4.1 Homography

Homography is the process of applying a projective linear
transformation to a scene (a 2D image or 3D space), to de-
scribe how perceived positions of observed objects change
when the point of view of the observer (a camera) changes.
Homography will be used to determine the correct perspec-
tive transformation, i.e. rectify or warp the original image
to fit the ideal fretboard spacing in Figure 3. This will make
it easy to isolate the fretboard in the image for analysis.
The general homography matrix equation

wp′ = Hp (10)

states that points in the image, p′ can be expressed as a
warping of ideal points p with a homography matrix H,
including a scale factor w. The homography matrix is
a transformation matrix between the two images, based
on which a one-to-one relationship between the features
points p′ and p [6]. Specifically, the points will have two
dimensions, x and y, and will be expressed in terms of a
3x3 homography matrix with elements hij .

w

 x′i
y′i
1

 ≈
 h00 h10 h20

h10 h11 h12

h20 h21 h22

  xi

yi

1

 (11)

xi are determined from (9) and yi are determined as
an arbitrary guitar neck width (from the ideal, rectangu-
lar fretboard). The corresponding reference points (x′i, y

′
i)

in the image now need to be established, to compute the
homography matrix, H.

4.2 Reference Point Tracking

In order to perform the homography rectification concepts
in 4.1, the correct reference points in the image must be
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Figure 4. (top) Original image showing tracking points (in
red), projected frets (in green) using the homography ma-
trix. (bottom) Ideal fretboard, and subsection of original
image after applying homography matrix to each coordi-
nate.

determined. Attempts were made at using an iterative non-
linear error minimization method, which proved initially
unsuccessful (see later section 6). Instead, distinct bright
colored stickers were placed at various fret locations on the
neck of the guitar. The coordinates of these points (x′i, y

′
i)

were tracked in each frame of video using a simple color
masking followed by a k-means clustering algorithm. The
small stickers were placed on the neck of the guitar on ei-
ther side of the metal frets, so as not to interfere with the
guitarist’s playing and the timbre of the instrument.

A set of (xi, yi) and (x′i, y
′
i) now exist, corresponding

to the frets of the guitar. The homography matrix is deter-
mined by minimizing the mean square error of (11) using
these points. Applying the inverse transformation, H−1,
to the ideal grid in Figure 3 yields frets that overlay per-
fectly with the frets in the image (Figure 4). Applying H
to the original image and taking the subsection of coordi-
nates yields the rectified fretboard (Figure 4), whose fret
spacings are known from (9). The rectified fretboard is
now isolated and in a usable form for PCA.

4.3 Determination of Chord Style

The next goal is to determine which chord voicing, given
the subset of voicings that exist for a particular chord. PCA
is used to decompose the rectified fretboard in its “eigen-
chord” components, and determine the correct chord voic-
ing.

Let the training set of fretboard images be F1, F2...FM

which are vectors of length LW for an image with di-
mensions L by W . An example training set of fret-

Figure 5. Example fretboard images used for training.

board images is shown in Figure 5. The average image
is A = 1

M

∑M
i=1 Fi, and each image with subtracted mean

is F̄i = Fi − A. PCA seeks to find the eigenvectors and
eigenvalues of the covariance matrix

C =
1
M

M∑
i=1

F̄iF̄
T
i (12)

= SST (13)

where S = [F̄1, F̄2...F̄M ] is a set of training of images in
matrix form. However, C is of dimension LW ; the im-
ages used in this experiment are of size 80x640 pixels, and
computing 51200 eigenvectors and eigenvalues is compu-
tationally intractable. Turk et. al presented a method for
solving for the LW eigenvectors by first solving for the
eigenvectors of an MxM matrix ST S [7]. The M eigen-
vectors vl are used to form the eigenvectors ul of C.

ul =
M∑
i=1

vlF̄i l = 1...M (14)

A new image F̃ can be reduced to its eigen-chord com-
ponents, ck, using the M ′ eigenvectors which correspond
to the larger eigenvalues of ST S.

ck = uk(F̃ −A) k = 1...M ′ (15)

5. EXPERIMENTAL RESULTS

Three guitarists were asked to perform a sequence of
chords from chord diagrams. The chords were a selec-
tion drawn from eight scales (major and minor), each in
three voicing-dependent positions: open (traditional open
stringed), barred, and a 1st inversion, totaling 24 chords
all together. The system was evaluated using various
combinations of features derived from audio only, video
only, and combinations thereof. All experiments were per-
formed using leave-one-out training of audio and video
when using PCA.
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Specmurt Piano!roll of C#m7 Jazz Chord
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Figure 6. Specmurt piano-roll output of a C#m7[5 jazz
chord.

5.1 Audio Only

The output of Specmurt analysis is a piano-roll vector of
size 48, each element corresponding to the energy of a
chromatic note from C2 to B5 (4 octaves, 12 notes per oc-
tave). An example of a piano-roll vector over multiple time
frames is shown in Figure 6.

Two methods were used to calculate the correctness of
the chord scale and voicing using this vector. It is known
what notes make up each major and minor scale. There-
fore, the chord scale was evaluated by summing the energy
over all octaves of the notes belonging to that chord - sim-
ilar to chroma analysis. The chord scale with the highest
energy was assumed to be correct, yielding an accuracy of
98.6%.

It is not deterministic, however, as to which chord voic-
ing created a particular set of notes, or chord. For example,
both the G major open chord and G major barred chord
contain six notes total, all of the same fundamental fre-
quencies, but the notes are rearranged on different strings,
and hence use different fingerings. Therefore, a training set
using the piano-roll energy vector was developed for each
chord scale. Using PCA to identify chord voicing from the
piano-roll vector shows some accuracy (62%) but is under-

Audio only Video only Combined System
Scale 98.6 34.8 98.6
Voicing 62.0 94.4 94.4
Both 61.1 32.8 93.1

Table 1. Accuracy results for various combinations of
modes of information. Combined accuracy results using
Specmurt for scale identification, and video for voicing
identification showing highest accuracy.
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Figure 7. Three voicings from A minor, G major, and C
major, after being projected into the chord-space. Various
colors and symbols show the how the voicing of chords
remain grouped after dimensionality reduction.

standably low, as the difference in note energies may be
very fine and inseparable for different voicings with simi-
lar notes.

5.2 Video Only

A training set of 240 images was used to build the eigen-
chord space for each test. Frames of video were then pro-
jected into the chord-space using three eigen-chords of the
training set using (15), and its closest centroid was as-
sumed to be the correct chord.

Chord scale identification using only video performed
extremely poorly (34%). This is expected, as the chord
scale centroids in the projected chord-space after PCA are
somewhat meaningless. For a particular chord scale, many
different voicings exist at various points on the fretboard,
which is what we hope to separate by using PCA.

For chord voicing however, very high accuracy was
achieved (94.4%). Figure 7 shows how various voicings
of chords, irrespective of scale, tend to group together due
to the similar hand shapes used by the guitarist.

5.3 Combined System

The system which performs the best in terms of correctly
identifying the overall chord (scale and voicing) utilizes
the strong points of scale and voicing identification within
the audio and video results. Since Specmurt analysis
yielded extremely high accuracy for determining scale, it
was used as a preprocessing step to voicing identification
via video.

6. FUTURE WORK

The video and audio components of this guitar chord iden-
tification system have the potential to be expanded upon.
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Figure 8. Guitar image (left) and edge-thresholded image
(right).

6.1 Automatic Fretboard Registration

Placing colored tracking points along the neck of the guitar
presents additional constraints on how the guitar fretboard
can be rectified: all the tracking points must be visible in
the frame of video, and nothing else in the frame may have
similar color. Ideally, we would like to locate the fretboard
without these points. By looking at the edge-detected im-
age of a guitar, this produces a fairly accurate represen-
tation of where the frets are - the color of the metal frets
contrasts heavily with that of the wooden neck, providing
edges at frets (Figure 8).

Using the homography concept in 4.1, the points de-
noted as edges, p′, should be warped using H−1 to align
with the ideal fret-grid points p. This is equivalent to min-
imizing an error function defined as

E(H) = ||p−H−1p′||2 (16)

H = argmin
H

(E(H)) (17)

After experimentation, the error function E(H) is no-
ticeably non-convex, and contains local minima in H. The
two fret-grids “align” in alternate orientations which are
incorrect, but still minimize the error function. This area
of research is being continued with the motive of constrain-
ing (16) and (17), such that the error function will always
be convex, and converge to a global minimum when the
two images are correctly aligned.

6.2 Larger Training Sets

Very high accuracy of video voicing identification (94.4%)
was achieved using image data from only three guitarists.
A more robust classifier of chord voicings could be cre-
ated by collecting more data, to account for players who
use non-traditional finger orientations for chords. With
more data, the accuracy of determining chord scale from
video may increase (34.8%), as scales may then form more
meaningful distributions in the eigen-chord space.

6.3 Additional Chord Types

This system is very extendable to detect different chord
scales besides major and minor. Detection of diminished,
augmented, 7th, and other jazz chords are easily imple-
mented with the chroma-style analysis of Specmurt’s out-
put, and refined search using the eigen-chord decomposi-
tion of the fretboard image.

6.4 Fusing Audio/Video Data

Currently the system uses Specmurt analysis to determine
a chord’s scale as a pre-processing step to eigen-chord de-
composition of the fretboard to determine voicing. This
means that any error introduced by Specmurt propagates
throughout the rest of the system. Therefore it is desired to
jointly estimate the scale and voicing together using audio
and video features simultaneously.

7. CONCLUSION

This paper has presented an alternate approach to au-
tomatic guitar chord identification using both audio and
video of the performer. The accuracy of chord identi-
fication increases from 61.1% to 93.1% when using au-
dio for scale identification, and video for voicing. The
“eigen-chord” decomposition of fretboard images proved
extremely successful in distinguishing between a given
chords voicings (normal, barred, inverted) if the chord
scale is known (94.4%).
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ABSTRACT

We present an approach for cover version identification

which is based on combining different discretized features

derived from the chromagram vectors extracted from the

audio data. For measuring similarity between features,

we use a parameter-free quasi-universal similarity metric

which utilizes data compression. Evaluation proves that

combined feature distances increase the accuracy in cover

version identification.

1. INTRODUCTION

Measuring similarity in music is an essential challenge in

music information retrieval (MIR). However, the definition

of similarity is not trivial. Clearly, pieces of music from the

same genre are similar in various features such as orches-

tration, but the essential similarity of the compositions can

vary largely within the genre.

Cover version identification provides a valid, objective

way to estimate how well similarity in music can be rec-

ognized and measured. Cover versions often differ in var-

ious musical features, but can still be distinguished to be

different performances of one composition by a human lis-

tener. Thus, successful cover version identification yields

important information on how similarity in music can be

measured and how features affecting the similarity can be

represented.

We approach the problem of cover version identifica-

tion by taking into account several features derived from

the chromagram. These features are represented using dif-

ferent kinds of discrete alphabets and the similarity be-

tween features is calculated using a similarity metric called

normalized compression distance (NCD) [9]. Evaluation

shows that when using NCD for cover version identifica-

tion, better identification accuracy can be obtained by tak-

ing several features into account instead of just focusing on

a single feature.

Cover version identification is an objective way to esti-

mate the performance of a retrieval system based on musi-

cal similarity. Cover versions, especially in popular music,
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are often intentionally different from the original record-

ings of the composition. Changes are common in such

features as the musical keys, structures, tempos and ar-

rangements. Also, the lyrics can be altered, translated to

another language, or completely discarded. It is more dif-

ficult to estimate the features which do not change, but usu-

ally these are the melodic and harmonic features.

When successful, cover version identification provides

a reliable content-based way to measure the essential sim-

ilarity in different pieces of music. This provides various

potential targets of applications for such systems and algo-

rithms, ranging from end users to music researchers.

In recent years, cover version identification has gained

a significant amount of interest from the MIR community.

Although a relatively short time has passed since the prob-

lem of cover version identification was addressed, the prob-

lem has been studied extensively and with various different

kinds of approaches.

The most important feature in cover version identifica-

tion is the chromagram. Chromagram, also known as the

pitch class profile, is a sequence of 12-dimension vectors

which describe the relative energy of each semitone pitch

class. As such, chromagram captures important tonal in-

formation and represents the harmonic and melodic con-

tent of the audio file.

Various different methods for measuring similarity be-

tween chromagrams or features derived from chromagrams

exist. These include dynamic time warping and other edit

distance variants, dot product and cross correlation. For an

extensive and comparative review on different cover ver-

sion identification approaches, we refer to [20].

The MIREX (Music Information Retrieval Evaluation

eXchange) is a community-driven effort providing evalua-

tion for different MIR applications. Cover version identifi-

cation has been a MIREX task since 2006, and through the

years, several different approaches have participated in the

evaluation and significant improvement in the identifica-

tion performance can be perceived. In 2009, the best per-

forming cover version identification application performed

with a mean of average precision value of 0.75 1 , suggest-

ing that there still are several unsolved problems in cover

version identification which need to be addressed until the

problem can be declared solved.

We propose an approach that uses a similarity metric

called normalized compression distance (NCD) [9] for mea-

suring the similarity between features extracted from the

1
http://www.music-ir.org/mirex/2009/index.php/Audio Cover Song Identification Results
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audio files. For features, we extract several different repre-

sentations from the chromagram vectors. As data compres-

sion works with discrete symbols, we use several differ-

ent techniques for quantizing the continuous chroma val-

ues. Our starting point is that different representations have

more distinguishing power when combined than they have

when used alone. Also, we assume that when using NCD

the chromagram cannot be quantized into a representation

which both contains all the required information and is not

too noisy. Thus, different features must be represented and

measured on their own.

The rest of this paper is organized as follows. In Sec-

tion 2, we give a brief tutorial on the concepts and theories

behind the normalized compression distance. In Section 3

we describe the chroma features we use for identification.

The approach is evaluated in Section 4. Finally, we present

conclusions and discussion in Section 5.

2. NORMALIZED COMPRESSION DISTANCE

Normalized compression distance (NCD) is a distance met-

ric that has its roots in information theory. The idea is to

measure the information in an object using Kolmogorov

complexity, the length in bits of the shortest binary pro-

gram that produces the object as an output. Based on the

Kolmogorov complexity, a universal information distance

can be calculated. This distance, called normalized infor-

mation distance [9], is denoted

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
(1)

where K(x) is the Kolmogorov complexity of the string

x and K(x|y) is the conditional Kolmogorov complexity,

meaning the length of K(x) given the information of y.

However, Kolmogorov complexity is non-computable,

and thus the normalized information distance cannot be

calculated. However, Kolmogorov complexity can be ap-

proximated using any standard lossless data compression

algorithm. The better the compression of a string is, the

closer the approximation is to the Kolmogorov complex-

ity.

The normalized compression distance approximates the

Kolmogorov complexity with the aid of a data compression

algorithm. For strings x and y, the NCD is denoted

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
, (2)

where C(x) is the length of the string x when compressed

using a standard lossless data compression algorithm C

and xy is the concatenation of the two strings.

NCD is proven to be robust against noise in the data [8],

and studies have proven that observing several common

pitfalls of the compression algorithms will help to evade

problems when measuring the distances [7]. Especially,

PPM-based (Prediction by Partial Matching) compression

algorithms have been proven to be resistant against noise

[8] and performwell in NCD calculation despite the lengths

of the files [7].

Normalized compression distance has been used for sev-

eral tasks in MIR. In the symbolic domain, there has been

research at least in melody classification [16], genre clas-

sification [9], composer classification [9] and piano music

classification [10]. In the audio domain, NCD has been ap-

plied for tasks such as structure-based clustering [3], genre

classification [6, 17], cover version identification [1] and

query by example [12].

3. CHROMA FEATURES

The chromagram seems to be the only valid feature to be

used for cover version identification. For example, the

MFCC vectors capture the timbral information of the au-

dio file, but this information has very little help in iden-

tifying cover versions. The chromagram is robust against

the changes in instrumentation and dynamics, and it cap-

tures both melodic and harmonic information from the au-

dio file.

The easiest way to measure similarity between chroma-

grams using NCD would seem to be converting the chro-

magram into a sequence of characters and calculating the

distance between these. However, we noticed that this ap-

proach has several drawbacks. If the alphabet used in se-

quences is small, the information contained in the chro-

magram will be too reduced and different sequences will

turn out too similar, making distinguishing the sequences

challenging. A large alphabet that contains most of the

information of the chromagram, on the other hand, will

make sequences noisy and lead into insignificant compres-

sion and thus into impractical identification. Our solution

is to extract various feature sets of the chromagram and

measure the similarities between each set.

For obtaining chromagram from the audio file, we use

MIRToolbox [15], version 1.3. The window length for the

Fourier transform needed in obtaining the chromagram is

0.1858 seconds and the hop factor is 0.875. We use a four-

octave range of transformation with a minimum frequency

of 55 Hz.

We do not have any tempo estimation and beat aver-

aging over the chromagram frames. This is based on the

assumption that unsuccessful tempo estimation might lead

to even noisier representations and thus to worse identifica-

tion results. A similar observation was made in [2], where

frame-based identification yielded better results than the

tactus-based version. Also, in [1] it was suggested that the

shorter chroma sequences produced by the beat averaging

may have a negative impact on the NCD values, because

the error between K(x) and C(x) minimizes as the file

length increases [9].

For compression, we use the PPMZ compression al-

gorithm. The PPMZ is a statistical, more efficient com-

pression algorithm than the more commonly used gzip and

bzip2. Thus, it provides a better approximation of the Kol-

mogorov complexity. This may not, however, lead auto-

matically into better NCD values, as the improvements in

compression may be different for the different items in the

formula and thus cause the NCD value to move away from

the NID value [9].
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3.1 Chroma Sequence Labeling

In order to measure similarity successfully with a com-

pression algorithm, the continuous chroma vectors need

to be quantized. Out of the several existing quantization

methods, the hidden Markov model (HMM) has the ad-

vantage of taking into account the temporal statistics. The

HMM approach has been studied extensively in converting

chroma vectors into a discrete representation, and it is a

common method when estimating a chord sequence repre-

sentation from the harmonic content of the audio. The ap-

proach can be described as a process of using the chroma

vectors as observations for a HMMwhose each state repre-

sents a triad chord, training the model with the expectation-

maximization (EM) algorithm, and finally obtaining the

state transition path using the Viterbi algorithm.

Out of the several different methods, we use the one

suggested by Bello and Pickens [4]. This means initializ-

ing the state transition parameters according to a double-

nested circle of fifths and selecting the mean vectors and

the covariance matrices on the basis of musical knowledge.

When training the model with the EM algorithm, we train

only the state distribution and transition parameters and

leave the observation parameters untrained.

The 24-chord estimation provides a robust but slightly

noisy representation of the harmonic content of the audio

file. When observing the representations we noticed that

the estimated chords were occasionally oscillating between

major and minor chords of the same root note. This sug-

gests that the third of the chord can harm the sequence la-

beling. Similar observation can be derived from theMIREX

chord detection task where average overlap scores usu-

ally become better when the major and minor chords are

merged (see for example the results of the MIREX Chord

Detection Task 2009 2 ). This led us to an experiment with

a 12-state HMM, where the triad of the chord is discarded

from the chord templates. In the 12-state HMM, the initial

parameters are set in a similar manner as with the 24-state

HMM, but with respect to the simpler model and reduced

chords. As such, the state sequence provided by the Viterbi

algorithm can be seen as a “power chord” representation.

Such representation is clearly too reduced and inaccurate

to distinguish the versions on their own, but it seems to im-

prove the identification performance when used in parallel

with the 24-state HMM representation. In Figures 1 and 2

we display state sequences derived from a single audio file

using 24- and 12-state HMMs, respectively.

3.2 Chromagram Flux

In addition to the chromagram vectors themselves, we ex-

perimented on whether the distance between subsequent

chromagram vectors might have any effect. A somewhat

similar approach was presented in [14], where a 12-dimen-

sion dynamic chroma vector feature called delta chroma

was utilized. The delta chroma describes the degree of

chroma changes on all possible intervals.

Here, we do not consider the delta chroma, but instead

2
http://www.music-ir.org/mirex/2009/index.php/Audio Chord Detection Results

we calculate the distances between successive chroma vec-

tors. A similar approach was utilized in [21], where corre-

lation between adjacent chroma vectors was used as a fea-

ture in identification. We discovered empirically that the

Manhattan distance (the city-block distance) had more dis-

tinguishing power for our work than Eucledian or cosine

distances.

The Manhattan distances between chroma vectors of a

musical piece can be seen as a time series. To discretize the

time series, we use SAX (Symbolic Aggregate approXi-

mation) [18]. In short, SAX discretizes the continuous val-

ues by first reducing their dimensionality using piecewise

aggregate approximation and then discretizing the values

according to a Gaussian curve. We chose SAX after exper-

imenting with several quantization methods. Also, SAX

has been used successfully for quantization when calculat-

ing similarity between time series using NCD [13].

Selection of the SAX parameters is not a trivial task.

As we want to represent the whole chromagram flux as a

string of characters, the sliding window is set to the length

of the chromagram. The alphabet size and SAX accuracy

parameters are more difficult to choose. We set the alpha-

bet size to four and the number of frames per character to

ten. These were chosen empirically, and thus are open to

discussion.

3.3 Strongest Tone Sequence

The chromagram represents not only harmonic, but also

melodic information contained in the audio file. We tested

several methods to have more melodic information from

the chromagram to be presented in a format suitable for

NCD, but as with the chromagram quantization, different

representations proved either to be too noisy or too reduc-

ing.

However, a straightforward way to represent some of

the mid-level melodic information proved to increase the

identification accuracy. We took the index of the strongest

pitch class of a chroma vector (for a normalized chroma

vector, the pitch class with the value of one), and repre-

sented the piece of music as a sequence of the strongest

pitch class components. For a less densely orchestrated

piece of music, this representation provides some informa-

tion of the predominant melody of the piece. Even with

more dense arrangements, it provides a representation that

displays information different from the sequence labeling.

3.4 Transposition

Because cover versions are occasionally performed in a

different key, the distance between chroma features can

turn out large if key invariance is not addressed, even if

the chroma features would otherwise be fairly similar. To

obtain key invariance, a possible solution is to calculate

distances between all 12 transpositions of the candidate

version, but this is time-consuming. Another solution is to

transpose the chromagrams into a common key using key

estimation, but as with the tempo estimation, key estima-

tion can fall short and lead to even worse identification re-

sults. We do not estimate the keys from the chromagrams,
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Figure 1. 24-state HMM Viterbi path for With A Little

Help From My Friends performed by The Beatles.

but instead use Optimal Transposition Index (OTI) [19]

to transpose the chroma sequences into a common key.

In OTI, the transposition index is selected by first taking

the global chroma vectors (by summing and normalizing

the chroma vectors) of the two pieces of music. Then,

the transposition index is selected by rotating the candi-

date global chroma vector 12 times and calculating the

dot product between each pair of the target and candidate

global chroma vectors. The rotation with the highest dot

product is selected as the transposition index and the whole

chromagram of the candidate is rotated according to the in-

dex. Fast and straightforward, OTI has also been proven to

provide better identification accuracy than using the key

estimation [19]. We apply OTI before any feature extrac-

tion.

3.5 Total Distance

After the distances between all the features of the pieces

of music are calculated, the total distance for a pair of per-

formances is obtained by simply taking the mean of all the

feature distances. The distances could be weighted accord-

ing to the importance of the features. To reduce the pos-

sible bias in the mean values caused by outliers, we also

measured the total distance as the median of all measured

feature distances.

4. EVALUATION

4.1 Test Data

To evaluate the performance of our approach, we collected

a data set of original performances and their cover ver-

sions. For each original piece of music we included five

cover versions. The data set included 25 such six-song

sets and to complete the collection, a total number of 600

unique pieces of music were included, thus making the col-

lection a total of 750 pieces of music with 150 possible

queries.

The material was obtained from personal music collec-

tions and contains mostly western popular music, but with
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Figure 2. 12-state HMM Viterbi path for With A Little

Help From My Friends performed by The Beatles.

cover versions ranging from classical music renditions to

world music and electronic versions. Apart from studio

cover versions by different artists, the data set also includes

live versions and a few remixes of the original versions.

The complete detailed content of the data set can be re-

quested from the authors.

4.2 Results

We used each of the 150 versions in the dataset as a query.

From the output distance matrix, we calculated the total

number of identified covers in the top five (TOP-5), the

mean of average precisions (MAP) and the mean rank of

the first identified cover (RANK). The results, using the

mean as the total distance, are depicted in Table 1.

To present the effect of each different feature in the

identification, we ran the algorithm for the whole test data

set using only selected features of the feature set. The re-

sults for different feature sets, using the mean as the total

distance, are depicted in Table 2.

The difference between using the mean and median val-

ues as the total distance is depicted in Figure 3. Generally,

using the median as the total distance provided smaller dis-

tances. This suggests that outliers do exist in the feature

distances and overall identification could be improved by

taking them into account. However, using the mean as the

total distance provided slightly better identification accu-

racy with a TOP-5 rating of 263 against the TOP-5 rating

of 243 of the median distance.

4.3 Comparison to the LabROSA Cover Song

Detection System

To see howwell our approach performs in comparison with

another cover version identification approach, we ran our

test data with the LabROSACover Song Identification soft-

ware [11]. To our knowledge, this is the only cover ver-

sion identification application that is freely distributed and

available online 3 .

3 http://labrosa.ee.columbia.edu/projects/coversongs/
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Measure Value Range

TOP-5 263 [0–750]

MAP 0.410 [0–1]

RANK 4.795 [1–745]

Table 1. Results of the 150 query evaluation.

Features used TOP-5 MAP

24-state HMM 216 0.356

24- and 12-state HMM 242 0.378

HMMs and Chroma flux 249 0.399

All features 263 0.410

Table 2. The effect of combining different features.

The comparison between the results of our approach

and the LabROSA application is depicted in Table 3. The

results show that the performance of our application is com-

parable with the performance of the LabROSA system.

However, we are aware that the LabROSA application was

introduced several years ago and is possibly not compara-

ble with some of the state-of-the-art approaches. For com-

paring the performance of our approach with more state-

of-the-art approaches, we refer to the future MIREX cover

song identification task where our application will be sub-

mitted.

5. CONCLUSIONS

We have presented an approach for cover version identi-

fication that combines different features derived from the

chromagrams extracted from the audio files. To discretize

continuous values, several techniques such as HMM and

SAX have been used. The similarity between discretized

features is calculated using a distance metric called nor-

malized compression distance, which uses data compres-

sion to approximate the Kolmogorov complexities of the

objects and as such is a quasi-universal, parameter-free

similarity metric.

Based on the results, it is evident that the chroma fea-

ture combination together with the NCD metric can be

used for cover version identification. As our results proved,

combining different features and composing the final dis-

tance based on the distances between these features pro-

vides more accurate identification with the NCD. The al-

gorithm was tested with competent results against a large

data set consisting of various different kinds of versions

from original performances.

The biggest obstacle for using normalized compression

distance for cover version identification is the process of

converting continuous features to discrete representations.

Extracting features from audio is likely to yield noisy rep-

resentations, and although NCD has been proved to be re-

sistant against noise [8], it still affects the identification.

Our approach has more emphasis on the harmonic fea-

tures, and observing the results supports this: pieces of mu-

sic with distinctive, recognizable harmonic content are eas-
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Figure 3. Mean distances for the first identified covers

in ten 6-version cover sets using mean and median total

distances.

ily identified even when arrangements and structures vary.

Also, as stated, we comprise the total distance simply as

a mean of all distances, but this could be improved by

weighting the different distances according to their rele-

vance. Using the median as the total distance also gave a

finding of the bias caused by the outliers.

Another issue demanding attention is that the phases of

the measuring process each have a wide selection of pa-

rameters. Parameter selection is present in every phase of

the identification process: from selecting the parameters

of the Fourier transform when obtaining the chromagram

to the choice of the compression algorithm used for cal-

culating the NCD values. It is unclear if the parameters

we have selected are optimal for the identification task and

also the possibility of overfitting is evident. Future work

addressing the parameter selection is under consideration.

5.1 Remark on Different Versions

As the cover version dataset also included live renditions

and remixed versions of the original recordings, we took a

closer look at the cases of these versions.

Live versions, either by the performers of the original

versions or by a different performer, were in most cases

identified very well. We see two reasons for this. First, live

versions are often quite similar to original versions, having

only slight modifications such as key, tempo or small struc-

tural differences (lengthier introductions or solo sections).

Second, the live versions are less densely produced and

arranged, whereas the studio versions are usually far more

orchestrated. This makes the chroma features derived from

live versions less noisy, which in turn benefits the similar-

ity measuring. All in all, live version detection can be seen

as a somewhat easier case of cover version identification.

Thus, developing and testing cover version identification

algorithms using predominantly live renditions may lead

to slightly biased results.

Remixed versions, on the other hand, were often far

more difficult to identify. In many cases, remixed versions
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System TOP-5 MAP

Our approach 263 0.410

LabROSA 256 0.405

Table 3. The results between our approach and LabROSA

system.

share only limited elements similar to the original perfor-

mance, usually combining audio elements of the original

performances with completely different, and often elec-

tronic, instrumentation. Whereas live versions usually have

very little changes in structures and a stripped-down in-

strumentation, the situation is often completely vice versa

with remix versions: the original structure is often com-

pletely discarded and the instrumentation is usually even

more dense than the original performance. We feel free

to say that remix version identification is a far more dif-

ficult case of cover version identification. Thus, it would

be interesting to see how well cover version identifiers per-

form when the task is specifically remix version identifi-

cation. To our knowledge, version identification special-

ized in remix identification has been done only on a small

scale [5].
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[19] J. Serrà, E. Gómez, and P. Herrara. Transposing

chroma representations to a common key. In IEEE CS

Conference on The Use of Symbols to Represent Music

and Multimedia Objects, 2008.
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ABSTRACT

In audio based music similarity, a well known effect is
the existence of hubs, i.e. songs which appear similar to
many other songs without showing any meaningful per-
ceptual similarity. We verify that this effect also exists in
very large databases (> 250000 songs) and that it even
gets worse with growing size of databases. By combining
different aspects of audio similarity we are able to reduce
the hub problem while at the same time maintaining a high
overall quality of audio similarity.

1. INTRODUCTION

One of the central goals in music information retrieval
is the computation of audio similarity. Proper modeling
of audio similarity enables a whole range of applications:
genre classification, play list generation, music recommen-
dation, etc. The de facto standard approach to computa-
tion of audio similarity is timbre similarity based on para-
meterization of audio using Mel Frequency Cepstrum Co-
efficients (MFCCs) plus Gaussian mixtures as statistical
modeling (see Section 3.1). However, it is also an es-
tablished fact that this approach suffers from the so-called
hub problem [3]: songs which are, according to the audio
similarity function, similar to very many other songs with-
out showing any meaningful perceptual similarity to them.
The hub problem of course interferes with all applications
of audio similarity: hub songs keep appearing unwontedly
often in recommendation lists and play lists, they degrade
genre classification performance, etc.

Although the phenomenon of hubs is not yet fully un-
derstood, a number of results already exist. Aucouturier
and Pachet [1] established that hubs are distributed along
a scale-free distribution, i.e. non-hub songs are extremely
common and large hubs are extremely rare. This is true
for MFCCs modelled with different kinds of Gaussian
mixtures as well as Hidden Markov Models, irrespective
whether parametric Kullback-Leibler divergence or non-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

parametric histograms plus Euclidean distances are used
for computation of similarity. But is also true that hubness
is not the property of a song per se since non-parametric
and parametric approaches produce very different hubs. It
has also been noted that audio recorded from urban sound-
scapes, different from polyphonic music, does not produce
hubs [2] since its spectral content seems to be more ho-
mogeneous and therefore probably easier to model. Di-
rect interference with the Gaussian models during or after
learning has also been tried (e.g. homogenization of model
variances) although with mixed results. Whereas some au-
thors report an increase in hubness [1], others observed the
opposite [5]. Using a Hierarchical Dirichlet Process in-
stead of Gaussians for modeling MFCCs seems to avoid
the hub problem altogether [6].

Our contribution to the understanding of the hub prob-
lem is threefold: (i) since all results on the hub problem so
far were achieved on rather small data sets (from ∼ 100
to ∼ 15000 songs), we first establish that the problem also
exists in very large data sets (> 250000 songs); (ii) we
show that a non-timbre based parameterization is not prone
to hubness; (iii) finally we show how combining timbre
based audio similarity with other aspects of audio similar-
ity is able to reduce the hub problem while maintaining a
high overall quality of audio similarity.

2. DATA

2.1 Web shop data

For our experiments we used a data set D(ALL) of SW =
254398 song excerpts (30 seconds) from a popular web
shop selling music. The freely available preview song ex-
cerpts were obtained with an automated web-crawl. All
meta information (artist name, album title, song title, gen-
res) is parsed automatically from the hmtl-code. The ex-
cerpts are from U = 18386 albums from A = 1700 artists.
From the 280 existing different hierarchical genres, only
the GW = 22 general ones on top of the hierarchy are
being kept for further analysis (e.g. “Pop/General” is kept
but not “Pop/Vocal Pop”). The names of the genres plus
percentages of songs belonging to each of the genres are
given in Table 1. Please note that every song is allowed
to belong to more than one genre, hence the percentages
in Table 1 add up to more than 100%. The genre informa-
tion is identical for all songs on an album. The numbers of

171

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



genre labels per albums range from 1 to 8. Our database
was set up so that every artist contributes between 6 to 29
albums.

To study the influence of the size of the database on re-
sults, we created random non-overlapping splits of the en-
tire data set: D(1/2) - two data sets with mean number of
song excerpts = 127199, D(1/20) - twenty data sets with
mean number of songs excerpts = 12719.9, D(1/100) -
one hundred data sets with mean number of songs excerpts
= 2543.98. An artist with all their albums is always a
member of a single data set.

Pop Classical Broadway
49.79 12.89 7.45

Soundtracks Christian/Gospel New Age
1.00 10.20 2.48

Miscellaneous Opera/Vocal Alternative Rock
6.11 3.24 27.13
Rock Rap/Hip-Hop R&B
51.78 0.98 4.26

Hard Rock/Metal Classic Rock Country
15.85 15.95 4.07
Jazz Children’s Music International
6.98 7.78 9.69

Latin Music Folk Dance & DJ
0.54 11.18 5.24

Blues
11.24

Table 1. Percentages of songs belonging to the 22 genres
with multiple membership allowed for the web shop data.

2.2 Music portal data

We also used a smaller data base comprised of the mu-
sic of an Austrian music portal. The FM4 Soundpark is
an internet platform 1 of the Austrian public radio station
FM4. This internet platform allows artists to present their
music free of any cost in the WWW. All interested par-
ties can download this music free of any charge. This mu-
sic collection contains about 10000 songs and is organized
in a rather coarse genre taxonomy. The artists themselves
choose which of the GM = 6 genre labels “Hip Hop, Reg-
gae, Funk, Electronic, Pop and Rock” best describe their
music. The artists are allowed to choose one or two of the
genre labels. We use a data base of SM = 7665 songs for
our experiments. Number of songs and percentages across
genres are given in Table 2. Please note that every song is
allowed to belong to more than one genre, hence the per-
centages in Table 2 add up to more than 100%.

1 http://fm4.orf.at/soundpark

HiHo Regg Funk Elec Pop Rock
15.34 4.64 21.87 46.25 34.39 44.03

Table 2. Percentages of songs belonging to genres with
multiple membership allowed for the music portal data.
Genres are Hip Hop, Reggae, Funk, Electronic, Pop and
Rock.

3. METHODS

We compare two approaches based on different parame-
terizations of the data. Whereas Mel Frequency Cepstrum
Coefficients (MFCCs) are a quite direct representation of
the spectral information of a signal and therefore of the
specific “sound” or “timbre” of a song, Fluctuation Pat-
terns (FPs) are a more abstract kind of feature describing
the amplitude modulation of the loudness per frequency
band.

3.1 Mel Frequency Cepstrum Coefficients and Single
Gaussians (G1)

We use the following approach to compute music similar-
ity based on spectral similarity. For a given music collec-
tion of songs, it consists of the following steps:

1. for each song, compute MFCCs for short overlap-
ping frames

2. train a single Gaussian (G1) to model each of the
songs

3. compute a distance matrix MG1 between all songs
using the symmetrized Kullback-Leibler divergence
between respective G1 models

For the web shop data the 30 seconds song excerpts in
mp3-format are recomputed to 22050Hz mono audio sig-
nals. For the music portal data, the two minutes from the
center of each song are recomputed to 22050Hz mono au-
dio signals. We divide the raw audio data into overlapping
frames of short duration and use Mel Frequency Cepstrum
Coefficients (MFCC) to represent the spectrum of each
frame. MFCCs are a perceptually meaningful and spec-
trally smoothed representation of audio signals. MFCCs
are now a standard technique for computation of spec-
tral similarity in music analysis (see e.g. [7]). The frame
size for computation of MFCCs for our experiments was
46.4ms (1024 samples), the hop size 23.2ms (512 sam-
ples). We used the first d = 25 MFCCs for all experiments
with the web shop data and the first d = 20 MFCCs for all
experiments with the music portal data.

A single Gaussian (G1) with full covariance represents
the MFCCs of each song [8]. For two single Gaussians,
p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), the
closed form of the Kullback-Leibler divergence is defined
as [14]:
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KLN (p‖q) =
1
2

(
log
(

det (Σp)
det (Σq)

)
+ Tr

(
Σ−1

p Σq

)
+ (µp − µq)′ Σ−1

p (µq − µp)− d
) (1)

where Tr(M) denotes the trace of the matrix M ,
Tr(M) = Σi=1..nmi,i. The divergence is symmetrized
by computing:

KLsym =
KLN (p‖q) +KLN (q‖p)

2
(2)

3.2 Fluctuation Patterns and Euclidean Distance (FP)

Fluctuation Patterns (FP) [9] [12] describe the amplitude
modulation of the loudness per frequency band and are
based on ideas developed in [4]. For a given music
collection of songs, computation of music similarity based
on FPs consists of the following steps:

1. for each song, compute a Fluctuation Pattern (FP)
2. compute a distance matrix MFP between all songs

using the Euclidean distance of the FP patterns

Closely following the implementation outlined in [10],
an FP is computed by: (i) cutting an MFCC spectrogram
into three second segments, (ii) using an FFT to com-
pute amplitude modulation frequencies of loudness (range
0 − 10Hz) for each segment and frequency band, (iii)
weighting the modulation frequencies based on a model of
perceived fluctuation strength, (iv) applying filters to em-
phasize certain patterns and smooth the result. The result-
ing FP is a 12 (frequency bands according to 12 critical
bands of the Bark scale [15]) times 30 (modulation fre-
quencies, ranging from 0 to 10Hz) matrix for each song.
The distance between two FPs i and j is computed as the
squared Euclidean distance:

D(FP i, FP j) =
12∑

k=1

30∑
l=1

(FP i
k,l − FP

j
k,l)

2 (3)

For the web shop data an FP pattern is computed from
the full 30 second song excerpts. For the music portal data
an FP pattern is computed from the central minute of each
song.

4. RESULTS

4.1 Hubs in very large data bases

As a measure of the hubness of a given song we use the
so-called n-occurrence [1], i.e. the number of times the
songs occurs in the first n nearest neighbors of all the
other songs in the data base. Please note that the mean
n-occurrence across all songs in a data base is equal to
n. Any n-occurrence significantly bigger than n therefore
indicates existence of a hub. For every song in the data

data set n maxhub maxhub% hub3%
D(ALL) 500 29588 11.63 7.75
D(1/2) 250 12094 9.52 7.56
D(1/20) 25 590 4.68 6.13

D(1/100) 5 62 2.49 4.62

Table 3. Hub analysis results for web shop data using
method G1. See Section 4.1 for details.

data set n maxhub maxhub% hub3%
D(ALL) 500 3386 1.33 1.18
D(1/2) 250 1639 1.29 1.18
D(1/20) 25 137 1.08 1.12

D(1/100) 5 25 1.02 1.22

Table 4. Hub analysis results for web shop data using
method FP. See Section 4.1 for details.

bases D(ALL), D(1/2), D(1/20) and D(1/100) (see
Section 2.1) we computed the first n nearest neighbors for
both methods G1 and FP. For method G1, the first n nearest
neighbors are the n songs with minimum Kullback Leibler
divergence (Equation 2) to the query song. For method
FP, the first n nearest neighbors are the songs with mini-
mum Euclidean distance of the FP pattern (Equation 3) to
the query song. To compare results for data bases of dif-
ferent sizes SW , we keep the relation n/SW constant at
0.001965: e.g. for D(ALL) SW = 254398 and n = 500,
for D(1/100) SW = 2543.98 and therefore n = 5.

The results given in Tables 3 and 4 show mean values
over 100 (D(1/100)), 20 (D(1/20)), 2 (D(1/2)) data sets
or the respective single result for the full data setD(ALL).
We give the number of nearest neighbors n, the absolute
number of the maximum n-occurrence maxhub (i.e. the
biggest hub), the percentage of songs in whose nearest
neighbor lists this biggest hub can be found maxhub% =
maxhub/SW and the percentage of hubs hub3% (i.e. the
percentage of songs of which the n-occurrence is more
than three times n).

When looking at the results for method G1 (Table 3) it is
clear that hubs do exist even for very large data bases. As a
matter of fact, the hub problem increases significantly with
the size of the data base. Whereas for the small data sets
D(1/100) on average the biggest hub is in the neighbor
lists of 2.49% of all songs, the biggest hub for D(ALL)
is a neighbor to 11.63% of all songs. The number of hubs
increases from an average 4.62% of all songs in D(1/100)
to 7.75% in D(ALL). To sum up, there are more and big-
ger hubs in larger data bases when using method G1 for
computation of audio similarity.

The results for method FP in Table 4 show a quite dif-
ferent picture. The size of the biggest hub is much smaller
and the number of hubs is also much reduced. There is
also very little influence of the size of the data bases on the
results. We like to conclude that method FP is not as prone
to hubness as method G1.
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wG1 wFP maxhub maxhub% hub3% hub10% hub15% hub20% acc
1.0 0.0 879 11.47 8.05 0.94 0.40 0.22 48.47
0.9 0.1 598 7.80 8.15 0.86 0.35 0.09 49.84
0.8 0.2 445 5.81 8.23 0.80 0.23 0.08 49.47
0.7 0.3 342 4.46 8.11 0.72 0.16 0.05 48.44
0.6 0.4 352 4.59 8.06 0.57 0.09 0.01 47.80
0.5 0.5 344 4.49 8.04 0.51 0.07 0.01 46.58
0.4 0.6 334 4.36 7.91 0.31 0.04 0.01 45.73
0.3 0.7 315 4.11 7.80 0.21 0.01 0.01 44.93
0.2 0.8 247 3.22 7.21 0.17 0.01 0.0 43.94
0.1 0.9 215 2.81 6.72 0.04 0.0 0.0 42.82
0.0 1.0 145 1.89 5.38 0.0 0.0 0.0 38.45

Table 5. Hub analysis result for music portal data using combinations of G1 and FP. Results for using G1 or FP alone as
well as for a moderate combination are in bold face. See Section 4.2 for details.

4.2 Reducing hubs by combining G1 and FP

Recent advances in computing audio similarity rely on
combining timbre-based approaches (MFCCs plus Gaus-
sian models) with a range of other features derived from
audio. In particular, combinations of timbre and, among
other features, fluctuation patterns or variants thereof have
proven sucessfull [11, 13]. Such a combination approach
was able to rank first at the 2009 MIREX “Audio Mu-
sic Similarity and Retrieval”-contest 2 . Since our method
based on fluctuation patterns is less prone to hubness than
the timbre based approach, we tried to combine distances
obtained with methods G1 and FP. It is our hypothesis that
such a combination could reduce hubness and at the same
time preserve the good quality of timbre based methods in
terms of audio similarity.

Following previous approaches towards combination of
features [10, 11] we first normalize the distance matrices
MG1 andMFP by subtracting the respective overall means
and dividing by the standard deviations:

M̄G1 =
MG1 − µG1

sG1
M̄FP =

MFP − µFP

sFP
(4)

We combine the normalized distance matrices linearly
using weights wG1 and wFP :

M̄C = wG1M̄G1 + wFP M̄FP (5)

To evaluate the quality of audio similarity achieved by
combining methods G1 and FP we computed the genre
classification performance. We used nearest neighbor clas-
sification as a classifier. For every song in the data base
we computed the first nearest neighbor using the distance
matrix M̄C . The first nearest neighbor to a query song is
the song with minimum distance according to M̄C . To es-
timate genre classification accuracy, the genre label of a
query song squery and its first nearest neighbor snn were
compared. The accuracy is defined as:

acc(squery, snn) =
|gquery ∩ gnn|
|gquery ∪ gnn|

× 100 (6)

2 http://www.music-ir.org/mirex/2009/

with gquery (gnn) being a set of all genre labels for the
query song (nearest neighbor song) and |.| counting the
number of members in a set. Therefore accuracy is defined
as the number of shared genre labels divided by the set size
of the union of sets gquery and gnn times 100. The latter is
done to acount for nearest neighbor songs with two genre
labels as compared to only one genre label. The range of
values for accuracy is between 0 and 100. All genre classi-
fication results are averaged over ten fold cross validations.

We ran a series of experiments using the music por-
tal data base (see Section 2.2) and a number of different
weight combinations wG1 and wFP . To measure the hub-
ness of a given song we use n-occurrence with n equal 15.
The results given in Table 5 show: the weights wG1 and
wFP , the absolute number of the maximum n-occurrence
maxhub (i.e. the biggest hub), the percentage of songs in
whose nearest neighbor lists this biggest hub can be found
maxhub%, the percentage of hubs hub3|10|15|20% (i.e.
the percentage of songs of which the n-occurrence is more
than 3|10|15|20 times n) and the genre classification accu-
racy acc.

It is evident that with the weight wFP for method FP
growing, the hubs become smaller and less in number but
the genre classification accuracy also degrades. Whereas
using method G1 alone (i.e. wG1 = 1.0 and wFP = 0.0)
yields a maximum hub of size 879 that is in the nearest
neighbor lists of 11.47% of all songs, a moderate combi-
nation using weights wG1 = 0.6 and wFP = 0.4 dimin-
ishes the biggest hub to a size of 352. This reduced hub is
now a member of only 4.59% of the nearest neighbor lists.
Also the number of especially large hubs decreases: e.g.
the percentage of songs of which the n-occurrence is more
than 20 times n (hub20%) drops from 0.22% to 0.01%
(in absolute numbers from 17 to 1); the number of more
moderate sized hubs (hub10%) is still about halfed (from
0.94% to 0.57%, or from 72 to 44 in absolute numbers).
Such a moderate combination does not impair the overall
quality of audio similarity as measured with genre clas-
sification accuracy: it is at 47.80% which is at the level
of using method G1 alone yielding 48.47%. The baseline
accuracy achieved by always guessing the most probable
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Figure 1. n-occurrences of using method G1 alone (x-
axis) vs. n-occurrences using a moderate combination of
G1 and FP (y-axis, wG1 = 0.6 and wFP = 0.4) for music
portal data. The diagonal line indicates songs for which
the n-occurence does not change.

genre “Electronic” (see Table 2) is 29.11%. Always guess-
ing the two most probable genres “Electronic” and “Rock”
yields 36.46%.

In Figure 1 we have plotted the n-occurrences of using
method G1 alone (i.e. wG1 = 1.0 and wFP = 0.0) ver-
sus the n-occurrences of the moderate combination using
weights wG1 = 0.6 and wFP = 0.4. This is done for all
songs in the music portal data base. The n-occurrence of
every song beneath the diagonal line is reduced by using
the combination. All large hubs with an n-occurrence big-
ger than 300 are clearly reduced. The same is true for the
majority of hubs with n-occurrences between 200 and 300.

5. CONCLUSION

We were able to show that the so-called hub problem in au-
dio based music similarity indeed does exist in very large
data bases and therefore is not an artefact of using lim-
ited amounts of data. As a matter of fact, the relative
amount and size of hubs is even growing with the size of
the data base. On the same very large web shop data base
we were able to show that a non-timbre based parameteri-
zation of audio similarity (fluctuation patterns) is by far not
as prone to hubness as the standard approach of using Mel
Frequency Cepstrum Coefficients (MFCCs) plus Gaussian
modeling. Extending recent successful work on combin-
ing different features to compute overall audio similarity,
we were able to show that this not only maintains a high
quality of audio similarity but also decisively reduces the
hub problem.

The combination result has so far only been shown on
the smaller music portal data base, but there is no reason
why this should not hold for the larger web shop data. Only
limitations in computer run time led us to first evaluate the
combination approach on the smaller data set. We are not
claiming that our specific combination of features is the
best general route towards audio similarity. But we are
convinced that going beyond pure timbre-based similarity

is able to achieve two goals simultaneously: high quality
audio similarity and avoiding the hub problem.
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ABSTRACT

Are there new insights through computational methods to
the thorny problem of plotting the flow of musical influ-
ence? This project, motivated by a musicological study of
early synth pop, applies MIR tools as an aid to the inves-
tigator. Web scraping and web services provide one an-
gle, sourcing data from allmusic.com, and utilising python
APIs for last.fm, EchoNest, and MusicBrainz. Charts of
influence are constructed in GraphViz combining artist sim-
ilarity and dates. Content based music similarity is the sec-
ond approach, based around a core collection of synth pop
albums. The prospect for new musical analyses are dis-
cussed with respect to these techniques.

1. INTRODUCTION

Musicians have always been aware of issues of musical in-
fluence, from the lists of influences set out in adverts for
new band members, the intensive relationship of teachers
and pupils in many traditions, to composers consciously
admitting their predecessors through interviews, personal
journals, and in some cases unconscious or deliberate quo-
tations. Whilst it is convenient to focus on grand examples
in a ‘genius’ model of musical history, all eras of music
have had a host of active musicians, though no era more
than today’s hyper-warren of content creators. Chopin’s
letters, for example, are littered with references to other
active pianist-composers of the day, most of whom are no
longer household names, yet Chopin writes ‘I shall not be
an imitation of Kalkbrenner: he has not the power to extin-
guish my perhaps too audacious but noble wish and inten-
tion to create for myself a new world’ [9, p. 103]. The
literature on human creativity is of note here in explor-
ing the processes of human invention within the engine of
culture [5, 15]. Musicologists have re-cast traditional con-
cerns over influence to questions of ‘inter-textuality’, and
the degree to which any musical work can be seen as dis-
tinct from social and musical currents [16]. Influence is
intimately connected to the continuous negotiation of mu-
sical style as it transforms over time; the gradual formation
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of genres is implicit in much discussion of the philosophy
of stylistic categories in music [1, 10], and related to sim-
ilar questions in biology concerning speciation events and
memetics [4, 6].

Automated methods for the analysis of musical similar-
ity provide a new angle on relationships between works,
whether comparing individual pieces or within larger cor-
pora. For example, the data-driven analyses explored by
David Cope across MIDI files [3] are primarily used for
synthesis, but can also help to explore the links between
composers. Symbolic analysis tools in MIR parallel such
movements in algorithmic composition: McKay and Fu-
jinaga [11] discuss the application of their jSymbolic fea-
ture extractor and Autonomous Classification Engine ma-
chine learning tool to such projects as comparison between
a Chopin nocturne and Mendelssohn piano trio, or distin-
guishing de Machaut and Palestrina. Charles Smith has
carried out perhaps the largest musicological study of in-
fluence amongst classical composers by a series of mea-
sures applied over library resources, and presents it in a
website describing the ‘Classical Music Universe’. 1

There are many MIR studies which have analyzed the
current state of public opinion on artist similarity, for pur-
poses of tracking popularity and making recommendations.
Zadel and Fujinaga [19] combine cultural meta-data from
Amazon with a metric of similarity based on Google search
counts to generate a network of related artists through web
services. Fields et al. [8] scraped MySpace pages, trac-
ing the recursive (to sixth degree of separation) network
of friends and evaluating musical similarity through audio
content analysis of their sound examples. They mention
influence as one potential link between artists, but do not
unpack it from collaboration or general similarity. Park et
al. [13] also study the network structure of artists, by scrap-
ing online music databases such as allmusic.com, but con-
centrate on collaboration or ‘expert’ annotated similarity
rather than any explicit tie to dates. Again tackling MyS-
pace, Beuscart and Couronné [2] namecheck influence in
their title, but mean it as a general measure of recommen-
dation amongst cliques of artists rather than as a formative
influence on creative output.

Thus, although the topics of similarity and genre remain
central tenets of much music information retrieval work,
the role of dates as markers of the flow of influence is not
so widely discussed. This paper makes dates a central part
of a musicological investigation. The applicability of MIR

1 http://people.wku.edu/charles.smith/music/index2.htm
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tools to studies of influence both via online meta-data pars-
ing and content based analysis applications is explored. In
the latter content analysis, a tight knit set of synth pop al-
bums from the years 1977-1981 are put under the micro-
scope, providing a real challenge for discrimination and a
microcosm of gradual stylistic change.

Section 2 introduces the context of synth pop as well as
the central node, Depeche Mode (DM). Section 3 presents
web scraping and web service exploration of the network
of artists around DM, with a technique to automatically
extract dates for artists using the MusicBrainz web ser-
vice. Network diagrams are constructed through python
programs and GraphViz. Section 4 tackles the influence
question using a set of synth pop albums from the era up
to four years before the first DM release, looking for au-
tomatic recognition of possible leads on influence through
musical similarity (marsyas is the tool of choice here). Re-
sults and future extensions are discussed.

2. SYNTH POP AND DEPECHE MODE

The cost of analog synthesizers decreased in the 1970s,
until an all synthesizer band was a viable proposition for
musicians starting out in the post punk era [14]. Although
there are always earlier precedents, and synths had been
long known in popular music through such phenomena as
mass selling Moog albums, prog rock keyboardists, and
krautrock, a real concentration of synth led bands emerged
in the later 1970s into a position of mainstream chart suc-
cess. The Second Invasion of the US by British bands
on the back of MTV featured a plethora of synthesized
sounds, and the 1980s saw even greater availability of elec-
tronic equipment as digital technology stole the show. Al-
though some ‘New Romatic’ bands such as Duran Duran
had only a single keyboardist, the more central examples
of synth pop tend to feature all synthesizer backing, in-
cluding sequencers and drum machine in place of acoustic
drummers, after the Kraftwerk model; but like all supposed
categories, inbetween cases exist.

Depeche Mode were by no means the first synth pop
band, nor the first with popular market appeal; both Kraftwerk
as an all electronic band, and Gary Numan as an individ-
ual who featured synthesizers, had had greater commercial
success than their first album was to achieve. Yet in longer
term commercial and artistic success, impact and influ-
ence, DM are still of great importance, and a fascinating
subject of study in terms of tracking influence. They have
touched multiple putative genres, from early teen synth
pop, through darker industrial sampling, to electronic tinged
stadium rock, 2 and inspired divergent artists (as one ex-
ample, see covers compilations such as For the Masses
(1998) or the Swedish synth pop tribute I Sometimes Wish
I Was Famous (1991)). Early DM is also of note in that
Vince Clarke was the chief songwriter, rather than Martin
L. Gore, and such complications bring home the challenges
of tracking a band’s inspirations and influence through ex-

2 Arguably, after DM’s best selling Violator (1990), even converging
with U2 for 1991’s Achtung Baby, as U2 chased the contemporary sound
of electronic dance music’s commercial break through

tended careers. 3 In another example of the complications,
as bands progress through multiple albums, they work with
many people, often bringing in younger producers who
emerged in historically later scenes (in DM’s case, such
as Flood, or Mark Bell). The network of musicians who
influenced, and who were influenced by, Depeche Mode
are examined in a web data analysis, and work historically
closely prior to the album Speak & Spell is the focus for
the audio content analysis.

Statements by band members past and present provide
insight into the formative influences of the band. For ex-
ample, in Miller’s biography [12], the band admit early
influences including Gary Numan (p.21), OMD and the
track ‘Almost’ (p.23), The Human League and particularly
‘Being Boiled’ (p.483), Kraftwerk (p.25) and John Foxx
(p.26). DM gigged early on with the post-Foxx incarnation
of Ultravox, and their label owner and first producer was
the British DIY synth pioneer Daniel Miller; Mute Records
artists would remain a central touchpoint as the band devel-
oped. Such references are further discussed below.

3. WEB SCRAPING AND WEB SERVICES FOR
THE ANALYSIS OF INFLUENCE

Although a musicologist might construct their own model
of musical influence from analyzing primary and secondary
sources such as original releases, reviews and interviews,
the wealth of online commentary and databases provides a
further strand of evidence for systematic musicology to ex-
ploit. Although there can be issues with the verifiability of
information, the much remarked problems of reliability of
meta-data in MIR [7], it can still be healthy to admit web
content as part of the arsenal of the musicologist. This pa-
per examines the use of web scraping and web services to
collect alternative viewpoints on the influences upon and
influence of a particular central band. Although the tech-
niques may be applied to any starting point, Depeche Mode
are chosen in particular for this study.

The following APIs and websites were investigated:

• allmusic.com artist information explicitly contains
entries for ‘Influenced By’ and ‘Followers’

• The EchoNest API has convenience methods to ob-
tain biographic data, lists of similar artists, and a
measure of ‘familiarity’ for a given artist.

• The MusicBrainz metadatabase has an API which
allows interrogation of artist releases and dates.

• The last.fm API can return a list of similar artists
amongst further functionality

Programs were written in python to utilise the APIs, and
for web scraping.

Three tactics could generate graphs of related artists
with direction of edges determined by date, using recursive
construction. In the first case a similarity measure from a

3 A similar radical change of personnel is seen for example in The
Human League’s development in 1980.
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Figure 1. Excerpt of a graph of influences based around Depeche Mode, filtered by familiarity ratings of at least 0.6 per
artist according to EchoNest. Note the errors and omissions in dating information, for example the start date for Cliff
Richard, who appears via a supposed second order influence from Roxy Music. The overall graph, even relaxing the
familiarity filtering, is much richer for precedents than for successors, perhaps reflecting the balance of music history and
journalism with regard to the present day.

starting artist was used, and dates imposed as a way of de-
termining directivity (most simply, earliest date of activity
of a given artist, ignoring career overlaps). In the second,
the allmusic.com site was scraped for the pre-marked In-
fluenced By and Followers lists, which gave the direction
of arrows without needing dates (however, dates were still
annotated with artist names in this case as a helpful guide;
similarity ratings between artists could also rate strength of
connection). The third method is for a musicologist to pro-
vide a list of artists for which they are interested in inter-
connections; they can then try various similarity measures
to weight connections, and dates can be automatically de-
termined where they are not already known. 4

Because the computational search should be as auto-
mated as possible if larger networks are to be generated,
musicbrainz.org provided the ability to hunt for start and
end dates of artists (the musicologist can always further
corroborate dates later if any promising links are revealed).
This was actually one of the hardest coding problems to
solve, because for the start date MusicBrainz returns the
date of birth of an individual artist, but the date of forma-
tion for a group. Code was written for individuals and for
cases where there was no returned valid start or end date,
to hunt through associated album and single release dates,
taking minima and maxima. The API often failed to re-
spond when called too often, but the program kept trying
with increasing gaps between calls until connection was
re-established or it failed ten times in a row. All dates were
stored in a local database to avoid the slow dependency on
MusicBrainz, only checking artists if they were new to the
database or no date had yet been established in previous
attempts (the musicologist can also in principle overwrite
dates if they discover more reliable data). 5

4 As a proviso to this process, different data sources and similarity
measures reflect different construction principles from ‘expert’ annota-
tion (allmusic) to community consensus (MusicBrainz), and the analyst
should keep this in mind.

5 As pointed out by a reviewer, an alternative model here may be to

The final large networks of artists could be directly plot-
ted, but facilities were also added to cluster by the year an
artist began their recording career, 6 and to exclude artists
falling below a certain threshold of familiarity with respect
to the EchoNest measure. Figure 1 shows an excerpt of a
graph generated via the allmusic database method, recurs-
ing only up to second order connections, and annotating
dates of artists via MusicBrainz.

It was definitely of benefit to spend time with the tech-
nology and with online opinion as a method of immer-
sion into the subject. Results however must be interpreted
with caution; in particular, the allmusic.com annotations
for synth pop artists did not expose some expected links
(for example, Depeche Mode as an influence on Alphav-
ille, the Pet Shop Boys, or Goldfrapp, to name but three,
though Camouflage and Nine Inch Nails did appear as suc-
cessors; The Human League were not listed as an influ-
ence despite DM’s own documented confession). They did
however point to a few other possible leads worth pursu-
ing. Some second order links, such as Elvis Presley and
Chuck Berry were admitted by Martin L.Gore as his earli-
est listening in a recent interview 7 , though the centrality
of such figures, particularly with respect to the Beatles hub,
is a little too obvious and a likely side effect of dominant
nodes in artist networks [13].

It was found in practice that similarity of artists as a
singular term often proved insufficient, in that it did not
adequately respect musical characteristics over social. For
example, Pandora, which in any case admits no API, lists
similar artists to DM as The Cure, New Order, Duran Du-
ran, The Smiths and Tears for Fears. There is one justifi-

exploit DBpedia and LinkedData for the Semantic Web.
6 All artists are in development off the commercial radar for a long

time, and formative influences not necessarily via mass released record-
ings; but the underlying assumption to keep this project manageable is
that a commercial release reveals the potential to influence a large num-
ber of followers.

7 http://www.bbc.co.uk/programmes/b00jn4fl
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cation as UK bands all active circa 1983 or so, but in terms
of tracing the history of synth pop, there are a few overlaps
and some mishits (The Smiths, for example). Data was
also not always reliable; EchoNest listed Duran Duran Du-
ran, the breakcore artist, instead of Duran Duran; arguably
there is more electronic sound in the former, though it is
probably an erroneous appearance in this context.

4. CONTENT BASED ANALYSIS

The other angle of approach in this project was to examine
the actual audio recordings for similarity between artists.
Armed with associated date information for tracks, net-
works of prior art can be constructed. Though there is not
always causal proof that the authors of Speak and Spell
would have heard and actively internalised particular tracks
by prior artists (though see comments above in section 2
concerning admitted influences such as The Human League),
it is possible to speculate, guided by such an investigation,
and hope in general that the search provides a pillar in ac-
cumulating evidence for a particular linkage.

Table 2 contains a list of 37 albums or compilations,
corresponding to 364 tracks, selected as the target data and
space for musicological ground truth. The choice of al-
bums reflects our own analysis of possible formative in-
fluences, with a bias to British acts, and covers the years
1977-1981, during which electronic instrumentation was
breaking through to mass use in popular music (there are
many earlier precedents, but the scope of inquiry was ar-
ranged around the post punk years transitioning to the early
80s). Depeche Mode were gigging in 1980, and released
their first singles in 1981 leading up to the Speak & Spell
album that October. There are many other artists and re-
leases of potential relevance, both outside and within the
restricted dates, but the core set is large enough to pro-
vide ample scope for musicological investigation and pose
a significant challenge for MIR technology. 8 For digital
convenience, despite originals being chiefly released on LP
(CDs arrived in 1982), all data was sourced from purchased
CD recordings, since these provide a guaranteed profes-
sional transition from master tapes. A few were re-masters
(as noted in the table), with possible changes in overall
compression and loudness, but since this did not substan-
tially impact on human listening, in the ideal computer
analysis should be able to cope (the timbral features used
here did not include amplitude measurements as compara-
tors). Any bonus tracks not readily available in the orig-
inal era of release were excluded, which typically meant
removing any tracks not on an original LP. Release dates
were cross-referenced from online sources such as allmu-
sic and discogs.com as well as liner notes and textbooks.

Our primary interest was to analyze relevant recordings
that might show a strong similarity to tracks on Speak &
Spell, and thus see if computer analysis could spot any
links of influence. A secondary interest was the analysis of
early synth pop’s properties in general. There were various

8 Possibilities for extensions just with artists active in this period in-
clude Telex, Joy Division/New Order, Throbbing Gristle, Jean-Michel
Jarre and Wendy Carlos to name a fraction.

opinions and discoveries here from conventional listening,
but the computer offered an alternative perspective.

Marsyas [17] and weka [18] provided the tools of choice
for audio feature extraction, similarity measurement, and
machine learning. The 44.1kHz 16 bit audio recordings
were each passed through marsyas’ bextract algorithm to
obtain single vector averaged MFCC and spectral features
over one minute 30 second sections taken from the middle
of each track (window size and hop size 1024 samples).
These obtain a long exposure timbral summary vector (64
dimensions) for each track. Similarity values between all
individual tracks could then be created. A python script
was written to order similar songs from a given starting
song across the database. The nearest and furthest neigh-
bours from each track on Speak &Spell were listed; Table 1
gives example results for the nearest and furthest ten tracks
to the second DM single ‘New Life’.

Score Artist Album Track
1.047 DM Dreaming Of Me Speak & Spell
1.116 Gary Numan Replicas We Have A Technical
1.133 Ultravox Systems Of Romance Just For A Moment
1.150 Gary Numan The Pleasure Princi-

ple
Random

1.152 Gary Numan Telekon I’m An Agent
1.153 OMD Orchestral Manoeu-

vres In The Dark
Red Frame White Light

1.155 Ultravox Vienna Vienna
1.211 Ultravox Vienna Mr. X
1.221 Gary Numan Replicas Replicas
1.234 YMO Solid State Surviver Day Tripper
. . . . . . . . . . . .
2.275 YMO Yellow Magic Or-

chestra
Computer Game Theme
From The Invader

2.320 Devo The Essentials Girl U Want
2.324 Cabaret

Voltaire
The Original Sound
Of Sheffield

Do The Mussolini
(Headkick)

2.339 OMD Architecture &
Morality

Architecture And
Morality

2.373 Human
League

Reproduction Blind Youth

2.490 Cabaret
Voltaire

The Original Sound
Of Sheffield

Baader Meinhof

2.593 John Foxx Metamatic Plaza
2.620 Human

Leagure
Reproduction Medley Austerity Girl

One
2.623 YMO Yellow Magic Or-

chestra
Computer Game Theme
From The Circus

3.151 Human
League

Dare The Sound Of The
Crowd

Table 1. Maximally similar and dissimilar tracks to ‘New
Life’ by Depeche Mode within the database

Some results were not so surprising; both other DM
singles from the first album are close by (Just Can’t Get
Enough comes in at 18th closest). Further away, the Baader
Meinhof track is dark and unsettling and not rhythmic. The
low bit arcade timbre of the YMO computer game themes
are unique amongst materials here. John Foxx’s Plaza fea-
tures a prominent flanging effect. On the other hand, in
musical terms the many distant up tempo Human League
tracks, or the close appearance of Vienna are somewhat
suspicious. The Sound of the Crowd persistently came
far from all tracks on Speak and Spell, perhaps due to the
loudly mixed vocal and particular synth percussion sounds.
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The album annotated feature data also underwent ma-
chine learning algorithm investigation, by training classi-
fiers to differentiate artists’ releases. The musicological in-
terest is to find points of failure of discrimination as insight
into potential timbral/musical overlaps and thus through
information on dates, promising leads on the flow of in-
fluence, Confusion matrices help to indicate this. Under
10-fold validation, the best results were 31.8% correctly
classified instances, for a Support Vector Machine (SVM)
classifier; related to some other classes, Speak & Spell
fared badly, with 2/12 tracks accurately labelled (precision
0.133, recall 0.167) and confusions for example with Re-
production by the Human League and Penthouse and Pave-
ments by Heaven 17. Setting aside concerns over the per-
ceptual relevance of the timbral features, it is challenging
to ask for all 37 albums to be well differentiated on the
basis of this data set (averaging 10 songs per label). As
a more reasonable test, the data was labelled by the ten
groupings shown by the horizontal lines in Table 2 (keep-
ing Speak & Spell as a class of its own), obtaining 77% ac-
curate classifications with an SVM. The confusion matrix
for the DM album then showed 11 out of 12 songs accu-
rately classified, and one mislabelled as by Gary Numan.

Classification by year was also explored, despite con-
cerns over the hard histogram boundaries; classification
accuracy of 55% was obtained, confirming somewhat the
closely linked artists in this set (classification by half year
periods dropped to 26%). Out of interest, I also tested how
well recent artist La Roux’s eponymous 2009 album was
differentiated from the original synth pop sources to which
it might be argued to pay substantial homage; in actual fact,
when offered as a sixth category in the year based analysis
9/12 tracks were correctly identified; closely similar tracks
were mainly drawn from the same album. Whether this
is best traced to female vocals, to recent production and
mastering trends, is a subject for further investigation.

Any machine identified link must be followed up by hu-
man analysis before imbuing significance. It is clear in
the audio content analysis that gross timbral features are
the basis of comparison, not details of materials at the hu-
man perceptual timeframe. These timbral links might indi-
cate similar equipment or studio facilities more than links
of inspiration. Nonetheless, it is valuable to make a start
here in applying such MIR tools, on the understanding that
through intensive research efforts in computational audi-
tory models, systems can only improve. It was clear in
this project that the machine tools were utilising different
criteria. For example, a similarity was observed in motifs
between a section two minutes into the Fad Gadget track
‘Ricky’s Hand’ and DM’s ‘Photographic’ but this was not
closely borne out in machine results (similarity was right
in the middle of all tracks, at 165th most similar); this is
probably due to the smearing effects of the average con-
cealing that particular section.

None of the leads presented by content analysis are them-
selves a smoking gun of influence when date is taken into
account. It is preferable to seek further corroboration of
any potential influence, and the status of conscious tribute

or unconscious plagiarism will never be amenable to audio
analysis methods alone. For the artists concerned, a single
listen to a live gig or work in progress in the studio, ob-
taining a promotional copy ahead of public release, might
all have provided undocumented links; this study was re-
stricted to release dates, not recording dates. Certain off al-
bum tracks were excluded, for example songs only played
at gigs (‘Television’ in the case of DM), or particular B
sides (‘Ice Machine’, Shout’), 9 all of which might turn
out to be potential connections.

5. CONCLUSIONS

This paper investigated the question of influences from two
technological approaches, the first online information seek-
ing, and the second content analysis over a database of rel-
evant audio. Such a study can point to new leads that mu-
sicologists may not have immediately heard or imagined.
Although there is some danger of getting back what is al-
ready known, in the main the great advantage has been the
stimulus of exploring the materials from a new perspec-
tive. There may be more links between tracks in a close
knit era of releases than the musicologist can comfortably
track, and computer assistance certainly helps direct in-
quiry, prompting possibilities of connection, even as the
human ear currently remains the best final judge.

Much future work remains, from further web data sourc-
ing tools, to more developed schemes for content analysis.
For the former, similarity through co-occurence is a prof-
itable tool, and any similarity network can be mediated
through the automatic artist date database. For the latter,
more developed similarity methods may compare subsec-
tions and simultaneous voices within songs, perhaps with
beat or chord synchronous features. A musicologist may
wish to focus on particular attributes, choosing weights for
rhythmic, timbral, harmonic, melodic features and more.
For different pairs of songs, links might be posited based
on different parameters, and a more developed analysis
system would flag up significant similarities with respect
to a number of different weighting schemes. The methods
investigated herein do not track the career of artists stage
by stage, nor cope with any complex inter-linked develop-
ments. A solution may combine content based methods
and accurate dating of releases.
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Artist Album Original Release Date Notes
Kraftwerk Trans-Europe Express May 1977
Kraftwerk The Man Machine May 1978
Kraftwerk Computer World May 1981 2009 remaster
David Bowie Low January 1977 Remaster 1999, Brian Eno production of synth instru-

mentals in particular of note
David Bowie Heroes October 1977 Remaster 1999, Second of Berlin triology; few synths
David Bowie Lodger May 1979 Remaster 1999, very few synths, last of Eno/Bowie

collaboration
Devo The Essentials: Devo 1978-1981 Singles from 2002 collection
Giorgio Moroder From Here to Eternity July 1977 Lays down a template for electronic dance music
Donna Summer selected tracks 1977-1979 Giorgio Moroder/Pete Bellotte production with
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Sparks No. 1 in Heaven September 1979 Giorgio Moroder produced
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Gary Numan and Tubeway
Army
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Silicon Teens Music for Parties 1 September 1980 Daniel Miller’s prototype synth pop group
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ABSTRACT 

Collecting human judgments for music similarity evalua-

tion has always been a difficult and time consuming task. 

This paper explores the viability of Amazon Mechanical 

Turk (MTurk) for collecting human judgments for audio 

music similarity evaluation tasks. We compared the simi-

larity judgments collected from Evalutron6000 (E6K) and 

MTurk using the Music Information Retrieval Evaluation 

eXchange 2009 Audio Music Similarity and Retrieval 

task dataset. Our data show that the results are highly 

comparable, and MTurk may be a useful method for col-

lecting subjective ground truth data. Furthermore, there 

are several benefits to using MTurk over the traditional 

E6K infrastructure. We conclude that using MTurk is a 

practical alternative of music similarity when it is used 

with some precautions.  

1. INTRODUCTION 

A constant source of frustration for designers and devel-

opers of music information retrieval systems is finding 

users to generate ground truth for evaluation. This is par-

ticularly true in music similarity tasks where algorithms 

are attempting to model some aspect of human intuition 

or understanding and predict the similarity among a set of 

songs. Getting humans to verify the results of these algo-

rithms is tedious as a modest collection of several hun-

dred tracks can require tens of thousands of pair-wise 

comparisons which potentially need to be evaluated.  

Our motivation for this study is to explore the useful-

ness of Amazon Mechanical Turk (MTurk) 

(http://mturk.com) for collecting the human judgments 

necessary for evaluating music similarity tasks like the 

Audio Music Similarity (AMS) and Symbolic Melodic 

Similarity (SMS) tasks in the Music Information Retriev-

al Evaluation eXchange (MIREX). In this paper, we 

compare the similarity judgments obtained from MTurk 

and Evalutron6000 (E6K) on the same data set used in 

the MIREX 2009 AMS task. We also compare how these 

judgments affect the ultimate evaluation outcomes as 

published by the International Music Information Re-

trieval Systems Evaluation Laboratory (IMIRSEL) in the 

annual MIREX evaluation. Additionally, we were inter-

ested in exploring how MTurk could be used to supple-

ment or replace E6K in future music similarity evalua-

tions, opening the possibility for continuous evaluation 

without incurring the overhead of a full MIREX/E6K-

based evaluation. 

2. BACKGROUND 

The AMS and SMS tasks were carried out as part of 

MIREX using the E6K infrastructure. Both tasks rely on 

human judgments of music similarity as ground truth for 

evaluation of algorithm performance. Every year the 

IMIRSEL group at the University of Illinois seeks volun-

teers from the ISMIR community to complete a set of si-

milarity judgments. In addition to the MIREX AMS and 

SMS tasks, a number of studies have looked at the human 

judgments of music similarity; to name a few, Aucouturi-

er & Pachet [2], Ellis et al. [5], Berenzweigh et al. [4], 

Timmers [13], Schubert & Stevens [11], and Novello & 

McKinney [10]. 

In these studies, the human judgments were collected 

by a web survey or by recruiting a number of subjects in-

cluding musicians and non-experts. Two typical methods 

were used. In some studies, the users were presented a set 

of three song excerpts (triads) and were asked to choose 

the most similar and most dissimilar of the three possible 

pairs. In other studies, the users were presented with pairs 

of song excerpts and were asked to rate the similarity be-

tween the pairs. Regardless of which method was used, 

collecting human similarity judgments has always been a 

challenging, expensive, and time-consuming process. 

Searching for a better model for obtaining human similar-

ity judgments is especially important considering the fact 

that the general trend in recent MIREX AMS submissions 

is to submit multiple variations of an algorithm; there 

were a total of 15 submissions from 9 participants in 

2009 compared to 6 submissions from 5 participants in 

2006. There is also a trend towards larger datasets, and 

evaluating more queries [9]. 

2.1 Evalutron6000 (E6K) 

IMIRSEL collect similarity judgments from human grad-

ers using E6K which is in the form of a web-based sur-

vey. The graders are supposed to be music experts since 

they are volunteers from the ISMIR community who have 

backgrounds in music or music-related research. Collect-

ing human judgments is a long and arduous process every 
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year since the organizers must rely on volunteer labor. 

Every year it takes days to weeks to complete the evalua-

tion. Table 1 shows the number of days it took to collect 

the human similarity judgments for the AMS and SMS 

tasks in past MIREX cycles.  

 AMS SMS 

2006 15 days 18 days 

2007 8 days 4 days 

2009 14 days n/a 

Table 1. Number of days needed to collect human 

similarity judgments in past MIREX cycles. 

2.2 Amazon Mechanical Turk 

Amazon Mechanical Turk (MTurk) is a service which 

allows people to leverage human-computational power at 

scale to complete large numbers of tasks requiring hu-

man-intervention, cheaply and efficiently. Requesters 

upload tasks to the service, where they are matched with 

willing workers. Payment is mediated by Amazon, with a 

small per-task fee charged to the requester. 

Tasks in MTurk are called HITs (Human Intelligence 

Tasks). Requesters define their HITs using an HTML-

based template language and a data source which is used 

to populate the templates and generate the individual 

HITs. The requester also offers a payment amount and 

time limit for each HIT, and can limit who is able to 

complete the HITs, such as requiring workers to have a 

minimum percentage of previously accepted HITs.  

Requesters can create a qualification test and require 

workers to have to pass it before being eligible to work 

on their HITs. Upon completion of a HIT, the requester 

can review the work and approve or reject payment on 

HITs individually. Furthermore, workers can be blocked 

by the requester which would reject all their un-approved 

HITs and prevent them from completing and submitting 

additional HITs for that same task. 

Workers in MTurk call themselves Turkers. There are 

over 200,000 Turkers, from all parts of the globe. Ipeiro-

tis [6] conducted a survey of 1,000 Turkers in February 

2010. In total, Turkers represented 66 different countries, 

with 46.8% from the United States, and 34% from India. 

Among US workers, most (65.6%) are women; however, 

among Indian workers, most (70%) are men. 62.8% of 

respondents had a Bachelor’s degree or higher. 

MTurk has an API through which HITs can be created 

and results approved and downloaded, making it readily 

integratable into automated processes. For example, 

MTurk is successfully used to complete tasks such as fil-

tering user-generated web content, searching through sa-

tellite photos for missing aircraft [3], and is gaining trac-

tion as a resource in research. Within the SIGIR commu-

nity, MTurk has been proposed for use in generating re-

levance judgments in TREC-like evaluations [1]. Alonso 

and Mizzaro [1] compared MTurk to TREC experts and 

found the results from MTurk to be comparable to 

TREC’s expert-generated ground truth data. They even 

claim Turkers found several errors in the TREC data. 

Snow, et al. [12] have explored using MTurk for gene-

rating ground truth data for several kinds of Natural Lan-

guage Processing tasks, including determining valence 

and affect in text, and assigning similarity scores. They 

found it possible to obtain results on par with those of 

domain experts. 

Kittur et al [8] used MTurk to rate the quality of Wiki-

pedia articles. Among their experiments, they found a 

naïve approach of simply asking Turkers to rate an article 

led to inconsistent responses which did not correlate 

strongly with ratings given by experts. However, when 

they redesigned the HITs to include several verifiable 

questions which could be used to filter out “bad” res-

ponses, the results improved significantly. They argue 

that the verification questions serve two purposes: first, 

they allow the requester to assess the quality of the re-

sponse; and second, they signal to the Turkers that their 

responses are being scrutinized. 

3. RESEARCH QUESTIONS & STUDY DESIGN 

In this paper, we explore two main research questions:  

I) How do music similarity judgments obtained from 

Mechanical Turk compare to those collected from 

music experts in the Evalutron6000?; and  

II) How do evaluation outcomes for tasks like MIREX’s 

Audio Music Similarity evaluation differ when based 

on similarity judgments collected from Mechanical 

Turk as compared to Evalutron6000? 

To study these questions, we replicated the E6K similari-

ty assessment and subsequent evaluation of the AMS task 

in the 2009 MIREX evaluation using MTurk. We ob-

tained the query-candidate (QC) results lists from the 

IMIRSEL lab, consisting of 100 queries, and the top 5 

candidates per query returned from the 15 participating 

algorithms in MIREX 2009. There were a total of 6,732 

unique QC pairs which needed to be judged. 

In order to keep the amount of work in each HIT rea-

sonable, we limited the number of similarity judgments 

per HIT to 15 QC pairs, and all QC pairs in a HIT shared 

the same query. Among the 15 QC pairs in a HIT, two 

candidates were included for checking the quality of the 

ratings. One was an identity check and it asked the Turker 

to rate the similarity of the query to itself. The Turker 

should indicate that this candidate is “Very Similar (VS)” 

to the query as they are identical. This was also done in 

E6K in 2009; however, we were unable to locate those 

data published for comparison. 

The other quality check was a consistency check; the 

same candidate was included twice in a single HIT, once 

towards the beginning, and again towards the end of the 

list of candidates. The expectation here was that the 

Turker should provide the same response for both in-
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stances since they are the same candidate. Excluding 

these two QC pairs for checking the quality of the results, 

there were 13 unique QC pairs in an individual HIT. The 

quality checks were mixed among the other candidates 

and were not specially demarcated in any way. 

The list of all candidates for each query was broken down 

into multiple HITs containing 13 unique QC pairs. In the 

event that the last HIT contained less than 13 candidates, 

the list was padded to 13 with additional candidates se-

lected from that query’s other HITs. These padded judg-

ments were not used in the evaluation. Each HIT was 

completed by single Turker, with the possibility that a 

single query could be evaluated by multiple Turkers. This 

was different from MIREX 2009 AMS where a single 

grader was responsible for judging all candidates for a 

single query, but is similar to MIREX 2006 AMS, where 

candidate lists were divided among multiple graders.  

A total of 583 HITs were created, and we offered 

$0.20 per completed HIT. Instructions similar to what are 

given in E6K were given to Turkers as shown in Figure 1. 

Figure 2 shows a partial screenshot of MTurk’s evalua-

tion page. We tried to reproduce the E6K interface as 

much as possible. The Turkers were asked to rate the si-

milarity on the E6K BROAD scale (Not Similar, Some-

what Similar, and Very Similar) and were not asked to 

provide a FINE score (0-10) in order to simplify the task. 

Additionally, we used the Yahoo! Media Player in the 

MTurk version of the interface, rather than the E6K play-

er because it was much simpler to use and has much bet-

ter cross-browser compatibility. 

In addition to the HITs described above, we created 4 

more HITs in order to see how much variability there was 

among the Turkers’ responses. In these HITs, we took 

one candidate from each query, put 15 QC pairs into each 

HIT and had 3 different Turkers complete each HIT. This 

gave us multiple ratings for the same QC pairs, and al-

lowed us to test the inter-rater agreement. We paid $0.20 

for each of these 12 HITs. The total cost for all 595 HITs, 

including Amazon’s administrative fees, was $130.90. 

Ultimately, we paid less than $0.02 per usable judgment, 

for a rate of approximately 53 judgments per US dollar.  

4. DATA & OBSERVATIONS 

In total we collected 15,705 similarity judgments from 

1,047 submitted HITs, plus 180 additional judgments 

created to test agreement among the Turkers. Of the 

1,047 HITs submitted, we approved 583 (55.7%), and 

rejected 464 (44.3%). We rejected HITs which were 

missing responses, those which were completed too 

quickly (less than 45 seconds), those in which Turkers 

failed to assign a Very Similar score to the identity case 

of a query compared to itself, and those in which Turkers 

assigned two different scores to the same candidate re-

peated in the list. Accounting for the rejected HITs, the 

integrity-check judgments, and for list padding, we ended 

up with 6,732 unique judgments. Even having to discard 

almost half the judgments, we were still able to obtain the 

needed results in less than 12 hours, an order of magni-

tude faster than the average E6K cycle (see Table 1).  

 

Figure 1. Instructions given to Turkers are based 

on the instructions given to E6K graders. 

 
Figure 2. Partial screenshot of an MTurk HIT. 

 

Research Question I: How do music similarity judg-

ments obtained from Mechanical Turk compare to those 

collected from music experts in the Evalutron6000? 

The similarity scores derived from MTurk are different 

from those obtained from E6K, but they are not entirely 

incomparable. We compared the 6,732 similarity judg-

ments obtained from MTurk to the 6,732 judgments ob-

tained via E6K in AMS 2009 for the same set of QC 

pairs. We measured the percent-agreement between the 

MTurk results and the E6K results, and found that 54.6% 

of the pair-wise ratings were the same. Agreement in-

creases to 72.4% when we consider similarity as a binary 

decision (Very Similar & Somewhat Similar vs. Not Sim-

ilar). To our knowledge, E6K has not been used to do 

multiple evaluations of the same data set in this way, so 

we do not have a basis for comparison. However, the rel-

atively low agreement between MTurk and E6K does un-

derscore the subjective nature of similarity ratings and 

similarity-based tasks in general. 

The two sets of similarity judgments (MTurk & E6K) 

have a Pearson’s correlation of r=0.495, which while not 

particularly strong, is comparable to the correlation 

How similar are these songs? 

Listen to the following pairs of song clips, the 'query' is the 

same for all 15 pairs. Evaluate how 'musically similar' each 

candidate is to the given query. You will be presented with 

songs from a number of different music genres. Please assign 

the scores according to what you find 'sounds' similar and do 

not take into account whether you like the music or not. Pro-

vide your best estimation of the similarity for each pair. You 

should listen to a reasonable portion of every candidate be-

fore making your judgment. Answers which are incomplete 

or missing responses will be rejected. Answers which do not 

appear to contain honest judgments will be rejected. 

 

Assign a similarity rating using the following 3-point scale: 

 Not Similar 

 Somewhat Similar 

 Very Similar 
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(r=0.433) found by Snow [12] between NLP experts and 

Turkers in an affect annotation study. 

Looking at the data in aggregate, Figure 3 shows the 

similarity judgments derived from MTurk tended to skew 

towards Not Similar (NS=3,605), where as E6K graders 

tended to assign similarity scores more uniformly across 

the categories. In AMS 2009, as a requirement of partici-

pation each team had to provide an E6K volunteer to help 

with the judging for each algorithm they submitted. These 

volunteers might have had some stake in the outcome of 

the evaluation which might explain the greater proportion 

of VS scores in 2009 compared to 2006 and MTurk 

where the ratings were generated by independent volun-

teers. However, Figure 3 also shows the distribution of 

scores from previous MIREX cycles, and while the un-

derlying queries and candidates differ across the years, 

the distribution of scores from MTurk is not dissimilar to 

other distributions from previous E6K results. 

 

 
Figure 3. Distributions of scores from the 3 years of 

MIREX AMS evaluation using E6K compared to the dis-

tribution of scores derived from MTurk. 

In order to further investigate the similarity of MTurk 

judgments to E6K judgments, we collected multiple simi-

larity judgments over the same set of QC pairs from sev-

eral different Turkers. Specifically, we randomly selected 

one candidate from each candidate list for each of the 60 

queries used in MIREX 2006 AMS, and created 4 lists of 

15 QC pairs to be evaluated by three different Turkers. 

This setup is very similar to how E6K was configured in 

2006 (multiple graders rating portions of candidate lists), 

and given we were working with a subset of the 2006 da-

ta, we are able to compare the inter-Turker agreement to 

that found by Jones, et al. [7]. While we did not test SMS 

in MTurk, we have provided the data for comparison. 

Table 2 shows the agreement using the 3-level and 2-

level analysis used in [7]. The overall distribution of 

scores is fairly similar to the AMS 2006 results; the pro-

portions of QC pairs across the various levels of agree-

ment are comparable between the two data sources. The 

percentage of cases of total agreement are the same, and 

there is some shifting of cases between partial and total 

disagreement with slightly more cases of total disagree-

ment (VS,SS,NS) among Turkers. This may be due to the 

nature of the QC pairs sampled for this evaluation which 

is plausible given the small sample size, or it may be in-

herent given what [7] describes the vague definition of 

“music similarity”. 

 

3-level SMS 2006 AMS 2006 MTURK 

VS,VS,VS 114 12.6% 61 3.7% 4 6.7% 

SS,SS,SS 38 4.3% 137 8.4% 1 1.7% 

NS,NS,NS 263 29.1% 293 18.0% 13 21.7% 

Triples 415 45.9% 491 30.1% 18 30.0% 

VS,VS,* 24 2.7% 150 9.2% 3 5.0% 

SS,SS,* 158 17.5% 469 28.8% 18 30.0% 

NS,NS,* 288 31.8% 404 24.8% 11 18.3% 

Doubles 470 51.9% 1023 62.8% 32 53.3% 

VS,SS,NS 20 2.2% 115 7.1% 10 16.7% 

2-level SMS 2006 AMS 2006 MTURK 

S,S,S 188 20.8% 494 30.3% 19 31.7% 

NS,NS,NS 263 29.1% 293 18.0% 13 21.7% 

Triples 451 49.8% 787 48.3% 32 53.3% 

S,S,N 166 18.3% 438 26.9% 17 28.3% 

N,N,S 288 31.8% 404 24.8% 11 18.3% 

Doubles 454 50.2% 842 51.7% 28 46.7% 

Table 2. Comparison of disagreement among 

Turkers and E6K graders from MIREX 2006 

AMS evaluation. 

When we examine the results using a binary similarity 

measure (SS+VS against NS), we see greater similarity 

between the E6K graders and the Turkers. The distribu-

tions across the levels of agreement are nearly identical 

between the two sets. Jones [7] also found greater con-

sensus when considering similarity on a binary scale, and 

suggest that the binary metric might be sufficient for the 

task of evaluation. 

Research Question II: How do evaluation outcomes for 

tasks like MIREX’s Audio Music Similarity evaluation 

differ when based on similarity judgments collected from 

Mechanical Turk as compared to Evalutron6000? 

Given the similarity judgments derived from MTurk 

appear to be different from those generated via E6K, we 

wished to see if those differences have any substantial 

bearing on MIREX evaluations. It is possible that the in-

dividual ratings differ, but still produce similar outcomes 

in comparing the performance of individual algorithms in 

the audio music similarity task. Conversely, the differ-

ences may in fact be substantive and produce significant-

ly different end results. 

MIREX evaluates the performance of similarity algo-

rithms using Friedman test with repeated-measures. Fig-

ure 4 shows a graphical depiction of the results of the 

MIREX 2009 AMS Friedman evaluation, comparing the 

average rankings among the different algorithms. There 

are clearly two distinct groupings to the data: ANO, 

BSWH1, BSWH2, CL2, GT, LR, PS1, PS2, SH1, SH2; 

and BF1, BF2, CL1, ME1, ME2. One way to interpret the 

figure is that all algorithms in one group are significantly 

different from all algorithms in the other group, but with-

in the groups the algorithms are not all significantly dif-
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ferent from each other. So, while PS2 does appear to lie 

slightly outside the rest of the larger group, it is not sig-

nificantly different from all members of that group (it 

overlaps partially with PS1). 

 
Figure 4. Friedman rank comparison for MIREX 2009 

AMS based on judgments from E6K (from [9]).  

 

Figure 5. Friedman rank comparison for MIREX 

2009 AMS based on judgments from MTurk. 

Figure 5 shows the Friedman evaluation results per-

formed using the similarity judgments derived from 

MTurk. As we can see, the two main groupings are still 

evident, with clearly significant differences in the per-

formance of the algorithms between the groups. Howev-

er, the gap between the groups is narrower, and the data 

are more compact. Furthermore, the global ordering of 

the algorithms has changed. Notwithstanding these dif-

ferences, the overall results are remarkably similar.  

The main significant differences between the group-

ings are still evident and significant differences are still 

preserved among most of the algorithm pairs. Table 3 

summarizes the differences between the E6K and MTurk 

results. Out of the 105 possible pair-wise comparisons 

among the 15 algorithms submitted to MIREX 2009 

AMS, only six (5.7%) algorithm pairings were deter-

mined to be significantly different based on E6K judg-

ments and not found to be significantly different based on 

MTurk judgments. No algorithms which were not signifi-

cantly different under E6K were found to be significantly 

different under MTurk. This discrepancy is not substan-

tially different compared to the Friedman results com-

puted using the E6K BROAD scores and FINE scores in 

AMS 2009. The Friedman test based on the FINE scores 

rates 3 (2.9%) algorithm-pairs differently than the 

BROAD score results [9].  

 

Algorithm 

1 

Algorithm  

2 

Significant 

in E6K? 

Significant 

in MTurk? 

BSWH2 SH1 TRUE FALSE 

PS1 SH1 TRUE FALSE 

PS1 SH2 TRUE FALSE 

PS2 CL2 TRUE FALSE 

PS2 GT TRUE FALSE 

PS2 LR TRUE FALSE 

Table 3. Excerpt from Friedman table of differ-

ences in significance between E6K and MTurk. 

5. IMPLICATIONS FOR MIR EVALUATION 

Overall, we were quite impressed with the quality of the 

data we were able to obtain from MTurk. We can identify 

many benefits to using MTurk in MIR evaluation, some 

of which include: 

1. The tasks were inexpensive to submit, costing approx-

imately USD$0.02 per judgment, although other re-

searchers have obtained quality results for far less 

payment (c.f., [1],[12]). 

2. Evaluation was fast, taking less than 12 hours to com-

plete. It took over 2 weeks to obtain the same number 

of judgments using E6K. 

3. MTurk has a scriptable API, meaning it can be used 

for “on-demand” evaluation. This is especially attrac-

tive given the developments of the MIREX Do-It-

Yourself infrastructure. 

4. No judging fatigue. MTurk provides a nearly endless 

supply of willing labor, and it is not feasible to expect 

the ISMIR community to continuously provide input 

for use in MIREX DIY evaluations. Several Turkers 

sent us messages saying they found the HITs more fun 

than most other HITs on MTurk, one even expressed a 

willingness to work for free. 

5. Using MTurk for similarity judgments avoids any 

conflict of interest inherent in asking participants or 

their labmates to evaluate the results. 

6. MTurk provides a mechanism for compensating vo-

lunteers for their time and effort. 

7. MTurk is considered “exempt” by human subjects re-

view as it falls under the description of a web survey, 

or as paid workers. 

8. Using MTurk does not preclude restricting participa-

tion in the evaluation to only ISMIR members. It is 

possible to require Turkers obtain a qualification prior 

to working on any HITs. Qualification credentials 

could include membership in the ISMIR Society. 
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9. MTurk is very stable. It is built on Amazon’s cloud 

infrastructure and is very robust. 

However, there are several limitations which need to be 

kept in mind when using MTurk, including: 

1. HITs need to contain validation questions which allow 

you to check responses for quality and consistency. 

Early in our exploration of MTurk we created HITs 

without validation questions and the data we collected 

was highly inconsistent. 

2. The instructions we provided also needed clarification 

over several tests. We found it helpful to spell out the 

precise conditions why a HIT would be rejected in the 

instructions. Likewise, you need to provide clear ex-

planations why HITs were rejected.  

3. It does cost money to use MTurk. While each HIT is 

cheap, in aggregate the price adds up quickly. Ama-

zon’s overhead is either $0.005 or 10% per HIT, whi-

chever is greater. However, the total costs are small 

compared to the value of E6K volunteers’ time. 

4. Some university human subjects review boards might 

not be very familiar with MTurk and might be unsure 

how to handle it. This could slow applications. 

6. CONCLUSIONS 

Our data show that while the specific judgments may dif-

fer, using MTurk produces comparable results to using 

E6K for collecting human similarity judgments. The dif-

ferences are not dissimilar to the findings of other studies 

of MTurk and do not significantly alter the MIREX eval-

uation outcomes, indicating that MTurk may be a used as 

a reliable source of similarity judgments for audio-based 

music similarity comparisons. Overall, the differences 

between MTurk and E6K judgments resulted in a 5.7% 

difference in the ultimate outcome of the Friedman test 

comparing the 15 algorithms submitted to AMS 2009. 

We are excited by the possibilities MTurk offers to the 

development of future evaluation infrastructure, like the 

MIREX DIY, but are most excited by what MTurk can do 

for the community as a whole. There are many types of 

data which could be collected from Turkers, and it re-

mains to be seen how well MTurk is suited for collecting 

those data. In future work we would like to explore other 

data types; for example, music mood labels, music tag-

ging, onset annotation work, key-identification, humming 

or singing, tapping, transcribing, etc.  
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ABSTRACT 

The structure of a music piece is a concept which is often 
referred to in various areas of music sciences and technolo-
gies, but for which there is no commonly agreed definition. 
This raises a methodological issue in MIR, when designing 
and evaluating automatic structure inference algorithms. It 
also strongly limits the possibility to produce consistent 
large-scale annotation datasets in a cooperative manner.  

This article proposes an approach called decomposition into 
autonomous and comparable blocks, based on principles 
inspired from structuralism and generativism. It specifies a 
methodology for producing music structure annotation by 
human listeners based on simple criteria and resorting solely 
to the listening experience of the annotator. 

We show on a development set that the proposed approach 
can provide a reasonable level of concordance across anno-
tators and we introduce a set of annotations on the RWC da-
tabase, intended to be released to the MIR community. 

1. INTRODUCTION 

1.1 Motivations 

The automatic inference of musical structure is a research 
area of growing interest [1-6], which is illustrated for in-
stance by the creation in 2009 of a task called structural 
segmentation in the MIREX community [7], or the existence 
of a specific research topic called music structuring and 
summarization in the QUAERO project (started 2008) [8]. 

Inference of musical structure has multiple applications, 
such as fast browsing of musical contents, automatic music 
summarization, chorus detection, unsupervised mash-ups, 
music thumb-nailing, etc… but also, more fundamentally, it 
offers great potential for improving the acoustic and musi-
cological modeling of a piece of music with the help of 
structural information such as the relative position of events 
within structural elements or the exploitation of recurring 
similarities across them. 

Musical structure deals with the description of the formal 
organization of music pieces. However, several conceptions 

of musical structure coexist and there is no widely accepted 
definition. This raises a methodological issue when the 
question arises of evaluating and comparing automatic algo-
rithms on a common “ground-truth” (see, in particular [9]) 

This article presents an attempt to provide an operational 
definition and to specify an annotation procedure for pro-
ducing a structural description of music pieces that can be 
obtained quasi-univocally and in a reproducible way by sev-
eral human annotators. 

The concepts and the methodology proposed in this article 
are intended to be applied to what we will call conventional 
music, which covers a large proportion of current western 
popular music and also a large subset of classical music. 
However, we keep in mind that some other types of music 
(in particular, contemporaneous music) are much less suited 
to the proposed approach. 

1.2 Objectives 

The concepts and methodology presented in this work aim 
at specifying a process for annotating musical structure, 
with the following requirements : 

• based on the listening experience of the annotator (and 
not on his/her musicological expertise) 

• unrelated to any particular algorithm or application 

• independent of any musical role assigned to structural 
elements 

• reproducible across annotators  

• applicable to a wide variety of music genres  

At the current stage of our work, we have focused on the 
issue of locating structural elements (i.e. segmentation) and 
we postpone to a later step the question of how to label 
these elements. 

We first present, in section 2, the fundamentals of our ap-
proach, then we describe, in section 3, the proposed annota-
tion process. We provide in section 4, an evaluation of the 
consistency of the methodology on a development set and 
we introduce to the MIR community a set of annotations on 
the RWC [10] Pop data set, based on the proposed ap-
proach. 

 
 

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page.  
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1.3 Preliminary definitions 

In the rest of this paper, we consider that a piece of music is 
characterized by 3 reference properties, which may be con-
stant or vary over time : 

• tonality/modality (reference key and scale) 
• tempo (speed / pace of the piece) 
• timbre (instrumentation / audio texture) 

We also consider that a piece of music shows 4 levels of 
temporal organization : 

• rhythm (relative duration and accentuation of notes) 
• harmony (chord progression) 
• melody (pitch intervals between successive notes) 
• lyrics (linguistic content) 

These levels of description form 7 musical layers which we 
consider independently. 

2. FUNDAMENTALS 

2.1 Framework 

The proposed approach relies on concepts inspired from 
structuralism, a school of thoughts initiated by Ferdinand 
de Saussure in the field of Linguistics [11] and later ex-
tended to other domains, in particular to some areas of mu-
sic semiotics. Our approach also borrows ideas from gener-
ative theory as explored by Lerdahl and Jackendoff [12]. 

In this context, we consider a music piece as the layout of a 
number of constitutive elements governed by a specific as-
sembling process, called syntagmatic process. The constitu-
tive elements are related to one another through paradig-
matic relationships which manifest themselves as a set of 
equivalence classes (i.e. two elements belong to the same 
subset if and only if the relation holds between them). The 
entire scheme forms a system in the structuralist sense, 
namely an “entity of internal dependencies”, according to 
Hjelmslev’s definition [13]. 

The piece of music thus appears as a particular observation 
produced by this system and the problem of musical struc-
ture inference consists in determining the constitutive ele-
ments of the piece (i.e. segmentation task or, more general-
ly speaking, decomposition) and to assign equivalence 
classes to each of them (labeling or tagging task). 

As a consequence, specifying a type of musical structure 
requires the definition of : 

1. the nature and properties of the constitutive elements 

2. the assembling process used to combine them 

3. the equivalence relation(s) that are referred to, so as to 
relate them to one another. 

2.2 Working assumptions 

In the present work, the constitutive elements are assumed 
to be common to the 4 levels of temporal organization. They 
are limited in time and are assembled mainly by concatena-
tion. They are called blocks. 

A block is defined as an autonomous segment (see 3.2). It is 
specified by a starting instant, a duration and a size (the 
concept of size is also detailed in 3.2). A block can be de-
composed into a stem (which is itself autonomous) and one 
or several affixes. 

Several equivalence relations can be considered and com-
bined to qualify comparability between blocks, in particular: 
isometry (same size), interchangeability (possibility to 
swap), similarity in one or several layers, etc… 

Thus, we approach music structure description as the 
process of decomposing the music piece into autonomous 
and comparable blocks. As a consequence, we elude the 
various hierarchical levels of music structure and focus on 
the segmental macro-organization of music pieces. 

Blocks share similarities with musical phrases but are not 
strictly identifiable to them. The concept of blocks also has 
some connections with the notion of periode introduced by 
Riemann (see [14]) and that of grouping structure as devel-
oped in [12]. 

3. SPECIFICATIONS 

In this section, we introduce a number of criteria which are 
used to specify as univocally as possible the structural de-
composition of a music piece. We attempt to formulate these 
criteria without resorting to absolute acoustic properties of 
the musical segments nor to their musical role in the piece 
(chorus, verse, etc…), so as to remain as independent as 
possible from musical genre. 

3.1 Musical consistency w.r.t. simple transformations 

We base the decomposition process on the assumption that 
an annotator is able to decide on the musical consistency of 
a passage resulting from a local transformation of the music 
piece. More specifically, the listener is supposed to be able 
to judge if simple operations such as the suppression, inser-
tion, substitution or repetition of a given musical segment 
within the music piece creates (or not) a morphological sin-
gularity or a syntagmatic disruption with respect to the orig-
inal piece. 

This approach assumes that the structural organization of 
the music piece is governed by underlying processes which 
the listener is able to infer (even though he/she may not be 
able to formulate them) and which he/she can refer to, to 
decide on the musical consistency of the transformed piece. 
In particular, the listener will be strongly inclined to consid-
er that musical consistency is preserved by a transformation 
when a similar passage is found somewhere else in the 
piece, or could be found without creating any feeling of he-
terogeneity with the rest of the piece. 

Clearly, this definition is partly subjective but we believe 
that it provides non-expert human listeners with an opera-
tional criterion that requires from them some familiarity 
with the genre of the music piece but does not demand a 
sharp expertise in musicology. Note that, in the same way, a 
human listener is generally able to tell whether a sentence in 
his/her native language is grammatical or not, even if he is 
not a linguist. 
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3.2 Properties of blocks 

A block is defined as a musical segment which is autonom-
ous, i.e. which fulfils one of the two following properties : 
either it is independent (i.e. it is perceived as self-sufficient 
when played on its own) or it is iterable (it can be looped 
and the result is musically consistent). 

Moreover, blocks within a musical piece have the property 
of being suppressible, i.e. they can be removed from the 
piece without altering its musical consistency. This test is 
used to identify the most likely block boundaries. However, 
suppressibility is a necessary but not a sufficient condition 
to qualify a block. 

It is also worth noting that blocks are not necessarily homo-
geneous : reference properties may evolve within a block 
(change of tonality, tempo modifications, appear-
ance/disappearance of instruments or voice). 

The size of a musical block is expressed as the number of 
times a listener would snap his fingers to accompany the 
music, at a rate which is as close as possible to 1 bps (beat 
per second). Conventionally, block boundaries are synchro-
nized with the first beat of a bar. Occasionally, unusual situ-
ations may arise, such as blocks having a fractional size or 
for which the listener is unable to decide what the size is.  

Blocks can contain affixes, i.e. portions which can be sup-
pressed, yielding a reduced block which remains musically 
consistent with the rest of the piece. The various types of 
affixes are : prefixes, suffixes and infixes (the latter can be 
non-connex). A block can therefore be described as a stem 
combined with zero, one or several affixes. In general, af-
fixes are short and not autonomous. 

3.3 Equivalence relations and comparability 

Several paradigmatic relationships between blocks can be 
considered : 

• isometry : blocks of the same size (absolute isometry) or 
blocks reducible to stems of the same size (stem isome-
try). 

• interchangeability : blocks that can be swapped within a 
music piece without altering its musical consistency. 

• similarity : blocks identical across some of their musical 
layers (over the whole blocks or their stems only). 

• isomorphy : blocks that can be obtained from each other 
by a transformation of their reference properties. 

As mentioned earlier, these equivalence relations are re-
sorted to in order to determine on what basis blocks are 
judged comparable with one another. 

3.4 Structural pulsation and regularity 

To specify further the decomposition into blocks, it is hy-
pothesized that the structure of (most) music pieces is rather 
cyclic and therefore follows some form of regularity charac-
terized by a small set of distinct block sizes. 

We thus suppose that the music piece is built upon structur-
al pulsation periods which take, in order of preference : 

• One value (type I) 

• Two values (type II) 

• A limited set of values observed in a quasi-regular se-
quence, called structural pattern (type III) 

• A limited set of values, showing no structural pattern 
(type IV) 

• A large variety of distinct values (type V) 

We also designate as type 0 (or undeterminable) a piece for 
which it turns out to be impossible (for the listener) to locate 
clear boundaries of autonomous segments. Blocks whose 
size complies with one value of the structural pulsation pe-
riods are called regular blocks. 

The regularity property induces decompositions which tend 
to yield comparable blocks within a given piece. 

Figure 1 depicts a block-wise structural decomposition in 
the case of a type I structure (top) and illustrates several 
configurations of non-regular blocks (bottom) and their cor-
responding notations : 

• Truncated block : block resulting from the suppression 
of a fragment inside a regular block 

• Extended block : block obtained by the insertion of an 
affix into a regular block  

• Bridging block : irregular block, usually of a smaller 
size, and which is often isolated at the beginning of the 
piece, at the end or in-between regular parts. 

• Tiling : partially overlapping blocks (on all levels of or-
ganization simultaneously), as is the case for instance in 
canon singing or fugue-like compositions. 

3.5 PIC minimization and target duration 

The various properties introduced in the previous para-
graphs still do not necessarily elicit a unique structural de-
composition. Several possibilities may remain, generally 
based on structural pulsation periods which are multiples or 
sub-multiples of each other. 

These situations can be decided between by specifying a 
target duration for regular blocks, the value of which we de-
rive from the minimization of the predominant informative 
context. 

Figure 2 illustrates a structural decomposition as a paradig-
matic representation showing the correspondence between 
homologous parts across distinct blocks. 

If this decomposition is exploited to predict the musical 
properties of the music piece on a short time interval, the 
most relevant portions of the piece for this purpose are, on 
the one hand, the neighboring portions belonging to the 
same block (horizontally) and the homologous portions 
across the other blocks (vertically). 

This is what we call the Predominant Informative Context 
(or PIC). It is distinct for each small portion of the music 
piece and it is solely determined by the structure. It consti-
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Figure 1 : Decomposition into structural blocks (syntagmatic point of view) and the corresponding notation of block sizes. 
 

 

Figure 2 : Paradigmatic representation of structural blocks and visualisation of the PIC. 
Any small portion (in black) presents privileged internal dependencies with the gray parts in the piece, namely other portions 

within the same structural block (horizontally) and homologous portions across other blocks (vertically) 
 

 
 

 

 

 

 

 

 

 

Figure 3 : Example of block-wise decompositions obtained on 6 songs from the RWC Pop set (displayed with Wavesurfer). 
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tutes the predominant source of information within the enti-
ty of internal dependencies mentioned in section 2.1. 

If the total length of the music piece is equal to N and if the 
typical block length is equal to n, then, the number of blocks 
in the piece is in the order of N/n and the total coverage of 
the PIC is given by : 

                  C = n + (N/n) – 2             (1) 

which is minimal when Nn = . 

Taking the second as a unit, and on the basis of music piec-
es with a typical length of 4 minutes (i.e. N = 240 seconds), 
the value of n which minimizes C is approximately equal 
15.5 seconds. 

In the present work, we retain the value of 15 s as the target 
duration for blocks, which leads to the following additional 
criterion : at least one of the structural pulsation periods 
must have a duration as close as possible to 15 s, on a loga-
rithmic scale. This criterion tends to provide structural de-
compositions which result from a balanced contribution of 
the paradigmatic and syntagmatic axes. 

More generally speaking a relative weight λ can be applied 
to the two terms in equation (1), leading to a PIC func-
tion which writes : 

                           C(λ) = n + λ(N/n) – (λ+1)            (2) 

and whose minimization (in n) induces decompositions 
based on an adjustable balance between the syntagmatic and 
the paradigmatic axes. 

The constraint resulting from a target duration criterion 
enables the disambiguation of situations such as several 
identical medium-size segments in sequence and it provides 
blocks which are more adapted to comparisons  across mu-
sic pieces. 

3.6 Subsidiary criteria 

In some residual situations, several competing decomposi-
tions may locally be compatible with a given structural pul-
sation period while fulfilling satisfactorily all other criteria. 
For instance, sequences of an odd number of suppressible 
segments which have a size equal to half of the structural 
pulsation period. 

In these circumstances, the following subsidiary criteria are 
considered : 

- group preferably in a same block short neighboring 
segments of this passage which are most similar 

- favor decompositions that yield the largest possible 
number of blocks which are interchangeable with other 
blocks outside this passage. 

3.7 Procedure (summary) 

The box hereafter summarizes the annotation procedure re-
sulting from the criteria presented above. 

Once the process finalized, the annotator fills up a short re-
port summing up the type of structure, the degree of diffi-
culty, the level of confidence and any relevant information 
pertaining to the annotation of that piece. 

1) Identify a plausible value n (or set of values {ni}) for 
the structural pulsation period(s), from the parts of the 
piece which are structured with strong regularity. 
Choose in priority values as close as possible to the 
target duration. 

2) Locate suppressible blocks of size n, whether they are 
regular or can be derived straightforwardly from regu-
lar blocks. Also search for tiling at this stage. 

3) Continue the decomposition by resorting to less regu-
lar (suppressible) blocks considering in priority block 
sizes that are sub-multiple of n. 

4) Assess the regularity of the decomposition, and find 
out to which type (0, I, II, III, IV or V) the decomposi-
tion tends to belong. The local structure around the be-
ginning and the end of the piece should be given a 
lower importance and so should it be for affixes. 

5) Consider other options for the value(s) of the structural 
pulsation period(s) and find out whether they would 
lead to a simpler decomposition. 

6) Refine the decomposition by resolving remaining am-
biguities with the help of the subsidiary criteria.  

Figure 3 provides example of block-wise decompositions 
obtained on 6 songs from the Pop set of the RWC database. 

4. EVALUATION AND DISSEMINATION 

4.1 Evaluation protocol 

In order to validate the annotation procedure proposed in 
this paper, we have measured the concordance between sev-
eral annotators on a same annotation task. 

Four annotators are provided with a development set of 20 
songs in their audio version, the list of which was deter-
mined by IRCAM, in the context of task 6.5 of the 
QUAERO Project (Table 2). 

The concordance between annotators is evaluated by taking 
them pair-wise and computing for each piece the F-measure 
between their annotations (with a tolerance of ± 0.75 s be-
tween segment boundaries) and averaging the F-measure 
over all 20 pieces. 

Among the four annotators, none is a musicologist nor a 
professional musician. However, it is important to mention 
that they are the 4 co-authors of this paper, which may in-
duce some methodological bias, which needs to be taken 
into account in interpreting the experimental results. 

Annotator N°1 N°2 N°3 N°4 
N°1 - 88.9 95.7 92.9 
N°2 88.9 - 88.7 88.7 
N°3 95.7 88.7 - 92.8 
N°4 92.9 88.7 92.8 - 

Table 1 : Pre-final concordance between annotators evaluated as 
the F-measure (%) between annotations averaged over 20 pieces of 
music. The mean value is 91.3 %. 

Scores presented in Table 1 correspond to what we call pre-
final concordance between annotators, i.e. results of a round 
of annotation carried out after the annotation procedure was 
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specified in its main lines, but before the subsidiary criteria 
of section 3.6 were introduced.  

Figure 4 details the distribution of concordance scores 
across pieces. The median score is 95.8 % and 2 pieces are 
responsible for almost 4% absolute error rate. 

The subsidiary criteria were added in a last stage to resolve 
most of the residual ambiguities and a consensual annota-
tion was produced for 19 of the 20 pieces, while the 20th 
piece (#11 in Table 2) was considered as type 0 (i.e. impos-
sibility to define reliable block boundaries). 

01 Pink Floyd Brain Damage 
02 Queen Lazing On A Sunday Afternoon
03 DJ Cam Mad Blunted Jazz 
04 Outkast Return Of The G 
05 ACDC You Shook Me All Night Long
06 Eric Clapton Old Love 
07 Stan Getz & J. Gilberto O Pato
08 Enya Caribbean Blue 
09 Mickael Jackson Off The Wall 
10 Bass America Collection Planet
11 Plastikman Fuk 
12 Shack Natalies Party 
13 Sean Kingston Take You There 
14 Lil Mama Shawty Get Loose 
15 Abba Waterloo 
16 Eiffel 65 Blue (Da Ba Dee) 
17 Meat Loaf I’d Do Anything For You 
18 Kaoma Lambada 
19 Vangelis Conquest Of Paradise 
20 Nirvana Smells Like Teen Spirit 

Table 2 : List of music pieces used in the development set 

4.2 Dissemination 

In a later phase, we annotated the “Pop” subset (100 songs) 
of the RWC database [10], with the goal to make the result 
available to the MIR community via MIREX, and on : 

http://musicdata.gforge.inria.fr 

Out of the 100 songs, 77 appear to be of type I, 20 of type II 
and 3 of type III (none of the other types). The average 
number of blocks per song is 15.54 (minimum 9, maximum 
22). A vast majority (67 %) of blocks are regular, 15 % are 
derivations of regular blocks and 18 % are irregular. The 
average duration of regular blocks is 17.11 seconds. Table 3 
details the distribution of sizes across blocks. 

5. CONCLUSIONS 

In this paper, we have specified and described thoroughly a 
consistent procedure for the description and the manual an-
notation of music structure, intended to be usable by non-
expert human listeners, and which does not resort to abso-
lute acoustic properties, nor to the analysis of the musical 
role of the constitutive elements. We hope that the proposed 
methodology will be experimented and refined by other 
groups and its usability widely established.  

We are currently working on the definition of a procedure 
based on a multi-dimensional analysis, for assigning labels 
to the structural blocks, accounting for internal similarities 
and contrasts within the music piece. 

Size Raw (A) Stems (B) Regular (C) 
4 1.6 % 1.6 % 0.0 % 
8 10.5 % 9.7 % 3.6 % 

12 2.6 % 2.4 % 1.1 % 
14 1.1 % 0.1 % 0.0 % 
16 59.2 % 72.3 % 87.3 % 
18 5.6 % 0.1 % 0.0 % 
20 4.9 % 1.4 % 1.4 % 
24 1.8 % 1.3 % 1.5 % 
32 2.2 % 2.7 % 3.6 % 

Other 10.5 % 8.4 % 1.5 % 

Table 3 : Distribution of block sizes (in snaps) for raw blocks (A), 
stems (B) and regular blocks only (C). RWC – Pop database. 
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ABSTRACT 

This paper describes the use of fingerprinting-based 

querying in identifying metadata inconsistencies in music 

libraries, as well as the updates to the jMusicMeta-

Manager software in order to perform the analysis. Test 

results are presented for both the Codaich database and a 

generic library of unprocessed metadata. Statistics were 

computed in order to evaluate the differences between a 

manually-maintained library and an unprocessed 

collection when comparing metadata with values on a 

MusicBrainz server queried by fingerprinting. 

1. INTRODUCTION 

1.1 Purpose 

Metadata is useful in organizing information, but in large 

collections of data it can be tedious to keep that 

information consistent. Whereas decision making in 

previous environments such as traditional libraries was 

limited to a small number of highly trained and 

meticulous people, the democratization of music brought 

about by the digital age poses new challenges in terms of 

metadata maintenance, as music can now be obtained 

from diverse and potentially noisy sources.  

The contributors to many popular metadata 

repositories tend to be much less meticulous, and may 

have limited expertise. The research presented here 

proposes a combination of metadata management 

software, acoustic fingerprinting, and the querying of a 

metadata database in order to discover possible errors and 

inconsistencies in a local music library. 

Metadata entries are compared between a library of 

manually-maintained files and a metadata repository, as 

well as between a collection of unprocessed metadata and 

the same repository, in order to highlight the possible 

differences between the two. 

1.2 Metadata and its Value 

Metadata is information about data. In music, it is 

information related to recordings and their electronic 

version (such as the performer, recording studio, or 

lyrics), although it can also be event information about 

artists or other attributes not immediately linked to a 

recorded piece of music. Corthaut et al. present 21 

semantically related clusters of metadata [1], covering a 

wide range of information that illustrates the variety of 

metadata that can be found in music. Lai and Fujinaga [6] 

suggest more than 170 metadata elements organized into 

five types, in research pertaining to metadata for 

phonograph recordings. Casey et al. [2] distinguish 

factual from cultural metadata. The most widely used 

implementation of musical metadata is the ID3 format 

associated with MP3 files [5]. 

 The main problem with metadata is its inconsistency. 

The fact that it is stored in databases containing 

thousands, if not millions, of entries often means that the 

data is supplied by several people who may have different 

approaches. Spelling mistakes may go unnoticed for a 

long time, and information such as an artist’s name might 

be spelled in different but equally valid ways. 

Additionally, several metadata labels—most notably 

genre—are highly subjective.  

When maintaining large databases of music, valid and 

consistent metadata facilitates the retrieval and 

classification of recordings, be it for Music Information 

Retrieval (MIR) purposes or simply for playback. 

1.3 Metadata Repositories and Maintenance Software 

Metadata repositories are databases that include 

information about recordings. When they are supported 

by an Application Programming Interface (API), they 

provide users with a convenient way of accessing the 

stored metadata. Existing music metadata repositories 

include MusicBrainz, Discogs, Last.fm, and Allmusic, to 

name just a few [3]. 

Several software solutions exist that provide ways to 

access, use, and adjust musical metadata. These include 

MusicBrainz Picard, MediaMonkey, jMusicMeta-

Manager, and Mp3tag. The first three applications 

support fingerprinting in some form, but Mp3tag does 

not. GNAT [10] allows querying by metadata or 

fingerprinting to explore aggregated semantic Web data. 

jMusicMetaManager is the only application that performs 

extensive automated internal textual metadata error 

detection, and it also produces numerous useful summary 

statistics not made available by the alternatives. 

1.4 Acoustic Fingerprinting 

Acoustic fingerprinting is a procedure in which audio 

recordings are automatically analyzed and 

deterministically associated with a key that consumes 

considerably less space than the original recording. The 

purpose of using the key in our context is to retrieve 

metadata for a given recording using only the audio 
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information, which is more reliable than using the often 

highly noisy metadata packaged with recordings. 

Among other attributes, fingerprinting algorithms are 

distinguished by their execution speed; their robustness to 

noise and to various types of filtering; and their 

transparency to encoding formats and associated 

compression schemes [1].  

The fingerprinting service used in this paper is that of 

MusicIP (now known as AmpliFIND). It is based on 

Portable Unique Identifier (PUID) codes [9]. These are 

computed using the GenPUID piece of software. The 

PUID format was chosen for its association with the 

MusicBrainz API. 

1.5 Method 

This research uses jMusicMetaManager [7] (a Java 

application for maintaining metadata), Codaich [7] (a 

database of music with manually-maintained metadata), a 

reference library of music labeled with unprocessed 

metadata, and a local MusicBrainz server at McGill 

University’s Music Technology Area. Reports were 

generated in jMusicMetaManager, an application for 

music metadata maintenance which was improved as part 

of this project by the addition of fingerprinting-based 

querying. This was done in order to find the percentage of 

metadata that was identical between the manually-

maintained metadata and that found on the MusicBrainz 

server of metadata. In addition to comparing the artist, 

album, and title fields, a statistic was computed indicating 

how often all three of these specific fields matched 

between the local library and the metadata server, a 

statistic that we refer to as ―identical metadata.‖ Raimond 

et al. [10] present a similar method, with the ultimate 

objective of accessing information on the Semantic Web. 

An unprocessed test collection, consisting of music 

files obtained from file sharing services, was used in 

order to provide a comparison between unmaintained and 

manually-maintained metadata. This unprocessed library 

is referred to as the ―reference library‖ in this paper. 

2. JMUSICMETAMANAGER 

jMusicMetaManager [7] is a piece of software designed 

to automatically detect metadata inconsistencies and 

errors in musical collections, as well as generate 

descriptive profiling statistics about such collections. The 

software is part of the jMIR [8] music information 

retrieval software suite, which also includes audio, MIDI, 

and cultural feature extractors; metalearning machine 

learning software; and research datasets. jMusic-

MetaManager is, like all of the jMIR software, free, open-

source, and designed to be easy to use.  

One of the important problems that jMusic-

MetaManager deals with is the inconsistencies and 

redundancies caused by multiple spellings that are often 

found for entries that should be identical. For example, 

uncorrected occurrences of both ―Lynyrd Skynyrd‖ and 

―Leonard Skinard‖ or of the multiple valid spellings of 

composers such as ―Stravinsky‖ would be problematic for 

an artist identification system that would incorrectly 

perceive them as different artists.  

At its simplest level, jMusicMetaManager calculates 

the Levenshtein (edit) distance between each pair of 

entries for a given field. A threshold is then used to 

determine whether two entries are likely to, in fact, 

correspond to the same true value. This threshold is 

dynamically weighted by the length of the strings. This is 

done separately once each for the artist, composer, title, 

album, and genre fields. In the case of titles, recording 

length is also considered, as two recordings might 

correctly have the same title but be performed entirely 

differently 

This approach, while helpful, is too simplistic to detect 

the full range of problems that one finds in practice. 

Additional pre-processing was therefore implemented and 

additional post-modification distances were calculated. 

This was done in order to reduce the edit distance of 

strings that probably refer to the same thing, thus making 

it easier to detect the corresponding inconsistency. For 

example: 

 Occurences of ―The ‖ were removed (e.g., ―The 

Police‖ should match ―Police‖). 

 Occurrences of ― and ‖ were replaced with ― & ‖  

 Personal titles were converted to abbreviations 

(e.g., ―Doctor John‖ to ―Dr. John‖). 

 Instances of ―in’‖ were replaced with ―ing‖ (e.g., 

―Breakin’ Down‖ to ―Breaking Down‖). 

 Punctuation and brackets were removed (e.g., 

―R.E.M.‖ to ―REM‖). 

 Track numbers from the beginnings of titles and 

extra spaces were removed. 

In all, jMusicMetaManager can perform 23 pre-

processing operations. Furthermore, an additional type of 

processing can be performed where word orders are 

rearranged (e.g., ―Ella Fitzgerald‖ should match 

―Fitzgerald, Ella,‖ and ―Django Reinhardt & Stéphane 

Grappelli‖ should match ―Stéphane Grappelli & Django 

Reinhardt‖). Word subsets can also be considered (e.g., 

―Duke Ellington‖ might match ―Duke Ellington & His 

Orchestra‖). 

jMusicMetaManager also automatically generates a 

variety of HTML-formatted statistical reports about music 

collections, including multiple data summary views and 

analyses of co-occurrences between artists, composers, 

albums, and genres. This allows one to easily acquire and 

publish HTML collection profiles. A total of 39 different 

HTML reports can be automatically generated to help 

profile and publish musical datasets. 
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Users often need a graphical interface for viewing and 

editing a database’s metadata. It was therefore decided to 

link jMusicMetaManager to the Apple iTunes software, 

which is not only free, well-designed, and commonly 

used, but also includes an easily parsed XML-based file 

format. iTunes, in addition, has the important advantage 

that it saves metadata modifications directly to the ID3 

tags of MP3s as well as to its own files, which means that 

the recordings can easily be disassociated from iTunes if 

needed. iTunes can also access Gracenote’s metadata 

automatically, which can then be cleaned with 

jMusicMetaManager. 

jMusicMetaManager can extract metadata from iTunes 

XML files as well as directly from MP3 ID3 tags. Since 

Music Information Retrieval systems do not typically read 

these formats, jMusicMetaManager can also be used to 

generate ground-truth data formatted in ACE XML or 

Weka ARFF formats. 

3. CODAICH 

Codaich is a curated audio research dataset that is also 

part of jMIR [8]. It is constantly growing, and is now 

significantly larger than its original size of 20,849 

recordings. The version used for the experiments 

described in this paper contains 32,328 recordings. 

There is music by nearly 3,000 artists in Codaich, with 

57 different musical genres represented. The dataset can 

be divided into four broad genres of Jazz, Popular, 

Classical, and (the somewhat problematic) World, 

henceforth referred to as ―genre groups.‖ These 

recordings are labeled with 19 metadata fields. 

The metadata of the original version of Codaich was 

meticulously cleaned, both by hand and with jMusic-

MetaManager. Care has been taken to maintain this very 

high level of metadata quality as the dataset has grown. 

The metadata for the original version of Codaich is 

available at the jMIR web site 

(http://jmir.sourceforge.net), and the metadata of the most 

recent version can be obtained in iTunes XML form by 

contacting the authors. 

4. THE REFERENCE LIBRARY 

In order to provide context, it was decided that a 

benchmark was needed against which the metadata 

consistency between Codaich and MusicBrainz could be 

compared. This was the motivation behind assembling the 

reference library, a combination of files downloaded from 

torrent-based networks and files that were obtained before 

the emergence of such systems. In the former case, files 

were downloaded as entire albums, while the rest of the 

reference library consists of recordings that were 

downloaded individually. The reference library consists 

of 1363 recordings by 446 artists, with 70 musical genres 

represented. 

Since the reference library contained many music files 

with no ID3 metadata, but did hold some information in 

the files’ names, metadata was created in such cases based 

on file names.  

5. METHOD 

5.1 Overview of the Experiments 

Experiments were conducted to determine whether or not 

manually-maintained Codaich musical metadata showed a 

different level of consistency with MusicBrainz’s 

information than the unprocessed reference library, for a 

fixed number of metadata fields.  

The first step of the experiments consisted of obtaining 

PUID codes for each recording in each of the two 

libraries. The PUID information was stored in an XML 

file for later parsing by jMusicMetaManager. 

In jMusicMetaManager, all the recordings in Codaich 

and the reference library were matched with entries in the 

XML file of PUID codes. PUID-based querying was 

performed on the MusicBrainz server, and a report of 

matching fields was generated for the chosen metadata 

fields. 

Similar research done by Raimond et al. [10] presents 

GNAT, a Python application that supports PUID-based 

fingerprinting for track identification on a personal music 

library. The authors suggest accessing information 

pertinent to the user through the Semantic Web by 

querying, while we analyze the rate of consistency 

between the two datasets. 

5.2 Changes to jMusicMetaManager 

Running jMusicMetaManager on a large library of music 

files revealed that the application was not able to read the 

ID3 tags of files using releases 1, 2, 3, and 4 of the ID3v2 

protocol. This was due to the choice of metadata API, 

java_mp3, used in jMusicMetamanager. Replacing 

java_mp3 with the jaudiotagger API allowed us to read 

those formats. 

Fingerprinting-based querying was added to 

jMusicMetaManager to enhance its capabilities. 

MusicBrainz’s official (although no longer in active 

development) Java API was used (it is known as 

libmusicbrainz-java), since it allows querying by PUID, 

and a new corresponding report was added to 

jMusicMetaManager. 

To expedite the querying process, threaded querying 

was implemented. This was applied to a copy of the 

MusicBrainz database hosted on a server at McGill 

University, something that was important in overcoming 

the one-query-per-second limitation of the public 

MusicBrainz server.  
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Genre 

group 

Number of 

identified 

recordings  

Identical artist Identical album Identical title 
Identical artist, 

album, and title 

Classical 1,476 3% 2% 6% 0% 

Jazz 3,179 70% 25% 64% 12% 

Popular 16,206 84% 52% 61% 32% 

World 1,640 58% 29% 46% 11% 

Table 1. Querying results for Codaich. Percentages represent the number of entries that were identical to those in Music-

Brainz. The top results per statistic are identified in bold. 

Genre 

group 

Number of 

identified 

recordings  

Identical artist Identical album Identical title 
Identical artist, 

album, and title 

Classical 285 17% 0% 5% 0% 

Jazz 181 43% 14% 39% 4% 

Popular 481 79% 19% 51% 10% 

World 115 57% 12% 41% 3% 

Table 2. Querying results for the reference library. Percentages represent the number of entries that were identical to 

those in MusicBrainz. The top results per statistic are identified in bold. 

Genre group Identical artist Identical album Identical title 
Identical artist, 

album, and title 

Classical -14% 2% 1% 0% 

Jazz 27% 11% 25% 8% 

Popular 5% 33% 11% 22% 

World 2% 17% 6% 9% 

 

5.3 Reporting and Statistics 

Not all files listed in the XML file of PUID codes were 

successfully identified by the MusicBrainz server (and, of 

course, MusicBrainz identification does not guarantee 

correctness). Several files list unanalyzable or pending as 

their status, while other extracted PUID codes did n 

return any result at all. Only identified recordings are 

used in this paper’s statistics.  The ratios of files that were 

not processed in each collection are specified in the 

following sections. 

A case-insensitive string comparison was used in order 

to determine whether or not the artist, album, and title 

fields were identical on the MusicBrainz server and in the 

files’ metadata. 

6. RESULTS 

Reports were generated for both Codaich and the 

reference library. The former database is maintained 

manually and is assumed to contain very few metadata 

errors and inconsistencies, while the latter contains many 

metadata problems due to the wide range of contributors 

and their varied interest and methods in maintaining 

metadata. 

6.1 Codaich Results 

Of the 32,328 songs in Codaich, 22,501 (70%) were 

identified on the MusicBrainz server using PUID values, 

44 files were assigned a status of unanalyzable by 

GenPUID, and 84 were assigned the label pending. Of the 

remaining files, 9,645 (30%) had a PUID value but 

resulted in no hit on the MusicBrainz server. 

Table 1 shows the metadata consistency between 

Codaich and MusicBrainz.  

6.2 Reference Library Results 

Of the 1,363 songs in the reference library, 1,062 (78%) 

were identified on the MusicBrainz server using PUID 

values. 5 files were assigned a status of unanalyzable by 

GenPUID, and 18 were assigned the label pending. Of the 

remaining files, 274 (20%) had a PUID value but resulted 

in no hit on the MusicBrainz server.  

Table 2 shows the metadata consistency between the 

reference library and MusicBrainz. 

6.3 Comparison of Codaich and the Reference Li-

brary 

Table 3 illustrates the difference between the entries of 

Table 2 and Table 1. Positive values indicate a higher rate 

of matching metadata between MusicBrainz and Codaich 
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than between MusicBrainz and the reference library, 

while negative values mean the opposite. Although the 

first two tables are based on different libraries, the values 

of their difference provide us with a rough estimate of the 

quality difference between metadata in unprocessed music 

files collected from the internet and a curated library.  

7. DISCUSSION 

7.1 Global Observations 

A comparison of Table 1 and Table 2 shows that the 

strongest agreement with MusicBrainz for the artist and 

album fields, as well as for the ―identical metadata‖ 

statistic, is obtained for Popular music. This supports the 

argument that the main drivers of community-based 

metadata services are musical genres with which the most 

people are familiar, particularly among the techno-

logically-savvy younger generations who may be more 

likely to contribute to metadata libraries.  

With respect to titles, however, there is a greater level 

of MusicBrainz consistency in the manually-maintained 

library for Jazz recordings than for Popular recordings 

(albeit only 3% more, and the MusicBrainz title 

consistency is greatest for Popular music in the reference 

library). This may be due to better knowledge of Jazz on 

the part of Codaich’s curator relative to the general 

public. 

A potential cause of the relatively low percentages of 

Table 2 is the fact that part of the reference library 

consists of files that used ID3v1 tags instead of ID3v2 

ones. ID3v1 tags limit the size of the title, artist, and 

album fields to 30 characters [5], which could cause 

mismatches in the case of longer entries of the 

MusicBrainz server compared to the limited ones of the 

ID3v1 tags. 

7.2 Differences Between a Curated Database and an 

Unprocessed Collection 

The largest changes between the two collections, as can 

be seen from Table 3, were obtained (in decreasing order) 

for the album field of Popular music (33%), the artist 

field of Jazz (27%), the title field of Jazz (25%), and all 

three chosen fields for Popular music (22%). In 14 out of 

16 statistics, the MusicBrainz metadata matches the 

curated database’s information more often than it does the 

unprocessed collection. We now focus on the two fields 

that were more MusicBrainz-consistent for the reference 

library than for Codaich. For Classical music, the 

consistency of the artist field for the reference library 

(17%) is much higher than that for Codaich (3%).  

We were surprised to notice that the artist field results 

appeared to be ―worsened‖ by the manual maintenance of 

metadata in this way. This can perhaps be explained by 

noting that Codaich fills the artist field with the name of 

the performer, while reserving composer names for the 

composer field. Most metadata on the MusicBrainz server 

and in the reference library, in contrast, lists the 

composer’s name in the artist field, ignoring the 

composer field, possibly due to inherent limitations of the 

choice of underlying database schema.  

The second statistic that is not higher in Table 1 than 

in Table 2 is ―identical metadata‖ (artist, album, and title) 

for Classical music. In both cases, this statistic has a value 

of 0%, meaning that none of the Classical files considered 

had values matching the MusicBrainz entries for all three 

of these fields. 

Indeed, the MusicBrainz consistency for Classical 

Music was very low, even for individual fields. 

Associating metadata with Classical music is challenging, 

as one must make decisions such as choosing how to 

convert names from the Cyrillic alphabet to Latin 

characters
1
, choosing who the artist is, choosing whether 

to include long subtitles in album names, choosing 

whether to include the key and opus number in the title, 

etc. It is important to note that different ways of writing 

metadata may be perfectly valid in these situations, but 

multiple valid values can cause retrieval problems. 

7.3 Classical/World Music vs. Jazz/Popular Music 

Tables 1 and 2 allow us to distinguish two sets of genre 

groups, based on the frequency of matching metadata 

between the local files and the MusicBrainz server: Jazz 

and Popular music in one group, World and Classical 

music in the other.  

Indeed, the highest matches are most often obtained for 

Jazz and Popular music, while the lowest results are in 

general obtained for Classical and World music. Popular 

and Classical music have different characteristics and use 

different fields [4], which leads to complications when 

applying a uniform metadata structure to different genres. 

Classical music has by far the lowest MusicBrainz 

agreement in both music collections. World music has 

results between those of Classical music and Popular/Jazz 

music. The fact that Popular (and to a certain extent Jazz) 

music uses clearly-defined artist, album, and title tags 

facilitates the matching of such information on a web 

server. 

7.4 Matching Results and Correct Results 

Human maintenance of metadata has the expected effect 

of making metadata consistent across a library. Let us 

consider the case of Classical music. The low rate of 

consistency of matching artist names between Codaich 

and MusicBrainz might lead us to think that manual 

maintenance had a negative effect on the metadata, but in 

reality the Codaich metadata is arguably better than the 

                                                           
1

 Although this happens in other genres, it could be 

argued that conversion between languages is statistically 

more likely in Classical and World music. 
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MusicBrainz metadata. The ID3v2 protocols support a 

composer field, and should be used for that purpose, as 

done in Codaich. 

It was interesting to observe in Codaich’s file-by-file 

report of metadata comparisons that certain files that were 

assumed to belong to the same album were listed as 

belonging to different ones in the web service’s fetched 

metadata. Consider the case of recordings that appear in 

different contexts such as movie soundtracks, 

compilations, and regular studio albums. Certain users 

may want to keep these recordings identified as being 

associated with the original studio release, while others 

will prefer to associate them with the other releases on 

which they appear, both points of view being valid. Such 

an issue would be avoided by allowing multi-value 

metadata fields. 

8. CONCLUSIONS 

Our results indicate that manually-maintained music files 

tend to have a greater level of metadata consistency with 

MusicBrainz than do unprocessed files. This does not, 

however, mean that the web service’s metadata contains 

the correct values. We also noted that the matching rates 

of metadata vary across the analyzed genre groups. 

Differences in metadata between a manually-maintained 

database and a metadata database such as MusicBrainz 

may be due to a variety of reasons.  

Combining jMusicMetaManager with fingerprinting 

querying can facilitate the cleanup of local collections of 

music. The matching of metadata between local files and 

a metadata server is particularly useful in the case of 

Popular music and Jazz, recent genres for which metadata 

fields are more easily attributed than for Classical and 

World music. With this new querying feature, jMusic-

MetaManager is useful in more situations and unique in 

its reporting capability. We have also seen that, although 

at first sight the manual maintenance of metadata revealed 

some lowering of matches with the MusicBrainz server, it 

was justified by the proper use of attributes by the human 

curator. This can be seen as an illustration of the 

unreliability of collaboratively-maintained databases such 

as MusicBrainz for musical genres that do not benefit 

from the same public exposure as Popular music and Jazz. 

In light of this potential unreliability, the use of 

metadata management software such as jMusicMeta-

Manager is recommended in order to detect potential 

errors and inconsistencies in local libraries of music, as it 

can detect problems without reference to external sources 

of potentially unreliable information. 

Having discussed the possibility that multiple values of 

a metadata field may all be valid in certain cases, we 

stress the need for multidimensional musical metadata. 

Through our analysis of statistical results, we confirm 

the pertinence of the manual maintenance of metadata, 

and explain the reasons behind minor unexpected results. 

jMusicMetaManager already computes metrics that 

can be used to detect metadata inconsistencies. As future 

work, integrating such features in the comparison of local 

and remote metadata would be helpful in that a threshold 

of comparison could allow the user to identify metadata 

that is similar enough. We expect an improvement in 

Classical music retrieval with such a change.  

Finally, a similar experiment could be performed by 

manually correcting a given library of music while 

keeping the unprocessed version as reference. 
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ABSTRACT

This paper develops and applies a new method for the dis-
covery of polyphonic patterns. The method supports the
representation of abstract relations that are formed between
notes that overlap in time without being simultaneous. Such
relations are central to understanding species counterpoint.
The method consists of an application of the vertical view-
point technique, which relies on a vertical slicing of the
musical score. It is applied to two-voice contrapuntal tex-
tures extracted from the Bach chorale harmonizations. Re-
sults show that the new method is powerful enough to rep-
resent and discover distinctive modules of species coun-
terpoint, including remarkably the suspension principle of
fourth species counterpoint. In addition, by focusing on
two voices in particular and setting them against all other
possible voice pairs, the method can elicit patterns that il-
lustrate well the unique treatment of the voices under in-
vestigation, e.g. the inner and outer voices. The results
are promising and indicate that the method is suitable for
computational musicology research.

1. INTRODUCTION

Polyphonic music presents challenges for music informa-
tion retrieval, and the representation and discovery of pat-
terns that recur in a polyphonic corpus remains an open
and interesting problem. The discovery of monophonic
patterns in music could be considered a mature area, with
several powerful methods proposed and effectively applied
to this task.

In polyphonic music, monophonic patterns can natu-
rally be discovered using such methods provided that voice
separation is first performed [12]. However, the discov-
ery of polyphonic patterns – those containing two or more
overlapping voices – is largely an open problem and there
remain few approaches in the literature. The difficulty of
this problem arises primarily from the presence of tempo-
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personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
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ral relations between notes that occur in different voices,
without being simultaneous. These relations are central to
the understanding of counterpoint [9] and occur in all but
the simplest note against note (first species) counterpoint.
The discovery of polyphonic patterns is a new area with
few existing approaches.

A difficulty with polyphony is that most polyphonic mu-
sic cannot be easily separated into a regular number of
voices [2]. In piano music, for example, voices can appear
and disappear throughout a piece, and it would be mistaken
to parse the music into a persistent number of voices. This
paper uses the voiced Bach chorale harmonizations, and
later some discussion is provided regarding the application
of the method to unvoiced polyphony.

The simplest approach to find patterns in a polyphonic
corpus is based on the conversion into chord symbol se-
quences, followed by the application of monophonic pat-
tern discovery algorithms [1, 5]. However, accurate au-
tomatic chord labelling and segmentation is an unsolved
problem, and the preparation of large corpora is difficult to
achieve by hand.

Vertical approaches [4] are applied to voiced polyphonic
textures first converted to a homophonic form. This is done
by fully expanding a polyphonic score by adding artificial
notes whenever a new onset time is encountered. This ex-
panded score is then sliced, features computed for each
slice in the sequence, and the resulting sequence mined us-
ing a monophonic pattern discovery approach. A similar
method using bit-string approaches has been described by
Chiu et al. [3]. The problem with these vertical approaches
is in the lack of flexible temporal relations between compo-
nents of a slice, which must all have the same onset time.

Geometric approaches [10] can be applied to voiced or
unvoiced polyphony and can reveal patterns not contiguous
on the music surface. The geometric approach however
has two drawbacks for discovering contrapuntal patterns.
Since geometric patterns must conserve exact inter-onset
intervals in the time dimension, they cannot represent gen-
eral local temporal relations among pattern components.
Furthermore the expensive time complexity of the method
leads to intractability for large pieces or corpora.

Polyphonic patterns are ideally represented as relational
networks. Nodes represent events and edges represent re-
lations between events. For example, consider the score
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fragment and small relational network presented in Fig-
ure 1(i,ii). This pattern matches four notes (a, b, c, d) in
the following relations: a m7 dissonance (a, c) formed by
the bottom voice (c) approached by a downwards leap, re-
solving to a M3 consonance (b, d) by a stepwise motion
down in the top voice (b), and a leap up in the bottom
voice (d). In addition, an asterisk∗ indicates that (c) is
preceded by a note that the pattern does not represent ex-
plicitly, but rather implicitly via the notion of melodic mo-
tion. Note that while (a, b) and (c, d) follow each other in
the same voice, critically important in this pattern are the
different temporal relations between (a, c) (c starting while
a is sounding) and (b, d) (they start together).
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a b
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Figure 1. Two-voice counterpoint pattern: i) instance in
final bar of BWV 257; ii) relational pattern; iii) piano-
roll notation of instance showing the slicing process; iv)
a schematic representation of the pattern; v) an equivalent
feature set pattern.

Figure 1(iv) shows a schematic representation that we
have developed as a visually appealing notation for a full
relational network over a limited number of relations. Hor-
izontal lines indicate voicing. The placement of vertical
lines indicates temporal relations, and their form indicates
consonance (dashed) or dissonance (dotted) between the
temporally related notes. The slope of horizontal lines
is proportional to the melodic contour it indicates (i.e. a

steeper slope indicates a melodic leap). When the contour
is not defined by the pattern, the horizontal line is dashed.
Again, an asterisk∗ indicates a note that must implicitly
be present for the pattern to match, but is not explicitly
matched by a pattern component.

This paper is concerned with discovering patterns like
the one presented in Figure 1 in a large corpus of poly-
phonic music. We consider a precise notion of polyphonic
pattern, one that captures musical intervals between notes
that overlap in time, including between notes that are not
simultaneous. Our approach is computationally very effi-
cient as it translates the relational discovery problem to a
form where sequential pattern discovery can be applied.

The paper is structured as follows. First, the newVVP
(Vertical ViewPoint) method for polyphonic pattern dis-
covery will be described. Results will be highlighted and
translated to schematic relational networks for clarity. Fi-
nally, the strengths and weaknesses ofVVP are discussed.

2. METHOD

The vertical viewpoint approach as originally presented [4]
applies to homophony and cannot express temporal rela-
tions that might hold between components of a vertical
slice, as would be required for the pattern developed in
Figure 1. However, the approach can be extended resulting
in what we call theVVP formalism. This is done by a)
adding the ability to handle local temporal relations within
slices; and b) describing properties of slices using flexible
sets of features.

The first step was to employ eventcontinuations, which
specially identify those events with onsets prior to the on-
set of the slice. This method was inspired by the approach
of Dubnov et al. [7] who developed a real-time method for
prediction of continuations for polyphonic improvisations.
Figure 1(iii) illustrates slices where continuations are used
to retain local temporal relations. For example, the slice
labelledA contains two notes: B2 in the bottom voice (c)
and a continued event A3 in the top voice (a).

The second step was to employfeature sets[6] to de-
scribe successive slices in a piece. In this paper, four fea-
tures are used to describe slices:

time describing the temporal relations between the two
voices, taking the valuesst (both voices start to-
gether),b-sw (bottom voice starts while the top voice
is sounding) andt-sw (top voice starts while the bot-
tom voice is sounding). These temporal relations
are derived by inspecting the continuation features
of events within slices;

qual of the harmonic interval (non-compound diatonic in-
terval between lower and higher pitches in the slice),
taking the valuescons (intervals P1, m3, M3, P5,
m6, M6) anddiss (all other intervals);

bc, tc describing the melodic contour of either the top
voice (tc) or bottom voice (bc), both taking the pos-
sible values leap up:++; leap down:- -; step up:+;
step down:-; unison:=.
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Figure 1(v) illustrates aVVP pattern, using the above fea-
tures. The pattern is a sequence of two features sets which
expresses exactly the relational network in Figure 1(ii). It
matches the score fragment in Figure 1(i) and in general
all pairs of contiguous slices that contain the features pre-
sented.

To apply this representation in pattern discovery, a cor-
pus is sliced at every unique onset time, every slice is sat-
urated with the above features, then a pattern discovery al-
gorithm finds all patterns that are distinctive (with a score
above a threshold) and maximally general [5]. The algo-
rithm for finding these patterns is a depth-first search of a
subsumption space, that iteratively refines patterns at each
search node to make them more specific. This is described
in more detail in [5].

Regarding the scoring of patterns, it is well-known that
discovered patterns should not be ranked simply by their
count, because a general pattern will naturally occur more
frequently than a more specific one, regardless of the cor-
pus. Patterns are scored by an odds ratio, dividing their
corpus probability by their background probability:

∆(P )
def
=

p(P |⊕)

p(P |⊖)
, (1)

whereP isa pattern and the probabilitiesp(P |⊕) andp(P |⊖)
are computed as follows. The probability of patternP in
the corpus isp(P |⊕) = c⊕(P )/n⊕, wherec⊕(P ) is the
total slice count of patternP in the corpus andn⊕ is the
number of slices in the corpus. To evaluate the background
probabilityp(P |⊖), two distinct methods may be used: the
anticorpusmethod, and the thenull modelmethod.

An anticorpusis a set of pieces that is set up specifically
to contrast with the analysis corpus. When an explicit an-
ticorpus is used, the background probability is simply the
anticorpus probability of the pattern:

p(P |⊖)
def
= c⊖(P )/n⊖, (2)

wherec⊖(P ) is the total slice count of the patternP in the
anticorpus, andn⊖ is the number of slices in the anticor-
pus.

In cases where an explicit anticorpus is not used, the
null modelmethod may be employed instead to rank pat-
terns. The null model probability of a patternP comprised
of feature setsc1, . . . , cn is defined as:

p(P |⊖)
def
=

n∏

i=1

∏

f∈ci

c⊕(f)/n⊕, (3)

wherec⊕(f) is the total count (number of slices) of the
featuref in the corpus. It estimates how probable a pattern
is by multiplying the probabilities of its constituent fea-
tures as they are encountered in the corpus. For example,
theb-sw andt-sw temporal relations might occur less fre-
quently than thest temporal relation. The null model prob-
ability of a pattern containing eitherb-sw or t-sw would
then be lower, allowing for such a pattern to be interesting
even if it has a lower total count than a similar pattern with
ast temporal relation.

3. RESULTS

This section presents the results ofVVP on pairs of voices
extracted from 185 J.S. Bach chorale harmonizations in
Humdrum format. Importantly, this format has diatonic
spelling for all pitches, facilitating the computation of con-
sonance and dissonance relations. Voices were extracted
and recombined using the Humdrum toolset, and the ap-
propriate filtering applied to insure well-formed slices (e.g.
removing null lines to avoid slices where no event starts).
All 6 possible ordered voice pairs were extracted from each
piece: soprano-alto (SA), soprano-tenor (ST), soprano-bass
(SB), alto-tenor (AT), alto-bass (AB), and tenor-bass (TB).
This provides a total of185×6 = 1110 possible two-voice
pairs.

Two experiments were performed: one where an an-
ticorpus was used to reveal the most interesting patterns
and one where a null model was used. In both experi-
ments, discovered pattern sets were filtered to retain only
those patterns that contained at least a temporal (time) and
harmonic interval quality feature (qual) in all components
of a pattern. The method was calibrated to discover pat-
terns with a score of at least 3 (Equation 1): with 3 times
higher probability in the corpus as compared to the anti-
corpus or null model background probabilities (this cali-
bration has worked well for other pattern discovery exper-
iments in music [5]). In addition, only patterns with a total
count of at least 100 were considered. This is a simple
way to isolate patterns that are deemed to be reasonably
frequent (the suspension pattern reported in Section 3.2,
for example, has a total count of 450).

3.1 Anticorpus

In this experiment, all 6 voice pairs (SA, ST, SB, AT, AB,
TB) were in turn used as the corpus, with the remaining 5
as the anticorpus. Thus each corpus comprises 185 two-
voice polyphonic extracts, and each anticorpus185 × 5 =
925 extracts. Patterns are ranked by using the anticorpus
method (Equation 2) to compute background probabilities.
Results for all experiments are concatenated, sorted from
high to low∆(P ) (Equation 1), and the most distinctive 3
patterns each from the AT and SB corpora were retained
(Table 1). The inner voices (AT) and outer voices (SB)
were selected for illustration as they were previously dis-
cussed in the literature [8], but the method returns results
for every voice pair. Below each pattern, Table 1 shows its
total count and score as a number pair. The three patterns
in each group are sorted by decreasing score∆(P ): note
how a pattern can have higher score despite having a lower
total count.

The first pattern of Table 1 is roughly 5 times more
likely to occur between SB (outer voices) than any other
voice pair. As mentioned by Huron [8], outer voices are
more perceptually salient. They are hence expected to ex-
hibit a good contrapuntal quality. Not surprinsingly, the
patterns discovered byVVP as characteristic of SB are all
consistent with counterpoint. For example, the first and
third patterns introduce a dissonance over ab-sw temporal
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Pattern Schema Examples
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Table 1. Patterns discovered by computing background probabilities using an anticorpus. Top: distinctive of SB; bottom:
distinctive of AT.

relation on a weak beat and resolve it straight away through
stepwise melodic motion.

By opposition, one can expect the inner voices (AT),
which are less perceptually salient, to be used more freely
to create harmonies, with less considerations for the pres-
ence of dissonance. The last three patterns of Table 1 all
characterize the inner voices and are consistent with this
idea. All patterns introduce a dissonance over ast tem-
poral relation. Pattern 5 clearly demonstrates this: a disso-
nances of a perfect fourth, usually forbidden between outer
voices, here freely occurs in both examples.

In addition to the results presented in Table 1, many of
the most interesting patterns discovered byVVP refer to
either SB or AT pairs (data not shown). This suggests that
the inner and outer voices are the two voice pairs that are
the easiest to characterize, possibly because they differ the

most from other voice pairs in terms of their contrapuntal
quality.

3.2 Null model

In this experiment, we consider all voice pairs together (a
corpus of 1110 two-voice pairs). Patterns are ranked by
using a null model (Equation 3) to compute background
probabilities. The seven most distinctive patterns are pre-
sented in Table 2. Again, the total count and score of each
pattern is shown as a number pair.

The first pattern exhibits consecutive leaps. On its own,
a leap is less likely than a step. Similarly, a sequence of
leaps will be deemed unlikely by the null model. How-
ever, the first pattern contains such a sequence and does
occur significantly in the chorales: 11 times more than ex-
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pected. This can be interpreted as a composition rule: a
sequenceof leaps is acceptable, given that it occurs over
two consonances, over twob-sw temporal relations, and
changes contour. Note how the second instance of pat-
tern 1 presents a rhythmic augmentation: the abstract pat-
tern makes no constraints on rhythmic features.

The second, fourth and fifth pattern evoke second species
counterpoint, while the sixth evokes first species. Pattern 3
evokes third species counterpoint, with a four note against
one texture, alternating with dissonance and consonance.
In one instance the bass line is rising: in the other it falls.
In pattern 2, similarly, the direction of motion of the tenor
line is inverted between the two instances shown. Again,
this illustrates the abstraction power of the feature set pat-
tern representation.

Pattern 7 is characteristic of the fourth species, with
voices overlapping via successiveb-sw and t-sw tempo-
ral relations. Remarkably, this is a pattern precisely de-
scribing the suspension pattern of fourth species counter-
point, including the melodic contour of a step down for the
resolution of the dissonance [9]. The two instances pre-
sented are examples of the 4-3 and 7-6 suspension. Note
how the high level of abstraction of this pattern (refraining
from specifying exact intervals, and lower voice movement
for the suspension resolution) is necessary to represent the
concept of a suspension.

4. DISCUSSION

This paper presented theVVP method for the discovery of
relational patterns in two-voice counterpoint. The method
is based on a monophonic pattern discovery algorithm [5],
and extends earlier results [4] through the use of continua-
tions of events across slices. TheVVP approach is fast as
it transforms a relational data mining problem into a sim-
pler sequential one, an example of representation change
often employed in machine learning. Nevertheless, the rep-
resentation is flexible due to the abstraction of slices by
feature sets.

In the experiments presented here, the representation al-
lows the concise expression of many contrapuntal patterns.
This demonstrates that the approach is powerful enough
to discover polyphonic patterns of theoretical significance.
The patterns reported here are not particularly surprising,
but their discovery is nonetheless promising: further ex-
ploration with the method could help discover significant
patterns that are yet unknown to music theory. This explo-
ration is however outside the scope of the current paper.

Similar patterns to the those presented here have been
studied in the context of supervised learning [11], where
the patterns were identified beforehand and the task was to
learn rules explaining the structure of the patterns. How-
ever, only simple note against note counterpoint was stud-
ied.

The application of the method in this paper led to pat-
terns that were very abstract, with highly divergent instances
on the musical surface. It was shown, however, that such
abstraction is necessary to capture the concept of a fourth
species suspension pattern in its full generality. Further-

more, using only three simple background features (tem-
poral relations, harmonic interval quality, and melodic con-
tour), the method was able to discover the suspension in a
corpus of Bach chorale harmonizations.

If less abstraction is desired, more background features
can be added, for example those referring to melodic inter-
val and durations of notes. For this study, a calibration of
the method using the most basic relations of counterpoint
was desired. This has been successful and future work will
focus on further pattern representation aspects.

Though applied to two-voice textures here, the method
easily extends to more voices. Further temporal relations
would need to be added to accommodate the additional
temporal relations formed; for example for pattern discov-
ery in 3 voices (e.g., SAT), three overlap relations (SA, ST,
AT) and three corresponding simultaneity relations would
be needed: in general a number of such features quadratic
in the number of notes in a slice. In addition, three dif-
ferent harmonic interval relations would be necessary, or
alternatively the notion of harmonic interval quality could
somehow be extended to triads.

A limitation of this approach, as presented here, is that it
applies to voiced polyphony, or corpora where voices have
already been extracted from an unvoiced polyphonic tex-
ture. There are several possible ways to apply the method
to raw unvoiced textures. Temporal relations between slice
components may simply be discarded, and any “static” view-
point (such as chord type, mode) of a slice may be used.
Alternatively, the presence of a temporal relation between
slice components can be considered but with voice lead-
ing relations (e.g., melodic contour) omitted. Finally, if
both temporal and voice-leading relations are desired, one
might replace the notions of top voice and bottom voice
with the highest note and lowest note in the slice, reminis-
cent of the simple skyline approach to voice segregation.
With feature sets, one could even include melodic rela-
tionships between second highest pitches (if present), third
highest pitches (if present), lowest (possible bass line) and
so on. The presence or absence of such features would
also indicate texture density, hence potentially expressing
patterns occurring over changes of textures.
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ABSTRACT

The development of novel analytical tools to investigate
the structure of music works is central in current music
information retrieval research. In particular, music sum-
marization aims at finding the most representative parts of
a music piece (motifs) that can be exploited for an effi-
cient music database indexing system. Here we present a
novel approach for motif discovery in music pieces based
on an eigenvector method. Scores are segmented into a
network of bars and then ranked depending on their cen-
trality. Bars with higher centrality are more likely to be
relevant for music summarization. Results on the corpus of
J.S.Bach’s 2-part Inventions demonstrate the effectiveness
of the method and suggest that different musical metrics
might be more suitable than others for different applica-
tions.

1. INTRODUCTION

Listening to music and perceiving its structure is a rela-
tively easy task for humans, even for listeners without for-
mal musical training. However, building computational
models to simulate this process is a hard problem. On the
other hand, the problem of automatically identifying rele-
vant characteristic motifs and efficiently store and retrieve
the digital content has become an important issue as digital
collections are increasing in number and size more or less
everywhere.

Notwithstanding the conspicuousness of the literature,
current approaches seem to rely just on the repetition para-
digm [20] [8], assigning higher scores to recurring equiv-
alent melodic and harmonic patterns [11]. Recently re-
ported approaches to melodic clustering based on string
compression [10], motivic topologies [18], graph distance
[21] and paradigmatic analysis [19] have been used to se-
lect relevant subsequences among highly repeated ones by
heuristic criteria [15] [1]. However, this approach is not
completely satisfying as the repetition paradigm can pro-
vide just a first approximation of the perceptual ranking
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mechanism [3] and produces too many false positives shar-
ing the same repetition rates.

Moreover, the repetition paradigm, in order to be ap-
plied, needs by no means a precise definition of “varied
repetition”, a concept not easy to define. Of course, it has
to include standard music transformation, but it is very dif-
ficult to adopt a simple two-valued logic (this is a repeti-
tion and this is not) in this context, where a more fuzzy
approach seems to better address such a problem.

Sometime repetitions may even lead to evident mistakes,
as it might happen that highly repeated patterns turn to be
totally irrelevant from a musicological point of view. In
fact cases occur where the most repeated pattern in the
whole composition is an ornament, like a trill. This is to
show that the repetition paradigm is not sufficient in itself
to identify relevant themes but it needs some heuristics to
select among relevant and irrelevant patterns.

Here we present an alternative ranking method based on
connections instead of repetitions. We show that a distance
distribution on a graph of note subsequences induced by
music similarity measures generates a ranking real eigen-
vector whose components reflect the actual relevance of
motives. False positives of the repetition paradigm turned
out to be less connected nodes of the graph due to their
higher degree of dissimilarity with relevant motives.

Our results show how higher indexes of connection, or
“centrality”, are more likely to perform better than higher
repetition rates in motif discovery, with no additional as-
sumptions on the particular nature of the sequence or the
adopted similarity measure.

2. RELATED WORKS

Music segmentation is usually realized through musicolog-
ical analysis by human experts and, at the moment, auto-
matic segmentation is a difficult task without human inter-
vention. The supposed music themes have often to undergo
a hand-made musicological evaluation, aimed at recogniz-
ing their expected relevance and completeness of results.
As a matter of fact, an automatic process could extract a
musical theme which is too long, or too short, or simply
irrelevant. Thats why a human feedback is still required in
order to obtain high-quality results.

We present here an overview of current approaches based
on different musical assumptions. We start this section
with a general overview of the literature. Then we intro-
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duce harmony related approaches, with a focus to reduc-
tionistic ones. Finally we introduce topology-based mod-
els, which share much more similarities than others with
our approach. All those methods makes use of the repeti-
tion paradigm.

2.1 General approaches

Lartillot [15] [16] defined a musical pattern discovery sys-
tem motivated by human listening strategies. Pitch inter-
vals are used together with duration ratios to recognize
identical or similar note pairs, which in turn are combined
to construct similar patterns. Pattern selection is guided
by paradigmatic aspects and overlaps of segments are al-
lowed.

Cambouropoulos [6], on the other hand, proposed meth-
ods to divide given musical pieces into mostly non-over-
lapping segments. A prominence value is calculated for
each melody based on the number of exact occurrences of
non-overlapping melodies. Prominence values of melodies
are used to determine the boundaries of the segments [7].
He also developed methods to recognize variations of fill-
ing and thinning (through note insertion and deletion) into
the original melody. Cambouropoulos and Widmer [9] pro-
posed methods to construct melodic clusters depending on
the melodic and rhythmic features of the given segments.
Basically, similarities of these features up to a particular
threshold are used to determine the clusters. High com-
putational costs of this method make applications to long
pieces difficult.

2.2 Tonal harmony-based approaches

Tonal harmony based approaches exploit particular har-
monic patterns (such as tonic-subdominant-dominant-tonic),
melodic movements (e.g. sensible-tonic), and some rhyth-
mical punctuation features (pauses, long-duration notes,
...) for a definition of a commonly accepted semantic in
many ages and cultures.

These approaches typically lead towards score reduc-
tions (see Figure 1), made possible by taking advantage of
additional musicological information related to the piece
and assigning different level of relevance to the notes of
a melody. For example one may choose to assign higher
importance to the stressed notes inside a bar [22]. In other
words, the goal of comparing two melodic sequences is
achieved by reducing musical information into some “prim-
itive types” and comparing the reduced fragments by means
of suitable metrics.
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Figure 1. J.S. Bach, BWV 1080: Score reductions.

A very interesting reductionistic approach to music anal-
ysis has been attempted by Fred Lerdahl and Ray Jack-
endoff. Lerdahl and Jakendoff [17] research was oriented
towards a formal description of the musical intuitions of
a listener who is experienced in a musical idiom. Their
purpose was the development of a formal grammar which
could be used to analyze any tonal composition.

The study of these mechanisms allows the construction
of a grammar able to describe the fundamental rules fol-
lowed by human mind in the recognition of the underlying
structures of a musical piece.

2.3 Topological approaches

Mazzola and Buteau [5] proposed a general theoretical frame-
work for the paradigmatic analysis of the melodic struc-
tures. The main idea is that a paradigmatic approach can
be turned into a topological approach. They consider not
only consecutive tone sequences, but allow any subset of
the ambient melody to carry a melodic shape (such as rigid
shape, diastematic shape, etc.). The mathematical con-
struction is very complex and, as for the motif selection
process, it relies on the repetition paradigm.

The method proposed by Adiloglu, Noll and Obermayer
in [1] does not take into account the harmonic structure of
a piece and is based just on similarities of melodies and on
the concept of similarity neighborhood. Melodies are con-
sidered as pure pitch sequences, excluding rests and rhyth-
mical information.

A monophonic piece is considered to be a single melody
M , i.e. they reduce the piece to its melodic surface. Sim-
ilarly, a polyphonic piece is considered to be the list M =
(Mi)i=1,...,N of its voices Mi. The next step is to model a
number of different melodic transformations, such as trans-
positions, inversions and retrogradations and to provide
an effective similarity measure based on cross-correlation
between melodic fragments that takes into account these
transformations. They utilize a mathematical distance mea-
sure to recognize melodic similarity and the equivalence
classes that makes use of the concept of neighbourhood to
define a set of similar melodies.

Following the repetition paradigm stated by Cambouro-
poulos in [7] they define a prominence value to each melody
based on the number of occurrences, and on the length of
the melody. The only difference is that they allow also
melody overlapping. In the end, the significance of a melody
m of length n within a given piece M is the normalized
cardinality of the similarity neighbourhood set of the given
melody. If two melodies appear equal number of times, the
longer melody is more significant than the shorter one.

In [1] the complete collection of the Two-part Inven-
tions by J. S. Bach is used to evaluate the method, and this
will be also our choice in section 4.

3. THE RELATIONAL MODEL

As stated in Section 2, current methods rely on the repeti-
tion paradigm. Our point of view can be synthesized in the
following points:
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1. We consider a music piece as a network graph of
segments,

2. we do take into account both melodic and rhythmical
structures of segments

3. we do not consider harmony, as it is too much related
to tonality.

frame
(i-1,1)

frame
(i,1)

frame
(i+1,1)

frame
(i-1,2)
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(i,1)

frame
(i+1,1)

frame
(i-1,n)
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(i,n)

frame
(i+1,n)

Voice 1

Voice 2

Voice n

Time flow

Figure 2. A representation of the (first-order) network of
frames.

A single frame may represent, for instance, a bar or a
specific voice within a bar like in Fig. 2, but also more
general segments of the piece. We do not take into account
here the problem of windowing as the method is basically
independent from any specific segmentation of the piece.
What we provide here is a different point of view which,
like the repetition paradigm, can be applied in principle to
any specific segmentation.

3.1 Score representation

The natural consequence is that a music piece can be looked
at like a complete graph Kn. In graph theory, a complete
graph is a simple graph where an edge connects every pair
of distinct vertices. The complete graph on n vertices has
n(n− 1)/2 edges and is a regular graph of degree n− 1.

In this representation, score segments correspond to graph
nodes and the similarity between couples of segments cor-
respond to edge weights. This approach can be better ex-
plained if we think to a score like a network graph of “pages”,
so we can establish a parallelism between score segments
ranking and the World Wide Web ranking process as orig-
inally depicted in [4] by S. Brin and L. Page.

As stated before, the problem of windowing is partly
overcome in the network concept as it does not strongly
affect the model. In fact by using undersized windows we
normally get just more detailed results. In our experiments

(see Section 4) we decided to adopt a one-bar length win-
dow, as we considered metric information relevant to mu-
sic segmentation, avoiding any form of overlapping. In fact
it turned out that if the metric information is taken into ac-
count, overlapping windows are not relevant in a relational
model, as they can lead to inaccurate motif discovery, due
to overrates given to highly self-similar segments.

3.2 Metric weights

As stated above, graph nodes correspond to score segments.
The next issue is the definition of a suitable concept of dis-
tance between segments. This should be apparently at the
very heart of the method, and in a sense it is. Every time
there is a similarity concept the question is: which kind of
similarity? There are so many different concepts of music
similarity (perceptual, structural, melodic, rhythmical, and
so on) that is not possible to provide a unique definition.

The variety of segmentations reflects to a large extent
the variety of musical similarity concepts, and that is the
reason why it is correct to have this parameter here. Nev-
ertheless, as stated in Section 4 the model is rather robust
respect to metric changes.

In general, we can just say that the set of segments can
be endowed with a notion of distance

d : S × S → R

between pairs of segments and turns this set into a (possi-
bly metric) space (S, d). A natural choice for point sets of
a metric space is the Hausdorff metric [13] but any other
distance discovered to be useful in music perception, like
EMD/PTD [23], can be chosen as well.

Here we assume d to be:

1. real,

2. non-negative,

3. symmetric and

4. such that d(s, s) = 0, ∀s ∈ S

As a matter of fact, most musically relevant perceptual
distances do not satisfy all metric axioms [23]. Therefore
no further property, like the identity of indiscernibles or the
triangle inequality, is assumed.

Given two segments s1 and s2, for the experiments we
adopted the two following simple metrics:

d1(s1, s2) =
√∑
|s|

|[s1]12 − [s2]12| (1)

d2(s1, s2) =
√∑
|s|

(s′
1 − s

′
2)2 (2)

where s′ is the derivative operator on the sequence s, |s| is
the length of s and [s]12 is the sequence s where each entry
has been chosen in the interval [0, 11].
d1 is a first-order metric that takes into account just oc-

tave transpositions of melodies. In fact, pitch classes out
of the range [0, 11] are folded back into the same interval,
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so melodies which differ for one or more octaves belong
to the same congruence class modulo 12 semitones. d2

is a second-order metric that takes into account arbitrary
transpositions and inversions of a melody. No other as-
sumptions on possible variations have been made, so that
an equivalence class of melodies is composed just of trans-
positions and inversions of the same melody like in [1].

Both distances can be applied to single voice sequences
but also to multiple voice sequences, given that a suitable
representation has been provided. For instance, in a two
voice piece, with voices v1 and v2, one can consider the
difference vector v = v1 − v2 as a good representation
of a specific segment, and then apply d1 or d2 to this new
object. The advantage of using this differential represen-
tation is that it is invariant respect to transpositions and
inversions of the two voices so that, for instance, it makes
also d1 invariant respect to transpositions and inversions,
and not just to octave shifts.

By exploiting those distance concepts, it is possible to
endow the edges of the complete graph with metric weights
in order to compute the weights of nodes in terms of the
main eigenvector, as we are going to show in the following
Sections.

3.3 Matrix representation and ranking eigenvector

The adopted algebraic representation of the ‘score graph’
K is the adjacency matrix A(K). This is a nonnegative
matrix as its entries are the distance values between the dif-
ferent segments in which the score has been divided into.
Perron-Frobenius theory for nonnegative matrices grants
that, if A ∈ Mn×n and A ≥ 0, then there is an eigenvec-
tor x ∈ Rn with x ≥ 0 and and

∑n
i=1 xi = 1, called the

Perron vector of A [14].
This result has a natural interpretation in the theory of fi-

nite Markov chains, where it is the matrix-theoretic equiv-
alent of the convergence of a finite Markov chain, formu-
lated in terms of the transition matrix of the chain [2].

The Perron vector can be viewed as a probability dis-
tribution of presence of a ‘random listener’ on a particular
segment of a musical piece. This listener recalls with prob-
ability d(si, sj) segment sj from segment si, following the
‘links’ represented by the values of the similarity function.

3.4 The algorithm

Let d : S × S → R denote a distance function on S, like
those defined in Section 3.2, which assigns each pair of
segments si and sj a distance d(si, sj). We can describe
the algorithm through the following steps:

1. Form the distance matrix A = [ai,j ] such that ai,j =
d(si, sj);

2. Form the affinity matrix W = [wi,j ] defined by

wi,j = exp

(
−
a2

i,j

2σ2

)
(3)

where σ is a parameter that can be chosen experi-
mentally. A possible choice is the standard devia-
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Figure 3. Normalized eigenvector profile for bars in BWV
773. Higher values correspond to higher centrality (see
also Table 2). The metric space is (S, d1).

tion of the similarity values within the considered
network graph;

3. Compute the leading eigenvector x = [xi] of W and
rank each segment si according to the component xi

of x.

4. EXPERIMENTAL RESULTS

In order to evaluate the relevance of the results of the pro-
posed method we need a suitable data collection together
with a commonly acceptable ground truth for that collec-
tion. Following [1], Johann Sebastian Bach’s Two-part In-
ventions has been our choice. For this collection, a com-
plete ground truth is provided by musicological analysis
and it can be found for example in [12] and [24].

The first choice we had to make was the segment size.
Many experiments has been conducted but, as stated be-
fore, it turned out that reductions of the segment size (for
example from two bars to one bar) did not sensibly affect
the results. So experiments have been performed with a
one-bar long window. Experiments have been performed
also to verify the suitability of an overlapping technique
but we did not observed any improvement in the results.

Second, we implemented the functional metrics described
in Section 3.3. By performing the experiments, we ob-
served a few variations in the first two ranked levels, and
this means that top ranked bars tend to be more “stable” re-
spect to metric changes. Thus we can say that the method
is rather robust, as far as these metrics are concerned. In
the synthesis reported in Table 2 we considered just the top
ranked segments, i.e. corresponding to the two (different)
highest values of x components.

When compared to musicological analysis [1] [12] [24]
it is evident that the centrality-based model outperforms
the repetition-based model, providing also more significa-
tive information. Segments with higher rank in the rela-
tional model represent always relevant bars of the score,
even if they may be different by using different metrics.
This means that relevant bars contain a main motif or char-
acterizing sequences. It is not the same for the model based
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Figure 4. 2D projection of the metric space (S, d1) for
BWV 773. Bars with higher centrality values (darker la-
bels) tend to occupy the central region of the graph.

Model Precision (%)
Repetition 43

d1 77
d2 95

Table 1. Precision results for the three models applied to
J. S. Bach’s Inventions.

on repetitions: here the relevancy really depends just on the
number of repetitions, so it can happen that a trill turns to
be more relevant than the rest of the piece just because its
repetition rate is higher than that of the other bars.

Bar ranking is in principle not affected by the repeti-
tion rate of patterns and higher importance is equally given
to higher and lower repetition rates. Of course, superpo-
sitions of the two methods may happen too. On the other
hand, cases exist for which no repetition occurs and, conse-
quently, the repetition paradigm is not applicable in princi-
ple, unless defining ad hoc neighborhood concepts for each
piece. In these cases, motif centrality can provide signifi-
cant results.

In Figure 3 the components of the main eigenvector for
BWV 773, representing the degree of centrality of each
bar, have been plotted against bar numbers. This provides
an immediate representation of the “importance” of each
bar within the whole piece. Bars with higher values are
more likely to contain a main motif of the piece. In partic-
ular, for BWV 773, bars 1 and 2 actually contain the main
motif.

Figure 4 shows a two-dimensional projection of the 26-
dimensional metric space for BWV 773 obtained through a
dimensionality reduction algorithm. From this picture it is
evident how the top ranked results (1, 2) occupy the central
region of the graph and have darker labels, as the darkness
is directly proportional to the correspondent component of
the main eigenvector, and thus to the centrality, in the sense
of graph theory, of the correspondent segment.

Table 1 presents a synthesis of the results shown in Ta-
ble 2 in terms of the precision of the three methods. As for
the computational complexity, suitable linear eigensolvers
are available, and they can be easily applied, especially in
case of very long pieces.

5. CONCLUSIONS

We presented a new approach for motif discovery in music
pieces based on an eigenvector method. Scores are seg-
mented into a network of bars and then ranked depending
on their graph centrality. Bars with higher centrality are
more likely to be musically relevant and can be exploited
for music summarization. Experiments performed on the
collection of J.S.Bach’s 2-parts Inventions show the effec-
tiveness of our method.

Besides music information retrieval, we expect this ap-
proach to find applications in music theory, perception and
visualization. For instance, one could investigate how par-
ticular mathematical entities (e.g. spectra) relate to partic-
ular musical issues (e.g. genre, authorship).

Second, one could investigate how different metrics d
relate to different concepts of melodic and harmonic simi-
larity; in this context, the inverse problem of finding met-
rics d induced by a priori eigenvectors (coming from a
hand-made musicological analysis) could provide interest-
ing insights into music similarity perception.

Third, it is also possible to compare different music
pieces from a structural point of view by comparing their
associated eigenvectors.

Finally, the method could be extended to the audio do-
main, for instance to organize large audio collections, where
heuristic methods can be hardly applied and it is usually
difficult or even impossible to separate different voices and/
or musical instruments.
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ABSTRACT

In this work, we investigate a method for score-informed
source separation using Probabilistic Latent Component
Analysis (PLCA). We present extensive test results that
give an indication of the performance of the method, its
strengths and weaknesses. For this purpose, we created a
test database that has been made available to the public, in
order to encourage comparisons with alternative methods.

1. INTRODUCTION

Source separation is a difficult problem that has been a
topic of research for several decades. It is desirable to
make use of any available information about the problem
to constrain it in a meaningful way. Musical scores pro-
vide a great deal of information about a piece of music.
We therefore use this information to guide a source sepa-
ration algorithm based on PLCA.

PLCA [1] is a technique that is used to decompose mag-
nitude spectrograms into a sum of outer products of spec-
tral and temporal components. It is a statistical interpre-
tation of Non-Negative Matrix Factorization (NMF) [2].
The statistical framework allows for a structured approach
to incorporate prior distributions.

Extraction of a single source out of a sound mixture by
modeling a user guidance as a prior distribution was pre-
sented in [3]. In our previous work [4], we based ourselves
on that approach and extended it to a complete source sep-
aration system informed by musical scores, finally demon-
strating it by separating sources in a single real-world record-
ing.

We perform source separation by decomposing the spec-
trogram of a given sound mixture using PLCA, and then
performing reconstructions of groups of components that
correspond to a single source. Before using PLCA on the
sound mixture, we first decompose synthesized versions of
those parts of musical scores that correspond to the sources

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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that we wish to separate (also using PLCA). The temporal
and spectral components obtained by these decompositions
of synthesized sounds are then used as prior distributions
while decomposing the real sound mixture.

In this work we make a detailed evaluation of such source
separation system and its overall performance. To the best
of our knowledge, a comprehensive and extensive dataset
to use as ground truth for such problem does not exist,
mainly because we also require the corresponding scores
as additional information to the source separation system.
We therefore construct a test set of our own, mimicking
realistic conditions as well as possible even though it is
synthetic. This also allows us to make detailed evaluations
of how the results are affected by common performance
practices, like changes in tempo or synchronization. To get
objective quality measurements of this method, we use the
metrics defined in the BSS EVAL framework [5], which
are widely adopted in related literature.

2. SCORE-INFORMED SOURCE SEPARATION
WITH PLCA

We’re not the first to propose source separation based on
score information. A method based on sinusoidal model-
ing has been proposed by Li [6], and Woodruff [7] used
scores as information source for the separation of stereo
recordings. Our PLCA-based system for score-informed
source separation is set up as shown in fig. 1 :

• The complete score gets synthesized;

• Dynamic Time Warping (DTW) matches the spec-
trogram of the sound mixture to that of the score;

• The resulting path is used to match single parts or
sections from the score to the mix;

• Components for each of the parts to extract are learned
using PLCA on separately synthesized parts;

• These components are used as prior distributions in
the subsequent PLCA decomposition of the mix;

• With the learned components ’fitted’ to the mix, we
can now resynthesize only those components from
the mix that we want.
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Figure 1. Architecture of the score-informed PLCA-based
source separation system

The PLCA method that we adopt does not presuppose
any structure, instead it learns the best representation for
a spectrogram through an EM (expectation-maximization)
algorithm. Both temporal and spectral components can as-
sume any shape. The dictionary of spectral and tempo-
ral components resulting from decomposition of the syn-
thesized score parts is only used to initialize the subse-
quent PLCA decomposition of the sound mixture. The
EM-iterations decomposing this mixture optimize those spec-
tral and temporal components further in order to make them
explain the sources in the sound mixture. A drawback of
PLCA is that it operates on magnitude spectrograms and
does not take into account the phase, which easily leads to
some audible distortion in the resynthesized sounds.

We implemented our system largely in Matlab, with the
DTW routine provided from [8]. We always work on mono
audio. The method does not work in real-time - on a mod-
ern dual-core 3.0GHz computer with 4GB RAM memory,
processing a 1 minute sound file (44100Hz samplerate)
takes about 3 to 4 minutes of calculation time with high
quality settings. The DTW subroutine has a memory com-
plexity that is quadratic in spectrogram size, due to the cal-
culation of a complete similarity matrix between the spec-
trograms of the sound mixture and the synthesized score.
Alternatives to DTW exist and could be used, there is e.g.
prior work on aligning MIDI with audio without comput-
ing a complete rendering of the MIDI file (also available
through [8]).

It needs to be noted that the spectral and temporal com-
ponents of the synthesized score parts are initialized with
random data. Starting from these random probability dis-
tributions, the EM-algorithm then iteratively estimates bet-
ter candidates that fit the data. The resulting estimates of
the components from the score data will be slightly dif-
ferent on each run. This will in turn affect the subsequent
PLCA analysis of the real data and its path towards conver-
gence. We will quantify this in more detail later, but it is
important to keep in mind that all measurements presented
in this paper are subject to a certain error margin that is a
direct result of this random initialization.

3. TEST SETUP

In order to do large scale comprehensive testing of this
method, we need a database of real sources and their scores
which we can mix together and then try to separate. To
the best of our knowledge, a carefully crafted database
for research purposes containing separate sources and their
scores for a wide range of instruments and/or styles does
not yet exist [9]. For source separation, evaluation databases
with multitrack recordings are available (e.g. [10]), but usu-
ally they don’t come with scores, MIDI files, or any other
symbolic information.

We decided to create our own database, generating short
random MIDI tunes, and then running them through differ-
ent synthesizers. In testing, one of the synthesized sounds
then can take on on the role of ’real performance’, while
the other is used as ’synthesized score’. To better simulate
real performance, we generated several versions of each
file with tempos regularly changing, up to half or double
the speed of the original. This also allows the database to
be used to test alignment algorithms. The resulting dataset
is available online 1 .

We generated a set of 10 second sound files using PortSMF
[11]. The files were synthesized once using Timidity++
[12] with the FluidR3 GM soundfont on Linux, and once
with the standard built-in MIDI player capabilities in Win-
dows XP (DirectSound, saved to file using WinAmp [13]).
Each file contains on average 20 note onsets, spread ran-
domly over 10 seconds. We reduced our test set to 20 com-
monly used instruments, both acoustic and electric. This
was done in part because of a lot of the sounds standard-
ized in General MIDI are rarely found in scores (helicopter
sounds, gunshots), and to keep the size of the resulting data
manageable. With 380 possible duos with different instru-
ments out of 20 instruments, it allowed us to run repeated
experiments on all of these combinations.

This original test set of 20 sounds was expanded by in-
troducing timing variations in the MIDI files. Several sets
of related files were generated, in which the tempo in each

1 https://ccrma.stanford.edu/˜jga/ismir2010/ismir2010.html
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Figure 2. Overall source extraction scores per instrument, mixed with any other instrument. On the x-axis, the MIDI
Program Change number. In this and all other figures, standard Matlab style boxplots are used.

file was changed 5 times - this to be able to test the effects
of the method used to align symbolic data and recordings,
which is part of the system. 2 distinctly different tempo
curves were defined, and for each of these 2 curves, 5 new
renditions were made for every original source. The first
of these 5 would have the tempo changed by up to 10%,
either slower and faster, while the last would allow devia-
tions from the original tempo up to 50% . Thus we have
a dataset of 20 original sources, and for each original file
also 10 files with all different variations in tempo.

We acknowledge that there are a couple of drawbacks
with this dataset. The first one that the files are randomly
generated, while in most popular and classical music, har-
monic structure makes separation more difficult due to over-
lapping harmonic components. The second that even using
two different soundbanks to synthesize can result in the
two synthesized versions of a single file to be more similar
to eachother than they might be similar to a real record-
ing. We found however that the timbres of the two sound-
banks used differ quite significantly. As for the random
generation: not using real data frees us from dealing with
copyright issues, and generating it randomly allowed us to
quickly obtain a large and comprehensive body of test files,
not presupposing any structure or style.

In the following sections, we use the files generated on
Windows as sources for the ’performance’ sound mixture,
and the files rendered on Linux as ’scores’ from which
we obtain priors. The BSS EVAL toolbox [5] calculates

3 metrics on the separated sources given the original data.
The Signal-to-Interference Ratio (SIR) measures the inclu-
sion of unwanted other sources in an extracted source; the
Signal-to-Artefacts Ratio (SAR) measures artefacts like mu-
sical noise; the Signal-to-Distortion Ratio (SDR) measures
both the interference and artefacts.

4. MEASUREMENTS ON IDEAL DATA

4.1 Error margin on the results

As mentioned previously, due to randomness in the ini-
tialization, separation results might differ with every run,
and so might the SDR, SIR and SAR scores. To properly
quantify what we are dealing with, we ran the system with
standard parameters that give decent results (sampling rate
of 44100Hz, 2048-point FFT with 75% overlap, 50 com-
ponents per source, 50 iterations) 10 times on each of the
possible 380 instrument duos in the test set. This was done

min std max std mean std median std
SDR 0.062 1.55 0.48 0.41
SIR 0.056 14.21 1.89 1.20
SAR 0.061 1.55 0.47 0.41

Table 1. Reliability of the results: statistics on the standard
deviation of SDR, SIR and SAR scores of 10 runs of the
algorithm with the same parameters on 380 data pairs.
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Figure 3. SDR, SIR and SAR vs. number of components
used per source

on ’ideal’ data, where the score would exactly line up with
the sound mixture and no DTW was needed, so we com-
pute the effect of the random initialization only. SDR, SIR
and SAR values tend to be pretty consistent in between
runs on the same pair, except in a few rare combinations
where there is a lot of variance in the results. Even in these
cases, the mean values of the scores are still within normal
range.

The numbers in table 1 show that the mean standard
deviation of calculated SDR and SAR scores stays below
0.5 dB, while there can be highly variable results in some
SIR scores. Incidences of high variance in SIR score seem
unrelated to each other, and almost every instrument had
some combination with another instrument where SIR scores
would be very variable in between runs of the algorithm.
For evaluation purposes, SDR and SAR scores seem to be
better suited to pay attention to.

Some instruments seem to be easier to extract from mixes
with any other instrument, than others. Fig. 2 gives an idea
of the ’overall easiness’ with which an instrument can be
extracted from a mix.

4.2 Components and iterations

The algorithm’s running time will increase linearly with
the amount of components. Generally, increasing the num-
ber of components that are available per source increases
the ability to model the priors accurately, and thus also the
overall separation results. We ran a small test of the effect
of the number of components across all couples of sources.
The effectiveness of the number of components is almost
identical for every instrument, so we can generally plot the
number of components versus the outcome of the metrics,
which is shown in fig 3.

With on average 20 notes in each source, there is a huge

Figure 4. SDR, SIR and SAR vs. number of iterations in
EM algorithm

climb in improvements up to 20 components after which
the scores level off. There is some small improvement
after this, but not drastic. We haven’t run complete tests
with significantly larger amounts of components, but from
a couple of single tries we find that overfitting becomes
an issue when the amount of components is chosen too
large. Superfluous components of a single source risk to
start modeling parts of other sources, which degrades sep-
aration performance again.

The number of iterations of the EM algorithm does not
suffer from this - since the likelihood of subsequent EM it-
erations is monotonically increasing, more is always better.
The only constraint here is how much time we’re willing to
spend on those iterations. We can see that the convergence
towards a good solution is obtained rather fast: indepen-
dent of instrument, above 25 iterations there is hardly any
improvement of the scores (fig. 4).

4.3 Other parameters

The PLCA routine decomposes a magnitude spectrogram,
and thus the properties of that spectrogram also play a role
in the end result. Conducting a few small tests, we were
able to conclude that the larger the FFT size, the better the
results generally are. In subsequent tests, we used 2048-
point FFTs. The overlap should be kept above 67.5% ;
75% is a safe value. Binary masking (assigning each spec-
trogram time-frequency bin to a single source instead of
dividing it among different sources) significantly improves
SIR scores, at the cost of a slight decrease in SDR and SAR
scores.

It is possible to cut the spectrogram into ’timeslices’
of variable length. Certainly when there are possibilities
for parallelization, or when due to system limitations the
spectrogram size needs to be kept to a minimum, it might
be interesting to run the analysis on each slice separately.
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Figure 5. SDR, SIR and SAR vs. tempo deviation from
reference, all sources with the same deviation

This makes that the spectral components, and their tem-
poral counterparts, can change from slice to slice. Due to
the random initialization of the components, they are likely
not related to the components in other slices at all, and each
slice will have its components defined such that they rep-
resent the data in that slice optimally. During resynthesis,
small artefacts can be introduced on the slice borders due
to these changes in basis vectors that occur. Our tests indi-
cated that, though a decline in scores remains small and
only noticeable when slices were smaller than a second
long, it is a good idea to have the length of a slice as large
as possible. How this relates to the number of needed com-
ponents or iterations remains to be studied in the future.

5. THE EFFECT OF DYNAMIC TIME WARPING

5.1 Quantifying the role of DTW

Whereas in the previous section we discussed metrics on
ideally aligned data, this is not likely to occur in real life.
Performers use their artistic freedom to make the notes on
paper into a compelling concert. One of the main means of
doing so are local changes in tempo. To cope with this, a
DTW routine is attached at the beginning of the system. It
serves to line up the score with the real performance.

In figure 5 the performance of the algorithm on ide-
ally aligned sound mixtures (0% deviation from the score
tempo) is compared to performance on mixtures with tempo
deviations, where alignment is needed. The sources that
were used were divided into 5 segments that each had a
different tempo assigned to them, in such a way that the
tempo was in every file partly below the reference tempo,
and partly above. The amount of change has a pretty high
influence on the effectiveness of the subsequent source sep-
aration.

Logically, the timing of an entire score applies to the
individual instrument parts too. We provide the output
from the DTW routine to a phase vocoder that dilates or
compresses each of the synthesized parts in time, so that
they match up with the the performance mixture. This
is a quick and practical solution to make sure that in the
following PLCA analysis steps, the temporal and spectral
components of the performance mixture and their associ-
ated priors obtained from the synthesized score parts, have
the same dimensions.

Both errors in alignment and the subsequent stretching
of synthesized score parts introduce errors in the priors,
which affect successful analysis. From the data in fig.
5, we conclude that heavy time warping and subsequent
stretching of the spectrum puts the quality of the results at
severe risk. The DTW routine and phase vocoder that we
used [8] were chosen because they were readily available
to plug into our code. It is however a bottleneck in our
system. In future work, alternative methods to align scores
with recordings are worth looking into [14]. If using DTW,
in practical applications the possibility to manually correct
or at least smoothen the time alignment should be avail-
able.

In tests where source files with different tempo curves
were used in a single sound mixture (in order to simulate
performers that are out of sync with each other), very simi-
lar results were observed. In such a case the time alignment
is likely to contains errors for at least one of the sources,
since notes that should be played together according to the
score, are not necessarily played together in the mixture.
We can conclude that the application of DTW and sub-
sequent time dilating and compressing of the synthesized
data with a phase vocoder can cause a considerable stir in
the computed priors, to such an extent that in the subse-
quent decomposition of the mix, it becomes very difficult
to get decent separation results.

5.2 Adaptations and alternatives

The DTW plus phase vocoder routine is the weak link in
the complete process, and we ventured on to do a couple of
experiments adapting that part of our system. Inspired by
recent work by Dannenberg et al [15] we substituted the
spectrograms used in the DTW routine by chromagrams,
using code obtained from the same source [8]. The re-
sults are practically equal to those in fig. 5 . Just like in
the case of DTW with spectrograms, some (manual) post-
processing on the results of the DTW routine is likely to
improve the test results.

We also undertook a small experiment skipping the use
of a phase vocoder to stretch the spectrograms of the scores,
instead only resampling the temporal vectors using piece-
wise cubic Hermite polynomials to maintain nonnegativ-
ity. It turns out that the mean SDR and SAR scores plum-
met, and the standard deviation increases drastically, re-
sulting in a small but not negligible number of test results
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that are actually better than what could be attained previ-
ously. Also, the SIR values stay remarkably high, and even
at large tempo deviations. However, overall the system be-
came highly unreliable and unfit for general use.

Given that the parameters of the PLCA routine can be
chosen optimally and that their effects are relatively well-
known, most of the future effort in improving this score-
informed separation system should clearly go into better
and more accurate alignment and matching of the scores
to the real performance data. Also more varied data and
use cases need to be considered - here, we only worked
on mixes of 2 instruments, and did not include common
performance errors like wrongly struck notes. Several ap-
proaches to solve this problem, or parts of it, exist or are
being worked on [14], and can contribute to a solution.

For alignment of scores with recordings, we have some
future work set out, replacing the DTW and phase vocoder
with methods more fit for our particular setup. In hind-
sight, with symbolic data and performance recordings avail-
able, we would very likely be better off applying a method
that directly aligns symbolic information with a single spec-
trogram, to then modify the timing of the symbolic data,
only then to synthesize it and compute priors from. For any
future developments, we now have an extensive dataset to
quickly evaluate the system.

6. CONCLUSIONS

In this paper we quantified the performance of a recently
developed score-informed source separation framework based
on PLCA. Several parameter options were explored and we
paid special attention to the effect of DTW. The use of met-
rics that are prevalent in literature allows for future com-
parison with competing methods. We synthesized our own
test dataset covering a wide range of instruments, using dif-
ferent synthesizers to mimick the difference between real-
world data and scores, and mimicking some performance
characteristics by introducing tempo changes. This dataset
has been made freely available to the general public, and
we exemplified its usability for extensive testing of align-
ment and source separation algorithms.
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ABSTRACT

The performance of music usually involves a great deal of
interpretation by the musician. In classical music, the final
ritardando is a good example of the expressive aspect of
music performance. Even though expressive timing data
is expected to have a strong component that is determined
by the piece itself, in this paper we investigate to what de-
gree individual performance style has an effect on the tim-
ing of final ritardandi. The particular approach taken here
uses Friberg and Sundberg’s kinematic rubato model in or-
der to characterize performed ritardandi. Using a machine-
learning classifier, we carry out a pianist identification task
to assess the suitability of the data for characterizing the in-
dividual playing style of pianists. The results indicate that
in spite of an extremely reduced data representation, when
cancelling the piece-specific aspects, pianists can often be
identified with accuracy above baseline. This fact suggests
the existence of a performer-specific style of playing ritar-
dandi.

1. INTRODUCTION

Performance of music involves a great deal of interpre-
tation by the musician. This is particularly true of piano
music from the Romantic period, where performances are
characterized by large fluctuations of tempo and dynam-
ics. In music performance research it is generally acknowl-
edged that, although widely used, the mechanical perfor-
mance (with a constant tempo throughout the piece) is not
an adequate norm when studying expressive timing, since
it is not the way a performance should naturally sound.

As an alternative, models of expressive timing could be
used, as argued in [18]. However, only few models exist
that deal with expressive timing in general [2, 16]. Due
to the complexity and heterogeneity of expressive timing,
most models only describe specific phenomena, such as the
timing of grace notes [15] or the final ritardando.

Precisely, the final ritardando —the slowing down to-
ward the end of a musical performance to conclude the
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piece gracefully— is one of the clearest manifestations of
expressive timing in music. Several models have been pro-
posed [3,14] in the related literature to account for its spe-
cific shape. Those models generally come in the form of a
mathematical function that describes how the tempo of the
performance changes with score position.

In a previous empirical study by Grachten et al. [4] on
the performance of final ritardandi, a kinematic model [3]
was fitted to a set of performances. Even though some sys-
tematic differences were found between pianists, in gen-
eral the model parameters tend to reflect primarily aspects
of the piece rather than the individual style of the pianist
(i.e. expressive timing data is expected to have a strong
component that is determined by piece-specific aspects).

This fact is relevant in a recurrent discussion in the field
of musicology, about which factor (the piece or the per-
former) mostly influences a performance [9]. Some experts
argue that the performance should be preceded of a thor-
ough study of the piece; while others indicate that the per-
sonal feeling of music is the first and main point to be con-
sidered. Works supporting both views can be found in [12].
A study by Lindström et al. [7] involving a questionnaire,
showed that music students consider both the structure of
the piece and the feelings of the performer as relevant in a
performance.

The current paper extends that previous work by Grachten
et al., by investigating whether or not canceling piece-specific
aspects leads to a better performer characterization. Musi-
cologically speaking, the validation of this hypothesis im-
plies that performers’ signatures do exist in music inter-
pretation regardless of the particular piece. We present a
study of how final ritardandi in piano works can be used
for identifying the pianist performing the piece. Our pro-
posal consists in applying a model to timing data, normal-
izing the fitted model parameters per piece and searching
for performer-specific patterns.

Performer characterization and identification [8, 13] is
a challenging task since not only the performances of the
same piece by several performers are compared, but also
the performance of different pieces by the same performer.
Opposed to performer identification (where performers are
supposed to have distinctive ways of performing) is piece
identification —which requires the structure of the piece
to imply a particular expressive behavior, regardless of the
performer.

A further implication of this work would be that, when

225

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



an estimation can be made of the prototypical performance
based on the musical score, this estimation could be a use-
ful reference for judging the characteristics of performances.
This knowledge can also allow the artificial interpretation
of musical works by a computer in expressive and realistic
ways [17].

This paper is organized as follows: Section 2 describes
the dataset used for this study, including the original timing
data and the model we fit them to. Section 3 deals with the
data processing procedure. Results of the pianist classifi-
cation task are presented and discussed in Section 4, while
Section 5 states conclusions and future work.

2. DATA

The data used in this paper come from measurements of
timing data of musical performances taken from commer-
cial CD recordings of Chopin’s Nocturnes. This collection
has been chosen since these pieces exemplify classical pi-
ano music from the Romantic period, a genre that is char-
acterized by the prominent role of expressive interpretation
in terms of tempo and dynamics. Furthermore, Chopin’s
Nocturnes is a well-known repertoire, performed by many
pianists, and thus facilitating large scale studies.

As explained before, models of expressive timing are
generally focused in a certain phenomenon. In our study,
we will focus on the final ritardando of the pieces. Hence,
we select those Nocturnes whose final passages have a rel-
atively high note density and are more or less homoge-
neous in terms of rhythm. With these constraints we avoid
the need to estimate a tempo curve from only few interon-
set intervals, and reduce the impact of rhythmic particular-
ities on the tempo curve.

In particular, we used ritardandi from the following pieces:
Op. 9 nr. 3, Op. 15 nr. 1, Op. 15 nr. 2, Op. 27 nr. 1, Op. 27
nr. 2 and Op. 48 nr. 1. In two cases (Op. 9 nr. 3 and Op. 48
nr. 1), the final passage consists of two clearly separated
parts, being both of them performed individually with a
ritardando. These ritardandi were treated separately —
namely rit1 and rit2. So that, we have 8 different ritardandi
for our study.

The data were obtained in a semi-automated manner,
using a software tool [10] for automatic transcription of the
audio recordings. From these transcriptions, the segments
corresponding to the final ritardandi were then extracted
and corrected manually by means of Sonic Visualiser, a
software tool for audio annotation and analysis [1].

The dataset in this paper is a subset of that used in
previous work [4], as we are only considering those pi-
anists from whom all eight recordings are available. Ta-
ble 1 shows the names of these pianists and the year of
their recordings. Hence, the dataset for the current study
contains a total amount of 136 ritardandi from 17 different
pianists.

2.1 Friberg & Sundberg’s kinematic model

As mentioned in Section 1, we wish to establish to what
degree the specific form of the final ritardando in a musical

Arrau (1978) Falvai (1997) Pires (1996)
Ashkenazy (1985) Harasiewicz (1961) Pollini (2005)
Barenboim (1981) Hewitt (2003) Rubinstein (1965)
Biret (1991) Leonskaja (1992) Tsong (1978)
d’Ascoli (2005) Mertanen (2001) Woodward (2006)
Engerer (1993) Ohlsson (1979)

Table 1. Performer and year of the recordings analyzed in
the experiments
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Figure 1. Examples of tempo curves generated by the
model using different values of parameters w and q. In
each plot, the x and y axis represent score position and
tempo respectively, both in arbitrary units.

performance is dependent on the identity of the performing
pianist. We address this question by fitting a model to the
data, and investigating the relation between the piece/pianist
identity and the parameter values of the fitted model. To
such a task, we employ the kinematic model by Friberg &
Sundberg [3].

This model is based on the hypothesized analogy of mu-
sical tempo and physical motion, and is derived from a
study of the motion of runners when slowing down. From
a variety of decelerations by various runners, the deceler-
ations judged by a jury to be most aesthetically pleasing
turned out to be those where the deceleration force is held
roughly constant. This observation was implying that ve-
locity was proportional to square root function of time, and
to a cubic root function of position. Equating physical po-
sition to score position, Friberg and Sundberg used this ve-
locity function as a model for tempo in musical ritardandi.
Thus, the model describes the tempo v(x) of a ritardando
as a function of score position x:

v(x) = (1 + (wq − 1)x)1/q (1)

The parameter q is added to account for variation in cur-
vature, as the function is not necessarily a cubic root of
position. The parameter w represents the final tempo, and
was added since the tempo in music cannot reach zero. The
model can be fitted to ritardandi performed by particular
pianists by means of its parameters.

Parameters w and q generate different plots of tempo
curves (see Figure 1). Values of q > 1 lead to convex
tempo curves, whereas values of q < 1 lead to concave
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Figure 2. Original data representation in the w-q plane

curves. The parameter w determines the vertical end posi-
tion of the curve.

Even though this kind of models are incomplete as they
ignore several musical characteristics [6], the kinematic
model described above was reported to predict the evolu-
tion of tempo during the final ritardando quite accurately,
when matched to empirical data [3]. An additional advan-
tage of this model is its simplicity, both conceptually (it
contains few parameters) and computationally (it is easy
to implement).

The model is designed to work with normalized score
position and tempo. More specifically, the ritardando is
assumed to span the score positions in the range [0,1], and
the initial tempo is defined to be 1. Although in most cases
there is a ritardando instruction written in the score, the ri-
tardando may start slightly before or after this instruction.
When normalizing, we must assure that normalized posi-
tion 0 coincide with the actual start of the ritardando. A
manual inspection of the data showed that the starting po-
sition of the ritardandi strongly tended to coincide among
pianists. For each piece, the predominant starting position
was determined and the normalization of score positions
was done accordingly.

The model is fitted to the data by non-linear least-squares
fitting through the Levenberg-Marquardt algorithm 1 , us-
ing the implementation from gnuplot. The model fitting is
applied to each performance individually, so for each com-

1 The fitting must be done by numerical approximation since the model
is non-linear in the parameters w and q

bination of pianist and piece, three values are obtained: w,
q and the root mean square of the error after fitting (serving
this value as a goodness-of-fit measure).

At this point, we can represent each particular ritar-
dando in the corpus as a combination of those two attributes:
w and q. In Figure 2 2 , the values obtained from fitting are
displayed as a scatter plot on the two-dimensional attribute
space q versus w. The whole dataset —136 instances—
is shown in this plot. Each point location correspond to a
certain curve with parameters w and q. We refer the reader
to Figure 1 to visualize the shape of different combination
of parameters.

As can be seen from Figure 2, there are no clusters that
can be easily identified from this representation. Hence,
the performer identification task using these original data
is expected to have a low success rate.

3. METHOD

In Section 1, we already mentioned that the expressive tim-
ing data is expected (as stated in [4]) to have a strong com-
ponent that is determined by piece-specific aspects such as
rhythmical structure and harmony. In order to focus on
pianist-specific aspects of timing, it would be helpful to
remove this piece-specific component.

Let X be the set of all instances (i.e. ritardando perfor-
mances) in our dataset. Each instance x ∈ X is a duple
(w, q). Given a ritardando i, Xi is the subset of X that

2 this figure is best viewed in color

227

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



contains those instances x ∈ X corresponding to that par-
ticular ritardando.

In order to remove the piece-specific components, we
propose to apply a linear transformation to the 2-attribute
representation of ritardandi. This transformation consists
in calculating the performance norm for a given piece and
subtracting it from the actual examples of that piece. To
do so, we first group the instances according to the piece
they belong. We then calculate the centroid of each group
(e.g. mean value between all these instances) and move it
to the origin, moving consequently all the instances within
that group.

We are aware that modelling the performance norm of
a given ritardando as the mean of the performances of that
ritardando is not the only option and probably not the best
one. In fact, which performance is the best and which one
is the most representative is still an open problem with no
clear results. Moreover, several performance norms can be
equally valid for the same score. In spite of these difficul-
ties, we chose to use the mean to represent the performance
norm, for its simplicity and for the lack of an obvious al-
ternative.

Two approaches were then devised in order to calculate
that performance norm. In the first one, the mean perfor-
mance curve is calculate as a unweighted mean of the at-
tributes w and q (see Equation 2); whereas in the second
one, fit serves to weight the mean (see Equation 3).

In the first approach, the performance norm for a given
ritardando i can be calculated as:

normi =

∑
xi∈Xi

xi

|Xi|
(2)

In the second approach, it is calculated as a weighted
mean, where fiti stands for the fit value of instance xi:

normi =

∑
xi∈Xi

xifiti∑
fiti

(3)

In either case, all instances xi are then transformed into
x′
i by subtracting the corresponding performance norm:

x′
i = xi − normi (4)

X ′ would be then the dataset that contains all x′. Af-
ter this transformation, all x′ contain mainly information
about the performer of the ritardando, as we have removed
the common component of the performances per piece.

4. EXPERIMENTATION

In order to verify whether pianists have a personal way
of playing ritardandi, independent of the piece they play,
we have designed a classification experiment with different
conditions, in which performers are identified by their ri-
tardandi. The ritardandi are represented by the fitted model
parameters. In one condition, the data instances are the
set X , i.e. the fitted model parameters are used as such,
without modification. In the second and third conditions,

Figure 3. % success rate in the performer identification
task using the whole dataset, with different k-NN classi-
fiers. Baseline value (5.88%) from random classification is
also shown

the piece-specific component in every performance is sub-
tracted (data set X ′). The second condition uses the un-
weighted average as the performance norm, the third con-
dition uses the weighted average.

Note that accurate performer identification in this setup
is unlikely. Firstly the current setting, in which the number
of classes (17) is much higher than the number of instances
per class (8), is rather austere as a classification problem.
Secondly, the representation of the performer’s rubato by
a model with two parameters is very constrained, and is
unlikely to capture all (if any) of the performer’s individual
rubato style. Nevertheless, by comparing results between
the different conditions, we hope to determine the presence
of individual performer style independent of piece.

As previously explained, the training instances (ritar-
dandi of a particular piece performed by a particular pi-
anist) consist of two attributes (w and q) that describe the
shape of the ritardando in terms of timing. Those attributes
come from matching the original timing data with the kine-
matic model previously cited.

The pianist classification task is executed as follows.
We employ k-NN (Nearest Neighbor) classification, with
k ∈ {1, . . . , 7}. The target concept is the pianist in all the
cases, and two attributes (w and q) are used. For validation,
we employ leave-one-out cross-validation over a dataset of
136 instances (see Section 2). The experiments are carried
out by using the Weka framework [5].

Figure 3 shows the results for the previously described
setups, employing a range of k-NN classifiers with differ-
ent values of k ∈ {1, . . . , 7}. We also carry out the clas-
sification task using the original data (without the transfor-
mation) that were shown in Figure 2, in order to compare
the effect of the transformation.

The first conclusion we can extract from the results is
that the success rate is practically always better when trans-
forming the data than when not. In other words, by remov-
ing the (predominant) piece-specific component, it gets eas-
ier to recognize performers. This is particularly interesting
as it provides evidence for the existence of a performer-
specific style of playing ritardandi, which was our initial
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hypothesis.
Note however, that the success rate is not so good to

allow this representation for being a suitable estimation of
the performer of a piece, even in the best case. A model
with only two parameters cannot comprise the complexity
of a performer expressive fingerprint. Although improving
performer identification is an interesting problem, that is
not the point of this work.

As can be seen, employing a weighted mean of w and
q for calculating the performance norm of a piece —being
fit the weight— leads to better results when k is small (i.e.
k < 3). However, this approach, which is methodologi-
cally the most valid, does not make a remarkable differ-
ence with respect to the original data for larger values of
k.

An interesting and unexpected result is that the transfor-
mation with the unweighted mean (see equation 2), gives
better results for medium-large k values. The lower results
for smaller k could be explained by the fact that instances
with a low fit (which are actually noisy data), interfere with
the nearest-neighbor classification process. The better re-
sults for higher k suggest that in the wider neighborhood
of the instance to be classified, the instances of the correct
target dominate —and thus that the noise due to low fit is
only limited.

Note also that this approach is more stable with respect
to the size of k than the original or the weighted ones. It
also outperforms the random classification baseline —that
is 5.88% with 17 classes— for all the different values of k.

Further experiments show that those are the trends for
those two different transformation of the data. Employing
the weighted mean leads to the highest accuracy using a 1-
NN classifier, but it quickly degrades as k is increased. On
the other hand, an unweighted mean leads to more stable
results, with the maximum reached with an intermediate
number of neighbors.

Although (as expected with many classes, few instances
and a simplistic model) the classification results are not sat-
isfactory from the perspective of performer identification,
the improvement that transforming the data (by removing
piece-specific aspects) gives in classification results, sug-
gests that there is a performer-specific aspect of rubato tim-
ing. Even more, it can be located specifically in the curva-
ture and depth of the rubato (w and q parameters).

5. CONCLUSIONS AND FUTURE WORK

Ritardandi in musical performances are good examples of
the expressive interpretation of the score by the pianist.
However, in addition to personal style, ritardando perfor-
mances tend to be substantially determined by the musical
context they appeared in. Because of this fact, we propose
in this paper a procedure for canceling these piece-specific
aspects and focus on the personal style of pianists.

To do so, we make use of collected timing variations
during ritardando in the performances of Chopin Nocturnes
by famous pianists. We obtain a two-attributes (w,q) rep-
resentation of each ritardando, by fitting Friberg and Sund-
berg’s kinematic model to the data.

A performer identification task was carried out using
k-Nearest Neighbor classification on, comparing the (w,q)
representation to another condition in which average w and
q values per piece are subtracted from each (w,q) pair.

The results indicate that in even in this reduced repre-
sentation of ritardandi, pianists can often be identified by
the tempo curve of the ritardandi above baseline accuracy.
More importantly, removing the piece-specific component
in the w and q values leads to better performer identifica-
tion.

This suggests that even very global features of ritar-
dandi, such as its depth (w) and curvature (q), carry some
performer-specific information. We expect that a more de-
tailed representation of the timing variation of ritardandi
performances will reveal more of the individual style of
pianists.

A more detailed analysis of the results is necessary to
answer further questions. For instance, do all pianists have
a quantifiable individual style or only some? Also, there is
a need for alternative models of rubato (such as the model
proposed by Repp [11]), to represent and study ritardandi
in more detail.

Finally, we intend to relate our empirical findings with
the musicological issue of the factors affecting music per-
formances. Experiments supporting whether or not the
structure of the piece and the feelings of the performer are
present in renditions could be of interest to musicologists.
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ABSTRACT

The widespread use of beat- and tempo-tracking methods
in music information retrieval tasks has been marginalized
due to undesirable sporadic results from these algorithms.
While sensorimotor and listening studies have demon-
strated the subjectivity and variability inherent to human
performance of this task, MIR applications such as rec-
ommendation require more reliable output than available
from present tempo estimation models. In this paper, we
present a initial investigation of tempo assessment based
on the simple classification of whether the music is fast or
slow. Through three experiments, we provide performance
results of our method across two datasets, and demonstrate
its usefulness in the pursuit of a reliable global tempo
estimation.

1. INTRODUCTION

Within the last ten years, beat tracking and tempo induction
methods have been significantly improved. Several state-
of-the-art methods [1–3] are now capable of identifying
and providing reliable beat calculations through difficult
passages marked by features such as expressive timing
or competing rhythms. However, the usefulness of such
methods for information retrieval tasks has been limited
due to the unpredictable behavior of these algorithms.
While many studies demonstrate musical beat localization
for humans to be variable and highly subjective [4–8],
MIR applications such as recommendation and harmonic
description require more reliable tempo estimates. The
most frequent error in this context is the so-called octave
error, or the halving or doubling of the perceived tempo
caused by attributing the driving beat level to a metrical
level other than the most predominant pulse.

Identification of the most appropriate tempo octave has
been shown to be a difficult problem, as demonstrated
in the discrepancy between beat tracking evaluations in
which a single tempo octave and multiple tempo octaves
are accepted [2, 3, 9, 16]. As metronomic values are not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c� 2010 International Society for Music Information Retrieval.

absolute, they are not well-suited for defining the perceived
relative speed of a piece of music. Unfortunately, if a user
of a recommendation system were to request slow music
labeled 60 BPM, and received music more commonly
associated with 120 BPM, they would not be satisfied!
This paper presents a novel approach to this problem,
by identifying fast or slow music without the use of
a beat tracker, and demonstrates the usefulness of this
categorization in selecting the appropriate tempo octave of
a given piece of music.

1.1 Background

The selection of tempo octave is most commonly achieved
as an embedded step within the framework of the beat-
or tempo-tracking task. The general procedure used in
most audio tempo-tracking algorithms is comprised of
three steps. First, the audio signal undergoes a process
of reduction, which simplifies the signal by accentuating
prominent signal information such as transients. Second,
periodicity analysis is performed on the simplified signal,
to extract possible beat periods (i.e., the duration between
beat events). Third, the algorithm identifies which period is
most likely, and assigns this value as the tactus, or the most
influential beat, which typically controls the local timing of
a musical piece.

The majority of recent efforts in beat tracking have
centered on this third step, mostly through attempts to
incorporate musical knowledge. Musical knowledge is,
in this sense, information of any complexity that is pro-
vided to the model that allows it to focus on a particular
subset of candidates within the wide variety of possible
solutions. This knowledge may take on several forms,
from a simple limiting of values to desired candidates,
to conditional dependencies between metrical levels and
prior decisions. The need for such knowledge comes from
the ambiguity faced in analyzing the output of periodicity
functions of real signals, which may include intra-measure
timing variations (e.g., the swing factor in jazz music),
syncopation, and/or global tempo shifts. Inspection of the
output of periodicity functions during most musical signals
will demonstrate several peaks including both octave-
related (e.g., half- or double-time periods) resonances as
well as other peaks due to rhythmic complexity and noise;
these peaks often overshadow the otherwise steady period.
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Therefore, a selection of the tactus based on output energy
of a periodicity function alone at each frame will result in
a highly unsteady tempo output for many music sources.

To address the tempo octave problem, Goto and Mu-
raoka [10] limit the possible period values to those periods
whose tempi are within only one octave.

As an alternative to placing strict boundaries on tempo
values, both Ellis [1] and Klapuri et al. [2] weigh the
output of their periodicity functions with log-Gaussian
distributions originally proposed by Parncutt [6]. The mo-
tivation behind this approach is to model tactus preferences
exhibited during listening tests [5, 6], and it is intended to
provide emphasis to tempi positioned around the mean of
the distribution.

Davies and Plumbley [3] use a variable-state method
that alternates weighting functions based on the observed
variation of the autocorrelation output. The purpose of this
method is to model the uncertainty of the listening process
upon initial contact with the stimulus, and then to constrain
the possible values based on prior observations.

Klapuri et al. [2] use a hidden Markov model to extract
the temporal evolution of a hidden metrical sequence
exhibited in the output of a comb filterbank. The joint-
state estimates of the present tactus, tatum, and meter
periods are achieved through a first-order Markov process,
in which the present filterbank output and transition proba-
bilities between periods are used to generate a probabilistic
determination of the present state. Selection of bar-length
periodicities and tatum help to reduce incorrect tactus
attribution. The strength of this model lies in its ability to
reinforce a metrical framework within sections displaying
less prevalent metrical observations.

In a method conceptually similar to our own, Xiao et al.
[11] use a Gaussian mixture model to capture the timbral
characteristics of a given tempo through the association of
Mel-frequency cepstral coefficients (MFCCs) to discrete
BPM values. While this method was demonstrated to
reduce the occurrence of octave errors for the beat tracker
presented in [1], its reliance on a discrete BPM values as
class labels requires a large amount of ground truth that is
difficult to produce due to human subjectivity during data
collection.

1.2 Motivation

With the exception of [11], the above methods rely on
some form of limiting or weighting curve applied to the
output of the periodicity function (e.g., autocorrelation and
comb filterbank) to reduce the effects of alternate tempo
octaves, but these curves are based on BPM responses
which are highly variable due to the subjectivity of the task.

What can actually be inferred about a piece of music
from a BPM value? Given that humans choose different
levels at which to tap when synchronizing with music,
is it plausible that a BPM measure would provide us
with information about the speed of a piece? Certainly
within a single tempo octave the BPM scale can be very
informative, but the plurality of acceptable BPM values
across tempo octaves makes an inter-octave comparison of

musical rates less reliable.
In addition, other than [11], all above methods rely

exclusively on periodicity functions and relatively few
features for determination of BPM and thus tempo octave.
Our method relies instead on the assumption that the
difference between fast and slow music manifests itself
across multiple features.

1.3 Organization of this paper

Section 2 briefly outlines our technique for the determina-
tion of a piece of music as fast or slow. Section 3 presents
both experimentation and results for our method, as well as
the application of our method to tempo-tracking. Section
4 presents discussion, and Section 5 provides conclusions
and future work.

2. METHOD

To address the problem of tempo octave estimation, we
present a classification-based approach that does not rely
on discrete BPM values. Alternatively, the proposed
method performs a binary classification using broad cat-
egories of human response to the pace of music: fast and
slow. There are several benefits to the proposed classifi-
cation scheme. Unlike solving for a discrete BPM value,
music classification as fast or slow is a binary classification
problem that offers higher accuracy than present multi-
class solutions (e.g., discrete BPM values). Evaluation
methodology and interpretation is greatly simplified with-
out acceptance of multiple metrical levels. In addition,
ground truth—in this case class labels created through
listener response to music—is more readily available for
this particular problem.

The proposed technique has two immediate applica-
tions: first, as a feature within another retrieval task, and
second, as a component within a tempo-tracker that guides
the algorithm to the more appropriate of two tempo ranges.
While the taxonomy of fast or slow is not precisely analo-
gous to a specific BPM range, we propose that the tempo
range can roughly be divided in half to accommodate two
tempo octaves. With a training set approximately covering
several musical styles in both fast and slow categories, a
mapping may be achieved between these two taxonomies.
Our assumption is that labelling a song as slow is indicative
of the existence of prevalent acoustic characteristics that
have led to a selection of the lower tempo octave, while a
classification of fast is indicative of features that prompted
a rate of synchronization within the faster tempo octave.

2.1 Data collection

To generate our datasets, we created a data harvester 1 built
on the Last.fm and YouTube APIs. Our initial intention
was to extract features and train our classifiers based on
audio for songs that were relevant to the fast and slow tags
on Last.fm. Because audio content is for the most part not
available on Last.fm, we opted instead to generate a list of
artist and track names associated with either fast or slow

1 available at: http://www.music.mcgill.ca/∼hockman/other/mashup
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tags, and use each artist-track combination in this list as
search terms for videos on YouTube.

An initial list of artist and track names was created by
mining Last.fm for the most popular tracks related to the
query tags. Additional tracks were then appended to this
list through a search for similar tracks that also displayed
these tags. If the video matching the query was available,
an audio track was automatically extracted from the video.
Each file was then manually verified to be a version of the
artist-track combination. The specific size and makeup of
the dataset varied with the experiment being performed (as
explained in Section 3).

2.2 Feature extraction

The success of our classification relies chiefly on our
feature set, which has been generated using jAudio [12], a
Java-based feature extraction tool from the jMIR software
package [13]. 2

Each of the tempo estimation methods discussed in
Section 1.1 generates an onset detection function (also
known as a driving signal) by analyzing either a single
feature or relatively few features, and tracks these over the
course of overlapping windows; the aim being to highlight
significant local signal characteristics, such as fast attack
transients, while attenuating steady-state components.

Alternatively, our approach uses a significantly larger
feature set, and characterizes features across entire tracks.
We suspect that the perception of acoustic cues differs for
songs heard as fast and slow, and that these cues are related
to pitch, loudness, and timbre. We therefore extract a
large number of features in hopes of exploiting regularities
within these three musical attributes. Each audio track
is first converted into a normalized 8 kHz single-channel
.wav file. For each audio file, we assess over 80 overall fea-
tures, including spectral centroid, rolloff, flux, variability,
peak-based spectral smoothness, zero crossings, MFCCs,
LPC, and Method of Moments, along with the aggregates
[14] of several of these features, e.g., derivative, running
mean, and standard deviation.

2.3 Classification

Classification is performed using jMIR’s Autonomous
Classification Engine (ACE) software [15]. Provided
feature vectors as created in Section 2.2 and a
classifications file containing a list of labels directly from
user data corresponding to each audio track as in Section
2.1, ACE performs classification with a variety of machine
learning classification algorithms. Our experiments
focused on the following six classifiers available in ACE:

• Unweighted k-Nearest Neighbor, with k=1 (k-NN)
• Support Vector Machines (SVM)
• Naive Bayes
• C4.5 Decision Trees (C4.5)
• AdaBoost seeded with C4.5 (AdaBoost)
• Bagging seeded with C4.5 (Bagging)

2 available at: http://jmir.sourceforge.net

3. EXPERIMENTS

The goal for our experiments was to measure how well
the above machine learning algorithms can identify fast
and slow songs. To evaluate our method, we compared
the output of several classifiers tested on two separate
datasets. In all, we conducted three experiments: the first
two deal specifically with identifying the best classification
algorithm for determining fast or slow tempo, and the third
compares our method against an existing tempo-tracking
algorithm modified to output fast or slow values.

3.1 Experiment 1: Fast vs. slow

For the first of these experiments, we tested the feasibility
of our approach using a dataset comprised of audio that
users of Last.fm have tagged as fast or slow. The dataset
was constructed as explained in Section 2.1, using search
terms restricted to fast and slow. The total size of this
dataset was 397 full-length audio tracks, comprised of 109
fast songs and 288 slow songs. Features were extracted
as described in Section 2.2. Success rates are based
on averages of five runs of three-fold cross-validation
performed on the dataset with each classifier. Overall
averages are displayed in Table 1.

Classifier Avg. Success
k-NN (k=1) 97.48
SVM 99.37
Naive Bayes 98.24
C4.5 99.18
AdaBoost w/ C4.5 99.44
Bagging w/ C4.5 99.12

Table 1. 3-fold cross-validation results for Experiment 1.
Values are presented in percentages for k-NN, SVM, Naive
Bayes, C4.5, AdaBoost, and Bagging classifiers.

The best performing classifier was AdaBoost, closely
followed by SVMs, C4.5, and Bagging. From the high
success rates of these learners, we may infer the effective-
ness of training exclusively with global features, as well as
the lack of need for a periodicity function.

We can identify two weaknesses in our approach for
this experiment, both related to genre. First, we did not
attempt to control the influence of genre across tempo
classes; it is plausible that relatively few genres comprise
a large portion of the dataset, ultimately simplifying the
classification task to one of basic genre classification (e.g.,
ambient vs. punk). Without genre labels we cannot
reliably isolate the effect of genre from the determination
of fast or slow music within our dataset.

Second, the fast and slow tags may have been made
with respect to genre, and we cannot assume the motivation
behind the use of these tags. While one listener might use
these tags to describe the pace of a piece in relation to other
music of many genres, others might use the same tags to
describe its pace in relation to a specific genre. This could
potentially be an issue if the two tag meanings were not
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consistent. For example, a slower Drum and Bass track
could conceivably be tagged as slow within the genre, or
fast in comparison with other genres.

3.2 Experiment 2: Intra-genre fast vs. slow

Following the results of our previous experiment in Sec-
tion 3.1, we designed an experiment to ensure that the
classifiers were not simply classifying genres. For this
experiment, a new dataset was created. An ideal dataset
would have comprised of fast and slow versions of each
song, eliminating any differences cause by genre that were
not related to tempo. As we neither have such music, nor
tags to describe it as fast or slow, we instead used our data
harvester to find fast and slow music within each genre.
For search tags we first looked for tempo-genre pairs in the
form of fast x and slow x, where x is a genre taken from
a list of over 1500 genres. 3 For a tempo-genre tag pair
to be considered as search terms, each tag was required to
return a tracklist result with no less than five audio tracks
for each genre. Once the list of tracks was established, they
were downloaded as in the first experiment.

For this particular search, we found the distribution
of tracklist results between fast and slow genres highly
unbalanced. Many of the returned tempo-genre pairs (fast
x and slow x) had a large number of files in one category
and close to the minimum in the other. We therefore
selected the five most evenly distributed genres (Country,
Jazz, Rap, R&B, and Rock). Our desired dataset was
comprised of at least thirty tracks in each tempo-genre
class. As the number of tracks retrieved in each category
did not meet our expectations, we decided to increase
the size of the dataset by mining YouTube directly using
the tempo-genre terms as queries for playlists. Our final
dataset for this experiment was comprised of 831 verified
full-length audio tracks, as shown in Table 2, and the
complete list of the songs is available online. 4

Country Jazz Rap RnB Rock Totals
Fast 33 112 63 76 111 395
Slow 66 103 78 120 69 436
Totals 99 215 141 196 180 831

Table 2. Dataset 2 breakdown by genre and tempo class.

We then tested our classification method within each
of the five genres using three-fold cross-validation, as in
the previous experiment. Results in Table 3 demonstrate
the capability of each of the five classifiers in this task.
Even the worst performer, the naive Bayesian classifier,
scored above 93%. The top performers for each of the
genres were either C4.5 or AdaBoost seeded with C4.5.
The best classifier across all genres was again AdaBoost
seeded with C4.5, and the most difficult genre tested across
each classifier was Rap.

Next, as in Section 3.1 we evaluated each classifier’s
ability to determine fast or slow across the entire dataset,

3 http://en.wikipedia.org/wiki/List of music genres
4 http://www.music.mcgill.ca/∼hockman/projects/fastSlow/dataset.zip

Genre k-NN SVM Naive C4.5 Ada Bag
Cntry 94.83 97.26 92.51 98.48 97.95 97.46
Jazz 95.81 98.49 92.78 98.01 99.30 99.07
Rap 90.28 96.98 93.10 98.24 99.29 99.11
R&B 89.04 95.16 93.98 98.47 98.21 98.08
Rock 92.92 95.71 93.32 99.17 99.28 97.93
Avg. 92.58 96.72 93.14 98.47 98.80 98.33

Table 3. 3-fold cross-validation results for intra-genre tests
in Experiment 2. Values are presented in percentages for
k-NN, SVM, Naive Bayes (Naive), C4.5, AdaBoost (Ada),
and Bagging (Bag) for each genre: Country (Cntry), Jazz,
Rap, R&B, and Rock.

without genre separation. Results for this test are presented
in Table 4. The top performing classifier was AdaBoost,
and success rates were only minimally affected by the
absence of genre specification. We can therefore conclude
that the classifiers were able to learn fast and slow char-
acteristics of music without prior knowledge of musical
genre.

Classifier Avg. Success
k-NN (k=1) 95.97
SVM 96.42
Naive Bayes 90.94
C4.5 95.10
AdaBoost w/ C4.5 96.81
Bagging w/ C4.5 96.45

Table 4. 3-fold cross-validation results (in percentages)
for six classifiers tested across entire dataset (i.e., without
genre separation) in Experiment 2.

3.3 Experiment 3: Applications in tempo-tracking

A third experiment was undertaken to compare the pre-
sented method to another method capable of fast and slow
determination. This comparison was achieved using the
results of the top performing classifier from Section 3.2
and the binarized output of a beat tracker [16] modified to
provide a single tempo for each track in the second dataset.
For each song n, the beat tracker calculates the derivative
∆ of beats θn and outputs a single BPM value Γn as:

Γn = 60/median(∆θn). (1)

An obstacle in the comparison between the two ap-
proaches is the selection of a boundary λ between fast and
slow BPM values output by the tempo tracker. A plausible
approach to scoring the output would be to identify a mean
tempo for the dataset. However, as we lack ground truth
BPM values for this dataset, we were unable to generate
an average tempo at which to divide the tempo range.
We therefore instead tested a set of integer tempo values
{50, ..., 150} for λ, defining the optimal divisor as the
tempo that provided the best results for the tempo tracker.
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Table 5 shows the results of this experiment, with the
best performing divisor between fast and slow, λ = 93
BPM.

Method Success Rate
Classification (AdaBoost) 96.81
Tempo tracking, λ = 93 BPM 61.85

Table 5. Results for Experiment 3 (in percentages).
Results for the classifier (AdaBoost) were generated
using 3-fold cross-validation. Tempo tracker output was
binarized using λ = 93 BPM as a tempo range divisor.

The discrepancy between results of the two approaches
led us to attempt to improve the tempo tracker output
using a genre-specific average tempo for each song in
the dataset, as we felt that using fixed BPM value λ
was unfairly scoring the tempo tracker. For these values,
we used average genre tempi calculated from the BPM
List 5 , a hand-annotated database of 20,000 BPM labels
for popular Western music listed by genre. Unfortunately,
decomposition by genre did not improve results.

The success rates for the tempo tracker in this experi-
ment should not be taken to be indicative of the algorithm’s
overall performance, as the intention of the tracker is not
to define musical pace as either fast or slow, but rather
to replicate the perceptual phenomenon of synchronization
with a heard piece of music.

4. DISCUSSION

Through the three experiments performed in Section 3,
classification of songs as either fast or slow has been shown
to be a robust method of determining the overall pace of
music. We have achieved above 96% accuracy for two
separate datasets and demonstrated its effectiveness in this
task over another existing methodology. The high success
rate of the presented method suggests its reliability as an
independent feature within several MIR tasks. In addition
to using classification labels as features themselves, the
method could also be used to improve lower-level metrical
analysis such as tempo-tracking algorithms by selectively
correcting misclassified tempo-tracking octave errors by
simply using the classification results.

Our method differs considerably from existing
approaches to the problem of tempo octave selection.
First, we are currently using only two classes of possible
output, as opposed to discretized BPM values. To achieve
these class labels, we use machine learning algorithms
trained on global features, calculated by aggregating
windowed features for each training instance. In addition,
we are using a large number of such features to describe
each audio track in our dataset. A key difference that sets
our method apart from all existing methods is that no
periodicity calculation is attempted; we instead rely only
on global features and statistics.

5 http://www.bpmlist.com/

The two datasets used in the course of this study
were created through the use of Last.fm and YouTube
APIs, and were specifically created based on listener
responses to audio. The composition of generated datasets
is essential to the training of our classifiers, as the contents
will define the ability of our classifiers to differentiate
between the two classes. In review of our first experiment,
we were concerned that our classification results were
artificially high because our first dataset was constructed
by downloading tracks associated with fast and slow tags,
and that tracks associated with these tags were possibly
leading to a division based on musical genre. We therefore
constructed a second dataset for the following experiment,
which contained examples of fast and slow music within
each genre, reducing the effect of musical genre separa-
tion. Results of this experiment demonstrated that the
classification approach could not only separate fast and
slow music within each genre, but within the entire dataset
as well.

A weakness of this approach lies in the ambiguity of
responses to particular pieces of music. For example,
songs in certain genres, such as Hip Hop, intentionally
juxtapose a fast lyrical layer with slower percussion and
bass loops (e.g., Bone Thugs’n’Harmony, Twista). In
these scenarios, a number of listeners tagged some of these
songs as fast, possibly referring to the unusually fast rate
of lyrics, while other listeners tagged tracks in the same
style as slow, possibly focusing on those characteristics
that define the genre standards—namely the percussion
and bass lines.

A second issue is the variable number of annotations per
training file. On Last.fm, more popular songs are likely to
have more instances of listeners using fast or slow tags,
and thus improving tag reliability. In the present study, we
have combined user data from Last.fm with playlist results
from YouTube without regard to the number of listeners
agreeing with each tag. While this did not cause difficulty
for our experiments, perhaps an optimal method might be
to directly label more music with Last.fm tags or even to
perform structured listening tests.

5. CONCLUSIONS

We believe estimation of tempo octaves within music to
be a perceptual phenomenon that can be learned through
use of the presented classification model. In this paper
we have outlined the training of such a model using a
large number of global features related to the overall pitch,
timbre, and loudness of an audio track. Through the use
of the proposed fast or slow classification, we believe
that it is possible to improve the usefulness of tempo-
tracking models within applications requiring a reliable
single tempo value.

In our future work, we would like to perform further
evaluation of our method with several datasets of varied
content. Specifically, we would like to test our method
using an artificial dataset containing fast and slow versions
of songs with the exact same spectral content. Such a
dataset could be created through the use of any commercial
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sequencer using MIDI files to control synthesizer and
sampler output. Evaluation on significantly larger datasets
would also be of interest. A difficulty here might lie in the
collection of ground truth for training. Towards this end,
listening tests may be useful as an alternative source.

We also plan to investigate the applicability of the
proposed method in the task of beat tracking. An obstacle
in this area is that the proposed method defines entire
songs. As we cannot assume that segments of the audio
contain acoustic features that motivated the class labels
(i.e., fast or slow) of the entire file, each segment would
need to be classified independently, which would require
manually labeled segments for training. Informal tests,
however, suggest only a slight decrease in performance
with audio segments of shorter durations, e.g., 10 seconds.

Finally, we intend to explore alternative strategies for
incorporating our approach into tempo- and beat-tracking
methods towards improved performance of these algo-
rithms.
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ABSTRACT

In the past few years the computational capabilities of
mobile phones have been constantly increasing. Frequently
these smartphones are also used as portable music players.
In this paper we describe GeoShuffle – a prototype system
for content-based music browsing and exploration that tar-
gets such devices. One of the most interesting aspects of
these portable devices is the inclusion of positioning ca-
pabilities based on GPS. GeoShuffle adds location-based
and time-based context to a user’s listening preferences.
Playlists are dynamically generated based on the location
of the user, path and historical preferences.

Browsing large music collections having thousands of
tracks is challenging. The most common method of inter-
action is using long lists of textual metadata such as artist
name or genre. Current smartphones are characterized by
small screen real-estate which limits the amount of tex-
tual information that can be displayed. We propose self-
organizing tag clouds, a 2D tag cloud representation that
is based on an underlying self-organizing map calculated
using automatically extracted audio features. To evalute
the system the Magnatagatune database is utilized. The
evaluation indicates that location and time context can im-
prove the quality of music recommendation and that self-
organizing tag clouds provide faster browsing and are more
engaging than text-based tag clouds.

1. INTRODUCTION

Portable mobile phones with strong multimedia capabili-
ties and computational power are rapidly gaining popular-
ity. As these devices frequently also function as portable
digital music players it is important to investigate how mu-
sic information retrieval systems can be adapted to the unique
challenges and opportunities they present. In this paper
we describe GeoShuffle a music browsing application de-
signed to address the challenge of limited screen real estate
and to take advantage of the opportunity of location infor-
mation that smart phones provide.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Automatic music recommendation is an active topic of
research. Such systems can be based on collaborative fil-
tering, expert annotations, folksonomies, automatic con-
tent analysis and any of their combinations. However, all
these approaches suffer from the limitation that their re-
sults are the same irrespective of the listening context. The
preferences of a listener change depending on where they
are and what they are doing. For example the music a stu-
dent would like recommended when studying might be dif-
ferent from the music desired when riding the bus.

Location-aware devices based on technologies such as
GPS are common. We propose that the quality of auto-
matically generated playlists can be improved by taking
into account this newly available location data. This infor-
mation can be used to determine a user’s listening habits
while in transit to common destinations, as people often
have daily routines such as return trips to work, school, so-
cial activities, and so on. It provides context to a user’s
listening preferences beyond general ratings. A user pro-
viding a rating to a song does not provide context about
the conditions under which a user would enjoys listening
to that song. For example, a high-energy song that a user
rates highly may never be desired when the user wants to
relax.

Another unique characteristic of smart phones is their
limited screen real-estate. The size of personal digital au-
dio collections is steadily increasing. Effective interaction
with these large audio collections poses significant chal-
lenges to traditional user interfaces. Music management
software typically allow users to select artist, genres or in-
dividual tracks by browsing long sortable lists of text. This
mode of interaction, although adequate for small music
collections, becomes increasingly problematic as collec-
tions become larger especially when screen estate is lim-
ited. A variety of alternative ways of browsing music col-
lections have been proposed mostly in academic contexts.
They typically rely on a combination of audio signal anal-
ysis to automatically extract features followed by visual-
ization techniques to map the feature space to a 2D or 3D
representation for browsing and navigation.

Tag clouds provide both an overview of the information
space as well as direct search support that is particularly
suited for mobile phones with small touch screens. In this
paper, we present content-aware self-organizing tag clouds
a technique that attempts to support querying, browsing,
and summarization using the familiar information model
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of a tag cloud while taking into account automatic content
analysis information as well as location based information.

2. RELATED WORK

Although there is existing work in location-based appli-
cations and automatic/semi-automatic playlist generation
there seems to be a lack of published material on location-
aware playlist generation. With respect to intelligent playlist
creation, Flexer et al. have proposed using audio similarity
based on Mel Frequency Cepstrum Coefficients (MFCC)
and Gaussian models to create a similarity matrix and se-
lect songs that blend from and into a user-selected start and
end track in a playlist [1]. Pampalk et al. have proposed
using user behaviour based on track skipping to determine
what artists, genres, rhythms, etc., the user prefers to pass-
over [5]. With respect to location-aware playlist creation
most existing work simply associates particular pieces of
music with specific locations [7].

The current generation of mobile phones feature decent
sized displays that also include touch functionality. Inter-
faces for managing large audio collections based on long
lists of scrollable text are not particularly convenient in
such displays. An alternative that has mostly been explored
in research literature is the use of content-based visualiza-
tions of music collections [4].

Tagging systems allow users to add keywords, or tags,
to resources without relying on a controlled vocabulary
and have become ubiquitous in web-based systems. Tags
are aggregated from many users forming “folksonomies”
which, although not as accurate as well-designed ontolo-
gies, have the advantage of reflecting how users perceive
the data and how their vocabulary and perception evolve
over time. Tagging is simple and does not require a lot of
thinking. Tags form an essential part of personalized inter-
net radio and music community websites such as Last.fm
1 . Tag clouds are the most common way of visualizing
tags. They are two-dimensional stylized visual representa-
tions of a list of words where the more prominent words
are typically assigned a larger font. They are useful for
quickly giving users the gist of a set of words. Tag clouds
are in common usage on a number of different social net-
works such as Flickr 2 but trace their origins back at least
90 years to Soviet Constructivist art [16].

There has been considerable research in recent years
into the design, use and effectiveness of tag clouds. A
historical look at tag clouds is presented in Viegas and
Wattenburg [16], which looks at the development of tag
clouds since their inception a decade ago, and speculates
about their development in the future. In the paper “Seeing
things in clouds” [2], an extensive evaluation of different
types of visual features in tag clouds, including font size,
font weight, intensity, number of characters and area were
investigated. Tag navigation in general has been examined
in detail with particular focus on “Last.FM”, an online so-
cial community for music [10]. A context aware browser

1 http://www.last.fm
2 http://www.flickr.com

for mobile devices that uses tag clouds is presented in Miz-
zaro et al. [11].

Islands of Music [12] is a a content-based visualiza-
tion of music collections that uses Self-Organizing Maps
(SOM) to generate a two-dimensional representation of a
collection of music. MusiCream [8] is an interface that
allows users to interact with a music collection using a
dynamic visualization interface. MusicRainbow [13] is
a similar system that uses web-based labelling and audio
similarity to visualize music collections. Examples of vi-
sualizations for music discovery in commercial and research
systems can be found in the Visualizing Music blog 3 .

3. SYSTEM DESCRIPTION

Our proposed system takes as input the user’s location, the
current playing and associated metadata as well as content-
based similarity information between all tracks in a user
collection. This information is stored in a database for or-
ganization and retrieval. The system processes these in-
puts to generate location-based information such as com-
mon paths and make automatic recommendations based
on them. Semantic information related to the generated
playlists such as track names, artists, genres, tags, playlists
are rendered based on self-organizing tag clouds that are
computed based on automatically extracted audio features.

3.1 Location and Path Logging

We introduce the following terms to describe location in-
formation: Paths consist of a start and end location and a
collection of Path Segments which consist of a start, end,
bearing and segment speed. The Path Segments are deter-
mined by a list of Location Points which are instantaneous
snapshots of what song is playing and where. This includes
a track’s metadata (artist, album, title, etc.), current coor-
dinate and time, and whether a song started or skipped.

As a user’s location or music changes and location points
are generated, the system interpolates the user’s current
line-of-travel in real-time and generates a path segment
consisting of a line between start and end coordinates. These
path segments are then associated to a path from the start
location of the first path segment to the end location of
the last path segment. These paths can then be profiled by
counting the songs that are played or skipped, the most lis-
tened to genres or tempos, etc.; therefore, as the user builds
up a path history, it can be used to generate a more accurate
representation of the user’s listening tastes.

One of the challenges of determining path segments is
that location estimates vary in accuracy and are sampled
irregularly. In addition a user following the same path in
different days (for example taking the bus to school) will
not have exactly the same set of location points. Therefore
we have developed an algorithm for determining determin-
ing path segments from a running list of location points.
The basic idea is to first determine the bearing between the
first two location points in a path segment. Subsequently

3 http://visualizingmusic.com/

238

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 1. Visualization of paths and location points on a
map and schematic of path finding algorithm

the bearing between the start point of the segment and sub-
sequent points is determined. If the new point has the same
bearing as the original pair, the new point becomes the end
to the segment. This continues until a coordinate yields a
bearing of the current segment’s path. This basic algorithm
works when travelling in very straight lines, and with very
accurate positioning hardware, but in real world usage will
generate segments between almost every pair of points, as
any deviation in bearing will result in a new segment being
generated.

In order to account for the accuracy of the positioning
system, an algorithm was devised to allow for variation
in the absolute location based on the intrinsic accuracy of
the mobile device. Each absolute position is reported as a
box bounded by the accuracy of the device. Consequently,
any points in the bounding box are considered the same
absolute coordinate. The same bounding box is used in
calculating the bearing for path segments.

These located segments are combined from a start lo-
cation to an end location in order to generate a path. Fig-
ure 1 shows a schematic diagram of the algorithm and a
map with paths and location points overlayed. Currently,
a path is started when the first change in a user’s location
is sensed. A path is ended when a user stays at a location
for more than 15 minutes. Basic equations for finding dis-
tances based on decimal degree coordinates for latitudes
and longitudes, and for finding the bearing between two
coordinates are based on the WGS84 world representation
(currently used by GPS systems).

3.2 Audio Feature Extraction and Recommendations

The goal of audio feature extraction is to represent each
track as a vector of features that characterize musical con-
tent. First low-level features such as the Spectral Centroid,
Rolloff, Flux and the Mel-Frequency Cepstral Coefficients
(MFCC) are computed approximately every 20 millisec-
onds. To capture the feature dynamics we compute a run-
ning mean and standard deviation over the past M frames
(the so-called “texture window” typically around 1 sec-
ond). The result is a feature vector of 32 dimensions at
the same rate as the original 16D feature vector. The se-
quence of feature vectors is collapsed into a single feature
vector representing the entire audio clip by taking again
the mean and standard deviation across the 30 seconds (of
the sequence of dynamics features), resulting in the final

64D feature vector per audio clip. A more detailed descrip-
tion of the features and their motivation can be found in
Tzanetakis and Cook [15]. For the calculation of the self-
organizing map described in the next section all features
are normalized so that the minimum of each feature across
the music collection is 0 and the maximum value is 1. This
feature set has shown state-of-the-art performance in audio
retrieval and classification tasks for example in the Mu-
sic Information Retrieval Evaluation Exchange (MIREX)
2008 and was computed using the free Marsyas audio pro-
cessing framework 4 . Most audio feature sets proposed
exhibit similar performance so we expect that any audio
feature front end can be used.

Based on a distance matrix calculated between all pairs
of tracks, 3 different recommendation algorithms are im-
plemented. In the naive similarity case, a random seed-
song is selected, and playlists of the ten most similar songs
(based on pre-calculated Euclidean distances) were cre-
ated. If the user skipped a song, a new seed is selected and
a new playlist is generated along with it. In the similary-
with-history case, a profile is constructed based on songs
the user listened to at the same time and day of the week to
recommend similar songs. A seed song is selected based
on tracks that the user enjoyed at similar times (current
time +/− an hour) in the past and their three nearest neigh-
bours. If a user skipped a track, a new seed based on their
history is selected and a new playlist is generated. Using
location information, the system predicted a path that the
user is taking and selects a seed from a similar track that
was listened to on that path previously. Finally we pro-
vide interactive control to the specificity of the generated
playlists using the accelerometers included in more mobile
devices. Shaking the device at varying levels results in se-
lecting seeds scuh that recommendations are more similar
if the shake is light and less similar if it is heavy.

3.3 Self-Organizing Maps

For creating the visualization layout we utilized the self-
organizing map (SOM) which is a type of neural network
used to map a high dimensional feature space to a lower
dimensional representation while preserving the topology
of the high dimensional space. This facilitates both sim-
ilarity quantization and visualization simultaneously. The
SOM was first documented in 1982 by T. Kohonen, and
since then, it has been applied to a wide variety of diverse
clustering tasks [14]. In our system the SOM is used to
map the audio features (64-dimensions) corresponding to
each track to two discrete coordinates on a grid.

The traditional SOM consists of a 2D grid of neural
nodes each containing a n-dimensional vector, x(t) of data.
The goal of learning in the SOM is to cause different neigh-
bouring parts of the network to respond similarly to certain
input patterns. The network must be fed a large number of
example vectors that represent, as closely as possible, the
kinds of vectors expected during mapping. The data asso-
ciated with each node is initialized to small random values
before training. During training, a series of n-dimensional

4 http://marsyas.info
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vectors of sample data are added to the map. The “win-
ning” node of the map known as the best matching unit
(BMU) is found by computing the distance between the
added training vector and each of the nodes in the SOM.
This distance is calculated according to some pre-defined
distance metric which in our case is the standard Euclidean
distance on the normalized feature vectors.

Once the winning node has been defined, it and its sur-
rounding nodes reorganize their vector data to more closely
resemble the added training sample. The training utilizes
competitive learning. The weights of the BMU and neu-
rons close to it in the SOM lattice are adjusted towards the
input vector. The magnitude of the change decreases with
time and with distance from the BMU. The time-varying
learning rate and neighborhood function allow the SOM to
gradually converge and form clusters.

3.4 Self-Organizing Tag Clouds

The technique of self-organizing tag clouds can be viewed
as a fusion of concepts from text-based visualization inter-
faces and more abstract content-aware visualization inter-
faces. We use the term tag loosely to denote any metadata
associated with a track such as genre, artist or year of re-
lease. Traditional systems based on long lists of sortable
text such as iTunes provide little support for browsing, dis-
covery and summarization. An alternative is visualization
interfaces that are based on automatic analysis of musical
content. By mapping the music collection onto a 2D or 3D
representation they enable quick browsing and navigation
especially in the case of music that is not known to the user
or that has not been tagged.

Tag-clouds provide a simple, familiar interface that partly
overcomes these limitations. For example they support
both direct searching as well as browsing and navigation.
However they come with their own problems. In order for
a tag to assist search or browsing it is necessary for the user
to have some notion of its meaning. For example a special-
ized term such as indie pop might be completely unfamiliar
to a particular listener while at the same time essential to
another. This problem becomes even more acute using the
more generalized notion of tags that includes information
such as artist or album. As one of the goals for an effec-
tive interface of music collection browsing is the discovery
of new music by artists not known to the listener, this is
an important disadvantage. Simple tag clouds do not pro-
vide the user with any information about the connections
and similarity relations between tags. A final problem with
any system based solely on tag information is that there is
no way to access music tracks that have not been tagged
(the so-called “cold start” problem). By contrast content-
based visualizations allow any track to be accessed and do
not require familiarity with the music explored.

We describe a new method for organizing music tag
clouds that makes a persistent map taking into account the
musical similarity between songs. Figure 2 shows an ex-
ample of a self-organized tag cloud. Each label (artist,
genre, tag) is associated with a set of tracks that have been
annotated with it. As the tracks have been mapped to fea-
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Figure 2. Self-Organizing tag cloud before and after mass-
spring layout algorithm

ture vectors and subsequently to 2D grid coordinates by
the SOM, each tag is associated with a set of 2D grid coor-
dinates. The SOM process ensures that neighboring points
(tracks) will have similar high-dimensional audio features
and therefore similar musical content. The tags are placed
on the centroids of their corresponding set of 2D grid co-
ordinates. Their placement reflects the underlying musical
content but results in visual overlap between them.

This initial layout contains many overlapping words, so
the position of each tag is repositioned using a mass, spring
and damper force-based algorithm for drawing [6]. In our
implementation each tag is anchored to its original position
using a spring and an electrostatic-like force is applied be-
tween every pair of tags that is proportional to the inverse
of their squared distance. Therefore tags that are close and
overlapping will be pushed away while still trying to re-
main close to their original location. An additional wall
force term was added to keep all tags within the desig-
nated window. The font size for each tag was determined
by counting the number of instances of that tag.

There are some interesting characteristics of the result-
ing visualization that we would like to highlight. The first
is that tags that are not correlated with the acoustical con-
tent will correspond to tracks spread across the underlying
self-organizing map and therefore their placement will be
in the center. For example in Figure 2 the tags Male Singer,
Singing and Female Vocal are near the center as they have a
large variety of tracks that have been annotated with them.
In contrast more specialized tags such as Heavy Metal or
Monks are more localized. The second important charac-
teristic is that faceted browsing is naturally supported. For
example an artist name, that the user might not be familiar
with, located near the left corner will correspond to the tag
Monks. Finally a track for which there are no tag annota-
tions will still be placed on the underlying self-organizing
map and that way receive an implicit visual automatic tag
annotation addressing to some extent the cold-start prob-
lem.

3.5 Implementation

The feature extraction, music similarity calculation and self-
organizing map training are performed using the Marsyas
audio processing framework. Our current prototype appli-
cation GeoShuffle has been implemented for Apple Inc.’s
iPhone or iPod Touch devices. The application dynami-
cally generates music playlists that can be played in the
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default iPhone/iPod Touch music player based on location,
path of travel, historical information and content similar-
ity. To provide feedback to the user on their preferences
by path, as well as to test the accuracy of the application,
a Google Map generated map has been embedded into the
application (see Figure 1). This map supports annotations
in the form of paths or absolute location points. The de-
vice’s positioning system provides real-time updates on the
user’s absolute position. This allows the user to visually
trace their daily commutes and inspect their musical taste
over each path.

4. EVALUATION

Evaluating a complex system and user interface such as the
one described in this paper is challenging due to its subjec-
tive nature. We focus on two aspects of our work: 1) the
use of self-organizing tag clouds as a way to explore large
music collections that combines text and content informa-
tion without requiring large displays 2) the use of location
information to improve music recommendation.

For evaluation purposes we used a subset of the Mag-
natagatune dataset consisting of 1141 tracks with each artist
represented by at most 3 tracks. This was chosen as a large
enough dataset to have considerable variability while at the
same time being manageable in the limited storage of the
iPod Touch used for development. There are 341 artists
represented and also 14 top-level genre labels. In addi-
tion to the regular meta-data information such as artist and
genre, also includes tags derived from the Tagatune Game
with a purpose [9]. The dataset has been made available to
the scientific community for use in research.

For evaluating the self-organizing tag clouds, 14 partic-
ipants were recruited from graduate Computer Science stu-
dents. Three were female and 11 were male. All subjects
had normal or corrected-to-normal vision, enjoyed listen-
ing to music and were experienced computer users. None
of the participants had previous knowledge of the Mag-
natune dataset. The user study consisted of a 5-point sys-
tem usability survey (SUS) [3].

The survey consisted of six questions, each rated on
a five point scale, where “1” was labelled “Strongly dis-
agree” and “5” was labelled “Strongly agree”. The 6 ques-
tions were: 1) I thought the application was easy to use,
2) I needed to learn a lot before I could accomplish tasks
with the application, 3) I think people would need technical
support to learn how to use the application, 4) I think most
people would learn to use the application very quickly, 5)
Overall, accomplishing tasks using the self-organizing tag
cloud was easy 6) Overall, accomplishing tasks using the
self-organizing tag cloud was fun

Results from survey are detailed in Table 1. On average
users rated Question 4 highest, which indicated that they
thought most other people would be able to learn the appli-
cation quickly. This question also had the lowest variance.
In Table 1 we detail all the responses from the participants.
We can see that two participants chose the middle check
box, six chose the next one to the right, and six chose the
checkbox labelled “Strongly agree”.

Table 1. System Usability Survey
Question 1 2 3 4 5 Mean Std

1 0 1 3 8 2 3.79 0.8
2 5 7 1 1 0 1.86 0.86
3 5 3 3 1 2 2.43 1.45
4 0 0 2 6 6 4.29 0.73
5 0 2 1 4 7 4.14 1.1
6 0 2 0 6 6 4.14 1.03

Figure 3. Screen shot of playlist visualization using the
Self-Organizing Tag Cloud

In a similar vein, participants also rated questions 5 and
6 highly, although notably, two participants rated this ques-
tion as one box to the right of “Strongly Disagree”. This
shows that certain users found our interface easy to use and
fit in well with their expectations of an interface to explore
music collections, but for other users it did not. For Ques-
tion 2, the average response was 1.85, which implies that
on average, users strongly disagree that they would have
to learn a lot before accomplishing tasks with this applica-
tion. It is important to include negative examples on such a
user study to ensure that participants are not just choosing
answers to questions randomly; this question performs this
control function.

For evaluating the location-aware music recommenda-
tion component it was necessary to collect data over an
extended period of usage. Usage data was collected from
only one subject. The subject used the system over a pe-
riod of three weeks through their daily routine. GeoShuffle
logged their musical preference over the time period and
generated sets of user paths (consisting of an origin, des-
tination, and linear path segments). The device switched
between four modes of recommendation without the user’s
knowledge (random, similarity, similarity with history, sim-
ilarity with location-awareness) and logged which tracks
were skipped throughout operation. These results were
then used to determine the amount of user skips in each
mode of recommendation without biasing the data.

Self-organizing tag clouds can also be used to visual-
ize text information associated with a playlist. Figure 3
shows the self-organizing tag cloud text associated with
three playlists (from left to right: random, similarity and
path). The figure clearly shows the increase in specificity
and the content distribution of the recommended playlists.
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Table 2. Number of skips and genres present in playlists
created with different generators

Skips / Track Played Genres in Playlist
Random 4.3 12
Similarity 1.7 7
+ History 1.2 3
+ Path 0.3 10

Table 2 shows the analysis of skipping behavior be-
tween different configurations of the system. We assume
that playlists that result in less skipping are better and show
the results as average number of skips per track played.
The baseline of 4.3 corresponds to randomly selecting songs
from the collection in similar fashion to the iPod shuffle.
The similarity configuration returns tracks that are similar
to all the tracks played in the logging period. The history
configuration in addition to similarity takes into account
the time of the day. The last configuration also takes into
account information about paths taken during the day and
is the only one that requires portable devices with location
information. As can be seen there is a significant reduction
in the number of skips when taking into account location
information.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we describe our investigations in designing an
interface for content-aware music browsing, discovery and
recommendation that is designed based on the unique char-
acteristics of modern smartphones. We propose using lo-
cation information to improve the quality of music recom-
mendations and introduce self-organizing tag clouds: a vi-
sualization of metadata information such as genres, artists,
tags and playlists that takes into account automatically ex-
tracted musical content information. The specificity of the
music recommendation algorithm can be interactively con-
trolled using the accelerometers. The resulting interface is
particularly suited for small screen real-estate and touch-
screens. Our evaluation indicates that self-organizing tag
clouds are an effective and fun way of exploring music
collections and that location information can improve the
quality of music recommendations.

There are many directions for future work. We plan to
explore visualizing tag-based similarities as edges between
tags with proportional thickness. Another interesting di-
rection is the addition of social networking and collabora-
tion features such as sharing playlists for particular paths or
comparison of collections between different users. Several
of the user study participants suggested using the same in-
terface for personalized tag annotation. Finally we plan to
conduct a wider ethnographic study where self-organizing
tag clouds and location-based recommendation are used in
personal music collections.
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ABSTRACT

Given a score representation and a recorded performance
of the same piece of music, the task of score-performance
synchronization is to temporally align musical sections
such as bars specified by the score to temporal sections
in the performance. Most of the previous approaches as-
sume that the score and the performance to be synchro-
nized globally agree with regard to the overall musical
structure. In practice, however, this assumption is often
violated. For example, a performer may deviate from the
score by ignoring a repeat or introducing an additional re-
peat that is not written in the score. In this paper, we
introduce a synchronization approach that can cope with
such structural differences. As main technical contribu-
tion, we describe a novel variant of dynamic time warping
(DTW), referred to asJumpDTW, which allows for han-
dling jumps and repeats in the alignment. Our approach is
evaluated for the practically relevant case of synchronizing
score data obtained from scanned sheet music via optical
music recognition to corresponding audio recordings. Our
experiments based on Beethoven piano sonatas show that
JumpDTW can robustly identify and handle most of the oc-
curring jumps and repeats leading to an overall alignment
accuracy of over99% on the bar-level.

1. INTRODUCTION

Given a score and a performance of the same piece of mu-
sic, a common task of music information retrieval consists
of synchronizing note events or musical sections given by
the score representation with time positions or temporal
sections of the performance. A useful example applica-
tion of such a synchronization is to allow users to navigate
in a recorded performance of a piece of music by select-
ing locations of interest from the visual sheet music rep-
resentation of the synchronized score and simultaneously
playback the performance while highlighting the current
playback position in the sheet music [1].

Scores and performances can be given in many differ-
ent forms and formats. For example, scores can be given
as scans of printed sheet music, vector graphics generated
by a computer typesetting software, optical music recog-
nition results, symbolic score formats such as MusicXML,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Humdrum, or Lilypond, or as MIDI files. Performances
are usually given as audio recordings or in form of MIDI
files generated by electronic instruments. When aligning
score and performance representations, challenging prob-
lems arise when the two representations reveal differences
in their global overall structures. For example, a performer
may ignore a repeat that is written in the score or may
introduce an extra repeat that is not written in the score
(e.g. an additional verse). Furthermore, a performance may
include parts that are not written in score at all (e.g., a
cadenza or solo part) or may skip certain parts of an un-
derlying score. Structural differences between scores and
performances have been encountered in previous work on
on-line score following such as [2–4]. In this scenario, the
scores and performances that are synchronized are usually
monophonic. The most popular approach for this scenario
is to use hidden Markov models (HMM) in combination
with a training process to determine model parameter that
suit the given type of data. For the case of off-line syn-
chronization of polyphonic scores and performances, dy-
namic time warping (DTW) in combination with chroma
features has become a popular approach [5, 6] because it
can deliver similar accuracy than HMMs but without the
need for creating and training models. Furthermore, ef-
ficient multi-scale implementations can easily be realized
for this approach [7]. An overview on on-line and off-line
score-performance synchronization approaches is found in
[8]. In previous work on off-line score-performance syn-
chronization, a basic assumption usually is that there are
no structural differences between the two versions to be
aligned. In [6], the authors point out that classical DTW
can bypass additional segments such as repeated verses, at
least to some extent. Raphael [9] remarks in his work that
structural differences such as repeats are a common prob-
lem in score-performance synchronization. Content-based
comparison of scores and performances also plays an im-
portant role in retrieval scenarios [10–12]. As pointed
out in [12], retrieval methods may also be used to de-
termine the structural differences between a score and a
performance. Further related work has focused on perfor-
mances only, either in the scenario of general partial mu-
sic synchronization [13] or structural analysis of perfor-
mances [14,15].

In this paper, we describe a novel approach that allows
for synchronizing score and performance data in the pres-
ence of structural differences. The main motivation for our
work originates from a problem of high practical relevance
arising in the data acquisition and processing pipeline of a
digital music library [1]. Here, the score data is typically
obtained by first scanning the given printed sheet music
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 1.Examples for several types of block boundary indicators: (a) beginning and end of movement/song, (b) double bar lines with
and without repeat signs, (c) brackets for alternative endings, (d) segno marker, (e) textual jump directive, (f) coda, (g) fine, (h) title
heading of new musical section

material and then by converting the digitized images into
a symbolic score representation using optical music recog-
nition (OMR). In this process, repeat and jump directives
that are written in the printed sheet music (as shown in
Fig. 1) are often not recognized reliably by the OMR soft-
ware. Besides the reasons given above, such missing di-
rectives are a major source for structural differences be-
tween the resulting score representation and a given audio
recording. As the main technical contribution of this pa-
per, we introduce a novel variant of dynamic time warping
(DTW), which we refer to asJumpDTW. The main idea
of our approach is to estimate the repeats and jumps that
make the score match the performance and to calculate
the actual score-performance alignment within a joint op-
timization procedure based on a content-based comparison
of the score and audio data. The task tackled in this paper
is related to the task of computing a possibly large partial
alignment of two data streams [13, 16]. However, in con-
trast to these approaches, our goal is to somehow unfold
the score representation to best explain the performance.
Furthermore, we assume that the jumps and repeats only
occur on musically meaningful positions by exploiting ad-
ditional structural information given by the score. To this
end, the score is searched for structural elements such as
double bar lines to divide the score into blocks, see Fig. 1.
Then repeats and jumps are allowed only at block bound-
aries but never inside blocks.

The remainder of this paper is organized as follows.
In Sect. 2, we formalize the task of handling repeats and
jumps in score-performance synchronization. In Sect. 3,
we describe our novelJumpDTWalgorithm in detail and
indicate several extensions. Finally, in Sect. 4, we present
experiments performed on a test dataset consisting of pi-
ano sonatas by Beethoven and conclude in Sect. 5 with a
discussion of future work.

2. PROBLEM MODELING

We now assume that we are given one sheet music repre-
sentation and one performance in form of an audio record-
ing of the same piece of music. After processing the sheet
music via OMR, one obtains a symbolic representation re-
ferred to asscore representation. The score is naturally
divided into sections that are delimited by either bar lines
or the left or right boundary of a grand staff. Even though
these sections may differ from the musical bars as they are

usually counted in Western sheet music notation, in this
paper, we simply refer to each such section asbar.

Let B denote the set of bars appearing in the score and
letK = |B| be the number of bars. Ordering the set of bars
by their visual occurrence in the sheet music (canonically
ordered by the page number, line number, and left to right
within a line), one obtains a sequenceσ = (σ1, . . . , σK),
σk ∈ B, k ∈ [1 : K], which we refer to asscore bar se-
quence. Note that the score bar sequence does not account
for jump and repeat directives, see Fig. 2. Depending on
the context, we use the termbar to denote either an ele-
ment ofB, the region in the sheet music image that rep-
resents the bar, the musical content of the bar, or one of
possibly many occurrences of the bar in the performance.

As discussed before, sheet music may contain jump and
repeat directives such as repeat signs, alternative endings,
dacapos or segnos, see Fig. 1. Because of these direc-
tives, the given performance often deviates from the score
bar sequenceσ. The musician may even choose to ig-
nore or add some of the displayed repeats or may intro-
duce shortcuts. This leads to a possibly different sequence
π = (π1, . . . , πJ ), πj ∈ B, j ∈ [1 : J ], which we call
performance bar sequence, see Fig. 2. Note that in the
scenario discussed in this paper, the performance bar se-
quenceπ is unknown. One application of the approach
introduced in the remainder of this paper is to determine
this sequenceπ.

To relate the score bar sequenceσ and the performance
bar sequenceπ, intuitively, the score bar sequence, which
represents the source material, has to be suitablyunfolded
to best explain the performance. Here, theunfoldingtypi-
cally appears at the jump and repeat directives indicated by
the sheet music. Making use of this fact, the problem of un-
folding sequences of bars can be reduced to the easier task
of unfolding much shorter sequences of so-calledblocks
which are obtained by concatenating suitable subsquences
of bars during which no repeats or jumps are expected to
occur. To this end, the score is searched forblock boundary
indicatorsthat indicate bars in the score that might serve as
source or target for jumps and repeats. Examples of these
indicators are depicted in Fig. 1.

Let k0 = 0 < k1 < . . . < kI−1 < kI = K be
boundary indices corresponding to the jump and repeat di-
rectives. Then, we define the block

βi = (σki−1+1, . . . , σki
) (1)
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σ8
π10

σ9
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σ10
π12

σ11
π13

β5

Figure 2. Illustration of the score bar sequenceσ, the perfor-
mance bar sequenceπ and the score block sequenceβ.

of length |βi| = ki − ki−1 for i ∈ [1 : I]. The resulting
score block sequenceβ := (β1, . . . , βI) is a partition ofσ,
see Fig. 2. Now, the task of finding the performance bar
sequenceπ is reduced to finding a sequence of block in-
dicesb = (b1, . . . , bG), bg ∈ [1 : I], g ∈ [1 : G], such that
(βb1 , . . . , βbG) is as close as possible to the performance
bar sequenceπ. The task of finding such a sequenceb is
discussed in the next section. For an example, we refer to
Fig. 3. Note that, depending on the context, we will later
use the termblocknot only to denote elements of the score
block sequenceβ, but also to refer to elements of the block
index sequenceb.

3. PARTIAL SYNCHRONIZATION WITH JUMPS

Most procedures for score-performance synchronization
first convert the two data streams to be aligned into suitable
feature representations. Then, based on a local cost mea-
sure that allows for comparing features, a global alignment
path between the feature sequences is computed using dy-
namic time warping (DTW). This procedure only works
well if the score and the performance are in global corre-
spondence and do not differ in their overall structure.

To account for structural differences as occurring in our
scenario, we extend the classical DTW approach to enable
jumps in the alignment path. Our idea of allowing jumps is
inspired by the way a piece of music is often modeled using
a Hidden Markov Model (HMM). Here, the note events of
a score are modeled by states which are left-to-right con-
nected to enforce that the music can only move forward but
not backward. To account for possible repeats and jumps
at certain block boundaries, one then simply adds further
connections that connect states representing possible jump
sources to states representing possible jump targets. After
a short review of classical DTW (Sect. 3.1), we show how
the jump directives can be incorporated (Sect. 3.2) and then
indicate further DTW variants (Sect. 3.3).

3.1 Classical DTW

Introducing some notation, we now summarize the clas-
sical DTW approach using a slight reformulation. Let
x = (x1, . . . , xN ) andy = (y1, . . . , yM ) be the feature
sequences obtained from the score and performance repre-
sentation, respectively. Furthermore, letc denote the local
cost measure used to compare two features. Then thelocal
cost matrixC of dimensionN ×M is defined by

C(n,m) := c(xn, ym) (2)

β1

β2

β3

β4

β5

S
co

re

Performance

Figure 3. Visualizationof a score-audio synchronization result
with score block sequenceb = (1, 2, 3, 2, 4, 5) for the score and
performance bar sequences shown in Fig. 2. The red line indi-
cates an alignment path with jumps.

for (n,m) ∈ Z, whereZ := [1 : N ]×[1 : M ] is referred to
as the set ofcells. A (global)alignment pathbetweenx and
y is a sequencep = (p1, . . . , pL) with pℓ = (nℓ,mℓ) ∈ Z
for ℓ ∈ [1 : L] satisfying the boundary conditionp1 =
(1, 1) andpL = (N,M) and the step conditionpℓ−pℓ−1 ∈
Σ for ℓ ∈ [2 : L] Here,Σ := {(1, 0), (0, 1), (1, 1)} denotes
the set of possible steps. The cost of the pathp is defined
by

∑L

ℓ=1 C(pℓ). An optimal alignment pathis defined to
be an alignment path having minimal cost over all possible
alignment paths.

An optimal alignment path can be computed using
dynamic time warping (DTW). First, for a given cell
(n,m) ∈ Z, one defines the setZn,m of possibleprede-
cessorsby

Zn,m := {(n,m)− z | z ∈ Σ} ∩ Z. (3)

Then, one computes anaccumulated cost matrixD of di-
mensionN × M . First, one setsD(1, 1) := C(1, 1) and
then recursively defines

D(n,m) := C(n,m) + min
{
D(z) | z ∈ Zn,m

}
(4)

for (n,m) ∈ Z \ {(1, 1)}. The valueD(N,M) represents
the cost of an optimal alignment path. Such an optimal
path can be constructed based on a simple back tracking
algorithm usingD. For details, we refer to [17].

3.2 JumpDTW

To account for structural differences between the score and
the performance caused by repeats and jumps, we now ex-
tend the concept of an alignment path and the classical
DTW approach. Recall that we assume that the jumps oc-
cur from ends to beginnings of the blocksβi, i ∈ [1 : I].
With regard to the feature representationx = (x1, . . . , xN )
of the score, we assume that the beginning ofβi cor-
responds to indexsi ∈ [1 : N ] and the end to index
ti ∈ [1 : N ], wheresi < ti. Furthermore, we assume that
the beginning of blockβi+1 immediately follows the end
of blockβi, i.e.,si+1 = ti + 1. LetS := {si | i ∈ [1 : I]}
andT := {ti | i ∈ [1 : I]}.

Next, analignment path with jumpswith respect to the
setsS andT is defined to be a sequencep = (p1, . . . , pL)
with pℓ = (nℓ,mℓ) ∈ Z for ℓ ∈ [1 : L] satisfying the
boundary condition as before. However, this time we mod-
ify the step condition by requiring that eitherpℓ−pℓ−1 ∈ Σ
(as before) or

mℓ−1 = mℓ − 1 ∧ nℓ−1 ∈ T ∧ nℓ ∈ S. (5)
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In other words, besides the regular steps, we also permit
jumpsin the first coordinate (corresponding to the score)
from the end of any block (given byT ) to the beginning of
any other block (given byS), see also Fig. 3.

We now introduce a modified DTW version, referred to
asJumpDTW, that allows for computing an optimal align-
ment path with jumps. Recall that, in classical DTW, the
setZn,m of possible predecessor cells encodes all cells
from which one can reach the cell(n,m) by applying a
single step fromΣ, see (3). The main idea of our modifi-
cation is to add further predecessor cells that model possi-
ble jumps between the block boundaries. To this end, we
extend all setsZn,m for n ∈ S by setting

Z̃n,m := Zn,m ∪
(
{(t,m− 1) | t ∈ T} ∩ Z

)
. (6)

Furthermore, we set̃Zn,m := Zn,m for all other n ∈
[1 : N ] \ S. Intuitively, the additional predecessor cells
in Z̃n,m \Zn,m permit jumps from the end of any block to
the beginning of any other block. As in the classical case,
one then computes an accumulated cost matrix simply by
replacing the setsZn,m by the sets̃Zn,m obtaining a matrix
D̃. More precisely, we set̃D(1, 1) = C(1, 1) and

D̃(n,m) := C(n,m) + min
{
D̃(z) | z ∈ Z̃n,m

}
(7)

for (n,m) ∈ Z \ {(1, 1)}. Note that for a given(n,m) 6=
(1, 1), the setZ̃n,m only contains cells of the form(n −
1,m) or (k,m − 1) for somek ∈ [1 : N ]. In other
words, Z̃n,m only contains cells that lie below or to the
left of the current cell(n,m) when the axes are chosen as
in Fig. 3. Therefore,̃D can still be computed recursively in
a column-wise fashion. The matrix entrỹD(N,M) yields
the cost of an optimal alignment path with jumps. As for
the classical case, such an optimal path can then be con-
structed based on a simple back tracking algorithm using
D̃.

From an optimal warping path with jumps one can
derive the underlying sequence of block indicesb =
(b1, . . . , bG), bg ∈ [1 : I], g ∈ [1 : G], in a canonical
way. Starting with the first block, one either enters the
subsequent block via a step fromΣ or enters a different
block via a jump. For example, in the case of a jump from
pℓ−1 = (tj ,m − 1) to pℓ = (si,m) for someℓ ∈ [2 : L],
one obtainsbg−1 = j andbg = i for someg ∈ [2 : G],
see also Fig. 3 for an illustration. Having determined the
sequence of block indicesb, one can easily derive the per-
formance sequenceπ by expanding blocks to bars.

3.3 Further DTW Variants

Because of the boundary condition, an alignment path
starts atp1 = (1, 1) and ends atpL = (N,M). There-
fore, the score block sequenceb is also restricted to start
with the first blockb1 = 1 and to end with the last block
bG = K. In practice, however, a performance may end
with a different block. For example, this happens in the
presence of a “dacapo”, where the piece ends at a block
marked with the keyword “fine.” To account for this pos-
sibility, one can easily modify the JumpDTW algorithm.
Instead of looking at the entrỹD(N,M), one simply has
to determine the index

n∗ := argmin
{
D̃(n,M) |n ∈ T

}
. (8)

Then, the alignment path with jumps is computed via back-
tracking starting with the cell(n∗,M) instead of(N,M).
Similarly, one can relax the condition that one has to start
with the first block, see [17] for details. Note that further
constraints on the jumps can easily be handled by suitably
modifying the sets̃Zn,m of predecessor cells. For example,
to restrict the jump possibilities for a given blockβi, one
simply restricts the setT to a suitable subsetT ′ ⊂ T and
then uses̃Zsi,m := Zsi,m ∪

(
{(t,m− 1) | t ∈ T ′} ∩ Z

)
.

4. EXPERIMENTS

To evaluate the usefulness of JumpDTW in a practically
relevant application, experiments are conducted on the first
15 piano sonatas by Beethoven including a total of54
individual movements. The score data is obtained from
OMR results of a printed sheet music edition, and the per-
formances are given as audio CD recordings. Since the
score data does not include any tempo information, a mean
tempo is estimated for each movement using the number
of bars and the duration of the corresponding performance.
For each movement, the score bar sequenceσ is known and
the score block sequenceβ is obtained using block bound-
ary indicators extracted from the score. Note that this may
include block boundary indicators where actually no jump
or repeat occur in the performance. The performance bar
sequenceπ is given as ground truth and is used to derive a
ground truth block index sequenceb with respect toβ. For
our test data set, the total number of score blocks appearing
in the sequencesβ of the54 movements is242. The total
number of score bars is8832. Note that, because of re-
peats and jumps, a score block may occur more than once
in the performance. Therefore, the total number of blocks
appearing in the sequencesb is 305 which corresponds to
a total of11836 bars being played in the performance. The
total duration of the performance amounts to312 minutes.

JumpDTW is performed on the data usingβ as de-
scribed in Section 3.2. From the resulting warping
path with jumps, an output block index sequenceb′ =
(b′1, ...b

′

G′) is obtained. In the optimal case, this block in-
dex sequenceb′ would be equal to the ground truth block
index sequenceb. Table 1 shows the results of comparing
b′ to b using several different evaluation measures. Each
row shows the results for different sets ofb′ obtained us-
ing a different JumpDTW variant. Each entry in the table
summarizes the results for all54 movements. The first row,
taggednojumps, represents the results when using classi-
cal DTW as described in Sect. 3.1, which serves as bottom
line in our evaluation. The second row, taggeds1 plain,
representsthe basic JumpDTW algorithm as described in
Section 3.2 including the relaxed boundary condition for
dacapo/fine cases as described in 3.3.

The numbers plotted in the first six columns are based
on a direct comparison of the sequencesb′ and b and
measure how many blocks (abbreviated asblk) or per-
formance bars (bar) match between the two sequences
(mch), have been erroneously inserted intob′ (ins), or
have been erroneously omitted inb′ (omt) with respect
to the ground truthb. To this end, we calculate an opti-
mum alignment between the two block index sequences
using a variant of the edit distance that only allows in-
sertions and deletions (but not replacements). To find an
alignment between the two block index sequences that is
optimal with respect to the amount of inserted and omit-
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mch blk % (#) ins blk % (#) omt blk % (#) mch bar % (#) ins bar % (#) omt bar %(#) prf % (#)
nojumps 70.2 (214) 0.3 (1) 29.8 (91) 74.6 (8831) 0.0 (1) 25.4 (3005)69.8 (8258)
s1 plain 93.4 (285) 9.2 (28) 6.6 (20) 99.2 (11740) 0.9 (105) 0.8 (96) 98.5 (11661)

s2 addspecialstates 93.4 (285) 5.6 (17) 6.6 (20) 99.3 (11759) 0.7 (82) 0.7 (77) 98.8 (11692)
s3 penalize0.5 100 94.4 (288) 9.5 (29) 5.6 (17) 99.4 (11767) 0.4 (51) 0.6 (69) 99.1(11725)

Table 1. Evaluation results for classical DTW and different variants of JumpDTW.

tedbars (instead of blocks), each block index entry in the
sequences is weighted by the length of the corresponding
score block. Each entry in Table 1 is given as a percent-
age with respect to the total number of blocks/bars in the
performance followed by the absolute number in parenthe-
ses. For example, the entry70.2(214) in the first row and
column means that214 blocks ofb′ have a matching coun-
terpart inb, which is214/305 = 70.2% of the total number
of blocks inb. Similarly, the entry74.6(8831) for match-
ing bars means that the214 matching blocks have a total
length of8831 bars, which is8831/11836 = 74.6% of the
total length ofb in bars.

A further evaluation measure (prf), which is plotted
in the last column of Table 1, expresses the alignment ac-
curacy on the bar-level. This measure is motivated by
the application of visually presenting sheet music that is
linked on a bar-wise level to a given recorded audio perfor-
mance. For this application, we want to measure for how
many of the performance bars the alignment computed via
JumpDTW is suitably accurate. To this end, the ground
truth block index sequenceb is used to create a feature
sequencex from the score data that matches the repeats
and jumps of the performance. Then, this feature sequence
is synchronized to a feature sequencey obtained from the
performance using classical DTW. From the output warp-
ing path, we derive a bar-wise score-performance synchro-
nization that maps each performance barπj ∈ π to a tem-
poral region with center timedj in the performance, see
Fig. 4. Furthermore, this synchronization delivers a map-
ping φ : [0, D] → [1 : K], with D being the duration of
the performance, that for each time positionsd ∈ [0, D] in
the performance returns an indexk ∈ [1 : K] indicating
that barσk is played at timed, see also Fig. 4. Since,
from manual inspection, the synchronization results ob-
tained when using the ground truth block index sequence
b are known to be suitably accurate on a bar-wise level,
they are used as a reference for finding deviations in the
synchronization results obtained usingb′. For each perfor-
mance barπj , we take the bar center timedj and input it
into the mappingφ′ obtained from the synchronization re-
sults usingb′. The performance bar is counted as correctly
matched ifφ′(dj) = φ(dj), which means that in the syn-
chronization obtained usingb′, the time positiondj points
to the same barσk as in the reference synchronization. Un-
like the mere number of matched bars listed in the column
mch bar, this measure takes into account the extra con-
fusion that is caused in the synchronization by erroneously
inserted or omitted bars.

From the results using classical DTW (nojumps) one
can see that about70–75% of the blocks and bars of the
performance are covered by the plain score bar sequence.
The remaining25–30% are repeats that are omitted in this
sequence. The synchronization-based measure indicates
a similar result: 69.8% of the center time positions of
the bars in the performance were aligned to the correct
bar in the score. These results are improved significantly,

Figure 4. Illustration of a bar-wise score-performance synchro-
nization.Each performance barπj is synchronized to a temporal
region of a performance with bar center timedj . Furthermore, a
mappingφ can be derived that for a given time positiond in the
performance outputs the indexk of the corresponding score bar
σk.

when using JumpDTW (s1plain). Here,93.4% of the
blocks and99.2% of the bars are matched correctly. In the
synchronization-based measure,98.5% of the performed
bars match the reference synchronization. Even though28
blocks have been erroneously inserted and20 blocks have
been omitted, this amounts to only105 inserted bars and
96 omitted bars, revealing that the mean length of inserted
and omitted blocks is only about4.2 bars.

Manual inspection of the results for the individual
movements reveals that in many cases an extra block is
inserted at the beginning or the end of the sequence to
cover for silence at the beginning or end of the perfor-
mance. In one case, this even leads to the last block of
the sequence being confused with an incorrect one. To
encounter this issue, we extend the JumpDTW algorithm
by adding special states to the score representation that
model silence at the beginning or end of the performance.
The results for this modification are listed in the line la-
beleds2 add special states and show slightly im-
proved numbers. An in-depth analysis of the results shows
that this modification solved all of the previously men-
tioned problems caused by initial or trailing silence in the
performance. Furthermore, it turned out that130 of the
82 + 77 = 159 inserted and omitted bars occur in just3 of
the54 movements. The performance of the first movement
of “Sonata 8, Op. 13,Pathetique” contains extreme tempo
changes with slow sections of roughly20 BPM (beats per
minute) alternating with fast sections of about300 BPM.
This results in a large difference between the estimated
mean tempo of the score and the tempo of the slow sec-
tions in the performance. The JumpDTW algorithm reacts
by erroneously inserting more or less random blocks to
cover the unexpectedly slow sections of the performance.
A different kind of problem occurs in “Sonata 12, Op. 26,
Andante con variazioni”. Here, the second block is a vari-
ation of the first block that has virtually the same harmonic
progression. The JumpDTW erroneously treats this second
block in the performance as a repeat of the first block in the
score. This behavior is not very surprising considering that
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the content-based comparison of score and performance is
somewhat noisy and for the chroma-based features used,
sections with the same harmonic progression are almost
indistinguishable. In “Sonata 13, Op. 27 No. 1, Andante–
Allegro” it is again a significant change in the tempo that
causes a problem. Here, a repeat of a block (length =9
bars) of the faster Allegro section is omitted by JumpDTW,
which is provoked by the estimated tempo of the score be-
ing significantly slower than the tempo of the correspond-
ing section of the performance. For all of the remaining
movements, only blocks of length2 or lower are inserted
or omitted.

To encounter the problems discussed above, we further
extend the JumpDTW approach by introducing a penalty
cost for performing jumps in the warping path that is added
to the accumulated cost. The cost value is set to0.5 · N

100 ,
with N beingthe length of the score feature sequence. The
particular formula is motivated by the idea of choosing a
cost value that is close to the cost of matching1/100-th
of the score to a section of the performance that is not
considered similar. Since in our implementation, we use
normalized chroma features with a cosine measure for the
local cost, a local cost value of0.5 is already considered
not similar. The results for this modification are listed
in the rows3 penalize 0.5 100. A closer analysis
shows that adding the penalty solves the confusion for the
“Andante con Variazioni” and lowers the amount of in-
serted bars for the slow sections of the “Pathetique”, which
leads to a better overall result. However, the penalty also
causes degradation for many of the other movements be-
cause short blocks for alternative endings are no longer
skipped. Tuning the penalty cost to higher or lower values
did not improve the situation. An increased penalty led to
an increased amount of erroneously skipped short blocks
while a decreased penalty no longer solved the confusion
for the two movements discussed above.

5. CONCLUSIONS

In this paper, we have formally modeled the task of score-
performance synchronization in the presence of structural
differences induced by jumps and repeats. To handle such
differences, we introduced a novel DTW variant referred
to as JumpDTW. The results of the experiments presented
in Section 4 show that the JumpDTW approach can suc-
cessfully align about99% of the bars played in the perfor-
mance on the given test dataset with less than1% of bars
being omitted and less than1% of extra bars being inserted.
This positive result suggests that the approach may be use-
ful for the large-scale automatic alignment of OMR data
and audio recordings in a digital music library scenario.

Introducing penalty cost for performing jumps did fix
some problems occuring on the test dataset but also caused
additional errors. Further improvements of our approach
are needed in situations where one has large differences
(more than a factor of two) in the estimated tempo of the
score and the tempo of the actual performance. Also, when
using chroma features, blocks that reveal a similar har-
monic progression are prone to confusion. Here, combina-
tions with other feature types may help to resolve this prob-
lem. Note that, besides the segmentation of the score data
into blocks, the JumpDTW approach completely relies on
content-based comparison of notes and acoustic data. If
further structural information from the score can be incor-

porated, as for example tempo directives or jumps and re-
peats as suggested by the notation, many of the remaining
issues and inaccuracies might be solved. Besides this, an-
other direction of future work may be to incorporate the
case of cadenzas, where the performance contains sections
that are not written in the score.
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ABSTRACT

The user-assigned tag is a growingly important research
topic in MIR. Noticing that some tags are more specific
versions of others, this paper studies the problem of orga-
nizing tags into a hierarchical structure by taking into ac-
count the fact that the corresponding artists are organized
into a hierarchy based on genre and style. A novel clus-
tering algorithm, Hierarchical Co-clustering Algorithm
(HCC), is proposed as a solution. Unlike traditional hi-
erarchical clustering algorithms that deal with homoge-
neous data only, the proposed algorithm simultaneously
organizes two distinct data types into hierarchies. HCC is
additionally able to receive constraints that state certain ob-
jects “must-be-together” or “should-be-together” and build
clusters so as to satisfying the constraints.

HCC may lead to better and deeper understandings of
relationship between artists and tags assigned to them. An
experiment finds that by trying to hierarchically cluster the
two types of data better clusters are obtained for both. It is
also shown that HCC is able to incorporate instance-level
constraints on artists and/or tags to improve the clustering
process.

1. INTRODUCTION

The user-defined tags are becoming an essential compo-
nent in web databases and social network services. The
tags assigned to events and data objects as a whole rep-
resent how they are received by the community and pro-
vide keys to other users accessing them. In music informa-
tion retrieval some recent papers study how to incorporate
tags effectively for fundamental data retrieval tasks such as
clustering, recommendation, and classification (see, e.g.,
[4, 19, 21, 22]).

An important characteristic of the tags is that sometimes
tags are extensions of others and thus more specific than
those they extend, e.g., “Soft Metal” extending “Metal”,
“Dance Pop” extending “Pop”, and “Extremely Provoca-
tive” extending “Provocative”. Since there is no limit in
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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the length of tags, a tag can be an extension of another
one, which is an extension of yet another one. This sug-
gests that the music tags can be not only clustered as has
been done before but hierarchically clustered.

Many approaches have been developed to produce hi-
erarchical organizations of words and of documents, and
so organizing tags into a hierarchy is a problem that is
already-solved. However, we observe that the artists, to
which tags are assigned, too can be organized into a hi-
erarchical structure based on their prominent genres and
styles. In fact, these hierarchies are much related to each
other, since style labels often appear as tags. This leads
to the questions of whether an attempt to build simultane-
ously hierarchical organizations of tags and of artists will
lead to better organizations of both and of whether such
organizations can be effectively and efficiently built.

In data mining the problem of developing hierarchical
organization of data is referred to as hierarchical cluster-
ing and the problem of clustering two data types is referred
to as co-clustering. While co-clustering essentially aims
at simultaneously clustering rows and columns of a ma-
trix, where the rows and the columns correspond to sep-
arate data types (e.g., terms and documents), hierarchical
clustering aims at building a tree-like structure of the rows
based on the columns a tree-like structure of the columns
based on the rows. While both organizations have their
own advantages, such as natural facilitation of data navi-
gation and browsing in hierarchical clustering [6], few al-
gorithms simultaneously build both [2].

In this paper, we develop a novel method, called
HCC, for simultaneously clustering two data types, and
we use HCC for building hierarchical co-clusters of tags
and styles. HCC is designed based on the approaches
in [10, 14]. HCC is essentially agglomerative hierarchi-
cal clustering: it starts with singleton clusters and then re-
peatedly merging two nearest clusters into one until there
remains only one cluster. However, it may merge groups
from different data types at any point. In our case, this
means that at each step of the merging process, HCC can
merge a subset of the artists with a subset of the tags based
on their internal heterogeneity. In practice, one sometimes
observes that a group of artists and a group of tags are
exclusively correlated with each other (i.e., not correlated
with any other artists or tags). HCC aims at, in such a
situation, merging them into a single group at the earliest
possible stage.
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Our hope is that such artist-tag mixed clusters will be
used for better retrieval when both artists and tags are spec-
ified in a query.

Figure 1 shows a sample output dendrogram of HCC
while Figure 2 shows a sample output dendrogram of a tra-
ditional hierarchical clustering method. We show that such
mixed-data-type hierarchical clusters can be generated by
HCC and empirically better clusters are generated by con-
current use of two data types. Furthermore, we show that
HCC can be extended to incorporate instance-level con-
straints that specify certain tags must be or must not be
together or certain artists must be or must not be together
for better organization.

The rest of the paper is organized as follows: Section 2
discusses the related work; Section 3 describes the details
of HCC and the techniques for incorporating instance-level
constraints; Section 4 presents experimental results; and
finally Section 5 provides our conclusions.

2. RELATED WORK

Hierarchical Clustering is generation of tree-like cluster
structures without user supervision. Hierarchical cluster-
ing algorithms organize input data either bottom-up (ag-
glomerative) or top-down (divisive) [20]. Co-clustering
refers to clustering of more than one data type. Dhillon [7]
proposes bipartite spectral graph partitioning approaches
to co-cluster words and documents. Long et al. [15] pro-
posed a general principled model, called Relation Sum-
mary Network, for co-cluster heterogeneous data presented
as a k-partite graph. While hierarchical clustering deals
with only one type of data and the organization that co-
clustering produces consists of just one level, Hierarchi-
cal Co-clustering aims at simultaneously construction of
two or more hierarchies [12, 13].

Recently much work has been done on the use of back-
ground information in the form of instance level must-
link and cannot-link constraints. This topic is referred to
as Constrained Clustering. Here a must-link constraint
enforces that two instances must be placed in the same
cluster and a cannot-link constraint enforces that two in-
stances must not be placed in the same cluster. Most of
these constraint-based algorithms are developed for parti-
tional clustering (e.g, K-means clustering, spectral cluster-
ing, and non-negative matrix factorizations) [1], and little
has been done on utilizing constraints for hierarchical clus-
tering.

3. HIERARCHICAL CO-CLUSTERING (HCC)

3.1 Problem Formulation

Suppose we are given a set of m artists
A={a1, a2, . . . , am}, and a set of n unique tags that are
assigned to the music of these artists T={t1, t2, . . . , tn}.
Suppose we are also given an m× n artist-tag relationship
matrix X = (xij) ∈ Rm×n, such that xij represents the
relationship between the i-th artist in A and the j-th tag in
T . Our goal is to simultaneously generate a hierarchical
clustering of A and of T based on matrix X .

3.2 HCC

Like agglomerative hierarchical clustering algorithms,
HCC starts with singleton clusters and then successively
merges the two nearest clusters until only one cluster is
left. However, unlike traditional algorithms, it may unify
classes from two different data types. This means that the
cluster left at the end consists of all the rows and columns
and so if there are m rows and n columns exist, HCC exe-
cutes m+n−1 rounds. The output of HCC is thus a single
tree where the leaves are the rows and the columns of the
input matrix, where nodes having both rows and columns
as descendants may appear at any non-leaf level. Note that,
in Figure 1, at the third layer the artist A3 - Led Zeppelin
is joined with the tag B2 - Classic rock.

The algorithm of HCC is presented in Algorithm 1. The

Algorithm 1 HCC Algorithm Description
Create an empty hierarchy H
List← Objects in A+Objects in B
N ← size[A] + size[B]
Add List to H as the bottom layer

for i = 0 to N − 1 do
p, q = PickUpTwoNodes(List)
o = Merge(p, q)
Remove p, q from List and add o to List
Add List to H as the next layer

end for

central part in the design of Algorithm 1 is the method
PickUpTwoNodes, which is for selecting two nodes (cor-
responding to two clusters) to merge. For the purpose of
creating groups consisting of two different data types, we
use cluster heterogeneity measurement, denoted by CH .
Given a group C consisting of r rows, P , and s columns,
Q, we define CH (C) as

CH(C) =
1

rs

∑
i∈P,j∈Q

(xij − µ)2, (1)

where µ is the average of entries over rows P and columns
Q; i.e., µ = 1

rs

∑
i∈P,j∈Q xij . For a merger, we choose the

two nodes whose merging would result in the least increase
in the total cluster heterogeneity [10].

3.3 Incorporating Instance-level Constraints

In practice, one may observe pairs of artists that should
be clustered into the same cluster. Similarly, one may ob-
serve pairs of tags that must be always in the same tag
cluster. These observations are represented as the afore-
mentioned “must-link” and “cannot-link” constraints. We
design HCC so as to incorporate such constraints.

There are two issues in incorporating these constraints.
One is how to use them for grouping data points of the
same type; i.e., how to use artist constraints for grouping
artists and tag constraints for grouping tags. The other is
how to transfer constraints on one data type to the other
data type. To address the first issue, we use Dunn’s Index
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Figure 1. Part of HCC dendrogram. Rectangles represent artists and ellipses represent tags assigned to these artists. The
nodes containing both rectangles and ellipses are clusters containing both an artist and a tag.

to determine the best layer for cutting the HCC-generated
dendrogram and then apply the constrained K-Means to
incorporate the constraints of the same data type. To ad-
dress the second issue, we use an alternating exchange al-
gorithm.

3.3.1 Best Layer

Since HCC produces a list of clustering results and each
clustering corresponds to one layer of the dendrogram, we
use Dunn’s Validity Index [9] to measure and compare
these clusterings. This validity measure is based on the
idea that good clustering produces well-separated compact
clusters. Given a clustering layer consisting of r clusters
c1, . . . , cr, Dunn’s Index is given by:

D =
min1≤i<j≤r d(ci, cj)

max1≤k≤r d′k
, (2)

where d(ci, cj)) is the inter-cluster distance between the i-
th and the j-th clusters and d′k is the intra-cluster distance
of the k-th cluster. Generally, the larger Dunn’s Index, the
better the clustering.

After determining the best layer to cut the dendrogram,
we can easily make use of the constraints of the same data
type. In particular, we perform constrained K-Means on
the best layer with the parameter K set to the number of
clusters in that layer. For this purpose, we use the MPCK-
Means algorithm in [3].

3.3.2 Alternating Exchange

Here we show how to transfer the constraints between dif-
ferent data types. Specifically, at the best layer of the den-
drogram generated by HCC, if some artist (or tag) data
points of certain node are being re-assigned to another
node at the same layer after using the instance-level con-
straints, we can use an alternating exchange algorithm [11]

to improve tag (or artist) clustering. The objective function
of clustering can be written as [11]:

Z =
r∑

k=1

m∑
l=1

∑
i∈Ak

∑
j∈Tl

(xij − wkl)
2, (3)

with

wkl =
1

aktl

∑
i∈Ak

∑
j∈Tl

xij . (4)

Here r is the number of type A clusters, m is the number of
type T clusters, Ak is the k-th cluster contains data points
of type A, Tl is the l-th cluster contains data points of type
T , ak and tl respectively denote data points of type A and
T . As before, xij is the value representing the relationship
between the i-th type-A data point and the j-th type-T data
point.

To transfer constraints from tags to artists, we do the
following: Suppose we have just obtained a clustering of
artists, CA, and a clustering of tags, CT , by cutting the
HCC dendrogram using Dunn’s index, as described be-
fore. We first incorporate into these clusterings the tag
constraints using the techniques described in Section 3.3.1
thereby obtain an improved tag clustering, C ′

T . Then we
execute the greedy algorithm shown in Algorithm 2 to
make changes on artist class assignments. The greedy al-
gorithm is aimed at minimizing the quantity Z in (3) and
in each round one artist is moved from the current cluster
to another if that move decreases the value of Z. Transfer-
ring constraints backward (i.e., from artists to tags) could
be done by simplying switch the role of tags and artists. In
our implemenation, we transfer only from tags to artists.
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Algorithm 2 Alternating Exchange Algorithm
Input: clusterings CA and C ′

T , and normalized A-T
matrix X , where C ′

T is obtained by using the
MPCK-Means on the output of HCC with respect to
tag constraints.

while There is an artist whose relocation from the
current cluster to another decreases the value of Z do

pick an artist-destination pair that maximizes the
decrease and relocate the artist to the destination

end while
Output the resulting artist clustering C ′

A

4. EXPERIMENT

4.1 Data Set

We use the data set in [22] consisting of 403 artists. For
each artist, tags and styles are collected from Last.fm
(http://www.last.fm). There are 8,529 unique tags and 358
unique style labels. Note that an artist may receive the
same tag more than once. By counting the number of as-
signments by the same tag, each artist is represented by a
8,529-dimensional integer vector. We scale these tag vec-
tors so that the total of the 8,529 entries is equal to a fixed
constant. We will use X to denote the artist-tag frequency
matrix thus generated.

As to the style labels, each artist belongs to at least one
style and each style contains at least one artist. We generate
an artist-style incident matrix from the data, so that the
entry at coordinate (i, j) is 1 if the i-th artist has the j-th
style label and 0 otherwise.

4.2 Hierarchies Generated from HCC

We use HCC to generate a dendrogram of the artists and
the tags. Figure 1 is part of the dendrogram generated by
HCC in our experiment. In the dendrogram, each leaf rep-
resents one artist or one tag, each internal node contains
subsets of artists and tags, and the top layer is the cluster
contains all artists and tags. Because many people assign a
tag “Industrial” to artist Nine Inch Nails, “Industrial” and
Nine Inch Nails are clustered together. The novelty here is
that artists and tags are jointly organized into a hierarchical
structure. Once such a hierarchical organization has been
generated, an artist can be described by the tags that appear
in its cluster. The more representative are the tags for cer-
tain artists, the larger possibility for them to be clustered
together.

We compare the HCC-generated dendrogram with
one generated by single linkage hierarchical cluster-
ing (SLHC). This is the standard hierarchical clustering
method and thus serves as our baseline. Since SLHC can
cluster only one type of data, we provide SLHC with the
normalized artist-tag matrix by viewing each row as the
feature vector of the corresponding artist and produce hier-
archical clustering of artists. The artist dendrogram gener-
ated by SLHC is shown in Figure 2. To evaluate and com-
pare these two artist dendrograms, we utilize CoPhenetic

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Figure 2. Part of the dendrogram generated by SLHC.

Correlation Coefficient (CPCC) [17] as evaluation mea-
sure. Intuitively CPCC measures how faithfully a dendro-
gram preserves the pairwise distances between the original
data points. CoPhenetic Correlation Coefficient (CPCC) is
given as: ∑

i<j(d(i, j)− d)(t(i, j)− t)√
(
∑

i<j(d(i, j)− d)2)(
∑

i<j(t(i, j)− t)2)
(5)

Here d(i, j) and t(i, j) are respectively the ordinary Eu-
clidean distance and the dendrogrammatic distance be-
tween the i-th and the j-th data points, and d and t are
their respective averages. The CPCC for HCC was 3.71
while that for SLHC was 3.69, and so we can say that our
HCC method generates faithful dendrogram with reason-
able clustering performance on artist-tag dataset. Through
the coupled dendrogram, one can observe the relationship
between artists and tags, also make use of the tags within
the same cluster as some artists to explain why these artists
are clustered together.

4.3 Clustering Performance Comparisons

We also evaluate the artist clustering performance of HCC,
by comparing it with three co-clustering algorithms includ-
ing Information-Theoretic Co-clustering (ITCC) [8], Eu-
clidean Co-clustering (ECC), and Minimum Residue Co-
clustering (MRC) [5] on the artist-tag dataset.

Using style labels we obtain artist clusters and cluster
labels. We first cluster the styles using KMeans clustering
based on the artist-style matrix (that is, clustering of the
columns, where each column is the 403-dimensional 0/1
vector that shows assignments of the style corresponding
to the column to the 403 artists). We then treat each cluster
as a label and assign to each artist one label in the following
manner:

• If all the styles assigned to an artist a belongs to a
single cluster, we use that cluster as the label of a.
Otherwise, choose the cluster with the largest num-
ber of styles assigned to a. If there is a tie, choose
the one with the larger total number of styles, and if
that doesn’t break the tie, break it arbitrarily.
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Figure 3. Accuracy of various clustering methods.
HCC(constraints) represents HCC with 10 artist con-
straints.

We use these labels as our ground truth class labels in the
clustering performance measurements presented below.

4.3.1 Evaluation Measures

We use Accuracy, Normalized Mutual information (NMI),
Purity, and Adjusted Rand Index (ARI) as performance
measures. These measures have been widely used in clus-
tering evaluation and we hope they would provide insights
on the performance of our HCC method. For all these mea-
sures, the higher the value, the better the clustering.

Suppose we are given clusters C1, . . . , Ck of size
c1, . . . , ck, respectively and we are comparing this cluster-
ing against the ground-truth clustering E1, . . . , Ek of size
e1, . . . , ek. Let n be the total number of data points and for
all i and j, let µij denote the number of data points in both
Ci and Ej .

Accuracy measures the extent to which each cluster
contains the entities from corresponding class and is given
by:

Accuracy = max
π

∑
i,π(i) µiπ(i)

n
, (6)

where π ranges all permutations of 1, . . . , k. Purity mea-
sures the extent to which a cluster contains entities of a
single class and is given by:

Purity =
1

n

k∑
i=1

µiρ(i), (7)

where ρ(i) is the j that maximizes µij . Adjusted Rand
Index is the corrected-for-chance version of Rand Index,
and measures the similarity between two clusterings [16].
It is given by:

ARI =
a− 2bc

n(n−1)

b+c
2 −

2bc
n(n−1)

. (8)

Here a =
∑

i,j
µij(µij−1)

2 , b =
∑

i
ci(ci−1)

2 , and c =∑
j

ej(ej−1)
2 . NMI is the normalized version of mutual

information and measures how much information the two
clusterings share [18] and is given by:

NMI =

∑
i,j µij log(

nµij

ciej
)√

(
∑

i ci log
ci
n )(

∑
j ej log

ej
n )

. (9)
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Figure 4. Purity of various different clustering meth-
ods. HCC(constraints) represents HCC with 10 artist con-
straints.
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4.3.2 Experimental Results

As we mentioned in Section 3.3.1, Dunn’s Index can be
used to find the best layer of the dendrogram generated by
HCC. After computing Dunn’s Index on the clustering of
each layer, it is found that there are 11 clusters in the best
layer. Since we have already obtained the best layer, the
clustering of this layer is compared against Co-clustering
algorithms. This clustering is based on artist data points,
we applied co-Clustering algorithms for clustering artists.

Figures 3 and Figure 4 show the experiment results on
the clustering methods using accuracy and purity as the
performance measures, respectively. The results in both
figures demonstrate that our HCC method outperforms the
co-clustering methods. Similar behaviors can be observed
when using ARI and NMI measures. Due to space limita-
tion, we do not include the figures for ARI or NMI. Fig-
ures 3 and 4 also show that using the artist constraints im-
proves the clustering performance.

We also evaluate NMI on HCC with increasing num-
ber of constraints. The result in Figure 5 shows that the
artist clustering performance improves with the increasing
number of artist constraints. In other words, the artist con-
straints improves the clustering performance of HCC. Fig-
ure 6 shows that artist clustering performance improves as
the number of tag constraints increases.

5. CONCLUSION

In this paper, we propose a novel clustering method, HCC,
to hierarchically cluster artists and tags simultaneously.
With the dendrogram generated by HCC one can have a
picture of all artists and tags, so as to find the relationship
between the artists and tags within the same cluster. Fur-
thermore, we perform experiments on artist-tag dataset, the
results show that HCC outperforms its competitors, provid-
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- 20.

ing reasonable dendrograms with clusterings in each layer.
In the future, we would try out HCC on larger datasets to
further confirm its ability in MIR area.
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ABSTRACT

This paper surveys the state of the art in automatic emo-
tion recognition in music. Music is oftentimes referred
to as a “language of emotion” [1], and it is natural for us
to categorize music in terms of its emotional associations.
Myriad features, such as harmony, timbre, interpretation,
and lyrics affect emotion, and the mood of a piece may
also change over its duration. But in developing automated
systems to organize music in terms of emotional content,
we are faced with a problem that oftentimes lacks a well-
defined answer; there may be considerable disagreement
regarding the perception and interpretation of the emotions
of a song or ambiguity within the piece itself. When com-
pared to other music information retrieval tasks (e.g., genre
identification), the identification of musical mood is still in
its early stages, though it has received increasing attention
in recent years. In this paper we explore a wide range of
research in music emotion recognition, particularly focus-
ing on methods that use contextual text information (e.g.,
websites, tags, and lyrics) and content-based approaches,
as well as systems combining multiple feature domains.

1. INTRODUCTION

With the explosion of vast and easily-accessible digital mu-
sic libraries over the past decade, there has been a rapid
expansion of music information retrieval research towards
automated systems for searching and organizing music and
related data. Some common search and retrieval cate-
gories, such as artist or genre, are more easily quantified
to a “correct” (or generally agreed-upon) answer and have
received greater attention in music information retrieval
research. But music itself is the expression of emotions,
which can be highly subjective and difficult to quantify.
Automatic recognition of emotions (or mood) 1 in music

1 Emotion and mood are used interchangeably in the literature and in
this paper.
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is still in its early stages, though it has received increasing
attention in recent years. Determining the emotional con-
tent of music audio computationally is, by nature, a cross-
disciplinary endeavor spanning not only signal processing
and machine learning, but also requiring an understanding
of auditory perception, psychology, and music theory.

Computational systems for music mood recognition
may be based upon a model of emotion, although such rep-
resentations remain an active topic of psychology research.
Categorical and parametric models are supported through
substantial prior research with human subjects, and these
models will be described in further detail in the sections
that follow. Both models are used in Music-IR systems,
but the collection of “ground truth” emotion labels, regard-
less of the representation being used, remains a particularly
challenging problem. A variety of efforts have been made
towards efficient label collection, spanning a wide range
of potential solutions, such as listener surveys, social tags,
and data collection games. A review of methods for emo-
tion data collection for music is also a subject of this paper.

The annual Music Information Research Evaluation eX-
change (MIREX) is a community-based framework for
formally evaluating Music-IR systems and algorithms [2],
which included audio music mood classification as a task
for the first time in 2007 [3]. The highest performing sys-
tems in this category demonstrate improvement each year
using solely acoustic features (note that several of the sys-
tems were designed for genre classification and then ap-
propriated to the mood classification task, as well). But
emotion is not completely encapsulated within the audio
alone (social context, for example, plays a prominent role),
so approaches incorporating music metadata, such as tags
and lyrics, are also reviewed here in detail.

For this state-of-the-art review of automatic emotion
recognition in music, we first discuss some of the psy-
chological research used in forming models of emotion,
and then detail computational representations for emotion
data. We present a general framework for emotion recog-
nition that is subsequently applied to the different feature
domains. We conclude with an overview of systems that
combine multiple modalities of features.
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2. PSYCHOLOGY RESEARCH ON EMOTION

Over the past half-century, there have been several impor-
tant developments spanning multiple approaches for qual-
ifying and quantifying emotions related to music. Such in-
quiry began well before the widespread availability of mu-
sic recordings as a means of clinically repeatable musical
stimuli (using musical scores), but recordings are the over-
whelmingly dominant form of stimulus used in modern re-
search studies of emotion. Although scores can provide a
wealth of relevant information, score-reading ability is not
universal, and our focus in this section and the overall pa-
per shall be limited to music experienced through audition.

2.1 Perceptual considerations

When performing any measurement of emotion, from di-
rect biophysical indicators to qualitative self-reports, one
must also consider the source of emotion being measured.
Many studies, using categorical or scalar/vector measure-
ments, indicate the important distinction between one’s
perception of the emotion(s) expressed by music and the
emotion(s) induced by music [4,5]. Both the emotional re-
sponse and its report are subject to confound. Early studies
of psychological response to environment, which consider
the emotional weight of music both as a focal and distract-
ing stimulus, found affective response to music can also be
sensitive to the environment and contexts of listening [6].
Juslin and Luakka, in studying the distinctions between
perceptions and inductions of emotion, have demonstrated
that both can can be subject to not only the social context of
the listening experience (such as audience and venue), but
also personal motivation (i.e., music used for relaxation,
stimulation, etc.) [5]. In the remainder of this paper, we
will focus on systems that attempt to discern the emotion
expressed, rather than induced, by music.

2.2 Perception of emotion across cultures

Cross-cultural studies of musical power suggest that there
may be universal psychophysical and emotional cues that
transcend language and acculturation [7]. Comparisons of
tonal characteristics between Western 12-tone and Indian
24-tone music suggest certain universal mood-targeted
melodic cues [8]. In a recent ethnomusicology study of
people with no exposure to Western music (or culture),
Mafa natives of Cameroon, categorized music examples
into three categories of emotion in the same way as West-
erners [9].

2.3 Representations of emotion

Music-IR systems tend to use either categorical descrip-
tions or parametric models of emotion for classification or
recognition. Each representation is supported by a large
body of supporting psychology research.

2.3.1 Categorical psychometrics

Categorical approaches involve finding and organizing
some set of emotional descriptors (tags) based on their rel-
evance to some music in question. One of the earliest stud-

ies by Hevner, published in 1936, initially used 66 adjec-
tives, which were then arranged into 8 groups [10]. While
the adjectives used and their specific grouping and hier-
archy have remained scrutinized and even disputed, many
categorical studies conducted since Hevner’s indicate such
tagging can be intuitive and consistent, regardless of the
listener’s musical training [11, 12].

In a recent sequence of music-listening studies Zenter
et al. reduced a set of 801 “general” emotional terms into
a subset metric of 146 terms specific for music mood rat-
ing. Their studies, which involved rating music-specificity
of words and testing words in lab and concert settings with
casual and genre-aficionado listeners, revealed that the in-
terpretation of these mood words varies between different
genres of music [13].

The recent MIREX evaluations for automatic music
mood classification have categorized songs into one of five
mood clusters, shown in Table 1. The five categories were
derived by performing clustering on a co-occurrence ma-
trix of mood labels for popular music from the All Music
Guide 2 [3].

Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, boister-
ous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, ami-
able/good natured

Cluster 3 literate, poignant, wistful, bittersweet,
autumnal, brooding

Cluster 4 humorous, silly, campy, quirky, whimsi-
cal, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense,
volatile, visceral

Table 1. Mood adjectives used in the MIREX Audio Mood
Classification task [3].

2.3.2 Scalar/dimensional psychometrics

Other research suggests that mood can be scaled and
measured by a continuum of descriptors or simple multi-
dimensional metrics. Seminal work by Russell and Thayer
in studying dimensions of arousal established a founda-
tion upon which sets of mood descriptors may be orga-
nized into low-dimensional models. Most noted is the two-
dimensional Valence-Arousal (V-A) space (See Figure 1),
where emotions exist on a plane along independent axes
of arousal (intensity), ranging high-to-low, and valence (an
appraisal of polarity), ranging positive-to-negative [4]. The
validity of this two-dimensional representation of emotions
for a wide range of music has been confirmed in multiple
studies [11, 14].

Some studies have expanded this approach to develop
three-dimensional spatial metrics for comparative analy-
sis of musical excerpts, although the semantic nature of
the third dimension is subject to speculation and disagree-
ment [17]. Other investigations of the V-A model itself

2 All Music Guide: http://www.allmusic.com
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suggest evidence for separate channels of arousal (as orig-
inally proposed by Thayer) that are not elements of va-
lence [18].

A related, but categorical, assessment tool for self-
reported affect is the Positive and Negative Affect Sched-
ule (PANAS), which asserts that all discrete emotions (and
their associated labels) exist as incidences of positive or
negative affect, similar to valence [19, 20]. In this case,
however, positive and negative are treated as separate cat-
egories as opposed to the parametric approach of V-A.

3. FRAMEWORK FOR EMOTION RECOGNITION

Emotion recognition can be viewed as a multiclass-
multilabel classification or regression problem where we
try to annotate each music piece with a set of emotions. A
music piece might be an entire song, a section of a song
(e.g., chorus, verse), a fixed-length clip (e.g., 30-second
song snipet), or a short-term segment (e.g., 1 second).

We will attempt to represent mood as either a single
multi-dimensional vector or a time-series of vectors over

a semantic space of emotions. That is, each dimension
of a vector represents a single emotion (e.g., angry) or
a bi-polar pair of emotions (e.g., positive/negative). The
value of a dimension encodes the strength-of-semantic-
association between the piece and the emotion. This is
sometimes represented with a binary label to denote the
presence or absence of the emotion, but more often rep-
resented as a real-valued score (e.g., Likert scale value,
probability estimate). We will represent emotion as a time-
series of vectors if, for example, we are attempting to track
changes in emotional content over the duration of a piece.

We can estimate values of the emotion vector for a mu-
sic piece in a number of ways using various forms of data.
First, we can ask human listeners to evaluate the relevance
of an emotion for a piece (see Section 4). This can be done,
for example, using a survey, a social tagging mechanism,
or an annotation game. We can also analyze forms of con-
textual meta-data in text form (see Section 5). This may in-
clude text-mining web-documents (e.g., artist biographies,
album reviews) or a large collection of social tags (referred
to as a tag cloud), and analyzing lyrics using natural lan-
guage processing (e.g., sentiment analysis). We can also
analyze the audio content using both signal processing and
supervised machine learning to automatically annotate mu-
sic pieces with emotions (see Section 6). Content-based
methods can also be used to analyze other related forms
of multimedia data such as music videos and promotional
photographs [21]. Furthermore, multiple data sources, for
example lyrics and audio, may be combined to determine
the emotional content of music (see Section 7).

4. HUMAN ANNOTATION

A survey is a straightforward technique for collecting in-
formation about emotional content in music. All Music
Guide has devoted considerable amounts of money, time
and human resources to annotate their music databases
with high-quality emotion tags. As such, they are unlikely
to fully share this data with the Music-IR research commu-
nity. To remedy this problem, Turnbull et al. collected the
CAL500 data set of annotated music [22]. This data set
contains one song from 500 unique artists each of which
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have been manually annotated by a minimum of three non-
expert reviewers using a vocabulary of 174 tags, of which
18 relate to different emotions. Trohidis et al. have also
created a publicly available data set consisting of 593 songs
each of which have been annotated using 6 emotions by 3
expert listeners [23].

A second approach to directly collect emotion annota-
tions from human listeners involves social tagging. For ex-
ample, Last.fm 3 is a music discovery website that allows
users to contribute social tags through a text box in their
audio player interface. By the beginning of 2007, their
large base of 20 million monthly users have built up an un-
structured vocabulary of 960,000 free-text tags and used it
to annotate millions of songs [24]. Unlike AMG, Last.fm
makes much of this data available to the public through
their public APIs. While this data is a useful resource for
the Music-IR community, Lamere and Celma point out that
there are a number of problems with social tags: sparsity
due to the cold-start problem and popularity bias, ad-hoc
labeling techniques, multiple spellings of tags, malicious
tagging, etc. [25]

4.1 Annotation Games

Traditional methods of data collection, such as the hiring
of subjects, can be flawed, since labeling tasks are time-
consuming, tedious, and expensive [26]. Recently, a sig-
nificant amount of attention has been placed on the use of
collaborative online games to collect such ground truth la-
bels for difficult problems, so-called “Games With a Pur-
pose”. Several such games have been been proposed for
the collection of music data, such as MajorMiner [27],
Listen Game [28], and TagATune [29]. These implemen-
tations have primarily focused on the collection of descrip-
tive labels for a relatively short audio clip. Screenshots of
a few, select games are shown in Figure 3.

Figure 3. Examples of “Games With A Purpose” for
ground truth data collection of musical data. Top left:
TagATune. Right: MoodSwings. Bottom left: Herd It.

MoodSwings is another game for online collaborative
annotation of emotions based on the arousal-valence model

3 Last.fm: http://www.last.fm

[30, 31]. In this game, players position their cursor within
the V-A space while competing (and collaborating) with
a partner player to annotate 30-second music clips where
scoring is determined by the overlap between players’ cur-
sors (encouraging consensus and discouraging nonsense
labels). Using a similar parametric representation, Ba-
chorik et al. concluded that most music listeners require
8 seconds to evaluate the mood of a song, a delay that
should be considered when collecting such time-varying
annotations [32]. Herd It combines multiple types of music
annotation games, including valence-arousal annotation of
clips, descriptive labeling, and music trivia [33].

5. CONTEXTUAL TEXT INFORMATION

In this section, we discuss web documents, social tag
clouds and lyrics as forms of textual information that can
be analyzed in order to derive an emotional representa-
tion of music. Analysis of these data sources involves us-
ing techniques from both text-mining and natural language
processing.

5.1 Web-Documents

Artist biographies, album reviews, and song reviews are
rich sources of information about music. There are a num-
ber of research-based Music-IR systems that collect such
documents from the Internet by querying search engines
[34], monitoring MP3 blogs [35], or crawling a music web-
site [36]. In all cases, Levy and Sandler point out that such
web mined corpora can be noisy since some of the retrieved
webpages will be irrelevant, and in addition, much of the
text content on relevant webpages will be useless [37].

Most of the proposed web mining systems use a set
of one or more documents associated with a song and
convert them into a single document vector (e.g., Term
Frequency-Inverse Document Frequency (TF-IDF) repre-
sentation) [38,39]. This vector space representation is then
useful for a number of Music-IR tasks such as calculat-
ing music similarity [39] and indexing content for a text-
based music retrieval system [38]. More recently, Knees
et al. have proposed a promising new web mining tech-
nique called relevance scoring as an alternative to the vec-
tor space approaches [34].

5.2 Social Tags

Social tags have been used to accomplish such Music-IR
tasks as genre and artist classification [40] as well as as-
sessment of musical mood. Some tags such as “happy” and
“sad” are clearly useful for emotion recognition and can be
applied directly in information retrieval systems. Research
has also shown that other tags, such as those related to
genre and instrumentation, can also be useful for this task.
Using ground truth mood labels from AMG, Bischoff et al.
used social tag features from Last.fm to perform emotion
classification based on MIREX mood categories as well
as the V-A model [41]. They experimented with SVM,
Logistic Regression, Random Forest, GMM, K-NN, Deci-
sion Trees, and Naive Bayes Multinomial classifiers, with
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the Naive Bayes Multinomial classifier outperforming all
other methods.

Other research involving the analysis of social tags has
focused on clustering tags into distinct emotions and val-
idating psychometric models. Making each tag a unique
class would yield an unmanageable number of dimensions
and fails to take into account the similarity of many terms
used to describe musical moods. For example, the terms
“bright”, “joyful”, “merry” and “cheerful” describe simi-
lar variants of happiness. Similarly, the tokens “gloomy”,
“mournful”, “melancholy” and “depressing” are all related
to sadness [10]. Recent efforts have demonstrated that fa-
vorable classification results can be obtained by grouping
like descriptors into similarity clusters [14].

A number of approaches exist to arrange tags together
into homogeneous groups. Manual clustering involves
grouping of tags into pre-established mood categories, but
given the size and variety of existing tag databases, this ap-
proach is not scalable. A straightforward automated clus-
tering method, derived from the TF-IDF metric used often
in text mining, looks for co-occurrences within the mood
tags and forms clusters until no more co-occurrences are
present. The co-occurrence method compares a threshold
to the ratio of the number of songs associated with two tags
to the minimum number of songs associated with either in-
dividual tag [42].

Another established method for automatically cluster-
ing labels is Latent Semantic Analysis (LSA), a natu-
ral language processing technique that reduces a term-
document matrix to a lower rank approximation [43]. The
term-document matrix in this case is a sparse matrix which
describes the number of times each song is tagged with a
given label. For a data set with several thousand songs and
over 100 possible mood tags, the term-document matrix
generated will have very high dimensionality. After some
modifications, performing a singular value decomposition
(SVD) on the modified term-document matrix yields the
left and right singular vectors that represent the distance
between terms and documents respectively. Initial work
by Levy and Sandler applied a variation called Correspon-
dence Analysis to a collection of Last.fm social tags to de-
rive a semantic space for over 24,000 unique tags spanning
5700 tracks.

Tags can also be grouped by computing the cosine
distance between each tag vector and using an unsuper-
vised clustering method, such as Expectation Maximiza-
tion (EM), to combine terms. In recent work, Laurier et
al., using a cost function to minimize the number of clus-
ters to best represent over 400,000 unique tags, found that
just four clusters yielded optimal clustering of the mood
space [14]. The resulting clusters are somewhat aligned
with Russell and Thayer’s V-A model. Furthermore, both
Levy & Sandler and Laurier et al. demonstrate that appli-
cation of a self organizing map (SOM) algorithm to their
derived semantic mood spaces yields a two-dimensional
representation of mood consistent with the V-A model.

5.3 Emotion recognition from lyrics

In comparison to tag-based approaches, relatively little re-
search has pursued the use of lyrics as the sole feature
for emotion recognition (although lyrics have been used
as features for artist similarity determination [44]). Lyric-
based approaches are particularly difficult because feature
extraction and schemes for emotional labeling of lyrics are
non-trivial, especially when considering the complexities
involved with disambiguating affect from text. Lyrics have
also been used in combination with other features, work
that is detailed in Section 7.

5.3.1 Lyrics feature selection

Establishing “ground-truth” labels describing the emotion
of interconnected words is a significant challenge in lyric-
based emotion recognition tasks. Mehrabian and Thayer
proposed that environmental stimuli are linked to behav-
ioral responses by emotional responses described by plea-
sure (valence), arousal and dominance (PAD) [6]. To this
end, Bradley developed the Affective Norms for English
Words (ANEW), which consists of a large set of words la-
beled with PAD values. A large number of subjects were
used to label the words by indicating how the word made
them feel in terms of relative happiness, excitement and sit-
uational control, which correspond to the pleasure, arousal
and dominance dimensions, respectively. A distribution
of the pleasure and arousal labels for words in ANEW
show that they are well-distributed according to the V-A
model [45]. Hu et al. used Bradley’s ANEW to develop
a translation called Affective Norms for Chinese Words
(ANCW), operating under the assumption that the trans-
lated words carry the same affective meaning as their En-
glish counterparts [46].

Such affective dictionaries do not take into account
multi-word structure. For lyrics features, most approaches
employ a Bag of Words (BOW) approach, accounting for
frequency of word usage across the corpus (e.g., TF-IDF),
but not the specific order of words. One initial approach
by Chen et al. utilized vector space model (VSM) fea-
tures that consisted of all the words comprising the lyric
[47]. However, more recently Xia et al. refined the fea-
ture vectors by only including sentiment and sentiment-
related words, which they refer to as a sentiment-VSM (s-
VSM) [48]. The focus on sentiment-related words is in-
tended to capture the effect of modifying terms strength-
ening or weakening the primary sentiments of the lyrics
and further reduces feature dimensionality.

5.3.2 Systems for emotion recognition from lyrics

Meyers’ Lyricator system provides an emotional score for
a song based on its lyrical content for the purpose of mood-
based music exploration [49]. Feature extraction for Lyri-
cator consists of obtaining PAD labels for the words com-
prising a songs lyric. Songs receive an overall emotional
score in one of the four quadrants of the P-A model based
on a summation of the PAD values for all the words in the
lyric. While this approach is straightforward, it is not a
machine learning system, nor does it make use of natural
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language processing (NLP) to disambiguate emotion from
lyrics.

Vector space approaches by Xia and Chen utilize sup-
port vector machine (SVM) classifiers for training and
testing data [47, 48]. Xia’s corpus consists of 2600 Chi-
nese pop songs, 60% of which are hand-labeled as “light-
hearted” and the remainder labeled as “heavy-hearted”.
Their sentiment-VSM feature set scores above 73% in
terms of precision, recall, and F-1 measure.

Hu et al. utilize a fuzzy clustering technique to de-
termine the main emotion from a lyric. The clusters are
then weighted using grammatical information, which spec-
ify confidence and weights for individual sentences based
on factors such as tense and inter-sentence relationships.
The cluster with the greatest overall weight is considered
the main emotion of the song and is characterized by its
mean V-A values into one of the four quadrants of the V-
A model. They demonstrate that their system outperforms
the baseline Lyricator system in multiple categories [46].

Y. Yang explored the use of bi-gram BOW features, us-
ing pairs of words to examine the effects of negation terms
(e.g., “not happy” differs from “happy”) and Probabilistic
LSA (PLSA) to model song topics using word frequen-
cies [50]. Bi-gram BOW features demonstrated negligible
increases in classification valence, but PLSA proved to be
much more robust to a reduction of training set size.

6. CONTENT-BASED AUDIO ANALYSIS

Clearly, many human assessments of musical mood are de-
rived from the audio itself (after all, tags are most often
generated by people listening to the music). Contextual in-
formation for a music piece may be incomplete or missing
entirely (i.e., for newly composed music). Given the rapid
expansion of digital music libraries, including commercial
databases with millions of songs, it is clear that manual
annotation methods will not efficiently scale. Thus, the ap-
peal of content-based systems is obvious and the recogni-
tion of emotions from audio has been a longstanding goal
for the Music-IR research community (the corresponding
MIREX task focused on systems driven by music audio).

6.1 Acoustic Features

Emotions can be influenced by such attributes as tempo,
timbre, harmony, and loudness (to name only a few), and
much prior work in Music-IR has been directed towards the
development of informative acoustic features. Although
some research has focused on searching for the most in-
formative features for emotion classification, no dominant
single feature has emerged. An overview of the most com-
mon acoustic features used for mood recognition is given
in Table 2.

In searching for the most informative emotion and ex-
pressive features to extract from audio, Mion and De Poli
investigated a system for feature selection and demon-
strated it on an initial set of single-dimensional features,
including intensity and spectral shape as well as several
music-theoretic features [16]. Their system used sequen-

Type Features

Dynamics RMS energy
Timbre MFCCs, spectral shape, spectral con-

trast
Harmony Roughness, harmonic change, key clar-

ity, majorness
Register Chromagram, chroma centroid and de-

viation
Rhythm Rhythm strength, regularity, tempo, beat

histograms
Articulation Event density, attack slope, attack time

Table 2. Common acoustic feature types for emotion clas-
sification.

tial feature selection (SFS), followed by principal compo-
nent analysis (PCA) on the subset to identify and remove
redundant feature dimensions. The focus of their research,
however, was monophonic instrument classification across
nine classes spanning emotion and expression, as opposed
to musical mixtures. Of the 17 tested features the most
informative overall were found to be roughness, notes per
second, attack time, and peak sound level.

MacDorman et al. examined the ability of multiple
acoustic features (sonogram, spectral histogram, periodic-
ity histogram, fluctuation pattern, and mel-frequency cep-
stral coefficients–MFCCs [51, 52]) to predict pleasure and
arousal ratings of music excerpts. They found all of these
features to be better at predicting arousal than pleasure, and
the best prediction results when all five features were used
together [53].

Schmidt et al. investigated the use of multiple acous-
tic feature domains for music clips both in terms of indi-
vidual performance as well as in combination in a feature
fusion system [54, 55]. Their feature collection consisted
of MFCCs, chroma [56], statistical spectrum descriptors
(including centroid, flux, and rolloff, depicted in Figure 4)
[57], and octave-based spectral contrast [58]. The highest
performing individual features were spectral contrast and
MFCCs, but again the best overall results were achieved
using combinations of features.

Figure 4. Graphical depiction of statistical spectrum de-
scriptors.
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Eerola et al., also the developers of the open-source
feature extraction code, MIRtoolbox, 4 have developed
a specific subset of informative audio features for emo-
tion. These features are aggregated from a wide range
of domains including dynamics, timbre, harmony, regis-
ter, rhythm, and articulation [15]. Other recent approaches
have adopted a generalized approach to feature extrac-
tion, compiling multiple feature sets (resulting in high di-
mensional spaces) and employing dimensionality reduc-
tion techniques [50,59]. Regardless of feature fusion or di-
mensionality reduction methods, the most successful sys-
tems combine multiple acoustic feature types.

6.2 Audio-based systems

Audio content-based methods for emotion recognition use
either a categorical or parametric model of emotion. The
former results in a classification task and the latter in a
regression task, with all recent systems employing one of
these methods.

6.2.1 Categorical emotion classification

In one of the first publications on this topic, Li and Ogihara
used acoustic features related to timbre, rhythm, and pitch
to train support vector machines (SVMs) to classify music
into one of 13 mood categories [60]. Using a hand-labeled
library of 499 music clips (30-seconds each) from a vari-
ety of genres spanning ambient, classical, fusion, and jazz,
they achieved an accuracy of 45%.

Lu et al. pursued mood detection and tracking using a
similar variety of acoustic features including intensity, tim-
bre, and rhythm [59]. Their classifier used Gaussian Mix-
ture Models (GMMs) for the four principal mood quad-
rants on the V-A representation. The system was trained
using a set of 800 classical music clips (from a data set
of 250 pieces), each 20 seconds in duration, hand labeled
to one of the 4 quadrants. Their system achieved an over-
all accuracy of 85%, although it is also unclear how the
multiple clips extracted from the same recording were dis-
tributed between training and testing sets.

Proposing a guided scheme for music recommendation,
Mandel et al. developed active learning systems, an ap-
proach that can provide recommendations based upon any
musical context defined by the user [61]. To perform a
playlist retrieval, the user would present the system with
a set of “seed songs,” or songs representing the class of
playlist desired. The system uses this data, combined with
verification data from the user, to construct a binary SVM
classifier using MFCC features. When tested on 72 dis-
tinct moods from AMG labels, the system achieved a peak
performance of 45.2%.

Skowronek et al. developed binary classifiers for each
of 12 non-exclusive mood categories using a data set of
1059 song excerpts. Using features based on temporal
modulation, tempo and rhythm, chroma and key infor-
mation, and occurrences of percussive sound events they
trained quadratic discriminant functions for each mood,

4 MIRtoolbox: http://www.jyu.fi/hum/laitokset/musiikki/en/research/
coe/materials/mirtoolbox

with accuracy ranging from 77% (carefree-playful) to 91%
(calming-soothing), depending on the category [62].

As mentioned in the introduction, MIREX first included
audio music mood classification as a task in 2007 [3]. In
2007, Tzanetakis achieved the highest percentage correct
(61.5%), using only MFCC, and spectral shape, centroid,
and rolloff features with an SVM classifier [63]. The high-
est performing system in 2008 by Peeters demonstrated
some improvement (63.7%) by introducing a much larger
feature corpus including, MFCCs, Spectral Crest/Spectral
Flatness, as well as a variety of chroma based measure-
ments [64]. The system uses a GMM approach to classi-
fication, but first employs Inertia Ratio Maximization with
Feature Space Projection (IRMFSP) to select the most in-
formative 40 features for each task (in this case mood),
and performs Linear Discriminant Analysis (LDA) for di-
mensionality reduction. In 2009, Cao and Li submitted a
system that was a top performer in several categories, in-
cluding mood classification (65.7%) [65]. Their system
employs a “super vector” of low-level acoustic features,
and employs a Gaussian Super Vector followed by Sup-
port Vector Machine (GSV-SVM). It’s worth noting that
the best performers in each of the three years of the eval-
uation were general systems designed to perform multiple
MIREX tasks.

6.2.2 Parametric emotion regression

Recent work in music emotion prediction from audio has
suggested that parametric regression approaches can out-
perform labeled classifications using equivalent features.
Targeting the prediction of V-A coordinates from audio,
Yang et al. introduced the use of regression for mapping
high-dimensional acoustic features to the two-dimensional
space [50]. Support vector regression (SVR) [66] and a
variety of ensemble boosting algorithms, including Ad-
aBoost.RT [67], were applied to the regression problem,
and one ground-truth V-A label was collected for each of
195 music clips. As this work focused primarily on la-
beling and regression techniques, features were extracted
using publicly available extraction tools such as PsySound
[68] and Marsyas [69], totaling 114 feature dimensions.
To reduce the data to a tractable number of dimensions
principal component analysis (PCA) was applied prior to
regression. This system achieves an R2 (coefficient of de-
termination) score of 0.58 for arousal and 0.28 for valence.

Schmidt et al. and Han et al. each began their inves-
tigation with a quantized representation of the V-A space
and employed SVMs for classification [54, 70]. Citing un-
satisfactory results (with Schmidt obtaining 50.2% on a
four-way classification of V-A quadrants and Han obtain-
ing 33% accuracy in an 11-class problem), both research
teams moved to regression-based approaches. Han refor-
mulated the problem using regression, mapping the pro-
jected results into the original mood categories, employ-
ing SVR and Gaussian Mixture Model (GMM) regression
methods. Using 11 quantized categories with GMM re-
gression they obtain a peak performance of 95% correct
classification.
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Eerola et al. introduced the use of a three-dimensional
emotion model for labeling music; fully committing them-
selves to regression [15]. In their work they investigated
multiple regression approaches including Partial Least-
Squares (PLS) regression, an approach that considers cor-
relation between label dimensions. They achieve R2 per-
formance of 0.72, 0.85, and 0.79 for valence, activity, and
tension, respectively, using PLS and also report peak R2

prediction rates for 5 basic emotion classes (angry, scary,
happy, sad, and tender) as ranging from 0.58 to 0.74.

Noting that quantization by quadrant is inconsistent
with the continuous nature of their collected V-A labels,
Schmidt et al. also approached the problem using both
SVR and Multiple Linear Regression (MLR). Their high-
est performing system obtained 13.7% average error dis-
tance in the normalized V-A space [54]. In more recent
work, Schmidt et al. have introduced the idea of modeling
the collected human response labels to music in the V-A
space as a parametrized stochastic distribution, noting that
the labels for most popular music segments of a reason-
ably small size can be well represented by a single two-
dimensional Gaussian [55]. They first perform parameter
estimation in order to determine the ground truth param-
eters, N (µ,Σ) and then employ MLR, PLS, and SVR to
develop parameter prediction models. An example regres-
sion is shown in Figure 5, which employs only spectral
contrast features and MLR.

−0.5 0 0.5
−0.5

0

0.5

Emotion Distribution Regression
Cake: She’ll Come Back To Me, 66 to 80 seconds

Valence

A
ro

us
al

Figure 5. Collected V-A labels and distribution projections
resulting from regression analysis. V-A labels: second-
by-second labels per song (gray •), Σ of labels (solid red
ellipse) and Σ of MLR projection from acoustic features
(dashed blue ellipse) [55].

6.3 Emotion Recognition Over Time

As few other Music-IR tasks are subject to dynamic (time
varying) “ground truth”, it can be argued that accounting
for the time varying nature of music is perhaps more im-
portant for emotion recognition than most other tasks. Be-
cause of this variation, systems relying on a single mood

label to refer to an entire song or lengthy clip are subject
to high classification uncertainty. Lu et al. pursued mood
tracking across the four principal V-A quadrants, detecting
mood changes at 1 second resolution. They report preci-
sion and recall for mood boundary detection at 84.1% and
81.5%, respectively on a corpus of 9 movements from clas-
sical works [59].

Using second-by-second V-A labels collected via the
MoodSwings game, Schmidt et al. also investigated track-
ing the emotional content of music over time [54, 55].
Their time-varying analyses remain formulated as a re-
gression to develop a mapping from short-time high-
dimensional acoustic features to time-localized emotion
space coordinates. Figure 6 shows the V-A projections
of a song clip obtained from spectral contrast features and
MLR prediction [54]. In this example, a 15-second clip has
been broken down into three five-second segments (pro-
jections) demonstrating the overall movement in the V-A
space. A version of their time-varying regression system
is implemented back into MoodSwings as a simulated “AI”
partner for single-player games.
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Figure 6. V-A labels and projections over time for a 15s
segment (markers become darker over time): second-by-
second labels per song (gray •), mean of the collected la-
bels over 5-second intervals (red X), and projection from
acoustic features in 5-second intervals (blue O) [54].

7. COMBINING MULTIPLE FEATURE DOMAINS

It is clear that some aspects of music data (e.g., social fac-
tors, such as “Christmas music”, or songs considered to
be “one hit wonders”) are not revealed in the audio, and
results using only acoustic (spectral) features for Music-
IR tasks have led many to believe there is an upper limit
to performance using these features alone [71]. This
has led to a growing amount of research towards com-
bining multiple feature domains to improve recognition
in Music-IR systems. The earliest attempts at classifica-
tion of emotion using multi-modal approaches (combining
features from disparate domains) were applied to speech,
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using combined analysis of audio and facial expressions
[72–74]. These methods have inspired other multi-modal
approaches to several other Music-IR classification tasks,
such as genre recognition, but such combined approaches
to classifying the emotional content of music have emerged
only within the past few years.

7.1 Combining Audio & Lyrics

In spite of the importance of audio, some musical genres
(e.g., “Christmas songs”) are much easier to detect using
text. This was the motivation for Neumayer’s work uti-
lizing multiple combinations of audio and textual features
for musical genre classification [75]. Similarly, many of
the studies described below are motivated by the idea that
some emotions conveyed by music are better detected us-
ing a combination of audio and lyrics. Some systems re-
port relatively modest performance gains, but it is often
in tasks where baseline performance using audio features
alone has been high. The most compelling results show,
in certain cases, improvement over audio features alone,
demonstrating that information contained within the two
feature modalities can be highly complementary.

7.1.1 Systems combining audio & lyrics

The first system to employ both audio and lyrics for emo-
tion classification (D. Yang and Lee) used lyric text and a
wide range of audio features, such as beats per minute and
12 low-level MPEG-7 descriptors (e.g., spectral centroid,
rolloff, and flux), on a set of 145 30-second song clips [76].
Each clip was hand-labeled with one of 11 emotional cate-
gories, based on PANAS labels [19, 20]. While strong cor-
relations were found between particular lyrics and emo-
tional categories (hostility, sadness, and guilt), the addi-
tion of lyrics increased classification performance by only
2.1% (82.8% vs. 80.7% using only audio) on their rela-
tively small data set.

A more recent system (Y. Yang et al.) combined lyrics
and audio features using a database of 1240 Chinese pop
songs [50]. The songs were hand-labeled according to
one of the four valence-arousal quadrants of the Russell-
Thayer model, and acoustic features (MFCC and spec-
tral descriptors) were computed for a 30-second segment
drawn from the middle of each song. Lyrics (assumably
from the entire song) were text-analyzed using the BOW
approach. This work compared three different methods
of combining audio and text features, obtaining the best
results by first using audio and text separately to classify
arousal and valence, respectively, using SVMs and then
merging the results to determine a full V-A classification.
On an 80/20 training-testing split of the data with 1000-
fold cross-validation, acoustic features alone resulted in a
baseline of 46.6% correct classification, while combining
audio and lyrics yielded 57.1% accuracy (a relative perfor-
mance increase of 21%).

Other recent work by Laurier, Grivolla, and Herrera ex-
plored the use of audio and multiple lyrics features to clas-
sify emotions of songs in the four-quadrant V-A space [77].
Songs were labeled using Last.fm tags and filtered using

the lexical database WordNet-Affect to remove synonyms
(with subsequent validation by human listeners). The cor-
pus consisted of 1000 songs, with equal distribution across
the four quadrants, and a combination of timbral, rhythmic,
tonal, and temporal features were computed for each song.
Three different methods, lyric similarity, LSA, and Lan-
guage Model Differences (LMD) were investigated for de-
riving lyrics features. LMD compares the difference in fre-
quency of terms between the language models of various
mood categories and is used here to select the 100 most dis-
criminative terms, resulting in significantly higher classifi-
cation performance vs. LSA. The audio and text features
were combined into a single vector for joint classification,
improving performance over audio features alone in two
quadrants by 5%: “happy” (81.5% to 86.8%) and “sad”
(87.7% to 92.8%). The other quadrants were essentially
unchanged, but already had high classification accuracy us-
ing only audio features: “relaxed” (91.4% to 91.7%) and
“angry” (98.1% to 98.3%).

Hu et al. also combined audio and lyrics for emotion
recognition on a relatively large database of nearly 3000
songs [78]. Eighteen emotion classes were formed based
on social tags from Last.fm, using WordNet-Affect to re-
move tags irrelevant to emotion recognition and significant
refinement by human judges. For lyrics features, this sys-
tem uses a BOW approach with TF-IDF weighting. The
BOW stemmed (prefixes and suffixes removed), TF-IDF
weighted (BSTI) features are directly concatenated with 63
spectrum-derived audio features for training an SVM clas-
sifier. BSTI features were selected using different meth-
ods, including the LMD selection method (described in
the previous system [77]), varying the number of feature
dimensions to identify optimal performance. Interestingly,
using BSTI (lyrics) features alone outperforms audio alone
for 12 of the 18 mood classes. Audio + lyric approaches
demonstrate the highest performance in recognizing 13 of
the 18 mood classes (audio alone is highest for 3 classes,
“happy”, “upbeat”, and “desire”, while lyrics alone per-
form best for “grief” and “exciting”). Audio with LMD
feature selection (63 dimensions, equivalent to the number
of audio features) performed the highest in 5 categories
(“calm”, “sad”, “anger”, “confident”, and “earnest”) and
improved performance in half of the cases where audio
alone outperforms lyrics and vice versa, demonstrating the
utility of combining features.

Recently, Schuller et al. investigated using audio fea-
tures, lyrics, and metadata to automatically label music in
a discretized version of the V-A space [79]. For a database
of 2648 pop songs, each was rated by four listeners who
selected one of 5 discrete labels. Their classification task,
is ultimately reduced to two independent three-class prob-
lems. Their best performing system made use of feature
selection algorithms and label filtering, achieving 64.1%
and 60.9% on valence and arousal, respectively.

7.2 Combining Audio & Tags

Music-IR researchers have also focused on multimodal ap-
proaches incorporating tags and low-level audio features
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for classification tasks. Turnbull et al. explore the prob-
lem of tag classification by combining semantic informa-
tion from web documents, social tags and audio analysis
on the CAL500 data set [80]. They compare a number of
algorithms (e.g., Calibrated Score Averaging, RankBoost,
Kernel Combination SVM) and find that multimodal ap-
proaches significantly outperform unimodal approaches.

Bischoff et al. combine social tag information and au-
dio content-based analysis specifically for the task of emo-
tion recognition [41]. For each of 4,737 songs, they collect
social tags from Last.fm and generate a 240-dimensional
audio feature vectors (including MFCCs, chroma features,
and other spectral features). They then train a naive Bayes
classifier for the social tags and an SVM for the audio
feature vectors, combining them using a simple weighted
combination approach. In one experiment, this approach is
used to predict one of the five MIREX mood clusters [3].
In the second experiment, the approach is used to predict
one of the four quadrants of the V-A mood space. Ground
truth for each track is based on a manually-determined
(ad-hoc) mapping between one of 178 mood tags to a
MIREX mood cluster and to a V-A quadrant. In both ex-
periments, the multimodal approach demonstrates better
performance than either the tag-based and audio-based ap-
proaches alone.

7.3 Combining Audio & Images

Analysis of audio features of music in combination with
associated images (album covers, artist photos, etc.) for
Music-IR tasks has very recently sparked research interest.
Dunker et al. investigated methods to combine music and
image domains for mood classification [81]. Their work
investigates both classifying audio paired with images in
a multi-modal media tagging approach as well as trying
to pair audio and images that have been tagged separately.
More recently, Lı̄beks and Turnbull analyze promotional
photographs of artists using content-based image annota-
tion [21]. Although they label these artists with genre tags
(provided by Last.fm), it would be straightforward to adapt
their approach to use emotion tags.

8. CONCLUSION

Recognizing musical mood remains a challenging problem
primarily due to the inherent ambiguities of human emo-
tions. Though research on this topic is not as mature as
some other Music-IR tasks, it is clear that rapid progress is
being made. In the past 5 years, the performance of auto-
mated systems for music emotion recognition using a wide
range of annotated and content-based features (and multi-
modal feature combinations) have advanced significantly.
As with many Music-IR tasks open problems remain at
all levels, from emotional representations and annotation
methods to feature selection and machine learning.

While significant advances have been made, the most
accurate systems thus far achieve predictions through
large-scale machine learning algorithms operating on vast
feature sets, sometimes spanning multiple domains, ap-

plied to relatively short musical selections. Oftentimes,
this approach reveals little in terms of the underlying forces
driving the perception of musical emotion (e.g., varying
contributions of features) and, in particular, how emotions
in music change over time. In the future, we anticipate
further collaborations between Music-IR researchers, psy-
chologists, and neuroscientists, which may lead to a greater
understanding of not only mood within music, but human
emotions in general. Furthermore, it is clear that individu-
als perceive emotions within music differently. Given the
multiple existing approaches for modeling the ambiguities
of musical mood, a truly personalized system would likely
need to incorporate some level of individual profiling to
adjust its predictions.

This paper has provided a broad survey of the state of
the art, highlighting many promising directions for further
research. As attention to this problem increases, it is our
hope that the progress of this research will continue to ac-
celerate in the near future.
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ABSTRACT

Spectral similarity measures have been shown to exhibit

good performance in several Music Information Retrieval

(MIR) applications. They are also known, however, to pos-

sess several undesirable properties, namely allowing the

existence of hub songs (songs which frequently appear in

nearest neighbor lists of other songs), “orphans” (songs

which practically never appear), and difficulties in distin-

guishing the farthest from the nearest neighbor due to the

concentration effect caused by high dimensionality of data

space. In this paper we develop a conceptual framework

that allows connecting all three undesired properties. We

show that hubs and “orphans” are expected to appear in

high-dimensional data spaces, and relate the cause of their

appearance with the concentration property of distance /

similarity measures. We verify our conclusions on real mu-

sic data, examining groups of frames generated by Gaus-

sian Mixture Models (GMMs), considering two similar-

ity measures: Earth Mover’s Distance (EMD) in combi-

nation with Kullback-Leibler (KL) divergence, and Monte

Carlo (MC) sampling. The proposed framework can be

useful to MIR researchers to address problems of spectral

similarity, understand their fundamental origins, and thus

be able to develop more robust methods for their remedy.

1. INTRODUCTION

The notion of audio-based music similarity is generally

considered to be complex, subjective, and context depen-

dent [13]. However, spectral similarity measures [2,10] are

receiving a growing interest and have been shown to ex-

hibit good performance in several Music Information Re-

trieval (MIR) applications [14]. These measures describe

aspects related to timbre and model the “global sound” of

a musical signal based on features called Mel Frequency

Cepstrum Coefficients (MFCCs).

Despite the advantages of spectral similarity measures,

related research has also reported a number of undesired

properties, summarized as follows:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

• The existence of hub songs (also called “always sim-

ilar”) [2], which are close neighbors of many other

pieces to which they hold no perceptual similarity,

thus increasing the rate of false positives.

• The existence of “orphans” (also called “never simi-

lar”) [12], which are songs that rarely become close

neighbors of any other piece (despite possibly hav-

ing perceptual similarity to a large number of songs),

increasing therefore the rate of true negatives.

• Songs are represented in a feature space whose di-

mensionality is determined by the number of fea-

tures (MFCCs). As the dimensionality grows, it is

becoming hard to identify meaningful nearest neigh-

bors, since all songs tend to be at nearly the same

distance from each other. This property was identi-

fied in other research areas [1, 5, 8], but was also ex-

amined in the contexts of MIR [6] and audio speech

data (based on MFCCs) [18].

These undesired properties constitute some of the main

causes for the empirically demonstrated upper limit for the

performance of spectral similarity measures, referred to as

the “glass ceiling” [2]. Recent research has focused mostly

on the amelioration of hubness (the attribute of being a hub

song), by proposing techniques for normalizing the dis-

tances between songs in a way that reduces the influence of

hubs [11,14,15], whereas other works [9,17,19] developed

measures that try to avoid hubness.

Our motivation is to develop a conceptual framework

that allows for relating all three aforementioned undesired

properties, and explains the mechanisms that create them.

Aucouturier and Pachet [3] have focused on the analysis of

hubness and concluded that the creation of homogenized

models (i.e., models that ignore the least likely mixture

components) are responsible for creating hubs. Despite

this detailed conclusion, our emphasis is to disclose a more

fundamental reason that causes all three undesired proper-

ties, which is the high dimensionality of the feature space

that originates from the need to use multiple MFCCs in

order to capture the “global sound”.

A conjecture about the role of high dimensionality has

been stated by Berenzweig in his thesis [4]. This conjec-

ture was drawn from two synthetic data sets that follow

multivariate Gaussian distributions. In particular, a main

conclusion of this thesis [4, page 99] was: “First, hubness
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seems to be a natural consequence of the curse of dimen-

sionality, at least for the points distributed according to a

Gaussian in a space up to 32 dimensions. In high dimen-

sions these points tend to be spread around the shell of the

space with very few points near the center; this implies that

any points that do happen to remain near the center will

be extreme hubs.” However, this work neither generalized

the conclusion to real audio music data, nor even to other

settings besides simple synthetic data. More importantly,

it did not provide a clear explanation of the mechanism

that creates hubness, leaving this question unresolved [4,

question 1 on page 99]. A more thorough examination of

hubness has been performed by Radovanović et al. [16],

wherein using real vector-space data the authors relate hub-

ness with the intrinsic dimensionality of data, and show

that in (intrinsically) high-dimensional data sets hubs tend

to appear in the proximity of cluster centers. However, [16]

focused primarily on general vector spaces and lp norms,

with the results not directly applicable for MIR purposes.

In this paper, we propose a conceptual framework to

provide a clear explanation of the mechanism that creates

hubness and show that hubs are expected to appear in high-

dimensional spaces (i.e., they are not points that just hap-

pen to remain near the center). Moreover, the framework

helps to understand the connection between all three un-

desired properties: hubs, “orphans” and the problem of

finding meaningful neighbors. Also, our conclusions are

verified with real audio music data. The proposed concep-

tual framework can be useful to MIR researchers to address

the problems of spectral similarity in relation to each other,

understand their fundamental reasons, and thus be able to

develop more robust methods for their remedy.

In the rest of this article, Section 2 reviews related work.

Section 3 presents the proposed framework, whereas Sec-

tion 4 provides empirical evidence for verifying the con-

clusions of the proposed framework in the MIR domain.

Finally, Section 5 concludes the paper.

2. RELATED WORK

Research by Aucouturier and Pachet [3] focuses on the na-

ture and causes of hub songs. They propose methods to de-

tect hubs and infer that hubs are distributed along a scale-

free distribution. Moreover, in their work they deduce that

hubs neither exist due to the spectral features, nor are they

a property of a feature representation or a given modeling

strategy but rather tend to occur with any type of model that

uses agglomeration of multiple frames of a sound texture.

Furthermore, they establish that hubness is not a charac-

teristic of certain songs, as different algorithms distribute

hubs differently in a database. In addition, they also es-

tablish that the class of algorithms studied is irrelevant to

hubs which appear only for data with a given amount of

heterogeneity. Finally, they conclude that hubness can be

localized to certain parts of the distribution of a song.

Berenzweig [4] offers insight as to the understanding of

hubs and arrives to the conclusion that their existence is a

natural result of the curse of dimensionality. Additionally,

in his work, the possibility of hubs being derived from sim-

ilarity to a universal background is proven invalid through

experimentation, that is by showing that the discriminating

power of specific frames is not ameliorated by weighting

based on their shared information.

As mentioned in Section 1, unlike Aucouturier and Pa-

chet [3] our motivation is to provide high dimensionality as

a more fundamental reason for hubness, and for the other

two undesired properties (see Section 1) as well. Differen-

tiating also from the work of Berenzweig [4], we develop

a thorough conceptual framework that links all three prop-

erties and clearly explains the mechanisms through which

they originate.

Other related work includes techniques to ameliorate or

try to avoid hubness [9, 11, 14, 15, 17, 19]. We hope that

our proposed framework will assist in this direction, by

allowing MIR researchers to further analyze the causes of

all examined undesired properties (not just hubness), and

develop solutions that take into account all of them.

3. PROPOSED CONCEPTUAL FRAMEWORK

We commence the description of the proposed conceptual

framework by demonstrating the property of concentra-

tion [8] that is exhibited by spectral similarity measures

due to the high dimensionality of their feature space. Next,

we examine how the generation of hubs and “orphans” can

be explained as a consequence of high dimensionality, in

relation with the concentration phenomenon. The conclu-

sions (in this and the following section) are verified with

real data. Since our description involves some empirical

measurements, we start by detailing the employed settings.

3.1 Settings for Empirical Measurements

We focus on two characteristic spectral similarity measures

that have been widely used in related research. The first

is proposed by Logan and Salomon [10], and uses Earth

Mover’s Distance (EMD) in combination with Kullback-

Leibler (KL) divergence to compute the distance between

groups of frames generated by a GMM approach. The sec-

ond is proposed by Aucouturier and Pachet [2], and uses

Monte Carlo (MC) sampling to measure the similarities of

GMMs. Henceforth, the first measure is denoted as EMD-

KL, whereas the second as GMM-MC. We based our im-

plementation of both measures on the MA toolbox [12].

The main parameter examined for both measures is the

number of MFCCs, denoted as d, which corresponds to the

dimensionality of the feature space, since each frame of the

audio signal is mapped to a point in a d-dimensional space.

The default value for the number of clusters used in

Gaussian mixture modeling performed by GMM-MC and

EMD-KL is equal to one, since measures like G1C [12]

have demonstrated the efficacy of this option. In our ex-

periments we also examined other values in order to ver-

ify that this factor does not have any impact on our con-

clusions. For brevity we therefore present results only for

the default number of clusters. Regarding other parameters

(sampling rate, frame size, etc.), empirical evidence in re-

lated work [3], and our experiments, indicates that they are

not related with the examined issues. For this reason, we
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keep the remaining parameters at the default values from

the MA toolbox, which correspond to commonly used val-

ues in most related works. The sampling frequency of the

input wav file is 11025, the FFT window size is 512 sam-

ples and the FFT window hop size is 256 samples. Finally,

we used the MIREX’04 audio collection for the reasons

that it is widely used by the MIR community, has been in-

volved in all related work (e.g., [3]), and is publicly avail-

able, allowing reproducibility of the presented results.

3.2 The Property of Concentration

The concentration property of a distance (similarity) mea-

sure refers to the tendency of all points in a high-dimen-

sional feature space to be almost equally distant from (sim-

ilar to) each other. Concentration has been studied in vec-

tor spaces for Euclidean distance and other lp norms (in-

cluding fractional distances) [1, 8], and was also analyzed

in the MIR context [6], but not explicitly for the spectral

similarity measures we are focusing on in this work.

To ease comprehension, we first consider iid Gaussian

random data with d-dimensional points, the components

of which are independently drawn from N (0, 1). Figure 1

illustrates the concentration of Euclidean distance that in-

curs with high dimensionality. In particular, the figure de-

picts from top to bottom: the maximal observed value,

mean value plus one standard deviation, the mean value,

mean value minus one standard deviation, and minimal

observed value of distances of all data points to the ori-

gin. It can be seen that the mean value steadily increases

with increasing dimensionality, while the standard devia-

tion remains constant, and that the observed minimal and

maximal values become constrained to a narrow interval as

dimensionality increases. This means that distances of all

points to the origin (i.e., the norms) become very similar to

each other as dimensionality increases, with the same be-

havior also extending to all pairwise distances within a data

set [8], thus making it harder to distinguish between the

farthest and the nearest neighbor in high dimensions [1].

It is important to note that this property of distances was

proven to hold for any iid random data distribution [8].
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Figure 1. Concentration of Euclidean distance for iid

Gaussian random data (n = 2000 points).

Concentration is usually expressed as the ratio between

some measure of spread, like the standard deviation, and

some measure of magnitude, like the mean value, of dis-

tances of all points in a data set to some arbitrary reference

point [1, 8]. If this ratio converges to 0 as dimensionality

goes to infinity, it is said that distances concentrate. Re-

garding the aforementioned synthetic data set, if the origin

is selected as the reference point, Fig. 2 illustrates the ra-

tio between the standard deviation (σdist) and mean value

(µdist) of distances of all points to the origin, showing that

it tends to 0 as dimensionality increases. Moreover, theo-

retical results by François et al. [8] indicate that the same

asymptotic behavior holds with any other point selected as

the reference, and also extends to all pairwise distances in a

data set. In the case of Euclidean distance, the mean value

µdist behaves asymptotically as
√

d, whereas the standard

deviation σdist remains asymptotically constant.
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Figure 2. Ratio between the standard deviation and mean

value of the distribution of distances to the origin, for iid

Gaussian random data.

The property of concentration can be used to explain the

generation of hubs and “orphans” as follows. Existing the-

oretical and empirical results [1, 5] specify that concentra-

tion can be viewed as causing points in a high-dimensional

data set to approximately lie on the surface of a hyper-

sphere centered at an arbitrary point. In addition, further

results [7, 8], as illustrated in Fig. 1, indicate that the dis-

tribution of distances to any reference point has a finite

variance for any given d. If the data distribution center is

taken to be the reference point (as, coincidentally, is the

case in the previously used random data example), it can

be said that it is expected for points closer to the data cen-

ter to exist in high dimensions, since for any finite d the

standard deviation of the distribution of distances to the

data set center is finite (in this case, constant). However, in

higher dimensions, the points closer to the center have the

tendency to become closer, on average, to all other points,

thus having increased probability of becoming hubs by be-

ing near neighbors of many remaining points. On the other

hand, it is also expected to have a non-negligible number of

points farther from the data set center. Consequently, these

points, which are the “orphans”, become farther from all

other points and more difficult to be near neighbors of any

other point. The aforementioned connection between con-

centration and hubs/“orphans” has been initially proposed

by Radovanović et al. [16] using experimentation on iid

uniform random data, in contrast to Gaussian random data

which pertains to real musical data utilized in this paper.

Still, it is important to note that based on the results in [8],

the reasoning followed in [16] can be applied to any iid

random data distribution.
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In order to clarify the mechanism through which the

“centrality” of a point close to the data center, i.e. its prox-

imity to all other points, becomes amplified in high di-

mensions, let us return to the iid Gaussian random data

example and observe as reference points (instead of the

origin) two points with the following properties: point x0,

which is at the expected distance from the data center for

a given dimensionality d, and point x2, which is two stan-

dard deviations closer to the center than x0. 1 Next, we

compute the distributions of distances of x0 and x2 to all

other points, and denote the means of these distributions

µx0
and µx2

, respectively. Figure 3 plots the difference

between µx0
and µx2

. It can be seen that this difference

increases with increasing dimensionality, meaning that x2

becomes closer, on average, to all other points, solely by

virtue of increasing dimensionality. According to the re-

sults by François et al. [8], verified by our empirical mea-

surements, both µx0
and µx2

asymptotically behave as
√

d.

However, convergence does not occur at the same speed,

giving rise to the differences shown in Fig. 3 which ulti-

mately result in the emergence of hubs. Similar arguments

hold when, for example, point x2 is taken to be two stan-

dard deviations farther from the center than x0, explaining

the formation of “orphans.”
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Figure 3. Difference between means of distance distribu-

tions to points at analogous positions wrt the data center,

for iid Gaussian random data.

3.3 Concentration in Real Audio Data

The preceding discussion suggests that concentration can

help explain the generation of hubs and “orphans” for au-

dio music data and spectral similarity measures. However,

the aforementioned conclusions were drawn with respect

to distances between single points, whereas spectral sim-

ilarities are computed between Gaussian Mixture Models

(GMMs). Moreover, in this case of spectral similarity, we

can only consider pairwise distances and not a point of

reference like the center. Therefore, to examine the con-

centration of spectral similarity, we perform the following

measurement. We vary the dimensionality of the feature

space (number of MFCCs). For each examined dimension-

ality, we define for each song in the examined collection its

neighbor-range by computing the difference between the

1 Roughly speaking, for every d point x0 has the same “probability” of
occurrence with regards to the distance from the data distribution center,
and the same can be said for x2.

distances to its farthest and nearest neighbor. To charac-

terize the distribution of neighbor-range for each dimen-

sionality, as explained before, we follow the approach of

related work [8] and compute the ratio between the stan-

dard deviation σrange and the mean µrange of the neighbor-

ranges of all songs.

Figure 4 illustrates this ratio as a function of dimension-

ality, for the two examined spectral similarity measures.

The fact that the examined ratio reduces with increasing

dimensionality indicates that the neighbor-range is narrow-

ing as dimensionality increases, making it more difficult to

separate the closest from the farthest neighbor. Asymp-

totically, as dimensionality tends to infinity, the examined

ratio is expected to become equal to zero, denoting that the

closest and the farthest neighbor of any song will tend to

coincide. This means that asymptotically all points tend

to become equidistant. However, for the high but finite di-

mensionality values used in MIR applications, the standard

deviation in the examined ratio will be small but nonzero,

causing an analogous amplification of “centrality” to that

described above.
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Figure 4. Ratio of standard deviation and mean value of

neighbor-range as a function of dimensionality.

4. DIMENSIONALITY: ROLE & IMPACT ON MIR

The proposed framework allows for explaining the emer-

gence of hubs and “orphans” principally as a consequence

of high dimensionality of the feature space, in relation with

the concentration it incurs. In this section we will verify

with the examined real audio music data that the high di-

mensionality of the feature space creates the hubs and “or-

phans” according to the mechanism described in the previ-

ous section. Additionally, we examine the resulting impact

of high dimensionality on MIR specific applications.

4.1 Verifying the Role of Dimensionality

Let Nk(x) denote the number of k-occurrences of each

song x in a collection, i.e., the number of times x occurs

among the k nearest neighbors of other songs. Following

the approach in [16], we express the asymmetry of Nk (i.e.,

the skewness) using the standardized third moment:

SNk
= E(Nk − µNk

)3/σ3
Nk

,

where µNk
and σNk

are the mean and standard deviation

of Nk. 2 For the examined real audio data, and for the two

2 An SNk
value of 0 signifies that the distribution of Nk is symmetri-

cal, positive (negative) values indicate skewness to the right (left).

270

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



similarity measures GMM-MC and EMD-KL, Figures 5

and 6, respectively, depict skewness as a function of di-

mensionality (three different values of k are examined in

each case). As dimensionality increases, the increase of

skewness, for all values of k, indicates that the distribution

of Nk becomes considerably skewed to the right, resulting

in the emergence of hubs, i.e., points which appear in many

more k-nearest neighbor lists than other points.
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Figure 5. Skewness of Nk as a function of dimensionality

for the GMM-MC measure.
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Figure 6. Skewness of Nk as a function of dimensionality

for the EMD-KL measure.

Regarding “orphans,” Figure 7 depicts, for both exam-

ined measures, the number of songs with Nk equal to zero

as a function of dimensionality (k was set to 10). As ex-

pected, with increasing dimensionality, the number of such

songs increases, demonstrating the relation of “orphans”

with dimensionality.

All the above results show that dimensionality is the

fundamental reason for the emergence of hubs and “or-

phans.” In the next section we examine the relevance of

this result to the objectives of MIR.

4.2 Impact on MIR

In order to study how our main conclusion, concerning the

role of high dimensionality, affects MIR applications, we

rely on external labels, such as the genre, to characterize

the similarity between songs. This assumption is being

widely applied in MIR (e.g., in MIREX contests), since

results in related work [13] indicate that this assumption

is reasonable.
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Figure 7. Number of songs with Nk equal to 0 (k = 10).

In this context, we measure the impact of hubs by exam-

ining the number of times they mismatch in label with the

songs to which they are close neighbors. In this sense, we

can measure how much of the total error (in terms of label

mismatches) can be attributed to hubs. Figure 8 depicts,

as a function of dimensionality, the fraction of total error

due to the 10% of the strongest hubs, i.e., songs with the

largest Nk values (k was set to 1). For low dimensionality

values, when according to previous measurements hubs are

not strong, their responsibility for the total error is much

smaller compared to the case of larger dimensionality. It is

worth to note that, for the largest examined dimensionality

value, the strongest hubs are responsible for about 90% of

the total error.
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Figure 8. Fraction of total error due to 10% of the

strongest hubs (k = 1).

5. CONCLUSIONS

In this paper we propose a conceptual framework that re-

lates the known shortcomings of spectral similarity mea-

sures for music data: the existence of hubs, “orphans” and

the distance concentration phenomenon, with the high di-

mensionality of underlying data space. The framework

presents a unifying view of the three examined problems

of music similarity measures, offering an explanation of

their fundamental origins, which will hopefully help MIR

researchers develop robust methods for their remedy.

The issue of high dimensionality is significant for spec-

tral similarity measures because small dimensionality usu-

ally leads to poor discriminating capability, while high di-

mensionality produces the described negative effects per-

taining to hubs, “orphans,” and distance concentration.
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In future work we will take into consideration more the-

oretical aspects of the hub/“orphan” properties and similar-

ity concentration, providing a sounder theoretical backing

for the described relationships. Furthermore, it would be

interesting to examine why some approaches [9, 17, 19]

tend to produce less hubs, by relating to the intrinsic di-

mensionality of the space they produce (i.e., to consider

the proposed framework in explaining these approaches

and understanding their reported properties). We also plan

to conduct an extended experimental evaluation involving

more similarity measures and data collections, giving more

precise quantification of relationships between high dimen-

sionality and the aforementioned properties of (spectral)

similarity measures. Finally, we will develop novel miti-

gation methods for the problems induced by the existence

of excessive hubs and “orphans”. In particular, we will ex-

amine machine learning methods that apply correction to

spectral similarity measures in order to take into account

that retrieval error may not be distributed uniformly (as

exemplified in Section 4.2), thus focusing on hubs as the

main source of error, and in order to enable “orphans” to

participate more prominently as nearest neighbors.
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ABSTRACT

Peer-to-Peer (p2p) networks are being increasingly adopted

as an invaluable resource for various music information re-

trieval (MIR) tasks, including music similarity, recommen-

dation and trend prediction. However, these networks are

usually extremely large and noisy, which raises doubts re-

garding the ability to actually extract sufficiently accurate

information.

This paper evaluates the applicability of using data orig-

inating from p2p networks for MIR research, focusing on

partial crawling, inherent noise and localization of songs

and search queries. These aspects are quantified using songs

collected from the Gnutella p2p network. We show that

the power-law nature of the network makes it relatively

easy to capture an accurate view of the main-streams using

relatively little effort. However, some applications, like

trend prediction, mandate collection of the data from the

“long tail”, hence a much more exhaustive crawl is needed.

Furthermore, we present techniques for overcoming noise

originating from user generated content and for filtering

non informative data, while minimizing information loss.

1. INTRODUCTION

Peer-to-Peer (p2p) networks are being increasingly adopted

as an invaluable resource for various music information re-

trieval (MIR) tasks [11], including music and user simi-

larity [3, 5, 15], recommendation [16], ranking [9, 14], and

even trend prediction [10, 12]. Various information can be

extracted from a p2p network, including files shared by

users, search queries, and spatial and temporal changes that

take place in the network.

This type of information is traditionally extracted from

server-based services, such as Last.FM and Yahoo! Music

services. Web based services have the potential to pro-

vide a complete view of their data, either by commercial

agreements or by crawling using a centralized interface.

However, while p2p networks have practically unbounded

growth potential, web-based services are often limited in

size. This limitation is problematic for collaborative fil-

tering techniques, that were shown to out-perform content

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

based approaches, given that the dataset used is sufficiently

comprehensive [2].

Another advantage of p2p datasets over traditional datasets

is the availability of information, mitigating the need for

agreements with website operators and various restrictions

they pose on the data usage. Due to their decentralized

nature and open protocols, p2p networks are a source for

independent large scale data collection.

Despite all their advantages, p2p networks are quite com-

plex, making the collection of a comprehensive dataset far

from being trivial, and in some cases practically unfeasi-

ble. First, p2p networks have high user churn, causing

users to constantly connect and disconnect from the net-

work, being unavailable for changing periods. Second,

users in p2p networks often do not expose their shared

data in order to maintain high privacy and security mea-

sures, therefore disabling the ability to collect informa-

tion about their shared folders. Finally, users often delete

shared files to save space making it invisible to a crawl be-

ing performed after the deletion.

It is yet unknown to what extent data that is collected

from large-scale p2p networks actually represents suffi-

ciently accurate information in general, and particularly

from a MIR point of view. The objective of this work is

to bridge this gap by analyzing the efficiency and extent of

crawling required for obtaining accurate information for

various MIR tasks. We focus on sufficient sampling in a

sparse domain with a long tail of content distribution.

In order to understand how well the crawl captures the

underlying network, we perform an empirical study of the

utility of an exhaustive crawl relative to a partial crawl.

When discussing shared files, a partial crawl means that

not all users are reached, resulting in not all songs being

collected. Additionally, in the context of search queries,

only a portion of the queries are collected since it is practi-

cally impossible to collect all queries in a fully distributed

p2p network.

We find that some of the graphs modeling p2p network

data exhibit a power-law [1] distribution. This distribu-

tion indicates that collecting the majority of popular files

and extracting accurate information for the main-streams,

is relatively easy. By collecting the high degree nodes,

which are easily reached, one may extract an abundance

of information regarding the core of the network. On the

other hand, reaching more exotic niches or following small

changes in trendy hits mandates a more through crawl with

significantly higher collection effort, as the collection pro-

cess must visit the long “tail” of the distribution. Fur-

thermore, we observe the existence of geographic locality

273

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



of both files and queries, indicating that applications that

are geographic aware (like trend prediction [10]), mandate

sampling from different geographic locations.

2. MEASUREMENT INFRASTRUCTURE

This section details the architecture of the measurement

system developed to crawl the Gnutella [13] network and

collect queries in a distributed manner. Although the exact

details are adapted to comply to the Gnutella architecture

and protocols, similar techniques can be applied to other

p2p networks. As such is Apollo [17], an efficient frame-

work for crawling the BitTorrent p2p network, which uses

a centralized server that collects trackers, enabling it to

reach related peers and extract files that peer hold.

2.1 Crawling and Browsing Shared Files

Our crawler traverses the network as a graph, similar to

the method used by web crawlers. The crawler employs

a highly parallel technique by spawning numerous threads

that attempt connecting to a set of provided IP addresses.

Gnutella nodes implement a “Ping-Pong” protocol [18] used

for discovering nodes, where a node that receives a “Ping”

request replies with information about additional nodes that

it is connected to. The resulting IP addresses are fed to the

worker threads for further crawling.

Crawling dynamic p2p networks never reaches a com-

plete stop, as clients constantly connect and disconnect

from the network, and the crawler keeps discovering new

IP address. This means that an “exhaustive” crawl is a mat-

ter of definition, i.e., deciding when to stop the crawling

process. We use two stop conditions that define how ex-

haustive the crawl will be: (a) a time constraint, and (b)

reaching a low rate of newly discovered nodes.

At the early stages of a crawl with an initial set of roughly

100k target node IP addresses, the rate of newly discovered

nodes increases dramatically and can typically reach over

300,000 new clients per minute. As the crawling process

proceeds, discovery rate slows down until it reaches a few

hundreds per minute. At this point, the network is almost

fully covered, and the newly discovered nodes are mostly

the ones that have joined the network only after the crawl-

ing operation started, whereas some of the crawled nodes

already left the network.

The browsing operation closely follows the crawling re-

sults and operates in parallel. The browsing threads collect

active node IP addresses reported from the crawler, and

use a “Query” message [18] to retrieve information about

the files that a node shares. Notice that some nodes ignore

these queries due to privacy or bandwidth considerations.

Although we do not download any of the files, the task

of browsing millions of shared folders is bandwidth inten-

sive, and requires high bandwidth Internet access. Our de-

ployed system uses a 1 Gbit/s network card connected to

two 2.5 Gbit/s STM-16 lines. Despite our fast connection,

browsing takes about 24 hours, whereas crawling ends af-

ter roughly 1 hour. More details on our crawler can be

found in [8].

2.2 Collection of Queries

The process of query collection is highly dependant on the

search paradigm that the p2p protocol employs. Fully dis-

tributed searches, like in Gnutella, propagate search strings

between peers. While it is possible to capture a large quan-

tity of queries by deploying several hundred “listening”

nodes, it is not trivial to determine the queries origin (re-

quired for geographical location). The basic problem in

identifying the origin of captured queries is that queries do

not in general carry their origin IP address. Most peers are

“hidden” behind a firewall, hence it is impossible to send

the results directly to them. Instead, proxy peers that have

routable IP address (in Gnutella – Ultrapeers) are used to

convey the information for firewalled peers.

In cases where geographic query analysis is required,

this usage of ultrapeers causes a difficulty to match a peer

to its geographic location, since the correlation between

an ultrapeer geographic location and its attached peers is

low [7, 10]. The authors suggest a method to determine

queries origin IP, based on the number of hops they tra-

versed. Our geographical resolution is based on a similar

technique. More details can be found in [7].

Alternatively, some networks, e.g. BitTorrent, employ a

centralized search engine, which is operated by web servers.

Users search for content using a web interface, find “track-

ers” and use them to find active peers that hold the re-

quested files. This technique greatly simplifies the data

collection effort. However, it mandates cooperation of web

site operators, which are often reluctant to share informa-

tion on their users.

3. SONG DISTRIBUTION

We start by looking at the distribution of songs per users,

considering all users in the dataset, and only users that are

located in the US. For this end, we consider only music

files shared by users, namely files ending with .mp3, .wav,

.mid and .wma.

Figure 1(a) shows that all users and US-only users ex-

hibit a power-law [1] distribution, with a very strong cut-

off around the middle of the plot. This indicates that the

vast majority of users share less than 300 songs, whereas

only several thousands of users share more than 1k songs.

Notice that only a few users share more than 10k music

files, while over 45k users share only a single song.

These two extremes present different aspects of “noise”.

The few “heavy sharers” are not informative, while the lat-

ter simply contribute to a very long tail that is hardly in-

sightful. In collaborative filtering for example, users that

share only one song, contribute no similarity relations, while

users that share songs from thousands of artists, are likely

to “pollute” the dataset with false relations, since they ap-

pear to “like everything”.

Next, we look a the popularity distribution of songs,

by counting the number of different users that share each

song. Figure 1(b) shows a clear power-law distribution

containing a long tail, which is attributed to popular songs

that are shared by many users. The percentage of popu-

lar songs shared by many users is slightly lower in the US,

yet the two distributions mostly overlap. There are a few

extremely popular songs shared by more than 10k users,
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Figure 1. Distributions of shared songs and song popularity

while the vast majority of the songs are shared by less than

1k users. Considering that there are over 1.2 million users

in the dataset, songs that are shared by less than 1k users

are quite borderline for being considered “popular”.

The figure also shows that there are many songs that are

shared by less than 100 users, which means that reaching

them, or recording their relations to other songs, requires

an extensive crawl. These songs surely do not represent

any significant main-stream artist or genre, but for the pur-

pose of detecting hypes or finding small communities with

very specific preferences, reaching these users and collect-

ing these songs might be important.

Given these distributions, we wish to evaluate the num-

ber of new songs that are discovered as more users are be-

ing crawled. Two difficulties arise regarding this analysis.

The first is the way to identify that two files are indeed the

same song, and for this end, either the file hash or the meta-

data can be utilized. Using the file hash is straightforward,

as every file in the p2p network has a file hash, taken over

its content. However, there can be many slightly different

copies of the same file, each with a different hash, mostly

due to different disc ripping software or originating song.

On the other hand, metadata is often missing and contains

different spelling mistakes, hence it can also result in in-

correct identification of similar songs.

Therefore, we used both file hash and metadata tech-

niques for identification of unique songs. First, we just use

the file hash as the song id, and when hashes are exactly

the same, we consider them as the same song. When us-

ing metadata, we consider only songs that have both “title”

(name of the song) and “artist” tags, and use their concate-

nation as the song id.

The second difficulty is that many songs appear only

once in the dataset. These are mostly attributed to faulty

music file (not necessarily songs) that were uploaded by

users and are of no interest to other users, rendering these

files is useless for most MIR tasks. Therefore, we first

counted the number of occurrences of each song, once us-

ing file hash and then using metadata, and removed all the

songs that have only a single appearance in the dataset.

Figure 2 shows the number of unique songs per number

of crawled users, showing all users and US-based users.

The order of users was randomly selected to reduce spa-

tial bias. Both figures show a converging trend, indicat-

ing that the utility of crawling many users decreases. Fur-

thermore, the convergencewitnessed when using metadata

seems faster than when using file hashes, indicating that

file hashes are more noisy than the metadata. Alternatively,

this can be attributed to the observation that roughly 75%

of the songs did not have both title and artist tags present,

hence were removed from the analysis. This contributes

to the reduction of “noise” resulting in a more stable and

quickly converging set of songs.

The convergenceobservedwhen crawling only US-based

users (56% of the users) seems slower than when crawling

all users. Looking back at the distribution of songs per

users (Figure 1(a)) shows that US users tend to have more

songs, i.e., higher percentage of users have more than 200

shared songs. This explains the slower convergence, since

the probability that a user will contribute previously unseen

songs is higher. The number of songs seen in US-based

shared folders is only half of the entire world wide collec-

tion. However the usage of metadata over hash for songs

identification seem to be as effective as in the general case,

since the percentage of noise reduction remains the same.

4. SONG CONNECTIVITY

Item-based recommendation systems require an estimation

of the distance between songs. This task is often performed

using expensive content-based similarity. However, song

similarity can be efficiently extracted from p2p networks,

by transforming the bipartite graph that connects users to

songs into a 1-mode song-similarity graph, where the weight

of a link wij between two songs i and j is the number of

users that have both songs in their shared folders.

In this analysis we wish to obtain a stable similarity

graph, therefore we do more processing to identify unique

songs. Similar to the previous analysis, all the songs that

have hash value that appeared only once are removed. We

then group together all file hashes that relate to identical

metadata value (artist and title). At this stage we have

grouped together different digital versions of the same song.

Accounting for spelling mistakes is achieved by grouping

together artist and title values that have a small edit dis-

tance [19] (counting insert, delete and substitute). The dis-
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Figure 2. Number of unique songs (using file hash and metadata) and unique queries vs. number of users crawled

tance threshold is determined by a function of the string’s

length. Representative metadata values are chosen using

majority voting. Finally, after this aggregation, all songs

that have less than 7 occurrences are removed. This value

is a tradeoff between filtering and memory consumption,

taking only 3bits of memory for each song.

This unification of songs reduced the number of unique

songs from over 21 million when using hashes and 5 mil-

lion when using metadata to 530k songs, meaning only

2.5% of the songs using hash and roughly 10% of the songs

using metadata. Although this technique can slightly over-

filter, it successfully overcomes the low signal-to-noise ra-

tio that inherently exists in the p2p network, primarily due

to user generated content.

We further perform filtering of “weak” song-to-song re-

lations, to remove noise as the one witnessed in the pres-

ence of extremely “heavy sharers”. During the collection

of songs we only include links that appear in at least 16 dif-

ferent users, a values which was again selected as a trade-

off between filtering and memory consumption. Then, we

kept for each file, only the top 40% links (ordered by de-

scending similarity value) and not less than 10. Notice

that this filter also removesmalicious and spam songs from

the graph, assuming that these are not downloaded by too

many users. After the removal of these “weak” links, roughly

20 million undirected links remain in the graph.

4.1 Degree Distribution

Intuitively, since some popular songs are shared by many

users while many songs are shared by only a few users,

it is more likely for a song to be co-shared with a popular

song, hence increasing the connectivity of the popular song

in the similarity graph. This type of connectivity results

in a power-law degree distribution, which results in high

degrees of the few popular songs and lower degree of many

less-popular songs. An important feature of such power-

law distributions is the ability to efficiently capture many

of the underlying graph properties, by sampling a partial

view of the overall network.

On the other hand, when the “tail” of the power-law

is long, meaning many songs have very low connectivity,

the crawling effort and required resources are significantly

higher. The value of the data that exists in the tail greatly

depends on the application [4]. Most applications do con-

sider such “rare” files as noise; in that case, their added

value is marginal.
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Figure 3. Cumulative degree distribution of the song sim-

ilarity graph

Several previous studies on p2p networks [6, 7] show

that graphs that model various p2p networks exhibit power-

law distributions. As can be seen in Figure 4.1 shows the

cumulative song degree distribution in the similarity graph,

exhibiting a power-law with a strong cut-off. This power-

law distribution suggests that there are relatively a few songs

with very high connectivity and many songs with low con-

nectivity.

4.2 Partial Sampling

We wish to verify that partial sampling does not signif-

icantly alter the distribution of the similarity graph. We

first normalize the similarity value between any two songs

so it reflects their popularity. Hence, the new similarity

is ŵij = wij/
√
Pi · Pj , where wij is the link weight be-

tween songs i and j, and Pi, Pj are their corresponding

overall number of occurrences (popularity).

We then create a new graph, denoted by TRN , which

contains, for each file, only the top N neighbors, ordered

by non increasing normalized similarity. This extends the

basic filters since it uses the normalized similarity values,

thus capturing the relative popularity of adjacent files. This

filter is analogous to the effect of a partial sampling in the
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Figure 4. Effect of sampling on song similarity distribution

p2p network, where many users are simply not reached

during the crawling phase. In this case, the crawl “skips”

many of the weak relations between songs, while keep-

ing only the strong ones that appear in many users. We

therefore, wish to evaluate the way the similarity graph is

affected by partial sampling.

The number of times each song appears as the nearest

neighbor for different values ofN is presented in Figure 4(a).

The figure shows that for N=1,5 the distributions are sig-

nificantly different, whereas for N ≥ 10 the distributions

almost overlap. Similar results can be seen when looking

at the degree distribution depicted in Figure 4(b). The fig-

ure shows that while forN=1 the distribution is extremely

sparse, reachingN ≥ 10 results in an almost identical dis-

tribution with slightly higher node degrees.

The above results indicate that obtaining partial infor-

mation on the network is sufficient for generating a com-

prehensive similarity graph, as the utility of having a more

complete view of the network quickly decreases. This is

attributed to the fact that the songs that are most affected

from this partial crawl are the high-degree songs (best no-

ticed in Figure 4(b)). Since many links are gone, songs

that did not have too many links to begin with, are hardly

affected, while songs that had many links “lose” a lot of

them. However, when enough links remain (a sufficient

number of users that share these songs are crawled), these

songs retain their high degree relative to the other songs.

5. QUERY COLLECTION

Collection of queries is often a much more complicated

task than crawling the shared folders. Hence, we seek

to quantify the utility of collecting queries from an in-

creasing number of users, similar to the way we did for

unique songs. For this end, we collected almost 4.5 million

queries from over 3 million users during a week in Febru-

ary 2007. Notice that these queries are not related only to

music, however analysis of keywords used for searching

the Gnutella network shows that almost 70% of the queries

are music related [10].

Figure 2(c) depicts the number of unique queries per

number of crawled users, using all the queries, and us-

ing only queries that appeared more than once. The fig-

ure shows that when all the queries are considered, there

is no convergence, meaning that each additional user con-

tributes some new queries. However, when we consider

only queries that appeared more than once, there is a clear

convergence, and the overall number of unique queries goes

down to less than 2 million. We therefore, learn that the di-

versity in search terms is mostly attributed to very “rare”

strings that originate from single users, whereas the major-

ity of the common queries are frequently repeating amongst

the different users, hence can be more easily reached.

Queries were shown to be highly correlated with geo-

graphic location [7], which is rather intuitive considering

the cultural and language differences between countries.

In order to quantify the implications of localized query

collection, we compared the top-1000 string queries per-

formed by users in different countries, and define the cor-

relation as the total number of matching strings.
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Figure 5. Correlation between top-1000 search queries be-

tween the US and different countries over time

Figure 5 depicts the correlation factor between the US

and other countries over a period of 17 weeks in early

2007. The figure shows that, as expected, the English speak-

ing countries (Australia and United Kingdom) have much

higher correlation with the US than the non-English speak-

ing countries. Japan appears to have the lowest overall
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correlation, with less than 20 matching queries. Interest-

ingly, the correlation is quite consistent over the entire pe-

riod, showing profound differences between the Anglo-

sphere and the non-English speaking countries. Putting

aside the musical anthropology aspects of these results,

this analysis indicates that when performing targeted re-

search, it is sufficient to focus on a bounded geographi-

cal region or country. However, conclusions drawn using

queries collected in a specific region should be carefully

examined before assuming them on other geographical lo-

cations.

6. DISCUSSION AND CONCLUSION

In the presence of an increasing demand for large scale

datasets in MIR research, this paper investigates the dif-

ferent considerations in using a p2p based dataset. Several

difficulties are considered – the inability to crawl all users

and collect information on all songs, the complexities in in-

tercepting all search queries and the inherent noise of user

generated content.

Content distribution in a p2p networks typically exhibits

a power-law, hence collecting themajority of songs is rather

easy. Partial crawling is shown to have much less impact

on the availability of main-stream content than on specific

“niches”. On the other hand, when popularity is consid-

ered, partial sampling is more likely to effect the popular

songs. Although their relative popularity decreases, song-

to-song relations remain intact.

Spatial analysis reveals that p2p networks are highly

localized, with profound differences in songs and queries

between geographical regions. This can help induce local-

ized research regardingmusical trends and preferences, but

mandates careful consideration before inferring conclusion

drawn from local samples.

File sharing networks were shown to have low signal-

to-noise ratio, mandating careful data processingwhen com-

pared to “traditional” datasets (e.g., website). In order to

improve the ability to extract insightful information from

the data, we suggest removing songs that appear only once

in the dataset, and users that share too many songs, there-

fore, removing the extremes that are not insightful andmay

“pollute” the dataset. Furthermore, we present methods for

song identification that help merge similar songs, further

improving the signal-to-noise ratio. This extensive filter-

ing can be applied to reduce redundant records and false

relations, but may result in loss of data, which can be of

interest to some MIR tasks, such as popularity predictions.

Overall, p2p networks provide an abundance of infor-

mation that can be utilized in MIR research. Main-stream

data can be easily collected from p2p networks, while hav-

ing all the benefits over standard website data. However,

when seeking to harness the power of the long tail, where

p2p networks have a significant advantage, careful analy-

sis is key for sufficient noise reduction while maintaining

relevant information.
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ABSTRACT

We present a cartesian ensemble classification system that
is based on the principle of late fusion and feature sub-
spaces. These feature subspaces describe different aspects
of the same data set. The framework is built on the Weka
machine learning toolkit and able to combine arbitrary fea-
ture sets and learning schemes. In our scenario, we use it
for the ensemble classification of multiple feature sets from
the audio and symbolic domains. We present an extensive
set of experiments in the context of music genre classifi-
cation, based on numerous Music IR benchmark datasets,
and evaluate a set of combination/voting rules. The results
show that the approach is superior to the best choice of a
single algorithm on a single feature set. Moreover, it also
releases the user from making this choice explicitly.

1. INTRODUCTION AND RELATED WORK

Classification of music into different categories is an im-
portant task for retrieval and organization of music libraries.
Previous studies reported about a glass ceiling reached us-
ing timbral audio features for music classification [1]. Our
approach is based on the assumption that a diversity of mu-
sic descriptors and a diversity of machine learning algo-
rithms are able to make further improvements. We created
an ensemble learning system with these two dimensions
(feature sets, learning schemes) as input and train models
for each combination of those two input dimensions. We
call our approach a cartesian ensemble system.

Our original motivation has been to combine multiple
approaches from the music information retrieval (MIR) do-
main in order to improve (the reliability of) genre classi-
fication results based on the assumption that the various
music descriptors are complementary [12]. In our previ-
ous work we combined spectrum-based audio features that
cover timbral and rhythmic aspects of the sound with sym-
bolic descriptors, based on note and chord sequence statis-
tics. A polyphonic transcription system has been presented
as the “missing link” that transcribes audio data into a sym-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

bolic notation. In this approach the combination of mul-
tiple features from the audio and symbolic domains was
performed by a concatenation of feature vectors, jointly
used as input to a classification algorithm (early fusion).
In a previous comparison of employing MIR algorithms on
Western vs. ethnic music [10] we included a time decom-
position approach, which was already a first ensemble-like
approach, applying one learning scheme on multiple input
features from different segments of a piece of music and
using four different combination (voting) rules to make the
final prediction.

The Autonomous Classification Engine ACE [13], by
contrast, is a general framework for model selection. In
machine learning, model selection is the task of selecting
one classification model from a pool of models. ACE trains
a range of classifiers, with different parameters, and feature
selection methods, and then selects the most fitting ones for
the current task at hand. ACE is built on top of Weka [20]
and thus provides the ensemble techniques implemented
in the toolkit, most prominently boosting and bagging, but
is not capable of handling feature subspaces, or weighted
methods as the ones described in Section 3.

The combination of different segments extracted from
the same song is studied in [2]. The approach is based on
grouping and aggregating non-overlapping blocks of con-
secutive frames into segments. The segments are then clas-
sified individually and the results are aggregated for a song
by majority voting. Three different ensemble methods and
their applicability to music are investigated in [7]. The first
method is based on a one against all scheme, i.e. for each
class, a classifier is trained on the class and its complement.
A second method is based on building a classifier for each
pairwise combination of classes. The third method investi-
gates in training different classifiers on different subsets of
the feature space. In all methods, the final class label is de-
termined by the probabilities of the individual classifiers.

The approach presented in this paper is a cartesian en-
semble classification system, which trains a matrix of mod-
els built from the combination of a range of individual fea-
ture sets and a number of classification algorithms. Our
system builds on the Weka machine learning toolkit [20] in
an open and flexible way. In contrast to ACE no preselec-
tion of classification algorithms has been made – any clas-
sification algorithm available can be used with arbitrary pa-
rameters in the ensemble. Further, an arbitrary number of
feature files can be used. We provide a number of com-
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Figure 1. Framework of the cartesian ensemble system

bination and voting rules, which are employed to obtain
the final prediction of the classifier ensemble. Our frame-
work is not limited to MIR applications. With regard to our
original motivation and our research background, however,
we focus on the scenario of music classification into genre
categories, in order to show the applicability of the system
and the progress in our domain.

The overall scheme of our proposed ensemble classifi-
cation system is shown in Figure 1. It includes our sce-
nario of a music classification system that processes dif-
ferent descriptors from the audio and symbolic domains
(c.f. Section 2). Audio feature extraction algorithms are
applied directly to the audio signal data. There is an inter-
mediate step for the symbolic descriptors: A polyphonic
transcription system converts the audio information into a
symbolic notation (i.e. MIDI files). A chord inference al-
gorithm is applied to provide information about the poly-
phonic structure of the note stream. Finally, a symbolic
feature extractor is applied on the resulting representation.
The feature extraction stage provides multiple viewpoints
on music objects, called feature subspaces. There are sev-
eral ways of combining them for building a music classi-
fication system. Early fusion concatenates all feature sub-
spaces to produce so called superinstances, including all
features at hand. Then a suitable classification scheme is
used to learn categories from such data. This approach was
used in our previous work [12]. Late fusion combines clas-
sifier outcomes rather than features. This is the approach
employed in our proposed framework.

Section 3 describes the general architecture of our en-
semble framework. In Section 4, we evaluate our approach
on numerous well-known reference music datasets and show
the applicability of the approach. It includes also prelimi-
nary research on the use of audio segmentation for generat-
ing extended feature subspaces. Finally, Section 5 provides
conclusions and an outlook on future work.

2. MUSIC DESCRIPTION

We use two sources of input to our ensemble music classifi-
cation approach: audio features extracted from audio files
and symbolic music descriptors derived from MIDI files
that are generated from audio files through a transcription

system. We employ features that proved well in our previ-
ous works [5, 10–12], also in order to be able to compare
progress and results of the new ensemble approach with
previous findings. We emphasize, however, that arbitrary
feature sets can be used with our classifier ensemble ap-
proach presented in Section 3.

2.1 Audio Features

All the following descriptors are extracted from a spectral
representation of an audio signal, partitioned into segments
of 6 sec. Features are extracted segment-wise, and then ag-
gregated for a piece of music computing the median (RP,
RH) or mean (SSD, MVD) from features of multiple seg-
ments. We describe the feature extraction algorithms very
briefly, please refer to the references for further details.
Rhythm Pattern (RP) The feature extraction process for
a Rhythm Pattern is composed of two stages. First, the
specific loudness sensation on 24 critical frequency bands
is computed through a Short Time FFT, grouping the re-
sulting frequency bands to the Bark scale, and successive
transformation into the Decibel, Phon and Sone scales. This
results in a psycho-acoustically modified Sonogram repre-
sentation that reflects human loudness sensation. In the
second step, a discrete Fourier transform is applied to this
Sonogram, resulting in a spectrum of loudness amplitude
modulation per modulation frequency for each critical band.
After additional weighting and smoothing steps, a Rhythm
Pattern exhibits magnitude of modulation for 60 modula-
tion frequencies on the 24 critical bands [11].
Rhythm Histogram (RH) A Rhythm Histogram (RH)
aggregates the modulation amplitude values of the critical
bands computed in a Rhythm Pattern and is a descriptor for
general rhythmic characteristics in a piece of audio [11].
Statistical Spectrum Descriptor (SSD) The first part of
the algorithm, the computation of specific loudness sen-
sation, is equal to the Rhythm Pattern algorithm. Subse-
quently at set of statistical values 1 are calculated for each
individual critical band. SSDs describe fluctuations on the
critical bands and capture both timbral and rhythmic infor-
mation very well [11].
Modulation Frequency Variance Descriptor (MVD) This
descriptor measures variations in the critical bands for a
specific modulation frequency of the Rhythm Pattern ma-
trix, representing the amplitudes of 60 modulation frequen-
cies on 24 critical bands. The MVD vector is computed by
taking statistics 1 for each modulation frequency over the
24 bands [10, 12].
Temporal Features (TRH, TSSD) Feature sets are fre-
quently computed on a per segment basis and do not incor-
porate time series aspects. We introduced therefore TRH
and TSSD features that include a temporal dimension de-
scribing variations over time.

For TRH, statistical measures 1 are computed over the
individual Rhythm Histograms extracted from the individ-
ual 6-second segments in a piece of audio. Thus, change
and variation of rhythmic aspects in time are captured.

1 mean, median, variance, skewness, kurtosis, min and max
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TSSD analogously capture timbral variations and changes
over time in the spectrum on the critical frequency bands.
Hence, a change of rhythmics, instruments, voices, etc.
over time is reflected by this feature set [10].

2.2 Transcription from Audio to MIDI

A multiple fundamental frequency (f0) estimation method
is used to convert the audio files to MIDI files. This is a
joint estimation approach, which experimentally obtained
a high accuracy with a low computational cost. It extends
a previous work [16] by adding information about neigh-
boring frames to get a smooth temporal estimation.It does
not separate instruments, therefore producing single track
MIDI files without any timbral information.

2.3 Symbolic Features

A set of statistical descriptors is extracted directly from
transcribed notes. This set is based on the features de-
scribed in [5], well suited for monophonic classical/jazz
classification, and on features described in [17], used for
melody track selection in MIDI files. Overall statistics,
such as the average number of notes per beat, the occupa-
tion rate (non-silence periods with respect to song length)
and polyphony rate (proportion of sounding note periods
with more than one note active simultaneously) are com-
puted. Further, note pitches, pitch intervals, note durations,
silence durations, Inter Onset Intervals (IOI) and non-diatonic
notes are analyzed; each property is described by min and
max values, range, average, standard deviation, and a nor-
mality distribution estimator. Other features include the
number of distinct pitch intervals, pitch interval mode, and
an estimation of the number of syncopations in the song.

Most of these features are somewhat ’melody-oriented’
(e.g., interval-based features). In order to capture rele-
vant information about the polyphonic structure of the tran-
scription, a chord sequence is extracted from it, using the
algorithm from Pardo and Birmingham [14], and subse-
quently analyzed. The different kinds of chord extracted
are: major triad, major 7th, dominant 7th, dominant sus-
pended 7th, dominant 7th (sharp 5th), dominant 7th (flat
5th), minor 7th, half diminished and fully diminished chords.
The relative frequencies of these chords in a chord sequence
are computed as symbolic features. A total of 61 statisti-
cal descriptors are therefore provided to the system as a
symbolic feature subspace.

3. CARTESIAN ENSEMBLE SYSTEM

Our approach is name a cartesian ensemble because the
set of models used as base classifiers is the cartesian prod-
uct of D feature subspaces by C classification schemes. A
model is build by training classification scheme ci on fea-
ture subspace dj . This produces a total ofD×C base mod-
els as the ensemble. The aim of this approach is to obtain
a sufficiently diverse ensemble of models that will guaran-
tee, up to a certain degree, an improvement of the ensemble
accuracy over the best single model trained. Moreover, the

ensemble abstracts from the selection of a particular classi-
fier and feature set to use for a particular problem. Select-
ing sufficiently different schemes (different classification
paradigms, methods,...) the ensemble provide results that
are at least comparable to the best single scheme.

Model diversity is a key design factor for building ef-
fective classifier ensembles [9]. This has been empirically
shown to improve the accuracy of an ensemble over its
base models when they are numerous enough. For se-
lecting the most diverse models within the ensemble the
Pareto-optimal selection strategy is applied in order to dis-
card models not diverse or not accurate enough.

When a new music instance is presented to the trained
ensemble, predictions are made by selected models, which
are then combined to produce a single category prediction
outcome. A number of decision combination (or label fu-
sion) rules, can be used for this final prediction.

The cartesian ensemble system is built on the Weka
toolkit [20]. The ensemble is a Weka classifier itself, so
it can be plugged into any system using this toolkit.

3.1 Pareto-optimal Classifier Selection

This strategy for selecting the best set of models is based
on finding the Pareto-optimal set of models by rating them
in pairs, according to two measures [9]. The first one is the
inter-rater agreement diversity measure κ, defined on the
coincidence matrix M of the two models. The entry mr,s

is the proportion of the dataset, which model hi labels as
Lr and model hj labels as Ls. The agreement between
both classifiers is given by

κij =

∑
kmkk − ABC
1− ABC

(1)

where ABC is agreement-by-chance

ABC =
∑
r

(
∑
s

mr,s)(
∑
s

ms,r) (2)

The second one is the pair average error, computed by

eij = 1− αi + αj

2
(3)

where αi and αj are the estimated accuracy of the two
models, computed as described in Section 3.3. The Pareto-
optimal set contains all non-dominated pairs. A pair of
classifiers is non-dominated iff there is no other pair that is
better than it on both criteria.

3.2 Combination Rules

The combination rules implemented in the system are both
weighted and unweighted majority voting rules. A sum-
mary of weighted and unweighted combination rules is
presented in Table 1, where P (Lk|xi) is the posterior prob-
ability of instance x to belong to category Lk, given by
model hi. xi is what hi knows about x, i. e., feature val-
ues that correspond to the feature subspace hi was trained
on. Unweighted combination rules are described in [8],
and used through their implementation in Weka.
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Figure 2. Model weight computation: RSWV (left),
BWWV (center), QBWWV (right), giving the model au-
thority ak as a function of the estimated number of errors
ek made by model hk on a validation set. N is the number
of instances in the set, M is the number of class labels.

All weighted rules multiply model decisions by weights
and select the labelLk that gets the maximum score. Model
weights are based on the estimated accuracyαi of the trained
models. The authority ai of each model hi is established
as a function of αi, normalized, and used as its weight ωi.
Weighted methods discussed in [6] have been used in this
work. SVW computes weights as described. Weight func-
tions for rules RSWV, BWWV and QBWWV are shown
in Figure 2. There, eB is the lowest estimated number of
errors made by any model in the ensemble on a given vali-
dation dataset, and eW is the highest estimated number of
errors made by any of those classifiers. WMV is a theoret-
ically optimal weighted vote rule described in [9], where
model weights are set proportionally to log(αi/(1− αi)).

Table 1. Summary of combination rules.
Rule mnemonic Description

Unweighted rules
MAJ Majority vote rule
AVG Average of P (Lk|xi)
MAX Maximum of P (Lk|xi)
MED Median of P (Lk|xi)

Weighted rules
SWV Simple Weighted Vote
RSWV Rescaled Simple Weighted Vote
BWWV Best-Worst Weighted Vote
QBWWV Quadratic Best-Worst Weighted Vote
WMV Weighted Majority Vote

3.3 Inner/Outer Cross Validation

The classification results presented below are estimated by
cross-validating the ensemble. The accuracy of individual
ensemble models (αi), used to compute model weights for
combining their outputs, is also estimated through cross-
validation. In order to avoid using test data for the ensem-
ble for single model accuracy estimation, an inner cross-
validation, relying only on ensemble training data, is per-
formed. The number of folds for the ensemble (outer) and
the single models (inner) cross-validation are parameters.

Outer test

O
ut

er
  

tr
ai

n Inner train

Inner test

Figure 3. Inner and outer cross-validation scheme.

4. EVALUATION

We performed an extensive evaluation of our ensemble ap-
proach on a range of well-known MIR benchmark datasets
in order to show both the feasibility and generality of our
approach. Classification results are presented as accuracy
values with standard deviations.

4.1 Datasets

A dataset overview is given in Table 2. Either full songs or
30 second excerpts were available. 9GDB is originally a
MIDI collection, but was synthesized to wav for our exper-
iments and re-transcribed to MIDI to obtain symbolic fea-
tures. For all other collections audio files were transcribed
to MIDI. The GTZAN collection was assembled and used
in experiments by G. Tzanetakis [19]. The ISMIRgenre
and ISMIRryhthm collections were compiled for the genre
and rhythm classification tasks, respectively, of the ISMIR
2004 Audio Description contest [3] and used frequently
thereafter by Music IR researchers. ISMIRgenre consists
of 6 popular music genres and ISMIRryhthm comprises
8 Latin and Ballroom dances. The Latin Music Database
comprises 10 Latin music genres [18]. The African col-
lection is a sub-set of 1024 instances of the audio archive
of the Royal Museum of Central-Africain Belgium, digi-
tized in the course of the DEKKMMA project [4]. Various
meta-data categories are available for this set, including 27
different functions, 11 different instrument families, 11 dif-
ferent countries and 40 ethnic groups [10]. The number of
files varies according to number of meta-data available in
each category.

Table 2. Datasets used in experiments
dataset files genres file length ref.
9GDB 856 9 full [15]
GTZAN 1000 10 30 sec [19]
ISMIRgenre 1458 6 full [3]
ISMIRrhythm 698 8 30 sec [3]
LatinMusic 3225 10 full [18]
Africa 1024 var. full [4]

4.2 Classification Schemes and System Parameters

For our experiments, we set the system to perform 10-fold
outer cross-validation and 3-fold inner cross-validation. As
for the classification schemes, a selection of classifiers from
the Weka toolkit has been made, aiming at choosing schemes
from different machine learning paradigms. We chose Naı̈ve
Bayes, Nearest Neighbor (IB1 2 ) with Euclidean distance,
3-NN with Manhattan distance (IBk), the RIPPER rule learner
(JRip), the C4.5 (J48) decision tree learner, the REPTree,
a fast decision tree learner, Random Forest, a forest of ran-
dom trees, and three Support Vector Machines, the first
with a linear kernel, the second with a quadratic one and
the third with the Puk kernel, a Pearson VII function-based
universal kernel with parameter values C = 4, ω = 3.2,
σ = 13. Please consult [20] for further reference on these
methods.

2 Weka names for these classifiers in parenthesis.
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4.3 Ensemble Classification Results

Table 3. Best results on individual classification of feature
sets and classifiers on different datasets

Dataset Classifier Featureset Accuracy
9GDB SVM-Puk TSSD 78.15
GTZAN SVM-lin SSD 72.60
ISMIRgenre SVM-quad TSSD 81.28
ISMIRrhythm SVM-lin RP 87.97
LatinMusic SVM-Puk TSSD 89.46
Africa/country SMO-quad SSD 86.29
Africa/ethnic group SVM-lin TSSD 81.10
Africa/function 1-NN SSD 51.06
Africa/instrument SVM-Puk TSSD 69.90

To have a baseline for the cartesian ensemble, we trained
all the classification schemes described in Section 4.2 on
all the feature sets described in Section 2, i.e. one model
for each cell in the cartesian set D × C. Table 3 gives an
extract of the accuracies achieved with these single models
– due to space limitation, only the best combination of an
algorithm and a feature set are given. It can be observed
that there is no clear trend, neither for a classifier, nor a
feature set. While SVMs clearly dominate the results, the
choice of the kernel is not obvious, and results can vary by
several percent points. Also the feature sets do not show a
clear trend – in approximately half of the cases, TSSDs are
the best set to use, while also SSD and RP features some-
times yield clearly better results. These results nourish the
hypothesis that ensemble classifiers may provide means to
release the user from the difficult choice of the proper fea-
ture set and classifier combination.

The accuracy results for the classifier ensembles are shown
in Table 4, with the best single classifier as our assumed
baseline to improve on. Note that achieving the baseline
result would require to know the best combination of fea-
ture set and classifier in advance. On each of the datasets,
we can observe higher classification accuracies with the
ensembles than with the baseline. The improvements are
three percent points on average. The highest gains are on
the GTZAN dataset, with five percent points, while the im-
provements on the ISMIRrhythm dataset are of 1.14 per-
cent point. However, the baseline on this dataset is already
very high, at approx. 88%.

Out of the nine classification tasks, the QBWWV rule
was five times the best, followed by WMV which is three
times the best performing rule. AVG and BWWV are both
once the highest ranked combination rule. In the tasks
where QBWWV is not the rule with the highest accuracy,
the relative difference to the top rule is minimal – the largest
margin is 0.7 percent points, or 0.86% relative difference.

4.4 Segmentation Ensemble Approach

A logical next step for ensemble classification is the use of
individual features from different segments of an audio file
as an input to classification. We conducted an experiment
segmenting each audio file into 3 equal-sized segments,
and extracting individual features from each of those seg-
ments. Note that for audio collections with 30 second ex-

cerpts we did not do this for TSSD and TRH features, as
there would be no temporal variation within a segment,
given the feature algorithm’s segment-window-length of 6
seconds (c.f. Sec. 2.1). In those cases we used TSSD and
TRH features from the full song, as in the previous exper-
iments. Also the symbolic features were used from full
songs. Our hypothesis was that with more (detailed) infor-
mation about the audio content, results would be improved
in the ensemble setting. However, results of this segmen-
tation approach were in general inferior compared to us-
ing features aggregated over entire songs, as seen from the
bottom two lines of Table 4. As the performance decrease
was independent of the combination rule applied, we in-
cluded only the results of the two best combination rules
(QBWWV and WMV) for space reasons.

Even though the results of this first experiment did not
improve the ensemble approach, we will further pursue this
strategy and refine it in multiple ways: First, we will extend
the segmentation also to symbolic features. Then we will
conduct research on different classifier model combination
strategies. Instead of a combination of all classifier/feature
set models into one ensemble, a two-tier approach is envis-
aged, where a decision is made by an ensemble of features
from different segments first and then the decisions of mul-
tiple different feature sets and classifiers are combined on
a second level. Further future work will be the experimen-
tation with different degrees of segmentation of an audio
file. Moreover, instead of using equally sized segments, a
structural audio segmentation algorithm for segmentation
into chorus, verse etc. could be used for semantic segmen-
tation, aiming at an enhanced diversity of the features and
the knowledge of the content.

5. CONCLUSIONS

In this paper, we presented a framework for automatic clas-
sification of music data. Our system builds ensembles of
classifiers in two ways – first, several different algorithms
(and parameter variations) are used, and secondly, a set of
different features, describing different aspects of the same
dataset. We have demonstrated the power of this approach
on the classification task for six different datasets and achieved
improvements on the classification accuracies in each sin-
gle task. When comparing the results of the ensemble to
the single feature sets, we could observe that there is no
clear trend on which classification algorithm, and which
feature set to use for a specific dataset. The advantage
of the ensemble approach is that the user is released from
this task. The ensemble approach delivers superior results
through adding a reasonable amount of feature sets and
classifiers. Even though we did not discover a combina-
tion rule that always outperforms all the others, relying on
the QBWWV rule seems feasible.

Future work will include an even wider set of exper-
iments on more datasets, also involving other modalities
such as song lyrics. Another area is the above mentioned
ensemble of different segments from the same song.
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Table 4. Results of the ensemble classification on different datasets (Standard deviations are given in parentheses). The
lower section of the table shows the results of the segmentation approach.

ISMIR ISMIR Latin Africa Africa Africa Africa
Rule 9GDB GTZAN genre rhythm Music country ethnic group function instrument
Single best 78.15 (2.25) 72.60 (3.92) 81.28 (3.13) 87.97 (4.28) 89.46 (1.62) 86.29 (2.30) 81.10 (2.41) 51.06 (6.63) 69.90 (4.69)

MAJ 79.56 (4.78) 72.60 (3.31) 77.78 (2.15) 88.25 (5.08) 89.33 (1.55) 85.31 (4.04) 71.86 (3.41) 37.37 (7.36) 59.63 (5.79)

MAX 60.05 (6.67) 44.00 (6.60) 60.97 (6.71) 54.87 (8.95) 50.64 (2.06) 77.67 (9.16) 73.16 (6.40) 40.38 (7.10) 61.32 (5.88)

MED 74.30 (4.32) 55.90 (3.84) 72.02 (2.74) 77.79 (4.27) 73.64 (2.37) 83.84 (3.77) 70.71 (3.62) 39.49 (5.22) 60.34 (4.67)

AVG 81.66 (3.96) 68.40 (2.37) 79.70 (3.35) 86.82 (4.29) 86.85 (1.96) 87.66 (2.28) 78.21 (3.50) 53.73 (5.35) 70.60 (3.82)

SWV 81.31 (3.32) 77.10 (3.98) 78.33 (2.48) 88.97 (5.39) 92.00 (1.34) 86.97 (2.98) 75.47 (3.62) 46.83 (4.44) 67.09 (3.99)

RSWV 80.96 (3.26) 77.40 (4.22) 79.22 (2.38) 88.97 (4.94) 92.25 (1.16) 87.17 (2.77) 75.47 (3.62) 48.39 (5.63) 68.35 (4.22)

BWWV 81.54 (3.17) 77.40 (4.22) 82.03 (1.83) 89.11 (4.62) 92.25 (1.16) 88.34 (2.22) 79.37 (3.95) 52.61 (5.76) 72.71 (3.47)

QBWWV 80.96 (2.94) 77.50 (4.30) 84.02 (1.50) 88.97 (3.86) 92.71 (0.99) 89.03 (1.63) 82.68 (3.18) 54.84 (6.29) 72.86 (3.52)

WMV 80.84 (2.90) 76.10 (4.20) 84.02 (2.02) 87.97 (3.92) 92.59 (1.29) 88.93 (1.76) 82.97 (3.30) 51.28 (6.93) 73.00 (4.25)

QBWWV 81.31 (2.78) 76.80 (3.33) 76.95 (3.28) 88.25 (4.39) 91.66 (1.17) 88.44 (2.75) 78.35 (4.08) 50.95 (6.62) 71.03 (3.99)

WMV 80.49 (2.40) 74.50 (4.53) 81.48 (3.01) 87.68 (3.74) 91.56 (1.29) 88.05 (2.12) 80.23 (3.35) 44.83 (4.54) 72.29 (4.45)
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proving genre classification by combination of audio
and symbolic descriptors using a transcription system.
In Proc. ISMIR, Vienna, Austria, 2007.

[13] C. McKay, R. Fiebrink, D. McEnnis, B. Li, and I. Fu-
jinaga. Ace: A framework for optimizing music classi-
fication. In Proc. ISMIR, London, UK, 2005.

[14] B. Pardo and W. P. Birmingham. Algorithms for
chordal analysis. Comput. Music J., 26:27–49, 2002.

[15] C. Perez-Sancho, D. Rizo, and J. M. Iñesta. Genre clas-
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ABSTRACT 

Ground truths based on partially ordered lists have been 
used for some years now to evaluate the effectiveness of 
Music Information Retrieval systems, especially in tasks 
related to symbolic melodic similarity. However, there 
has been practically no meta-evaluation to measure or 
improve the correctness of these evaluations. In this paper 
we revise the methodology used to generate these ground 
truths and disclose some issues that need to be addressed. 
In particular, we focus on the arrangement and aggrega-
tion of the relevant results, and show that it is not possi-
ble to ensure lists completely consistent. We develop a 
measure of consistency based on Average Dynamic Re-
call and propose several alternatives to arrange the lists, 
all of which prove to be more consistent than the original 
method. The results of the MIREX 2005 evaluation are 
revisited using these alternative ground truths. 

1. INTRODUCTION 

Information Retrieval (IR) is known for having evolved 
as a highly experimental discipline. New techniques ap-
pear every year, and it is necessary to perform an exhaus-
tive and methodological evaluation to figure out which of 
these techniques really mean a step forward in the field. 
These evaluations have been carried out since the late 
50's in what has come to be known as the Cranfield para-
digm. Given a fixed document collection, IR systems 
provide their results for certain information needs. Then, 
they are evaluated against the so called ground truths, 
which contain information about the documents that 
should ideally be retrieved by a system. Usually, these 
ground truths take the form of a matrix, containing the 
relevance, assessed by humans, for each document to an 
information need (traditional values are "irrelevant", "re-
levant" and "highly relevant"). 

These evaluations have been carried out mostly in Text 
Information Retrieval, with the TREC conferences as its 
flagship [1]. Music Information Retrieval (MIR), on the 
other hand, is a relatively young discipline, and this kind 
of evaluations has been somewhat scarce until the arrival 
of MIREX in 2005 as a first attempt to perform TREC-
like evaluations in the musical domain [2]. Music IR dif-

fers from Text IR in many aspects [3], making the con-
struction and maintenance of such test collections very 
difficult. In particular, it is unclear what relevance level 
to assign to a document for a given information need. 

In the case of melodic similarity, some studies indicate 
that relevance is continuous [4]. Single melodic changes 
such as moving a note up or down in pitch, or extending 
or shortening its duration, are not perceived to change the 
overall melody. Nonetheless, the relationship with the 
original melody is gradually weaker as more changes are 
applied to it. There does not seem to be common criteria 
to split the degree of relevance into different levels, so 
assessments with a fixed scale seem inappropriate.  

Ground truths based on partially ordered lists at-
tempted to handle this problem with relevance assessment 
by the beginning of 2005 [5]. Instead of having docu-
ments with a fixed relevance level, these ground truths 
are lists with ordered groups of documents. The earlier a 
group appears in the list, the more relevant its documents 
are, and documents within the same group are assumed to 
be equally relevant. That way, the ideal retrieval should 
return these documents in order of relevance, although 
permutations within the same group are allowed. Because 
traditional effectiveness measures such as precision or 
recall need relevance assessments with a fixed scale, a 
new measure, called Average Dynamic Recall (ADR) [6], 
was developed also in 2005 to evaluate retrieval systems 
with ground truths based on partially ordered lists. 

The first edition of MIREX had a task for symbolic 
melodic similarity [7], where 11 ground truths based on 
partially ordered lists were used along with ADR to eva-
luate state-of-the-art retrieval systems. Similar methods 
were used in the 2006 and 2007 editions, as well as in 
private evaluations external to MIREX, such as [8] [9] 
[10] and [11]. However, we are not aware of any meta-
evaluation work addressing the correctness or improve-
ment of these ground truths. Indeed, a thorough examina-
tion shows that the lists have some inconsistencies as to 
the arrangement and aggregation of documents in groups. 

The paper is organized as follows. In Section 2 we re-
view the methodology followed to create these ground 
truths. Section 3 unveils some inconsistencies and shows 
that it is not possible to ensure fully-consistent lists. In 
Section 4 we propose several alternatives to set up the 
groups, and present a measure to quantify consistency. 
Section 5 shows the results of the alternatives proposed 
and revise the MIREX 2005 evaluation using them. The 
paper ends with conclusions and lines for future work. 
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2. CURRENT METHODOLOGY 

The original method to create ground truths based on par-
tially ordered lists, as described in [5], was used with the 
RISM A/II collection [12], which at the time contained 
about half a million musical incipits. The methodology 
followed may be divided in four steps: filtering, ranking, 
arranging and aggregating. 

First, several features were calculated for each docu-
ment (musical incipits in this case), such as pitch range, 
interval histogram or motive repetitions. Filtering by 
these features, the initial collection was gradually nar-
rowed down to under 300 incipits per query. Then, clear-
ly irrelevant incipits were manually excluded, and several 
melodic similarity algorithms were used to add supposed-
ly relevant incipits. Second, and once the lists had about 
50 candidate incipits each, 35 experts ranked them in 
terms of melodic similarity to the corresponding query: 
the more similar a candidate was to the query, the higher 
it had to be ranked in the list. Incipits that seemed very 
different from the query could be left unranked. Third, 
incipits were arranged according to the median of their 
rank sample. If two incipits had the same median rank, 
the means were used to resolve the tie. Therefore, the in-
cipits that on average were ranked higher by the experts 
appeared with higher ranks in the ordered list. Fourth, in-
cipits whose rank samples were similar were aggregated 
within a group, so as to indicate that they were similarly 
relevant to the query. Thus, a retrieval system could re-
turn them with their rank swapped and still be considered 
correct. The Mann-Whitney U test (also known as Wil-
coxon Rank Sum test, see Appendix) [13], was used to 
tell whether two incipits had similar ranks or not. 

 
Figure 1. First three results for query 000.111.706-1.1.1. Top to bottom: 
same incipit as the query, incipit 000.113.506-1.1.1 and incipit 
000.116.073-1.1.1. 

The ground truths generated have some odd results, as 
already noted in [5] and [9]. For example, in the list for 
the query incipit 270.000.749-1.19.1, the first result is the 
same as the query; the second one (incipit 270.000.746-
1.41.1) is written with a different clef, but otherwise iden-
tical to the query; and the third result (incipit 
270.000.748-1.19.1) is the same as the first half of the 
query. Although the experts were told to disregard these 
kinds of changes in the melody, these three results ended 
up in different groups, indicating that their relevances to 
the query were significantly different. Also, incipits with 
virtually the same changes in the melody were sometimes 
placed in different groups, as it occurs with incipits 
000.113.506-1.1.1 and 000.116.073-1.1.1 with respect to 
the query 000.111.706-1.1.1 (see Figure 1). 

These rare results seem to be caused by the second 
step of the methodology, when experts ranked the results. 

Though important, we will not focus on them in this pa-
per. There are other problems with this kind of ground 
truths that have not been addressed yet and lead to incon-
sistent result lists and incorrect evaluation. These incon-
sistencies arise at steps three and four, and they are the 
ones we address here. 

3. INCONSISTENCIES DUE TO 
ARRANGEMENT AND AGGREGATION 

We thoroughly examined the 11 ground truth lists used in 
the evaluation of the symbolic melodic similarity task in 
MIREX 2005 (Eval05 for short), and found that there are 
pairs of incipits contained in the same group of relevance 
although there is a significant difference between the 
ranks the experts gave them (i.e. an intra-group inconsis-
tency). For example, incipits 453.001.547-1.1.3 and 
451.509.336-1.1.1, for query 190.011.224-1.1.1, are in 
the same group (see Figure 2), but their difference is sig-
nificant. That means that if a retrieval system returned 
them in reverse order it would be considered correct, de-
spite the experts clearly ranked them differently. On the 
other hand, incipits for which no significant difference 
could be found form part of different groups (i.e. an inter-
group inconsistency). Incipits 700.000.686-1.1.1 and 
450.034.972-1.1.1 for the previous query are an example 
(see Figure 2). Similarly, if a retrieval system returned 
them in reverse order, it would not be considered correct, 
despite no difference was found in the experts rankings. 

These inconsistencies appear throughout the lists, and 
they are caused by the initial arrangement and the aggre-
gation function used in the third and fourth steps. 

3.1 Arrangement 

In the third step of the methodology, incipits are arranged 
according to the median and mean ranks they were given 
by the experts. Because the Mann-Whitney U test is used 
later on to find statistically significant differences be-
tween the incipits’ ranks, using central-tendency meas-
ures such as the median and the mean might not be ap-
propriate to arrange the results, because they do not ac-
count for the dispersion in the samples. 

Although rare, this phenomenon may happen: we ex-
amined the 11 ground truths of the Eval05 collection and 
found it. For example, incipits 850.014.902-1.1.1 and 
451.002.538-1.1.1 are ranked 20th and 22nd, respective-
ly, for query 400.065.784-1.1.1. Their sample median 
ranks are 12 and 12.5, so the first one is ranked higher. 
However, a 1-tailed Mann-Whitney U test shows that it is 
highly probable for the true medians to be ordered the 
other way around, so the second incipit should be ranked 
higher than the first one. 

3.2 Aggregation 

In the fourth step of the methodology, incipits are aggre-
gated in groups according to their relevance to the query. 
The rationale originally used by the aggregation function 
is as follows: traverse from top to bottom the list of inci-
pits already arranged by median and mean, and begin a 
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4.1 Measure of list consistency 

To evaluate the 5 alternative functions presented above, 
and compare them with the original one, we developed a 
measure of consistency based on Average Dynamic Re-
call [6]. ADR is the main effectiveness measure used to 
evaluate retrieval systems against ground truths based on 
partially ordered lists, so we followed its same idea to 
measure their consistency, and hence the correctness of 
the evaluation itself. ADR measures the average recall 
over the first n documents, where n is the number of doc-
uments in the ground truth. At each point, the set of rele-
vant documents allowed comprises all previous docu-
ments in the list plus all those in the same group as the 
pivot, because they are supposed to be equally relevant. 

With a ground truth list like 〈(A, B), (C), (D, E, F)〉, 
and a retrieval list such as 〈B, C, A, G, H, D〉. ADR would 
be calculated as in Table 1. In the first two positions, ei-
ther document A or B is considered correct because they 
are in the same relevance group, so both of them can be 
expected. At position 3, both A and B are expected be-
cause they appear before in the list, and only C is added 
when expanding the second group. However, when posi-
tion 4 is reached, every document in the third group may 
be expected. Recall is calculated at each position, and the 
overall ADR is the mean average of these recalls, 0.753 
in this case. 

Position Retrieved Expected Correct Recall 
1 B A,B 1 1 
2 B,C A,B 1 0.5 
3 B,C,A A,B,C 3 1 
4 B,C,A,G A,B,C,D,E,F 3 0.75 
5 B,C,A,G,H A,B,C,D,E,F 3 0.6 
6 B,C,A,G,H,D A,B,C,D,E,F 4 0.667 

Table 1. Example of ADR calculation. 

To measure the consistency, the list is traversed from 
top to bottom, expanding the group corresponding to the 
pivot incipit. At each position, it is calculated the percen-
tage of incipits expanded that are actually correct accord-
ing to the experts rankings. At the end, the mean of those 
percentages is calculated. Therefore, a final value of 1 
means that every expansion is correct and hence the list is 
fully-consistent. A value of 0 means that every expansion 
is incorrect. The pivot incipit is never considered for the 
calculation, because it will always be correctly expanded. 

There are two types of incorrect expansion: false posi-
tives (i.e. an incipit is included in the set of expected, but 
it is significantly different from the pivot) and false nega-
tives (i.e. an incipit is not included in the set of expected, 
but it is not significantly different from the pivot). Note 
that false positives correspond to intra-group inconsisten-
cies, and false negatives correspond to inter-group incon-
sistencies. In the example above, imagine A and C are not 
significantly different, but D and F are. In that case, the 
expansion at position 1 is missing incipit C (a false nega-
tive due to an inter-group inconsistency between groups 1 
and 2). Also, the expansion at position 4 would incorrect-
ly include incipit F (a false positive due to an intra-group 

inconsistency in group 3). Note that at position 2, C 
would not be correctly expanded, as it is still significantly 
different from B. Note also that position 6 is not consi-
dered, as there is actually no expansion at the end of the 
list. In this case, the overall list consistency would be 
0.86 (see Table 2). 

Position 
Correct 

expansion 
Actual 

expansion 
% of correct 
expansions 

1 B,C B 0.5 
2 A A 1 
3 A,B A,B 1 
4 A,B,C,E A,B,C,E,F 0.8 
5 A,B,C,D,F A,B,C,D,F 1 
Table 2. Example of list consistency calculation. 

As before, we can measure the inconsistencies using 
both 2-tailed and 1-tailed tests. In the former, two incipits 
are expected to be in the same expanded set if a 2-tailed 
Mann-Whitney U test is not rejected. In the latter, they 
are expected to be in the same expanded set if none of the 
two 1-tailed tests is rejected (i.e. the true median rank of 
one incipit seems to be neither less nor greater than the 
other’s). Note that both the 2-tailed and the 1-tailed 
measures account for inconsistencies originated by the 
aggregation function but only the 1-tailed version ac-
counts for inconsistencies due to the simple arrangement 
by median and mean. We call these two measures ADR-2 
and ADR-1 consistency. 

Because of the non-transitivity problem, lists are not 
expected to have an overall consistency of 1. However, it 
could be maximized by changing the aggregation func-
tion, thus improving the correctness of the evaluation. 

5. RESULTS 

The five alternative aggregation functions proposed back 
in Section 4 were used to re-generate the 11 lists in the 
Eval05 collection and compare them with the original 
function All-2. We used the ADR-1 consistency measure 
to calculate the overall consistency of each list. The re-
sults are in Figure 3 and in Table 3. 

 
Figure 3. ADR-1 consistency for the six aggregation functions. 
Solid circles indicate the mean value. Notches mark the 95% confidence 
interval around the median. 

As can be seen, the original function, All-2, is outper-
formed by all of the five alternatives proposed. All-2 
leads to an average consistency of 0.844, which is the 
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smallest of the six. However, Prev-2 and All-1 are not 
significantly better according to a 1-tailed t-test at the 
0.10 significance level. Moreover, the All functions lead 
to results with more variability, while the Any functions 
are more stable in terms of consistency. These results in-
dicate that if the lists were generated with the Any-2, Any-
1 or Prev-1 aggregation functions, they would be more 
consistent, and so would be the evaluation with them. 

Interestingly, the relative order for each of the three 2-
tailed and 1-tailed functions is maintained. That is, the All 
functions perform the worst, followed by Prev and Any, 
which perform the best both in terms of average consis-
tency and variability. 

Our guess back in Section 3.2 was that the larger the 
sizes of the relevance groups are, the more inconsistent 
the lists are too. To examine this, we calculated the mean 
number of incipits per group for each of the 11 resultant 
lists. Figure 4 and Table 3 show the results. 

 
Figure 4. Mean number of incipits per group for each aggregation func-
tion. Solid circles indicate the mean value. Notches mark the 95% con-
fidence interval around the median. 

As expected, the All functions lead to larger groups, 
because an incipit goes to a new group only if it is differ-
ent from all the previous ones. On the other hand, the Any 
functions generate smaller groups, because only one dif-
ference needs to be found to place the incipit in a new 
group. Similarly, the Any-2 function leads to significantly 
smaller groups than All-2 at the 0.10 significance level, 
and Any-1 is significantly smaller at the 0.05 level.  

Aggregation 
function 

ADR-1 
consistency 

Incipits 
per group 

Pearson’s r 

All-2 0.844 3.752 -0.892***  
Any-2 0.913**  2.539* -0.862***  
Prev-2 0.857 3.683 -0.937***  
All-1 0.881 3.297 -0.954***  
Any-1 0.926**  1.981**  -0.749***  
Prev-1 0.916* 2.858 -0.939***  

Table 3. Summary of results. * for significant difference at the 0.10 lev-
el, **  at the 0.05 level and ***  at the 0.01 level. 

Following these results, there seems to be a direct rela-
tionship between the size of the groups and the overall 
consistency of the lists. We checked this by calculating 
the Pearson’s r correlation coefficient between the two 
variables and, as expected, there is a strong negative cor-
relation, indicating that the size of the groups affects the 

consistency of the lists (see Table 3). This is why the All 
functions perform worse and the Any functions perform 
better: the All versions generate larger groups. Doing so, 
they allow for many incorrect expansions in the form of 
false positives due to intra-group inconsistencies. 

5.1 MIREX 2005 Results Revisited 

In the 2005 edition of the MIREX evaluations, there was 
a task for symbolic melodic similarity that used 11 
ground truths based on partially ordered lists (what so far 
we have called the Eval05 collection). In particular, 7 dif-
ferent systems were evaluated. 

We calculated the ADR score of each system with the 
lists generated by the five alternative aggregation func-
tions (see Table 4). Every alternative evaluation produces 
worse results than the original, except for Prev-2, which 
leads to the same scores. Indeed, every system performed 
worse for every alternative set of ground truths, with re-
ductions in ADR score of up to 12%. 

System All-2 Any-2 Prev-2 All-1 Any-1 Prev-1 
GAM 0.66 0.59 0.66 0.624 0.583 0.605 

O 0.65 0.607 0.65 0.643 0.593 0.639 
US 0.642 0.604 0.642 0.639 0.594 0.628 

TWV 0.571 0.558 0.571 0.566 0.556 0.564 
L(P3) 0.558 0.52 0.558 0.54 0.515 0.534 
L(DP) 0.543 0.503 0.543 0.511 0.494 0.506 
FM 0.518 0.498 0.518 0.507 0.483 0.507 

τ - 0.81 1 0.81 0.714 0.714 

Table 4. ADR results of the systems that participated in MIREX 2005 
with the lists resulting from the alternative aggregation functions. GAM 
= Grachten, Arcos and Mántaras; O = Orio; US = Uitdenbogerd and 
Suyoto; TWV = Typke, Wiering and Veltkamp; L(P3) = Lemström 
(P3), L(DP) = Lemström (DP); FM = Frieler and Müllensiefen. Best 
scores appear in bold face. 

More importantly, the relative order of the systems, in 
terms of their mean ADR score, is also modified. For ex-
ample, with the original lists GAM was the best system, 
followed by O and US. With the Any-2 lists, O is ranked 
first, before US and GAM. However, with the Any-1 lists 
the order is reversed: US, O and GAM. We calculated 
Kendall’s τ correlation coefficient to measure the differ-
ences in the ranking of systems (see Table 4). A value of 
1 means that two rankings are equal, and a value of -1 
means that they are reversed. Except for Prev-2, which 
produces the same results as All-2, the correlation coeffi-
cients tell us that the resulting rankings are different. 

6. CONCLUSIONS AND FUTURE WORK 

With their appearance in 2005, ground truths based on 
partially ordered lists represented a big leap towards the 
scientific evaluation of Music Information Retrieval sys-
tems, particularly for melodic similarity tasks. They have 
been widely accepted and used by the community, both in 
MIREX and other private evaluations. 

We have revised the methodology used to generate 
these lists, unveiling some unaddressed problems. We 
have shown that the lists generated have inconsistencies, 
and propose several alternatives to minimize them. Using 
ADR-1 consistency, we have shown that our alternatives 

All-2 Any-2 Prev-2 All-1 Any-1 Prev-1
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lead to better results. We have also seen how would have 
changed the evaluation of the symbolic melodic similarity 
task in MIREX 2005, showing that the absolute effec-
tiveness figures would have changed notably, and the 
ranking of systems would have been different too. 

More meta-evaluation work in this line has to be car-
ried out to improve the evaluation in MIR. In this paper 
we have focused on the last two steps of the methodolo-
gy, analyzing the evaluation collection used in MIREX 
2005. Other test collections should be analyzed, and the 
first two steps of the methodology should be studied as 
well because they are known to produce odd results too. 
One of the reasons may be the subjectivity on the judg-
ments that the loose definition of the task can lead to, as 
already noted in [2] and [3]. More precise definitions of 
the information need sought by these tasks would surely 
lead to more coherent judgments by the experts.  

One point that has not been discussed in the literature 
either is the significance level used by the aggregation 
function, which was 0.25 for the original lists. Our meas-
ure of consistency also works with a significance level to 
decide whether incipits are correctly arranged or not, and 
though they should probably be the same, we should 
study what value is more appropriate in both cases. 

Finally, the lists generated with the alternative aggre-
gation functions show diverse characteristics, mainly in 
terms of group sizes and differences among incipits in the 
same group. Other effectiveness measures, besides ADR, 
could be proposed to exploit these characteristics, while 
accounting for the unavoidable inconsistencies. 
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APPENDIX. THE MANN-WHITNEY U TEST 

The Mann-Whitney U test [13], or Wilcoxon Rank-Sum 
test, is a non-parametric statistical test to assess whether 
the true medians of two independent samples, say X and Y, 
are significantly different or not. Consider X as the sam-
ple of ranks of 600.258.342-1.1.2 for query 600.053.481-
1.1.1, and Y the ranks given to incipit 850.020.721-1.1.1. 
The test statistic U is calculated as: 

U=|X|·|Y|+ |Y|�|Y|+1�
2

-� rank�y
i
�

|Y|

i=1

 

where rank(yi) is the rank that the i-th number of Y would 
have in the set X ∪ Y. In our example, U = 131. The criti-
cal value is calculated depending on the alternative hypo-
thesis H1. For a 2-tailed test, H1 would be that the true 
medians are different, but if a 1-tailed is chosen instead 
H1 would be that the true median of X is less than the true 
median of Y (or the other way around). In the 2-tailed 
case, the rejection region is spread around both sides of 

the critical value, while in the 1-tailed case it is only in 
one side. Therefore, the 2-tailed case accounts for 2-way 
differences (X > Y or X < Y), while the 1-tailed case 
looks only for 1-way differences (X < Y in our case). 

With a significance level of 0.25, the critical value for 
the 2-tailed test is U2 = 121, while for the 1-tailed test it is 
U1 = 136. Thus, the 1-tailed null hypothesis would be re-
jected because U < U1, but the 2-tailed would not because 
U > U2. In this case, the 2-tailed test fails to detect that 
the medians are, in fact, different. Because the 1-tailed 
test looks for a signed difference, it is more powerful and 
rejects the null hypothesis (H0 = X ≤ Y in our example). 
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ABSTRACT

This paper describes a tempo induction and beat track-
ing system based on the efficient strategy (initially intro-
duced in the BeatRoot system [Dixon S., “Automatic ex-
traction of tempo and beat from expressive performances.”
Journal of New Music Research, 30(1):39-58, 2001]) of
competing agents processing musical input sequentially and
considering parallel hypotheses regarding tempo and beats.
In this paper, we propose to extend this strategy to the
causal processing of continuous input data. The main rea-
sons for this are threefold: providing more robustness to
potentially noisy input data, permitting the parallel consid-
eration of a number of low-level frame-based features as
input, and opening the way to real-time uses of the system
(as e.g. for a mobile robotic platform).

The system is implemented in C++, permitting faster
than real-time processing of audio data. It is integrated
in the MARSYAS framework, and is therefore available
under GPL for users and/or researchers.

Detailed evaluation of the causal and non-causal ver-
sions of the system on common benchmark datasets show
performances reaching those of state-of-the-art beat track-
ers. We propose a series of lines for future work based on
careful analysis of the results.

1. INTRODUCTION

Computational tracking of musical beats from audio signal
is a very important feature to automated music analysis. In
the context of Music Information Retrieval applications,
such as e.g. automatic genre classification, music similar-
ity computation, autotagging, or query-by-example, recent
literature indicates that audio descriptors of higher level of
abstraction are needed [1]. It is a relatively safe bet to say
that reliable beat trackers will be helpful in this endeavour.

Recent evaluations of existing beat tracking systems (see
e.g. MIREX 1 ) show that, although progresses have unde-
niably been achieved in the last years, there is still room for

1 http://www.music-ir.org/mirex/2009/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

improvement. Many open directions to beat tracking re-
search are also detailed in a recent and very thorough eval-
uation in [6]. Particularly, there is to date, to our knowl-
edge, no real-time and open-source audio beat tracker avail-
able.

Very many papers in the literature address the problem
of tempo induction and beat tracking of audio signals. Pro-
viding a review of existing systems and algorithms is out
of the scope of this paper. Interested readers are referred
to [8] for a review of rhythm description systems.

It is however important to mention the main functional
aspects commonly found in beat tracking algorithms. A
generic description includes the following computing
blocks: (1) Audio feature extraction, (2) Induction (or “Pre-
tracking” herein), and (3) Beat Tracking per se.

It is also interesting to notice that recent systems, e.g.
[12], [7], [3], [14], tend to implement beat tracking as a
repeated induction process, in which tempo and beats are
computed on consecutive windows of signal (usually a few
seconds, where it is usually considered that the tempo is
constant), with overlap, and in which estimating tempo
evolution and beat positions is done by connecting obser-
vations between windows. We argue that a problem with
this approach is a potential computational overload, the in-
trinsic difficulty to adapt these tracking strategies to causal
and real-time scenarios, as well as lack of continuity be-
tween windows. Instead, we propose to follow the track-
ing strategy initially proposed in the system BeatRoot [4],
where competing agents process musical input data sequen-
tially and consider parallel hypotheses regarding tempo and
beats.

We propose to differ from BeatRoot’s strategy by imple-
menting a causal decision process over competing agents
(instead of taking decisions after the whole data has been
analysed). Further, we extend the algorithm to the process-
ing of continuous input data. Our aim is to provide more
robustness to potentially noisy input data, and opening the
way to (faster than) real-time uses of the system (as e.g.
for a mobile robotic platform). The system is implemented
in C++ and the source code is available as GPL. Although
this paper does not provide experiments with respect to the
usefulness of diverse low-level features as input to track-
ing beats [9] [2], it should be noted that a particularity of
the proposed architecture is precisely to be open to such
experiments. Another difference with BeatRoot lies in an
attempt to not bias results towards faster metrical levels.
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Figure 1. IBT block diagram.

In section 2, we describe one-by-one the functional
blocks of IBT, 2 a tempo induction and beat tracking al-
gorithm in the line of BeatRoot [4]. The algorithm follows
a modular workflow composed by: (1) an audio feature
extraction module, “parsing” the audio data into a continu-
ous 3 feature sequence assumed to convey the predominant
information relevant to rhythmic analysis; followed by (2)
a pre-tracking module, which outputs initial hypotheses re-
garding possible beat periods and phases; followed by (3)
a beat tracking module, which propagates hypotheses, pro-
ceeds to their online creation, killing and ranking, and out-
puts beats on-the-fly (see Figure 1). Section 3 reports on
a thorough evaluation of the system. Section 4 proposes
some practical hints for those intending to use the system,
and/or make changes to its code. Section 5 discusses the
system performances and proposes lines for future work.

2. SYSTEM DESCRIPTION

2.1 Audio Feature Extraction

According to recent comparative studies evaluating alter-
native onset detection functions [5] and the accuracy of
several low-level features applied to beat tracking purposes
[9], we selected the spectral flux as the audio feature over
which all further processing will be done.

Our implementation follows that proposed in [5]. Par-
ticular parameters are: Hamming window, window size of
1024 samples (23.2ms at a sampling rate ofFs = 44100Hz),
and 50% overlap.

In order to smooth the onset detection function and re-
duce false detections, a low-pass Butterworth filter is ap-
plied on the extracted spectral flux values. As a way to
avoid phase distortion the spectral flux values in the induc-
tion window are filtered in both the forward and reverse
directions, resulting in a precisely zero-phase distortion.

2.2 Pre-tracking

The system is initialized on an induction window, set to a
length of 5s. The following sections (until Section 2.3) re-
port on computations done on the induction window only.

2 Standing for INESC Porto Beat Tracker.
3 i.e. sampled, with typical sampling rate in the tenth of msec

During the processing of that bit of data, the system does
not output beats. At the end of that pre-processing step, hy-
potheses regarding periods, phases and scores (Pi, φi, Si)
of a number of beat agents are passed along to the beat
tracking module.

The length of the induction window is a high-level pa-
rameter that the user can define.

2.2.1 Period Hypotheses Induction

The first step in the pre-tracking stage is to compute a con-
tinuous periodicity function, based on the spectral flux au-
tocorrelation, along time-lags τ :

A(τ) =
m∑
n=0

SF (n)SF (n+ τ), (1)

where SF (n) is the (smoothed) spectral flux for frame n,
and m is the induction window size (in frames).

The periodicity function is then parsed by an adaptive
peak-picking algorithm to retrieveN global maxima, whose
time-lags constitute the initial set of period hypotheses Pi :{

Pi = arg maxi(A(τ)), i = 1, ..., N

A(τ) > δ ∗ rms(A(τ))
M

, (2)

where δ is a fixed threshold parameter, empirically set to
0.75, and M is the chosen tempo range, defined to [50, 250]
BPM (i.e. periods of 240 ms to 1.2 s), at a 6ms granularity.

2.2.2 Phase Hypotheses Selection

For each one of the period hypothesis Pi, a number of
phase hypotheses φji (where j is the index of the alternative
hypotheses for the i-th period hypothesis) are considered
among detected onsets (detection is done on the induction
window only, and computed as proposed in [5]).

For each period hypothesis, we generate an isochronous
sequence of beats (a “beat train template”) of constant pe-
riod for each possible phase φi, with the same length as the
induction window.

Using a simplified tracking procedure (see Section 2.3),
considering a constant tempo and phase, we then select the
beat train template that best matches the detected onsets
and retrieve its corresponding phase [10].

At this point, we have computed a set of period and
phase hypotheses, (Pi, φi). The next step is to compute a
score for each hypothesis and to rank them.

2.2.3 Agents Setup

A raw score Srawi is given to each (Pi, φi) hypothesis, cor-
responding to the sum of time deviations between elements
of the chosen beat train template and local maximum in the
spectral flux (see eq. (10)).

Scores are then updated via the consideration of possi-
ble metrical relationships between each pair of period hy-
potheses nij . As proposed in [4], we define a score Sreli

that favors candidates whose periods are in integer rela-
tionships:

Sreli = 10 ∗ Srawi +

N∑
j=0
j 6=i

r(nij) ∗ Srawj (3)

292

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



r(n) =


6− n, 1 ≤ n ≤ 4

1, 5 ≤ n ≤ 8

0, otherwise

(4)

Finally, we define the final scores, Si, as follows:

Si = Sreli ∗max(Sraw) (5)

The estimated hypotheses (Pi, φi, Si) can now be used
to initialize a set of N beat agents, which will start their
beat tracking activity, as described in the following sec-
tions.

2.3 Beat Tracking

Following the pre-tracking stage described in the previous
sections, the process of on-line beat tracking will consist
on the supervision of the incoming spectral flux values,
constantly handling any tempo/timing variations, while
keeping a good balance between reactiveness (speed of re-
sponse to system changes) and inertia (stability of the sys-
tem). As illustrated in Figure 1, this process is handled by
a multi-agent system mediated by a central referee.

2.3.1 Agents Operation

Initialized using the pre-tracking (Pi, φi, Si) hypotheses,
an initial set of N beat agents will start to propagate, in a
causal manner, predictions based on incoming data, by rep-
resenting alternative hypotheses regarding beat positions
and tempo. Each prediction is evaluated with respect to its
deviation (i.e. error) to the local maximum in the observed
data, within a two-level tolerance window. This is a stage
where the system differs significantly from BeatRoot: al-
though the tolerance windows are akin to [4], processing
continuous data is necessarily different here than onsets;
and the generation of new agents also differs as we include
more than one new hypothesis, accounting more specifi-
cally for tempo and/or timing deviations.

This two-level tolerance window consists in an inner
tolerance region, Tin ∈ [T lin, T

r
in], T lin = T rin = 46.4

ms, for handling short period and phase deviations, and
an asymetric outer tolerance region, Tout ∈ [T lout, T

l
in[ ∪

]T rin, T
r
out], with a left margin T lout = 0.2 ∗ Pi and a right

margin T rout = 0.4 ∗ Pi, see Figure 2. This allows to con-
template eventual sudden changes in tempo expression (the
asymmetry reflects the higher tendency for tempo reduc-
tions than increases).

Consequently, two alternative scenarios arise. A first
scenario corresponds to a local maximum found inside the
inner tolerance window. In such case, the agent’s period
and phase are compensated by a fraction of that error:{

Pi = Pi + 0.25 ∗ error
φi = φi + Pi + 0.25 ∗ error

,∃ m ∈ Tin. (6)

A second scenario considers bigger deviations, with lo-
cal maxima in the outer tolerance window. On this con-
dition the agent under analysis keeps its period and phase
but, in order to cope for potential sudden variations of tempo
and/or timing, it generates three children {C1, C2, C3} to

follow three alternative hypotheses, considering alternative
possible deviations of its own current hypothesis: timing
(phase), tempo (period), or timing and tempo:

C1 :

{
P 1
C = Pi

φ1C = φi + Pi + error
,∃ m ∈ Tout, (7)

C2 :

{
P 2
C = Pi + error

φ2C = φi + Pi + error
,∃ m ∈ Tout, (8)

C3 :

{
P 3
C = Pi + 0.5 ∗ error
φ3C = φi + Pi + 0.5 ∗ error

,∃ m ∈ Tout. (9)

To keep the competitiveness, these new agents inherit a
portion (80% in the current implementation) of their father
current score.

Ultimately, alternative possible situations may termi-
nate an agent operation, at any analysis frame: replace-
ment, redundancy, obsolescence, or loss. An agent is killed
if it is currently the worst agent in a pool of agents that has
reached a maximum number (limited to 30 agents), and if
its score is lower than a newly created agent. In order to in-
crease the algorithm efficiency, an agent is killed if it is du-
plicating the work of another agent whose score is bigger
(their periods do not differ by more than 11.6ms and their
phases no more than 23.2ms). An agent is also terminated
if the difference between its score and the best agent’s is
higher than 80% of the best score. Finally, an agent may
be also killed if it seems to be “lost,” suggested by a high
number (i.e. 8) of consecutive beats predictions outside its
inner tolerance window.

2.3.2 Agent Referee

In order to determine the best agent at each data frame,
a central Agent Referee keeps a running evaluation of all
agents at all times. This is conducted by scoring the beat
predictions of each agent with respect to its goodness-of-fit
to incoming data.

The following evaluation function, ∆s, is applied around
each beat prediction bp, which evaluates distance between
beat prediction and the local maximum m inside either the
inner or the outer window (see Figure 2):{

∆s =
(
1− |error|

T r
out

)
.( Pi

Pm
).SF (m),∃ m ∈ Tin

∆s = −
( |error|
T r
out

)
.( Pi

Pm
).SF (m),∃ m ∈ Tout,

(10)

where Pm is the maximum admitted period, in frames. The
Pi

Pm
fraction is used to normalize the score function by the

period as a way to deflate faster tempi hypotheses, which
would otherwise tend to get higher scores due to a higher
number of beat predictions. Note also the fact an agent
score can undergo positive as well as negative updates.

2.3.3 Non-Causal Version

Whereas causal processing retrieves the beats of the cur-
rent best agent, at any time-frame, in the non-causal ver-
sion only the last best agent is considered. For such, every
agents keep an history of their beat predictions, attached
to the one inherited form their relatives, and transmit it to
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Figure 2. Score function around a beat prediction, bp, with
Pi = 120BPM . Example of local maximam found in the
considered inner tolerance window Tin.

future generations. Distinctively to the former, this process
distinguishes the family of agents whose cumulative score
prevails for the whole piece.

In the non-causal version, after pre-tracking and intial
agents setup, the analysis “jumps back in time,” and beat
tracking is performed from the beginning of the signal.

3. EVALUATION

In this section we report on performance evaluation of the
proposed algorithm with respect to 2 tasks: tempo esti-
mation and beat tracking. In order to ease comparison to
current state-of-the-art systems, we use current benchmark
datasets and evaluation measures.

3.1 Datasets

IBT was evaluated using two distinct datasets. For mea-
suring global tempo estimation performance, we use the
ISMIR 2004 Tempo Induction Contest data [11]. It con-
sists on 3199 tempo-annotated instances, divided in three
categories: Ballroom, Loops, and Songs.

For the beat tracking evaluation, we use 1360 beat-label-
ed musical pieces (previous use of this dataset is reported
in [9] and [6]).

3.2 Evaluation Measures

The system estimation of tempo is evaluated via the two
metrics proposed in [11]: a1 (estimations are considered
correct only if they are equal to the annotated tempo) and
a2 (correct estimations also include related metrical levels
at 2, 3, 1

2 , and 1
3 of the ground-truth). Both metrics allow a

4% tolerance window.
Beat-tracking performances are measured via the

P-score [13], with a 20% tolerance around median Inter-
Beat-Interval (IBI) annotations (as in MIREX 2006 Audio
Beat Tracking Contest and [6]).

In order to evaluate IBT’s robustness to noise distor-
tions, we also applied a number of signal degradations:
downsampling, GSM encoding/decoding, fitering, volume
adjustment, addition of reverb and white noise (see [11] for
more details).

3.3 Global Tempo Estimation

Table 1 presents accuracies obtained for global tempo esti-
mation, with regular and distorted data. The global tempo
was measured as the median IBI of final beat predictions,
i.e. after beat tracking the whole piece. We also report
accuracies obtained before tracking, at the output of the
pre-tracking stage, where we select the period hypothesis
with highest rank.

Condition
Ballroom Loops Songs Overall
a1 a2 a1 a2 a1 a2 a1 a2

IBT(c) 48 83 41 73 30 73 40 76
IBT(c) dist. 44 76 40 72 31 66 38 71
IBT(nc) 49 90 37 76 36 82 41 83
IBT(nc) dist. 48 82 37 74 34 74 40 77
pre-tracking 42 75 40 74 29 71 37 73

Table 1. Global tempo estimation accuracies, in %; “(c)”
and “(nc)” stand for the causal and non-causal versions
of the system, repectively; “dist.” indicates distorted data
(see 3.2).

Condition
Metrical relation to annotation (theor. max)

1:1(100) 2:1(50) 1:2(50) 3:1(33)1:3(33) all
IBT(c) 74(558) 47(282) 46(201) 40(14) 27(9) 57
IBT(nc) 81(613) 46(266) 45(238) 40(15) 24(10) 61
1beat(c) 80(544) 49(354) 40(109) 39(13) 26(7) 59
1beat(nc) 88(618) 47(321) 42(153) 38(18) 26(6) 64
2beats(c) 79(1087) 53(20) 28(2) — (0) — (0) 72
2beats(nc) 82(1080) 47(44) 37(13) — (0) — (0) 74
dist.(c) 73(547) 46(247) 45(164) 39(13) 20(9) 55
dist.(nc) 81(599) 45(255) 44(196) 37(17) 22(9) 59
dind.(c) 72(511) 48(369) 45(128) 38(22) 23(5) 55
dind.(nc) 81(582) 47(347) 44(168) 37(15) 29(4) 60
BeatRoot 81(613) 48(535) 44(7) 34(41) N/A 60
BR 2beats 80(1245) 45(10) 32(4) 33(3) N/A 77

Table 2. Beat tracking P-scores by metrical relation with
the ground-truth, under different conditions; “(c)” and
“(nc)” stand for the causal and non-causal versions of
the system, repectively; “dist.” indicates distorted data
(see 3.2); “dind.” stands for “dumb” induction (see text).
The first line of the table indicates the metrical relation
found between the algorithm output and the ground-truth
and the corresponding theoretical maximum P-Score. The
format of other lines is as follows: {P-Score (number of
excerpts tracked at each metrical level)}.

3.4 Beat Tracking

Table 2 provides results of beat tracking experiments un-
der diverse conditions. The first two lines show results of
the causal and non-causal system under regular conditions.
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The next four lines refer to beat tracking with biased ini-
tialization, either giving the annotated first beat, or giving
the first two beats. This help evaluating the performance of
beat tracking per se, independently of the performance of
tempo induction and phase estimation. It is also convenient
in order to compare with BeatRoot performances [6].

Results were grouped with respect to metrical relations
between the system outputs and the ground-truth annota-
tions. This provides useful information regarding the sys-
tem tracking performance regardless of it having choosen
the “correct” metrical level. (Note that given the eval-
uation metrics used (the P-score), the theoretical perfor-
mance maximum is different for different metrical rela-
tions between output and annotations.)

All results were generated with the same default param-
eters concerning reactiveness vs. stability of the system. In
terms of computational time, IBT took around 11% of the
dataset length to process it non-causally, and about 10% to
do it causally. (The tests were run on a Core2Duo 2.8 GHz
Windows Vista (32-bit) machine.)

4. PRACTICAL USE

IBT was developed in C++ and is freely available, un-
der GPL licensing, in MARSYAS (http://marsyas.
info/). (At the date of writing, revision 3827.) The algo-
rithm includes three main modes of operation, executable
with the following commands:

$ ./ibt input.mp3 (causal mode (default));
$ ./ibt -mic (live mode (microphone captured data));
$ ./ibt -nc input.mp3 (non-causal mode);
$ ./ibt -a input.mp3 (play audio w/ clicks on beats).

4.1 Important parameters

The presented evaluation was run with default parameters,
empirically chosen to conciliate reactivity and stability of
the system. Values of diverse parameters can be increased
to obtain a more reactive system: the margins of tolerance
windows (LFT OUTTER MARGIN, RGT OUTTER MAR-
GIN, INNER MARGIN); portion of an agent current score
transmitted to its children, (CHILDREN SCORE FACTOR);
and children correction factors (CHILDX FACTOR).

5. DISCUSSION AND FUTURE WORK

5.1 On tempo estimation

Table 1 shows that the non-causal version of IBT performs
comparatively to the best algorithms tested in the ISMIR
2004 contest [11]. The non-causal version shows slightly
worse results, but still remains in the best third of the algo-
rithms. Overall it is fair to say that the system finds either
the correct tempo or make (somehow acceptable) errors of
metrical level in 80% of the cases.

Comparable tempo estimation results are observed on
the second dataset (Table 2). Careful evaluation of the first
and second lines shows that the tempi of a total of 1064
excerpts and 1142 excerpts (i.e. 78% and 83%) are correct

or correspond to metrical level errors, in the causal and
non-causal versions, respectively.

The last line of Table 1 also shows that tempo estima-
tion is more reliable after tracking the whole excerpt than
at the output of the induction stage. For instance, non-
causal beat tracking outperforms pre-tracking by around
10 points. Also, tempo induction seems to work worse on
the Loops dataset. This is due to the fact that many of these
excerpts are very short (many are in fact shorter than our
induction window length —5s).

It is also interesting to notice that, after tracking the
whole piece, tempo estimation results obtained with “dumb”
induction are sensibly similar —albeit an apparent decrease
of the number of correct metrical levels found— to those
obtained with a more informed induction process (82% vs.
83%, respectively, in the non-causal case, considering all
acceptable metrical levels).

Tempo estimation is quite robust to distortions of the au-
dio signal, although the accuracy loss is still about 5 points.
This is a clear advantage with respect to systems that pro-
cess discrete lists of onsets instead of continuous features,
such as BeatRoot (see [11] for a detailed comparison —
note that BeatRoot’s results are relative to a previous ver-
sion of the software and that recent changes in the onset
detection function are likely to have improved them).

These findings seem to indicate that, although tempo
induction in IBT reaches good levels, comparable to the
state-of-the-art, further increase in accuracy will certainly
be obtained if future work is dedicated to improving the
induction process. Previous findings indicate that worth-
while lines of work include research on the amount of data
needed for induction, reliability of the estimation, improved
robustness to noise, and the possibility to trigger induction
on different parts of the data, depending on a monitoring
of the tracking process self-evaluation.

We can see on Table 1 that accuracy with a2 is much
better than with a1 (36-37 points overall difference). Ta-
ble 2 also shows that, as BeatRoot, IBT tracks a significant
number of excerpts at the “wrong” metrical level. How-
ever, at the difference with BeatRoot, these excerpts are
more uniformally distributed among lower and higher lev-
els. This is the direct effect of the period normalization
factor found in the scoring function, eq. (8). These find-
ings indicate that more work should be done on the issue of
finding the “correct” metrical level, which may be contem-
plated by the scoring function itself. In that respect, results
from [12] on a1 indicate that a promising direction lies in
beat tracking at several metrical levels simultaneously.

5.2 On beat tracking

Table 2 permits us to focus on the tracking performance
of the system, independently of its performance in finding
the correct tempo. The first two lines of the first column
shows us that when IBT finds the correct tempo, it tracks
beats correctly in 74% of the cases, the non-causal version
does it slightly better: 81%. This is the same performance
as BeatRoot. Tracking performances when IBT follows
beats on a different metrical level than the annotations are
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also similar to BeatRoot.
Careful listening and visualization to tracking errors pro-

duced by the causal vs. the non-causal system shows, as
should be expected, that the former is more prone to inter-
changes between phase and metrical levels, compromising
continuity.

When one correct beat is given as input to IBT, perfor-
mance increases up to 88% in the non-causal case. This
is a good result, although it also suggests that a number
of errors are made at the stage of phase selection (2.2.2)
during pre-tracking. Here again, as argued in the previous
section, this suggests than future work should be dedicated
to improving the induction phase. When two correct beats
are given, global performance increases, although perfor-
mance at the correct metrical level suffers a slight decrease,
due to the fact that this figure is computed on significantly
more data (i.e. IBT finds more correct metrical levels).

With regards to robustness to signal distortions, it seems
that as with tempo estimation, the use of continuous fea-
tures instead of discrete onsets results in higher robustness.
However, IBT performance still decreases about 2 points
on average with respect to clean data, calling for future
work related to more robust feature extraction.

When the tracking module is given “dumb” period hy-
potheses, tracking results are only marginally lower than
when the period is inferred with a more informed method.
This shows that the system has the desirable property to not
depend too heavily on correct estimation of the tempo and
to recover from errors. Future work should be dedicated
to evaluating the speed at which the system recovers from
errors, and experiments should be dedicated to fine-tuning
system parameters towards the best trade-off between re-
activeness to changes and error recovery, on one side, and
stability on the other side.

6. SUMMARY

This paper presents IBT, an agent-based tempo and beat
tracking system that causally (and non-causally) processes
incoming values of a continuous audio feature (e.g. on-
set detection function). Benchmarks on causal and non-
causal versions reveal competitive results, under alterna-
tive conditions. In particular, the proposed algorithm pro-
duces equivalent beat tracking results to those of BeatRoot,
and accurately estimates tempo at the level of state-of-the-
art algorithms. A special care has been put on design-
ing a system usable for real-time processing, with good
noise robustness, and with no bias towards particular met-
rical levels. IBT is open-source and freely available with
MARSYAS. Promising paths for future work include: tempo
induction improvements; informed alternates of the induc-
tion and tracking phases; beat tracking at several metrical
levels simultaneously; use of several input features.
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ABSTRACT

Automatic taggers describe music in terms of a multino-
mial distribution over relevant semantic concepts. This
paper presents a framework for improving automatic tag-
ging of music content by modeling contextual relation-
ships between these semantic concepts. The framework
extends existing auto-tagging methods by adding a Dirich-
let mixture to model the contextual co-occurrences be-
tween semantic multinomials. Experimental results show
that adding context improves automatic annotation and re-
trieval of music and demonstrate that the Dirichlet mixture
is an appropriate model for capturing co-occurrences be-
tween semantics.

1. INTRODUCTION

A central goal of music information retrieval (MIR) is to
create systems that can efficiently and effectively retrieve
songs from massive music collections. A potential solu-
tion to this challenge is to describe songs with a collec-
tion of manually annotated meaningful words (tags) and to
perform retrieval based on these text descriptions. Com-
mercial recommendation systems such Last.fm 1 and Pan-
dora 2 extensively use this semantic similarity approach to
create recommendation lists. Tags are useful because they
contextualize a song by describing human emotions, per-
sonal style, geographic origins, spiritual foundations, his-
torical period, or particular uses of the song.

1.1 Auto-Tagging

The continuous growth of music collections is making
manual human annotation of every song infeasible. In re-
sponse, several scalable approaches have been proposed
for labeling music with semantics including social tag-
ging [6], web mining [5] or tag propagation from similar
songs [12], each with advantages and disadvantages [14].
In particular, MIR researchers have proposed content-
based “auto-taggers” – methods that analyze acoustic

1 http://www.last.fm
2 http://www.pandora.com
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waveforms and automatically assign meaningful words to
songs. Much of this work has been inspired by related
methods for automatic image annotation [13].

One of the the first proposed approaches used Gaus-
sian Mixture Models (GMM) computed over the audio fea-
tures of the training examples to represent a vocabulary of
words [15]. An alternative model, the Codeword Bernoulli
Average (CBA) [4] attempted to predict the probability that
a tag applies to a song based on a vector quantized rep-
resentation of the audio signal. Regardless of the model
used, the output of an auto-tagger is a vector of tag probab-
ilities which may be interpreted as a semantic multinomial
(SMN), a distribution that characterizes relevance of each
tag to a song. Semantic multinomials capture patterns in a
song’s waveform that represent high-level properties such
as genres, emotions or instrumentation.

1.2 Tag co-occurrence

Auto-tagging models aim to capture statistically regular
patterns in the audio content and associate these patterns
with descriptive semantics. In general, these models treat
each tag independently, ignoring the context that derives
from associations between tags. Indeed, while some se-
mantic associations in music are inspired by direct auditory
cues (e.g., hearing a “violin”), others are inferred through
contextual relationships (e.g., inferring “cello” and “bas-
soon”, when listening to “orchestral classic music”). This
gives rise to statistically significant co-occurrence patterns
of semantic concepts in the training data (e.g., many “rock”
songs also tagged as “loud”), and thus in the SMNs. We
suggest that actively capturing correlations in SMNs can
improve the semantic description of a song.

Two situations cause tags to co-occur in semantic multi-
nomial distributions. The first is when a tag acciden-
tally co-occurs with another concept. Accidental co-
occurrences could be due to many reasons, ranging from
poor posterior probability estimates arising from auto-
tagger errors, to the unavoidable ambiguous interpretation
of music, such as confusing “trumpet” and “trombone”.
The second type of tag co-occurrence results from feature
vectors that truly describe multiple musical concepts. For
example, a “cello” piece is very likely to have feature vec-
tors that also fit tags such as “classical music” or “vio-
lin”. While only co-occurrences of the second type are
indicative of true contextual relationships, SMN distribu-
tions derived from acoustic content exhibit both types of
co-occurrences.
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Figure 1. Co-occurrence patterns for CAL500; redder
points imply high correlation between tags.

To understand the extent of tag co-occurrences, we ex-
amine the Computer Audition Lab 500 (CAL500) dataset,
used later in our experiments (see Section 4 for more de-
tails). Figure 1 depicts the pairwise correlation matrix be-
tween CAL500 tags. Correlation values have been com-
puted through an application of Jaccard’s Coefficients [8],

nij =
P (wi ∩ wj)

P (wi) + P (wj)− P (wi ∩ wj)
, (1)

which provide a measure of the strength of the association
between the general words wi and wj , normalized by the
total number of times the two words appear. The nij coef-
ficients range between 0 and 1, with nij > 0 if the tags are
not mutually exclusive (i.e., if they occur together in some
songs). In Figure 1, redder parts represent tag pairs that
are highly correlated (i.e., where nij is large). As can be
seen, correlation is present in many tags and it is particu-
larly prevalent in the “Emotion” and “Acoustic” categories
whereas tags categorized as “Genre” display few correla-
tion patterns.

The co-occurrence patterns illustrated in Figure 1 are
not explicitly captured by auto-taggers that model acous-
tics independently for each tag. Although SMNs capture
patterns at the song level that are predictive of semantic
tags, each dimension of the semantic space (i.e., each tag)
is assumed to be independent from all others. Exploiting
these regular co-occurrences - giving the semantics context
- could provide a better semantic description of music.

This suggests an extension of auto-tagging models by
adding one additional layer of semantic representation that
explicitly captures tag co-occurrences. We began by mod-
eling the probability distribution of tags given audio fea-
tures, placing each song in a semantic space. Now, by
modeling a probability distribution of the SMNs derived
from each song - a distribution over distributions - we can
obtain a richer semantic description. We refer to these rep-
resentations as contextual models.

1.3 Modeling Context

In this paper, we present a novel approach to automatically
tagging music with descriptive words by thinking of each
semantic concept as defining a broader context that causes
multiple, related tags to co-occur in the description of a
song. For each tag, we learn a Dirichlet mixture (DM)
to model the distribution of the SMNs derived from all
training songs for that tag. This DM-based “contextual tag
model” is inspired by similar work on modeling the seman-
tics of images [11] where it was proposed as a framework
for combining object-centric and scene-centric methods to
model contextual relationships between visual concepts.
The DM can robustly infer contextually meaningful co-
occurrence patterns between tags in semantic multinomi-
als, while removing accidental co-occurrences that might
be present in some of the individual song-level SMNs.

2. RELATED WORK

Some recent work in music information retrieval has ex-
ploited tag correlation and context. Yang et al. [16] for-
mulate tag detection as an ordinal regression problem to
explicitly take advantage of the ordinal relationship be-
tween concepts. Moreover, they proposed to leverage the
co-occurrence patterns of tags for context fusion and em-
ploy tag selection to remove irrelevant or noisy tags. Un-
like our approach, the latter is a single-level model, incor-
porating the tag correlation during the training of each in-
dividual detector. Ness et al. [10] propose a hierarchy of
two linear SVMs where the first classifier highlighted the
audio patterns and output a vector of tag affinities (analo-
gous to a SMN), and the second layer modeled the contex-
tual relationships between tags. Modeling context was also
proposed in [7] where a second stage used a learning and
correlation reweighing scheme to boost the result of tag de-
tection, and, earlier, in [1] where authors used a decision
tree to refine the result of individual detectors.

Our approach using the DM to model context is appro-
priate for two reasons. First, the DM is a generative model
that is learned from only positive training examples i.e.,
songs which have been positively associated with a seman-
tic tag. Unlike discriminative models (e.g., SVMs, boost-
ing, decision trees) which also require negative examples,
generative models can accommodate weakly labeled train-
ing data where the absence of an association between a
song and a tag does not guarantee that no such association
exists. Second, the Dirichlet is a distribution over parame-
ters of the multinomial distribution, making it a probabilis-
tically appropriate model of semantic multinomials derived
from auto-taggers.

3. AUTO-TAGGING WITH
DIRICHLET MIXTURES

We start by briefly defining the problem and by reviewing
the song-level auto-tagging system described in [15].
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3.1 Problem formulation

The task of semantic annotation and retrieval can be seen
as a supervised multiclass, multilabel classification prob-
lem, where each class is a word wi from a vocabulary V =
{w1, ..., w|V|} of unique tags, and each song is labeled with
multiple words. A song is represented as a series of audio
content features, X = {x1, ..., xT }, where xt represents
a vector of features, and T is related to the length of the
audio content; the goal is to find the words wi ∈ V which
best describe a given song. Each song can then be rep-
resented as an annotation vector π = (π1, ...π|V|), where
πi > 0 if wi has a positive semantic association with the
song and πi = 0 otherwise. The coefficients πi represent
the strength of semantic association between the song and
word wi and are termed semantic weights [15] or affinity
values [10].

3.2 Defining a semantic space

Various auto-tagging methods have been proposed for de-
riving the semantic weights from acoustic features includ-
ing hierarchical Gaussian mixture models [15], support
vector machines [2, 10], codeword Bernoulli averaging [4]
and boosting [7]. Any of these auto-taggers may be used
to produce semantic multinomials — a set of semantic
weights — that describe songs, a process that is illustrated
on the left of Figure 2. In this work, we use the hierarchi-
cal GMM approach and briefly review it hereafter but refer
the reader to [15] for the details of this model.

For each word wi in the vocabulary, we train a tag-level
probability distribution over the audio feature space, e.g.
PX|W (x|wi) for i = 1, . . . , |V|. The most relevant tags
for a song X are the words with highest posterior probabil-
ity, computed using Bayes’ rule:

πi = PW |X(wi|X ) =
PX|W (X|wi)PW (wi)

PX(X )
, (2)

where PW (wi) is the prior of the ith word. We as-
sume an uniform prior, e.g., PW (wi) = 1/|V| for i =
1, . . . , |V|. We compute the song prior as p(X ) =∑|V|

i=1 p(X|wi)p(wi). We follow [15] in estimating the
likelihood term in Equation 2, PX|W (X|wi), with the ge-
ometric average of the individual feature likelihoods of all
the songs positively associated with word wi:

PX|W (X|wi) =
T∏

t=1

(
PX|W (xt|wi)

) 1
T , (3)

where the distribution PX|W (x|wi) is modeled as a mix-
ture of Gaussians. The PX|W (x|wi) distributions capture
the patterns of audio content that are predictive of each
word wi.

Given an unseen test song, represented by a set of au-
dio feature vectors X , we compute the posterior probab-
ilities for the presence of concept wi ∈ V from Equa-
tion 2. Collecting the posterior probabilities of each
word results in an annotation vector describing the song,
π = {π1, ..., π|V|}, where πi denotes the posterior word

probability PW |X(wi|X ). With appropriate normalization
(s.t.

∑
i πi = 1), this vector can be conceived of as a

semantic multinomial (SMN) which lies on a probability
simplex defined as a semantic space. The semantic multi-
nomial is analogous to a document vector of word counts,
often used in natural language processing [8], and it cap-
tures all the semantic information about the song.

3.3 A model to learn context

To capture the common patterns in the SMNs and model
co-occurrences between tags, we learn contextual tag mod-
els in the semantic space from the SMNs of the all songs
in a training set that have been labeled with each tag. This
contextual modeling stage is illustrated on the right of Fig-
ure 2. Just as we modeled acoustic feature vectors as sam-
ples from a mixture of Gaussians, we consider that seman-
tic multinomials π are drawn from a mixture of Dirichlet
distributions over the semantic space [11]:

PΠ|W (π|w; Ωw) =
∑
k

βw
k Dir(π|αw

k ) , (4)

The contextual model for the word w is characterized by a
vector of parameters Ωw = {βw

k , α
w
k }, where βk is a prob-

ability mass function (
∑

k β
w
k = 1), Dir(π;α) a Dirichlet

distribution of parameter α = {α1, ..., α|V |},

Dir(π|α) =
Γ(

∑|V |
i=1 αi)∏|V |

i=1 Γ(αi)

|V |∏
i=1

(πi)
αi−1 , (5)

and Γ(.) the Gamma function.
The parameters Ωw are learned from the SMNs πn of

all the songs annotated with word w. Note that the con-
textual models PΠ|W (π|w) play, in the semantic space, a
similar role to the models PX|W (X|w) in the acoustic fea-
ture space.

The learning process for the Dirichlet mixture model re-
lies on the maximum likelihood estimation, via the gener-
alized expectation-maximization (GEM) algorithm. GEM
is an extension of the standard EM algorithm, applicable
when the M-step of the latter is intractable. The E-step
computes the expected values of the component probabil-
ity distribution βk, whereas the generalized M-step esti-
mates the parameters αk. Rather than solving for the pa-
rameters of maximum likelihood, each M-step simply pro-
duces an estimate of the likelihood which is higher than
that available in the previous iteration. This is known to be
sufficient for EM convergence [3]. Parameter estimation
is achieved through an application of the Newton-Raphson
algorithm [9].

Given an unseen test song described by the SMN
π = {π1, ..., π|V|}, the assignment of a word, wi, results
from a Bayes decision rule based on the posterior word
probabilities in the context space:

PW |Π(wi|π) =
PΠ|W (π|wi)PW (wi)

PΠ(π)
. (6)

Again we assume a uniform word prior probability
PW (wi). Collecting all the posterior probabilities
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Figure 2. Overview of the system: the Dirichlet Mixture models context by considering co-occurrences patterns between
auto-tags lying in a semantic space.

PW |Π(wi|π) = θi and normalizing (s.t.
∑

i θi = 1), we
build the vector θ = (θ1, ..., θ|V|), denoted as the contex-
tual multinomial (CMN) distribution of a song. Similar to
the semantic space defined in Section 3.2, CMN vectors
lies in a contextual space (see Figure 2).

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the impact of contextual
models, and in particular the DM, on automatically tagging
music with meaningful words.

4.1 CAL500 Dataset

The Computer Audition Lab 500 (CAL500) [15] dataset
comprises 502 songs by 502 different artists. Each song
has been annotated by at least 3 humans using a vocabulary
composed of 174 tags from 6 different semantic categories,
representing both objective and subjective concepts.

The songs are described by Mel-Frequency Cepstral
Coefficient (MFCC) feature vectors; each MFCC vec-
tor summarizes the spectral content of 23ms windows of
a song. Our experiments use 39-dimensional MFCC-
Delta feature vectors, composed by appending the first
and second instantaneous derivatives to the 13-component
MFCCs.

A first analysis of the dataset demonstrates an imbal-
ance in the distribution of tags: while frequent tags can
have more than 300 positive examples, some others have
less than 10 ones. This is not a big problem when training
auto-taggers since each song is described by a large num-
ber of features vectors. However, the resulting set of SMNs
describing songs is much smaller than the number of fea-
ture vectors and thus, we require more songs to adequately
train the contextual models. For this reason, our evaluation
considers only the tags with more than 30 examples, aim-
ing to have at least 20−25 examples in the training set with
the remainder in the test set. This reduces the CAL500 vo-
cabulary to 97 tags: 11 genres, 14 instruments, 25 acoustic

qualities, 6 vocal characteristics, 35 emotions and 6 usages.
To provide sufficient data to train the DM, we extract

multiple SMNs from each song, each derived from clips
lasting 3 seconds. We find empirically that, unlike im-
ages which generally depict only a few semantic concepts
(i.e., their SMNs have a few peaks that dominate all other
tags), even a short music clip can be reasonably tagged
with many words and the resulting SMNs tend to be much
more uniform. For this reason, when learning DM models,
we threshold the SMNs, retaining at most the ten largest
affinity values and setting all other dimensions to zero.

4.2 Annotation and Retrieval

We evaluate auto-tagging performance on both annotation
and retrieval tasks. In the annotation task, we use Equa-
tion 6 to label each test song with the ten most likely tags.
Performance is measured using mean per-tag precision, re-
call and F-score. Per-tag precision is the probability that a
tag used by the model is correctly applied to a song. Per-
tag recall is the probability that the model annotates all the
tags that should apply to a song. F-score is the harmonic
mean of precision and recall, and is a single measure of
overall annotation performance.

In the retrieval task, we rank-order all songs according
to their relevance to a query tag. The retrieval goal is to
have highly relevant songs at the top of the ranking list as
this is the most crucial requirement in a music retrieval sys-
tem. We consider the mean average precision (MAP) and
the precision at k (k = 3, 5, 10). For completeness, we also
report the area under the receiver operating characteristic
curve (AROC) as a measure of the quality of the complete
ranking [8].

Evaluation was performed using 5-fold cross validation,
with 400 songs in the training set, and 100 in the test set.
The folds were built such that each song appeared in the
test set exactly once. The results reported in Table 1 dis-
play the annotation and retrieval metrics, averaged over all
tags in the vocabulary.
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Annotation Retrieval
Precision Recall F-Score P3 P5 P10 MAP AROC

Semantic CBA 0.361 0.212 0.267 0.463 0.458 0.440 0.425 0.691
GMM 0.405 0.202 0.269 0.456 0.455 0.441 0.433 0.698

Context SVM 0.380 0.230 0.286 0.512 0.487 0.449 0.434 0.687
DM 0.441 0.232 0.303 0.519 0.501 0.470 0.443 0.697

Upper Bound 0.716 0.471 0.568 1.000 0.993 0.942 1.000 1.000
Random 0.231 0.101 0.140 0.255 0.249 0.250 0.277 0.504

Table 1. Performance of different auto-taggers: the Codeword Bernoulli Average (CBA) and Gaussian Mixture Models
(GMM) consider semantics alone whereas the Support Vector Machine (SVM) and Dirichlet Mixture (DM) models learn
contextual relationships between the semantic multinomials produced by the GMM. All experiments were performed on
the same songs represented by the same set of features. “Random” is a baseline that annotates and ranks songs randomly.
“Upper Bound” uses the optimal labeling for each evaluation metric and shows the upper limit on what any system could
achieve.

4.3 Contextual improvement

The proposed contextual modeling approach is compared
to some recent state of the art auto-tagging approaches:
the GMM model [15] alone (i.e., without context) and the
CBA model [4]. For the CBA model, each song is rep-
resented as a histogram over a codebook of 500 vector-
quantized MFCCs. For each fold we trained the codebook
models only on the songs in the training set. All the code
was provided by the authors of [4].

We see in Table 1 that there is significant benefit from
modeling context on almost all annotation and retrieval
metrics. In particular, the precision-at-k metrics demon-
strate improvements at the top of the ranked retrieval list
but not throughout list (based on AROC). It can be argued
that precision-at-k metrics consider the part of the ranked
list which is most interesting for users of a semantic music
retrieval engine.

4.4 DM as a model of context

The center rows of Table 1 compare the DM approach
for modeling semantic co-occurrences to a Support Vector
Machine (SVM). As with the DM, we trained a contextual
SVM for each tag using the semantic multinomials as the
input feature vector. Using SVM as a model of context was
first proposed in [10] although their approach differs in the
features used (median MFCC texture windows) and in the
semantic model (SVM), so our results do not present a di-
rect comparison with [10]. Our goal is simply to compare
the DM and SVM as models of contextual relationships.
The context SVM does not benefit from pre-processing the
SMNs (results not shown), thus SVMs are trained on all the
original semantic values. Table 1 shows that DM generally
improves on all the metrics and never performs worse. In
particular, the DM significantly improves on the SVM for
the annotation precision, F-score, P5, P10 and AROC met-
rics (t-test, 10% significance level); all the other metrics
generally improve and never perform significantly worse.

Table 2 breaks up the evaluation over the different tag
categories. As can be seen, all categories but “Genre” show
clear benefit from contextual modeling. Note that improve-

ments are related to the tag co-occurrences depicted in Fig-
ure 1. In fact, all the categories showing a high degree
of co-occurrences (“Emotion”, “Instrument” and “Acous-
tic”) improved with respect to the GMM. Though not ex-
hibiting as much co-occurrence, the “Usage” and “Vocals”
categories, which perform poorly using semantics alone,
benefit from the de-noising effect of learning contextual
relations. In these cases, the extra information from even
only few co-occurrences can lead to improvements in the
quality of auto-tagging. Conversely, since the “Genre” cat-
egory does not exhibit much co-occurrence (i.e., genres are
more exclusive), we do not gain benefit from additional
contextual modeling. It has to be noted that SVM performs
better for the “Genre” category, especially in the top of the
ranking list; we believe that in this case SVM benefits from
some de-noising effects that DM is not able to capture.

4.5 Predictive co-occurrences

Finally, we include some examples of learned contextual
models for 6 tags, representing each semantic category in
CAL500. Table 3 shows the top three semantic multino-
mial dimensions that have most influence on the contextual
models for each tag. These examples illustrate how the
DM uses context to improve automatic tagging by learn-
ing to put most weight on semantic dimensions that are
predictive of the tag being modeled e.g., “calming, low en-
ergy, mellow” music is good for “going to sleep”. This
demonstration of the dependence between tags indicates
the importance of including context when modeling the re-
lationship between semantics and music.

5. CONCLUSIONS

In this paper we have presented the Dirichlet mixture
model, a novel approach for improving automatic music
tagging by effectively modeling contextual relationships
among tags. Starting from the SMN of each song, the DM
adds an additional layer to model tag co-occurrences, giv-
ing context to the semantic representations derived from
acoustic content. A tag’s affinity with a song is computed
as the posterior probability under the tag’s DM model. The

301

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Category # Tags Model P5 P10 MAP

Emotion 35 GMM 0.513 0.506 0.477
SVM 0.539 0.514 0.481
DM 0.561 0.535 0.489

Genre 11 GMM 0.367 0.325 0.355
SVM 0.396 0.336 0.350
DM 0.360 0.331 0.341

Instrument 14 GMM 0.460 0.431 0.441
SVM 0.495 0.452 0.455
DM 0.506 0.458 0.463

Acoustic 25 GMM 0.508 0.501 0.472
SVM 0.524 0.516 0.471
DM 0.564 0.546 0.496

Usage 6 GMM 0.253 0.233 0.258
SVM 0.266 0.226 0.237
DM 0.308 0.273 0.281

Vocals 6 GMM 0.253 0.240 0.261
SVM 0.260 0.210 0.235
DM 0.287 0.267 0.278

Table 2. Retrieval results considering the different word
categories for the semantic GMM, and the contextual SVM
and DM models.

Context Tag Semantic Influence

calming low energy tender slow tempo

hard rock hard rock rock strong

acoustic guitar slow tempo tender acoustic guitar

acoustic texture low energy soft rock light beat

going to sleep calming low energy mellow

emotional tender sad soft rock

Table 3. Examples of the top three semantic influences on
contextual tag models.

set of all posterior tag probabilities provides a contextual
description of the song.

Experiments reported that modeling context outper-
forms approaches based on a semantic representation
alone, especially considering the top of the ranked retrieval
lists. We demonstrate that the DM is an appropriate choice
for modeling semantic context by comparison to learning
context with an SVM. More specifically, examining the
performance across semantic categories, we showed that
the DM improves performance for tags that exhibit a high
degree of correlation, as well as for noisy tags that are
poorly represented by acoustic patterns.
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ABSTRACT

This paper proposes using acoustic information in the la-

belling of music piece structure descriptions. Here, mu-

sic piece structure means the sectional form of the piece:

temporal segmentation and grouping to parts such as cho-

rus or verse. The structure analysis methods rarely pro-

vide the parts with musically meaningful names. The pro-

posed method labels the parts in a description. The base-

line method models the sequential dependencies between

musical parts with N-grams and uses them for the labelling.

The acoustic model proposed in this paper is based on the

assumption that the parts with the same label even in dif-

ferent pieces share some acoustic properties compared to

other parts in the same pieces. The proposed method uses

mean and standard deviation of relative loudness in a part

as the feature which is then modelled with a single multi-

variate Gaussian distribution. The method is evaluated on

three data sets of popular music pieces, and in all of them

the inclusion of the acoustic model improves the labelling

accuracy over the baseline method.

1. INTRODUCTION

This paper proposes a method for providing musically mean-

ingful labelling to sectional parts in Western popular music

using two complementary statistical models. The first one

relies on the sequential dependencies between the occur-

rences of different parts, while the second models some

acoustic properties of the them. A labelling method us-

ing the sequence model was proposed earlier by Paulus

and Klapuri [9] and this paper proposes an extension that

method by including also acoustic information.

In sectional form a music piece is constructed from shorter,

possibly repeated parts. Especially many Western pop/rock
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pieces follow this form. The parts can be named accord-

ing to the musical role they have in the piece, for example,

“intro” is in the beginning of the piece and provides an in-

troduction to the song and “verse” tells the main story of

the song. Music piece structure analysis aims to provide

a description of the sectional form of the piece based on

the acoustic signal. Usually the description consists of a

temporal segmentation of the piece to occurrences of parts,

and of grouping of segments being occurrences of the same

part. For a review of methods proposed for the task, see

the book chapter by Dannenberg and Goto [2] or the dis-

sertation by Paulus [8]. With the exception of few meth-

ods [6,14], most structure analysis methods do not provide

the segment groups with musically meaningful label, in-

stead they only provide a tag for distinguishing the differ-

ent groups. However, if the analysis result is presented for

a user, providing also meaningful labels for the segments

would be valued, as noted by Boutard et al. [1].

A method for musical part labelling given the descrip-

tion with arbitrary tags was proposed by Paulus and Kla-

puri [9]. It relies on the assumption that musical parts have

sequential dependencies which are then modelled with N-

grams. The method searches for the labelling that max-

imises the overall N-gram probability over the resulting

label sequence. The obtained results indicate that such a

model manages to capture useful information of the music

piece structures. This paper proposes to extend that work

by including acoustic information in the process. This is

motivated by the frequently encountered assumption that

the chorus is louder than the other parts. It should be noted

that this paper does not discuss the underlying problems in

defining the structural description that have been discussed

by Peeters and Deruty [11], but instead studies the perfor-

mance of the proposed models in replicating the labelling

in the manual annotations.

The rest of this paper is organised as follows: Sec. 2

describes the labelling problem more formally, revisits the

sequential modelling baseline method, and details the pro-

posed acoustic modelling method. Sec. 3 describes the ex-

periments for evaluating the proposed method and presents

the obtained results. Finally Sec. 4 provides the conclu-

sions of this paper.
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2. PROPOSED METHOD

This section provides a more formal definition of the la-

belling problem, provides a short description of the base-

line method relying only on sequence modelling, and de-

tails the proposed acoustic modelling extension.

2.1 Labelling Problem

The input to the method consists of a music piece descrip-

tion and the acoustic signal. The description itself is a tem-

poral segmentation of the piece and a grouping of the seg-

ments. Each of the groups is assigned with a unique tag r.

When the K tags in the description are organised into a se-

quence based on the temporal locations of the segments, a

tag sequence r1:K ≡ r1,r2, . . . ,rK is obtained. The problem

of label assignment is to find an injective 1 mapping

f : R → L (1)

from the set R of tags present in the description to the set

L of musically meaningful labels. Application of the map-

ping is denoted with

f (r) = l, (2)

and it can be done also on sequences:

f (r1:K) = l1:K . (3)

Since any injective mapping is a valid mapping from tags

to labels, the problem is to select the “best” mapping from

all the possible choises. The earlier publication [9] pro-

posed a statistical sequence model for the the labels l for

selecting the mapping producing the highest model proba-

bility. This paper proposes to include acoustic information

to the process of selecting the mapping function.

2.2 Markov Model Baseline Method

Some sectional forms are more common in music than the

others. An example of this was presented in [9] where it

was noted that almost 10% of the songs by The Beatles

have the form “intro”, “verse”, “verse”, “bridge”, “verse”,

“bridge”, “verse”, “outro”. Though this cannot be directly

generalised to all pieces, some sequences of parts occur

more frequently than others and this can be utilised in the

labelling.

In sequence modelling the prediction problem is to pro-

vide probabilities for the possible continuations of a given

sequence. p
(
si|s1:(i−1)

)
denotes the conditional probabil-

ity of si to follow the sequence s1:(i−1). Markov models

make the assumption that the process has a limited mem-

ory and the probabilities depend only on a limited length

history. The length of the history is parametrised with N

which provides a motivation for the alternative name of

N-grams. An N-gram of length N utilises N − 1th order

Markov assumption

p
(
si|s1:(i−1)

)
= p

(
si|s(i−N+1):(i−1)

)
. (4)

1 All tags in input sequence are mapped to a label, but each tag can be
mapped only to one label and no two tags may be mapped to same label.

Given a sequence s1:K and the conditional N-gram proba-

bilities the total probability of a sequence can be calculated

with

p(s1:K) =

K

∏
i=1

p
(
si|s(i−N+1):(i−1)

)
. (5)

For more information on N-grams and language modelling,

see [5].

The baseline method proposed by Paulus and Klapuri [9]

calculates N-grams using the musical part labels as the al-

phabet L, and then locates the mapping fOPT maximising

the overall sequential probability of (5) while conforming

to the injectivity constraint:

fOPT = argmax
f

{pL ( f |r1:K)} , f : R → L injective. (6)

In (6) pL ( f |r1:K) denotes the Markov probability of the

sequence resulting from applying the mapping f

pL ( f |r1:K) = p( f (r1:K)). (7)

The combinatorial optimisation problem of (6) can be

solved, e.g., in a greedy manner by applying a variant of N-

best token passing algorithm proposed in [9], or by apply-

ing the Bubble token passing algorithm proposed in [10].

Both operate on the same basic principle of creating a di-

rected acyclic graph from the parts and possible labellings,

and searching a path through it. Each part in the sequence

is associated with each possible label and these combina-

tions form the nodes of the graph. Edges are created be-

tween parts that are directly consecutive in the input se-

quence. Paths through the graph represent label mappings,

and the path with the highest probability is returned as the

result. Even though the search does not guarantee find-

ing the optimal solution, in small experiments it found the

same solution as an exhaustive search with a fractional

computational cost. Viterbi or similar more efficient search

algorithm cannot be employed here as the mapping has to

respect the injectivity and the whole sequence history af-

fects the probabilities instead of only the limited memory

of N-grams.

2.3 Sequence Modelling Issues

The number of conditional probabilities p
(
si|s1:(i−1)

)
that

need to be estimated for N-gram modelling increases rapidly

as a function of the model order N and the alphabet size V :

there are V N probabilities that need to be estimated. Usu-

ally, the probabilities are estimated from a limited amount

of training data, and not all probabilities can be estimated

reliably. This problem can be partly alleviated by applying

smoothing to the probabilities (assigning some of the prob-

ability mass of the more frequently occurring combinations

to the less frequent ones), or by discounting methods (esti-

mating high-order models as combinations of lower-order

models). Variable-order Markov models (VMMs) [13] at-

tempt solving the model order problem based on the train-

ing data by setting the order independently to different sub-

sequences. In other words, if increasing the model order

does not bring more accurate information, it is not done.
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2.4 Acoustic Modelling Method

The baseline method operates only on the sequential in-

formation of the musical parts and has no information of

the actual content of them. However, if the acoustic signal

is available, it can be utilised in the labelling. Naturally,

the parts of a song differ from each other in view of the

acoustic properties. This is closely related to the definition

of sectional form. However, the assumption made here is

that there exists acoustic properties that exhibit similar be-

haviour in large body of the pieces, e.g., it is often stated

that “chorus” is the most energetic, or the loudest, part in

a song. In addition to “chorus” being most energetic, very

few other parts can be said to have any typical acoustic

property. Still, e.g., “break” or “breakdown” often has con-

siderably reduced instrumentation, thus it is expected that

it exhibits a lower average loudness than the other parts.

Despite this, the acoustic modelling is applied to all parts

even though is might not produce meaningful information

for all labels.

The proposed acoustic modelling represents the acous-

tic information by associating a single observation vector

xi to each of the musical parts, thus utilising a highly con-

densed representation. The input to the labelling now con-

sists of the tag sequence r1:K and acoustic observations

x1:K , one vector xi for each part. The acoustic model con-

siders now the likelihoods pA (xi|l) of observing xi if the

musical part label is l. The overall likelihood of the map-

ping definition f in view of the acoustic observations x1:K

is now calculated with

pA ( f |r1:K ,x1:K) =

K

∏
i=1

pA (xi| f (ri)) . (8)

2.5 Combined Method

Assuming statistical independence, combining the two mod-

els (7) and (8) in the same function produces a new likeli-

hood function for the mapping f

p( f |r1:K ,x1:K) = p(x1:K | f (r1:K)) p( f (r1:K)) (9)

=

K

∏
i=1

p(xi| f (ri))

K

∏
i=1

p
(

f (ri)| f (r1:(i−1))
)
, (10)

where the first term is from the acoustic observations and

the latter from the N-gram models. The labelling problem

can be expressed as the optimisation task

fOPT = argmax
f

{p( f |r1:K ,x1:K)} , f : R → L injective.

(11)

The optimisation of (11) can be done with the same al-

gorithm as the optimisation of the sequential model alone.

The only required modification is to include the acous-

tic observation likelihoods. It should be noted that even

though the problem resembles hidden Markov model de-

coding, the injectivity requirement violates the Markov as-

sumption thus prohibiting the use of Viterbi decoding.

2.6 Acoustic Features

As the assumption about the globally informative acous-

tic property was related to the energy level or loudness,

LOUDNESS LOUDNESS DEVIATION

chorus

verse

bridge

intro

pre-verse

outro

c

theme

solo

chorus_a

a

chorus_b

MISC

0.60.6 0.80.8 1.01.0 1.21.2 1.41.4 1.6 1.8

Figure 1. Statistics of the features used in data set TUT-

structure07. The mean of all occurrences of the part is in-

dicated with circle and the surrounding error bars illustrate

the standard deviation over the occurrences. Note that the

mean loudness of “chorus” and it’s variations support the

original assumption.

they were tested for the acoustic modelling. The energy

is measured by calculating the root-mean-squared value of

the signal within the part. However, in preliminary exper-

iments it was noted that using perceived loudness instead

produced better results. This is presumably because the

loudness calculation addresses also the non-linear proper-

ties of human auditory system in amplitude, frequency, and

temporal dimensions, the main difference being in the dy-

namic amplitude scale compression from representing the

data in logarithmic decibel scale. 2 The calculation is done

using the function ma_sone from the MA Toolbox by Pam-

palk [7]. The loudness is calculated in 11.6 ms frames with

50% overlap and the part loudness is approximated by the

mean loudness of the frames within the part in question.

In addition to the mean loudness also standard deviation

of the framewise loudness values over the part is used to

describe the dynamics of the signal. The features are nor-

malised by dividing them by the mean over the piece mak-

ing the mean over the piece to be 1. An illustration of the

feature distributions is provided in Fig. 1.

The acoustic observation likelihoods pA (x|l) are mod-

elled as a single multivariate Gaussian distribution

pA (x|l) =
1

√
(2π)D|Σ|

exp

(

−
1

2
(x−µ)TΣ−1

(x−µ)

)

,

(12)

where D is the feature vector dimensionality, Σ and µ are

the covariance matrix and mean vector of the estimated dis-

tribution of the part label l.

2 The preliminary experiments included also acoustic features corre-
sponding to the brightness (spectral centroid) and bandwidth of the sig-
nal. The various combinations of different features were tested and based
on the results of the small-scale experiments, the set used was limit to
loudness and it’s deviation.
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3. EVALUATIONS

The proposed extension is evaluated with three data sets of

popular music pieces. The first set TUTstructure07 con-

sists of 557 pieces from various genres, mainly from pop

and rock, but including also pieces from metal, hip hop,

schlager, jazz, blues, country, electronic, and rnb. The

pieces have been manually annotated at Tampere Univer-

sity of Technology (TUT). 3 The second data set UPF Bea-

tles consists of 174 pieces by The Beatles. The piece forms

were analysed by Alan W. Pollack [12], and the part time

stamps were later added at Universitat Pompeu Fabra (UPF)

and TUT. 4 The third data set RWC pop contains 100 pieces

from the Real World Computing Popular Music collec-

tion [3, 4] aiming to represent typical 1980’s and 1990’s

chart music from Japan and USA.

3.1 Evaluation Setup

Since the ground truth annotations in the data sets originate

from different sources, the used labels also differ. For this

reason the evaluations are run separately for each data set.

The data sets contain relatively large number of unique part

labels (e.g., TUTstructure07 has 82 unique labels) some of

which occur very rarely making the modelling more dif-

ficult. To alleviate this problem only the most frequent

labels contributing to 90% of all part occurrences are re-

tained, and the rest are replaced with an artificial label

“MISC”. This reduces the number of labels considerably

(e.g., to 13 in TUTstructure07). The evaluations are run

in leave-one-out cross-validation scheme and the presented

results are calculated over all folds.

The performance is evaluated with per-label accuracy,

which is the ratio of the sum of durations of correctly iden-

tified label occurrences to the sum of durations of all oc-

currence of the label, calculated over the entire data set.

Similarly, the total accuracy describes how much of the

entire data set duration is labelled correctly, effectively ap-

plying weighting to the more frequently occurring labels,

such as “chorus”.

It should be noted that the segmentation to the input tag

sequence r1:K is obtained from the ground truth annota-

tions instead of an automatic signal-based analysis method.

This is done to be enable evaluating the accuracy of the

labelling method independent of the segmentation perfor-

mance.

The complementary aspects of the proposed method are

evaluated: sequence modelling alone (effectively repro-

ducing the results from [9]), acoustic modelling alone, and

the two combined. The sequence modelling is attempted

with N-gram length of 1 to 5 (from only prior probabilities

to utilising history of length 4), and with a variable-order

Markov model. The VMM method employed was decom-

posed context tree weighting after the earlier results, and

3 A full list of pieces is available at http://www.cs.tut.fi/sgn/
arg/paulus/TUTstructure07_files.html.

4 The annotations are available at http://www.iua.upf.edu/

%7Eperfe/annotations/sections/license.html, and including
some corrections at http://www.cs.tut.fi/sgn/arg/paulus/

structure.html#beatles_data.

the implementation was from [13]. These results operate

as the baseline on top of which the acoustic modelling is

added. The sequence modelling choises were done to fol-

low the experiments in the earlier paper, thus providing a

clear baseline for comparing the effect of the added acous-

tic model.

3.2 Results

The evaluation results are presented in Tables 1–3, each

table containing the results for a different data set. The

column denoted with “N=0” provides the result for using

only the proposed acoustic model, while the other columns

contain the results of the combined modelling with differ-

ent N-gram lengths. The results of using only the sequence

model are provided in parentheses.

The results indicate that including the acoustic informa-

tion into the labelling model improves the result in some

cases. In all data sets the best overall result is obtained by

including the acoustic information, though the improve-

ment in UPF Beatles is so small that it may not be sta-

tistically significant. 5 The same relatively small obtained

improvement is observed in the results for individual labels

in UPF Beatles. This may be because the pieces are from

a single band mainly from the 1960’s and thus may not ex-

hibit all the stereotypical properties found in more modern

pop music, as noted also by Peeters [11]. The improvement

in TUTstructure07 is slightly larger. It is assumed that the

lower impact of the acoustic model is partly caused by the

large variety of musical styles present in the data, thus the

modelling assumption may not hold in all cases. The im-

provement due to the inclusion of the acoustic model is

most prominent with the RWC pop data which represents

more typical chart music.

4. CONCLUSIONS

This paper has presented a method for assigning musically

meaningful labels music piece structure descriptions. The

baseline method utilises the sequential dependencies be-

tween musical parts. This paper proposes a simple acoustic

model for the labelling and combines it with the sequential

modelling method. The proposed method is evaluated on

three data sets of real popular music. The obtained results

support the original assumption that musical parts differ in

their loudness, and the acoustic information alone can be

used to some extent to label the parts. The acoustic in-

formation alone has the labelling performance in par with

using only part occurrence priors. Combining the acoustic

model with the baseline sequential model provides in most

cases a improvement in the accuracy. However, the im-

provement cannot be obtained with all data, because typi-

cal loudness relations between different parts seem to de-

pend on the musical genre. Finally, the same search al-

gorithm as with the baseline method can be used for the

combined model with very small modifications.

5 As the entire data set forms one instance in the evaluation measure
calculation, no statistical measure could be calculated for proper compar-
ison.
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N=0 N=1 N=2 N=3 N=4 N=5 VMM

a 0.0 0.0 (0.0) 0.8 (0.0) 22.2 (34.9) 23.8 (31.7) 27.8 (27.0) 24.6 (29.4)

bridge 18.6 25.8 (17.9) 47.4 (38.6) 51.1 (45.4) 50.2 (47.4) 49.1 (43.9) 47.7 (41.4)

c 3.3 13.5 (3.6) 41.6 (38.3) 44.6 (42.1) 47.4 (47.7) 56.2 (54.8) 49.6 (48.5)

chorus 29.5 75.5 (67.9) 83.4 (76.3) 85.0 (80.6) 82.7 (76.6) 79.8 (75.3) 82.4 (77.9)

chorus_a 11.9 0.0 (0.0) 0.0 (0.0) 8.2 (7.5) 15.7 (15.7) 15.7 (11.2) 0.0 (3.0)

chorus_b 4.4 0.0 (0.0) 0.9 (0.9) 8.8 (5.3) 12.4 (12.4) 12.4 (7.1) 0.9 (2.7)

intro 32.7 43.4 (22.7) 97.2 (97.6) 97.6 (98.2) 97.0 (97.8) 98.2 (97.8) 97.0 (96.8)

outro 52.4 47.4 (9.9) 98.3 (98.3) 98.6 (98.6) 98.3 (97.6) 95.9 (90.9) 98.1 (98.3)

pre-verse 30.1 10.0 (3.7) 51.4 (40.5) 55.6 (45.6) 50.7 (43.3) 46.8 (41.7) 52.5 (42.6)

solo 23.8 2.2 (0.0) 6.6 (4.4) 6.6 (7.2) 13.8 (15.5) 23.2 (18.8) 21.0 (16.0)

theme 5.5 0.0 (0.0) 2.7 (0.0) 2.7 (2.7) 2.7 (4.4) 6.6 (3.3) 3.3 (0.5)

verse 46.5 59.0 (38.4) 72.5 (62.6) 71.0 (64.6) 70.6 (64.5) 72.1 (64.7) 74.5 (65.4)

MISC 7.8 21.4 (11.7) 35.5 (29.2) 44.4 (38.6) 42.8 (37.9) 41.7 (40.6) 40.3 (37.3)

total 27.7 42.1 (29.6) 61.7 (55.6) 64.3 (60.2) 63.6 (59.9) 63.6 (59.3) 63.7 (59.2)

Table 1. Per-label accuracy (%) on TUTstructure07 obtained using only acoustic modelling (N=0 column), only sequence

modelling (values in parentheses), and combining sequence and acoustic modelling (other values).

N=0 N=1 N=2 N=3 N=4 N=5 VMM

bridge 6.2 22.0 (24.3) 48.0 (45.8) 77.4 (76.8) 75.1 (75.1) 70.1 (74.0) 69.5 (69.5)

intro 43.8 50.0 (41.4) 92.6 (92.0) 93.2 (92.6) 93.8 (93.8) 93.8 (93.8) 93.2 (93.2)

outro 73.2 60.6 (0.0) 99.3 (99.3) 99.3 (99.3) 98.6 (97.9) 97.9 (93.7) 99.3 (99.3)

refrain 20.1 30.1 (28.1) 43.8 (45.4) 61.8 (62.2) 69.1 (69.9) 65.1 (67.5) 69.1 (70.3)

verse 37.2 73.4 (70.6) 80.9 (81.5) 88.5 (87.9) 86.5 (85.3) 83.7 (84.5) 87.1 (87.5)

verses 23.2 0.0 (0.0) 8.9 (8.9) 51.8 (53.6) 37.5 (37.5) 44.6 (44.6) 42.9 (42.9)

versea 39.2 0.0 (0.0) 2.0 (2.0) 7.8 (7.8) 23.5 (19.6) 25.5 (19.6) 11.8 (11.8)

MISC 5.7 3.8 (4.5) 17.8 (17.2) 28.7 (29.3) 43.9 (37.6) 26.1 (25.5) 30.6 (29.9)

total 31.1 43.7 (36.1) 61.8 (61.8) 73.8 (73.7) 75.7 (74.6) 71.9 (72.4) 73.6 (73.9)

Table 2. Per-label accuracy (%) on UPF Beatles obtained using only acoustic modelling (N=0 column), only sequence

modelling (values in parentheses), and combining sequence and acoustic modelling (other values).

N=0 N=1 N=2 N=3 N=4 N=5 VMM

bridge a 20.1 20.1 (8.2) 72.3 (62.9) 73.6 (66.7) 64.8 (66.0) 59.7 (49.7) 71.7 (62.9)

chorus a 51.2 70.9 (45.6) 85.3 (76.2) 85.6 (77.6) 80.6 (73.5) 73.5 (71.5) 86.2 (79.7)

chorus b 28.0 37.5 (6.5) 79.2 (73.2) 79.8 (71.4) 72.6 (65.5) 72.0 (71.4 76.2 (72.0)

ending 80.6 84.7 (32.7) 100 (100) 99.0 (100) 98.0 (94.9) 99.0 (88.8) 100 (99.0)

intro 50.0 45.1 (10.8) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

pre-chorus 7.6 7.6 (3.3) 64.1 (51.1) 60.9 (52.2) 63.0 (39.1) 48.9 (42.4) 63.0 (45.7)

verse a 35.0 48.1 (20.3) 85.7 (76.8) 84.4 (78.9) 81.4 (78.1) 77.6 (73.4) 81.0 (76.4)

verse b 19.4 30.3 (17.4) 85.6 (76.6) 84.1 (80.1) 79.6 (74.6) 73.6 (69.2) 82.1 (76.6)

verse c 41.9 14.0 (0.0) 60.5 (30.2) 55.8 (39.5) 47.7 (30.2) 32.6 (30.2) 47.7 (33.7)

MISC 29.8 52.4 (8.4) 84.9 (67.6) 80.4 (73.8) 77.8 (68.4) 69.8 (67.6) 83.1 (74.7)

total 36.0 45.5 (19.1) 82.8 (72.8) 81.7 (75.3) 77.5 (70.9) 71.8 (68.0) 80.7 (74.1)

Table 3. Per-label accuracy (%) on RWC pop obtained using only acoustic modelling (N=0 column), only sequence

modelling (values in parentheses), and combining sequence and acoustic modelling (other values).
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INFINITE LATENT HARMONIC ALLOCATION: A NONPARAMETRIC
BAYESIAN APPROACH TO MULTIPITCH ANALYSIS
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ABSTRACT
This paper presents a statistical method called Infinite La-
tent Harmonic Allocation (iLHA) for detecting multiple
fundamental frequencies in polyphonic audio signals. Con-
ventional methods face a crucial problem known as model
selection because they assume that the observed spectra are
superpositions of a certain fixed number of bases (sound
sources and/or finer parts). iLHA avoids this problem by
assuming that the observed spectra are superpositions of
a stochastically-distributed unbounded (theoretically infi-
nite) number of bases. Such uncertainty can be treated in a
principled way by leveraging the state-of-the-art paradigm
of machine-learning called Bayesian nonparametrics. To
represent a set of time-sliced spectral strips, we formulated
nested infinite Gaussian mixture models (GMMs) based
on hierarchical and generalized Dirichlet processes. Each
strip is allowed to contain an unbounded number of sound
sources (GMMs), each of which is allowed to contain an
unbounded number of harmonic partials (Gaussians). To
train the nested infinite GMMs efficiently, we used a mod-
ern inference technique called collapsed variational Bayes
(CVB). Our experiments using audio recordings of real pi-
ano and guitar performances showed that fully automated
iLHA based on noninformative priors performed as well as
optimally tuned conventional methods.

1. INTRODUCTION

Multipitch analysis of polyphonic audio signals [1–11] is
one of the most important issues because it is the basis
of many applications such as music transcription, chord
recognition, and musical instrument recognition. We focus
on principled methods based on machine learning, which
have recently yielded promising results. Some researchers,
for example, have proposed generative probabilistic mod-
els that explain how multiple spectral/signal bases (compo-
sitional units) are mixed to form polyphonic music [3–6].
The model parameters can be trained by means of statisti-
cal inference. Others have used nonnegative matrix factor-
ization (NMF) to decompose polyphonic spectra into indi-
vidual spectral bases [7–11]. NMF can be interpreted from
the viewpoint of statistical inference [10–12].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.
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Figure 1. Methodological advantage of our method.

A crucial problem in these methods, known as model
selection, is that they perform best only if an appropriate
model complexity (the number of bases) is specified in ad-
vance. One might think that the optimal number of bases
must be equal to the number of sound sources, but it is not
clear how many bases are most suited to represent a single
source if the spectral shape varies through time. Although
uncertainty is inherent in model selection, conventional
methods assume that a certain complexity exists uniquely
as an oracle. As shown in Figure 1, they require possible
models to be examined separately and exhaustively and the
optimal model selected in retrospect. Such a determinis-
tic framework is not easy-to-use in practice although opti-
mally tuned methods can achieve good performance.

To avoid model selection, we propose a novel statistical
method called Infinite Latent Harmonic Allocation (iLHA)
based on a modern paradigm of machine learning called
Bayesian nonparametrics. Note that the term “nonpara-
metric” means that we do not have to fix model complexity
uniquely. We assume that an unbounded but finite number
of bases stochastically appears in a limited amount of avail-
able data although an infinite number of bases theoretically
exists in the universe. Uncertainty in model selection can
be treated reasonably in a probabilistic framework.

iLHA can be derived by taking the infinite limit of con-
ventional finite models [3, 4]. Conventionally, each spec-
tral basis is often parameterized by means of a Gaussian
mixture model (GMM) in which a fixed number of Gaus-
sians corresponds to the spectral peaks of harmonic par-
tials, and a time-sliced polyphonic spectral strip is modeled
by mixing a fixed number of GMMs. Here, we consider
both the number of bases and the number of partials to ap-
proach infinity, where most are regarded as unnecessary
and automatically removed through statistical inference.

A fundamental and practically-important advantage of
iLHA is that precise prior knowledge is not required. Con-
ventional methods [3–5] heavily rely on prior distributions
regarding the relative strengths of harmonic partials, which

309

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



have too much impact on performance, and forced us to
tune priors and their weighting factors by hand according
to the properties of target sound sources. iLHA, in contrast,
can be fully automated by layering noninformative hyper-
priors on influential priors in a hierarchical Bayesian man-
ner. This is consistent with the fact that humans can adap-
tively distinguish individual notes of various instruments.
One of major contributions of this study is to embody the
fundamental Bayesian principle “Let the data speak for it-
self” in the context of multipitch analysis.

The rest of this paper is organized as follows: Section 2
describes statistical interpretation of polyphonic spectra.
Section 3 discusses related work. Sections 4 and 5 explain
finite models (LHA) and infinite models (iLHA). Section 6
reports our experiments. Section 7 concludes this paper.

2. STATISTICAL INTERPRETATION

We interpret polyphonic spectra as histograms of observed
frequencies that independently occur. This interpretation
basically follows conventional studies [3–5].

2.1 Assumptions

Suppose given polyphonic audio signals are generated from
K bases, each of which consists of M harmonic partials
located on a linear frequency scale at integral multiples of
the fundamental frequency (F0). Note that each basis can
be associated with multiple sounds of different temporal
positions if these sounds are derived from the same pitch
of the same instrument. We transform the audio signals
into wavelet spectra. Let D be the number of frames. If a
spectral strip at frame d (1 ≤ d ≤ D) has amplitude a at
frequency f , we assume that frequency f was observed a

times in frame d. Assuming that amplitudes are additive,
we can consider each observed frequency to be generated
from one of M partials in one of K bases.

These notations are for the finite case. In Bayesian non-
parametrics, we take the limit as K and M go to infinity.

2.2 Observed and Latent Variables

Let the total observed variables over all D frames be rep-
resented by X = {X1, · · · ,XD}, where Xd is a set of
observed frequencies Xd = {xd1, · · · ,xdNd

} in frame d.
Nd is the number of frequency observations. That is, Nd is
equal to the sum of spectral amplitudes over all frequency
bins in frame d. xdn (1 ≤ n ≤ Nd) is an one-dimensional
vector that represents an observed frequency.

Let the total latent variables corresponding to X be sim-
ilarly represented by Z = {Z1, · · · ,ZD}, where Zd =

{zd1, · · · ,zdNd
}. zdn is a KM-dimensional vector in which

only one entry, zdnkm, takes a value of 1 and the others take
values of 0 when frequency xdn is generated from partial
m (1 ≤ m ≤ M) of basis k (1 ≤ k ≤ K).

3. COMPARISON WITH RELATED WORK

The properties of iLHA are intermediate between those of
two successful approaches–statistical inference and NMF–
which are discussed here for comparison and to clarify the
positioning of our approach.

Frequency 

(Cent)

D
en
si
ty

k
µ

2
o

k
+µ

mk
o+μL L

1−
Λ

k 1k
τ

2k
τ km

τ

Figure 2. Probabilistic model of a single basis.
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Figure 3. Probabilistic model of mixed multiple bases.

3.1 Statistical Inference

Statistical methods [3–6] assume probabilistic models us-
ing a limited number of parameters to represent the gen-
erative process of observed spectra (audio signals). F0 es-
timation directly corresponds to finding model parameters
that provide the best explanations of the given data.

Goto [3] first proposed probabilistic models of harmonic
sounds by regarding frequency spectra as probabilistic den-
sities (histograms of observed frequencies).

As shown in Figure 2, the spectral distribution of basis
k (1 ≤ k ≤ K) is modeled by a harmonic GMM:

Mk(x) =

M
∑

m=1

τkmN (

x
∣

∣μk + om,Λ−1
k

)

, (1)

where x is a one-dimensional vector that indicates an ob-
served frequency [cents]. 1 The Gaussian parameters, mean
μk and precision Λk, indicate F0 [cents] of basis k and a
degree of energy concentration around the F0 in the fre-
quency domain. τkm is a relative strength of the m-th har-
monic partial (1 ≤ m ≤ M) in basis k. We set om to
[1200 log2 m]. This means M Gaussians are located to have
harmonic relationships on the logarithmic frequency scale.

As shown in Figure 3, the spectral strip of frame d is
modeled by mixing K harmonic GMMs as follows:

Md(x) =
K
∑

k=1

πdkMk(x) (2)

where πdk is a relative strength of basis k in frame d. There-
fore, the polyphonic spectral strip is represented by nested
finite Gaussian mixture models.

Several inference methods that have been proposed for
parameter estimation are listed in Table 1. Goto [3] pro-

1 Linear frequency fh in hertz can be converted to logarithmic fre-
quency fc in cents as fc = 1200 log2(fh/(440

3
12

−5)).
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#(bases) #(partials) Temporal modeling
PreFEst [3] Fixed Fixed None

HC [4] Inferred Fixed None
HTC [5] Fixed Fixed Continuity treated
NMF [7] Fixed Not used Exchangeable

iLHA Infinite Infinite Exchangeable

Table 1. Comparison of multipitch analysis methods.

posed a method called PreFEst that estimates only relative
strengths τ and π while μ and Λ are fixed by allocating
many GMMs to cover the entire frequency range as F0 can-
didates. Kameoka et al. [4] then proposed harmonic clus-
tering (HC), which estimates all the parameters and selects
the optimal number of bases by using the Akaike informa-
tion criterion (AIC). Although these methods yielded the
promising results, they analyze the spectral strips of differ-
ent frames independently. Thus, Kameoka et al. [5] pro-
posed harmonic-temporal-structured clustering (HTC) that
captures temporal continuity of spectral bases. Note that
all these methods are based on maximum-likelihood and
maximum-a-posteriori training of the parameters by intro-
ducing prior distributions of relative strengths τ , which
have a strong impact on the accuracy of F0 estimation.

Our method called iLHA is based on hierarchical non-
parametric Bayesian modeling that requires no prior tuning
and avoids specifying K and M in advance. More specif-
ically, the limit of the conventional nested finite GMMs is
considered as K and M diverge to infinity.

3.2 Nonnegative Matrix Factorization
NMF-based methods [7–12] factorize observed frequency
spectra into the product of spectral bases and time-varying
envelopes under the nonnegativity constraint. K bases are
estimated by sweeping all frames of the given spectra. Al-
though several methods [10, 12] take temporal continuity
into account, standard methods are based on temporal ex-
changeability. In other words, exchange of arbitrary frames
does not affect the factorized results. Although such tem-
poral modeling is not sufficient, it is known to work well
in practice. Therefore, iLHA adopted the exchangeability.

4. LATENT HARMONIC ALLOCATION

This section explains LHA, the finite version of iLHA, as a
preliminary step to deriving iLHA. We formulate the con-
ventional nested finite GMMs in a Bayesian manner.

4.1 Model Formulation
Figure 4 illustrates a graphical representation of the LHA
model. The full joint distribution is given by

p(X,Z,π, τ ,μ,Λ)

= p(X|Z,μ,Λ)p(Z|π, τ )p(π)p(τ)p(μ,Λ) (3)

where the first two terms on the right-hand side are likeli-
hood functions and the other three terms are prior distribu-
tions. The likelihood functions are defined as

p(X|Z,μ,Λ) =
∏

dnkm

N (

xdn

∣

∣μk + om,Λ−1
k

)zdnkm (4)

p(Z|π, τ ) =
∏

dnkm

(πdkτkm)zdnkm (5)
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Figure 4. A graphical representation of LHA.

Then, we introduce conjugate priors as follows:

p(π) =

D
∏

d=1

Dir(πd|αν) ∝
D
∏

d=1

K
∏

k=1

π
ανk−1
dk (6)

p(τ ) =
K
∏

k=1

Dir(τk|βυ) ∝
K
∏

k=1

M
∏

m=1

τβυm−1
km (7)

p(μ,Λ) =

K
∏

k=1

N (

μk

∣

∣m0, (b0Λk)
−1

)W (

Λk

∣

∣W 0, c0
)

(8)

where p(π) and p(τ) are products of Dirichlet distributions
and p(μ,Λ) is a product of Gaussian-Wishart distributions.
αν and βυ are hyperparameters and α and β are called
concentration parameters when ν and υ sum to unity. m0,
b0, W 0, and c0 are also hyperparameters; W 0 is a scale
matrix and c0 is a degree of freedom.

4.2 Variational Bayesian Inference
The objective of Bayesian inference is to compute a true
posterior distribution of all variables: p(Z,π, τ ,μ,Λ|X).
Because analytical calculation of the posterior distribution
is intractable, we instead approximate it by using iterative
inference techniques such as variational Bayes (VB) and
Markov chain Monte Carlo (MCMC). Although MCMC
is considered to be more accurate in general, we use VB
because it converges much faster.

In the VB framework, we introduce a variational pos-
terior distribution q(Z,π, τ ,μ,Λ) and make it close to the
true posterior p(Z,π, τ ,μ,Λ|X) iteratively. Here, we as-
sume that the variational distribution can be factorized as

q(Z,π, τ ,μ,Λ) = q(Z)q(π, τ ,μ,Λ) (9)

To optimize q(Z,π, τ ,μ,Λ), we use a variational ver-
sion of the Expectation-Maximization (EM) algorithm [13].
We iterate VB-E and VB-M steps until a variational lower
bound of evidence p(X) converges as follows:

q∗(Z) ∝ exp
(

Eπ,τ ,μ,Λ [log p(X,Z,π, τ ,μ,Λ)]
)

(10)

q∗(π, τ ,μ,Λ) ∝ exp (EZ [log p(X,Z,π, τ ,μ,Λ)]) (11)

4.3 Updating Formula
We derive the formulas for updating variational posterior
distributions according to Eqns. (10) and (11).

4.3.1 VB-E Step

An optimal variational posterior distribution of latent vari-
ables Z can be computed as follows:

log q∗(Z) = Eπ,τ ,μ,Λ [log p(X,Z,π, τ ,μ,Λ)] + const.

= Eμ,Λ [log p(X|Z,μ,Λ)] + Eπ,τ [log p(Z|π, τ )] + const.

=
∑

dnkm

zdnkm log ρdnkm + const. (12)
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where ρdnkm is defined as

log ρdnkm = Eπd [log πdk] + Eτk [log τkm]

+Eμk,Λk

[

logN (

xdn

∣

∣μk + om,Λ−1
k

)]

(13)

q∗(Z) is obtained as multinomial distributions given by

q∗(Z) =
∏

dnkm

γzdnkm
dnkm (14)

where γdnkm is given by γdnkm = ρdnkm∑
km ρdnkm

and is called
a responsibility that indicates how likely it is that observed
frequency xdn is generated from harmonic partial m of ba-
sis k. Here, let ndkm be an observation count that indicates
how many frequencies were generated from harmonic par-
tial m of basis k in frame d. ndkm and its expected value
can be calculated as follows:

ndkm =
∑

n

zdnkm E[ndkm] =
∑

n

γdnkm (15)

For convenience in executing the VB-M step, we com-
pute several sufficient statistics as follows:

Sk[1]≡
∑

dnm

γdnkm Sk[x] ≡
∑

dnm

γdnkmxdnm (16)

Sk[xx
T ]≡

∑

dnm

γdnkmxdnmxT
dnm (17)

where xdnm is defined as xdnm = xdn − om.

4.3.2 VB-M Step

Consequently, an optimal variational posterior distribution
of parameters π, τ ,μ,Λ is shown to be given by

q∗(π, τ ,μ,Λ) =
D
∏

d=1

q∗(πd)
K
∏

k=1

q∗(τk)
K
∏

k=1

q∗(μk,Λk) (18)

Since we use conjugate priors, each posterior has the same
form of the corresponding prior as follows:

q∗(πd) = Dir(πd|αd) (19)

q∗(τk) = Dir(τk|βk) (20)

q∗(μk,Λk) =N (

μk

∣

∣mk, (bkΛk)
−1)W (

Λk

∣

∣W k, ck
)

(21)

where the variational parameters are given by

αdk = ανk + E[ndk·] βkm = βυm + E[n·km] (22)

bk = b0 + Sk[1] ck = c0 + Sk[1] (23)

mk =
b0m0 + Sk[x]

b0 + Sk[1]
=

b0m0 + Sk[x]

bk
(24)

W−1
k =W−1

0 + b0m0m
T
0 + Sk[xx

T ]− bkmkm
T
k (25)

Here dot (·) denotes the sum over that index.

5. INFINITE LATENT HARMONIC ALLOCATION

This section derives hierarchical nonparametric Bayesian
models, i.e., nested infinite GMMs for polyphonic spectra.

5.1 Model Formulation

First we let K approach infinity, where the infinite number
of harmonic GMMs is assumed to exist in the universe.
More specifically, the dimensionality of the Dirichlet dis-
tributions in Eqn. (6) is considered to be infinite. At each
frame d, πd is an infinite vector of normalized probabili-
ties (mixing weights) drawn from the infinite-dimensional
Dirichlet prior. Such stochastic process is called a Dirichlet
process (DP). Every time frequency xdn is generated, one
of the infinite number of harmonic GMMs is drawn accord-
ing to πd. Note that most entries of πd take extremely tiny
values because all entries sum to unity. If we can observe
the infinite number of frequencies (Nd → ∞), the infinite
number of harmonic GMMs can be drawn. However, Nd

is finite in practice. Therefore, only the finite number of
harmonic GMMs, K+ � ∞, is drawn at frame d. Here,
a problem is that harmonic GMMs that are actually drawn
at frame d are completely disjointed from those drawn at
another frame d′. This is not a reasonable situation.

To solve this problem, we use the hierarchical Dirichlet
Process (HDP) [14]. More specifically, we assume that
infinite-dimensional hyperparameter ν in Eqn. (6), which
is shared among all D frames, is a draw from a top-level
DP. A generative interpretation is that after an unbounded
number of harmonic GMMs is initially drawn from the top-
level DP, an unbounded subset is further drawn according
to the local DP at each frame. This effectively ties frame d

to another frame d′. As shown in Figure 5, ν is known to
follow the stick-breaking construction [14] as follows:

νk = ν̃k

k−1
∏

k′=1

(1− ν̃k′) ν̃k ∼ Beta(1, γ) (26)

where γ is a concentration parameter of the top-level DP.
Therefore ν can be converted into ν̃.

Now we let M approach infinity, where each harmonic
GMM consists of the infinite number of harmonic partials.
To put effective priors on τ , we use generalized DPs called
Beta two-parameter processes as follows:

τkm = τ̃km

m−1
∏

m′=1

(1− τ̃km′) τ̃km ∼ Beta(βλ1, βλ2) (27)

where β is a positive scalar and λ1 + λ2 = 1.
Because α, β, γ and λ are influential hyperparameters,

we put Gamma and Beta hyperpriors on them as follows:

p(α) = Gam(α|aα, bα) p(γ) = Gam(γ|aγ , bγ) (28)

p(β) = Gam(β|aβ, bβ) p(λ) = Beta(λ|u1, u2) (29)

where a{α,β,γ} and b{α,β,γ} are shape and rate parameters.
Figure 6 shows a graphical representation of the iLHA

model. The full joint distribution is given by

p(X,Z,π, τ̃ ,μ,Λ, α, β, γ,λ, ν̃) = p(X|Z,μ,Λ)p(μ,Λ)

p(Z|π, τ̃ )p(π|α, ν̃)p(τ̃ |β,λ)p(α)p(β)p(γ)p(λ)p(ν̃|γ) (30)

where p(Z|π, τ̃ ) is obtained by plugging Eqn. (27) into
Eqn. (5) and p(π|α, ν) is the same as Eqn. (6). p(ν̃|γ) and
p(τ̃ |β,λ) are defined according to Eqns. (26) and (27) as

p(ν̃|γ) =
∏

k

Beta(τ̃k|1, γ) p(τ̃ |β,λ) =
∏

km

Beta(τ̃km|βλ)(31)
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Figure 6. A graphical representation of iLHA.

5.2 Collapsed Variational Bayesian Inference
To train the HDP model we use a sophisticated version of
VB called collapsed variational Bayes (CVB) [15]. CVB
enables more accurate posterior approximation in the space
of latent variables where parameters are integrated out.

Figure 7 shows a collapsed iLHA model. By integrating
out π, τ̃ ,μ,Λ, we obtain the marginal distribution given by

p(X,Z, α, β, γ,λ, ν̃)

= p(X|Z)p(Z|α, β,λ, ν̃)p(α)p(β)p(γ)p(λ)p(ν̃|γ) (32)

where the first two terms are calculated as follows:

p(X|Z) = (2π)−
n···
2

∏

k

(

b0
bzk

) 1
2 B(W 0, c0)

B(W zk, czk)
(33)

p(Z|α, β,λ, ν̃) =
∏

d

Γ(α)

Γ(α+ nd··)

∏

k

Γ(ανk + ndk·)
Γ(ανk)

∏

km

Γ(β)Γ(βλ1 + n·km)Γ(βλ2 + n·k>m)

Γ(βλ1)Γ(βλ2)Γ(β + n·k≥m)
(34)

where bzk,W zk, czk are obtained by substituting zdnkm for
γdnkm in calculating Eqns. (23) and (25).

Because CVB cannot be applied directly to Eqn. (32),
we introduce auxiliary variables by using a technique called
data augmentation [15]. Let ηd and ξkm be Beta-distributed
variables and sdk and tkm be positive integers that satisfy
1 ≤ sdk ≤ ndk·, 1 ≤ tkm1 ≤ n·km, and 1 ≤ tkm2 ≤ n·k>m.
Eqn. (34) can be augmented as

p(Z,η, ξ, s, t|α, β,λ, ν̃) =
∏

d

ηα−1
d

(1 − ηd)
nd··−1

Γ(nd··)

∏

k

[
ndk·
sdk

]

(ανk)
sdk

∏

km

ξβ−1
km

(1 − ξkm)
n·k≥m−1

Γ(n·k≥m)

[
n·km

tkm1

]

(βλ1)
tkm1

[
n·k>m

tkm2

]

(βλ2)
tkm2

where [ ] denotes a Stirling number of the first kind. The
augmented marginal distribution is given by

p(X,Z,η, ξ, s, t, α, β, γ,λ, ν̃)

= p(Z,η, ξ, s, t|α, β,λ, ν̃)p(α)p(β)p(γ)p(λ)p(ν̃|γ) (35)

In the CVB framework, we assume that the variational
posterior distribution can be factorized as follows:

q(Z,η, ξ, s, t, α, β, γ,λ, ν̃)

= q(α, β, γ,λ)q(ν̃)q(η, ξ, s, t|Z)
∏

dn

q(zdn) (36)

We also use an approximation technique called varia-
tional posterior truncation. More specifically, we assume
q(zdnkm) = 0 when k > K and m > M . In practice, it is
enough that K and M are set to sufficiently large integers.

5.3 Updating Formula
We descrive the formulas for updating variational posterior
distributions.
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Figure 7. A collapsed model with auxiliary variables.

5.3.1 CVB-E Step

A variational probability of zdnkm = 1 is given by

log q∗(zdnkm = 1) = Ez¬dn

[

log
(

G[ανk] + n¬dn
dk·

)]

+ Ez¬dn

[

log

(

G[βλ1] + n¬dn
·km

E[β] + n¬dn
·k≥m

m−1
∏

m′=1

G[βλ2] + n¬dn
·k>m′

E[β] + n¬dn
·k≥m′

)]

+ Ez¬dn

[

log S(xdnm|m¬dn
zk ,L¬dn

zk , c¬dn
zk )

]

+ const. (37)

where subscript ¬dn denotes a set of indices without d and
n, G[x] denotes the geometric average exp(E[log x]), and
S is the Student-t distribution. L¬dn

zk is given by L¬dn
zk =

b¬dn
zk

1+b¬dn
zk

c¬dn
zk W ¬dn

zk , where m¬dn
zk , b¬dn

zk ,W¬dn
zk , c¬dn

zk are ob-
tained by substituting zdnkm for γdnkm required by Eqns.
(23), (24), and (25) and calculating sum without zdn. Each
term of Eqn. (37) can be calculated efficiently [15, 16].

5.3.2 CVB-M Step

First, α, β and γ are Gamma distributed as follows:

q(α)∝ αaα+E[s··]−1e−α(bα−∑
d E[log ηd]) (38)

q(β)∝ βaβ+E[t···]−1e−β(bβ−∑
km E[log ξkm]) (39)

q(γ)∝ γaγ+K−1e−γ(bγ−∑
k E[log(1−ν̃k)]) (40)

Then, λ and τ̃ are Beta distributed as follows:

q∗(λ)∝ λ
u1+E[t··1]−1
1 λ

u2+E[t··2]−1
2 (41)

q∗(ν̃k)∝ ν̃
1+E[s·k]−1
k (1− ν̃k)

E[γ]+E[s·>k]−1 (42)

Finally, the variational posteriors of η, ξ, s, t are given by

q∗(ηd)∝ η
E[α]−1
d (1− ηd)

nd··−1 (43)

q∗(ξkm|Z)∝ ξ
E[β]−1
km (1− ξkm)n·k≥m−1 (44)

q∗(sdk = s|Z)∝
[

ndk·
s

]

G[ανk]
s (45)

q∗(tkm1 = t|Z)∝
[

n·km

t

]

G[βλ1]
t (46)

q∗(tkm2 = t|Z)∝
[

n·k>m

t

]

G[βλ2]
t (47)

To calculate E[sdk] (average sdk over Z), we exactly treat
the case ndk· = 0 and apply second-order approximation
when ndk· > 0 (see details in [15]). E[log ξkm], E[tkm1],
and E[tkm2] can be calculated in the same way.

To estimate F0s, we need explicitly compute the varia-
tional posteriors of the integrated-out parameters μ,Λ. To
do this, we execute the standard VB-M step once by using
the responsibilities q(Z) obtained in the CVB-E step.

6. EVALUATION

This section reports our comparative experiments evaluat-
ing the performance of iLHA.
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Piece number Optimally tuned Fully automated
RWC-MDB- PreFEst [3] HTC [5] LHA iLHA
J-2001 No.1 75.8 79.0 70.7 82.2
J-2001 No.2 78.5 78.0 69.1 77.9
J-2001 No.6 70.4 78.3 49.8 71.2
J-2001 No.7 83.0 86.0 70.2 85.5
J-2001 No.8 85.7 84.4 55.9 84.6
J-2001 No.9 85.9 89.5 68.9 84.7

C-2001 No.30 76.0 83.6 81.4 81.6
C-2001 No.35 72.8 76.0 58.9 79.6

Total 79.4 82.0 65.8 81.7

Table 2. Frame-level F-measures of F0 detection.

6.1 Experimental Conditions
We evaluated LHA and iLHA on the same test set used in
[5], which consisted of nine pieces of piano and guitar solo
performances excerpted from the RWC music database [17].
The first 23 [s] of each piece were used for evaluation. The
spectral analysis was conducted by the wavelet transform
using Gabor wavelets with a time resolution of 16 [ms].
The values and temporal positions of actual F0s were pre-
pared by hand as ground truth. We evaluated performance
in terms of frame-level F-measures. The priors and hyper-
priors of LHA and iLHA were set to noninformative uni-
form distributions. K and M were set to sufficiently large
numbers, 60 and 15. iLHA is not sensitive to these values.
No other tuning was required. To output F0s at each frame,
we extracted bases whose expected weights π were over a
threshold, which was optimized as in [5].

For comparison, we referred to the experimental results
of PreFEst and HTC reported in [5]. Although the ground-
truth data was slightly different from ours, it would be suf-
ficient for roughly evaluating performance comparatively.
The number of bases, priors, and weighting factors were
carefully tuned by using the ground-truth data to optimize
the results. Although this is not realistic, the upper bounds
of potential performance were investigated in [5].

6.2 Experimental Results
The results listed in Table 2 show that the performance of
iLHA approached and sometimes surpassed that of HTC.
This is consistent with the empirical findings of many stud-
ies on Bayesian nonparametrics that nonparametric models
were competitive against optimally-tuned parametric mod-
els. HTC outperformed PreFEst because HTC can appro-
priately deal with temporal continuity of spectral bases.
This implies that incorporating temporal modeling would
improve the performance of iLHA.

The results of LHA were worse than those of iLHA be-
cause LHA is not based on hierarchical Bayesian modeling
and requires precise priors. In fact, we confirmed that the
results of PreFEst and HTC based on MAP estimation were
drastically degraded when we used noninformative priors.
In contrast, iLHA stably showed the good performance.

7. CONCLUSION

This paper presented a novel statistical method for detect-
ing multiple F0s in polyphonic audio signals. The method
allows polyphonic spectra to contain an unbounded num-
ber of spectral bases, each of which can consist of an un-

bounded number of harmonic partials. These numbers can
be statistically inferred at the same time that F0s are esti-
mated. Even in experimental evaluation using noninforma-
tive priors, our automated method performed well or better
than conventional methods manually optimized by trial and
error. To our knowledge, this is the first attempt to apply
Bayesian nonparametrics to multipitch analysis.

Bayesian nonparametrics is an ultimate methodological
framework avoiding the model selection problem faced in
various areas of MIR. For example, how many sections
should one use for structuring a musical piece? How many
groups should one use for clustering listeners according to
their tastes or musical pieces according to their contents?
We are freed from these problems by assuming that in the-
ory there is an infinite number of classes behind observed
data. Unnecessary classes are automatically removed from
consideration through statistical inference. We plan to use
this powerful framework in a wide range of applications.
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ABSTRACT

A novel technique of unmasking to repair the degradation
in sources separated by spectrogram masking is proposed.
Our approach is based on explicit knowledge of the musi-
cal audio at note level from a score-audio alignment, which
we termed Informed Source Separation (ISS). Such knowl-
edge allows the spectrogram energy to be decomposed into
note-based models. We assume that a spectrogram mask
for the solo is obtained and focus on the problem of repair-
ing audio resulting from applying the mask. We evaluate
the spectrogram as well as the harmonic structure of the
music. We either search for unmasked (orchestra) partials
of the orchestra to be transposed onto a masked (solo) re-
gion or reshape a solo partial with phase and amplitude
imputed from unmasked regions. We describe a Kalman
smoothing technique to decouple the phase and amplitude
of a musical partial that enables the modification to the
spectrogram. Audio examples from a piano concerto are
available for evaluation.

1. INTRODUCTION

We address the “desoloing” problem, in which we attempt
to isolate the accompanying instruments in a monaural record-
ing of music for soloist and orchestral accompaniment. The
motivation is to produce the audio of the accompaniment
part for concertos in the “classical” domain as well as the
karaoke in popular music, whereas the ultimate goal is to
have the orchestra adapt timing to the live player, a prob-
lem we do not discuss there. Nevertheless, the accompa-
nying audio is needed and we offer solutions through our
demixing or isolation of the original sources (instruments).

Most past effort in this “source separation” problem treats
Blind Source Separation (BSS) problems and assumes lit-
tle knowledge of the audio content rather than the indepen-
dence of the sources [1] or relies on general cues of musical
sources rather than the content of the sources [2]. In con-
trast, we assume explicit knowledge in the form of a score
match, which establishes a correspondence between the
audio data and a symbolic score representation giving the
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c© 2010 International Society for Music Information Retrieval.

onset times of all musical events. See Figure 1 for an ex-
ample. Such correspondence, known as “score following”
or “alignment”, initially introduced and developed by Ver-
coe and Dannenberg [12] is the foundation of our approach
which we termed Informed Source Separation (ISS). Other
examples in the category of ISS include Dubnov [6].

Figure 1. Piano note onsets (vertical lines) of an excerpt
from 2nd mvmt. of Ravel’s piano concerto in G

In our approach, we begin by masking the short time
Fourier transform (STFT) in an attempt to “erase” the soloist’s
contribution. We also based our exploration toward partial-
wise phase/amplitude relationship on previous work [7]
in which spectrogram magnitude is decomposed into each
partial by fitting note-based models. [11] is another ef-
fort of spectrogram decomposition in speech. However,
our emphasis here is not on estimating the mask or fitting
note models, but on employing a novel set of procedures
(see sect. 5) that estimates and transforms note partials,
in which the damage caused by our masking procedure is
repaired.

Here our assumption is that there is information redun-
dancy in terms of phase and amplitude between the “ob-
servable” partials (i.e. not significantly overlapped by the
solo or an accompaniment instrument of a different family)
and damaged partials. Our hope is to “copy and paste” mu-
sical partials from the observable area to the damaged area
with some necessary transformations that exploit those re-
dundancy to maintain the consistency between the observ-
able and the damaged. These procedures can be automated
by analyzing the texture of the music from the score and
testing the soundness of remaining partials on the desoloed
spectrogram. We call this process unmasking in which the
masked-out solo regions will be recovered.
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The structure of this paper is as follows: we briefly for-
mulate the masking problem in sect. 2, followed by note-
based parameterization in sect. 3 and phase estimation in
sect. 4. Such estimating enables our repair-by-unmasking
technique in sect. 5 which is applied in the context of a
piano concerto in sect. 6.

2. SPECTROGRAM MASKING OF THE SOLO

Given our original audio signal, x(s), we define the short
time Fourier transform (STFT) by

X(t, k) =
N−1∑
n=0

x(tH + n)w(n)e−2πjkn/N

where H is the hop size, N is the window length and w
is the window function. We will define our masking op-
eration in this STFT domain. To do so, we estimate two
“complementary” masks, 1s(t, k), and 1a(t, k), taking val-
ues in {0, 1} with 1s(t, k)+1a(t, k) = 1. These masks are
used to isolate the parts ofX we attribute to the soloist and
accompaniment through

Xs(t, k) = 1s(t, k)X(t, k) (1)

Xa(t, k) = 1a(t, k)X(t, k) (2)

In other words we label each time-frequency “cell” (t, k)
as either solo or accompaniment. Since our focus here is
on the unmasking problem, we will bias our labeling of
each time-frequency cell toward the solo category, since
we want to make sure the original soloist is completely re-
moved. Using our score match, it would be relatively easy
to simply draw a rectangle around each solo partial while
calling the interior of these rectangles our solo mask. Our
approach is somewhat more sophisticated, employing spe-
cial treatment of the wide spectral dispersion associated
with note onsets by Ono et al. [13], as well as careful mod-
eling of the steady state partials. However, we will not
discuss this mask estimation problem here.

While Xa(t, k) (and Xs(t, k)) is, in general, not the
STFT of any time signal, applying the inverse STFT opera-
tion gives perceptually sufficient results with appropriately
defined STFT. In particular, if we use a Hann window with
H = N/4, one can show that applying the STFT inverse
to Xa results in the audio signal whose STFT is closest to
Xa in the sense of Euclidean distance [5].

The result of this process elimanates more than the soloist,
of course, since the accompanying instruments also con-
tributed to the STFT in the region we have masked out. A
possible remedy in sect. 4 is the main focus of our paper.

3. NOTE-BASED MUSIC PARAMETERIZATION

In this section we briefly review our parameterization of
the music given the score, which is adapted from our tech-
nique to decompose the spectrogram magnitude into note
models in [7]. This parameterization is also used to facili-
tate our phase estimation in sect. 4.

From the score, suppose we have a collection of notes
N in the piece of interest, for a note n ∈ N , we know its

instrumentation in ∈ I where I is the set of instruments in
this piece and can be further partitioned into disjoint sub-
sets Is and Ia for solo and accompaniment instruments
separately.

Moreover, we know the time span of note n: Tn =
{tonn , . . . , toffn } from the score following. Also, as the
note pitch pn indicates its set of valid harmonics under a
certain Nyquist frequency: Hn = {1, . . . ,Hn}, we con-
fine the frequency bin span of each partial h ∈ Hn to
Kn,h = {klown,h , . . . , k

high
n,h }. Kn,h implements a band-pass

filter to specify a frequency bin span where the contribu-
tion from the partial of interest (very likely to be mixed
with other partials of close frequencies) is significant in
terms of spectrogram magnitude while the spectral energy
outside of Kn,h is ignored.

Such 2-dimensional, rectangular time-bin supportBn,h =
{(t, k)|t ∈ Tn, k ∈ Kn,h} specifies a band-passed filter
bank over Tn to extract time domain partial ph(s) from
X(t, k) We denote Bn = Bn,1 ∪ . . . ∪ Bn,Hn

to be the
support for all harmonic components of note n.

We then assume a Normal mixture model for the spec-
trogram magnitude of an orchestra note n: each harmonic
of the note is one Gaussian component in the mixture with
normalized weight νn,h, coupled frequency bin expecta-
tion µn,h(t) = hµn,1(t), and unknown variance σ2

n,h. To
accommodate the (possibly dramatic) change in amplitude
over time of a note, we also introduce a normalized non-
negative profile, ηn,h(t), to outline the frame-wise ampli-
tude of hth partial of nth note.

Strictly, the centroid of each partial may not be precisely
coupled by µn,h(t) = hµn,1(t). But it is approximately
true for all the instruments except for piano in our study.
To summarize:

• a weight νn,h > 0 for ∀(n, h) with
∑
h∈Hn

νn,h = 1

• a time support Tn = {tonn , . . . , toffn }, which is shared
among all partials of note n

• an amplitude envelope ηn,h(t) > 0 for ∀(n, h) with∑
h∈Hn

ηn,h(t) = 1

• a frequency bin support Kn,h = {klown,h , . . . , k
high
n,h }

• a frequency bin centroid µn,h(t) which reflected the
frequency of partial h at t. Among different partials,
they are coupled by µn,1(t) = µn,h(t)

h

• a frequency bin variance σn,h that describes mag-
nitude distribution of partial h over frequency bins
with expectation µn,h(t) under Normal assumption.

Finally we can define a“template” function qn,h(t, k)

=


0, ∀(t, k) : t /∈ Tn or k /∈ Kn,h

νn,hηn,h(t)f(k;µn,h, σ2
n,h); otherwise

(3)

where f(k;µn,h, σ2
n,h) is the normal density function. This

parameterization is subjected to normalization to ensure∑
h∈Hn

∑
(t,k)∈Bn,h

qn,h(t, k) = 1 for note n.
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Figure 2. Wrapped and Unwrapped Phase

Our assumption is that the magnitude contribution from
each note partial indexed by (n, h) to the spectrogram is
raised from a collection of independent Poisson random
variables {Zn(t, k)} for (t, k) ∈ Bn [3]. The expectation
of Zn(t, k) is δn

∑
h qn,h(t, k) where δn describes the de-

gree to which Zn(t, k) contributes to X(t, k). Intuitively,
δn is our estimate of the total spectrogram magnitude con-
tribution from note n and can be interpreted as the overall
“amplitude” of the note n. The estimation of δn is, no
doubt, a significant factor of source separation quality and
our solution by an EM algorithm is documented in [7]. For
the rest of the paper, we assume a somewhat reliable δn
is known so we can focus on the unknown phase of each
partial of note n.

4. PARTIAL-WISE PHASE ESTIMATION AND
TRANSFORMATIONS

As usually only a subset of partials of a note is damaged
by removing the solo partial, we hope to exploited the har-
monicity assumption in wind and string instruments sup-
ported by Fletcher [9] and Brown [10] to impute the phase
of those missing partials in the orchestra. To do so, we
first introduce a generic method to decouple the phase and
slow-changing amplitude of a band-limited signal in 4.1
which enables our two major tools to “unmask” the dam-
aged spectrogram: harmonic transposition in 4.2 and phase-
locked modulation in 4.3.

4.1 Phase Estimation by Kalman Smoothing

In this section we represent our note partial, ph(s), in terms
of a time-varying amplitude and phase:

ph(s) ≈ αh(s) cos(θh(s))

where the time-varying amplitude, αh(s), is non-negative
and varies slowly compared with ph(s), and the “unwrapped”
phase (see Figure 2) function, θh(s), is monotonically non-
decreasing. A more precise review of the slow-changing
αh(s) in a sinusoidal model is given by Rodet [14].

In order to estimateαh(s) and θh(s) we follow the model
of Taylan Cemgil [8] and view the harmonic, ph(s), as the
ouput of a Kalman filter model [16] [17]. To this end we
define a sequence of two-dimensional state vectors {x(s) =
(x1(s), x2(s))t} where x1(0) and x2(0) are independent

0-mean random variables with variance γ2, and the re-
maining variables follow evolution equation x(s + 1) =
Ax(s) + w(s) where {w(s)} is an independent sequence
of 0-mean 2-dimensional vectors with independent com-
ponents of fixed variance (the variance can be tuned em-
pirically). A is the rotation matrix, defined in terms of the
expected phase advance per sample, ρ, which is directly
computable from the nominal frequency of the partial:

A =
(

cos ρ sin ρ
− sin ρ cos ρ

)
Thus, x(s) is a sequence of vectors that circle around the
origin and an approximately known frequency with vari-
able distance from the origin. We then model our observed
partial as ph(s) = x1(s) + v(s) where {v(s)} is another
sequence of independent 0-mean variables with a certain
variance (this variance is tuned empirically too).

It is well known that the Kalman filter allows straight-
forward computation of the conditional distribution, p(x(s)|{ph(s′)}),
and that this distribution is Normal for each value of s.
Thus we estimate x(s) by x̂(s) = E(x(s)|{ph(s′)}). The
representation of the partial in terms of amplitude and non-
decreasing phase follows from the polar coordinate repre-
sentation of x̂(s):

αh(s) =
√
x̂2

1(s) + x̂2
2(s)

θh(s) = 2πk(s) + tan−1(
x̂2(s)
x̂1(s)

)

where each k(s) is chosen to be the non-negative minimal
integer value that ensures that θh(s) is non-decreasing.

Note that for phase sequence θh(s), s ∈ {1, . . . , S}, not
only the final phase estimate θ̂h(S) but also all previous
phase estimates are of interest. To get the “best” phase es-
timation, we need to update the state estimates backward
to incorporate the observation that were not “available”
at sample s in the forward pass. This motivates Kalman
smoothing (see chapter 5 of [17]) which calculates the smoothed
phase estimate θ̂h(s) recursively backward from the last
sample at S.

4.2 Harmonic Transposition

With amplitude αh(s) and phase θh(s) decoupled from
hth harmonic of a note, we are ready to “project” one har-
monic into a different harmonic while maintaining the har-
monicity between the source and the destination. Suppos-
ing we estimated the unwrapped phase of the ith harmonic
as θi(s), the “projected” phase sequence at jth harmonic is
given by θ̃j(s) = jθi(s)

i and the resulting jth harmonic by

p̃j(s) = α̃j(s) cos(
jθi(s)
i

) (4)

where α̃j(s) is either known or imputed amplitude at jth
harmonic. In this work, we usually have an estimate of
α̃j(s) by scaling δn from sect. 3.

Our harmonic transposition exploit such “harmonicity”
between partials, which is a well-studied phenomenon. Early
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Figure 3. Unwrapped Phase Difference

work mainly by Fletcher showed that frequencies of the
partials in“the middle portion of the tone” of string instru-
ment are integral multiples of the fundamental frequency
by using sonograph and also derived that partials of string
and wind instrument are “rigorously locked into harmonic
relationship” [9]. By using single frame approximation on
a variety of digital samples, Brown concluded that “con-
tinuously driven instruments such as the bowed strings,
winds, and voice have phase-locked frequency components
with frequencies in the ratio of integers to within the cur-
rently achievable measurement accuracy of about 0.2%”
[10] from experiments with and without vibrato.

To demonstrate such harmonicity in our framework, we
focus on the “projection” of the unwrapped phase θi(s)
from partial i to partial j by

θi,j(s) =
jθh1(s)

i
(5)

By “projecting” the phase of different partials to a com-
mon harmonic, we can examine such phase relation on a
variety of orchestra instruments. We can visualize pair-
wise phase difference θi,1(s) − θj,1(s) at the fundamental
for any i 6= j. Figure 3 shows the pairwise phase differ-
ence for the first 4 notes from a performance of the first
movement of Stravinsky’s Three Pieces for Clarinet Solo.
The salient message from this plot is: the pairwise phase
difference is in a very small range (mostly (−π2 ,

π
2 )) and

never drifts away over the entire note; the error (including
measurement error and true difference) is not accumula-
tive. This supports our approximation of phase coherence.

Piano and other impulsively driven instruments such as
strings played pizzicato are counter-examples whose par-
tials deviate from integer ratios due to the stiffness of the
string [10].

4.3 Phase-locked Modulation

In addition to the partial-wise relationship, we want to ex-
ploit timewise similarity in terms of phase and amplitude
within one note.

Suppose we have a partition T1 = {s1, . . . , sk − 1},
T2 = {sk, . . . , s2} on the sample indices T = {s1, . . . , s2}
of the sustaining part of a reasonably long orchestra note,
we can only observe the unwrapped phase sequence at θh(T1)
but θh(T2) is missing. We can impute θh(T2) sequentially
by

θh(sk+n) = θh(sk+n−1)+θh(s1 +1+n)−θh(s1 +n)
(6)

for any 0 ≤ n ≤ s2 − sk. We omit the formula to obtain
θh(T1) if we observe θh(T2).

This operation preserves the phase advance per sample
in T1 and applies such ∆θh(T1) cyclically to T2. This is
similar to the phase vocoder except for that we are doing
it on the sample level rather than frame level. For a long
enough time span T1, we are capturing the pattern of fre-
quency fluctuation in θh(T1). To synthesize a segment of
a partial, we also need the amplitude envelope over T2.
A simple solution is to reuse the average amplitude αh
over T1 (with some minor modulation) to “sustain” a note
through the end of T2. If the orchestra note is holding for
quite long, which is common in some orchestration, we are
effectively synthesizing the sustaining part of the partial.

5. SPECTROGRAM UNMASKING

In an attempt to fix the damage caused by desolo, we ex-
amine the spectrogram with a focus on areas where the ac-
companiment notes (harmonics) are damaged.

In the type of music that we (and many solo musicians)
are mainly interested in, for instance, a piano concerto, it
is common that a string section may double the solo in-
strument at the unison, fifth, or octave in either direction.
In these cases, masking out the solo part usually results in
many damaged partials in the orchestra since consonant in-
tervals mean more partials are likely to share the same fre-
quencies. With this in mind, we use some heuristics to cre-
ate an algorithm to automatically perform the two partial-
wise transformations developed in 4.2 and 4.3. Since the
texture of the music can be highly complex, we reconstruct
a somewhat “generic” scenario for illustration of this algo-
rithm in Figure 4. The 1-bar score in the figure is a re-
duction from a piano concerto where the piano part is fre-
quently doubled by the lower string sections.

Supposing we have obtained solo mask 1s(t, k), a dam-
aged region Bdn,h ⊆ Bn,h, a template gn,h(t, k) and an
amplitude estimate δn from section 2 and 3 for a damaged
partial h of note n, we summarize our heuristic algorithm:

First, we need to evaluate the damage. If∑
(t,k)∈Bd

n,h
gn,h(t, k)�

∑
(t,k)∈Bn,h

gn,h(t, k),
we leave it as intact; otherwise we need to repair it. Spe-
cially, if undamaged part Bn,h r Bdn,h is a narrow band-
limited “strip” (e.g. a single frequency bin), we need to
“expand” the solo mask to remove those initially deemed
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Figure 4. Evaluating Desolo Damage and Possible Fix Using Both Score and Spectrogram

“undamaged” f-t cells as well because such residue tends
to create artifact “musical noise” whose suppression de-
serves treatment, mostly from speech enhancement. After
such extra “masking”, we use Bun,h ⊆ Bn,h to denote the
remaining undamaged region.

Second, since Bn1,h1 ∩ Bn2,h2 6= ∅, n1 6= n2 for pos-
sibly many different note partials contributing energy to
the same region, we choose one damaged orchestra partial
(n, h) to repair: argmax

(n,h)

∑
(t,k)∈Bn,h

δngn,h(t, k) assum-

ing Max-Approximation that only one signal dominates in
each time-frequency cell [3].

Third, in the score we look for consonant intervals such
as octaves, perfect 5th and perfect 4th in the hope to find an
observable partial whose frequency is in a relatively sim-
ple ratio to the damaged one waiting to be “transposed” to.
We call this partial, if exists, a candidate. Usually more
than one candidate exist. Large modulus value, simple fre-
quency ratio and identical instrumentation are factors that
we favor in choosing the best candidate without creating
artifacts. Thus, harmonic transposition can be performed
vertically on the spectrogram (e.g. from 3rd to 5th har-
monic of viola note B3 in Figure 4) if the duration of the
candidate partial covers that of the damaged area.

Fourth, when there is no candidate partial for the par-

tial indexed by (n, h), if there exists a partial (m, i) whose
time support of its undamaged portion Tum,i is adjacent to
the damaged duration T dn,h and whose frequency bin sup-
port Km,i satisfies Kd

n,h ⊆ Km,i we can perform phase-
locked modulation with differenced phase sequence esti-
mated from Bum,i to Bdn,h. The 2 cello partials in Figure 4
are repaired this way.

Occasionally, we are unable to perform either transfor-
mation and label the damaged partial as such.

6. EXPERIMENT RESULTS

We experiment with an excerpt of 45 seconds from the 2nd
movement of Ravel’s piano concerto in G major.

Table 1 lists a breakdown of the number of partials 1

and the number of harmonic transpositions and phase-locked
modulation that our algorithm performed. The last column,
“unable to fix” gives the number of occurrences that no
undamaged orchestra partial is available to estimate phase
from. We relax on that the 4 sections of string instruments
can be used to repair each other by harmonic transposition
but do not allow any harmonic transposition between two
different instruments in the woodwind family. This is be-

1 the number of partials only include partials that have significant spec-
tral energy and are below Nyquist frequency at SR=8000Hz.
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note partial tran.
from

tran.
to

modu-
lation

unable
to re-
pair

oboe 20 85 1 1 0 1
clarinet 6 18 3 3 0 0
flute 6 18 0 0 0 0
violin1 5 42 14 9 0 0
violin2 11 107 34 24 24 2
viola 16 160 33 41 64 5
cello 12 120 43 50 22 6

Table 1. Instrument breakdown of partials being repaired

cause the oboe is sharper than the other two in this excerpt.
At the end the most of damaged partials are fixed in some
way. We also notice that the woodwinds are less damaged
because the notes are very high pitched and too loud to
yield to the solo piano at their time-frequency region, while
the lower string instruments are frequently damaged.

The original, desoloed-but-unrepaired and repaired au-
dio are available at our demo website http://xavier.
informatics.indiana.edu/˜yushan/ISMIR2010
to evaluate the solo mask and improvement from unmask-
ing. Plots in color giving a breakdown of the partials on
the spectrogram are also available.

7. CONCLUSION, EVALUATION AND FUTURE
WORK

Instead of merely extracting one source (instrument) of
sound from the mixture, we distinguish our proposed ISS
method from other known source separation methods by
our explicit repair stage that addresses the audio degrada-
tion caused by the separation procedure. This stage signif-
icantly enhances the perceptual audio quality and boosts
performance measurement such as distortion due to inter-
ferences proposed by Vincent. That the reconstructed note
sounds plausible for some orchestra instruments suggests
that the partial-wise phase/amplitude relationship is a po-
tentially fruitful topic to investigate.

At this stage, we admit that the comparison of our method
of “unmasking” with other missing data inference tech-
niques such as [15] is not available and hence is our future
work. An ideal evaluation of any method of solo/orchestra
separation requires a “ground truth” of the two sources
recorded separately and an artificial mix of the two. How-
ever, such “ground truth” is almost away absent in the real
case and the evaluation is mainly subjective. Our explo-
ration begins with a music sample library to artificially
construct ground truth according to the score while main-
taining the texture of the music of interests.
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ABSTRACT

Feature generation has been proposed recently to generate
feature sets automatically, as opposed to human-designed
feature sets. This technique has shown promising results
in many areas of supervised classification, in particular in
the audio domain. However, feature generation is usually
performed blindly, with genetic algorithms. As a result
search performance is poor, thereby limiting its practical
use. We propose a method to increase the search perfor-
mance of feature generation systems. We focus on ana-
lytical features, i.e. features determined by their syntax.
Our method consists in first extracting statistical proper-
ties of the feature space called spin patterns, by analogy
with statistical physics. We show that spin patterns carry
information about the topology of the feature space. We
exploit these spin patterns to guide a simulated annealing
algorithm specifically designed for feature generation. We
evaluate our approach on three audio classification prob-
lems, and show that it increases performance by an order
of magnitude. More generally this work is a first step in
using tools from statistical physics for the supervised clas-
sification of complex audio signals.

1. INTRODUCTION

The identification of feature sets is a fundamental step in
solving supervised classification problems [3]. For prob-
lems involving complex signals (e.g. music, images, etc.)
the traditional approach is to use “off-the-shelf” features
(see, e.g. [9]). However, general-purpose features are not
always adapted to solve difficult classification tasks. An-
other solution is to design manually ad hoc features, spe-
cific to the problem at hand. Such a task can be con-
ducted only by experts knowledgeable both in the domain
(e.g. music) and in signal processing, a difficult, costly and
time-consuming task. Moreover, there is no guarantee that
humans will find the best possible features.
Feature generation has recently been introduced to address
this problem, by generating automatically problem-dependent
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features, designed to be efficient for any particular super-
vised classification problem [18]. Feature generation con-
sists in building features by searching in a huge feature
space, usually through genetic programming techniques [7].
The fitness of a feature is defined as the performance of
a classifier using this feature on the problem at hand [8].
These previous works have consistently demonstrated that
feature generation outperforms traditional approaches based
on feature selection (see e.g. [5, 14]). However, most, if
not all, feature generation systems proposed in the litera-
ture were shown to necessitate the exploration of a large
number of features before finding relevant ones. For in-
stance in [17], in the context of classification of percus-
sive sounds, the feature generation system evaluated about
77500 features to eventually find features which outper-
formed standard ones.
Although search performance is usually not an issue for
off-line applications, poor search performance forbids the
use of these promising techniques in other contexts. As
an example, the multiplication of portable entertainment
devices creates a need for application requiring fast clas-
sification of a priori unknown user data (audio, pictures,
gestures, etc.). In these contexts, feature generation cannot
be used primarily because of performance issues. We pro-
pose a search method that reduces substantially the number
of features to actually evaluate.
The main source of inefficiency of feature generation comes
from the blind search strategy inherent to genetic program-
ming. Most of the computation time is lost in evaluating
irrelevant features, as noted by [5]. This problem worsens
in the signal domain, where some features can be costly to
evaluate (for instance features involving the computation
of complex transforms). In this context, search can take
several days.
Search performance can be increased by guiding the search
using domain specific heuristics. To find heuristics we
have to understand the mathematical structure of the fea-
ture space, to estimate a priori what regions are likely to
contain relevant features. However, this is impossible to do
in general, because we do not have information about the
semantics of the features [11]. For this reason we restrict
our study to the specific case of analytical features [14].
Analytical features (AF) are functional compositions of el-
ementary signal processing operators. An AF is defined by
its syntactical form, i.e. a tree of basic operators. A central
question of our study, reflected in the title of this paper, is
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therefore how to exploit this syntax to extract information
about a features fitness before actually computing it. As
we will see, this relation is complex.
In this paper, we first show that predicting directly the fit-
ness from the syntax is difficult. We propose to model
features from a more fine-grained perspective: borrowing
techniques from spin glass theory [10] we introduce the no-
tion of spin patterns to model partial statistical information
about basic operators. We show that spin patterns contain
probabilistic information about the fitness of features that
use a given operator. We also show how these patterns can
be used to predict feature fitness. We then propose a fea-
ture generation algorithm guided by these predictions. Our
algorithm can be viewed as a variant of the simulated an-
nealing [4]. The comparison between simulated annealing
and genetic programming is a well studied topic [2], how-
ever it is hard to establish what is the more efficient opti-
mization method in the general case [19]. In our context
we use simulated annealing because it is easier to guide by
the information obtained from the spin patterns.
Two versions of the algorithm are proposed. The basic ver-
sion searches for individual features, and the extended ver-
sion searches for feature sets. Even if it is well known that
individual features are not able to solve difficult classifi-
cation problems [3], we present the basic version because
it well describes the theoretical aspects of the algorithm.
We evaluate our algorithms on three audio classification
problems. We show that our algorithms find features and
feature sets which are as good or better than features found
by a standard feature generation algorithm, but with a sig-
nificantly improved search performance (an order of mag-
nitude).
This paper is structured as follows: In Section 2, we in-
troduce analytical features and syntactic neighborhood. In
Section 3, we study the prediction of feature fitness from
their syntax. In Section 4, we introduce the notion of spin
pattern for operators. We illustrate these patterns on a sim-
ple audio classification problem. In Section 5, we intro-
duce our search algorithms. In Section 6, we describe
the performance of our algorithm on 3 audio classification
problems, and compare it to a standard feature generation
algorithm.

2. ANALYTICAL FEATURES

Analytical Features are expressed as a functional term, tak-
ing as only argument the input signal (represented here as
x). This functional term is composed of basic operators.
Given a library of basic operators L, an analytical feature
f is an application f = O1 ◦ . . . ◦ ON such that Oi ∈ L.
S(f) = {O1, . . . , ON} is the syntactical form of f . The
length l(f) is the number of operators making up the fea-
ture. F is 0the set of all possible analytical features built
on L.
For instance, the following feature (A) computes the MFCC
(Mel Frequency Cepstrum Coefficients) of successive frames
of length 100 (samples) with no (0) overlap, and then com-

Problem I(dFit, dSyn)

PAN 0.032
INS 0.015
MG 0.015

Table 1. Estimation of the mutual information
I(dFit, dSyn) between the distances dFit and dSyn eval-
uated on three audio classification problem.

putes the variance of this value vector:

A = V ariance(MFCC(Split(x, 100, 0))).

The neighborhood of f is the set Vf = {g ∈ F|dSyn(f, g) ≤ 1} ,
where dSyn(f, g) is the Levenshtein distance.

2.1 Feature Fitness

Given a classification problem, the fitness λD(f) of an
AF measures the capacity of the feature to distinguish ele-
ments of different classes.
There are several ways to assess the fitness of a feature.
We follow here a wrapper approach [6], by which features
are evaluated using a classifier built on-the-fly during the
feature search process [14]. The fitness of the feature is
defined as the performance of a classifier built with this
unique feature.
We use Support Vector Machines. To evaluate the perfor-
mance of the classifier (or more precisely its average F-
measure) we use 10-fold cross validation on the training
database.

3. PREDICTING FEATURE FITNESS

We define the distance dFit(f, g) based on the fitness of f
and g:

dFit(f, g) = |λD(f)− λD(g)| .
We study here experimentally the relationship between dSyn

and dFit on concrete problems. In this study we consider
three audio classification problems. The problem PAN
consists in discriminating between six percussive sounds
[15], INS consists in discriminating between sounds played
by eight different instruments [12] and MG consists in dis-
criminating between six musical genres [13].
We compute a population P of 1000 features randomly
generated from F . For each problem and for each couple
(f, g) in P , we compute distances dFit(f, g), dSyn(f, g).
Note that dFit depends on Di, whereas dSyn is problem-
independent.
We then estimate the mutual information I(dFit, dSyn) [1]
between the distances. Table 1 shows that in each case the
mutual information is smaller than 0.1: if a relation exists
between syntax and fitness, it is somehow hidden and dif-
ficult to model.

4. SPIN PATTERNS

In this section we introduce a representation of analytical
features taking into account the contribution of each sam-
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ple. Let D be a labeled data set, composed of N audio
samples divided in k classes, C1, . . . , Ck:

D = {(x1, l1), . . . , (xN , lN )} ,

where xi is the i-th audio sample and li ∈ C = {Cj}j=1,...,k

is its label.
Given a feature f ∈ F , we define its spin configuration as:

f → σf =

{
+1 if f classifies xi correctly
−1 otherwise

If C : R → C = {Cj}j=1,...,k is a classifier trained on D
with f as a single feature, we have:

σf
i =

{
+1 if C(f(xi)) = li

−1 otherwise

Given f ∈ F , λ(f) is the fitness of f on D, 0 ≤ λ(f) ≤ 1.
By analogy with the spin glass model [10], we can interpret
fitness as the Hamiltonian H(σf ) of a spin configuration
σf induced by the feature f :

H(σf ) = −λ(f).

Given a basic operator o ∈ L, where L is the operator
library used to construct F , we define

Fo = {f ∈ F|o ∈ S(f), l(f) ≥ 10} .

So Fo is the set of all features that contain o with length
smaller than 10. Considering only these features we have
0 < |Fo| <∞.
The spin pattern of a basic operator o is a vector m(o) =
{mi(o)}i=1,...,N such that:

mi(o) =
⟨
σf
i

⟩
Fo

=
1

|Fo|
∑
f∈Fo

σf
i

In practice mi(o) is an indicator of the probability that a
feature containing o correctly classifies sample xi. Indeed,
it is easy to show that, given f ∈ Fo,

Pr(σf
i = +1) =

1 +mi(o)

2

Pr(σf
i = −1) = 1−mi(o)

2

Therefore we are interested in operators whose pattern has
as many values as possible which are close to 1. Con-
versely, zero spin patterns configuration (mi(o) = 0 ∀j)
do not provide any information about the set of features
considered. In order to measure the amount of information
given by a spin pattern, we can compute its total magneti-
zation, defined as follows:

M(o) =

N∑
i=1

mi(o)

N

Figure 1 shows a graphical representation of the spin pat-
terns of two operators. The samples are arranged in a pic-
ture composed by N squares. |mi(o)| is mapped to the

darkness of the corresponding square. In this representa-
tion, high magnetization features correspond to dark im-
ages. In the figure we can observe that the spin pattern
of a specific operator like LpFilter has more magnetiza-
tion than the spin pattern of a more general operator like
Abs (the Abs pattern is clearly lighter). The main intu-
ition in guiding search toward an optimal path in the fea-
ture space is that there is a rich, non uniform distribution of
spin patterns for all basic operators. To support this claim
we compute the spin patterns of each operator on the three
classification problems presented above. In general, op-
erators yield a spin pattern whose magnetization is signif-
icantly higher than 0 (the magnetization of the zero spin
pattern, taken as a reference): as we see in figure 2, for
each problem, the distributions of the magnetizations for
all o ∈ L are concentrated near 0.5. This study shows that
interesting patterns do exist. Of course we do not know
the spin patterns a priori for a given classification prob-
lem. However, we have seen experimentally that we can
estimate these patterns using a relatively small number of
computations (≈ 1000).

5. THE ALGORITHM

Our algorithm takes as input a labeled database D and a
library of basic operators L. The algorithm searches the
feature space F defined by L, guided by spin patterns, as
defined in section 4.

5.1 Individual feature search (IFS)

We describe here the IFS algorithm, that searches for indi-
vidual features. Section 5.2 describes an extension to fea-
ture set search. IFS receives as input a labeled database D
and a library of basic operators L. The output is a feature
with a high fitness on domain D.
The algorithm is a variant of the simulated annealing al-
gorithm. It is based on a Metropolis procedure [4] that
guarantees the convergence to a global optimum.
Starting from a random feature f0, the algorithm iteratively
selects neighbors of the current feature, using the spin pat-
terns. At each iteration, the algorithm selects a new feature
in the syntactical neighborhood of the current feature. This
choice is done according to the estimation of the spin pat-
terns. The algorithm terminates after a specified number
of iterations, or as a result of an interactive user request,
and returns the best feature (i.e. the feature with highest
fitness) found during the search as output.
In the following subsections we detail the components of
the algorithm.

5.1.1 The Spin Pattern Estimator

The spin pattern estimator (SPE) is executed only once at
the beginning of the algorithm.
The SPE computes a population T of 1000 random fea-
tures. These features are used to estimate the spin patterns
of each operator o ∈ L.
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(a) LpFilter (b) Abs

Figure 1. Graphical representation of the spin patterns of the basic operators Lpfilter (left) and Abs (right) evaluated on
the problem PAN (classification of percussive sounds). The representation of a domain specific operator like LpFilter is
clearly darker. In the spin pattern of LpFilter note the two dark stripes on the center and on the right. Magnetization are
0.46 and 0.28 (resp.)
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(b) MG
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Figure 2. Distributions of the absolute magnetizations of the spin patterns of all the operators o ∈ L

5.1.2 The Neighbor Selector

The task of the neighbor selector is to decide how to move
in the feature space. The selector receives as input the cur-
rent feature and the spin pattern estimation of each operator
o ∈ L. The output of the selector is either a new feature,
or the feature passed in input.
Given the input feature f and the estimations of the spin
patterns, the selector assigns a score to each basic operator
o ∈ L. This score is designed to favor operators that tend
to correctly classify the samples that are wrongly classified
by f . The score µ(o) of operator o is defined as:

µ(o) =

N∑
i=1

b(σf
i )m̄i(o)

N
(1)

where b(x) = −1
2x + 1

2 is a function that converts a ±1
spin in a {0, 1} boolean value (b(+1) = 0, b(−1) = 1).
µ(o) induces a score function µ(g) for a feature g ∈ F by
averaging on all operators of f :

µ(g) =

∑
o∈S(g)

µ(o)

l(g)
(2)

A crucial point of our method is that in general the score
function µ(g) is easier to compute than the fitness λ(g).
The selector then computes the neighborhood Vf of f (see
section 3). Vf is then sorted according to the score func-
tion defined in (2). The feature f̃ ∈ Vf with highest score
is chosen by the neighbor selector. The spin configuration
σf̃ and fitness λ(f̃) of f̃ are then computed.
To avoid local maximum effects, f̃ is accepted as the next
feature in a stochastic way, using the Metropolis proce-
dure.

More precisely, if ∆λ = λ(f̃) − λ(f) ≥ 0 f is accepted.
The case ∆λ < 0 is accepted with a probability Pr(∆λ) =

e
∆λ
tk , where

tn =

(
t1
t0

)n

t0

and k = |T |.
If the feature f̃ is not accepted, it is removed from Vf , oth-
erwise it will be reselected by the neighbor selector in the
next iteration. Using the Metropolis procedure, we can as-
sume that, for a good choice of parameters T0 and T1, the
algorithm converges to the global maximum [4]. Follow-
ing [4], we heuristically set T1/T0 = 0.95 and T0 = 10.

5.2 The Feature Set Version

As described earlier, a single feature is usually not enough
to solve a classification problem and a feature set is re-
quired. In principle, building feature sets instead of in-
dividual features complexifies drastically the procedure,
since all combinations of features must be considered at
each step. For this reason we propose the follow simple ex-
tension of IFS that searches feature sets, in order to main-
tain an affordable computational cost.
The architecture of the algorithm is essentially the same
of the basic version. The spin pattern estimator works ex-
actly in the same way. The only module that changes is the
neighbor selector. In this version it takes as input a feature
set of dimension d (d is a fixed parameter) and outputs a
feature set instead of a single feature.
Because the spin configuration of a feature f is defined by
the classifier built with the values of f , it is possible to de-
fine in the same way the spin configuration σF and the fit-
ness λ(F ) of a feature set F , using the classifier produced
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by the values of F . Therefore we can define the score of
an operator µ(o) and the score of a feature µ(g) as in the
previous subsection.
In this version of the algorithm, a feature f is randomly
chosen ∈ F . A feature f̃ in the neighborhood Vf is se-
lected like in the basic version of the algorithm.
The new feature set F̃ is then built from F by substitut-
ing f by f̃ . The new feature set is accepted with the same
Metropolis procedure described above. Our algorithm is
then able to search for feature sets of any dimension.
In the next section we compare the search performance
of our two algorithms against the search performance of
a standard genetic algorithm.

6. RESULTS

6.1 Individual Feature Search

To assess the search performance of IFS we compare it
against the search performance of a standard genetic algo-
rithm on three audio classification problems. These prob-
lems are the same presented in the section 3. The genetic
algorithm we use is described in [14].
Given a classification problem D, we use our algorithm
and the genetic algorithm to search the feature f with high-
est fitness λD(f) and we compare the sets of features ex-
plored by the two algorithms. We are interested in three
quantities: the fitness of the best feature found, how many
features are computed before finding the best feature and
the distribution of the fitness of the explored features.
To get statistically significant results, we execute both al-
gorithms three times for each classification problem. The
results are shown in figure 3 and figure 4. In figure 3
we can observe that IFS finds features at least as good
as the features found by the genetic algorithm but con-
verges faster to the solution. In average, it computes less
than 3500 features to find the best features. This figure in-
cludes the number of features needed to estimate the spin
patterns (approximately 1000, as described in section 4).
Conversely the genetic algorithm requires more than 48000
features to find the optimal.
As we can see in figure 4 the distribution of the fitness,
when using IFS, is concentrated near high values of the
fitness. Conversely the genetic algorithm explores blindly
the feature space, resulting in a more uniform distribution
of the fitness.

6.2 Feature Set Search

The feature set version of our algorithm builds feature sets
of dimension N . Again we test this algorithm against the
genetic algorithm used above to find feature sets of dimen-
sion 3 for the three reference problems.
The genetic algorithm, after a population has been created
and each feature has been individually evaluated, selects
a subset of features to be retained for the next population.
The output of the genetic algorithm is a feature set FGA of
dimension 3: FGA is the set {f1, f2, f3|f1, f2, f3 ∈ Flast}
with maximum fitness. Flast is the last population.
Here we compare the two feature sets obtained by the two

Database GP FS IFS
PAN 0.76 0.78 0.79
INS 0.56 0.56 0.59
MG 0.77 0.79 0.77

Table 2. Comparison between the fitness of the best fea-
ture sets obtained by IFS against the best feature sets ob-
tained by the genetic algorithm. In two cases IFS outper-
forms the genetic one. GP means genetic programming,
FS means feature selection.

Database GP and FS IFS
PAN 77531 4043
INS 72837 4152
MG 43265 7221

Table 3. Number of features needed to find the best feature
sets.

algorithms against an other feature set obtained by apply-
ing a feature selection algorithm (in our case, InfoGain
[16]) to the whole set of features explored by the genetic
algorithm. In table 2 we observe that our algorithm per-
forms as well as the genetic one and the feature selection
one on the three problems. However, the features sets ne-
cessitate a smaller exploration: table 3 shows the number
of features explored in order to find the best feature set. It
can be seen again that our algorithm improves the search
performance by an order of magnitude.

7. CONCLUSION

We have explored the relation between the syntax and the
fitness in a supervised classification context. Such a re-
lation seems complex to grasp at a macroscopic level. We
have proposed a sample-based approach to model the topol-
ogy of feature spaces, and exhibited a computable crite-
rion, spin patterns, to guide a feature search algorithm.
This algorithm is based on simulated annealing, with a
Metropolis procedure, and exploits spin patterns, resulting
in a better performance than genetic programming, as mea-
sured by the total number of features actually evaluated.
As such, this approach is a promising one to reduce the tra-
ditionally high computational cost of feature generation,
and increase the applications of this technique. The an-
swer to our title question is therefore: “Yes, there is a
complex relationship”. Furthermore, we showed how this
relationship can be exploited to improve the performance
of a feature generation system. More generally, this work
represents a first step in applying tools from statistical me-
chanics of complex systems to supervised classification of
complex audio signals.
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Figure 3. Performance of IFS compared to the performance of a standard genetic algorithm (GP). We report here only the
best execution for each algorithm.
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ABSTRACT

Multivariate Gaussians are of special interest in the MIR
field of automatic music recommendation. They are used
as the de facto standard representation of music timbre to
compute music similarity. However, standard algorithms
for clustering and visualization are usually not designed
to handle Gaussian distributions and their attached metrics
(e.g. the Kullback-Leibler divergence). Hence to use these
features the algorithms generally handle them indirectly by
first mapping them to a vector space, for example by deriv-
ing a feature vector representation from a similarity matrix.

This paper uses the symmetrized Kullback-Leibler cen-
troid of Gaussians to show how to avoid the vectorization
detour for the Self Organizing Maps (SOM) data visualiza-
tion algorithm. We propose an approach so that the algo-
rithm can directly and naturally work on Gaussian music
similarity features to compute maps of music collections.
We show that by using our approach we can create SOMs
which (1) better preserve the original similarity topology
and (2) are far less complex to compute, as the often costly
vectorization step is eliminated.

1. INTRODUCTION

Good content-based music recommendation systems are
currently on the wish list of many music services since they
help handling the massive audio databases which are cur-
rently emerging: be it simple music recommendations in
the form of automatically generated playlists, advanced vi-
sualizations of the collections, or other new ideas for music
discovery and listening.

One of the basic foundations of automatic content-
based music recommendation systems is the ability to
compute music similarity. In research it is not yet settled
how to extract and represent good music similarity fea-
tures that correspond well with the human perception of
general music similarity. However, the currently best per-
forming methods have one thing in common: A central
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component in most of the currently best working meth-
ods is a representation of timbre in terms of a multi-
variate Gaussian. Take for example, the top three algo-
rithms in the MIREX 1 2009 (Music Information Retrieval
Exchange [4]) Automatic Music Recommendation eval-
uations. All used multivariate Gaussians and Kullback-
Leibler-related divergences to describe and compare their
similarity features. The basic idea of using a single multi-
variate Gaussian to model timbre similarity was first used
by Mandel and Ellis [10]. In their case the Gaussian is
computed over the Mel Frequency Cepstrum Coefficient
representation [8] of the song.

We see the Gaussian representation of the music fea-
tures as a very powerful way to describe the variability
of the features in a song. With the Kullback-Leibler di-
vergence and related divergence measures (Symmetrized
Kullback-Leibler, Jensen-Shannon divergence) there also
exist well founded ways to compute a distance/similarity
value between the features (even though there are some
problems related to the non-metricity of the divergences).

Things get interesting when we leave the path of simple
feature representation and similarity computation. Stan-
dard algorithms for indexing, clustering or visualization
are usually just not designed to work with Gaussian
distributions and non-standard metrics like the one the
Kullback-Leibler divergence induces. For instance, how
would computing a simple average be performed with
Gaussian features?

To work around that limitation the feature data is often
artificially vectorized. In the domain of content based mu-
sic recommendation techniques we have seen approaches
computing the full distance matrix and using each row of
the matrix as a feature vector [5,14], or more venturesome
ones reshaping the Gaussian covariance matrix and mean
vector into a single long vector [11]. The first solution is
expensive to compute the larger the music collection is,
and the latter one, although fast, takes away the sense of
using Gaussians.

In 2005 Banerjee et al. published an important pa-
per in the machine learning literature where they show
how to generalize the k-means clustering algorithm to the
broad class of Bregman divergences [1]. This generaliza-
tion practically opened all centroid-based algorithms to the

1 http://www.music-ir.org/mirex/2009
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wide range of Bregman divergences, which the Kullback-
Leibler divergence is part of.

This paper builds on these findings and defines the
weighted symmetrized Kullback-Leibler centroid to show
how the Self Organizing Map (SOM) algorithm can work
directly and naturally with Gaussians. The approach is able
to create higher-quality two dimensional visualizations of
music archives while retaining the nice scalability charac-
teristics of the general SOM algorithm.

2. RELATED WORK

There already exists a wide range of publications deal-
ing with visualizing acoustic music similarity features
on SOMs. One of the first to do so were Rauber and
Frühwirth [18] who use a very basic music similarity fea-
ture and a simple tabular grid which displays the clus-
tered song titles on the map. This idea was extended by
Pampalk et al. who use rhythmic similarity features and
the Smoothed Data Histogram [16] (SDH) visualization
to draw the SOM. Their visualization is inspired by geo-
graphical maps: blue regions (oceans) indicate areas onto
which very few pieces of music are mapped, whereas clus-
ters containing a larger quantity of pieces are colored in
brown and white (mountains and snow). It was published
under the name “Islands of Music” [15], which inspired
the title of the presented paper.

‘Neptune’ [5] developed by Knees et al. improved
Pampalk’s visualization by taking the two dimensional
map into the third dimension. They add crawled meta-
information and pictures from the web and allow a 3D walk
through a music collection. They use a mix of rhythmic
and timbre based similarity measures.

The ‘Globe of Music’ [7] by Leitich and Topf uses a
GeoSOM [20] to map the music collection onto a globe for
exploration. Lübbers et al. developed the ‘SoniXplorer’ [9]
to navigate through music archives. They use a multimodal
navigation model where the auralization of music supports
the user on the SOM visualization of the music collection.

Mörchen et al. use the Emergent SOM algorithm to
visualize and cluster music collections in their ‘Music
Miner’ [12] system. For music similarity they use a large
set of low-level features. In their paper they also point out
that they cannot use Gaussian music similarity features as
“they can not be used with datamining algorithms requir-
ing the calculation of a centroid”. Solving that is the focus
of the next sections of this paper.

3. PRELIMINARIES

To demonstrate how to use the SOM algorithm with Gaus-
sian features we use the standard music similarity al-
gorithm proposed by Mandel and Ellis [10]. This ap-
proach computes a single Gaussian music-timbre similar-
ity feature. Similarity is computed with the symmetrized
Kullback-Leibler divergence.

Since its publication this approach has been modified
and improved in various ways, yet most stayed with the

Gaussian feature representation. So everything presented
here will of course work with the derived approaches too.

3.1 Music Features and Similarity Computation

To extract the timbre music similarity features we extract
25 Mel Cepstrum Frequency Coefficients [8] (MFCCs) for
every 46ms of audio. This corresponds to a window size of
1024 audio samples at 22.05kHz. In this way a Gaussian
timbre model x finally consists of a 25-dimensional mean
vector µ, and a 25× 25-dimensional covariance matrix Σ.

To compute the similarity between two Gaussians the
Kullback-Leibler divergence (kld) can be used. There ex-
ists a closed form of this divergence [17] which allows the
divergence to be computed between two m-dimensional
Gaussians x1,2 ∼ N (µ,Σ).

2 kld(x1||x2) =

loge

(
det Σ2

det Σ1

)
+ tr

(
Σ−12 Σ1

)
+

(µ2 − µ1)
>

Σ−11 (µ2 − µ1)−m (1)

Since the kld is asymmetric usually a symmetrized vari-
ant (skld) of the divergence is used for music similarity
estimation:

skld(x1||x2) =
kld(x1||x2) + kld(x2||x1)

2
(2)

3.2 Self Organizing Map (SOM) Algorithm

The SOM [6] is an unsupervised neural network that or-
ganizes multivariate data on a two dimensional map and
is suited well for visualizations. It maps items which are
similar in the original high-dimensional space onto loca-
tions close to each other on the map.

Basically the SOM consists of an ordered set of so-
called map units ri, each of which is assigned a reference
vector (or model vector) mi in the feature space. The set
of all reference vectors of a SOM is called its codebook. In
the simplest case the codebook is initialized by a random
strategy.

To compute a SOM, first the map dimensions and the
number of training iterations (t) are fixed. Training is done
in four basic repeating steps:

1. At iteration t select a random vector v(t) from the
set of features.

2. Search for the best matching map unit c on the SOM
by computing the (Euclidean) distance of v(t) to all
mi.

3. The codebook is updated by calculating a weighted
centroid between v(t) and the best matching unit rc.
Based on a neighborhood weighting function hci(t)
all map units participate in the adaptations depend-
ing on their distance on the two-dimensional outout
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map. Equation 3 shows a standard Gaussian neigh-
borhood function.

hci(t) = α(t) exp

(
−||rc − ri||

2α2(t)

)
(3)

mi(t+ 1) = mi(t) + hci(t) [v(t)−mi(t)] (4)

4. The adaptation strength α(t) is decreased gradually
with the iteration cycle t. This supports the forma-
tion of large clusters in the beginning and a fine-
tuning toward the end of the training.

Usually, the iterative training is continued until a conver-
gence criterion is fulfilled or a preselected number of train-
ing iterations is finished. In the final step all items are as-
signed to the map unit they are most similar to.

A popular way of visualizing SOMs trained with mu-
sic similarity features is the Smoothed Data Histogram
(SDH) [16].

4. FROM VECTORS TO GAUSSIAN
DISTRIBUTIONS

Although originally SOMs were defined for Euclidean fea-
ture vectors only, the algorithm per se is not limited to the
vector space. Kohonen himself mentions this in the most
recent edition of his standard work on Self-Organizing
Maps [6]. This observation will be the basis for extend-
ing the SOM algorithm to the ‘distribution space’.

A closer look at the SOM algorithm sketched in the last
section, shows that there is only a single step where the
algorithm in fact depends on vectors. It is the computation
of the weighted centroid in Equation 4 2 . We now rewrite
Equation 4 so that it is more obvious that a centroid (a
weighted mean of several vectors) is computed:

mi(t+ 1) = (1− hci(t))mi(t) + hci(t)v(t) (5)

The essence of this is if a weighted centroid can be com-
puted for Gaussians and the symmetrized Kullback-Leibler
divergence, the SOM algorithm would, without modifica-
tions, work for our data.

4.1 Weighted Symmetrized Kullback-Leibler
Centroid

The Kullback-Leibler divergence is part of the broad fam-
ily of Bregman divergences [3]. In 2005 Banerjee et al.
showed that a unique centroid exists for any Bregman di-
vergence and proved that the standard k-means (and with
that basically any centroid-based) works in this rich family
of divergences [1].

As Bregman divergences are asymmetric divergences,
there exist three uniquely defined centroids for a diver-
gence D and a set of points xi: the left-sided centroid cL,
right-sided centroid cR and symmetrized centroid cS . The

2 The distance ||rc − ri|| in Equation 3 is computed in ‘map space’
and does not need to be modified.

centroids are the optimizers of the minimum average dis-
tance:

cL = argmin
c

1

n

n∑
i=1

D(c||xi) (6)

cR = argmin
c

1

n

n∑
i=1

D(xi||c) (7)

cS = argmin
c

1

n

n∑
i=1

D(xi||c) +D(c||xi)
2

(8)

As Nielsen and Nock show [13], no closed analytical form
to compute the symmetrized centroid exists. In their pa-
per they present an efficient geodesic walk algorithm to
find the symmetrized Bregman centroid c using the left cL
and right cR centroids. In the last section they also define
the three centroids for the Kullback-Leibler divergence and
xi ∼ N (µxi

,Σxi
) multivariate Gaussians.

To use these centroids in the SOM algorithm we need to
modify them and add a weighing term λi (with

∑n
i=1 λi =

1) for each Gaussian. The individual weighted centroid
definitions are given in the next paragraphs 3 .

4.1.1 Weighted Right-Sided Gaussian kld-Centroid

The right-type kld-centroid Gaussian cR ∼ N (µcR ,ΣcR)
coincides with the center of mass. For Gaussians xi and
the kld it is defined as:

µcR =
n∑

i=1

λiµi (9)

ΣcR =

n∑
i=1

λi
(
µi × µT

i + Σi

)
− µcR × µT

cR (10)

with λi as defined above.

4.1.2 Weighted Left-Sided Gaussian kld-Centroid

The left-type kld-centroid Gaussian cL ∼ N (µcL ,ΣcL)
is obtained equivalently by minimizing the dual right-type
centroid problem. For Gaussians xi and the kld it is de-
fined as:

µcL = ΣcL ×
n∑

i=1

λi(Σ
−1
i × µi) (11)

ΣcL =

(
n∑

i=1

λiΣ
−1
i

)−1
(12)

with λi as defined above.

4.1.3 Weighted (mid-point) Gaussian skld-Centroid

To compute the weighted symmetrized Kullback-Leibler
centroid, the weighted left and right centroids need to be
computed. We then use the mid-point centroid approxi-
mation instead of computing the exact centroid. The mid-
point empirically proved to be a good approximation of
the true centroid of the skld [19]. The approximation

3 A detailed listing and explaination of the derivation of each centroid
can not be given due to the length constraints of this paper.
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(a) Euclidean Vectors (from the similarity
matrix)

(b) Gaussians

Figure 1. A 10 × 10 SOM, computed with the two different approaches. The SOMs are visualized using the Matlab
Smoothed Data Histogram Toolbox [16] clustering a collection of 1 000 music pieces. They were created using identical
parameters for initialization and learning.

cS ∼ N (µcS ,ΣcS ) merges the weighted left and right cen-
troids in one step:

µcS =
1

2
(µcL + µcR) (13)

ΣcS =
1

2

∑
i={L,R}

(
µci × µT

ci + Σci

)
− µcS × µT

cS

(14)

4.2 The Generalized SOM

With the definition of the weighted skld-centroid every-
thing is in place to use the SOM algorithm with Gaussian
music-timbre models and the skld:

1. Initialization of the SOM and its mi is done by
selecting random Gaussians from the music-timbre
models.

2. Most importantly the iterative computation of the
weighted centroid during the training of the code-
book can now be replaced with the weighted sym-
metrized kld centroid.

3. The learning rate adaptation and neighborhood func-
tions do not need to be changed. They are not depen-
dent on the features.

4. In the final step the Gaussians are assigned to the
nearest map units according to skld.

The approach of using the SOM directly with the Gaussian
features is very close to the data and the original intention
of the algorithm. We evaluate the generalized SOM in the
next section.

5. EVALUATION

To compare SOMs generated with different approaches,
we quantify how well the original neighborhood topology
is preserved in a SOM mapping. As we need to com-
pare SOMs using different metrics it is not possible to use
standard SOM quality measures like the quantization error.

Therefore we are using a rank distance. We search for the
n nearest neighbors of every item xi in the original space
and check their location on the SOM. Ideally the nearest
neighbors should also be mapped close to each other on
the SOM. For a given number n of nearest neighbors and a
Gaussian xi this will be measured as the n nearest neigh-
bor rank distance:

1. Assign all Gaussians to their corresponding map unit
on the SOM.

2. For Gaussian xi compute the Euclidean distance of
its assigned map unit on the SOM to the map units
assigned to all other Gaussians.

3. Sort the list of Euclidean distances in ascending or-
der and transform it into a list of ranks.

4. Find the n nearest neighbors of xi in the original
space and average across their corresponding ranks.

The average n nearest neighbor rank distance of all xi is a
value describing the whole SOM. The lower its value, the
better the preservation of the neighborhood on the SOM.

5.1 Setup

To test how the SOM algorithm performs operating di-
rectly on the Gaussians we used a test collection of 16 754
songs. The songs are typical full three to five minutes
songs of a mixed genre music collection. We compute the
Gaussian timbre music similarity features for these songs
(see Section 3.1) so that every song is characterized by a
25-dimensional Gaussian.

To compare the quality of the SOMs generated with our
approach, we also generate SOMs with vectorized features.
For each Gaussian feature we build a vector by computing
the distance to all other features and normalizing this dis-
tance vector to zero mean and unit variance. This is equiv-
alent to computing the full similarity matrix and using each
row as a feature vector (done e.g. in [5, 14]).

As a baseline for our experiments we also use a ran-
domly initialized SOM without any training. In our exper-
iments we vary various SOM parameters to test different
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Figure 2. Four plots of the average n-nearest neighbor rank distance using different SOM configurations. Each plot
compares the two strategies (Gaussian/Vectorized) to compute a SOM. As a baseline a randomly initialized SOM (black
bar) is added. Lower rank distance values indicate that the original nearest neighbors (NNs) are mapped closer to each other
on the SOM. The plots clearly shows that using Gaussians directly produces SOMs better preserving the neighborhood.

configurations: (1) we used SOM grid sizes of 5×5, 7×7,
10×10, 12×12, (2) and mapped 500, 1 000, 1 500 or 2 000
songs (randomly drawn from the base collection).

To ensure a fair evaluation we took the following pre-
cautions:

• In each run the same random seed is used for the ran-
dom, vectorized and Gaussian SOM. This ensures
identical random initialization and use of the same
randomly chosen features during the training phase.

• The previously defined average n-nearest neigh-
bor rank distance is computed for each map (n =
1, 5, 10, 20).

• Each unique experiment configuration is repeated
ten times. Results are averaged.

5.2 Results

Figure 2 shows the average n-nearest neighbor rank dis-
tance for four selected SOM configurations which have
been evaluated. In these experiments it can be seen that
directly using Gaussians to train a SOM results in maps
which are able to better preserve the neighborhood.

The results of all experiments conducted are summa-
rized in Table 1. The table expresses the improvement of
SOMs created with the Gaussian and vectorized approach
relative to the randomly initialized SOMs. It confirms the
results of the previous figure that throughout the configura-
tions SOMs computed directly with the Gaussians produce
higher-quality mappings and that this method should be
preferred.

An illustration comparing two SOMs created with the
two approaches is plotted in Figure 1. Albeit we can not
make any judgements concerning the quality of the SOMs
from the plots, we can see that a more structured SOM
emerged from directly using the Gaussian features.

Besides producing higher-quality SOMs, we emphasize
that this approach is also far less complex to compute than
a variant working with vectorized features: (1) it is al-
most impossible to compute the full similarity matrix on a
large collection of songs (i.e. over 100 000 songs) and (2) a
SOM with 100 000-dimensional (or larger) vectors would

Nearest Neighbors
Features Type 1 5 10 20

500 Gaussians 0.90 0.41 0.41 0.43
Vectors 0.97 .55 0.56 0.54

1000 Gaussians 0.80 0.40 0.40 0.41
Vectors 1.07 0.64 0.63 0.62

1500 Gaussians 0.75 0.38 0.38 0.40
Vectors 0.75 0.60 0.60 0.60

2000 Gaussians 0.76 0.41 0.42 0.43
Vectors 0.77 0.70 0.70 0.69

Table 1. The table shows the average n-nearest neighbor
rank distance of a SOM in relation to a randomly initialized
one. Lower ratios indicate a better neighborhood topology
preservation. It can be seen that in each configuration the
Gaussian approach produces better mappings.

be very expensive to compute. By using random projec-
tions [2] one can overcome that, but that would probably
come with a loss of mapping quality. A SOM computed di-
rectly with the Gaussians, on the other hand, requires only
a fraction of the computational effort, as the full similar-
ity matrix does not need to be computed and the original
features are used as intended.

6. DISCUSSION & FUTURE WORK

We have shown how to compute a weighted symmetrized
Kullback-Leibler centroid on multivariate Gaussians and
on top of that how to directly and naturally compute a SOM
with Gaussian music similarity features. The SOMs com-
puted with that approach are shown to produce better map-
pings and omit the so far necessary step of vectorizing the
data to compute a SOM.

The approach easily fits into the large number of ex-
isting SOM visualizations using Gaussian music similar-
ity features together with a Kullback-Leibler related diver-
gence and is of course not limited to music similarity. By
using it the quality of the produced SOM should increase
and the application can scale to larger collections of fea-
tures.
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Besides computing SOMs we also gave a clear def-
inition of how to compute the weighted symmetrized
Kullback-Leibler centroid so that it can be re-used to solve
different problems where the features are also parametric
Gaussians: for example to do a k-means cluster analysis
in music collections directly with the Gaussian features.
Maybe the centroid could also be of use to build an index-
ing algorithm for faster nearest neighbor retrieval.
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ABSTRACT 

The paper presents an algorithm for automatic transcrip-

tion of recordings of bell-playing clocks. Bell-playing 

clocks are clocks containing a hidden bell-playing me-

chanism that is periodically activated to play a melody. 

Clocks from the eighteenth century give us unique insight 

into the musical taste of their owners, so we are interested 

in studying their repertoire and performances - thus the 

need for automatic transcription. In the paper, we first 

present an analysis of acoustical properties of bells found 

in bell-playing clocks. We propose a model that describes 

positions of bell partials and an algorithm that discovers 

the number of bells and positions of their partials in a 

given recording. To transcribe a recording, we developed 

a probabilistic method that maximizes the joint probabili-

ty of a note sequence given the recording and positions of 

bell partials. Finally, we evaluate our algorithms on a set 

of recordings of bell-playing clocks. 

1. INTRODUCTION 

Bell-playing clocks are clocks containing a hidden bell-

playing mechanism, which is activated every hour, every 

half an hour or even every quarter of an hour to play a 

melody (see Figure 1). To make this happen, the going 

train activates the musical train, which starts the rotation 

of the musical cylinder. The cylinder contains a pattern of 

pins which 'play' a series of keys as the cylinder rotates. 

Through threads these keys are connected to hammers, 

which strike the bells. Such bell-playing mechanisms are 

usually part of longcase- or bracket clocks.  

Bell-playing clocks probably originate from carillons 

which played their melodies already in the thirteenth cen-

tury in the towns of the Low Countries. From the end of 

the fifteenth century these instruments were also made for 

domestic use, but they were unique pieces, only afforda-

ble for the very rich. From the end of the seventeenth 

century, bell-playing clocks became more and more pop-

ular, although they still remained a status symbol, only 

affordable for the rich elite. Many eighteenth-century 

bell-playing clocks have been preserved. Clock restorer 

Melgert Spaander from Zutphen (Netherlands) restored 

and recorded over 150 of these clocks and made these re-

cordings available for our researches. The collection con-

sists of approximately 1500 melodies, which offer us, in a 

way, recordings from the eighteenth century. We are 

studying the repertoire of these clocks and also the per-

formances of melodies with the aim of gaining more in-

sight into the musical taste of the eighteenth-century elite. 

In order to study the repertoire of clocks, we need to tran-

scribe all of the recorded melodies, so that they can be 

analyzed. Transcribing these melodies by hand requires a 

lot of practice and is made even more difficult by the in-

harmonicity and long decay times of bell sounds.  

 

Figure 1. Melodies of a bell-playing clock. 

In this paper, we present an algorithm for automatic 

transcription of recordings of bell-playing clocks. Auto-

matic music transcription is a difficult problem to solve, 

although methods are improving constantly; Klapuri and 

Davy provide an extensive overview of the current state 

of the art [1]. Because we know little of the acoustical 

properties of clock bells, we could use unsupervised 

learning techniques for transcription. Such techniques 

have been used previously by several authors: Abdallah 

and Plumbley [2] used sparse coding for transcription of 

synthesized harpsichord music, while Virtanen used it to 

transcribe drums [3]. A number of authors use variants of 

non-negative matrix factorization to transcribe polyphon-

ic music [4-7]. Their methods, however, were devised for 

music composed of harmonic sounds and are thus diffi-

cult to apply to our domain. Recently, Marolt [8] pro-

posed to use non-negative matrix factorization with selec-

tive sparsity constraints to transcribe recordings of church 

bells. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page.  
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While we initially experimented with unsupervised 

learning techniques, we obtained better results with the 

method proposed in this paper. We propose a two step 

approach to transcription: first, we present an analysis of 

acoustical properties of bell sounds and derive an algo-

rithm that discovers the number of bells and positions of 

their partials in a given recording. A probabilistic method 

that relies on analysis of the recorded signal, the found 

bell partials, and on some higher-level musical know-

ledge is used to perform the transcription. We evaluate 

our approach on a collection of recordings of bell-playing 

clocks.  

2. IDENTIFYING BELLS IN A RECORDING 

2.1 Modeling Positions of Bell Partials 

The shape or profile of a bell determines the relative fre-

quencies of its vibrations. Bells have distinct but inhar-

monic partials – a partial being a frequency of vibration 

present in the sound of a bell. Little is known of the 

acoustical properties of bells used in clocks, so we first 

conducted a study to determine whether we can model the 

positions of bell partials. To estimate the properties of 

clock bells, we analyzed a set of 10 recordings of differ-

ent clocks, containing a total of 88 bell sounds and ma-

nually annotated positions of their partials. Bells were 

found to have six strong partials; their positions relative 

to the perceived pitch (in cents) are listed in Table 1.  

  

Mean and st. dev. of 

partial - pitch freq. (cents) 

Mean magnitude relative to  

the strongest partial (dB) 

 0 ± 0 

  1485 ± 81 

  2433 ± 111 

  3145 ± 124 

  3719 ± 123 

  4236 ± 91 

-21.8 

-11.4 

-4.8 

-8.6 

-13.0 

-17.9 

Table 1. Means and std. deviations of relative partial po-

sitions (in cents) for the analyzed bells. Mean magnitude 

of each partial relative to the strongest partial (in dB) is 

also shown 

We can observe that partials are centered at approx-

imately 2.4, 4, 6, 8.5 and 11.5
 
times the fundamental fre-

quency (in Hz), the 3
th

 and 4
th

 partial being the loudest. 

The fundamental frequency corresponds to the perceived 

pitch. When studying relationships between these par-

tials, we discovered a regularity, not unlike what Hibbert 

[9] discovered for church bells, namely that relationships 

between relative positions of partials (i.e. logarithmic fre-

quency ratios) are linear. Figure 2 shows scatter plots of 

relative positions of partials 2, 4, 5 and 6 versus the rela-

tive position of the third partial - the linearity is obvious. 

This enables us to fit a linear regression model (also 

shown in Figure 2) that can be used to predict the posi-

tions of all six bell partials, if we know the positions of 

two of them, with an average error below 20 cents.  

 

 

Figure 2. Linearity of relative partial positions. 

Formally, a model that defines positions of bell par-

tials given positions of two partials is expressed as a sum 

of Gaussians: 

 

26
1, 2

1, 2 2
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( ) exp
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where f1 and f2 are positions of any two bell partials, 

1, 2

k

f fr  the k-th partial position as calculated by the regres-

sion fit and  the allowed deviation from the regression 

fit. 

 

 
 

Figure 3. Time evolution of the first four partials of a 

clock bell. 

Time evolution of partials follows an exponential de-

cay curve, and is faster for higher partials, which on the 

other hand, are initially louder. Individual partials fre-

quently exhibit beating, also evident in Figure 3. Beating 

is caused by the so-called doublets, which arise when 

bells are not symmetrical about a vertical axis through 
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their centers. This asymmetry causes most of the vibra-

tional modes in bells to split into two distinct modes with 

slightly different frequencies that beat against each other. 

Beating is problematic when we try to estimate the onsets 

and time evolution of partials, so we try to remove its ef-

fect, as described in section 3.  

2.2 Bells? What Bells? 

When analyzing a recording of a bell-playing clock, we 

initially have no information on the number of bells in-

volved, their tuning or positions of their partials. In this 

section, we introduce an algorithm that uses the bell par-

tial model presented in section 2.1 to estimate the number 

of bells in a recording and positions of their partials. The 

algorithm is based on the observation that bells are rarely 

struck at the same time, which is mainly due to the in-

harmonic nature of bell sounds and their imperfect tun-

ing. Therefore, we can use the “common fate” auditory 

grouping principle, especially onset synchrony to find 

groups of partials that belong to individual bells.  

We first calculate a magnitude spectrogram F of a re-

cording. To reduce variance in partial magnitudes in dif-

ferent frequency regions, we multiply the spectrogram 

with a perceptual weighting model, as introduced by Vin-

cent [10]. Weights are calculated on an average spectrum 

and applied globally to yield a flattened time-frequency 

representation Fw. Such flattening “amplifies” partials 

with small magnitudes, which makes it easier for the al-

gorithm to consider those partials in the process of find-

ing partial groups. This is especially important, because 

magnitude of the fundamental frequency of a bell lies 

over 20 dB below its loudest partial (see Table 1). As the 

fundamental corresponds to pitch, we need to accurately 

estimate it, otherwise the pitch of a bell can only be ap-

proximated. 

Bells have sharp onsets and long decay times, so the 

next step of the algorithm accentuates the fast positive 

changes (sharp onsets) in the magnitude spectrogram. 

The dynamics of changes within frequency bins of Fw is 

estimated by calculating first order delta coefficients D of 

the bins with a sliding window of length Nd. Delta coeffi-

cients provide estimates of the gross shape of short time 

segments of the frequency bins. They emphasize fast and 

big changes, such as onsets, and deemphasize slower and 

smaller changes, such as beating. This is illustrated in 

Figure 4 that displays delta coefficients of a bell partial 

calculated on a recording of a bell-playing clock. 

To discover groups of partials with synchronous on-

sets, we calculate covariances of their delta coefficients:  

   
1

1
max ,0

1

n

ij ik i jk j

k

c d d
n

 


 
   

 
  ,    (2) 

where dij represents an element of the delta spectrogram 

D and i the average of the i-th row of D. Because delta 

coefficients emphasize onsets, the value cij represents a 

measure of onset synchrony of partials with frequencies 

corresponding to bins i and j. Bells do not share many 

partials and are rarely struck at the same time, so a bell’s 

partial will have high synchrony with other partials of the 

same bell, but not with partials of other bells.  

 

 

Figure 4. Amplitude envelope and delta coefficients of a 

bell partial from a bell-playing clock recording 

A global covariance matrix C could be calculated on 

the entire delta spectrogram D, but we found that this puts 

too much emphasis on bells that occur frequently in a re-

cording and fails to find partials groups of other less fre-

quent bells. We therefore calculate local covariance ma-

trices on all segments that are obtained by sliding a win-

dow of length n over the delta spectrogram D with a step 

size of n/2. This results in a set of local covariance ma-

trices C
(t)

. The overall measure of onset synchrony of a 

partial i is then calculated by weighting the contributions 

of local covariance matrices with the overall energy of 

the partial in each segment, as approximated by ( )t

iic :  
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 .                    (3) 

 

Figure 5. Onset synchrony of a partial at 6840 cents. 

Four other partials from the same bell (8320, 9240, 9920 

and 10460 cents) are clearly visible. 

Figure 5 displays one row of the resulting matrix S, 

representing onset synchrony of a partial in a bell clock 

recording. A group of five partials belonging to the same 

bell sound clearly stands out.  

To discover groups of synchronous partials, we ana-

lyze each row si of the matrix S, and search for parame-

ters of the bell model presented in section 2.1 that best 
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describe si. Specifically, for each row si we find model 

parameters f1 and f2 that maximize:  

 
1, 2

1, 2

argmax f f i
f f

M s  ,                    (4) 

where   denotes the dot product operator. Due to the 

sparseness of S (see Figure 5), an exhaustive search for 

optimal parameters can be performed efficiently. If the 

dot product in eq. (4) exceeds a preset threshold T, the 

model Mf1,f2 is considered to represent one of the bells in 

the analyzed recording. The actual positions of bell’s par-

tials may deviate from the model, so we estimate them 

from si by simple component-wise multiplication:   

 
1

1, 2( )K

f f iMb s  , (5) 

where K is used to compress partial magnitudes.  

The final outcome of the algorithm is a set of vectors 

Bb describing the sounds of bells in a recording. We 

present an evaluation of the algorithm in section 4. 

3. TRANSCRIPTION 

To transcribe a recording of a bell-playing clock, we need 

to find which notes (bells) were played and when they 

were played - their onset times. Although this may seem 

to be an easy task given positions of partials of bell 

sounds, the task is complicated due to several factors. 

First, partials interact; they get amplified, cancelled or 

beat against each other, which makes it difficult to follow 

their amplitude envelopes and find their onsets. Decay 

times of bell sounds are long and although bells are 

usually not played at the same time, the number of con-

currently sounding bells (polyphony) is always high. Par-

tials decay at different rates, so the spectrum of bells 

changes with time. Recordings contain fast passages with 

inter-onset times of less than 100ms, as well as embel-

lishments such as grace notes and arpeggios that further 

complicate transcription. And last, these are not synthetic 

recordings, nor are they very professionally made; they 

contain many noisy artefacts, such as background noise, 

noises coming from the clock mechanism or similar.  

We chose to take a probabilistic approach to transcrip-

tion and search for the most probable sequence of notes 

in a recording. The transcription process starts by calcu-

lating the onset times and onset probabilities of bells. We 

use the complex domain onset detection function and 

peak picking algorithm [11], which performs well with 

bell sounds, because of their sharp percussive onsets. On-

set probabilities are calculated from the value of the onset 

detection function at each onset.  

Given N onset times and the fact that bells are seldom 

struck at the same time, transcription can be viewed as a 

problem of finding a sequence of notes and rests 

s1,s2,s3...sN that best describes the analyzed signal; s1 

starts at the first found onset, s2 at the second and so on. s 

may represent a note (all notes ni, i=1..M are described by 

their corresponding bell models from the set B); or may 

be a rest (r). Specifically, we wish to find a sequence of 

notes and rests that maximizes the joint probability: 

 
1 2 1 3 2 1( ) ( | ) ( | ) ... ( | )N NP s P s s P s s P s s   . (6) 

To estimate probability of a note P(si=nj), we take two 

factors into consideration: the probability that note nj de-

scribed by the corresponding bell model bj actually oc-

curred in the signal at onset i, and the probability of that 

onset. Note probability is calculated by multiplying the 

bell model with the time-frequency representation D (as 

defined in section 2.1). Onset probability is proportional 

to the value of the onset detection function at the onset. 

We can thus write the probability of a note nj occurring at 

onset i as: 

 1( ) ( )
i

i j i j iC
P s n P o  b d . (7) 

where   denotes dot product, di represents the time-

frequency representation D at time i and P(oi) the proba-

bility of an onset at that time. Ci is a scaling factor used to 

normalize the dot product to a [0-1] range. 

Probability of a rest is defined as: 

  
1

( ) (1 ( )) 1 ( )
M

i i i k

k

P s r P o P s n


     , (8) 

thus if no notes are likely to occur and the onset is also 

not likely, a rest will be likely.  

To define conditional probabilities P(si | si-1), we intro-

duced two changes to the above expressions. First, if note 

nk occurred at time i-1, we subtract the note from the 

time-frequency representation D, thus eliminating its ef-

fect at time i:  

 
1 1( ) max( ( 1, ) , 0)i i k i k is n N i     d d b d . (9) 

Operator  denotes component-wise multiplication 

and N the unscaled normal distribution, which models the 

time evolution of delta coefficients. As we can observe in 

Figure 4, delta coefficients are roughly bell-shaped at on-

sets, so we approximate them with a normal distribution. 

If si-1 is a rest, nothing is subtracted, so di(si-1=r)=di. 

As intervals between adjacent notes in a melody are 

usually small (a phenomenon also known as pitch prox-

imity), we include an additional factor into P(si | si-1). 

Pitch proximity is modeled by a proximity profile R(n), 

which as in [12], is represented by a normal distribution 

centered around a given pitch n, indicating pitch probabil-

ities of the following note. The obtained conditional 

probability of consecutive notes can thus be written as: 

 1
1 1( | ) ( ) ( ) ( )

i
i j i k i i k j i i kC

P s n s n P o R n s n     b d . (10) 

If si is a rest, we can calculate the conditional probability 

with the expression given in eq. (8), whereby we replace 

note probabilities with conditional probabilities and mul-

tiply the expression with a constant representing the prox-

imity profile. 
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The most likely sequence of notes and rests can be ef-

ficiently estimated with dynamic programming; the re-

sulting set of onset times and notes represents the tran-

scription of a recording. 

4. EVALUATION 

In order to evaluate our algorithm, we manually tran-

scribed and annotated positions of partials in a set of 10 

recordings of different bell-playing clocks. Results and 

discussion are given in the following sections. 

4.1 The Bell-finding Algorithm  

We used the following parameters to test the bell-finding 

algoritm: the magnitude spectrogram was calculated with 

the Constant-Q transform [13], using a maximum win-

dow size of 100ms, a step size of 25 ms and 20 cent spac-

ing between adjacent frequency bins. The deltas were 

calculated with a sliding window of Nd=9 frames, the co-

variance matrices on n=100 frames long segments. Final-

ly, the threshold T that determines whether a bell model 

should be included in the final results was set to 1/20
th

 of 

the maximum value of all models and the compression 

coefficient K to 10. 

For comparison, we also developed an alternative ap-

proach for estimating partials in bell sounds. We used 

non-negative matrix factorization (NMF) to factorize the 

delta magnitude spectrogram D into matrices W and H, 

where the basis vectors in W would ideally correspond to 

bell spectra and H would explain how bell magnitudes 

change over time. Several efficient implementations of 

NMF exist in the literature; in our experiments we used 

the SNMF algorithm introduced by Kim and Park [14]. 

The algorithm is based on the alternating non-negativity 

constrained least squares and active set method and al-

lows to impose sparsity constraints on H or W.  

With NFM learning, the number of basis vectors is 

fixed and we need to set it in advance, prior to the actual 

learning. Because in our case basis vectors correspond to 

spectra of individual bells, we need to know the number 

of bells in a recording prior to learning. This is not usual-

ly the case, but to perform the comparison of both ap-

proaches, we give the NMF algorithm a small “advan-

tage” by setting the number of basis vectors to the actual 

number of bells as was manually annotated for each re-

cording.  

 

 precision recall 

proposed algorithm 0.94 0.98 

SNMF 0.87     0.87     

Table 2. Comparison of two bell finding algorithms 

Table 2 shows average precision and recall scores of 

the two algorithms on all recordings. Although both per-

form well, the proposed approach outperforms non-

negative matrix factorization. We contribute the differ-

ence to two main reasons. To find partials of bell sounds, 

the proposed algorithm uses a local approach; namely co-

variance matrices are calculated on short segments of the 

entire recording and then combined based on magnitudes 

of the analyzed partials in these segments. On the other 

hand, NMF works globally by iteratively minimizing the 

factorization error. The difference is important when 

searching for bells that are not frequently played. NMF 

will tend to ignore them and rather focus on minimizing 

the overall error which may lie in varying decay times of 

bell partials or noise. The local nature of our approach 

will not fail for such cases, as the bells will stand out in 

individual local segments and will consequently also 

show in the global matrix S. Another advantage of the 

proposed approach is its use of the knowledge provided 

by the model of bell partial positions, as presented in sec-

tion 2.1. Namely, the search for bell partials is limited by 

the model, so only regions of the signal that correspond 

to predicted partial frequencies are considered. Therefore, 

noise, either background or made by the clock mechan-

ism or other external factors, can largely be ignored. 

NMF uses no such high-level knowledge, so it is affected 

by noise on all levels, as it tries to accommodate it and 

include it into the basis vectors. 

All of the false negative errors (missed bells) made by 

our bell finding algorithm were bells a semitone apart 

from another more dominant bell, with most of their par-

tials overlapping. Such bells are mainly used as embel-

lishments and were ignored because their onsets were 

masked by the more dominant bell. However, since these 

bells are not very frequently played, these errors do not 

have a large influence on overall transcription accuracy, 

as we show in the following section.  

4.2 The Transcription Algorithm 

To evaluate how various choices made when designing 

our transcription algorithm influence its performance, we 

tested several variants of the algorithm: A – the described 

algorithm, B – excluding the pitch proximity profile, thus 

making all note transitions equally probable, C – exclud-

ing note subtraction, thus avoiding conditional note prob-

abilities and D – using annotated onsets instead of the 

calculated ones and E – using annotated bell partials in-

stead of the calculated ones. Average precision and recall 

scores of transcriptions of all recordings are shown in Ta-

ble 3.  

As we can observe, differences between these variants 

are not very big. This is due to the fact that the differenc-

es mostly affect “problematic” parts of recordings that 

include fast passages and embellishments, while else-

where the combination of the delta magnitude spectro-

gram, accurately estimated positions of bell partials, and 

correctly found onsets makes them irrelevant.  

For the problematic parts, the pitch proximity profile 

that favors smaller intervals (B) and especially note sub-

traction (C), which mostly prevents repetitions of predo-
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minant notes, do have a positive effect on performance. 

As (D) shows, approx. half of the missed notes are caused 

by missed onsets and recall is raised by approx. 0.05 if 

perfect onset detection is used. On the other hand, noth-

ing is gained by using the manually annotated bell par-

tials, so the bell finding algorithm seems to be working 

very well and the errors it made seem to be almost irrele-

vant. 

 

 transcription 

 precision recall 

A: proposed algorithm 0.95     0.89     

B: no proximity 0.94 0.87 

C: no conditional prob. 0.91 0.88 

D: perfect onsets 0.94 0.94 

E: perfect bell models 0.95 0.89 

Table 3. Comparison of variants of the transcription algo-

rithm  

Most of the errors, either missed notes (false nega-

tives) or extraneous notes (false positives) are made in 

fast passages, where note repetitions are missed, notes are 

transcribed in an incorrect order or weak onsets ignored. 

Overall, the performance is good enough, so that tran-

scriptions will be used for further analysis and included in 

a searchable database of melodies; in fact when analyzing 

the errors, we discovered that several errors were in the 

ground truth and not in the calculated transcriptions.  

5. CONCLUSION 

The proposed approach to transcription of bell-playing 

clock recordings is a good first step towards analysis of 

these recordings. The bell-finding and transcription algo-

rithms perform well and will be used to transcribe the en-

tire collection of recordings of bell-playing clocks. We 

will add the resulting transcriptions to a searchable data-

base of melodies, thus making them available to interest-

ed researchers for further analysis. There is room for im-

provements of the algorithm; we plan to consider ways of 

allowing for correct treatment of simultaneous notes, as 

well as to test the algorithm on other recordings contain-

ing bell sounds. 
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ABSTRACT

Feature extraction is a crucial part of many MIR tasks. In
this work, we present a system that can automatically ex-
tract relevant features from audio for a given task. The fea-
ture extraction system consists of a Deep Belief Network
(DBN) on Discrete Fourier Transforms (DFTs) of the au-
dio. We then use the activations of the trained network
as inputs for a non-linear Support Vector Machine (SVM)
classifier. In particular, we learned the features to solve
the task of genre recognition. The learned features per-
form significantly better than MFCCs. Moreover, we ob-
tain a classification accuracy of 84.3% on the Tzanetakis
dataset, which compares favorably against state-of-the-art
genre classifiers using frame-based features. We also ap-
plied these same features to the task of auto-tagging. The
autotaggers trained with our features performed better than
those that were trained with timbral and temporal features.

1. INTRODUCTION

Many music information retrieval (MIR) tasks depend on
the extraction of low-level acoustic features. These fea-
tures are usually constructed using task-dependent signal
processing techniques. There exist many potentially-useful
features for working with music: spectral, timbral, tempo-
ral, harmonic, etc (see [21] and [3] for good reviews), and
it is not always obvious which features will be relevant
for a given MIR task. It would be useful to have a sys-
tem that can automatically extract relevant features from
the audio, without having to depend on ad-hoc domain-
dependent signal processing strategies.

Among the most widely used frame-level features for
audio-related MIR tasks Mel-Frequency Cepstral Coeffi-
cients (MFCCs). MFCCs take advantage of source/filter
deconvolution from the cepstral transform and perceptually-
realistic compression of spectra from the Mel pitch scale.
Because the first few MFCC values capture pitch-invariant
timbral characteristics of the audio, they are commonly
used in tasks where it is useful to generalize across pitch,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

such as multi-speaker speech recognition and musical tim-
bre recognition.

Practically all audio-based music genre classification
models use different types of acoustic features to drive su-
pervised machine learning [4, 13, 14, 23]. These include
sparse audio encodings in the time domain [17] and in the
frequency (spectral) domain [8]. Other approaches use a
Hidden Markov Model (HMM) to build a semantic rep-
resentation of music [7, 22]. The best reported accuracy
on the Tzanetakis dataset [23] for genre classification was
achieved by a system that used auditory cortical represen-
tations of music recordings and sparse representation-based
classifiers [20]. The challenges and motivations of genre
classification are discussed in [18]. In these approaches it
is difficult to know whether the acoustic features or the ma-
chine learning techniques are responsible for success. To
address this we apply our model to the Tzanetakis dataset.

A closely related task to genre classification is that of
“autotagging” (automatic tag-based annotation of music
audio). As for genre classification, timbral and temporal
features are often used to solve this task [5]. To test the
robustness of our learned features, we applied them to the
task of autotagging on the Majorminer dataset [16].

Some work in automatic feature extraction for genre
classification have been done. In [19], automatic feature
selection was done with genetic algorithms, and used for
one-on-one genre classification. In our approach, we use a
Deep Belief Network (DBN) [10] to learn a feature repre-
sentation. DBNs have already been applied in some MIR
tasks. In [9], a DBN is compared to other classifiers for the
instrument recognition task. In [12], convolutional DBNs
are used to learn features for speech recognition and for
genre and artist classification.

Can we learn features for a given task directly from mu-
sical audio that would better represent the audio than engi-
neered signal-processing features? In this work, we inves-
tigate this question.

We propose a method to automatically extract a rele-
vant set of features from musical audio. We will show that
these learned features compare favorably against MFCCs
and other features extracted by signal-processing.

The paper is divided as follows. In Section 2, we de-
scribe the datasets that were used in our experiments. We
then explain briefly the DBN model in Section 3. In Section 4
we describe the feature learning process. Then, in Section 5
we give the results of our features used in genre classifica-
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tion and autotagging tasks. Finally, we conclude and pro-
pose future work in Section 6.

2. DATASETS

We used two different datasets in our experiments. The
first one is the Tzanetakis’ dataset for genre recognition.
We trained our feature extractor over this dataset. To test
the robustness of our learned features, we then applied
these same features to the task of autotagging on the Ma-
jorminer dataset.

2.1 Tzanetakis

This dataset consists of 1000 30-second audio clips as-
signed to one of 10 musical genres. The dataset is bal-
anced to have 100 clips for each genre. The dataset was
introduced in [24], and have since been used as a reference
for the genre recognition task.

2.2 Majorminer

This dataset for autotagging was introduced in [16]. The
tags were collected by using a web-based “game with a
purpose”. Over 300 tags have been assigned to more than
2500 10 second audio clips. For our experiment, we used
only the 25 most popular tags and compared our results to
those obtained in [16].

3. DEEP BELIEF NETWORKS

In the last few years, a large amount of research has been
conducted around deep learning [1]. The goal of deep
learning is to learn more abstract representations of the in-
put data in a layer-wise fashion using unsupervised learn-
ing. These learned representations can be used as input for
supervised learning in tasks such as classification and re-
gression. Standard neural networks were intended to learn
such deep representations. However, deep neural networks
(i.e. networks having many hidden layers) are difficult or
impossible to train using gradient descent [2]. The DBN
circumvents this problem by performing a greedy layer-
wise unsupervised pre-training phase. It has been shown
[2, 10] that this unsupervised pre-training builds a repre-
sentation from which it is possible to do successful super-
vised learning by “fine-tuning” the resulting weights us-
ing gradient descent learning. In other words, the unsuper-
vised stage sets the weights of the network to be closer to
a good solution than random initialization, thus avoiding
local minima when using supervised gradient descent.

The Deep Belief Network (DBN) is a neural network
constructed from many layers of Restricted Boltzmann Ma-
chines (RBMs) [2,10]. A schematic representation is shown
in Figure 1. A RBM is structured as two layers of neurons:
a visible layer and a hidden layer. Each neuron is fully
connected to the neurons of the other layer, but there is no
connection between neurons of the same layer. The role
of a RBM is to model the distribution of its input. We
can stack many RBMs on top of each other by linking the
hidden layer of one RBM to the visible layer of the next

Input Layer

Output Layer

Hidden Layer 3

Hidden Layer 2 

Hidden Layer 1

}}
}RBM 1

RBM 2

RBM 3

Figure 1. Schematic representation of a DBN. The num-
ber of layer and the number of units on each layer in the
schema are only examples. We do not require to have the
same number of units on each hidden layer.

RBM. In our experiments, we used an algorithm inspired
by Gibbs sampling called Contrastive Divergence (CD) to
optimize our RBMs. Our focus here is on analyzing the
performance of the DBN, not in explaining the technical
details of DBNs. The main idea for our purposes is that
that DBNs offer an unsupervised way to learn multi-layer
probabilistic representations of data that are progressively
“deeper” (nonlinear) with each successive layer. For tech-
nical and mathematical details see [2, 10]. We used the
Theano 1 python library to build and train our DBNs.

4. LEARNING THE FEATURES

Our goal is is to learn a representation of audio that will
help us to solve the subsequent tasks of genre classification
and autotagging.

4.1 Training the DBN

To learn our representation, we split the Tzanetakis’ dataset
in the following way: 50% for training, 20% for valida-
tion and 30% for testing. We divided the audio into short
frames of 46.44ms (1024 samples at 22050 Hz sampling
rate). For each of these frames, we calculated the discrete
Fourier transform (DFT). We kept only the absolute values
of the DFTs, and considering the symmetry in the DFT, we
ended up with inputs of dimension 513.

The DBNs were first pre-trained with the training set in
a unsupervised manner. We then proceeded to the super-
vised fine-tuning using the same training set, and using the
validation set to do early-stopping. The supervised step
used gradient descent to learn a weighted mixture of ac-
tivations in the deepest layer to predict one of 10 genre.
Both soft max and cross-entropy costs were minimized
with comparable results.

We tried approximately 200 different hyper-parameters
combinations and chose the model with the best validation
error on the frame level. The chosen DBN model is de-
scribed in Table 1.

1 http://deeplearning.net/software/theano/
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Number of hidden layers 3
Units per layer 50
Unsupervised learning rate 0.001
Supervised learning rate 0.1
Number of unsupervised epochs 5
Number of supervised epochs 474
Total training time (hours) 104
Classification accuracy 0.737

Table 1. Hyper-parameters and training statistics of the
chosen DBN

The classifier trained from the last layer of the DBN
yields a prediction of the genre for each frame. We aver-
age over all predictions for a song and choose the highest
score as the wining prediction. This gave us a prediction
accuracy of 73.7%.

Once trained, we can use the activations of the DBN
hidden units as a learned representation of the input audio.
We analyzed the performance of each layer of the network
independently, and also all the layers together. To illustrate
what is learned by the DBN, in Figure 2 we have plotted
a 2-dimensional projection of some of the representations
used. The projection was done by using the t-SNE algo-
rithm described in [25]. Notice how the clustering of the
activations of the hidden layers is more definite than for the
input or the MFCCs. As we will see in Section 5, this will
improve the accuracy of the classifiers.

5. CLASSIFICATION USING OUR LEARNED
FEATURES

In this section, we use our learned features as inputs for
genre classification and autotagging. In the first task we
explore different ways of using our features to get the best
classification accuracy. In the second task, we use the
method that gave us the best result in the genre recogni-
tion in order to do autotagging.

For both experiments, we use a non-linear Support Vec-
tor Machine (SVM) with a radial basis function kernel [6]
as the classifier. It would also be possible to train our DBN
directly to do classification. However our goal is to com-
pare the DBN learned representation with other represen-
tations. By using a single classifier we are able to carry out
direct comparisons.

5.1 Genre classification

5.1.1 Frame-level features

In our first experiment, we used our frame-level features
as direct input to the SVM. Since the SVM doesn’t scale
well with large datasets, we subsampled the training set by
randomly picking 10, 000 frames. We compared these ac-
curacies to the accuracy of the SVM trained with MFCCs
over these same frames of audio. As in Section 4.1, we
used the frame predictions of a whole song and voted for
the best genre in order to compute the test accuracy. The
results for this experiments are shown in Table 2. We see

Inputs (DFTs)

DBN Activations

MFCCs

blues
classical
country
disco
hiphop

jazz
metal
pop
reggae
rock

Figure 2. 2-Dimensional projections of different represen-
tations of the audio with respect to their genre.
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Accuracy
MFCCs 0.630
Layer 1 0.735
Layer 2 0.770
Layer 3 0.735
All Layers 0.770

Table 2. Classification accuracy for frame-level features

that, at the frame level, our learned features performed sig-
nificantly better than the MFCCs alone. We also see that
the second layer seems to have the best representation out
of the three layers. By using all the layers as the input, we
don’t see any improvement compared to the second layer
alone. Since we used the same dataset here that we used
for learning the features, we took care to reuse that same
training, validation and testing splits as in Section 4, so as
not to contaminate our testing set. Because our learned
DBN representation was learned on a single test/train split,
we were unable to do cross-validation on this dataset with
the SVM classifier, since this would have given us a biased
result.

5.1.2 Aggregated features

Bergstra et al [4] investigated the impact of feature ag-
gregation on classification performance for genre recog-
nition. It is demonstrated that aggregating frame-level fea-
tures over a period of time increases classification accu-
racy. The optimal aggregation time depend depends on the
nature of the features and the classifier, with many popu-
lar features having optimal aggregation times of between
3 and 5 seconds. With this in mind, we aggregated our
features over 5 seconds periods. Thus, for each 5 seconds
segment of audio (with 2.5 seconds overlap), we computed
the mean and the variance of the feature vectors over time.
This method not only raised our classification accuracy, but
also reduced the number of training examples, thus accel-
erating the training of the SVMs. With the aggregation, our
classification accuracy by jumped to 84.3%, which is bet-
ter than the 83% accuracy reported in [4]. However, since
this result was reported on a 5-fold cross-validation on the
dataset, we cannot directly compare our results. More im-
portantly we observe that our results are in general com-
petitive with the state-of-the-art signal-processing feature
extraction for the genre classification task. Also, given a
fixed classifier (the nonlinear SVM) our learned represen-
tation outperforms MFCCs. As in Section 5.1.1, we see
that the second layer gives the best representation of all the
layers, but we gain a bit of accuracy by using all of the
layers.

5.2 autotagging

To test the robustness of our learned features, we tested
their performance on an autotagging task. Following the
results in Section 5.1, we used the activations of all the
layers of the DBN aggregated on 5 second windows as in-
puts for the SVMs. We will refer to this set of feature as

Accuracy
MFCCs 0.790
Layer 1 0.800
Layer 2 0.837
Layer 3 0.830
All Layers 0.843

Table 3. Classification accuracy for features aggregated
over 5 seconds

0.4 0.5 0.6 0.7 0.8 0.9
keyboard

voice

bass

vocal

drum

synth
instrumental

slow

80s

jazz
fast

electronica

female

pop
saxophone

male

piano
electronic

dance

guitar
beat

techno

hip hop
rock

rap DBN
MIM

Figure 3. Accuracy of the DBN and the MIM feature sets
for the 25 most popular tags. As each tag training set was
balanced for positive and negative examples, the vertical
line at 0.5 indicates chance accuracy.

the DBN feature set. We compare it to a set of timbral and
temporal features presented in [15]. We will refer to this
set of feature as the MIM feature set. We used the same
method as in [16] to train the SVMs over the dataset. The
results for the 25 most popular tags in the dataset are shown
in Figure 3 and summarized in Table 4.

Mean Accuracy Standard Error
DBN 0.73 0.02
MIM 0.70 0.02

Table 4. Mean and standard error of the autotagging re-
sults.

The results show that our features give a better classi-
fication performance for almost all the tags. In particular,
our features performed significantly better better for tags
such as ’rock’, ’guitar’, ’pop’ and ’80s’. Except for ’gui-
tar’, these particular tags represent genres, which is what
our features were optimized to classify.

5.3 Discussion

From the results presented in Section 5.1 and Section 5.2,
we see that it is indeed possible to learn features from audio
relevant to a particular task. In the case of genre classifi-
cation, our DBN features performed as well if not better
than most signal-processing feature extraction approaches.
The features were optimized to discriminate between the
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10 genres shown in Figure 2, but we showed that these fea-
tures were also relevant to describe many other tags, such
as ’guitar’, that were not related to genre. We believe this
is evidence that a DBN can in fact learn to extract impor-
tant and robust characteristics from audio. Another posi-
tive point is that, once the DBN is trained, the feature ex-
traction from audio is very fast and can be done easily in
real-time, which could be useful for many applications.

However, there are several areas for improvement. The
main one is the long computation time necessary to train
the DBN. The model that we used required a few days to
train. This is mainly due to the size of the dataset. Since
we used uncompressed audio frames overlapping over half
a frame, the combination of the training and validation set
required around 2 gigabytes of memory. There are many
ways to reduce the size of the training set and to speed up
the training. We could compress the DFTs with Princi-
pal Component Analysis (PCA). We could also aggregate
the DFTs over small windows before sending them to the
DBN. Randomly choosing a subset of the frames in the
dataset could also help. Another solution would be to aug-
ment the mini-batch size to optimize the time of training
process. However, it is not clear how each of these so-
lutions will affect the quality of the representation. This
requires further investigation.

Reducing the training time of a single model would also
help to solve the second issue, which is the hyper-parameter
search. As mentioned in Section 4.1, there are many hyper-
parameters to optimize. It is not clear how the optimal
hyper-parameters vary depending on the input and the task.
Current research on deep learning is investigating the mat-
ter, and some techniques to automatically adjust the hyper-
parameters are being developed.

Another flaw of our model is that the features are ex-
tracted at the frame level only, so that our model cannot
model long-term time dependencies. To better represent
musical audio, we would need features that are able to
capture the long-term time structure. Convolutional DBNs
might provide a suitable model for time hierarchical repre-
sentations [11].

6. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the ability for DBNs to
learn higher level features from audio spectra. We showed
that these learned features can outperform MFCCs and carefully-
tailored feature sets for autotagging. These results moti-
vate further research with deep learning applied to MIR
tasks.

In future work, we will continue investigating ways to
reduce the training time of our models. Furthermore, we
will learn features over a wider range of datasets and MIR
tasks. We are interested, for example, in using the unsuper-
vised DBN training approach to observe a large amount
of unlabeled audio data. Finally, we will continue to in-
vestigate how we can take advantage of structure found at
multiple timescales in music. To this end, a hierarchical
convolutional DBN may be appropriate.
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ABSTRACT

Collaborative filtering methods (CF) exploit the wis-
dom of crowds to capture deeply structured similarities in
musical objects, such as songs, artists or albums. When
CF is available, it frequently outperforms content-based
methods in recommendation tasks. However, songs in the
so-called “long tail” cannot reap the benefits of collabora-
tive filtering, and practitioners must rely on content-based
methods. We propose a method for improving content-
based recommendation in the long tail by learning an op-
timized similarity function from a sample of collabora-
tive filtering data. Our experimental results demonstrate
substantial improvements in accuracy by learning optimal
similarity functions.

1. INTRODUCTION

“Collaborative filtering” (CF) is a popular method for multi-
media recommendation applications in which data (e.g.,
songs, artists, books or movies) are represented and com-
pared in terms of the people who use them. Systems based
on collaborative filtering exploit the “wisdom of crowds”
to define similarity between items, which can then be used
for recommendation. Indeed, collaborative filtering sys-
tems benefit from several attractive properties: CF explic-
itly represents individual users, and is therefore inherently
personalized; data collection can be done passively, rather
than requiring users to actively tag items; and CF data di-
rectly captures usage habits: exactly the quantity that rec-
ommendation engines strive to affect.

It is therefore not surprising that CF methods have be-
come an active research topic in recent years, due in no
small part to the recently concluded competition for the
Netflix Prize [1]. Within the Music Information Retrieval
(MIR) community, recent studies have shown that CF sys-
tems consistently outperform content-based methods for
playlist generation [6] and tag prediction [15]. However,
collaborative filtering suffers from the dreaded “cold start”
problem: CF methods fail on items which have not yet
been used, and are therefore unsuitable for recommenda-
tion in the “long tail”. While this problem persists for all
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c© 2010 International Society for Music Information Retrieval.

media (e.g., movies, books, etc.), it is especially deadly
in music, due to the relatively large number of unknown
songs and artists in the world today. Netflix boasts 100,000
DVD titles [1], while Apple’s iTunes store provides access
to over 13 million songs [2].

Motivated by the cold-start problem, MIR researchers
have worked steadily to improve content-based recommen-
dation engines. Content-based systems operate solely on
feature representations of music, eliminating the need for
human intervention. While this approach naturally extends
to long-tail data, the definition of similarity in these sys-
tems is frequently ad-hoc and not explicitly optimized for
the specific task. As a result, it remains unclear if, or to
what extent, content-based systems can capture relevant
similarity information expressed by collaborative filtering.

In this paper, we pose the question: can we learn content-
based similarity from a collaborative filter? Empirically,
CF data provides a highly reliable means for determining
similarity between musical objects. Our main contribution
in this paper is a method for optimizing content-based sim-
ilarity by learning from a collaborative filter.

The proposed method treats similarity learning as an
information retrieval problem, where similarity is evalu-
ated according to the ranked list of results in response to a
query example, e.g., a list of artists ordered by similarity to
“The Beatles”. Optimizing similarity for ranking requires
more sophisticated machinery than is used in other meth-
ods, e.g., genre classifiers. However, it does offer a few key
advantages, which we believe are crucial for realistic music
applications. First, there are no assumptions of transitivity
or symmetry in the proposed method. As a result, “The
Beatles” may be considered a relevant result for “Oasis”,
and not vice versa; this is not possible with other methods
in the literature, e.g., the embedding technique described
in [21]. Second, CF data can be collected passively from
users (e.g., via scrobbles [16]) and directly captures their
listening habits. Finally, optimizing similarity for ranking
directly attacks the main quantity of interest, i.e., the or-
dered list of retrieved items, rather than potentially irrele-
vant or overly coarse abstractions (e.g., genre).

Our proposed method is quite general, and can improve
similarities derived from semantic descriptions provided
by humans or an auto-tagging engine. As we will demon-
strate, even hand-crafted song annotations can be optimized
to more accurately reflect and predict the similarity struc-
ture encoded by collaborative filtering data.
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1.1 Related work

A significant amount of research has been devoted to the
topic of musical similarity in the past decade. Ellis, et
al. [9] evaluated similarity metrics derived from various
data sources against human survey data. Similarly, Kim,
et al. [15] evaluate several sources of artist similarity for a
tag prediction task, and observe that methods based on col-
laborative filtering significantly out-perform acoustic or se-
mantic similarity. However, neither of these works attempt
to optimize similarity for a specific task.

Slaney, et al. [21] apply several learning algorithms to
find similarity metrics over acoustic features which are op-
timized to cluster songs of the same artist, album, or that
appear on the same blog. Our previous work [19] applies
similar techniques to predict human survey data and op-
timally integrate multiple data sources. The method pro-
posed here falls squarely within this line of work, but dif-
fers in that the metric is trained from collaborative filtering,
and optimized for ranking performance, rather than classi-
fication or (comparatively scarce) human survey data.

There is a large body of work which treats collaborative
filtering as a matrix completion problem (see, e.g., [24]).
In the matrix completion view, the goal is to perform user-
centric recommendation by filling in missing entries of the
users-by-content matrix, i.e., recommending content to a
user based on his or her specific preferences. Our applica-
tion here is slightly different: rather than trying to complete
the matrix, we interpret the collaborative filtering matrix
as the ground truth, from which, similarity can be derived.
Our goal is to train a content-based system to match simi-
larities derived from CF data. We also stress that our pro-
posed method is not a hybrid method: once the metric has
been trained, collaborative filtering data is not necessary to
compute similarities for unseen, long-tail songs.

2. LEARNING SIMILARITY

Our goal is to learn an optimal similarity function for songs,
and as such, we must choose a family of similarity func-
tions over which to optimize. Many families of similarity
functions have been proposed in the MIR literature, such as
distance between generative models of acoustic [3, 17] or
semantic [5] descriptors, and playlist-based similarity [18].

Here, we opt for Euclidean distance between song rep-
resentations. The primary reason for this choice is that Eu-
clidean distance naturally lends itself to optimization by
metric learning (see, e.g., [19, 21]). In metric learning,
each data point is described by a vector in Rd, and the goal
is to learn a linear projection matrix L such that distances
after projection (‖Li − Lj‖) are small for “similar” pairs
(i, j) and large for “dissimilar” pairs. Due to computa-
tional issues, optimization is performed not on L, but on
a positive semi-definite 1 (PSD) matrix W = LTL � 0.
In the metric defined by W , distance between points (i, j)

1 A positive semi-definite matrix W , denoted W � 0 is square, sym-
metric, and has non-negative eigenvalues.
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Ranking by distance from q: Ranking by distance from q:
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Figure 1. Metric Learning to Rank (MLR) learns a met-
ric (W ) so that a query song q is close to relevant results
(+) and far from irrelevant results (-). Optimization is per-
formed with respect to the rankings induced by distance
from the query.

after projection is denoted by the quadratic form

d(i, j) = ‖i− j‖2W = (i− j)TW (i− j)
= (i− j)TLTL(i− j) = ‖Li− Lj‖2. (1)

For the present application, we apply the Metric Learn-
ing to Rank (MLR) algorithm [20]. Here, we provide a
brief overview of the algorithm.

2.1 Metric learning to rank

Metric Learning to Rank (MLR) [20] is an extension of
Structural SVM [13]. Structural SVM has been demon-
strated to be an effective method for solving ranking prob-
lems in information retrieval systems [8], and the MLR al-
gorithm extends the methodology to the query-by-example
setting by learning a metric space, rather than a discrim-
inant vector. Specifically, MLR learns a positive semi-
definite matrix W such that rankings induced by learned
distances are optimized according to a ranking loss mea-
sure, e.g., ROC area (AUC) or precision-at-k. In this set-
ting, “relevant” results should lie close in space to the query
q, and “irrelevant” results should be pushed far away.

For a query song q, a natural ordering of the database
X is obtained by sorting x ∈ X according to increasing
distance from q under the metric defined by W (see Fig-
ure 1). The metric W is learned by solving a constrained
optimization problem such that, for each training query q,
a higher score is assigned to the “true” ranking y∗q than to
any other ranking y ∈ Y (the set of all rankings):

〈W,ψ(q, y∗q )〉 ≥ 〈W,ψ(q, y)〉+ ∆(y∗q , y)− ξq. (2)

Here, the “score” for a query-ranking pair (q, y) is com-
puted by the Frobenius inner product:

〈W,ψ(q, y)〉 = tr(Wψ(q, y)). (3)

ψ(q, y) is a matrix-valued feature map which encodes the
query-ranking pair (q, y), and ∆(y∗q , y) computes the loss
incurred by predicting y instead of y∗q for the query q (e.g.,
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Algorithm 1 Metric Learning to Rank [20]
Input: data X = {q1, q2, . . . , qn} ⊂ Rd,

true rankings y∗1 , y
∗
2 , . . . y

∗
n,

slack trade-off C ≥ 0
Output: d× d matrix W � 0

min
W�0,ξ

tr(W ) + C · 1
n

∑
q∈X

ξq

s. t. ∀q ∈ X , ∀y ∈ Y \ {y∗q} :

〈W,ψ(q, y∗q )〉 ≥ 〈W,ψ(q, y)〉+ ∆(y∗q , y)− ξq
ξq ≥ 0

loss in AUC score), essentially playing the role of the “mar-
gin” between rankings y∗q and y. Intuitively, the score for
a true ranking y∗q should exceed the score for any other y
by at least the loss ∆(y∗q , y). (In the present context, the
“true” ranking is any one which places all relevant results
before all irrelevant results.) To allow violations of mar-
gins during training, a slack variable ξq ≥ 0 is introduced
for each query.

MLR encodes query-ranking pairs (q, y) by the partial
order feature [13]:

ψ(q, y) =
∑
i∈X+

q

∑
j∈X−q

yij

(
φ(q, i)− φ(q, j)
|X+
q | · |X−q |

)
, (4)

where X+
q (resp. X−q ) is the set of relevant (resp. irrele-

vant) songs for q, the ranking y is encoded by

yij =

{
+1 i before j in y
−1 i after j

,

and
φ(q, i) = −(q − i)(q − i)T (5)

captures the affinity between the query q and a single item
i. Intuitively, ψ is constructed by adding the difference
φ(q, i)− φ(q, j) whenever y places (relevant) i before (ir-
relevant) j and subtracted otherwise. This choice of ψ
therefore emphasizes directions in the feature space which
are correlated with good rankings.

For a test query q′, the predicted ranking y is that which
achieves the highest score byW , i.e., argmaxy〈W,ψ(q′, y)〉.
This can be found efficiently by sorting the corpus in de-
scending order of 〈W,φ(q′, x)〉. Equation 5 defines φ so
that when taking the inner product with W ,

〈W,φ(q′, x)〉 = − tr
(
W (q′ − x)(q′ − x)T

)
(6)

= −(q′ − x)TW (q′ − x) = −‖q′ − x‖2W ,

the result is the (negative, squared) distance between q′

and x under the metric defined by W . Thus, decreasing
〈W,φ(q′, x)〉 corresponds to increasing distance from q′.

The MLR optimization problem is listed as Algorithm 1.
As in support vector machines, the objective consists of
two competing terms: tr(W ) is a convex approximation
to the rank of the learned metric, and 1/n

∑
ξq measures

the empirical (hinge) loss on the training set, and the two

terms are balanced by a trade-off parameter C. Although
the full problem includes a super-exponential number of
constraints (one for each y ∈ Y , for each q), [20] de-
scribes an efficient approximation algorithm based on cut-
ting planes [14] which works well in practice.

3. DATA

Since our goal is to learn a content-based similarity metric
for songs, it would seem logical to derive similarity from
CF data relating users to songs. However, in practice, such
matrices tend to exhibit high sparsity, which would lead to
unstable similarity computations. We instead opt to derive
similarity at the artist level, and then transfer similarity to
the song level. Given a set of artists, and a collaborative
filtering matrix over the artists, our experimental procedure
is as follows:

1. extract artist similarity from the CF data,
2. transfer artist similarity to song similarity,
3. construct a feature representation for each song,
4. learn a metric W over song representations to pre-

dict song similarities, and
5. evaluate W by testing retrieval of similar songs in

response to (unseen) test songs.

Steps 1 and 2 are described in Section 3.2, and step 3 is
described throughout Section 3.3. Next, we describe the
sources of our audio and collaborative filtering data.

3.1 Swat10k

Our experiments use the Swat10k dataset of 10,870 songs
from 3,748 unique artists [22]. Each song has been weakly-
labeled from a vocabulary of 1,053 tags from Pandora’s
Music Genome Project 2 that include multiple genres and
acoustically objective descriptors.

3.2 Collaborative filtering

To define similarity between songs, we use the collabora-
tive filtering (CF) data mined from Last.fm 3 by [7]. The
raw collaborative filtering matrix consists of approximately
17.5 million user-song interactions over 359K users and
186K artists with MusicBrainz 4 identifiers (MBIDs).

We first filtered the CF matrix down to include only the
Swat10k artists by matching MBIDs, resulting in a reduced
CF matrix F :

Fui =

{
1 user u listened to artist i
0 otherwise,

(7)

of 356,026 users and 3,748 artists.
From the CF matrix, we define the similarity between

artists i and j as the cosine-similarity between the column-
vectors Fi and Fj :

Sij =
FT
i Fj

‖Fi‖ · ‖Fj‖
. (8)

2 http://www.pandora.com/mgp.shtml
3 http://last.fm
4 http://www.musicbrainz.org/
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Training Validation Test Discard
# Artists 746 700 700 1602
# Songs 1842 1819 1862 5347
# Relevant 39.5 37.7 36.4

Table 1. Statistics of the Swat10k data. “# Relevant” is the
average size of the relevant set for each song.

Intuitively, Sij counts the number of users shared between
artists i and j, and normalizes by popularity.

To ensure stable similarity measurements, we discarded
all artists from the set which had fewer than 100 users. This
leaves 2,146 artists, which we split roughly into thirds for
training, validation, and test sets. For each artist, we then
define the set of “relevant” artists as the 10 closest training
artists according to Equation 8 5 .

Finally, we convert artist-level relevance to song-level
relevance. For each song of an artist a, the relevant set
is the union of the sets of songs from each of a’s relevant
artists. Table 1 summarizes the statistics of the data used
in our experiments.

3.3 Features

For each song in our database, we construct three different
feature representations: acoustic, auto-tags, and tags pro-
vided by human labelers.

3.3.1 Vector quantized MFCCs

Our representation of acoustic features is based upon vector-
quantized Mel-Frequency Cepstral Coefficients (MFCCs),
and consists of a 3-step process: feature extraction, vec-
tor quantization, and kernelization. The method described
here is similar to that of [12], and is inspired by similar
methods found in the computer vision literature [10].

First, for each song, we extract the first 13 MFCCs from
25ms half-overlapping windows. Each MFCC vector is
augmented by appending the first and second instantaneous
time derivatives, resulting in a sequence of 39-dimensional
delta-MFCC (∆MFCC) vectors for each song.

Using the songs which were discarded due to insuffi-
cient collaborative filtering data, we trained a codebook
for use as a vector quantizer. We randomly selected 1000
songs from the discard set, and from each selected song,
randomly sampled 1000 ∆MFCC vectors, for a total of
1 million codebook-training vectors. Each training vector
v was z-scored, so that the ith coordinate vi becomes

vi 7→
vi − µi
σi

, (9)

where (µi, σi) are the sample mean and standard deviation
of the ith coordinate in the codebook-training set. We ran
k-means with k = 5000 on the z-scored training vectors,
using the implementation provided by [11]. The result is
a set of 5000 codewords, each of which was subsequently
“un”-z-scored by

vi 7→ σivi + µi. (10)
5 For training artists, we assume self-similarity, so there are technically

11 relevant artists for each training artist.

With the codebook in hand, the ∆MFCC vectors for
each song in the training, validation, and test splits were
quantized by finding the closest (in Euclidean distance)
codeword. Each song was summarized by a histogram over
the 5000 codewords, corresponding to the frequency with
which a codeword was selected as a quantizer in that song.

Finally, we constructed a χ2-kernel over songs, so that
the similarity between two codeword histograms u and v
is calculated as 6

k(u, v) = exp
(
−χ2(u, v)

)
(11)

χ2(u, v) =
5000∑
i=1

(ui − vi)2

ui + vi
. (12)

(This kernel can itself be viewed as a soft vector quan-
tizer, this time operating at the song-level rather than the
feature-level.) Each song is represented by a vector in
R1842, where the ith dimension represents similarity to the
ith training song. We then compress these vectors by prin-
cipal components analysis to 35 dimensions, which capture
95% of the variance in the training set.

3.3.2 Auto-tags

We can alternatively represent a song’s acoustic informa-
tion by using descriptive semantics. By learning from ex-
ample songs that humans have labeled with tags, an “auto-
tagger” (e.g., [12,23]) can automatically rate the relevance
of these tags to new, unlabeled songs. The resulting “auto-
tags” offer a concise description of the song, and semantic
similarity between auto-tags has been shown to improve on
content-based similarity derived from acoustics alone [5].
We use the auto-tagger described in [23] to label each song
with a real-valued vector of 149 auto-tags: the ith dimen-
sion of this vector corresponds to the probability that the
ith tag applies to the song, given the observed ∆MFCCs.

3.3.3 Human tags

Our third feature describes songs with “human tags” mined
from the Music Genome Project by [22] that include de-
scriptors of a song’s genre, style, instrumentation, vocals
and lyrics. Each song is represented by a 1,053-dimensional
binary vector that is “weakly-labeled”, meaning that a “1”
implies that the tag is relevant but a “0” does not guarantee
that the tag does not apply to the song. We consider these
“human tags” to be “acoustically objective” as they have
been applied by musicological experts and refer only to
the acoustic content of the songs. They represent the ideal
output that a content-based auto-tagger might achieve.

4. EXPERIMENTS

The MLR algorithm requires that a few parameters be set
when training: not only the slack trade-off C, but also the
choice of ranking measure to optimize. The implemen-
tation described in [20] supports several standard ranking
measures: the area under the ROC curve (AUC), mean

6 For the summation in Equation 12, we adopt the convention
0/0 = 0.
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Data source AUC MAP MRR
MFCC 0.630 0.057 0.249
Optimized MFCC 0.719 0.081 0.275
Auto-tags 0.726 0.090 0.330
Optimized auto-tags 0.776 0.116 0.327
Human tags 0.770 0.187 0.540
Optimized human tags 0.939 0.420 0.636

Table 2. Ranking performance of each data source
(MFCC, auto-tags, and human tags), before and after
learning with MLR.

reciprocal rank (MRR), mean average precision (MAP),
precision-at-k (P@k), and normalized discounted cumula-
tive gain (NDCG); see [8] for a brief summary of these
ranking measures. For P@k and NDCG, an additional
parameter k must be set, which defines how many songs
should be retrieved when evaluating the ranking.

For each data source described in Section 3, we trained
metrics with all five variants of MLR. We swept over C ∈
{10−2, 10−1, . . . , 1011}, and for the P@k and NDCG vari-
ants, we also swept over k ∈ {2, 4, 8, . . . , 256}. Perfor-
mance was evaluated on the validation set, and the best-
performing metric was then tested on the test set.

4.1 Embedding results

After learning W , we evaluate on the validation and test
sets by computing for each query song q, the ranked list
of training songs x ordered by increasing ‖q − x‖W . The
resulting rankings are scored, and scores are averaged over
all q to produce a single score for the learned metric. For
comparison purposes, we also evaluate rankings derived
from native metrics (i.e., without learning W ). The native
metric for auto-tags is taken to be the Kullback-Leibler di-
vergence between auto-tag distributions. For MFCC and
human tags, we use standard Euclidean distance.

Table 4 displays some example playlists generated by
the native and optimized MFCC spaces. At a high level, the
learned metrics successfully de-noise the feature space to
generate more cohesive playlists. Table 2 lists ranking per-
formance for each data source, before and after optimiza-
tion. In all but one case (auto-tag MRR), performance im-
proves across all evaluation criteria. For each data source
(MFCC, auto-tags, and human tags), we observe dramatic
improvements in accuracy over the corresponding native
similarity metric.

Quantitatively, the purely acoustic model improves in
AUC score from 0.630 to 0.719. The optimized similarity
performs comparably to native auto-tag similarity, but can
be constructed entirely from passive data (as opposed to
the actively collected data necessary for building auto-tag
models). Similarly, optimizing auto-tags improves AUC
from 0.726 to 0.776, which is comparable to the native per-
formance of human tags. Finally, optimizing human tags
improves AUC substantially, from 0.770 to 0.939. This
indicates that even when annotations are hand-crafted by
experts, recommendation may still be greatly improved by
using an appropriate model of the tag vocabulary.

Top tags Bottom tags
1. LATIN 1044. TWO-STEP STYLE
2. A REGGAE FEEL 1045. UNUSUAL VOCAL SOUNDS
3. REGGAE 1046. UPBEAT LYRICS
4. CHRISTIAN 1047. CALL-AND-RESPONSE VOCALS
5. NEW-AGE 1048. ELECTRIC PIANOS
6. ROCK ON THE RANGE RADIO 1049. MODAL HARMONIES
7. WAKARUSA RADIO 1050. TONAL HARMONIES
8. SASQUATCH RADIO 1051. VOCAL COUNTERPOINT
9. CMJ MUSIC MARATHON 1052. VOCAL SAMPLES

10. REGGAE / CARIBBEAN 1053. WESTERN SWING

Table 3. The top and bottom 10 tags learned by MLR,
ordered by weight. 85 tags receive 0 weight.

4.2 Learning tag weights

Given the substantial improvement observed by optimiz-
ing human tags, one may wonder what conclusions can be
drawn from the learned metric. In particular, since W can
be interpreted as “translation matrix” or vocabulary model,
it is natural to ask which tags define the similarity space,
and which tags are redundant or non-informative.

Because W contains both positive and negative entries,
it is not immediately clear how to interpret a full matrix W
in terms of tags. However, placing further restrictions on
the form of W can ease interpretability (at the expense of
model flexibility). We repeated the “human tags” experi-
ment with a modification of Algorithm 1 that restricts W
to be diagonal and non-negative. In the restricted model,
the ith element of the diagonal Wii can be interpreted as a
weight for the ith tag. The diagonal metric achieves AUC
of 0.875 (compared to 0.776 native and 0.939 for a fullW ).

Table 3 lists the top and bottom 10 tags, ordered by
weights Wii. Several interesting observations can be made
here: all of the top tags refer either to genre (e.g., LATIN,
REGGAE) or streaming radio identifiers (e.g., WAKARUSA,
CMJ). This corroborates previous studies which indicate
that grouping music by social cues, such as radio playlists
or blogs, can assist recommendation [4]. By contrast, the
bottom tags are primarily musicological terms (e.g., VO-
CAL COUNTERPOINT) which apparently convey little use-
ful information for recommendation.

This view of MLR as a supervised learning procedure
for vocabulary models suggests comparison to standard,
unsupervised techniques, such as TF-IDF with cosine sim-
ilarity. It turns out that for this data set, using TF-IDF
weighting results a decrease in AUC from 0.770 to 0.724!
From this, we can conclude that it is suboptimal to rely on
the natural statistics of tags to define similarity.

5. CONCLUSION

We have proposed a method for improving content-based
similarity by learning from a sample of collaborative filter-
ing data. The proposed method learns an optimal transfor-
mation of features to reproduce high-quality CF similarity,
and can be used to improve the quality of recommendation
in the long tail. If songs are described by semantic tags,
our method reveals which tags play the most important
role in defining an optimal similarity metric. By revealing
the most important tags for predicting CF similarity, our
method may also be useful for guiding the development of
discovery interfaces and automatic tagging algorithms.
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Query song Native space playlist Optimized space playlist

M
FC

C

Chick Corea Elektric Band - Beneath the Mask

Katalyst - Break Up I Michael Brecker - Two Blocks From The Edge
Stevie Wonder - Superstition I Charlie Parker - Wee
James Brown - Soul Power Coleman Hawkins - There Is No Greater Love
Tina Turner - What’s Love Got To Do With It I Miles Davis - Walkin’
The Whispers - And The Beat Goes On Clifford Brown - Love Is A Many Splendored Thing

A
ut

o-
ta

gs
White Zombie - Electric Head (Pt. 2.) (Remix)

I Sepultura - Apes Of God I Sepultura - Apes Of God
Arctic Monkeys - A Certain Romance I Metallica - Nothing Else Matters (Live)
Secret Machines - Lightning Blue Eyes Secret Machines - Lightning Blue Eyes
Green Day - Longview (Live) The Warlocks - Gypsy Nightmare
Perry Farrell - Kinky Mastodon - Crystal Skull

H
um

an
ta

gs

Aaliyah - Miss You

I Ginuwine - In Those Jeans I Monica - Don’t Take It Personal
I Monica - Don’t Take It Personal I Ginuwine - In Those Jeans
I Ashanti - Foolish I Ashanti - Foolish
Foo Fighters - DOA I Ne-Yo - Go On Girl
Say Hi To Your Mom - Northwestern Girls Jodeci - Freak N You

Table 4. Example playlists in native and optimized MFCC, auto-tag, and human tag spaces. Playlists are generated by
finding the five nearest neighbors of the query; relevant results are indicated by I.
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ABSTRACT 

This paper intends to research on the link between musi-
cal similarity and style and sub-style (variant) classifica-
tion in the context of flamenco a cappella singing styles. 
Given the limitation of standard computational models 
for melodic characterization and similarity computation 
in this particular context, we have proposed a specific set 
of melodic features adapted to flamenco singing styles. In 
order to evaluate them, we have gathered a collection of 
music recordings from the most representative singers 
and have manually extracted those proposed features. 
Based on those features, we have defined a similarity 
measure between two performances and have validated 
their usefulness in differentiating several styles and vari-
ants. The main conclusion of this work is the need to in-
corporate specific musical features to the design of simi-
larity measures for flamenco music so that flamenco-
adapted MIR systems can be developed.  

1. INTRODUCTION 

There is a wealth of literature on music research that fo-
cuses on the understanding of music similarity from dif-
ferent viewpoints as well as the use of similarity dis-
tances to cluster different pieces according to artist, genre 
or mood. Over the past few years, the Music Information 
Retrieval (MIR) community has been exploring several 
ways to measure the similarity between two musical 
pieces. They are often based on comparing musical ex-
cerpts in audio format and computing the distance be-
tween a representative set of their musical features (e.g., 
instrumentation, rhythmic patterns or harmonic progres-
sions). This way, current systems can, for instance, locate 
different versions of the same song with a high accuracy 
rate [9].  

Alternative approaches are based on comparing con-
textual information from the considered pieces or artists 
(e.g., influences, temporal coincidences, geographical lo-
cation), which is usually extracted from the web. A com-
bination of these two approaches seems to be the most 
adequate solution [2], but there is still a glass ceiling on 
current systems. This seems to be owing to the fact that 
there are still fundamental musical features to be consid-
ered or fully incorporated into existing models [10]. 

On the other hand, research on music similarity has 
mainly focused on the analysis of music from the so-
called "Western tradition", although there is an increasing 
interest in analyzing music from different traditions, and 
some recent MIR studies are devoted to this issue [3]. 

In this paper we study the relationship between music 
similarity and style definition in the context of a group of 
flamenco a cappella singing styles. Because of its oral 
transmission, formal classification and musical analysis 
of flamenco present considerable difficulties. Classifica-
tion of styles is usually carried out by flamenco experts 
and rests upon the analysis of the oral corpus of flamenco 
music. Flamenco experts have used several criteria in 
their classification, some of which, unfortunately, are not 
fully explicit and clear-cut. Moreover, there exists con-
siderable controversy among flamenco experts and at pre-
sent there is a lack of a unified, unequivocal classification 
of a cappella cantes. 

Our previous research has focused on analyzing the 
relationship between music similarity and style definition 
from different perspectives, such as computational mod-
els for melodic similarity [3] and human ratings of 
rhythmic patterns [6]. In Cabrera et al. [3], we applied 
standard melodic similarity measures to a music collec-
tion of a cappella flamenco music. Extraction of melodic 
contours, although arduous, produced faithful descrip-
tions of cantes. However, when applied some standard 
algorithms for comparing melodic contours (i.e. correla-
tion between pitch and interval histograms and edit dis-
tance), we obtained rather poor results. Although global 
style classification seemed to work to some extent, fla-
menco experts found that for variant classification of 
some styles those algorithms failed to distinguish subtle, 
specific nuances of the cantes. We applied some cluster-
ing techniques and it turned out that cantes that by musi-
cal reasons should be scattered were unexpectedly clus-
tered together. Thus, we concluded that further research 
had to be carried out. It soon became apparent that two 
tasks, at least, had to be accomplished: first, to musically 
formalize the specific and subtle features of a cappella 
cantes; second, to refine our computational models ac-
cording to those features.  

This paper intends to research on the link between 
musical similarity and style classification and sub-style 
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(variant) definition in the context of flamenco a cappella 
singing styles. The main contributions are (1) Identify 
relevant and specific features that characterize a given 
performance in the context of its style. Here, we consider 
that each style is characterized by a prototypical melodic 
contour. The features will then account for variations 
within this contour. (2) Define a similarity measure based 
on the identified features and provide an automatic 
method of clustering and classification. (3) Evaluate the 
results with a music collection of recordings from the 
most representative performers and contrast them with 
existing theories for the definition of styles and variants. 

This paper is organized as follows. In the next two 
sections we analyze the characteristics of flamenco sing-
ing and a cappella cantes. Next we give an overview of 
the cantes to be analyzed and we describe the music col-
lection used in our study. We then present the set of fea-
tures that describes the two chosen cantes, namely, de-
blas and martinetes. The following section deals with the 
similarity distance between cantes. A conclusion section 
summarizes the main findings and presents some propos-
als for future research.  

2. FLAMENCO SINGING 

We now describe the main features that characterize fla-
menco singing and differentiate it from other styles: 

- Instability of pitch. In general, notes are not clearly 
attacked. Pitch glides or portamenti are very common.  
- Sudden changes in volume (loudness). 
- Short pitch range or tessitura. It is normally limited to 
a major sixth interval and characterized by the insistence 
on a note and those contiguous.  
- Intelligibility of voices. Since lyrics are important in 
flamenco, there is a strong preference for intelligibility 
over range or timbre. Contralto and baritone voices are 
very common. 
- Timbre. Timbre characteristics of flamenco singers de-
pend on the period in which it was performed. As rele-
vant timbre aspects, we can mention breathiness in the 
voice and the absence of high frequency (singer) formant, 
which is characteristic of classical singing styles.  
 
From a musical point of view, a cappella cantes retain the 
following properties. 

- Conjunct degrees. Melodic movement mostly occurs 
by conjunct degrees. 
- Scales. Certain scales such as the dominant Phrygian 
mode (with a major tonic) and Ionian mode (E-F-G#-A-
B-C-D) are predominant.  
- Ornamentation. There is also a high degree of complex 
ornamentation, melismas being one of the most signifi-
cant devices of expressivity.  
- Microtonality. The use of intervals smaller than the 
equal-tempered semitones of Western classical music is 
frequent.  
- Enharmonic scales. Microtonal interval differences be-
tween enharmonic notes. 

 

Classification of a cappella cantes is subject to many dif-
ficulties. Two cantes belonging to the same style may 
sound very different to an unaccustomed ear. In general, 
underlying each cante there is a melodic skeleton. 
Donnier [4] called it the “cante’s melodic gene”. The 
singer fills this melodic skeleton by using different kind 
of melismas, ornamentation and other expressive re-
sources. A flamenco aficionado recognizes two versions 
as to be the same cante because certain notes appear in 
certain order. What happens between two of those notes 
does not matter regarding style classification, but does 
matter for assessing a performance or the piece itself. 
Aficionado’s ears recognize the wheat from the chaff 
when listening and appreciate a particular performance in 
terms of the quality of the melodic filling, among other 
features.  
 In order to put the reader in the position of un-
derstanding this point, in Figures 1 and 2 we show a tran-
scription of two versions of the same cante to Western 
musical notation. In this respect, Western notation has 
been found limited for this kind of music (e.g. Donnier 
[4] proposed the use of plainchant neumes).  

 
Figure 1: Manual transcription of a cante (debla).  

Figure 2: Transcription of another version of the previous 
cante. 

3. THE STYLES OF TONÁS 

As defined earlier, a cappella cantes are songs without 
instrumentation, or in some cases with some percussion 
(in the flamenco argon also cantes a palo seco). An im-
portant group of such cantes is composed of tonás, style 
that generically include martinetes, deblas, saetas, tonás 
and carceleras. Since in flamenco music the word toná 
refers to both the style and one of its variants, we will re-
fer to “tonás style” as the whole style and toná as the sub-
style or cante.  

352

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  
 

These cantes are played in free rhythm (sometimes 
the pattern of seguiriya is used as rhythmic accompani-
ment). Each singer chooses his or her own reference 
pitch. Modality, depending on the particular style, may be 
either the major mode or the Andalusian mode (Phrygian 
mode with a tonic major chord), though frequently both 
modes alternate within the same song [5]. Lyrics of these 
songs range widely. Lefranc [8] carried out a classifica-
tion of the tonás style mainly based on lyrics. Blas Vega 
[1] also studied the tonás style from a historical stand-
point. A toná typically possesses verses formed by words 
either of three or four syllables, or eight syllables, where 
the second and the forth verses may have assonant rhyme; 
often the final verse finishes with an imperfect tercet (a 
tercet is a group of three lines of a verse; an imperfect 
tercet is an off-rhyme tercet).  

The toná cante is normally sung in a four-verse form 
of eight syllables each. Rhyme is assonant on even 
verses. The toná cante appears in several modes, the 
Phrygian mode being the most prevailing one. Ionian or 
Aeolian modes can also be found as well as alternation of 
two modes. Ornamentation is very complex and profuse; 
no strict tempo is followed at all.   

4. MUSIC COLLECTION 

To start with, we gathered a set of 365 pieces belonging 
to the tonás style. Somehow, these cantes have scarcely 
been recorded compared to other styles. Their ritual mood 
and lyricism might be a plausible reason for that shortage 
of recordings. In spite of that, we spared no effort to 
gather as many recordings as possible from all feasible 
sources (private collections, libraries, historical record-
ings, several institutions, etc.). We may safely state that 
our collection is quite representative of this type of can-
tes. 

After the analysis phase of the corpus, we decided to 
focus on two styles, deblas and martinetes, because: (1) 
Both styles are central to flamenco music; (2) Contrary to 
other cantes, we had information about singers, geo-
graphical locations, singing schools, dates, etc., which 
allows us to have a complete, in-depth characterization of 
them from a more general standpoint than just the musi-
cal one; (3) In general, recordings had acceptable quality 
to carry out this research and the future ones, which in-
clude, for instance, automatic feature extraction from 
audio files; (4) There was a high number of recordings, 
72 songs in total, where 16 were deblas and 56 marti-
netes; (5) Apart from the number, there was enough vari-
ability in the sample for a proper evaluation of our meth-
ods. 

The specific feature set of deblas and martinetes1, to 
be described below, were obtained after a thorough study. 
First, we opened an analysis phase to identify which mu-
sical features were relevant to the characterization of the 
chosen cantes. Preliminary analysis produced too many 
variables or just variables with little explanatory power. 
Next, in search of the least complex yet meaningful de-
                                                
1  The music collection studied in this paper can be found at 
http://mtg.upf.edu/research/projects/cofla Please, contact the authors. 

scription of cantes, we removed several variables. Most 
of the features identified were related to melody and 
form. During the analysis, in our mind it also underlay 
the idea of capturing some of the features used by fla-
menco experts and aficionados to recognize the different 
styles. After deciding on the final feature set, we manu-
ally extracted it for the different performances. A work-
ing group of flamenco experts agreed on the proposed 
feature set and annotations. The next two sections de-
scribe the musical features in detail. 

5. MUSICAL FEATURES 

5.1. Deblas  

The debla is a song from the style of tonás. In general, it 
is marked by its great melismatic ornamentation, more 
abrupt than the other songs from this style, which charac-
terizes its melody. Deblas are characterized by a particu-
lar melodic contour.  

The musical features that characterize the different 
variants within the debla style can be summarized as fol-
lows: 
1. Beginning by the word ¡Ay!: ¡Ay! is an interjection 

expressing pain, which is quite idiosyncratic to fla-
menco music.  Values of the variable: Yes and no. 

2. Linking of ¡Ay! to the text. That initial ¡Ay! may be 
linked to the text or just be separated from it. Values 
of the variable: Yes and no. 

3. Initial note. It refers to the first note of the tercet. 
Normally, it is the sixth degree of the scale (VI), but 
the fifth degree (V) can also appear. Values of the 
variable are 5 and 6. 

4. Direction of melody movement in the first hemi-
stich (a hemistich is half of a line of a verse.) The di-
rection can be descending (fast appoggiatura in V, 
then the progression VI-IV), symmetric (III-VI-IV) or 
ascending. Values here are D, S and A. 

5. Repetition of the first hemistich. That repetition 
may be of the whole hemistich or just a part of it. 
Values of the variable: Yes or no. 

6. Caesura. The caesura is a pause that breaks up a 
verse into two hemistiches. Values of the variable: 
Yes and no. 

7. Direction of melody movement in the second hemi-
stich, defined as in the first hemistich. Values of the 
variables are D, S and A. 

8. Highest degree in the second hemistich. It is the 
highest degree of the scale reached in the second 
hemistich. Usually, the seventh degree is reached, but 
fifth and sixth degrees may also appear. Values of the 
variable are 5, 6 and 7. 

9. Frequency of the highest degree in the second 
hemistich. The commonest melodic line to reach the 
highest degree of the scale consists of the concatena-
tion of two torculus. A torculus is a neume signifying 
three notes, the second higher than the others. The 
value of this variable indicates how many times this 
neume is repeated in the second hemistich. 
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10. Duration. Although the duration is measured in ms, 
our intention was to classify the cantes into three 
categories, fast, regular and slow. To do so, we first 
computed the average µ and the standard deviation σ 
of the durations of all the cantes in the same style. 
Then, fast cantes are those whose duration is less than 
µ-σ, regular cantes have their duration in the interval 
[µ-σ, µ+σ], and slow cantes have durations greater 
than µ+σ. Values of this variable are F, R and S. 

5.2. Martinetes 

The martinete is also considered a variant of the toná. It 
differs from deblas in the theme of its lyrics and in its 
melodic model, which always finishes in the major mode. 
Debla’s mood is usually sad, played without guitar ac-
companiment, like the other tonás. Martinetes, however, 
are usually accompanied by the sound of a hammer struck 
against an anvil.  

There are three clear variants of martinetes. The first 
one, to be called martinete 1, has no introduction, 
whereas the second one, to be called martinete 2, starts 
with a couple of verses from a toná. The third one, to be 
called martinete 3, is a concatenation of a toná and some 
of the previous variants of martinetes; the toná of marti-
nete 2 and 3 is called toná incipit. A trait of martinete 3 is 
the singing of several poems, all having the same theme 
as in medieval romances. Because martinete 3 is a com-
bination of toná and martinetes 1 and 2, we removed it 
from our current study, as we just sought characterizing 
the most fundamental styles.  

Next, musical features of martinete 1 are presented. 

1. Repetition of the first hemistich. As for deblas, 
repetition may be complete or partial. Values of the 
variable: Yes and no.  

2. Clivis/flexa  (a neume of two notes, the second lower 
than the first one) at the end of the first hemistich. 
Normally, fall IV-III or IV-IIIb are found.  The com-
monest ending for a tercet is the fourth degree, whose 
sound is sustained until reaching the caesura. Some 
singers like to end on III or IIIb. Values of the vari-
able are: Yes and no.  

3. Highest degree in both hemistiches. The customary 
practice is to reach the fourth degree; some singers 
reach the fifth degree. Values of the variable are 4 and 
5. 

4. Frequency of the highest degree in the second 
hemistich. The melodic line is formed by a torculus, 
a three-note neume, III-IV-III in this case. This vari-
able stores the number of repetitions of this neume. 

5. Final note of the second hemistich. The second 
hemistich of martinete 1 is ended by falling on the 
second degree. Sometimes, the second degree is flat-
tened, which produces Phrygian echoes in the ca-
dence. This variable takes two values, 1 when the fi-
nal note is the tonic and 2 when the final note is II. 

6. Duration. This variable is defined as in the case of 
deblas (that is, in terms of µ and σ). Values of this 
variable are F, R and S. 

As for martinete 2 we have the following features. 

1. Highest degree in both hemistiches. In this case the 
customary practice is to reach the sixth degree; in 
some cases singers just reach the fourth or fifth de-
grees. Values of the variable are 4, 5 and 6.  

2. Frequency of the highest degree in the second 
hemistich. In this case the neume is also a torculus. 
This variable stores the number of repetitions of this 
neume. 

3. Symmetry of the highest degree in the second 
hemistich. The second hemistich of a martinete 2 is 
rich in melismas. This feature describes the distribu-
tion of the melismas around the highest reached de-
gree, which is usually the sixth degree. Melismas can 
occur before and after reaching the highest degree 
(symmetric distribution), only before the highest de-
gree (left asymmetry) or only after the highest degree 
(right asymmetry).   

4. Duration. This variable is defined as in the previous 
cases. Values of this variable are F, R and S. 

6. SIMILARITY COMPUTATION 

6.1 Inter-Style Similarity  

Carrying out the preceding analysis allowed us to extract 
a set of musical features to be used in the definition of 
melodic similarity between cantes. As a matter of fact, 
just using features very peculiar to a given style would 
distort the analysis, as their discriminating power would 
be very high. Our intention was to select a set of a few 
features capable of discriminating between different 
cantes. We removed those variables that only made sense 
within one style, gathering the following final set: 

1. Mode of type of scale: Ionian (major mode), domi-
nant Phrygian (Phrygian mode with a major third) or 
bimodal (alternation of both modes). This variable 
makes sense to classify the different styles.  

2.  Direction of melody movement in the first hemi-
stich.  

3. Symmetry of the highest degree in the second 
hemistich. 

4. Clivis (or flexa) at the end of the first hemistich.   
5. Repetition of the first hemistich. 
6.  Initial note.  
7. Final note of the second hemistich.  
8. Highest degree in both hemistiches.   
9. Frequency of the highest degree in the second 

hemistich with respect to a cante. This variable has 
been normalized as follows. Let µ be the average of 
the frequencies of the all cantes, and σ its standard 
deviation. The frequency takes three values, 0 (sel-
dom), if the frequency is less than µ-σ; 1 (normal) if it 
is within the interval [µ-σ, µ+σ]; and 2 (often), when 
it is greater than µ+σ.  

10. Frequency of the highest degree in the second 
hemistich with respect to the whole corpus. In this 
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case the mean and the standard deviation are taken 
with respect to all pieces in the corpus.  

11. Duration with respect to the piece. This variable is 
defined as above, taking three values fast, regular and 
slow.  

12. Duration with respect to the whole corpus. Now the 
mean and the standard deviation are computed for the 
whole corpus. 

Note that some of these variables do not appear as 
specific features in some cante. We removed those vari-
ables that only accounted for one cante and tried to keep 
the smallest set of explanatory variables. Moreover, we 
performed a principal component analysis (SPSS 15 were 
used for this). As a consequence, two variables were dis-
carded: Clivis (or flexa) at the end of the first hemistich 
and repetition of the first hemistich. The number of final 
dimensions turned out to be 3 and the Cronbach’s alpha 
equalled 0.983, a very good value, indeed. 

The distance we used to measure the similarity be-
tween two cantes was the simplest one could think of: the 
Euclidean distance between features vectors. Our inten-
tion was to test how powerful the musical features would 
be. The Euclidean is just a geometrical distance and does 
not reflect perceptual distance whatsoever. However, be-
cause of the robustness and power of the musical fea-
tures, results were good. 

We used phylogenetic trees [7] to better visualize 
the distance matrix. For the actual computing, we used 
the tool SplitsTree [7]. SplitsTree computes a tree (or 
more generally a graph) with the property that the dis-
tance in the drawing between any two nodes reflects as 
closely as possible the true distance between the corre-
sponding two pieces in the distance matrix. In general, 
clustering and other properties are easier to visualize with 
phylogenetic trees.  

6.2 Intra-Style Similarity  

On a second step, we analyzed similarities between per-
formances within each particular style. In this case, we 
considered all the variables presented below for each par-
ticular style (martinete1, martinete2 or debla). We com-

puted the corresponding distance matrices and generated 
their phylogenetic trees. As before, we used the Euclid-
ean distance. Again, our intention was to evaluate how 
well the defined features characterize these cantes.  

7. RESULTS 

7.1 Inter-Style Similarity  

Regarding style classification, Figure 2 displays the 
phylogenetic tree obtained for the whole corpus under 
study. Label Dx stands for debla, label M1 stands for 
martinete 1 and label M2 for martinete 2. 

As it can be noticed, discrimination among cantes is 
very good. There are three clearly separated clusters, each 
corresponding to a cante. 

In addition, we have computed for each cante its clos-
est neighbour and checked if both belong to the same 
style. That was the situation for 88.6% of the cases. There 
was a striking case in one particular debla. Debla D2-14 
whose three nearest neighbours turned out to be of class 
martinete 2. That debla is one of the oldest known songs, 
according to our musicological knowledge. Meaningfully 
enough, the closest martinetes are also old, which sug-
gests a possible common origin or an evolution of marti-
nete 2 from debla (martinete 2 seems to be a mixture of 
previous cantes). Those martinetes are M2-66, M2-68 and 
M2-65; see Figure 3 at the end of this paper. 

We also observed that some distance values were 
equal to zero for the same style; this will be discussed 
later in the conclusions section. Finally, precision and re-
call, two common performance measures, curves are pro-
vided in Figure 4.  

7.2 Intra-Style Similarity  

We did not expect a very fine clustering in the intra-style 
case, as the musical features account for general proper-
ties rather than for specific properties. In general, there 
was one big cluster, often with several cantes having the 
same distances. Overall, this was in general coherent to 
the expert’s knowledge on the musical relation among 
performers.  

Figure 3:  A phylogenetic graph  
for the whole corpus. 
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Figure 4: Precision versus recall for style classification. 

8. CONCLUSIONS 

There are many automatic systems that compute similar-
ity between pieces of music by measuring the distance 
between some musical features. One common feature is 
the melodic contour. Therefore, the problem of measuring 
musical similarity is transformed into the problem of 
computing distances between melodic contours. For cer-
tain type of music that approach may be appropriate and 
even produce good results. It is not the case for flamenco 
a cappella flamenco cantes, a kind of music characterized 
by very special features. In our previous study [3] we fol-
lowed that approach and understood its drawbacks. Re-
ducing melodic similarity to computing the distance be-
tween melodic contours leaves significant variables aside, 
which results in a limited similarity measure. 

In the present study we took another approach. We 
identified a set of musical features as basis for our meas-
ure. Those musical features are related to melodic proper-
ties, duration and form and reflect in general high-level 
characteristics of the cantes. We also found some limita-
tions. As the reader may have noticed, many cantes give 
the same feature vector and, therefore, in the phyloge-
netic trees they all appear on the same node. Why is that 
so? A moment’s thought will reveal that this situation is 
not as surprising as it might seem at first glance. As we 
mentioned, the musical features account for high-level 
characteristics. Two cantes may be different at the fine 
detail level and yet have the same musical features. That 
is the hardness of dealing with flamenco cantes. 

 It is clear that in order to obtain good similarity 
measures musical knowledge of the particular type of 
music must be incorporated into the model. On the other 
hand, since we know this is not enough, fine detail infor-
mation such as melodic contours should be incorporated, 
too. Thus, there should be a tradeoff between both ap-
proaches. That is the research we are presently carrying 
out. 

The identification of the musical features of a cap-
pella cantes is one of the main contributions of this paper. 
They have not been described before and our experiments 

have proved they work quite well for inter-style classifi-
cation. Our approach can be easily adapted to build a 
classification system based on machine learning. For the 
case of intra-style classification, more musical features 
should be identified. Our goal was to distinguish general 
musical features rather than specific features. This situa-
tion shows that special needs require special treatments 
and that inter-style and intra-style classification needs a 
different set of musical features.    

At present all the work put forward here has been 
done in a manual way. First, we wanted to check that the 
extraction of the musical features were correct and, fur-
thermore, gave a good measure of similarity. We are cur-
rently working on building an automatic system based on 
our measure. This includes the automatic extraction of the 
musical features from music recordings through an auto-
matic transcription procedure. 
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ABSTRACT

This paper considers a particle filter based algorithm to ex-
tract melody from a polyphonic audio in the short-time
Fourier transforms (STFT) domain. The extraction is fo-
cused on overcoming the difficulties due to harmonic / per-
cussive sound interferences, possibility of octave mismatch,
and dynamic variation in melody. The main idea of the al-
gorithm is to consider probabilistic relations between melody
and polyphonic audio. Melody is assumed to follow a
Markov process, and the framed segments of polyphonic
audio are assumed to be conditionally independent given
the parameters that represent the melody. The melody pa-
rameters are estimated using sequential importance sam-
pling (SIS) which is a conventional particle filter method.
In this paper, the likelihood and state transition are defined
to overcome the aforementioned difficulties. The SIS algo-
rithm relies on sequential importance density, and this den-
sity is designed using multiple pitches which are estimated
by a simple multi-pitch extraction algorithm. Experimen-
tal results show that the considered algorithm outperforms
other famous melody extraction algorithms in terms of the
raw pitch accuracy (RPA) and the raw chroma accuracy
(RCA).

1. INTRODUCTION

Many people believe that people recognize music as a se-
quence of monophonic notes called melody, and for this
reason, melody extraction is playing an important role in
music content processing which has recently become an
important research area. Although the debate over the def-
inition of melody is on going [1–3], many experts concur
that melody should be the dominant pitch sequence of a
polyphonic audio. In this paper, melody is defined to be
the singing voice pitch sequence in the vocal part and the
pitch sequence of the solo instrument in non-vocal part or
non-vocal music. When a music contains singing voice,
most people recognize music by the vocal melody line in
the vocal part. However, in non-vocal part such as inter-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c⃝ 2010 International Society for Music Information Retrieval.

mezzo and non-vocal music such as jazz and orchestra,
most people recognize music by the melody line of the solo
instrument.

Many melody extraction algorithms have been proposed
over the last one decade [1–6], albeit with limited success.
Melody extraction from the polyphonic audio is still diffi-
cult for the following reasons:

1. Harmonic interference: Harmonics of other instru-
ment signal interfere in the estimation of the melody
pitch harmonics.

2. Percussive sound interference: Percussive sound in-
terfere to estimate the melody pitch because the en-
ergy of it forms a vertical ridge with strong and wide-
band spectral envelopes.

3. Octave mismatch: The estimated pitch can be one
octave higher or lower than the ground-truth.

4. Dynamic variation in melody: Accurate pitch esti-
mation in the beginning, end and sudden transient
regions of a melody is difficult.

In this paper, melody pitch frequency and harmonic am-
plitudes that represent the melody are estimated in the short-
time Fourier transforms (STFT) domain. The main idea
of the algorithm is to consider a probabilistic relations be-
tween melody and polyphonic audio. Melody pitch fre-
quency and harmonic amplitudes are assumed to follow
Markov processes, and the framed segments of polyphonic
audio are assumed to be conditionally independent given
melody pitch frequency and harmonic amplitudes. Thus,
melody pitch frequency and harmonic amplitudes can be
estimated from the polyphonic audio based on the Bayesian
sequential model once the likelihood and state transition
are defined. The likelihood is defined to be robust to har-
monic and percussive sound interferences. The state tran-
sition of melody pitch frequency is adjusted by control pa-
rameters that discourages octave mismatch and dynamic
variation in the melody. The sequential importance sam-
pling (SIS) algorithm, a conventional particle filter algo-
rithm, is used to estimate the melody parameters. The
SIS algorithm relies on a so-called sequential importance
density, and this density is designed using multiple pitches
which are estimated by a simple multi-pitch extraction al-
gorithm.
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This paper is organized as follows. Section 2 presents
the melody extraction from polyphonic audio based on par-
ticle filter. Section 3 provides experimental results. Fi-
nally, Section 4 concludes this paper.

2. MELODY EXTRACTION FROM POLYPHONIC
AUDIO BASED ON PARTICLE FILTER

2.1 Melody extraction from polyphonic audio

The melody pitch harmonics xt[n] in the tth frame is de-
fined as follows:

xt[n] = w[n]
H∑

m=1

Am,t cos(mω0,tn + ϕm,t), (1)

where Am,t, ω0,t, ϕm,t, H and w[n] are the amplitude of
the mth harmonic in the tth frame, the melody pitch fre-
quency in the tth frame, the phase of the mth harmonic in
the tth frame, number of melody pitch harmonics, and the
analysis window function, respectively. The polyphonic
audio can be expressed as

zt[n] = xt[n] + yt[n], (2)

where zt[n] and yt[n] are the polyphonic audio signal and
signal of other instruments in the tth frame, respectively.
In the frequency domain, the following relationship holds:

zt = xt + yt, (3)

where zt, xt, and yt are the N -point discrete Fourier trans-
forms (DFT) of zt[n], xt[n], and yt[n], respectively.

The parameters of the melody pitch harmonics – the
melody pitch frequency and the harmonic amplitudes –
must be estimated for the melody extraction. This paper
assumes that the phase of the melody pitch harmonics is
the same as the phase of the polyphonic audio, i.e., the
phase of the melody pitch is not estimated since human ear
is assumed to be unsensitive to phase variations. Thus, the
tth frame parameter set is defined as

Θt = (ω0,t,At), (4)

where At = [A1,t, A2,t, ..., AH,t]. The objective of melody
extraction is to estimate Θt from given zt. It is usually
observed that successive parameters – ω0,t and At – are
highly correlated. In this paper, it is assumed that Θt is
considered a Markov process and yt at each frame is con-
ditionally independent given Θt. Here, Θt is considered
latent while yt is observed. From this perspective, the
Bayesian sequential model for melody extraction can be
constructed as shown in Figure 1. In Figure 1, p(zt|Θt),
p(Θt|Θt−1), and ρt are likelihood, state transition, and
control parameter to decide the state transition of the melody
pitch frequency, respectively. From this Bayesian sequen-
tial model, the posterior probability p(Θ0:t|z1:t) 1 is es-
timated, and it is used to estimate Θt for melody extrac-
tion. To estimate p(Θ0:t|z1:t), likelihood and state evolu-
tion equations with state transition needs to be defined.

1 The notation a0:t means that a0:t = [a0, a1, ..., at]T

Figure 1. Bayesian sequential model for melody extrac-
tion. zt, Θt, and ρt are polyphonic audio, melody param-
eter (ω0,t and At), and control parameter, respectively.

To obtain the likelihood, it is assumed that the DFT co-
efficients of yt follow a zero mean complex multivariate
Gaussian distribution, which is given by

yt ∼ N (0, Σt), Σt = diag(σ2
t,1, σ

2
t,2, ..., σ

2
t,N ), (5)

where Σt and σt,k are the covariance matrix in tth frame
and the variance of the kth bin in the tth frame, respec-
tively. Eqn. (5) yields the likelihood as follows:

p(zt|Θt) = N (zt;xt,Σt)
∝ exp

{
−(zt − xt)HΣ−1

t (zt − xt)
}

, (6)

where (·)H is the Hermitian operator. To define p(zt|Θt),
σt,k must be estimated. In this paper, σt,k is estimated
using the decision-directed method [7] as follows:

σ̂t,k = ασ̂t−1,k + (1 − α)|Yt,k|2, (7)

where α and Yt,k are a smoothing factor and the kth bin
DFT coefficient of yt, respectively. However, Eqn. (7) can
not be used directly since Yt,k is unknown. It is assumed
that Yt,k is highly correlated with Yt−1,k. Therefore, the
estimation is modified as follows:

σ̂t,k = ασ̂t−2,k + (1 − α)|Ŷt−1,k|2. (8)

Accurate estimation of Σt will lead to robustness to har-
monic and percussive sound interferences. Figure 2 shows
an example of zt and an estimate of Σt, and it is easily
shown that the likelihood in Eqn. (6) is maximized at the
true Θt.

The state evolution equations, which describe relation-
ships of the parameters at frame t, are set as follows:

Am,t = Am,t−1 + vA,t−1, (9)

ω0,t = ω0,t−1 + vω0,t−1, (10)

where vA,t−1 and vω0,t−1 are the random perturbations
corresponding to harmonic amplitudes and melody pitch
frequency of the (t−1)th frame, respectively. This type of
state evolution equations is called random walk: the cur-
rent state is a random perturbation of the previous state.
It is important to define p(vA,t−1) and p(vω0,t−1) accu-
rately, and in this paper, p(vA,t−1) is assumed to be a trun-
cated Gaussian as shown in Figure 3 since Am,t > 0, and
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Figure 2. Example of polyphonic audio (zt) and the esti-
mated variances (Σt) of other instrument signal.

p(vω0,t−1) is assumed to be a Gaussian whose variance
controlled by ρt. Melody line is characterized by pro-
longed periods of smoothness, with infrequent sharp changes
in note transition or during vibrato regions.

Furthermore, there are two general rules concerning the
melody line: 1) the vibrato exhibits an extent of 60∼200
cents 2 for singing voice and only 20∼30 cents for other
[8], and 2) the transitions are typically limited to one oc-
tave [1]. Therefore, assumption that vω0,t−1 follows a Gaus-
sian distribution with fixed variance is not appropriate. In
this paper, the state transition from the from the (t − 1)th
state to the tth state of the melody pitch frequency is con-
trolled by ρt which indicates the degree of the melody line
being whether in transition or not. Here, transition includes
vibrato. And, ρt is defined as

ρt = ω̂0,t−1 − ω̂0,t−2, (11)

and p(vω0,t−1) is given by

p(vω0,t−1) =


N (0, 20 cent) ρt < 50 cent
N (0, 50 cent) 50 cent ≤ ρt < 100 cent
N (0, 100 cent) 100 cent ≤ ρt

.

(12)
When ρt is small, the current melody pitch frequency rep-
resents a certain note frequency and has a value similar to
the previous melody pitch frequency. When ρt is large, the
current melody pitch frequency is with high probability in
a note transition or vibrato regions and has a value dis-
similar to the previous melody pitch frequency. The state
transition of melody pitch frequency defined by Eqn. (12)
can lead to robustness to octave mismatch and dynamic
variation in melody.

2 The cent is a unit of logarithmic frequency range, and it is defined as

fcent = 6900 + 1200 log2
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Figure 3. State transition in harmonic amplitudes.

2.2 Melody extraction based on particle filter

In this paper, p(Θ0:t|z1:t) is approximated using Monte
Carlo integration and Θt is estimated using the particle
filter. The SIS algorithm which is a common particle fil-
ter method [9, 10] is adopted to estimate the parameters
of the melody. If the likelihood and the state transition
follow a Gaussian distribution, the problem can be solved
by Kalman filter. However, the state transition is not as-
sumed to be a Gaussian. The SIS algorithm is used to ob-
tain p(Θ0:t|z1:t) based on the Bayesian sequential model
shown as Figure 1.

The posterior density p(Θ0:t|z1:t) can be approximated
as follows:

p(Θ0:t|z1:t) ≈
Np∑
i=1

w
(i)
t δ(Θ0:t − Θ(i)

0:t), (13)

where Θ(i)
0:t, wt(i), and Np are the ith particle of Θ0:t, as-

sociated weight, and the number of particles, respectively.
The weights are normalized such that

∑Np

i=1 w
(i)
t = 1. The

weights are chosen using the method of importance sam-
pling. If the particle Θ(i)

0:t were drawn from an importance
density q(Θ(i)

0:t|z1:t), the weights in Eqn. (13) are defined
as follows:

w
(i)
t ∝ p(Θ(i)

0:t|z1:t)

q(Θ(i)
0:t|z1:t)

. (14)

If the importance density is chosen to factorize as follows

q(Θ0:t|z1:t) = q(Θt|Θ0:t−1, z1:t)q(Θ0:t−1|z1:t−1),
(15)

then one can obtain particles Θ(i)
0:t ∼ q(Θ(i)

0:t|z1:t) by aug-
menting each of the existing particles Θ(i)

0:t−1 ∼ q(Θ(i)
0:t−1|

z1:t−1) with the new state Θ(i)
t ∼ q(Θt|Θ0:t−1, z1:t). The

weight update equation can be derived as follows using
Eqn. (14) and Eqn. (15)

w
(i)
t ∝ w

(i)
t−1

p(zt|Θ(i)
t )p(Θ(i)

t |Θ(i)
t−1)

q(Θ(i)
t |Θ(i)

t−1, zt)
. (16)

A common problem with the particle filter is the de-
generacy phenomenon, where after a few iterations, most
particles have negligible weight [9,10]. A suitable measure
of degeneracy is the effective particle size, Neff , which is
given by

N̂eff =
1∑Np

i=1(w
(i)
t )2

. (17)
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Figure 4. Design of q(ω(i)
0,t|ω

(i)
0,t−1, zt).

In this paper, to avoid the degeneracy problem, resampling
algorithm is used when Neff ≤ Np

2 .
Finally, estimation of parameters is achieved by poste-

rior mean after obtaining p(Θ0:t|z1:t).

ω̂0,0:t =
Np∑
i=1

w
(i)
t ω

(i)
0,0:t, (18)

Â0:t =
Np∑
i=1

w
(i)
t A(i)

0:t. (19)

2.2.1 Design of sequential importance density

The performance of the SIS algorithm depends on the choice
of q(Θ(i)

t |Θ(i)
t−1, zt). Setting q(Θ(i)

t |Θ(i)
t−1, zt) = p(Θ(i)

t |Θ(i)
t−1)

leads to not only unnecessary large number of particles
but also difficulties in estimating p(Θ0:t|z1:t). In this pa-
per, a multiple pitch estimation algorithm is used to define
q(Θ(i)

t |Θ(i)
t−1, zt) since the melody pitch frequency is as-

sumed to be one of the pitch estimate given by the multiple
pitch estimates. A main idea in defining q(Θ(i)

t |Θ(i)
t−1, zt)

is to generate particles of the melody parameters similar to
the estimated multiple pitch parameters. To obtain multiple
pitch parameters, the multiple pitch estimation algorithm
proposed in [11] is used.

Before drawing particles from the importance density,
q(Θ(i)

t |Θ(i)
t−1, zt) is factorized as follows:

q(ω(i)
0,t,A

(i)
t |ω(i)

0,t−1,A
(i)
t−1, zt)

= q(A(i)
t |ω(i)

0,t,A
(i)
t−1, zt)q(ω

(i)
0,t|ω

(i)
0,t−1, zt). (20)

Here, ω0,t and At are considered conditionally indepen-
dent given ω

(i)
0,t−1,A

(i)
t−1, and zt. First, melody pitch parti-

cles are drawn as given by

ω
(i)
0,t ∼ q(ω(i)

0,t|ω
(i)
0,t−1, zt), (21)

where q(ω(i)
0,t|ω

(i)
0,t−1, zt) is shown as Figure 4. In defin-

ing q(ω(i)
0,t|ω

(i)
0,t−1, zt), the current melody pitch particles

are drawn near the N -best pitch candidates obtained from

the multiple-pitch estimation and the melody pitch parti-
cles drawn in the previous frame. After drawing melody
pitch particles, melody pitch harmonic amplitudes parti-
cles are drawn as given by

A(i)
t ∼ q(A(i)

t |ω(i)
0,t,A

(i)
t−1, zt)

= N

A(i)
t−1 + Az

ω
(i)
0,t

t

2
,
|A(i)

t−1 − Az
ω
(i)
0,t

t |
2

 (22)

where Az
ω
(i)
0,t

t is the harmonic amplitudes corresponding
pitch candidate near ω

(i)
0,t with constraint A(i)

t > 0. In

defining q(A(i)
t |ω(i)

0,t,A
(i)
t−1, zt), the current harmonic am-

plitude particles which are similar to the previous harmonic
amplitude particles and harmonic amplitudes of the N -

best pitch candidates are generated. If A(i)
t−1 and Az

ω
(i)
0,t

t

are similar, then
|A(i)

t−1−Az
ω
(i)
0,t

t |
2 ≈ 0, therefore, A(i)

t ≈

A
(i)
t−1+Az

ω
(i)
0,t

t

2 . If A(i)
t−1 and Az

ω
(i)
0,t

t are not similar, then

|A(i)
t−1−Az

ω
(i)
0,t

t |
2 >> 0, therefore, A(i)

t is generated some-
what randomly.

The outline of the considered algorithm is given below.

Outline of the considered algorithm
Melody extraction based on the SIS
For i = 1, ..., Np

1. Generate the particles

• Melody pitch particles
ω

(i)
0,t ∼ q(ω(i)

0,t|ω
(i)
0,t−1, zt)

• Harmonic amplitudes particles
A(i)

t ∼ q(A(i)
t |ω(i)

0,t,A
(i)
t−1, zt)

2. Update the weights: Eqn. (16)

Normalize the weights (
∑Np

i=1 w
(i)
t = 1).

Resampling: Resampling algorithm is used
when Neff ≤ Np

2 .
Estimation: Melody pitch frequency in tth
frame is estimated by Eqn. (18). Harmonic am-
plitudes of melody pitch harmonics in tth frame
are estimated by Eqn. (19).

3. EVALUATION

The considered algorithm was evaluated and compared to
other melody extraction algorithms using the ISMIR 2004
Audio Description Contest (ADC04) database. The database
contains 20 polyphonic musical audio pieces. All test data
are single channel PCM data with 44.1 kHz sample rate
and 16-bit quantization. Table 1 shows the data composi-
tion of the ADC04 set. Search range of melody pitch fre-
quency was between 80Hz and 1280Hz in frequency do-
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Melody Instrument Sytle
Synthesized voice (4) POP
Saxophone (4) Jazz
MIDI instruments (4) Folk(2), Pop(2)
Human voice (2 male, 2 female) Classical opera
Male Voice (4) POP

Table 1. Summary of ADC04 data set. The number in
parentheses is the number of corresponding pieces.

RPA RCA
Goto [2] 65.8% (2005) 71.8% (2005)

Paiva el al. [3] 62.7% (2005) 66.7% (2005)
Marlot [4] 60.1% (2005) 67.1% (2005)

Ryynanen el al. [5] 68.6% (2005) 74.1% (2005)
Ellis el al. [6] 73.2% (2006) 76.4% (2006)

Considered algorithm 77.3% 83.8%

Table 2. Result comparison. The number in parentheses
is the year when their algorithms were submitted to the
MIREX.

main (3950 cent and 8750 cent in cent domain). The Han-
ning window was used with 48ms frame length and 10ms
frame hop size. α = 0.98 in Eqn. (8) was used. Np = 500
in Eqn. (13) was used.

The estimated melody is correct when the absolute value
of the difference between the ground-truth frequency and
estimated frequency is less than 50 cent ( 1

4 tone). The
performance of the considered algorithm was evaluated in
terms of raw pitch accuracy (RPA) and raw chroma ac-
curacy (RCA). The RPA is defined as the proportion of
frames in which the estimated melody pitch is within ± 1

4

tone of the reference pitch. And the RCA is defined in
the same manner as the raw pitch accuracy; however, both
the estimated and reference frequencies are mapped into a
single octave in order to forgive octave transpositions.

The considered algorithm was compared to the other
famous melody extraction algorithms such as algorithms
proposed by Goto [2], Paiva et al. [3], Marlot [4], Ryyna-
nen el al. [5], and Ellis et al. [6]. Their performances are
based on results of the Music Information Retrieval Evalu-
ation eXchange (MIREX) [12].

Table 2 shows the evaluation results for all algorithms
considered. The considered algorithm outperformed the
others in terms of the RPA and the RCA. The difference be-
tween the RPA and RCA is proportional octave mismatch
error. Although the algorithm in this paper is considered to
be robust against octave mismatch, the difference between
the RPA and the RCA is 6.5 %. The multiple pitch es-
timation algorithm proposed in [11] was quite simple and
vulnerable to octave error, i.e., inaccuracy in sequential im-
portance density led to inaccurate melody pitch candidates.

4. CONCLUSION

The melody extraction algorithm from the polyphonic au-
dio based on particle filter is considered in this paper. Most
people recognize music as not all of note sequences but a
special monophonic note sequence called melody. How-
ever, melody extraction from polyphonic audio is difficult
due to the following impediments: harmonic interference,
percussive sound interference, octave mismatch, and dy-
namic variation in melody. The main idea of the algorithm
is to consider probabilistic relations between melody and
polyphonic audio. Melody is assumed to follow a Markov
process, and the framed segments of polyphonic audio are
assumed to be conditionally independent given the param-
eters that represent the melody. The parameters are esti-
mated using the SIS algorithm. This paper shows that like-
lihood and state transition that are required in the SIS algo-
rithm are defined to be robust against the aforementioned
impediments. The performance of the SIS algorithm de-
pends on a sequential importance density, and this density
is designed by multiple pitch. Experimental results show
that the considered algorithm outperformed the other fa-
mous melody extraction algorithms.
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ABSTRACT

We  propose  a  novel  approach  to  solve  the  problem  of 
estimating pitches of notes present in an audio signal. We 
have  developed  a  probabilistically  rigorous model  that 
takes  into  account  temporal  dependencies  between 
musical notes and between the underlying chords, as well 
as the instantaneous dependencies between chords, notes 
and  the  observed  note  saliences.  We  investigated  its 
modeling  ability  by  measuring  the  cross-entropy  with 
symbolic  (MIDI)  data  and  then  proceed  to  observe  the 
model's performance in multiple pitch estimation of audio 
data.

1. INTRODUCTION

The  problem  at  hand  is  musical  note  detection,  i.e. 
estimating pitches, onset and offset times, and, if desired,  
velocities  of  notes  present,  often  simultaneously,  in  a 
recorded  audio signal.  Typically,  this problem is solved 
by  a  two-step  process  [9].  First,  pitch  candidates  are 
estimated  within  short  time  frames  and  confidence  for 
each  is  quantified  by  a  salience  measure  (see,  for 
example, [4,6,11]). Then the salience is tracked over time 
in order to identify the musical notes.

The  salience  can  be  represented  by a note  salience  
matrix  S. Its rows contain estimated power envelopes of 
notes for different pitches, which typically correspond to 
frequencies  of  a  diatonic  scale,  e.g. twelve-tone  equal 
temperament scale. The activity of the underlying musical 
notes can be expressed by a note activity matrix N,  i.e. a 
binary matrix  of the same dimensions as  S,  elements of 
which indicate note presence at corresponding times and 
pitches.

A  standard  practice  is  to  threshold  the  estimated 
saliences to detect notes. This step, although common, is 
quite problematic: there is no simple way to determine the 
threshold  value  and  even  an  optimal  value  can  lead  to 
spurious  detections  and  split  notes.  Some  of  the  false 
positives and negatives can be removed by filtering, but it  
does not solve the problem completely and is not elegant.

Thresholding can in fact be interpreted as a maximum 
likelihood (ML) estimator of the note activities:

N=arg maxN P S∣N  , (1)

If we assume that the detected saliences S t , k  are mutually 
independent and only depend on whether a corresponding 
note was active at that moment, we get:

N t , k=arg maxN t , k
P S t , k∣N t , k  , (2)

where  k is the piano key number and t is the time frame 
number.  If  the  probability  distributions  P S t , k∣N t , k=1
and P S t , k∣N t , k=0  have only one crossing point  T, this 
procedure  will  be  equivalent  to  thresholding  with  the 
threshold value equal to T.

Recently,  some researchers have used more advanced 
musicological models in order to overcome the limitations 
of  thresholding.  Ryynänen  and  Klapuri  [9]  proposed  a 
melody transcription  method that  uses a  Hidden Markov 
Model (HMM) together with a simple musical key model.  
Their approach is limited in the sense that it models only a 
single  voice  at  a  time,  and  so it  is  not  probabilistically  
rigorous.  It  also  lacks  modeling  of  instantaneous 
dependencies  between  estimated  pitches.  Raphael  and 
Stoddard [8] proposed to use an HMM as a musicological 
model  for  harmonic  analysis,  i.e. estimating  the  chord 
progression  behind  a  sequence  of  notes.  Similar  HMMs 
have also been successfully used for harmonic analysis of 
audio  signals  (for  a  recent  paper  see  e.g. [10]).  These 
approaches, however, lack note modeling and the temporal  
dependencies  are  only  present  between  chords.  A  very 
interesting model  has been presented by Cemgil  et al. in 
[1],  but  the  presented  results  are  still  preliminary  (the 
model, like ours, is computationally expensive).

In  this  paper  we  have  proposed  a  single, 
probabilistically  rigorous  framework  based  on  the 
Dynamic Bayesian Networks (DBNs). We model both the 
instantaneous dependencies between notes (harmony) and 
the temporal dependencies between notes and chords. The 
notes  our  found  with  a  maximum  a  posteriori  (MAP) 
estimator:

N=arg max N P S∣N  P N  . (3)

The  prior  over  the  notes  P N   models  the  temporal 
dependencies  between  the  hidden  variables  (similar  to 
those of an Hidden Markov Model) and includes a hidden 
layer of variables representing chords.

In our work we used a NMF-based front-end proposed 
in [7] to obtain note salience  matrices  with 88 rows that 
correspond to the full range of a piano: from A0 (27.5 Hz) 
to C8 (4186 Hz).

The model with its theoretical grounds and its practical 
aspects is described in section 2. Inference  of the hidden 
notes  is  discussed  in  section 3. Experiments  involving 
symbolic and audio data are described in section 4. and the 
conclusion is given in section 5.

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. 
© 2010 International Society for Music Information Retrieval 
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2. THE MODEL

2.1 Structure
DBNs provide us with complete freedom as to what set of 
probabilistic variables and the relations between them can 
be,  and so it  is a perfect  tool  to solve the above formu-
lated problem. We have chosen a network structure that, 
compared to thresholding, includes dependencies between 
hidden  variables  in  neighboring  time  frames  and  an 
additional layer of hidden chords (see Fig. 1).

Figure 1: Structure of the Bayesian network used in  
experiments

The network consist of 3 layer of nodes: hidden chord 
layer  Ct,  hidden  note  combination  layer  Nt and  an 
observed  note salience layer  St.. The prior distribution of 
notes is therefore given by:

P N  = ∑
C

P C0 P N 0∣C0⋅

⋅∏
t=2

T

P N t∣N t−1 ,C tP C t∣C t−1
. (4)

2.2 Chord level probabilities
Fig. 4 shows  the  chord  transition  probabilities  that  has 
been trained on the available dataset. A simple smoothing 
was used: each element was increased by 1 after counting 
the occurrences and before normalizing. Nevertheless, the 
data sparsity problem is visible (especially for the minor, 
rarer, chords). To deal with this problem, chord tying was 
used: each chord transition probability was assumed to be 
a function of only the interval between roots of the chords 
Rt and Rt-1 , and their types Tt and Tt-1:

P C t∣C t−1=P R t−Rt−1 ,T t , T t−1  . (5)

The motivation  behind this approximation  is that  the 
probability depends on relative chord positions rather than 
on  the  absolute  ones.  Because  the  tonal  center  is  not 
modeled  in our approach,  it  is reasonable  to  assume the 
same probability should be given to the transition from C-
major chord to F-major (I→IV transition in C-major key) 
and the from A -major  to  D -major  (I→IV transition  in♭ ♭  
A -major key).♭

The  same  motivation  led  us  to  use  a  uniform 
distribution as the initial chord probability distribution:

P C 0=const  . (6)

2.3 Note level probabilities
Another practical problem concerning the size of the note 
combination space is the problem of training the model's 
parameters.  The  note  combination  probability 
P N t∣N t−1 ,C t  is  a  discrete  distribution  with   ∣L∣2∣C∣

parameters to train, which, even for small values of  L is 
computationally infeasible. To decrease the complexity of 
the problem, we again tie together some of the parameters:  
we  replace  that  the  note  combination  probability  an 
approximation,  in  which  it  is  factorized  into  the  note  
transition probability  P N t∣N t−1  and the  note emission  
probability P N t∣C t  :

P N t∣N t−1 ,C t≈
P N t∣N t−1P N t∣C t

∑
N t

P N t∣N t−1P N t∣C t 
. (7)

The  note  probability  distribution,  as  well  as  the  note 
emission and transition distributions, was normalized over 
all unique note combinations in the reduced search space. 
In case of calculating joint likelihood from symbolic data, 
the sum is performed over all note combinations present in 
the analyzed data.

2.3.1 Note emission probabilities
There  is  commonly  used  multivariate  parametric 
distribution  over  a  discrete  set,  so  to  model  the  note 
emissions we chose a multivariate Gaussian distribution in 
the 12-tone chroma space.

Cr t , l= ∑
k≡l mod 12

N t , k  (8)

P N t∣C t=m=
N 12Crt ;m ,m 

∑
N t

N 12 Cr t ;m ,m
(9)

The  distribution  parameters  were  estimated  on  the 
ground truth data (see Fig. 3)and parameters corresponding 
to the same chord type were tied together as for the chord 

Figure 2: Covariance matrix for the C-major chord. Note  
the positive high covariance between the root and the  
perfect fifth (harmonic interval) and weak covariance  
between root and minor second (inharmonic interval). Figure 3: Mean chroma vectors for different chords. 
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level probabilities. To avoid singular covariance matrices 
due to sparse training data, chroma vectors obtained from 
reference  data  were  concatenated  with  a  smoothing 
diagonal  matrix  p I ,  where  p is  a  control  parameter 
(p = 2 was used). The chroma variance is modeled with a 
full-rank  matrix  because  the  pitch  classes  are  not 
independent (see Fig.  2).

2.3.2 Note transition probabilities
The note transition probability P N t∣N t−1  is responsible 
for modeling note lengths. There are five basic kinds of 
changes in the note  combination  state  that  can occur in 
the  data  (depicted  in  Fig. 7):  no  change,  insertion  of 
notes,  deletion  of  notes,  voice  movement  (one  note 
changes pitch) and harmony movement or other complex 
changes  (many  notes  change  pitches  simultaneously). 
Because  in  real  life  situations  note  offsets  are  seldom 
aligned with other notes' onsets, the last two situations are  
very rare. In out training data they made up for only 0.2% 
of  note  transitions  types,  while  transitions  in  which  all  
notes stayed the same, if we don't count the insertions and 
deletions,  made  up  for  remaining  99.8%  of  situations. 
Motivated  by  this,  in  order  to  simplify  the  model,  we 
assumed that only the first three kinds are allowed.

The  note  transition  probability  is  therefore  further 
approximated with the following factorization:

P N t∣N t−1≈
P lenLt∣L t−1PmovN t∣N t−1

∑
N t

P1Lt∣Lt−1P 2N t∣N t−1
 (10)

PmovN t , N t−1={1 for no pitch movement
0 for pitch movement

 
(11)

where  Lt is  the  size  of  the  current  note  combination 
(number  of  active  notes).  P1Lt , Lt−1  is  presented  in 
Fig. 5.

2.3.3 Output probabilities
The observed note  saliences  are  assumed to be mutually 
independent:

P S t∣N t =∏
k ∈1

88

P S t , k∣N t , k  . (12)

Both obtained by measuring the histograms of the detected 
salience (see Fig. 6).

Figure 4: Chord transition probability matrices:  
without state tying (top) and with state tying (bottom).  
Four quarters represent: the major-to-major (M→M),  
minor-to-major (m→M), major-to-minor (M→m) and  

minor-to-minor (m→m) transition.

Figure 7: Five basic note combination transition  
situations: (a) no change, (b) insertion, (c) deletion, (d)  

voice movement and (e) harmony movement or other  
complex changes.

Figure 5: Distribution of note combination length  
transitions. The probability matrix is “smeared” more in  

the area of simultaneous insertions of multiple notes  

(e.g. at beginnings of chords) are more probable than  
simultaneous deletions. The z-axis is logarithmic.

Figure 6: The estimated output probability . The black  
solid line depicts the distribution of observed note  

salience if the note was active ( P S t , k∣N t , k=1  ) and 
the red dashed line the distribution in case the note was  

inactive ( P S t , k∣N t , k=0  ). The lines cross at about  
-70 dB.`
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3. DECODING

3.1 Inference
The problem of multiple frequency estimation becomes a 
problem  of  inferring  the  hidden  sequence  of  note 
combination states (and, as a side effect, the hidden chord 
progression).  In  other  words,  we need  to  find  the  most 
likely hidden state sequence (C,  N) given the model and 
the observed note saliences S:

C , N =arg maxC , N P C , N∣S  . (13

This  problem  is  in  fact  directly  related  to  the  Viterbi 
decoding in Hidden Markov Models (HMMs).

As  in  with  Viterbi  decoding,  a  dynamic-
programming-based  algorithm can  be  used  to  solve  this 
inference problem for DBNs.  We refer to this algorithm 
as  modified  Frontier  Algorithm.  The  original  Frontier 
Algorithm was proposed by Murphy in [5] to calculate the 
probability  of a  given  observed  sequence  (equivalent  of 
the HMM's Forward-Backward algorithm). Murphy noted 
that  it  can  easily  be  modified  to  calculate  the  most 
probable  sequence  of  hidden  states  in  any  finite-state 
DBN, i.e. solve our inference problem.

3.2 Reduced solution space
Nt is a variable that holds a list of notes active at a certain 
time  (or,  equivalently,  a  vector  of  binary  note  presence 
indicators). The number of all possible values (states) of 
Nt  is enormous: 3.1×1026  if we limit the musical range 
to that of a 88-key piano. Even if we limit the number of 
simultaneously active notes to K=10 (if no sustain pedal is 
used this is the physical limit for a single piano player), it  
is still computationally infeasible: 5.2×1012  if K=10 and 
4.2×107  if K=5.

To  deal  with  this  problem,  we  reduce  the  solution 
prior  to  inferring  the  hidden  sequence:  for  each  time 
frame  only  the  most  probable  note  combinations  are 
considered.  To  identify  the  most  probable  note  combi-
nations,  first,  for  each  time  frame,  we select  K highest 
elements,  or  note candidates.  Then, a list of all 2K  pos-
sible note combinations is created and each such combi-
nation is evaluated with a  fitness function. Finally, the  L 
fittest note combinations are selected and used for further 
analysis. Additionally, a rest (empty note combination) is 
always selected.

The  fitness  function  was  designed  to  penalize  long 
note  combinations  (note  combinations  containing  many 

active  notes)  while  rewarding  better  explanation  of  the 
observed note saliences St:

F N t =

∑
k∈{k : N t , k=1}

S t , k

∑
k=1

88

S t , k

∣N t∣
−a

 (14)

where  Nt is  the  note  combination  for  the  current  time 
frame  and  a is  a  control  parameter.  A  similar  fitness 
function was used by Klapuri in [3].

Limiting the solution space poses a threat to the note 
estimation  process:  if  the  real  note  combination  is  not 
selected due to fluctuations in the note salience,  the lan-
guage  model  will  not  be  able  to  compensate  for  that.  
Therefore,  to  avoid  some  of  the  deletions,  the  observed 
note  saliences  are  pre-filtered  with  a  causative  moving 
average (MA) filter:

S t , k=∑
=0

R

S t− , k  (15)

Additionally,  this filtering  removes short  spurious peaks, 
e.g. the ones around onset times resulting from the wide-
band onset  noise.  Unfortunately,  it  also  smooths out  the 
onsets.

We have  analyzed  how much  of  the  ground truth  is 
contained within the reduced solution space, depending on 
the chosen K,  L and a, and on the chosen MA filter order 
(length),  by  measuring  the  note  recall.  The  results  are 
presented in Fig. 8. Optimal values were determined to be 
R = 20 (400 ms) and a = 0.65 (similar to Klapuri's [3]).

3.3 Fudging
To  gain  additional  control  over  the  behavior  of  the 
algorithm, a set of fudge factors was introduced:

P N t∣N t−1 ,C t ≈
P N t∣N t−1

 P N t∣C t


∑
N t

P N t∣N t−1
 P N t∣C t 

  (16)

Each factor controls the influence of individual probability 
distribution  on  the  algorithm.  The  first  factor  controls 
mainly the ratio between the self-transition probability of 
Nt and the  cross-transition  probability,  so smaller  values 
are better  for slower pieces  and bigger  values for higher 
tempo.

The  values  of  first  two  factors  were  then  optimized 
empirically  by  maximizing  the  joint  likelihood  of  the 
hidden note variables P N   (see Fig. 9) and found to be 
=1.05  and  =0.0015 . The fact that the first factor is 

close  to  one  does  not  surprise,  because  the  Gaussian  is 
very sparse due to high dimensionality. A very small value  

Figure 8: Note recall for different values of N and L.  
Data obtained for a = 0.65 and R = 20.

Figure 9: Optimization of the fudge factors α and β.
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of β is due to a very high sparseness of the note emission 
distribution,  i.e. small  number of note combinations are 
assigned  significantly  higher  probability  values  than  the 
others (which is a result of the curse of dimensionality).

4. EXPERIMENTS

4.1 The dataset
The data used in the experiments comes from the widely 
used RWC database [2]. We have used 19 pieces from the 
classical portion of the dataset (listed in Table 1).

As  a  joint  effort  of  the  University  of  Tokyo's 
Sagayama  Laboratory  and  the  Toho  Gakuen  School  of 
Music (under the supervision of prof. Hitomi Kaneko), the 
classical pieces of the RWC database were annotated with 
detailed  harmony labels  that  include:  keys and modula-
tions,  and chords with their  roots,  inversions,  types and 
modifications. This data uses abstract musical time (mea-

sures and beats),  so, additionally,  manual  labeling of the 
RWC's audio data was performed.

Unfortunately,  the  RWC  database's  MIDI  and  audio 
files are not synchronized. What is more,  it is not only a 
matter of linear time transformation, but rather a complex 
one.  Further  synchronization  with  the  MIDI was  needed 
for  the  purpose  of  training  model  parameters  (note 
emission probabilities). This was done automatically with 
dynamic time warping (DTW).

4.2 Symbolic data
A simple procedure to evaluate  the proposed approach is 
to measure how well does our Bayesian network model the 
symbolic  data.  This  can  be  assessed  by  calculating  the 
likelihood of the data given the model P N  .

Six variants of the proposed model were evaluated:
(a) Reference uniform model

P N =∏
t=1

T

P N t= AT  (17)

(b) Harmony model only

P N =∑
C
∏
t=1

T

P N t∣C t  (18)

(c) Harmony + chord progression

P N  = ∑
C

P C0P N 0∣C 0⋅

⋅∏
t=2

T

P N t∣C t P C t∣C t−1
(19)

(d) Note duration model only

 P N =P N 0∏
t=2

T

P N t∣N t−1 (20)

(e) Duration + harmony

P N =∑
C

P C0P N 0∣C0∏
t=2

T

P N t∣N t−1 ,C t (21)

(f) Duration + harmony  + chord progression

P N  = ∑
C

P C0P N 0∣C 0⋅

⋅∏
t=2

T

P N t∣N t−1 , C t P C t∣C t−1
(22)

The  variants  are  presented  graphically  in  Fig. 10.  The 
frontier algorithm was used to evaluate the likelihood for 
model  variants  with  hidden  variables.  Each  model  was 
evaluated  by  calculating  the  cross-entropy, i.e.  the 
normalized log-likelihood of the data N given the model:

E N =−
1
T

log2 P N   (23)

4.3 Note detection
To evaluate  the results of multiple  frequency estimation, 
the F-measure was calculated  by comparing the detected 
notes with the ground truth. A note was considered detec-
ted (true positive) if  its  onset  was within 100 ms from a 
true note onset. By measuring the number of true positives,  
false positives (spurious notes) and  false negatives (unde-
tected  notes),  the  precision, recall and  F-measure  were 
calculated.

Fig. 11 depicts  preliminary  note  detection  results ob-
tained for 7 different  models.  The first  two models were 
simple thresholding with -40 dB (optimal threshold, deter-

RWC Composer Instrument Length
1 22 Brahms 2 pianos 2:25
2 23A Ravel Piano 1:20
3 23B 〃 Piano 2:45
4 23C 〃 Piano 3:25
5 23E 〃 Piano 4:09
6 24A Bach Harpsichord 1:26
7 24B 〃 Harpsichord 1:29
8 24C 〃 Harpsichord 0:52
9 25A 〃 Harpsichord 2:03

10 25B 〃 Harpsichord 2:11
11 25C 〃 Harpsichord 1:31
12 29 Schumann Piano 2:25
13 30 Chopin Piano 4:02
14 31 〃 Piano 4:16
15 32 〃 Piano 1:49
16 35A Satie Piano 3:49
17 35B 〃 Piano 3:01
18 35C 〃 Piano 2:46
19 40 Massanet Piano + violin 5:06

Total: 50:50

Table 1: RWC pieces used in the experiments.

(a)
(b)

(c) (d)

(e)
(f)

Figure 10: Six variants of the model used in the  
evaluation.
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mined  empirically)  and  -70 dB (crossing  point  between 
the  output  probability  distributions).  In  the  third  model 
the note were detected based on the trained output proba-
bility,  but  only  from  the  reduced  solution  space.  This 
means that no prior on the notes was present (no language 
model)  and this  model  was equivalent  to  the  model  (a) 
from subsection 4.2. The last 4 models correspond to the 
ones described in subsection  4.2, but with the note vari-
ables  hidden  and the note  salience  layer  on the  bottom. 
The proposed model performed not worse than threshol-
ding  and  generally  yielded  better  recall,  but  worse 
precision.  The results for RWC-C24A were significantly 
improved over the thresholding, which can be attributed 
to  the  fact  that  this  piece  is  played  on  a  harpsichord, 
which has very strong overtones that  were  mistaken  for 
pitches. The proposed model was able to remove most of 
these thanks to the prior distribution on the notes.

5. CONCLUSION

We have proposed a uniform probabilistic framework that 
estimates note onsets and pitches from a salience matrix 
obtained by a pitch estimation front-end. The model was 
evaluated on symbolic (MIDI) data and, preliminarily, on 
audio signals.  The results show significant  improvement 
of the model over a reference model with uniformly and 
independently distributed notes, with the biggest improve-
ment coming from using temporal dependencies.

Compared  to  the  thresholding,  the  estimation  was 
more  robust  and  yielded  higher  precision,  though  the 
recall was sometimes lower.

In future we plan to focus on improving the accuracy  
and, therefore, the impact of the simultaneous pitch model  
P N t∣C t  .  We would also like to explore the possibili-

ties of unsupervised training that would allow us to use a 
much larger training set, but also investigate the influence 
of  the  chosen  chord  dictionary  size  (for  example, 
commonly  used chord dictionaries  are:  24, 48 [10],  168 
[8] and 288,  i.e.  12 keys × 24 chords,  but  even  larger 
dictionaries are possible).
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ABSTRACT 

Automating human capabilities for classifying different 
genre of songs is a difficult task. This has led to various 
studies that focused on finding solutions to solve this 
problem. Analyzing music contents (often referred as con-
tent-based analysis) is one of many ways to identify and 
group similar songs together. Various music contents, for 
example beat, pitch, timbral and many others were used 
and analyzed to represent the music. To be able to mani-
pulate these content representations for recognition: fea-
ture extraction and classification are two major focuses of 
investigation in this area. Though various classification 
techniques proposed so far, we are introducing yet anoth-
er one. The objective of this paper is to introduce a possi-
ble new technique in the Artificial Immune System (AIS) 
domain called a modified immune classifier (MIC) for 
music genre classification. MIC is the newest version of 
Negative Selection Algorithm (NSA) where it stresses the 
self and non-self cells recognition and a complementary 
process for generating detectors. The discussion will de-
tail out the MIC procedures applied and the modified part 
in solving the classification problem. At the end, the re-
sults of proposed framework will be presented, discussed 
and directions for future work are given. 

1. INTRODUCTION 

Music genre is defined as classes or groups of songs that 
categorizes a collection of songs that have similar charac-
teristics. It is a label created by music experts so that 
these songs are easily described and recognized [1]. 
There have been various studies on music genre classifi-
cation over the years where generally the focuses would 
be on the type of features extracted, feature extraction 
techniques, feature selection mechanisms, and feature 
classification algorithms. This is because music genre 
classification is a unique topic, and an investigation that 
tries to imitate human capability to identify music. It is a 
process to automate the human skills in recognizing and 
grouping different type of music into categories by using 
their hearing senses and logical judgment.  

Our research is also about automating the human iden-
tification process where we are investigating an algorithm 
from Artificial Immune System (AIS), called the modified 
immune classifier (MIC). MIC is a modification of nega-
tive selection algorithm, introduced in writer identifica-

tion study [2]. Negative selection algorithm is one of a 
few algorithms developed in AIS domain where it stresses 
the antigen recognition process. Two processes involved: 
monitoring, a process of recognizing self/non-self cells by 
performing the affinity binding, and censoring, the proc-
ess where antibodies (also known as detectors) are ran-
domly generated to match with the antigens. The recog-
nized antigens are called self cells whereas the non-
recognized antigens are known as non-self cells. In the 
human immune system, recognized antigen is referring to 
cells that prevent human body from disease and non-
recognized antigens are referring to cells that bring dis-
eases to human body. MIC eliminates the process to gen-
erate detectors randomly, which is the main aspect of the 
NSA, by introducing a complementary process. This 
complementary process will define self cells based on 
how many classes of data they need to identify and then 
generate the detectors accordingly.  

However, to be able to apply the modified immune 
classifier in this research, which is to be able to identify 
and recognize different groups of music genre, we need to 
change some part of the classifier in order to achieve high 
accuracy of results. We will discuss the changes that we 
have made later.  

We present this paper with the intention of discussing 
music genre classification that applies modified immune 
classifier in the classification process. We are discussing 
in detail the feature extraction and feature selection 
processes except to explain the features used in the expe-
rimental work and the techniques used to select relevant 
and significant features. We elaborate the AIS approach 
in the context of music genre classification, their conse-
quences in music recognition performances whether the 
approach will have a major impact to the classification 
performances.  

We organize the remainder of this paper as follows: 
Section 2 discusses previous research in music genre rec-
ognition. Section 3 discusses the MIC and the changes 
part, the censoring and monitoring stages, and how these 
stages relate to the feature extraction, selection, and clas-
sification. Section 4 then will be discussing the experi-
mental setup and the classification results. We outline 
some concluding remarks in the last section. 

2. BACKGROUND OF STUDY 

In the music genre identification and classification stu-
dies, initiated research was to solve problems that occur 
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during recognition such as, deciding which song belongs 
to which genre. [3], for example, did an early work of 
classifying songs into different categories of genre using 
human auditory skills. Since then, many studies to find 
solutions to increase the automation performances oc-
curred. Various recorded attempts to solve this problem 
are in [2] – [9]. Not only the problem of automating the 
process of classification but the question of how to fill the 
gap of accuracy behind human skilled classification [3] 
also need to be answered and solved. 

[1] contributed by introducing new music features 
from pitch, timbre and rhythm contents. Their experi-
ments on genre classification have shown that their at-
tempts can be investigated further as the classification ac-
curacy results were around 61 percent only. The focus of 
their research was to introduce a new range of music fea-
tures for music genre classification. As the extracted fea-
tures are too numerous, many irrelevant and insignificant 
features were used in their experiments that contributed to 
the low level of performances.  

[10] introduced a new technique to extract music fea-
tures called Daubechies Wavelet Coefficient Histograms 
(DWCHs) with a purpose to overcome the classification 
accuracy problems in the previous study. The authors 
used the Daubechies wavelet filter, Db8, to decompose 
music signals into layers where at the end of each layer 
they constructed histograms of coefficient wavelet. Dur-
ing experiments they combined their new feature with [1] 
features and improved the results but not by much.  

There is also another attempt that used pitch, rhythm 
and timbre contents to classify music into different genres 
[11]. In this study, the author used the neural network 
based classifier which was not tested in the previous two 
studies. Again similar problem that related to the classifi-
cation performance occurred. The experiments have 
shown that the accuracy was quite high when the classifi-
cation processes were to recognize one or two genres 
only. But, as the classes of genres increased, the perform-
ances began to decrease.  

[12] proposed a solution to the problem mentioned 
above. The authors proposed a new feature extraction 
method called InMAF. This new method was quite differ-
ent from previous approaches where previously, they re-
lied mostly on the spectrum characteristics of music con-
tent. InMAF on the other hand integrated the acoustic fea-
tures and the human musical perception into music feature 
vectors to increase the classification performances. The 
classification results were so impressive that the achieved 
accuracies were as high as ninety percent. However, these 
outcomes were the results of a combination of this new 
method with pitch, rhythm and pitch contents. There is no 
classification result from any individual features recorded 
in the study.  

[8] attempted to classify the music genre using MIDI 
(Musical Instrument Digital Interface) and audio features, 
such as pitch, rhythm and timbre features by using the 
data from [13], which contained two different sets of fea-
tures, the first was MIDI features and the other group was 
the audio features. However the attempt was not that suc-
cessful as the result did not show any major improvement 
in the classification performances. 

 A new recent study proposed a new approach to 
classify music genre by emphasizing the features from 
cepstral contents, such as MFCCs, OSC and MPEG 7 
representations [14]. They introduced a novel set of fea-
tures that were derived from modulation spectral analysis 
of the spectral representations, and these features were the 
Mel-Frequency Cepstral Coefficients (MFCC), Octave-
based Spectral Contrast (OSC), Normalized Audio Spec-
tral Envelope (NASE) and Modulation Spectral Analysis 
of MFCC, OSC and NASE. Their experiments were con-
ducted on individual features and combinations of fea-
tures.  

The results were very good, where the combination 
of features tested were able to achieve the accuracy 
around twenty percent higher than any studies that we 
have discussed so far. That was an impressive achieve-
ment since low classification accuracy is the major prob-
lem faced by the domain.  

3.  AIS-BASED CLASSIFIER 

In this part, we discuss Artificial Immune System (AIS) 
approach specifically on the modified negative selection 
algorithm (MIC) to classify the music genre. According to 
[15], the human immunology system inspired this domain 
to observe the immune functions, models, and principles 
of immunology. Some references on AIS-based classifica-
tion task can be found in [16 -17]. 

AIS are adaptive systems, emulating human body im-
munology system to solve problems. It is concerned with 
abstracting the whole concept of immune system to com-
putational systems in solving problems from mathematics, 
engineering, and information technology point of view. 
AIS is developed based upon a set of general purposes 
algorithms that are modelled to generate artificial compo-
nents of the human immune system. [15] defined AIS as 
an adaptive system which is enthused by biological im-
munology and observed functions, principles and models 
to problem solving.  

[18] introduced negative selection algorithm as in-
spired by negative selection of T-cells in thymus. The al-
gorithm focused on recognizing self or non-self cells 
where it eliminated the T-cells which thymus does not 
recognized. Detail explanations of how negative selection 
algorithm works is in [19]. As has been investigated be-
fore, it would be impossible to apply NSA without mod-
ification as each problem and solutions are different. 
However, we will not discuss the NSA further as it is not 
in the research scope.  

In the next section, we will discuss the MIC, the cen-
soring and monitoring stages including features conver-
sion, complementary and identification processes that we 
have applied to suit with the problem in hand. Then we 
continue the discussion with detailed explanation of the 
changes that we have made in the identification accuracy 
calculation. 

3.1 Modified Immune Classifier (MIC) 

The inspiration to investigate MIC in this research comes 
from a writer identification study [2] where the proposed 
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classifier to identify different writers has provided excel-
lent results as the identification test achieved the accuracy 
as high as 99 percent. The recognition is evaluated by 
emphasizing the affinity binding or similarities between 
those cells.  

In this new version of NSA, the author introduced a 
complementary process, which is a process of generating 
detectors to detect antigens. Originally, in NSA, the de-
tectors are randomly generated and cost some time. They 
also do not contain enough information to recognize the 
whole range of antigens.  

This would become a problem because, in order to rec-
ognize the antigens, the generated detectors shall not be 
created randomly as the process will not guarantee there 
will be enough detectors. By having the complementary 
process, the detectors will be generated accordingly to 
compensate the antigens as has been done in the writer 
identification research where the complementary process 
generated detectors according to the number of writers 
that should be recognized. Imitating the immune system’s 
function, MIC works:  
(1) self-cells (feature vectors) are transformed into anti-

bodies (detectors) to detect similar cells (antigen),  
(2) during detection (identification) antibodies will do 

the affinity binding with the antigens (finding simi-
larities),  

(3) both cells will bind (matched) if there are similari-
ties occurred – antibodies detected antigens as simi-
lar to it cells – a pattern is recognized 

As has been mentioned earlier, censoring and monitor-
ing modules are two important process of MIC. We will 
discuss them next. 

3.2 Censoring and monitoring modules 

Censoring module is responsible to produce detectors, 
which is the key aspect of identification. This module 
normally starts after feature extraction and feature selec-
tion processes. It involves data feature conversion where 
the features will be represented by binary bit strings (for 
example, a feature vector, -3.4523123 is converted into a 
binary string, 101011001 using –XOR operation). After 
the conversion, the binary bit strings then will go through 
the complementary process and become the detectors.  

We applied the supervised learning experiments in this 
research and we used training data to generate the detec-
tors. Once generated, we used them in the classification 
process by comparing the detectors and generated anti-
gens (we converted testing data into antigens). The com-
parison occurred in the monitoring module (the training 
model/detectors created earlier to predict the testing da-
ta/antigens) and it was to find matched data between de-
tectors and antigens. If matched, we then calculate the af-
finity binding. 

 The comparison produced binary bit ‘1’ or ‘0’ where 
bit ‘1’ means the data is bind. However, in this scenario, 
we will use the word ‘match’ instead of ‘bind’ to define 
the similarities. Figure 3.1 illustrates both modules where 
two important things occurred in censoring module, 

which are the conversion data from feature vectors into 
binary bit strings using –XOR and detectors generated 
processes. In monitoring module, two important things 
also occurred, which are antigens generated from testing 
data and identification processes. During binary matching 
process, we used Hamming distance technique to calcu-
late matched binary bits.  

 

Figure 1. Censoring and monitoring modules 

3.3 Accuracy calculation 

In the writer identification problem, the calculation 
emphasized the recognition of each feature where these 
features will be calculated individually based on a thre-
shold value. The accuracy would be based on how many 
features were correctly classified. To apply MIC to our 
problem, we concentrated on the threshold value in the 
accuracy calculation where the value will be our bench-
mark to decide whether the songs are classified accurately 
or not.  

During the process, we calculated the result first by 
combining all features and produced the data accuracy 
percentage. Then we compared the accumulated value 
with the threshold value percentage. If the percentage of 
the combined features is higher than the threshold value, 
the data then is labeled as accurately classified. The fol-
lowing Table 3.1 and 3.2 will show the difference be-
tween the writer identification calculation and ours.  

The difference between the original MIC proposed in 
[2] with ours is that we combined all the feature vectors 
as one whole data and calculates the matched bits before 
we compare them with the threshold value, whereas in the 
author identification study, the matched bit is calculated 
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separately for each feature and the accuracy is computed 
based on the total amount of features that exceeded the 
threshold value. 

 
Category Calculation formulas 

Feature match-
ing stage 

Num_of_bit_match ≥  threshold 

Image accuracy 
stage  

(Num_of_feature_match / 
num_of_feature) × 100 

Data accuracy 
stage 

(Num_of_genre_match / 
num_of_testing_data) × 100 

Table 1. The writer identification calculation 
 

Category Calculation formulas 
Data genre ac-
curacy %  

∑ bits_matched / ∑ features_bits ×  100 

Threshold (r) % ( ∑ r * num_of_features / ∑ 
bits_per_feature * num_of_features) ×  

100 
Dataset accura-
cy  

(Num_of_genre_match / 
num_of_testing_data) × 100  

Table 2. The music genre accuracy calculation 

4. EXPERIMENTS  

In this section, we explain our conducted experiments to 
evaluate the proposed algorithm.  

4.1 Datasets 

We used Latin music datasets which contains 3160 music 
pieces in MP3 format classified in 10 different musical 
genres [20][21]. The songs were grouped into 10 genres: 
Tango, Bolero, Batchata, Salsa, Merengue, Axé, Forró, 
Sertaneja, Gaúcha and Pagode. The extracted music fea-
tures were from timbre contents (containing MFCC, spec-
tral centroid, roll-off, flux, time domain zero crossings), 
pitch-histograms related features and beat calculated fea-
tures. The features were extracted using MARSYAS [22] 
where the combined total of the features produced 30 vec-
tors for each song.  

We have prepared training and testing datasets where 
similar data is used in the experiments except that the data 
for WEKA experiments was in the attribute related file 
format (ARFF) and in the data file (DAT) format for MIC 
demonstrations.  

4.2 Feature selection technique 

We have used WEKA tool to select relevant and signifi-
cant features. We used filter approach in this study be-
cause it is more practical and suitable for our problem as 
the approach is independent and work separately from the 
classifier. The filter approach also works faster than 
wrapper and embedded approaches.  

We have selected significant features using two search 
approaches, which are the best first search algorithm and 
the greedy hill search algorithm. The techniques that we 
used to do the best first search selection and the greedy 
hill selection are the FilterSubsetEval, the CFSSubsetEval 
and the ConsistencySubsetEval. The produced selected 

features from these techniques contained 13, 17, and 18 
feature vectors. 

We tested the MIC algorithm in the classification 
processes by defining the threshold value as 12. The rea-
son is that we want to compare the proposed MIC with 
other classifiers without evaluating various threshold val-
ues to select the best one. The chosen threshold value is 
considered practical and enough to determine the relia-
bility of the proposed technique. 

Table 3 describes the feature vectors in detail where 
they have been numbered (1 to 30) for easy identification. 

 
Features Description 
1 - 6 Beat-related features (peak histograms, amplitude 

and period) 
7 - 25 Timbral features (mean and standard deviation of 

spectral centroid, rolloff, flux, zero crossings, 
MFCC, low energy) 

26 - 30 Pitch related features (folded and unfolded histo-
grams, period, amplitude pitch interval of unfolded 
histograms) 

Table 3. Features description 

4.2 Classification 

For comparison purposes, we used classifiers from Wai-
kato Environment for Knowledge Analysis (WEKA) [23] 
and the MIC algorithm that we have built using C++ lan-
guage. We have chosen few classifiers from different cat-
egory in WEKA.  

We have setup the experiment cases according to the 
selected features from selection process. We also have 
setup experiments to test individual group of features and 
combinations between the groups. The reason is that we 
want to test the robustness of our program and the relia-
bility of AIS-based classifier performance in our classifi-
cation problems. Table 4, 5, and 6 will explain these cas-
es in detail. 

 
Cases Description 
C1 Features 1, 2, 6, 9,10, 13, 17, 18, 22, 25, 26, 28 
C2 Features 1, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 

21,  23, 26, 28 
C3 Features 1, 4, 6, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 

21, 22, 23, 25, 26 
C4 Contains all 30features 

Table 4. List of selected features  

Cases Description 
F1 Features 1 – 6 (beat related features only) 
F2 Features 7-  25 (timbral related features only) 
F3 Features 26 – 30 (pitch related features only)  

Table 5. Individual group of features  

Cases Description 
FBP Combination of beat and pitch related features 
FBT Combination of beat and timbral related features 
FTP Combination of timbral and pitch related features 

Table 6. Combination of group features  
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4.3 Results 

Table 7, Table 8, and Table 9 list all classification results 
that we have obtained from the prepared cases classifica-
tion experiments. 
 

Technique  
Cases 

Case 1 Case 2 Case 3 Case 4 

BayesNet 50.00% 53.00% 53.00% 58.33% 

SMO 46.00% 48.67% 57.00% 56.33% 

IB1 49.00% 51.67% 56.00% 57.00% 

Bagging 42.33% 44.00% 47.67% 48.33% 

J48 38.00% 38.33% 42.00% 42.00% 

MIC 99.33% 95.00% 92.67% 73.00% 
Table 7. Selected features cases 

 

Technique  
Cases 

F1 F2 F3 

BayesNet 29.67% 29.67% 49.33% 

SMO 27.33% 31.33% 50.00% 

IB1 27.33% 100 % 50.33% 

Bagging 30.33% 66.33% 53.00% 

J48 28.67% 72.00% 45.00% 

MIC 100 % 100 % 93.33% 
Table 8. Individual group of features cases 

 

Technique  
Cases 

FBP FBT FTP 

BayesNet 39.3333% 53.0000% 54.3333% 

SMO 33.3333% 57.6667% 56.3333% 

IB1 38.3333% 55.3333% 56.0000% 

Bagging 35.0000% 49.3333% 52.6667% 

J48 37.3333% 40.3333% 48.3333% 

MIC 99.00% 79.33% 91.33% 
Table 9. Combination of group features cases 

In Table 7, for feature selection cases, all cases except 
for the data without feature selection, MIC has obtained 
the accuracies over 90% compared to other classifiers. 
The performances of other classifiers did not show any 
significant improvement compared to MIC. 

Table 8, which is referring to the individual group of 
features experiments. Overall performances for each fea-
ture when tested with various classifiers have shown that 
beat related features produced the lowest accuracy results. 
Timbral related features came in second however, when 
tested with MIC classifier pitch and timbral features pro-
duced similar percentages. Bagging classifier also pro-
duced similar result when tested the timbral related fea-
tures to classify the songs.  

In Table 9, WEKA classifiers produced almost similar 
results when we experimented with both beat+timbral re-
lated and timbral+pitch related features. The lowest accu-
racy recorded with beat+pitch related features when these 
features were used for classification. However, the oppo-
site case occurred when the data were classified using 
MIC classifier because the lowest accuracy recorded 
when beat+timbral related features were tested.  

5. CONCLUSION 

The availability of techniques and methods for classifica-
tion in music analysis field proved that researchers in this 
area are very concerned with the performance. As the col-
lections of digital songs keep increasing online, their stu-
dies have contributed a major breakthrough to the internet 
users and others. 

In this paper, we have experimented and explained the 
proposed MIC in different category of cases. In each ex-
periment, MIC has outperformed almost every classifier 
except for Bagging technique where in one of the cases, 
the result is exactly similar to what MIC has produced. 
The obtained results have clearly shown that MIC is a 
new prospective approach for music genre classification. 
It has been proven the proposed classifier in music recog-
nition research has surpassed other classifiers and the im-
provement of classification accuracy is phenomenal. The 
results also showed that among the features, timbral has 
provided us good classification result in the most cases 
except for the combined features cases. 

We strongly believe that our discussion throughout this 
paper has given opportunities to other researchers in this 
area of studies to fill the gaps, to explore further and to 
provide solutions to the known and un-known problem 
that has yet to be discovered. Future work will include an 
investigation on how to manage efficiently the threshold 
value and probably later on, exhaustive search approach 
should be applied to evaluate the highest threshold value 
that can provide high classification accuracies. 
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ABSTRACT

This paper discusses a method for monophonic instrument
sound separation based on nonnegative matrix factoriza-
tion (NMF). In general, it is not easy to classify NMF com-
ponents into each instrument. By contrast, monophonic in-
strument sound gives us an important clue to classify them,
because no more than one sound would be activated simul-
taneously. Our approach is to classify NMF components
into each instrument based on basis spectrum vector sim-
ilarity and temporal activity disjointness. Our clustering
employs a hierarchical clustering algorithm: group average
method (GAM). The efficiency of our approach is evalu-
ated by some experiments.

1. INTRODUCTION

In music signals, there are usually multiple sound sources
such as a human singing voice and instruments sound. The
task to separate mixed signals into individual sources is
called sound source separation for music signals. It has
several applications such as music equalizer, music infor-
mation searching, automatic transcription, and structured
coding of music. This paper discusses a method to sepa-
rate monaural musical audio into individual musical instru-
ments.

Sound source separation for music signal has been widely
investigated recently. Some methods are based on super-
vised learning of individual source models [1–3]. They
need solo excerpts beforehand. Other unsupervised ap-
proaches have also been studied [4–6]. Because any prior
information for instrumental sound sources cannot be used,
some unsupervised methods make assumption about com-
mon harmonic structure [4, 5] or employ the excitation-
filter model of sound production [6]. We propose an ef-
ficient unsupervised method focusing on monophonic in-
strument sound.

Our method have two stages. At the first stage, we
factorize the observed spectrogram into some components
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based on nonnegative matrix factorization (NMF) [9, 10].
In the case of music signals, each component usually rep-
resents a musically meaningful element, so that different
elements are expected to correspond to different compo-
nents.

However, considering music instrumental source sepa-
ration, methods based on NMF generally encounter diffi-
culties in the components clustering step. And most of the
algorithm count on manual clustering [7]. Some clustering
methods separate percussive instrument sources [8,12], but
are rarely used with harmonic instruments sources.

This paper proposes a method for clustering compo-
nents that employs not only spectral information but also
temporal information. The outline of this paper is as fol-
lows. Section 2 gives a overview of NMF algorithm and
component-clustering problem. The proposed clustering
method is explained in Section 3, and experimental evalu-
ation of proposed method are presented in Section 4. Sec-
tion 5 covers the conclusions and future works.

2. NONNEGATIVE MATRIX FACTORIZATION

Nonnegative matrix factorization and some unsupervised
sound source separation algorithms are based on a signal
model where the spectrum vectorxt (t = 1, ..., T ) in frame
is modeled as a linear combination ofbasis vectorsbj (j =
1, ..., J). This can be written as

xt =
J∑

j=1

gj,tbj , (1)

whereJ is the number of basis vectors, and its time-varying
gain (amplitude)gj,t, T being the number of frames.

This model can be written using a matrix notation as

X = BG, (2)

whereX = [x1, ...,xT ], B = [b1, ...,bJ ], and[G]j,t =
gj,t.

Here,gj = [gj,1, ..., gj,t]T is defined asgain vectorcor-
responding to the basis vector, then the termcomponent
refers to one basis vectorbj and one corresponding gain
vectorgj . Each source is modeled as a sum of the compo-
nents. The separation is done by first factorizing the spec-
trogram of the input signal into components and second
grouping these to sound sources.

375

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Input signal

NMF

Components Basis (spectrum) vector
Gain (note) vector

Spectrum
similarity

Note
disjointnessClustering

Separated 
signals

Reconstruction 
of instrument-

wise signals

Figure1. Flow diagram of the method.

The NMF algorithms proposed by Lee and Seung [9] do
the decomposition by minimizing the reconstruction error
between the observation and the model while constraining
the matrices to be entry-wise nonnegative as follows:

D(X‖BG) =
∑

f,t

d([X]f,t‖[BG]f,t), (3)

hered(y‖z) is a function of two scalar variables. The var-
ious measures for reconstruction error are proposed. The
Euclidean distance, the generalized Kullback-Leibler di-
vergence [9], or the Itakura-Saito divergence [11] are mostly
used. We choose here the generalized Kullback-Leibler di-
vergence, which has produced good results in earlier sound
source separation studies [14].

In standard NMF, the only constraints is the elemen-
twise non-negativity of all matrices. Then, several con-
straints have been proposed in order to achieve expected
solutions. The most famous constrains are sparsity [13]
and temporal continuity [11, 14]. We use the sparsity and
temporal continuity proposed in [14].

We wish to use NMF to decompose the observed sig-
nal into the components. However, it is not easy to know
which source each component is assigned to. In the next
section an automatic clustering method is proposed.

3. CLUSTERING OF NMF COMPONENTS

3.1 Outline

As a result of NMF, basis vectorsbj and gain vectorsgj

are obtained, each of which could ideally represent spec-
trum and temporal activity of each note, respectively. The

problem here is how to classify obtained components(bj ,gj)
into each instrument. The contribution of this paper is
to exploit both information ofbj andgj) for mixture of
monophonic instrumental tracks without any prior about
each instrument. Our approach consists of 1) measuring
the basis spectrum similarityC1(i, j) for any pairs ofbj

and bj , 2) measuring the temporal activity disjointness
C̃2(i, j) for any pairs ofgi andgj , 3) calculating a close-
ness measureC(i, j) for any pairs of(bi,gi) and(bj ,gj)
by product ofC1(i, j) andC̃2(i, j), and 4) applying a kind
of hierarchic clustering method.

3.2 Similarity of Basis Spectra

Monophonic source signal is represented by a sinusoidal
model [15] as

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) (4)

wheree(t) is the noise term,Ar(t) andθr(t) =
∫ t

0
2πrf0(τ)dτ

are the instantaneous amplitude and phase of therth har-
monic, respectively,f0(τ) is the fundamental frequency at
time τ , andR is number of the harmonic overtone. Har-
monic structure is an approximately invariant feature for a
harmonic instrument when it is played in a narrow pitch
range. [16]

In logarithmic frequency (log-frequency) scale, the har-
monic frequencies are locatedlog 2, log 3, . . . , away from
the log-fundamental frequency, and the relative-location
relation remains constant no matter how fundamental fre-
quency fluctuates and is an overall parallel shift depending
on the fluctuation degree. Thus among the harmonics be-
tween the two spectrums of the same instruments are sim-
ilar; even in case spectrums fundamental frequencies are
different, shapes of the spectrums are same when shifted.

The basis vectorbj , which NMF factorize into, rep-
resents average spectrum in logarithmic frequency scale.
Therefore the correlation-like criterion between two basis
vectors are defined as

C1(i, j) = max
q

∑
p bp+q,ibp,j

|bi||bj | , (5)

wherebp,j is pth value of the basis vectorbj . Put another
way, criterionC1(i, j) means maximum cross-correlation
between normalizedbi andbj . In intuitive explanation,
two spectra are compared, moving along the frequency axis,
and are measured largest overlap. For the spectra by har-
monic instrument, two spectrums overlap most when two
fundamental pitches nearly go over. As a side-effect, two
spectrums by inharmonic instruments mark higher value
than value between harmonic and inharmonic instrumental
spectrums.

Table 1 shows an example of this correlation-like crite-
rions that is calculated by real instrumental signals: RWC
music database [17] RWC-MDB-I-2001 No.31-1 and No.33-
1, down-sampled to 16 kHz single-channel files. Each
spectrum is taken by Wavelet transform of single tone sig-
nal. Two spectra of same instrument almost mark higher
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Clarinet Flute
A4 H4 C5 A4 H4 C5

ClarinetA4 1.00 0.96 0.81 0.58 0.67 0.81
ClarinetH4 1.00 0.74 0.63 0.66 0.72
ClarinetC5 1.00 0.82 0.73 0.92
FluteA4 1.00 0.95 0.80
FluteH4 1.00 0.80
FluteC5 1.00

Table1. The simirarity measure of basis spectra calculated
by indivisual instrumental signals. The higher values than
0.8 are shown in bold style.

value than two spectrums of other instrument mark. How-
ever in some cases two spectra which belonging to other in-
strument mark high numerical number: for example, Clar-
inet C5 and Flute C5. This result presents that criterion
as basis spectrum similarity (5) indicates measure to some
extent, but is not enough for the grouping.

3.3 Disjointness of Temporal Activities

Not only basis spectrumbj , but also temporal activitygj

should also include cues for clustering components into in-
strumental tracks. As a simple case to exploit such infor-
mation, we suppose that all instrumental tracks aremono-
phonic, which means each instrumental track consists of a
single note sequence.

Figure 2 shows an example of piano-roll representation
of three monophonic instrumental tracks. Obviously, any
different note activities are disjoint in the same track. Note
that there are also many pairs of disjoint note activities over
different tracks. Hence, we can’t assert that two different
note activities belong to the same track even if they are dis-
joint. However, if two different note activities are NOT dis-
joint, they should belong to different instrumental tracks.

The disjointness of two different temporal activities rep-
resented by gain vectorsgi andgj can be simply calculated
by

C2(i, j) = 1− gi · gj

|gi||gj | . (6)

If gi andgj aredisjoint,C2(i, j) = 1. While if they have
co-occurrence,C2(i, j) should take a small value. There-
fore, it can be exploited as a closeness measure. Figure
3 shows an expected result, which was calculated by (6)
with using temporal activities in piano roll representation
shown in Figure 2 asgj .

The magnitude ofC2(i, j) itself is not significant be-
cause it depends on the frequency of the co-occurence. It
is only important for clustering whether it is almost zero or
not. Furthermore, because of imperfect decomposition by
NMF, spectral leakage, reverbration, etc,C2(i, j) is actu-
aly not equal to zero even ifith component andjth com-
ponent belong to the same instrumental track. Therefore,
we 1) neglect tiny values ofgt,j and set them to be zero,
2) calculateC2(i, j) by (6), and 3) binarize it with a small

Figure 2. The piano roll representation of three mono-
phonic instrumental track. Any different note activities are
disjoint in the same track.

Figure 3. Criterions between two gain vectors according
to the equation (6), corresponding to figure 2. The two
vertical line and two horizontal line show the borderlines of
the instruments. Values on diagram position are ignorable
for the clustering.

thresholdε such as

C̃2(i, j) =
{

1 (C2(i, j) ≥ ε)
0 (C2(i, j) < ε) . (7)

3.4 Combining Two Different Criterions

Previous criterions are both scales running from zero to
one. In both criterions, higher value means two compo-
nents’ sameness. This paper examines the measure of two
different components’ closeness as

C(i, j) = C1(i, j) · C̃2(i, j). (8)

3.5 Clustering by Group Average Method

To find an optimal partitioning of the components intoN
classes, the following clustering algorithm calledgroup av-
erage method(GAM) is employed.

1. At the beginning, all components are considered as
different clusters.

2. Two components that have the highest criterion value
are connected into the same (new) cluster.

3. Criterions between new cluster and other cluster are
updated under the update rule:

d(K1,K2) =
1

n1n2

∑

i∈K1

∑

j∈K2

d (i, j) , (9)
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inputdata samplingrate 16 kHz
length 10sec
numberof instruments 3

frequency frameshift 16 ms
analysis frequency resolution 12.0 cent

frequency range 50–7961 Hz
NMF iteration 200
[9] numberof components 10–40

Clustering ε 0.05
numberof clusters 4

Table2. Experimental conditions

whered(A,B) is the criterion between clusterA and
B, d(i, j) = C(i, j) is the criterion between compo-
nentsi andj, n1 andn2 are the number of compo-
nents thatK1 andK2 contain.

4. Iteration: repeat step 2 and 3 until total number of
clusters reachesL.

Criterion-update avoids chaining effect where wrong com-
ponents connects into a chain reaction.

3.6 Reconstruction of Instrument-wise Spectrograms

Spectrograms corresponding to a certain instrumentKl (l =
1, ..., L) , X̂l, can be reconstructed by the equation:

X̂l =
∑

j∈Kl

X̂(j) =
∑

j∈Kl

bjgj . (10)

Spectrogram of instrumentl is reconstructed as

[Ŷl]f,t =
[X̂l]f,t

[X̂]f,t

[X]f,t. (11)

whereX̂ =
∑L

l=1 X̂l.

4. EXPERIMENTAL EVALUATION

4.1 Source Conditions

To verify the potential performance of the proposed method
as sound source separation, the proposed method was tested
on a real performance music data fromMIREX 2007 Eval-
uation Tasks[18] : transcription ofString Quartet No.5
3rd Movement Var.5composed by L. V. Beethoven (see ta-
ble 2 for the list of the experimental data). We used the
data composed of three woodwind instruments (flute, oboe
and bassoon). Mixed signal was the result of summing the
source signals in time domain, and 9 input signals (10 sec-
onds) were clipped from the mixed signal every 5 seconds.

Time series of amplitude spectrum was analyzed using
Gabor wavelet transform with a frame shift of16ms for
input digital signals of16kHz sampling rate. The lower
bound of the frequency range and the frequency resolution
were50Hz and12cent, respectively.

4.2 Evaluated Algorithms and Conditions

The following algorithms were tested.

• Proposed method 1: Components clustering employed
both basis vector similarity and gain vector disjoint-
ness.

Since there is no reliable method for the estimation
of the number of the components, proposed method
was tested by factorizing the input signal into 10–40
components and we decided it to earn the best result.

In the clustering step, the number of the clusters was
chosen as 4 because in the real performance music
other than pure instrumental sound (e.g. sounds of
breath) were contained.

• Proposed method 2: Components clustering employed
only basis vector similarity. Compared with Pro-
posed method 1, the contribution of the time activity
disjointness can be evaluated.

• Correct clustering: Components clustering to be as-
signed each component to a source which leads to
the highest signal-to-noise (SNR) as

SNR(m, j) = 10 log10

∑
f,t[Ym]2f,t∑

f,t([Ym]f,t − [X̂(j)]f,t)2
.

(12)
whereYm and X̂(j) are themth reference andjth
separated component. A componentj is assigned to
a sourcemwhich leads to the highest SNR.

• NMF2D [4]: Factorization is doned by NMF2D in-
stead of NMF. When analyzing real music signals,
the NMF2D was considered to give good results.

4.3 Evaluation Criterion

The quality of the separated sources was measured by cal-
culating the SNR improvement between the original spec-
trogramY and corresponding separated magnitude spec-
trogramŶ according to the equation

SNR[dB] =
1
M

M∑
m=1

10 log10

( ∑
f,t[Ym]2f,t∑

f,t([Ym]f,t − [Ŷl]f,t)2

−
∑

f,t[Ym]2f,t∑
f,t([Ym]f,t − [X]f,t)2

)
.

(13)

For each original spectrogram, the SNR improvement that
employs baseline using mixed signal are measured. The
SNR has been used in several source separation studies to
measure the separation quality.

4.4 Results

The SNR improvement for each data and algorithms are
shown in table 3. Average values are means among all of
data.

Proposed method 1 marks an average improvement 2.75
dB. For all data, proposed method 1 sets positive values.
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SNR[dB]
proposed1 proposed2 NMF2D correctclustering

data(1): 0–10 sec 5.62 -9.05 -0.16 5.94
data(2): 5–15 sec 4.87 -0.71 -0.88 4.88
data(3): 10–20 sec 4.41 -8.88 -0.30 4.45
data(4): 15–25 sec 0.25 -6.23 -2.82 2.52
data(5): 20–30 sec 2.08 -2.86 -1.29 3.34
data(6): 25–35 sec 3.00 -7.82 -0.48 3.66
data(7): 30–40 sec 0.72 -3.17 -1.12 1.48
data(8): 35–45 sec 1.11 -5.71 -3.15 1.42
data(9): 40–50 sec 2.70 -13.13 -1.65 3.93

average 2.75 -6.40 -1.32 3.51

Table3. SNR results of the evaluated algorithm in dB.
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Figure 4. An input signal with three instrumental tracks
(flute, oboe, and bassoon). Spectrogram (upper) and cor-
responding waveform (lower).

The average improvement value of correct clustering is
3.54 dB. For two data (data (2) and data (3)) proposed
method 1 and correct clustering mark almost same val-
ues. It shows that clustering step is maximally effective.
In some other data proposed method sets close values to
correct clustering.

Comparing SNR values between proposed method 1 and
2, it shows that in clustering step the contribution of the
gain vector disjointness is effective.

The SNR values of NMF2D method are lower than that
of proposed method 1. The reason is considered to be that,
in these real music data, the NMF2D assumption that all
notes for an instrument is an identical pitch shifted time-
frequency signature does not hold.

Figures 4 , 5 and 6 show an example of experimental
results: figure 4 is an input signal in which three instru-
mental signals (flute, oboe and bassoon) are mixed, figure
5 is a source signal with bassoon sounds, figure 6 is a sepa-
rated signal which is corresponded to the bassoon’s source
signal. Even in other two instrumental sounds the results
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Figure 5. A source signal (bassoon track) of the mixture
shown in figure 4.
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Figure6. A separated signal (bassoon track) from the mix-
ture shown in figure 4.
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equaledto it.

5. CONCLUSION

This paper discussed a method for monophonic instrument
sound separation. The method used nonnegative matrix
factorization to factorize the spectrogram of the input sig-
nal into components. Then we introduced an criterion that
measured two distinguish components: basis spectrum sim-
ilarity and temporal activity disjointness. The grouping
was done by clustering components under this measure.
The experiment results showed that in some data the pro-
posed method marked values equal to the correct clustering
which employed source signals.

Future work includes the improvement of nonnegative
matrix factorization by including the proposed criterion,
that aims at accuracy enhancement of the decomposition.
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ABSTRACT

We describe a system that attempts to predict the con-
tinuation of a symbolically encoded tabla composition at
each time step using a variable-length n-gram model. Us-
ing cross-entropy as a measure of model fit, the best model
attained an entropy rate of 0.780 in a cross-validation ex-
periment, showing that symbolic tabla compositions can
be effectively encoded using such a model. The choice of
smoothing algorithm, which determines how information
from different-order models is combined, is found to be an
important factor in the models performance. We extend the
basic n-gram model by adding viewpoints, other streams
of information that can be used to improve predictive per-
formance. First, we show that adding a short-term model,
built on the current composition and not the entire corpus,
leads to substantial improvements. Additional experiments
were conducted with derived types, representations derived
from the basic data type (stroke names), and cross-types,
which model dependencies between parameters, such as
duration and stroke name. For this database, such exten-
sions improved performance only marginally, although this
may have been due to the low entropy rate attained by the
basic model.

1. INTRODUCTION AND MOTIVATION

When listening to music, humans involuntarily anticipate
how it will continue [8]. Such expectations help to process
information efficiently, as well as allowing complex, noisy
stimuli to be accurately interpreted. For musicians, this an-
ticipation is essential for synchronization and harmoniza-
tion. In this paper, we explore a computational model of
this predictive process based on an ensemble of n-gram
models. Specifically, we examine whether such a model
can successfully represent the structure of symbolically en-
coded tabla compositions. Our motivation for building a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

predictive tabla model is to enable more intuitive modes of
interaction between musicians and computers.

In addition to this practical goal, we hope to work to-
wards developing a computational model of musical antic-
ipation. Previous work [11] on Western melodies showed
that human judgments of melodic continuation were highly
correlated with a variable-length n-gram model. Although
we will not address human subject data here, we hope to
provide converging evidence from a markedly different mu-
sical tradition (tabla), that syntactic structure can be effi-
ciently represented using an n-gram modeling approach.

2. BACKGROUND AND RELATED WORK

Markov and n-gram models have been extensively used to
model temporal structure in music [1]. They have been ex-
tensively used in algorithmic composition, timbral analy-
sis [2] [7], structure analysis [12], and music cogniton [14].

Markov models are based on a succession of states. In
musical contexts, states represent discretely valued attributes,
such as pitch, duration, instrument, section, etc. The Markov
assumption assumes that, given the current state, the next
state is independent of previous states. This can easily
be generalized so that the next state depends on a fixed
number of past states; a first-order Markov chain depends
only on the current state, a second-order on the current
and immediately preceding state, and so on. If sequences
are directly observable, then most inference problems can
be solved by counting transitions. An alternative formula-
tion is the n-gram model in which all possible symbols of
length n are constructed from the training sequences, and
their frequency tabulated. It is easy to see that the tran-
sition probabilities for an nth-order Markov chain can be
computed by forming all n + 1-grams.

A significant problem that arises with fixed-order mod-
els is that, as the order n increases, the number of total
n-grams increases as vn, where v is the number of sym-
bols. In music applications, such as melody prediction,
where the past ten events could easily influence the next
event, and where there might be a dozen or more sym-
bols, we are left attempting to assess the relative frequency
of greater than 1210 n-grams. Even for large databases,
most n-grams will be unseen, leading to the so-called zero
frequency problem [10]. This sparsity problem leads to a
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fundamental tradeoff between using the predictive power
of longer context and the increasing unreliability of higher
order n-gram counts. Variable-length n-gram models at-
tempt to overcome this problem in two ways: 1) by build-
ing many fixed-order models and integrating information
across orders (smoothing), 2) and by reserving a certain
amount of probability mass for unseen n-grams (escape
probabilities). We describe these techniques in Section 4.2.

Variable length n-gram modeling is an ensemble method
in which the predictions of many fixed-order models are
integrated. Ensemble methods such as boosting have been
shown to be effective for classification tasks [16]. Multiple
viewpoint systems, introduced by Conklin [5], and devel-
oped by others such as Witten [5] and Pearce [15] can be
thought of further generalizing the idea of integrating an
ensemble of predictive models. The extension is based on
the fact that music can be simultaneously represented in
many ways. For example, a melody can be thought of in
terms of chromatic pitches, intervals, scale degrees, or con-
tour. A rhythmic pattern can be thought of in terms of onset
times, durations or position-in-bar. If, for example, we are
trying to predict the next note in a melody, having multiple
representations is useful in capturing structure that is ob-
vious given one representation, but less so in another. For
example, a scale-degree representation of a melody might
make it obvious that the chromatic pitch, say B, is actu-
ally the leading tone, making it very likely that the next
note is C. However, if the training database contains many
melodies in many different keys, this might not be obvious
from the chromatic pitch representation. We describe the
multiple viewpoints framework in Section 4.3.

Little work to date has been done on statistical mod-
eling of tabla. Gillet [7] and Chordia [4] both used an
HMM framework for tabla transcription, while Bel and
Kippen [9] created a model of tabla improvisation based
on a context-free grammar, one of the earliest computa-
tional tabla models.

Tabla is the most widely used percussion instrument in
Indian music, both as an accompanying and solo instru-
ment. Its two component drums are played with the fingers
and hands and produce a wide variety of timbres, each of
which has been named. A sophisticated repertoire of com-
positions and theme-based improvisations has developed
over hundreds of years. Although tabla is primarily learned
as part of an oral tradition, it is also notated using a system
that indicates strokes and their durations. Unfortunately,
the correspondence between strokes and names is not one-
to-one. Depending on the context and the stylistic school,
the same stroke will be given different names. And, in
some cases, different strokes will be given the same name.
This is unproblematic in the context of an oral tradition
but requires that care be taken when interpreting symbolic
notations.

3. TABLA DATABASE

The database used for training the model is a set of tradi-
tional tabla compositions compiled by tabla maestro Alok
Dutta [6]. The compositions were encoded in a Humdrum-

based syntax called **bol that encoded the stroke name
and duration [4]. The database which is available online
consists of 35 compositions in a variety of forms. Alto-
gether there are 27,189 strokes in the dataset, composed of
42 unique symbols.

4. N -GRAM MODELING

N -gram modeling is a commonly used technique to proba-
bilistically model sequences of elements such as phonemes
in speech, letters in a word or musical notes in a phrase.
[13] N -grams can be efficiently stored in a tree-shaped
data structure, commonly referred to as a trie or prefix tree.
Figure 1 is the trie for the sequence ABAB+C. In such
a trie, branches represent the succession of certain sym-
bols after others, and a node at a certain level of the trie
holds a symbol from the sequence, along with information
about the symbol such as the number of times it was seen
in the sequence following the symbols above it, and the
corresponding probability of occurrence. In Figure 1, the
subscript below a symbol represents the symbols probabil-
ity given the context, defined by the path through the trie
to that node, while the superscript above it represents the
count value. Thus, in the topmost level, the probabilities
represent the priors for the symbols. During construction
of the trie, symbols are fed sequentially into the system
one-by-one. For the above example, after the sequence
ABAB, the trie looks like Trie1 in figure Figure 1. When
a new symbol ’C’ follows, corresponding nodes are cre-
ated at all levels of the trie: 5-gram node using ’ABABC’,
4-gram node using ’BABC’, trigram node using ’ABC’,
bigram node using ’BC’ and a 1-gram/prior entry for ’C’
at the topmost level. The corresponding probabilities are
also updated resulting in Trie 2 in Figure 1.

After the trie has been built in this manner, it can be
used to predict the next symbol given a test sequence. This
is done by following the nodes of the trie downwards from
its top, in order of the symbols in the test sequence until the
last symbol in the sequence (and the corresponding node in
the trie) is reached. At that point, the probabilities associ-
ated with the children nodes represent the predicitve dis-
tribution over the symbol set, given the observed context.
To allow for new symbols that may appear in the test se-
quence and to subsequently allow for a better matching of
test sequences with missing or extra symbols compared to
training sequences, we incorporate the concept of escape
probabilities into our trie structure, as described in [17].
The above example trie would then look like Trie3 in fig-
ure Figure 1. We describe the use of escape probabilities in
section 4.2. For long training sequences, the depth of the
trie can become large and is often restricted to a maximum
order to limit memory usage and to speed prediction given
a test sequence.

The modeling and evaluation framework was implemented
in C++ as an external object in Max/MSP along with sup-
porting patches.
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Figure 1. Illustration of tries built for the sequence ’ABAB’ followed by the symbol ’C’. Superscripts represent count
values, and subscripts represent probability values. Rounded boxes represent siblings, while italicized number at the left
of a rounded box represents the total count among the siblings, which is used to calculate the ’probability’ values. Trie 3
includes escape probabilities.

4.1 Escape Probabilities

As noted above, the zero frequency problem occurs be-
cause, in high-order models, most n-grams will never have
been observed [10]. Using a simple counting scheme, the
model would assume zero probability for these unseen events,
thereby returning infinite entropy should they occur in the
test sequence. The solution is to reserve a small amount of
probability mass for events that haven’t occurred yet. This
is done by reserving an escape proabability for each level
of the trie. Whenever an event returns zero probability,
it returns the escape probability instead. There are many
ways to assign the escape probability. Based on the results
of Bell and Witten [17], we have implemented the Poisson
distribution method. The escape probability for each level
is assigned by e(n) = T1(n)

N(n) , where T1 is the number of
tokens that have occurred exactly once and N is the total
number of tokens seen by the model so far.

4.2 n-gram Smoothing

Smoothing addresses the tradeoff between the specificity
of higher-order models (if a match can be found) and the
reliability of the n-gram counts for lower-order models.
Since higher order models are much sparser, many n-grams
will be assigned zero probability, and counts for n-grams
that have been observed will tend to vary greatly based on
the particular training database. This variance can be re-
duced by incorporating information from lower order mod-
els. There are two basic types of smoothing algorithms:
backoff models and interpolation models. Given a test
sequence, a backoff model will search for the entire se-
quence, and if no match is found in the trie, the process

continues recursively after dropping the first element of the
sequence. The process stops once a positive match is found
and the count for that n-gram count is greater then some
threshold. Interpolated smoothing, by contrast, always in-
coporates lower order information even if the n-gram count
in question is non-zero.

For this study, two smoothing methods were primarily
used, Kneser-Ney (KN) and an averaging method we term
1/N . These were also compared to a simple backoff pro-
cedure. KN was adopted because earlier work showed it to
be a superior smoothing method in the context of natural
language processing [3]. The basic idea of KN is to ensure
that lower order distributions are only used when there are
few, or no, counts in the higher order models. When incor-
porating lower information, the probability is related not to
the true count of the n-grams but rather is proportional to
the number of different n-grams that it follows. An exam-
ple in music might be as follows: given a bigram consist-
ing of two rhythmic durations, where the second duration
is transitional and not typically used on its own, we would
not assign a high unigram probability since it is only used
in association with the first duration. Implementation de-
tails can be found in [3].

Given a model, with M as the maximum order, the
weights for each model are given by w(n) = 1

m(maxOrder−n) .
In other words, the higher orders receive greater weight
than the lower orders. It is worth noting what happens in
the case where a higher-order model has not seen a par-
ticular n-gram. In that case, even though the weight for
that model will be relatively higher than for a lower order
model, the probability of the n-gram, which will be deter-
mined by the escape probability, will be very small, and
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typically much smaller than the weight.

4.3 Multiple Viewpoints

Our focus in the work so far has been to implement a multi-
ple viewpoints system for music analysis, apply these prin-
ciples to traditional North Indian tabla compositions, and
identify the set of parameters that work best on this kind of
music. Though we will touch upon the basics of the mul-
tiple viewpoint system, a more detailed explanation can be
found here [5].

Conventional context-dependent predictive models track
only the most basic aspects of music, like pitch, rhythm
and onset times. Moreover, these variables are tracked to-
gether, so that finding an exact match for every possible
context is practically impossible. A multiple viewpoints
system, however, tracks each variable independently, main-
taining many predictive models simultaneously. The final
prediction is obtained by combining all these predictions
into a meaningful set of basic parameters (such as pitch
and duration). Such a system not only incorporates infor-
mation from different variables but can also model com-
plex relationships between two or more of these variables
and make use of that information to strengthen its predic-
tion. Furthermore, a multiple viewpoint system can make
much better predictions in rare event cases, because of its
ability to find context matches in at least one of its many
models.

A viewpoint is nothing more than a set of events of a
particular type. For example, a set of all pitch classes (C,
C#, D, D# and so on until B) would consititute a viewpoint
for a melody. Similarly, a viewpoint for rhythm would con-
sist of the set of all onset times within a measure. These
two viewpoints, pitch and rhythm, can be directly extracted
from the music, are independent of each other and are called
basic types. Cross types are formed when two or more ba-
sic types are combined and tracked simultaneously (T1 x
T2). A cross type formed using Notes and Onset Times
would consist of all elements in the Notes viewpoint in
combination with all elements in the Onset Times view-
point. Each element of this viewpoint is represented as a
tuple {Note, OnsetTime}, instead of a single value. The
number of all possible elements in a cross type is equal to
the product of the number of elements in each basic type.
A derived type depends on information extracted from a
basic type. A simple example of this is melodic intervals,
which are extracted from pitches. Derived types can use
information from more than one viewpoint, and this can
lead to the formation of cross types derived from derived
types. Selection of appropriate representations is domain
dependent and often uses prior knowledge of the music.

Here we use two basic types – strokes and durations.
We also look at the following cross types: 1) Strokes x Du-
rations and 2) Strokes x PositionInBar (PIB), where PIB
refers to the onset position of a stroke as a fraction of
the bar. Finally we introduce three derived types into the
model. These were constructed by mapping the stroke
names to a reduced set. Reduced Set 1 was made by elim-
inating different names for the same stroke, reducing the

number of symbols from 41 to 32. Reduced Set 2 ex-
tended this idea by mapping acoustically similar strokes
to the same name, which further reduced the number of
symbols to 10. The open/closed mapping was made by
classifying each stroke as resonant or non-resonant.

4.4 Merging Model Predictions

An important point here is the actual process of merging
the predictions of each of the models. Though there are
many different ways to do this, we use a weighted av-
erage as described in [15]. Each viewpoint model is as-
signed a weight depending on its cross-entropy at each
time step. The weight for each model is given by wm =
H(pm)/Hmax(pm), where H(pm) is the entropy of the prob-
ability distribution and Hmax(pm) is the maximum entropy
for a prediction in the distribution. Higher entropy values
result in lower weights. In this way, models that are uncer-
tain (i.e., have higher entropy) make a lesser contribution
to the final distribution. The distributions are then com-
bined by taking their weighted average.

4.5 Long Term and Short Term Models

A common limitation of such predictive models built on
large databases is that the model is usually unaware of
any patterns specific to a particular song. The model be-
comes too general to be effective, and very often patterns
and predictions which seem obvious to humans are missed
because they are infrequent in the global training database.
To solve this problem, we used two models: a long-term
model (LTM) built on the entire training database, and a
short-term model that starts out empty and is built up as a
particular composition is processed. In this work, the LTM
is not updated as the test composition is processed.

When a composition is read, both models return a dis-
tribution over the symbol set at each time step. The predic-
tions are merged into a final prediction using a weighted
average as described above. Whenever the STM is uncer-
tain, such as the beginning of a composition or new sec-
tion, the system gives more weight to the LTM. In other
sections, such as the end of a song, where the STM is more
certain, the weighting scheme assigns more weight to the
STM. A comparison of the cross-entropy measure for each
model is presented in Table 1.

5. EVALUATION

Cross-validation was performed using a leave-one-out de-
sign. For each of the 35 compositions, training of the
LTM was performed on the remaining 34. Reported re-
sults were averaged over all 35 trials. A common domain-
independent approach for evaluating the quality of the mod-
els’ predictions is cross-entropy [11]. If the true distribu-
tion is unknown, the cross entropy can be approximated by
− 1

n

∑n
i=1 log2(pi), which is the mean of the entropy val-

ues for a given set of predictions. To illustrate, at a given
step t, we note the true symbol. We then look at the predic-
tive distribution for symbols at step t− 1 and calculate the
entropy for the true symbol at step t. After running through
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Durations Strokes Stroke-
Duration

Order Priors Comb. STM LTM Priors Comb. STM LTM Priors Comb. STM LTM
1 1.891 1.049 0.916 1.890 3.614 3.184 2.958 3.613 4.965 3.883 3.397 4.962
5 1.891 0.563 0.510 0.897 3.614 1.117 0.994 1.780 4.965 1.294 1.162 2.354
10 1.891 0.469 0.429 0.814 3.614 0.868 0.814 1.609 4.965 1.060 0.995 2.220
20 1.891 0.383 0.356 0.736 3.614 0.805 0.780 1.584 4.965 1.007 0.966 2.201

Table 1. Summary of cross-entropy results for LTM, STM, and combined models for order 1-20
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Figure 2. Cross-entropy for stroke prediction using LTM,
STM, and combined models for orders 1-20

all the symbols in the test set, these entropies are averaged,
giving a cross-entropy result for that particular test set.

6. RESULTS

Figure 2 shows cross-entropy as a function of model or-
der using 1/N smoothing. The cross-entropy for the order
20 stroke LTM is 1.584, which is a surprisingly good re-
sult given the number of symbols (42). Compared with
using a predictive distribution based on the prior proba-
bility of each stroke, cross-entropy was reduced by 2.030
(from 3.614 to 1.584). The STM entropy rate for strokes
was a remarkable 0.780. Combining the LTM and STM
based on entropy, as described in section 4.3, did not im-
prove performance over the STM alone. The STM also
outperformed the LTM when predicting durations (0.365
vs. 0.736) and when jointly predicting the stroke and dura-
tion (0.966 vs. 2.201). In both cases, the combined model
offered no overall performance increase. Not surprisingly,
in some cases the LTM outperformed the STM at the be-
ginning of the composition, before the STM model had
seen much data.

As expected, cross-entropy decreases monotonically as
a function of model order. The curve decays roughly expo-
nentially, with performance improving dramatically from
order 1 to order 5, significantly between 5 and 10, and lit-
tle between 10 and 20. This suggests that, for these com-
positions, memorizing more than the past 10 strokes does
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Figure 3. Comparison of Kneser-Ney and 1/N smoothing

Model Durations Strokes
Basic 0.814 1.609

Basic + SD 0.756 1.557
Basic + SD entropy 0.744 1.546
SD + PIB entropy 0.744 1.522

Table 2. Cross-types LTM where SD is stroke X duration,
and PIB is position-in-bar. Merging of models was done
using a weighted average with entropy-based weights, ex-
cept for Basic + SD, which took the simple mean

little to improve predictions. This is true for the prediction
of durations, strokes, and joint prediction of the stroke and
duration.

Figure 3 shows the effect of different smoothing tech-
niques on performance for the LTM. Both 1/N and Kneser-
Ney smoothing significantly outperform a simple backoff
method. 1/N is the clear winner for strokes, durations, and
joint prediction. The difference in the quality of prediction
decreases as the model size increases but is large through-
out. Unusually, Kneser-Ney smoothing decreases slightly
in performance as the model order is increased from 1 to
5.

Table 2 shows that cross-types had a small impact on
performance with the addition of the stroke X duration type
having the most impact.

In Table 3, we show the results for several LTM using
derived stroke types, essentially more abstract sound cat-
egories based on the stroke name. For the LTM, Reduced
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Derived Types Strokes
Strokes only 1.60858

Strokes + Reduced Set 1 1.83609
Strokes + Reduced Set 2 1.81989
Strokes + Open/Close Set 1.61803

Table 3. Cross-entropy for stroke prediction using derived-
types with LTM

Set 1 and 2 decreased performance by approximately 0.2,
whereas open/closed marginally improved performance.

7. DISCUSSION

These results suggest that tabla compositions can be ef-
fectively encoded using a variable length n-gram model.
Given a set of 42 stroke symbols, the best model’s cross-
entropy was 0.780, essentially meaning that it was on av-
erage uncertain between 2 strokes, a dramatic reduction
from the 42 strokes in the vocabulary, as well as from the
prior distribution which corresponded to approximately 12
strokes. Interestingly, the results suggest that tabla compo-
sitions exhibit strong local patterns that can be effectively
captured using a STM, providing significantly better per-
formance when compared with the LTM alone. Because
many tabla compositions consist of a theme and variations,
this result is not surprising. These data also suggest that it
is almost always better to only use the STM, except for the
very initial portion of the composition. Cross types seem
to lead to small improvements, whereas derived types lead
to small decreases. More experiments are needed in order
to determine whether these changes are significant.

Another important result is that smoothing can have a
large impact on predictive performance and seems to be
highly domain dependent, with 1/N outperforming KN,
a technique that had been shown to be amongst the best in
another area. It is likely that the correct balancing of model
order will depend on the database size and of course the
distribution of n-grams. It would be interesting if further
work could elucidate a clear theoretical basis for choos-
ing a given smoothing method. In the absence of this, it is
likely that performance could be improved by using a val-
idation set and by adjusting how quickly weights fall off
for interpolated smoothing techniques as the model order
decreases.

8. FUTURE WORK

As always, we plan to continue to encode more tabla com-
positions to see if these results generalize. Additionally,
we hope to test other merging methods such as geomet-
ric combinaton, a technique shown to be superior to addi-
tive combination in the context of melodies [11], as well
as implementing cross and derived types for the STM. We
also hope to use our trained models to generate novel tabla
compositions and to use human evaluators to judge their
quality. Lastly, we hope to use these results in an interac-
tive tabla system that can anticipate and respond to a tabla
improvisation.
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ABSTRACT

Compressive sampling (CS) is a new research topic in
signal processing that has piqued the interest of a wide
range of researchers in different fields recently. In this pa-
per, we present a CS-based classifier for music genre clas-
sification, with two sets of features, including short-time
and long-time features of audio music. The proposed clas-
sifier generates a compact signature to achieve a significant
reduction in the dimensionality of the audio music signals.
The experimental results demonstrate that the computation
time of the CS-based classifier is only about 20% of SVM
on GTZAN dataset, with an accuracy of 92.7%. Several
experiments were conducted in this study to illustrate the
feasibility and robustness of the proposed methods as com-
pared to other approaches.

1. INTRODUCTION

1.1 Acoustic Features for Audio Music Analysis

In the literature of music information retrieval (MIR), var-
ious content-based features have been proposed [1] for ap-
plications such as classification, annotation, and retrieval
[15]. These features can be categorized into two types, that
is, short-time and long-time features. The short-time fea-
tures are mainly based on spectrum-derived quantity within
a short segment (such as a frame). Typical examples in-
clude spectral centroids, Mel-frequency cepstral coefficients
(MFCC) [1], and octave based spectral contrast (OSC) [2].
In contrast, the long-time features mainly characterize the
variation of spectral shape or beat information over a long
segment, such as Daubechies wavelet coefficients histogram
(DWCH) [3], octave-based modulation spectral contrast
(OMSC), low-energy, beat histogram [1], and so on. Ac-
cording to G. Tzanetakis et al. [1], the short and long seg-
ments are often referred to as “analysis window” and “tex-
ture window”, respectively.

Theoretically, both short-time and long-time features
should be used together to realize efficient and effective
MIR system since they provide different information for

Permission to make digital or hard copies of all or part of this work for
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c© 2010 International Society for Music Information Retrieval.

the task under consideration. However, in practice, too
many features usually degrade the performance since there
might be some noises instead of useful cues in the feature
set. Moreover, too many features could also entail exces-
sive computation to downgrade the system’s efficiency. As
a result, we need an effective method for feature selection,
extraction, or distillation. CS turns out to be an effective
tool for such a purpose.

1.2 Compressive Sampling

CS is firstly proposed by Candès, Romberg, Tao and Donoho,
who have showed that a compressible signal can be pre-
cisely reconstructed from only a small set of random linear
measurements whose number is below the one demanded
by the Shannon theorem Nyquist rate. It implies the po-
tential of a dramatic reduction in sampling rates, power
consumption, and computation complexity in digital data
acquisitions. CS has proved to be very effective in imag-
ing [6] [7], channel estimation [8], face recognition [9],
phonetic classification [18], sensor array [19] and motion
estimation [20].

In this paper, we propose a CS-based classifier with
long-time and short-time features for music genre classi-
fication. The remainder of this paper is organized as fol-
lows. In section 2, the multiple feature sets used in the pro-
posed method is briefly discussed. In the section 3, we de-
scribe multiple feature sets for audio music, and introduce
the corresponding CS-based classifier. In section 4, exper-
imental settings and results are detailed to demonstrate the
proposed method’s feasibility. Finally, conclusions and fu-
ture work are addressed in the last section.

2. MULTIPLE FEATURE SETS

In the proposed method, multiple feature sets including
long-time and short-time features are adopted for genre
classification. These acoustic features include timbral tex-
ture features, octave-based spectral contrast (OSC), octave-
based modulation spectral contrast (OMSC), modulation
spectral flatness measure (MSFM), and modulation spec-
tral crest measure (MSCM).

Timbral texture features are frequently used in various
music information retrieval system [11]. Some timbral tex-
ture features, described in Table 1, were proposed for au-
dio classification [1]. Among them, MFCC, spectral cen-
troid, spectral rolloff, spectral flux, and zero crossings are

387

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Table 1. Timbral texture features
Feature Description
MFCC Representation of the spectral char-

acteristics based on Mel-frequency
scaling [12]

Spectral centroid The centroid of amplitude spectrum
Spectral rolloff The frequency bin below which

85% of the spectral distribution is
concentrated.

Spectral flux The squared difference of succes-
sive amplitude spectrum.

Zero crossings The number of time domain zero
crossings of the music signal.

Low-energy The percentage of analysis win-
dows that have energy less than the
average energy across the texture
window.

short-time features, thus their statistics are computed over
a texture window. The low-energy feature is a long-time
feature.

Besides these features, OSC and OMSC features are
also considered. OSC considers the spectral peak, spec-
tral valley, and spectral contrast in each subband [2]. The
spectrum is first divided into octave-based subband (as ex-
plained next). Then spectral peaks and spectral valleys
are estimated by averaging across the small neighborhood
around maximum and minimum values of the amplitude
spectrum respectively. OMSC [1] is extracted using long-
time modulation spectrum analysis [13].

In this paper, the amplitude spectrum of a music signal
is divided into octave-based subbands of 0-100Hz, 100Hz-
200Hz, 200Hz-400Hz, 400Hz-800Hz, 800Hz-1600Hz, 1600Hz-
3200Hz, 3200Hz-8000Hz, 8000Hz-22050Hz. Within each
subband, the amplitude spectrum is summed. Then for
each subband, the modulation spectrum is obtained by ap-
plying the discrete Fourier transform (DFT) on the sequence
of the sum of amplitude spectrum.

OMSC is obtained from spectral peaks and spectral con-
trasts of the modulation spectrum. MSFM and MSCM
are obtained from a texture window [4] using the long-
time modulation spectrum [13] that can describe the time-
varying behavior of the subband energy. These features are
also considered as parts of our multiple feature sets.

3. COMPRESSIVE SAMPLING BASED
CLASSIFIER

As inspired by CS and the sparse signal representation the-
ory, here we shall propose a CS-based classifier for genre
classification. First of all, we shall cover the basics of the
CS theory [5].

In Figure 1, consider a signal x (length N ) that is K-
sparse in sparse basis matrix Ψ, and consider also an M ×
N measurement basis matrix Φ, M << N (M is far less
thanN ), where the rows of Φ are incoherent with the columns
of Ψ. In term of matrix notation, we have x = Ψθ, in

Figure 1. The measurement of Compressive Sampling

which θ can be approximated using only K << N non-
zero entries. The CS theory states that such a signal x can
be reconstructed by taking only M = O(K logN) linear,
non-adaptive measurement as follows:

y = Φ · x = Φ ·Ψ · θ = A · θ, (1)

where y represents an M × 1 sampled vector, A = ΦΨ
is an M × N matrix. The reconstruction is equivalent to
finding the signal’s sparse coefficient vectors θ, which can
be cast into a `0 optimization problem.

min ‖θ‖0 s.t. y = Φ · x = A · θ (2)

Unfortunately (2) is in general NP-hard, and an opti-
mization `1 is used to replace the above `0 optimization
[10].

min ‖θ‖1 s.t. y = Φ · x = A · θ (3)

Let the dimension of the extracted feature be denoted
as m, and the extracted feature vector of the j-th music
in the i-th class as νi,j ∈ Rm. Moreover, let us assume
there are sufficient training samples for the i-th class Ai =
[νi,1, ...νi,ni ] ∈ Rm×ni . Then any new (test) sample y ∈
Rm (i.e, the extracted feature of the test music) from the
same class will approximately lie in the linear span of the
training samples associated with object i:

y =
ni∑

i=1

αi,ni
νi,ni

, (4)

for some scalars αi,j(j = 1, .., ni). Since the member-
ship i (or the label) of the test sample is initially unknown,
we define a new matrix A for the entire training set as the
concatenation of the n training samples of all k classes:
A = [A1, ...Ak] Then the linear representation of y can be
rewritten in terms of all training samples as:

y = Ax0 ∈ R, (5)

where x0 = [0, .., 0, αi,1, ..., αi,n, ..., 0, .., 0]T ∈ Rn is a
coefficient vector whose entries are zero except those as-
sociated with the i-th class. As the entries of the vector
x0 encode the identity of the test sample y, it is tempting
to obtain it by solving the equation (4). This is called a
sparse representation based classifier (SRC) [9].
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In SRC, for a new test sample y from one of the classes
in the training set, we first compute its sparse representa-
tion x̂ via (2). Ideally, the nonzero entries in the estimate x̂
will all be associated with the columns of A from a single
object class i, and we can easily assign the test sample y
to that class. To better harness such linear structure, we
instead classify y based on how well the coefficients asso-
ciated with all training samples of each object reproduce
y. For each class i, let δi : Rn → Rn be the characteris-
tic function which selects the coefficients associated with
the i-th class[12]. For x ∈ Rn, δi(x) ∈ Rn is a new vec-
tor whose only nonzero entries are the entries in x that are
associated with class i. Using only the coefficients associ-
ated with the i-th class, one can approximate the given test
sample y as

ŷi = Aδi(x̂) (6)

We then classified y based on these approximations by
assigning it to the object class that minimizes the residual
between y and ŷi:

min ri(y) = ‖yi −Aδ(x̂)‖2 (7)

The proposed CS-based classifier is based on the prin-
ciple of SRC, with an additional random measurement on
the extracted features to reduce the dimension of the input.
According to the CS theory, this reduction can capture the
structure of the features and automatically remove possi-
ble redundancy. The realization of the algorithm is sum-
marized in Table 2.

It should be noted that SRC is a sparse representation
based classifier, without the dimension reduction over the
input signals. Here the random measurement of compres-
sive sampling is used to perform a dimension reduction and
feature extraction. So the classification complexity of CS
based method is remarkably lower than that of SRC. More-
over, the multiple features will also improve the classifi-
cation accuracy. The sparse representation is one part of
compressive sampling. Taking the training samples ma-
trix as the transform matrix will be helpful to the clas-
sification. We will find that the procedure of CS based
classifier are very different from the classical methods, be-
cause steps 3 to 6 are all based on compressive sampling.
Currently many non-linear dimensionality reduction meth-
ods have been proposed, such as Local Coordinates Align-
ment(LCA) and Non-Negative Matrix Factorization(NMF).
Compressive sampling theory provides a random measure-
ment of signals, and proves to be able to keep the informa-
tion of the signals under the condition of enough number of
measurement and incoherence between the measurement
matrix and the transform matrix.

Consequently, it is a natural compressive process of sig-
nals, which can also be regarded as the process of dimen-
sion reduction. CS is different from LCA and NMF due
to that fact that it is a near method, which lend itself to
efficient implementation.

Table 2. CS-based Classification
Algorithm: CS-based Classification
Step 1:
Perform a feature extraction on the music samples
for k classes.
Step 2:
Perform a feature extraction (described in section
2) on the training songs to obtain a matrix of training
samples A = [A1, ...Ak] and calculate the feature y of
the test sample.
Step 3:
Perform a random measurement (the measurement
matrix is a Gaussian random matrix) on the features of the
training samples and the test sample feature to obtain
A′ = H · A and y′ = H · y respectively.
Step 4:
Normalize the columns of A′ to have unit `2 norm
and solve the `1-minimization problem:
min ‖x‖1 s.t. y′ = A′ · x

Step 5:
Compute the residuals
min ri(y′) =

∥∥y′ − A′δi(x̂)
∥∥

2
Step 6:
Output: identity(y) = arg min ri(y′)

Table 3. Classification accuracies achieved by various
methods on GTZAN dataset.

Method Dataset Accuracy Feature
dimensions

MF + CSC (Ours) GTZAN 92.7 64
TPNTF + SRC GTZAN 93.7 135
NTF + SRC GTZAN 92.0 135
MPCA + SRC GTZAN 89.7 216
GTDA + SRC GTZAN 92.1 216

4. EXPERIMENTAL RESULTS

The experiments are divided into three parts. Section 4.1
details our experiment with music genre classification. Sec-
tion 4.2 explores multiple features and dimension reduc-
tion. Section 4.3 investigates the feature extractor in an
noisy environment.

4.1 Music Genre Classification

Our experiments of music genre classification are performed
on GTZAN dataset, which are widely used in the liter-
ature [16]. GTZAN consists of the following ten genre
classes: Classical, Country, Disco, Hip-Hop, Jazz, Rock,
Blues, Reggae, Pop, and Metal. Each genre class contains
100 audio recordings of 30 seconds, with sampling rate of
44.1kHz and resolution of 16 bits.

To evaluate the proposed method for genre classifica-
tion, we set up all the experimental parameters to be as
close as possible to those used in [18]. In particular, the
recognition rate is obtained from 10-fold cross validation.
Table 3 is a comparison table which lists several other ex-
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Figure 2. Genre classification result.(CSC is ours)

isting methods together with their recognition rates, such
as Topology Preserving Non-Negative Matrix Factoriza-
tion (TPNMF), Non-Negative Tensor Factorization (NTF),
Multilinear Principal Component Analysis (MPCA), and
General Tensor Discriminant Analysis (GTDA) [17]. As
can be seen from the table, the proposed method (MF +
CSC) outperforms all the state-of-the-art SRC-based ap-
proaches except one. Moreover, the feature dimension of
the proposed approach is considerably lower than those of
the SRC-based approaches, demonstrating the effective of
CS in extracting features with discriminating power.

This experiment addresses the problem of genre classi-
fication using Compressive Sampling. A CS recovery is
applied on short-term and long-term features that are rele-
vant for genre classification. The measurement vectors are
trained on labeled sets, then the classification is performed
by computing the approximation of unknown samples with
each class-specific features.

Figure 2 plots the recognition rates of the four meth-
ods with respect to no. of training samples per class. (The
no. of training samples were randomly selected from each
class, while the test samples stayed the same.) The fig-
ure demonstrates that multiple features indeed improve the
classification accuracy. Moreover, CSC and SRC do have
consistent higher accuracy than SVM classifier. More im-
portantly, these two methods do not require the long train-
ing process of SVM. In Figure 3 , the computation time
of MF+SRC and MF+CSC is only 30% and 20%, respec-
tively, of SVM, due to dimension reduction in compressive
sampling.

Table 4 shows the confusion matrix of the CS-based
classifier [1]. The columns stands for the actual genre and
the rows for the predicted genre. It can be seen that the
recognition rate of each class is almost evenly distributed.

4.2 Multiple Features Dimension

In this experiment, we combine feature sets (long-time fea-
tures and short-time features, and short-time features only)
and different classifiers (SVM [14], SRC and the proposed
classifier) to investigated their joint effects. The descrip-

Table 4. Confusion matrix of the proposed method
cl co di hi ja ro bl re po me

cl 96 0 0 3 1 0 0 0 0 0
co 0 92 4 0 2 0 0 1 0 1
di 0 4 93 0 0 1 0 1 0 1
hi 3 0 0 94 0 1 1 1 0 0
ja 1 2 0 0 93 0 3 1 0 0
ro 0 0 1 1 0 89 2 3 3 1
bl 0 0 0 1 3 2 90 1 3 0
re 0 1 1 1 1 3 1 92 0 0
po 0 0 0 0 0 3 3 0 94 0
me 0 1 1 0 0 1 0 0 0 97

Figure 3. Genre classification time analysis.(CSC is ours)

tions of these methods and their parameter settings are shown
in Table 5.

All the samples are digitized 44.1 kHz, 16-bit, and mono
signal in preprocessing. The 30-seconds of audio clips af-
ter initial 12 seconds are used. The length of the analysis
window was set to 93ms, and 50% overlap was used for
feature extraction. The length of texture window was set
to 3 second, thus a texture window contains 63 analysis
windows. The 13-dimensional MFCCs are computed in an
analysis window, mean and variance of each dimension are
computed in a texture window.

Table 6 shows the multiple features set and dimension.
As mentioned in section 2, eight octave subbands were
used to compute the OSC, OMSC, MSFM, and MSCM.
They are computed based on octave subband. Thus, the
dimensions of the features are dependent on the number
of octave subband (eight subbands were used in this ex-
periment). The dimensions of the OSC, the OMSC, the
MSFM, and the MSCM are respectively 32, 32, 8 and 8.

4.3 Under Noise Environment

In Figure 2, sparse representation based classifier and CS-
based classifier have similar performance in music genre
classification. The robustness of the system is tested under
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Table 5. Methods used in the experiment
Method Description Parameters
STF+SVM Short-time feature

only and followed
by a SVM classi-
fier

SVM is used and α
takes between 0 and
1. The optimal value
is chosen experien-
tially.

MF+SVM Multiple feature
and followed by a
SVM classifier

As above

MF+CSC Multiple feature
and followed by
a compressive
sampling based
classifier

The sampling rate
takes 67% and the
optimization algo-
rithm is basis pursuit
algorithm.

MF+SRC Multiple feature
and followed by
a sparse repre-
sentation based
classifier

The optimization al-
gorithm is basis pur-
suit algorithm.

Table 6. Multiple features set and dimension
Feature Set Dimension
OMSC Long-time feature 32
Low-energy Long-time feature 1
OSC Short-time feature 32
MFCCs Short-time feature 26
MSFM Short-time feature 8
Spectral centroid Short-time feature 2
Spectral rolloff Short-time feature 2
Spectral flux Short-time feature 2
Zero crossings Short-time feature 2

the following conditions.

• Additive white uniform noise (AWUN)

• Additive white Gaussian noise (AWGN)

• Linear speed change (LSC)

• Band-pass filter (BPF)

The robustness of these two methods was compared, as
shown in Table 7. We can find the average BER of the CSC
system is lower than SRC. CSC has better performance un-
der the conditions of linear speed change, band-pass filter,
and additive white uniform noise.

Figure 4 shows the classification results of different meth-
ods when the Gaussian noise with different variance are
added to the music. From the figure, we can see that the
proposed method is quite immune to noise.

5. CONCLUSIONS

In this study, we have proposed a CS-based classifier and
verified its performance by a common dataset for music
genre classification. Moreover, we have also explored the

Table 7. The comparison result about robustness
CSC SRC

Rate(%) BER Rate (%) BER

AWUN 73.8 0.262 73.5 0.265

AWGN 76.6 0.234 78.8 0.212

LSC 81.7 0.183 64.8 0.352

BPF 71.2 0.288 65.8 0.342

Figure 4. Genre classification result under noise.

possibility of using multiple feature sets for improving the
performance of genre classification. The experiments demon-
strates that the proposed CS-based classification together
with the use of multiple feature sets outperform quite a
few state-of-the-art approaches for music genre classifica-
tion. The success of the proposed CS-based classifier is
attributed to CS’s superb capability in feature extraction
for generating parsimonious representation of the original
signals.

For immediate future work, we will focus on the possi-
bility of porting the proposed CS-based classifier for other
MIR tasks, such as onset detection, beat tracking, and tempo
estimation.
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ABSTRACT

A novel framework for music tagging is proposed. First,
each music recording is represented by bio-inspired audi-
tory temporal modulations. Then, a multilinear subspace
learning algorithm based on sparse label coding is devel-
oped to effectively harness the multi-label information for
dimensionality reduction. The proposed algorithm is re-
ferred to as Sparse Multi-label Linear Embedding Non-
negative Tensor Factorization, whose convergence to a sta-
tionary point is guaranteed. Finally, a recently proposed
method is employed to propagate the multiple labels of
training auditory temporal modulations to auditory tem-
poral modulations extracted from a test music recording
by means of the sparse ℓ1 reconstruction coefficients. The
overall framework, that is described here, outperforms both
humans and state-of-the-art computer audition systems in
the music tagging task, when applied to the CAL500 dataset.

1. INTRODUCTION

The emergence of Web 2.0 and the success of music ori-
ented social network websites, such as last.fm, has revealed
the concept of music tagging. Tags are text-based labels
that encode semantic information related to music (i.e., in-
strumentation, genres, emotions, etc.). They result into a
semantic representation of music, which can be used as
input to collaborative filtering systems assisting users to
search for music content. However, a drawback of such
approach is that a newly added music recording must be
tagged manually first, before it can be retrieved [18, 19],
which is a time consuming and expensive process. There-
fore, an emerging problem in Music Information Retrieval
(MIR) aims to automate the process of music tagging. This
problem is referred to as automatic music tagging or auto-
matic multi-label music annotation.

MIR has mainly focused on content-based classification
of music by genre [11–13] and emotion [14]. These clas-
sification systems effectively annotate music with class la-
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bels, such as “rock”, “happy”, etc., by assuming a prede-
fined taxonomy and an explicit mapping of a music record-
ing onto mutually exclusive classes. However, such as-
sumptions are unrealistic and result into a number of prob-
lems, since music perception is inherently subjective [19].
The latter problems can be overcome by the less restrictive
approach of annotating the audio content with more than
one labels in order to reflect more aspects of music. Rel-
atively little work has been made on multi-label automatic
music annotation compared to the work made on multi-
label automatic image annotation (cf. [3, 20] and the ref-
erences therein). However, various automatic music tag-
ging algorithms have been proposed [2, 6, 8, 17, 19]. For
instance, audio tag prediction is treated as a set of binary
classification problems where standard classifiers, such as
the Support Vector Machines [17] or Ada-Boost [2] can be
applied. Furthermore, methods that resort to probabilis-
tic modeling have been proposed [6, 19]. These methods
attempt to infer the correlations or joint probabilities be-
tween the tags and the low-level acoustic features extracted
from audio.

In this paper, the problem of automatic music tagging is
addressed as a multi-label multi-class classification prob-
lem by employing a novel multilinear subspace learning
algorithm and sparse representations. Motivated by the
robustness of the auditory representations in music genre
classification [11–13], each audio recording is represented
in terms of its slow temporal modulations by a two di-
mensional (2D) auditory representation as in [13]. Con-
sequently, an ensemble of audio recordings is represented
by a third-order tensor. The auditory temporal modulations
do not explicitly utilize the label set (i.e., the tags) of music
recordings. Due to the semantic gap, it is unclear how to
exploit the semantic similarity between the label sets asso-
ciated to two music recordings for efficient feature extrac-
tion within multi-label music tagging. Motivated by the au-
tomatic multi-label image annotation framework proposed
in [20], the semantic similarities between two music record-
ings with overlapped labels are measured in a sparse rep-
resentation based way rather than in one-to-one way as
in [2, 6, 17, 19]. There is substantial evidence in the liter-
ature that the multilinear subspace learning algorithms are
more appropriate for reducing the dimensionality of tensor
objects [13, 16]. To this end, a novel multilinear subspace
learning algorithm is developed here to efficiently harness
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the multi-label information for feature extraction. In par-
ticular, the proposed method incorporates the Multi-label
Linear Embedding (MLE) [20] into the Nonnegative Ten-
sor Factorization (NTF) [11] by formulating an optimiza-
tion problem, which is then solved by the Projected Gra-
dient method [1, 9]. The proposed method is referred to
as Sparse Multi-label Linear Embedding Nonnegative Ten-
sor Factorization (SMLENTF). The SMLENTF reduces
the high-dimensional feature space, where the high-order
data (i.e. the auditory temporal modulations) lie, into a
lower-dimensional semantic space dominated by the label
information. Features extracted by the SMLENTF form
an overcomplete dictionary for the semantic space of mu-
sic. If sufficient training music recordings are available,
it is possible to express any test representation of auditory
temporal modulations as a compact linear combination of
the dictionary atoms, which are semantically close. This
representation is designed to be sparse, because it involves
only a small fraction of the dictionary atoms and can be
computed efficiently via ℓ1 optimization. Finally, tags are
propagated from the training atoms to a test music record-
ing with the coefficients of sparse ℓ1 representation.

The performance of the proposed automatic music tag-
ging framework is assessed by conducting experiments on
the CAL500 dataset [18,19]. For comparison purposes, the
MLE [20] is also tested in this task. The reported experi-
mental results demonstrate the superiority of the proposed
SMLENTF over the MLE, the human performance as well
as that of state-of-the-art computer audition systems in mu-
sic tagging on the CAL500 dataset.

The paper is organized as follows. In Section 2, basic
multilinear algebra concepts and notations are defined. In
Section 3, the bio-inspired auditory representation derived
by a computational auditory model is briefly described.
The SMLENTF is introduced in Section 4. The multi-label
annotation framework, that is based on the sparse repre-
sentations, is detailed in Section 5. Experimental results
are demonstrated in Section 6 and conclusions are drawn
in Section 7.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent
of matrices (i.e., second-order tensors) and vectors (i.e.,
first-order tensors) [7]. Throughout the paper, tensors are
denoted by boldface Euler script calligraphic letters (e.g.
X, A), matrices are denoted by uppercase boldface letters
(e.g. U), vectors are denoted by lowercase boldface letters
(e.g. u), and scalars are denoted by lowercase letters (e.g.
u). The ith row of U is denoted as ui: while its jth column
is denoted as u:j .

Let Z and R denote the set of integer and real numbers,
respectively. A high-order real valued tensor X of order N
is defined over the tensor space RI1×I2×...×IN , where In ∈
Z and n = 1, 2, . . . , N . Each element of X is addressed
by N indices, i.e., xi1i2i3...iN . Mode-n unfolding of tensor
X yields the matrix X(n) ∈ RIn×(I1...In−1In+1...IN ). In
the following, the operations on tensors are expressed in

matricized form [7].
An N -order tensor X has rank-1, when it is decom-

posed as the outer product of N vectors u(1),u(2), . . . ,u(N),
i.e. X = u(1)◦u(2)◦. . .◦u(N). That is, each element of the
tensor is the product of the corresponding vector elements,
xi1i2...iN = u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

for in = 1, 2, . . . , In. The
rank of an arbitrary N -order tensor X is the minimal num-
ber of rank-1 tensors that yield X when linearly combined.
Next, several products between matrices will be used, such
as the Khatri-Rao product denoted by⊙ and the Hadamard
product (i.e. element-wise product) denoted by ∗, whose
definitions can be found in [7] for example.

3. AUDITORY REPRESENTATION OF
TEMPORAL MODULATIONS

A key step for representing music signals in a psycho-
physiologically consistent manner is to resort on how the
audio is encoded in the human primary auditory cortex.
The primary auditory cortex is the first stage of the cen-
tral auditory system, where higher level mental processes
take place, such as perception and cognition [10]. To this
end the auditory representation of temporal modulations
is employed [13]. The auditory representation is a joint
acoustic and modulation frequency representation that dis-
cards much of the spectro-temporal details and focuses on
the underlying slow temporal modulations of the music
signal [15]. Such a representation has been proven very
robust in representing music signals for music genre clas-
sification [12, 13].

The 2D representation of auditory temporal modula-
tions can be obtained by modeling the path of auditory
processing as detailed in [13]. The computational model
of human auditory system consists of two basic process-
ing stages. The first stage models the early auditory sys-
tem. It converts the acoustic signal into an auditory repre-
sentation, the so-called auditory spectrogram, i.e. a time-
frequency distribution along a tonotopic (logarithmic fre-
quency) axis. At the second stage, the temporal modula-
tion content of the auditory spectrogram is estimated by
wavelets applied to each channel of the auditory spectro-
gram. Psychophysiological evidence justifies the discrete
rate r ∈ {2, 4, 8, 16, 32, 64, 128, 256} (Hz) in order to rep-
resent the temporal modulation content of sound [13]. The
cochlear model, employed in the first stage, has 96 filters
covering 4 octaves along the tonotopic axis (i.e. 24 fil-
ters per octave). Accordingly, the auditory temporal mod-
ulations of a music recording are represented by a real-
valued nonnegative second-order tensor (i.e. a matrix) X ∈
RI1×I2

+ , where I1 = If = 96 and I2 = Ir = 8. Hereafter,
let x = vec(X) ∈ RI1·I2

+ = R768
+ denote the lexicographi-

cally ordered vectorial representation of the auditory tem-
poral modulations.

4. SPARSE MULTI-LABEL LINEAR EMBEDDING
NONNEGATIVE TENSOR FACTORIZATION

Multilinear subspace learning algorithms are required in
order to map the high-dimensional original tensor space
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onto a lower-dimensional semantic space defined by the
labels. In conventional supervised multilinear subspace
learning algorithms, such as the General Tensor Discrim-
ininant Analysis [16], it is assumed that data points anno-
tated by the same label should be close to each other in the
feature space, while data bearing different labels should
be far away. However, this assumption is not valid in a
multi-label task, as discussed in [20]. Accordingly, such
subspace learning algorithms will fail to derive a lower-
dimensional semantic space based on multiple labels.

Let {Xi|Ii=1} be a set of I training nonnegative tensors
Xi ∈ RI1

+
×I2×...×IN of order N . We can represent such

a set by a (N + 1)-order tensor Y ∈ RI1×I2×...×IN×IN+1

+

with IN+1 = I . Furthermore, let us assume that the multi-
labels of the training tensor Y are represented by the matrix
C ∈ RV×I

+ , where V indicates the cardinality of the tag
vocabulary. Obviously, cki = 1 if the ith tensor is labeled
with the kth tag in the vocabulary and 0 otherwise. Since,
every tensor object (music recording here) can be labeled
by multiple labels, there may exist more than one non-zero
elements in a label vector (i.e. c:i).

To overcome the limitation of conventional multilinear
subspace learning algorithms, the MLE [20] is incorpo-
rated into the NTF. To this end, two methods exploit the
multi-label information in order to drive semantically ori-
ented feature extraction from tensor objects. First, the ten-
sor objects with the same label set, that is c:i = c:j , are
considered to be fully semantically related and thus the
similarity graph W1 has elements w1

ij = w1
ji = 1 and

0 otherwise. However, in real-world datasets, data sam-
ples with exactly the same label set are rare. In such a
case, the semantic relationship between the data samples
can be inferred via the ℓ1 semantic graph as proposed in
[20]. Let us denote by W2 the ℓ1 semantic graph. W2

contains the coefficients that represent each label vector
c:i as a compact linear combination of the remaining se-
mantically related label vectors. Formally, let us define
Ĉi = [c:1|c:2| . . . |c:i−1|c:i+1| . . . |c:I ]. If V ≪ I the lin-
ear combination coefficients a can be obtained by seeking
the sparsest solution to the undetermined system of equa-
tions c:i = Ĉia. That is, solving the following optimiza-
tion problem:

argmin
a
∥a∥0 subject to Ĉia = c:i, (1)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of
the non-zero entries of a vector. Finding the solution to the
optimization problem (1) is NP-hard due to the nature of
the underlying combinational optimization. In [5], it has
been proved that if the solution is sparse enough, then the
solution of (1) is equivalent to the solution of the following
optimization problem:

argmin
a
∥a∥1 subject to Ĉi a = c:i, (2)

where ∥.∥1 denotes the ℓ1 norm of a vector. (2) can be
solved in polynomial time by standard linear programming
methods [4].

The ℓ1 semantic graph W2 is derived as follows. For
each label vector, Ĉi is constructed and then it is normal-

ized so as its column vectors have unit norm. Then, (2) is
solved by replacing Ĉi with its normalized variant and the
sparse representation vector a is obtained. Next, w2

ij = aj
for 1 ≤ j ≤ i− 1; w2

ij = aj−1 for i+ 1 ≤ j ≤ I . Clearly,
the diagonal elements of W2 are equal to zero.

Let d1ii =
∑

i̸=j w
1
ij be the diagonal elements of the

diagonal matrix D1. Given {Xi|Ii=1}, one can model the
semantic relationships between the tensor objects by con-
structing the multi-label linear embedding matrix, which
exploits W1 and W2 as in [20]: M = D1−W1 + β

2 (I−
W2)T (I −W2), where β > 0 is a parameter, which ad-
justs the contribution of the ℓ1 graph in the multi-label lin-
ear embedding [20]. Let {U(n)|N+1

n=1 } be the mode-n factor
matrices derived by the NTF applied to Y [11]. We define
Z(n) , U(N+1) ⊙ . . .⊙U(n+1) ⊙U(n−1) ⊙ . . .⊙U(1).
One can incorporate the semantic information of tensor ob-
jects into the NTF by minimizing the following objective
function for the SMLENTF in matricized form:

f
(
U(n)|N+1

n=1

)
=

1

2
∥Y(n) −U(n)

[
Z(n)

]T ∥2F
+ λ tr

{[
U(N+1)

]T
MU(N+1)

}
, (3)

where λ > 0 is a parameter, which controls the trade off
between the goodness of fit to the training data tensor Y
and the multi-label linear embedding and ∥.∥F denotes the
Frobenious norm. Consequently, we propose to minimize
(3) subject to the nonnegative factor matrices U(n) ∈ RIn×k

+ ,
n = 1, 2, . . . , N + 1, where k is the desirable number of
rank-1 tensors approximating Y when linearly combined.

Let ∇U(n)f = ∂f
∂U(n) be the partial derivative of the

objective function f(U(n)|N+1
n=1 ) with respect to U(n). It

can be shown that for n = 1, 2, . . . , N we have

∇U(n)f = U(n)
[
Z(n)

]T
Z(n) −Y(n)Z

(n), (4)

while for n = N + 1 we obtain

∇U(N+1)f = U(N+1)
[
Z(N+1)

]T
Z(N+1)

+ λMU(N+1) −Y(N+1)Z
(N+1). (5)

Following the strategy employed in the derivation of the
Projected Gradient Nonnegative Matrix Factorization [9],
we obtain an iterative alternating algorithm for the SM-
LENTF as follows. Given N +1 randomly initialized non-
negative matrices U(n)|N+1

n=1 ∈ RIn×k
+ , a stationary point

of (3) can be found by the update rule:

U
(n)
[t+1] = [U

(n)
[t] − n[t]∇U

(n)

[t]

f ]+, (6)

where t denotes the iteration index and [.]+ is the pro-
jection operator, which is defined element-wise as [.]+ ,
max(., 0). The projection operator ensures that U(n)

[t+1] con-
tains only nonnegative elements after each iteration. The
learning rate n[t] can be determined by the Armijo rule
along the projection arc [1] or more effectively by the Al-
gorithm 4 in [9] in order to ensure the convergence of the
algorithm to a stationary point. The update rule (6) is ex-
ecuted iteratively in an alternating fashion for n = 1, 2,
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. . . , N + 1 until the global convergence criterion is met:

N+1∑
n=1

∥∇P

U
(n)

[t]

f∥F ≤ ϵ
N+1∑
n=1

∥∇
U

(n)

[t]

f∥F , (7)

where [∇P

U
(n)

[t]

f ]ij = min
(
0, [∇

U
(n)

[t]

f ]ij
)

if [U(n)
[t] ]ij = 0;

and [∇P

U
(n)

[t]

f ]ij = [∇
U

(n)

[t]

f ]ij if [U(n)
[t] ]ij ≥ 0. The pa-

rameter ϵ is a predefined small positive number, typically
10−5 [9]. The convergence criterion (7) is employed in or-
der to check the stationarity of the solution set {U(n)

[t] |
N+1
n=1 }

since it is equivalent to the Karush-Kuhn-Tucker optimal-
ity condition [1, 9].

5. MULTI-LABEL ANNOTATION VIA SPARSE
REPRESENTATIONS

In this section, the task of automatic music tagging is ad-
dressed by sparse representations of auditory temporal mod-
ulations projected onto a reduced dimension feature space,
where the semantic relations between them are retained.

For each music recording a 2D auditory representation
of temporal modulations is extracted as is briefly described
in Section 3 and detailed in [13]. Thus, each ensemble
of recordings is represented by a third-order data tensor,
which is created by stacking the second-order feature ten-
sors associated to the recordings. Consequently, the data
tensor Y ∈ RI1×I2×I3

+ , where I1 = If = 96, I2 = Ir = 8,
and I3 = Isamples is obtained. Let Ytrain ∈ RI1×I2×I

+ ,
I < Isamples, be the tensor where the training auditory
temporal modulations representations are stored. By ap-
plying the SMLENTF onto the Ytrain three factor matri-
ces are derived, namely U(1), U(2),U(3), associated to
the frequency, rate, and samples modes of the training ten-
sor Ytrain, respectively. Next, the projection matrix P =
U(2) ⊙ U(1) ∈ R768×k

+ , with k ≪ min(768, I), is ob-
tained. The columns of P span a reduced dimension fea-
ture space, where the semantic relations between the vec-
torized auditory temporal modulations are retained. Con-
sequently, by projecting all the training auditory temporal
modulations onto this reduced dimension space an over-
complete dictionary D = PTYT

train(3) ∈ Rk×I
+ is ob-

tained. Alternatively, the dictionary can be obtained by
D = P†YT

train(3), where (.)† denotes the Moore-Penrose
pseudoinverse.

Given a vectorized representation of auditory temporal
modulations x ∈ R768

+ associated to a test music record-
ing, first is projected onto the reduced dimension space and
a new feature vector is obtained i.e. x̄ = PTx ∈ Rk

+ or
x̄ = P†x ∈ Rk. Now, x̄ can be represented as a compact
linear combination of the semantically related atoms of D.
That is, the test auditory representation of temporal modu-
lations is considered semantically related to the few train-
ing auditory representations of temporal modulations with
non-zero approximation coefficients. This implies that the
corresponding music recordings are semantically related,
as well. Again, since D is overcomplete, the sparse coef-
ficient vector b can be obtained by solving the following

optimization problem:

argmin
b
∥b∥1 subject to Db = x̄. (8)

By applying the SMLENTF, the semantic relations between
the label vectors are propagated to the feature space. In
music tagging, the semantic relations are expected to prop-
agate from the feature space to the label vector space. Let
us denote by ā the label vector of the test music recording.
Then, ā is obtained by

ā = C b. (9)

The labels with the largest values in ā yield the final tag
vector of the test music recording.

6. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed frame-
work in automatic music tagging, experiments were con-
ducted on the CAL500 dataset [18, 19]. The CAL500 is
a corpus of 500 tracks of Western popular music, each of
which has been manually annotated by three human anno-
tators at least, who employ a vocabulary of 174 tags. The
tags used in CAL500 dataset annotation span six semantic
categories, namely instrumentation, vocal characteristics,
genres, emotions, acoustic quality of the song, and usage
terms (e.g. “I would like to listen this song while driving,
sleeping etc.”) [19]. All the recordings were converted to
monaural wave format at a sampling frequency of 16 kHz
and quantized with 16 bits. Moreover, the music signals
have been normalized, so that they have zero mean am-
plitude with unit variance in order to remove any factors
related to the recording conditions.

Following the experimental set-up used in [2,6,19], 10-
fold cross-validation was employed during the experimen-
tal evaluation process. Thus each training set consists of
450 audio files. Accordingly, the training tensor Ytrain ∈
R96×8×450

+ was constructed by stacking the auditory tem-
poral modulations representations. The projection matrix
P was derived from the training tensor Ytrain by employ-
ing either the SMLENTF or the MLE [20]. The length of
the tag vector returned by our system was 10. That is, each
test music recording was annotated with 10 tags. Through-
out the experiments, the value of λ in SMLENTF was em-
pirically set to 0.5, while the value of β used in forming
the matrix M was set to 0.5 for both the SMLENTF and
the MLE.

Three metrics, the mean per-word precision and the mean
per-word recall and the F1 score are employed in order to
assess the annotation performance of the proposed auto-
matic music tagging system. Per-word recall is defined as
the fraction of songs actually labeled with word w that the
system annotates with label w. Per-word precision is de-
fined as the fraction of songs annotated by the system with
label w that are actually labeled with word w. As in [6],
if no test music recordings are labeled with the word w,
then the per-word precision is undefined, accordingly these
words are omitted during the evaluation procedure. The F1
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score is the harmonic mean of precision and recall, that is

F1 = 2 · precision·recall
precision+recall .

In Table 1, quantitative results on automatic music tag-
ging are presented. In particular, CBA refers to the prob-
abilistic model proposed in [6]. MixHier is Turnbull et
al. system based on a Gaussian mixture model [19], while
Autotag refers to Bertin-Mahieux et al. system proposed
in [2]. Random refers to a baseline system that annotates
songs randomly based on tags’ empirical frequencies. Even
though the range of precision and recall is [0, 1], the afore-
mentioned metrics may be upper-bounded by a value less
than 1 if the number of tags appearing in the ground truth
annotation is either greater or less than the number of tags
that are returned by the automatic music annotation sys-
tem. Consequently, UpperBnd indicates the best possible
performance under each metric. Random and UpperBnd
were computed by Turnbull et al. [19], and give a sense
of the actual range for each metric. Finally, Human indi-
cates the performance of humans in assigning tags to the
recordings of the CAL500 dataset. All the reported per-
formance metrics are means and standard errors (i.e. the
sample standard deviation divided by the sample size) in-
side parentheses computed from 10-fold cross-validation
on the CAL500 dataset.

System Precision Recall
CBA [6] 0.286 (0.005) 0.162 (0.004)
MixHier [19] 0.265 (0.007) 0.158 (0.006)
Autotag [2] 0.281 0.131
UpperBnd [19] 0.712 (0.007) 0.375 (0.006)
Random [19] 0.144 (0.004) 0.064 (0.002)
Human [19] 0.296 (0.008) 0.145 (0.003)

Table 1. Mean annotation results on the CAL500 Dataset.

In Figure 1, the mean precision, the mean recall, and
the F1 score is plotted as a function of the feature space
dimensionality derived by the MLE and the SMLENTF.
Clearly, the SMLENTF outperforms the MLE for all the
dimensions of the feature space. The best music annotation
performance with respect to the mean per-word precision
and the mean per-word recall is summarized in Table 2.
The numbers inside parentheses are the standards errors
estimated thanks to the 10-fold cross-validation.

System Dimension (k) Precision Recall F1 Score
MLE [20] 150 0.346 (0.004) 0.154 (0.002) 0.2128
SMLENTF 150 0.371 (0.003) 0.165 (0.002) 0.2291

Table 2. Best mean annotation results obtained by MLE
and SMLENTF on the CAL500 Dataset.

By inspecting Table 1, Table 2, and Figure 1 SMLENTF
clearly exhibits the best performance with respect to the
per-word precision and per-word recall among the state-
of-the-art computer audition systems that is compared to,
no matter what the feature space dimensionality is. Fur-
thermore, MLE outperforms the CBA, the MixHier, and
the Autotag system with respect to the per-word precision,
while in terms of the per-word recall its performance is
comparable to that achieved by the MixHier. In addition

both the SMLENTF and the MLE perform better than hu-
mans with respect to the per-word precision and the per-
word recall in the task under study. These results make
our framework the top performing system in music tag-
ging motivating further research. The success of the pro-
posed system can be attributed to the fact that the seman-
tic similarities between two music signals with overlapped
labels that are measured in a sparse representation-based
way rather than in an one-to-one way as in [2, 6, 17, 19] by
applying the multi-label linear embedding and the sparse
representations both in the features extraction and the clas-
sification process.

7. CONCLUSIONS

In this paper, an appealing automatic music tagging frame-
work has been proposed. This framework resorts to audi-
tory temporal modulations for music representation, while
multi-label linear embedding as well as sparse represen-
tations have been employed for multi-label music annota-
tion. A multilinear subspace learning technique, the SM-
LENTF, has been developed, which incorporates the se-
mantic information of the auditory temporal modulations
with respect to the music tags into the NTF. The results re-
ported in the paper outperform humans’ performance as
well as any other result obtained by the state-of-the-art
computer audition systems in music tagging applied to the
CAL500 dataset.

In many real commercial applications, the number of
available tags is large. Usually most of the tags are asso-
ciated to a small number of audio recordings. Thus, it is
desirable the automatic music tagging systems to perform
well in such small sets. Future research will address the
performance of the proposed framework under such condi-
tions.

8. REFERENCES

[1] D. P. Bertsekas: Nonlinear Programming, Athena Scientific,
Belmont, MA, 1999.

[2] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere: “Au-
totagger: A Model for Predicting Social Tags from Acoustic
Features on Large Music Databases,” J. New Music Research,
Vol. 37, No. 2, pp. 115-135, 2008.

[3] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos:
“Supervised Learning of Semantic Classes for Image Anno-
tation and Retrieval,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, Vol. 29, No. 3, pp. 394–410, 2007.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders: “Atomic
Decomposition by Basis Pursuit,” SIAM J. Sci. Comput., Vol.
20, No. 1, pp. 33–61, 1998.

[5] D. L. Donoho, and X. Huo: “Uncertainty Principles and Ideal
Atomic Decomposition,” IEEE Trans. Information Theory,
Vol. 47, No. 7. pp. 2845–2862, 2001.

[6] M. Hoffman, D. Blei, and P. Cook: “Easy as CBA: A Simple
Probabilistic Model for Tagging Music,” Proceedings of the
10th Int. Symp. Music Information Retrieval, Kobe, Japan,
2009.

[7] T. Kolda and B. W. Bader: “Tensor Decompositions and Ap-
plications,” SIAM Review, Vol. 51, No. 3, pp. 455–500, 2009.

397

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



50 75 100 125 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Feature Space Dimension

M
ea

n 
P

re
ci

si
on

 

 
MLE
SMLENTF

50 75 100 125 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature Space Dimension

M
ea

n 
R

ec
al

l

 

 
MLE
SMLENTF

(a) (b)

50 75 100 125 150
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Feature Space Dimension

F
1 S

co
re

 

 
MLE
SMLENTF

(c)

Figure 1. Mean annotation results for the MLE and the SMLENTF with respect to (a) the mean precision, (b) the mean
recall, and (c) the F1 score on the CAL500 dataset.

[8] E. Law, K. West, M. Mandel, M. Bay, and J. S. Downie:
“Evaluation of Algorithms Using Games: The Case of Music
Tagging,” Proceedings of 10th Int. Symp. Music Information
Retrieval, Kobe, Japan, pp. 387–392, 2009.

[9] C. J. Lin: “Projected Gradient Methods for Nonnegative Ma-
trix Factorization,” Neural Computation, Vol. 19, No. 10, pp.
2756–2779, 2007.

[10] R. Munkong and J. Biing-Hwang: “Auditory Perception and
Cognition,” IEEE Signal Processing Magazine, Vol. 25, No.
3, pp. 98–117, 2008.

[11] Y. Panagakis, C. Kotropoulos, and G. R. Arce: “Music Genre
Classification Using Locality Preserving Non-Negative Ten-
sor Factorization and Sparse Representations,” Proceedings
of 10th Int. Symp. Music Information Retrieval, Kobe, Japan,
pp. 249–254, 2009.

[12] Y. Panagakis, C. Kotropoulos, and G. R. Arce: “Music Genre
Classification via Sparse Representation of Auditory Tempo-
ral Modulations,” Proceedings of EUSIPCO 2009, Glasgow,
Scotland, 2009.

[13] Y. Panagakis, C. Kotropoulos, and G. R. Arce: “Non-
Negative Multilinear Principal Component Analysis of Audi-
tory Temporal Modulations for Music Genre Classification,”
IEEE Trans. Audio Speech and Language Technology, Vol.
18, No. 3, pp. 576–588, 2010.

[14] S. Rho, B. Han, and E. Hwang: “SVR-based Music Mood
Classification and Context-based Music Recommendation,”
Proceedings of 17th ACM Int. Conf. Multimedia, pp. 713–
716, Beijing, China, 2009.

[15] S. Sukittanon, L. E. Atlas, and J. W Pitton: “Modulation-
scale Analysis for Content Identification,” IEEE Trans. Signal
Processing, Vol. 52, No. 10, pp. 3023–3035, 2004.

[16] D. Tao, X. Li, X. Wu, and S. J. Maybank: “General Tensor
Discriminant Analysis and Gabor Features for Gait Recog-
nition,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, Vol. 29, No. 10, pp. 1700–1715, 2007.

[17] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas:
“Multilabel Classification of Music into Emotions,” Proceed-
ings of 9th Int. Symp. Music Information Retrieval, Philadel-
phia, USA, pp. 325–330, 2008.

[18] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet: “To-
wards Musical Query-By-Semantic-Description Using the
CAL500 Data Set,” Proceedings of 30th ACM Int. Conf. Re-
search and Development in Information Retrieval, Amster-
dam, The Netherlands, pp. 439-446, 2007.

[19] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet: “Se-
mantic Annotation and Retrieval of Music and Sound Ef-
fects,” IEEE Trans. Audio Speech and Language Processing,
Vol. 16, No. 2, pp. 467–476, 2008.

[20] C. Wang, S. Yan, L. Zhang, and H.-J. Zhang: “Multi-label
Sparse Coding for Automatic Image Annotation,” Proceed-
ings of IEEE Int. Conf. Computer Vision and Pattern Recog-
nition, Florida, USA, pp. 1643-1650, 2009.

398

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



LEARNING TAGS THAT VARY WITHIN A SONG

Michael I Mandel, Douglas Eck, Yoshua Bengio
LISA Lab, Université de Montréal
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ABSTRACT

This paper examines the relationship between human gener-
ated tags describing different parts of the same song. These
tags were collected using Amazon’s Mechanical Turk ser-
vice. We find that the agreement between different people’s
tags decreases as the distance between the parts of a song
that they heard increases. To model these tags and these
relationships, we describe a conditional restricted Boltz-
mann machine. Using this model to fill in tags that should
probably be present given a context of other tags, we train
automatic tag classifiers (autotaggers) that outperform those
trained on the original data.

1. INTRODUCTION

Social tags are short free-form descriptions of music that
users apply to songs, albums, and artists. They have proven
to be a popular way for users to organize and discover music
in large collections [5]. There remain, however, millions
of tracks that have never been tagged by a user that cannot
be included in these systems. Automatic tagging, based on
an analysis of the audio of these tracks and user tagging
behavior, could enable them to be included in these systems
immediately. To this end, this paper explores the relation-
ship between audio and the tags that humans apply to it,
especially at different time scales and at different points
within the same track.

We perform this examination in the context of a “Human
Intelligence Task” (HIT) on the Mechanical Turk website 1 ,
where users are paid small amounts of money to perform
tasks for which human intelligence is required. Mechan-
ical Turk has been used extensively in natural language
processing [10] and vision [11, 13], but to our knowledge
has not been used in music information retrieval before.
Mechanical Turk is one means to the end of human compu-
tation, the field of cleverly harnessing human intelligence to
solve computational problems. This field has been growing
in popularity recently, especially in the context of games
for collecting descriptions of music [6, 7, 12]. While these

1 http://mturk.com
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games have proven popular among researchers for collect-
ing these data, they require significant investment of devel-
opment time and effort in order to attract and retain players.
By using Mechanical Turk, a researcher can trade a little
extra money for significant savings in development time.

This paper makes three contributions. First, in Section 2
we discuss data collection and analysis from a new source,
Mechanical Turk, and Section 2.1 shows that clips from
different parts of the same song tend to be described dif-
ferently from one another. Second, Section 3.1 presents
a probabilistic model of tags and their relationships with
each other to combat the sparsity of music tagging data.
Section 3.3 shows that explicitly including information link-
ing tags from the same user, track, and clip improves the
likelihood of held out data under the model. Finally, we use
this model to “smooth” tag data, i.e. to infer tags that were
not provided, but perhaps should have been, given the tags
that were. Section 4 shows that these smoothed tags are
more “learnable” from the audio signal than the raw tags
provided directly by the users, especially when fewer users
have seen a given clip.

2. DATA COLLECTION

Users of the Mechanical Turk website, known as “turk-
ers”, were asked to listen to a clip from a song and de-
scribe its unique characteristics using between 5 and 15
words. The task was free response, but to provide some
guidance, we requested tags in 5 categories: Styles/Genres,
Vocals/Instruments, Overall sound/feel (global qualities like
production and rhythm), Moods/Emotions, Other (sounds
alike artists, era, locale, song section, audience, activities,
etc.). In order to avoid biasing the turkers’ responses, no
examples of tags in each category were provided. Turkers
were paid between $0.03 and $0.05 per clip, on which they
generally spent about one minute.

The music used in the experiment was collected from
music blogs that are indexed by the Hype Machine 2 . We
downloaded the front page of each of the approximately
2000 blogs and recorded the URLs of any mp3 files linked
from them, a total of approximately 17,000 mp3s. We
downloaded 1500 of these mp3s at random, of which ap-
proximately 700 were available, error free, and at least 128
kbps while still being below 10 megabytes (to avoid DJ sets,
podcasts, etc). Of these, we selected 185 at random.

From each of these 185 tracks, we extracted five 10-
second clips evenly spaced throughout the track. We pre-

2 http://hypem.com/list
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User Track Clip Tags Num pairs

+ + + 6.0370 ± 0.0290 2,566
+ + − 2.3797 ± 0.0511 690
+ − − 1.2006 ± 0.0026 227,006
− + + 1.1137 ± 0.0142 4,838
− + − 1.0022 ± 0.0083 13,560
− − − 0.5240 ± 0.0004 3,702,481

Table 1. Average number of tags (± 1 standard error)
shared by HITs with various characteristics in common and
number of such pairs of HITs. A + indicates that the clips
shared that characteristic, a − that they differed in it.

sented these clips to turkers in a random order, and gener-
ally multiple clips from the same track were not available
simultaneously. Each clip was seen by 3 different turkers.

Mechanical Turk gives the “requester” the opportunity
to accept or reject completed HITs either manually or au-
tomatically. In order to avoid spammers, we designed a
number of rules for automatically rejecting HITs based on
analyses of each and all of a user’s HITs. Individual HITs
were rejected if: (1) they had fewer than 5 tags, (2) a tag
had more than 25 characters, or (3) less than half of the tags
were found in a dictionary of Last.fm tags. All of a users’
HITs were rejected if: (1) that user had a very small vocabu-
lary compared to the number of HITs they performed (fewer
than 1 unique tag per HIT), (2) they used any tag too fre-
quently (4 tags were used in more than half of their HITs),
(3) they used more than 15% “stop words” like nice, music,
genre, etc., or (4) at least half of their HITs were rejected
for other reasons. The list of stop words was assembled by
hand from HITs that were deemed to be spam.

We pre-processed the data by transforming tags into a
canonical form. We normalized the spelling of decades and
the word “and”, removed words like “sounds like” from the
beginning of tags, removed words like “music”, “sound”,
and “feel” from the ends of tags, and removed punctuation.
We also stemmed each word in the tag so that different forms
of the same word would match each other, e.g. drums,
drum, and drumming.

We posted a total of 925 clips, each of which was to be
seen by 3 turkers for a total of 2775 HITs. We accepted
2566 completed HITs and rejected 305 HITs. Some of
the rejected HITs were re-posted and others were never
completed. The completed HITs included 15,500 (user, tag,
clip) triples from 209 unique turkers who provided 2100
unique tags. Of these tags, 113 were used by at least 10
turkers, making up 13,000 of the (user, tag, clip) triples.
We paid approximately $100 for these data, although this
number doesn’t include additional rounds of data collection
and questionnaire tuning.

2.1 Co-occurrence analysis

The first analysis that can be applied to these data is a simple
counting of the number of tags shared by pairs of HITs. By
categorizing the relationships between two HITs in terms of
the users, tracks, and clips involved, an interesting picture
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Figure 1. Average number of tags above the baseline shared
by HITs from the same track as a function of the separation
between the clips measured as % of a track.

emerges. Table 1 shows the first analysis of the number of
shared tags for all possible pairs of HITs grouped by the
relationships of these characteristics.

The bottom row of the table shows that HITs with noth-
ing in common still share 0.5240 tags on average because
of the distribution of tags and music in this dataset. The
second line from the bottom shows that HITs involving dif-
ferent users and different clips within the same track share
1.002 tags on average. And the third to last row shows that
HITs with different users, but the same clip share 1.11 tags
on average, significantly more than HITs that only share
the same track. This same pattern also holds for HITs from
the same user, but with higher co-occurrences. The large
difference between HITs from the same user and HITs from
different users can probably be attributed to the lack of
feedback to the users in the task, allowing somewhat id-
iosyncratic vocabularies to perpetuate. Note that the top
row of the table shows the average number of tags per HIT.

A related analysis can be performed measuring the de-
pendence of tag co-occurrence on the distance between
clips in the same track. Figure 1 shows the average tag co-
occurrence of two clips in the same track above the baseline
level of co-occurrences for two clips from different tracks.
It reveals that the number of tags shared by clips decreases
as the clips get farther apart. The error bars show that this
result is not quite statistically significant, but it is still a no-
table trend. Results are similar for HITs from the same user
and for cosine similarity instead of plain co-occurrence.

3. DATA MODELING

While stemming can make connections between certain
tags in the dataset, it is only able to do this for tags which
are syntactically related to one another. Another kind of
model is required to capture relationships between tags like
indie and rock. We choose to capture these relationships
using a restricted Boltzmann machine (RBM), a generative
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probabilistic model. The RBM observes binary vectors
representing the tags that a single user gave to a single clip.
Once trained, the model can compare the relative likelihood
of two such observations and can draw samples from the
observation distribution.

3.1 Conditional restricted Boltzmann machine

More formally, an RBM [9] is a probabilistic model of the
relationship between binary visible units, denoted, vi and
binary hidden units, denoted hj . Conditioned on the visible
units, the hidden units are independent of one another, and
vice-versa. The joint probability density function is

p(v, h) =
1

Z
exp

(
vTWh+ bT v + cTh

)
(1)

where the partition function Z ≡
∑

v,h p(v, h) is compu-
tationally intractable (exponential either in the number of
visibles or of hiddens). The likelihood of the observation
v is obtained by marginalizing over h: p(v) =

∑
h p(v, h),

and can be computed easily up to Z. In this paper, we
condition the model on “auxiliary” hidden units, a,

p(v, h | a) = 1

Z
exp

(
vTWh+ vTWaa+ bT v + cTh

)
(2)

where the partition function is now conditioned on a as
well, Z =

∑
v,h p(v, h | a). Conditional RBMs have been

used for collaborative filtering [8], although in that case the
conditioning variables influenced the hidden states, whereas
in our model they directly influence the visible units. The
matrices W and Wa and the bias vectors c and b are learned
using the contrastive divergence algorithm [4]. In addition
to the normal contrastive divergence updates, we place an
L1 penalty on Wa to promote sparseness of its entries.

In practice, the vector a is set a priori to represent the
user, the artist, the track, and/or the clip using a so-called
one hot representation. For example, each user has their
own column of the Wa matrix, providing a different bias
to the tag probabilities. We sometimes refer to the quantity
Waa as the auxiliary biases for this reason. Each user in
effect has a different baseline probability for the visible
units, meaning that they tend to use the tags in different
proportions. Because the entries of the Wa matrix are L1-
penalized, the user columns tend to represent discrepancies
between a user’s tags and the global average, which is cap-
tured in the bias vector b. Thus the Wa matrix is like a term
frequency-inverse document frequency (TF-IDF) represen-
tation (see e.g. [14]) of the variables that it is modeling, but
learned in a more probabilistically grounded way.

3.2 Purely textual datasets

We apply this model to three different tag datasets with the
goal of discovering relationships between tags, and the tags
that are used unexpectedly frequently or infrequently on
particular items. The first dataset is purely textual, from
Last.fm [1]. It includes (artist, tag) pairs, along with the
number of times that that pair appears. The second dataset,
from MajorMiner [7], includes (clip, user, tag) triples and

also includes the audio associated with each clip. The third
dataset, from the Mechanical Turk experiments described
in Section 2, similarly includes (clip, user, tag) triples and
audio. While it is smaller than the MajorMiner data, it
includes many more clips per track, and so can provide per-
haps more insight into clip-level and track-level modeling.

The dataset from [1] was collected from Last.fm in the
spring of 2007. It includes the tags that users applied to
approximately 21,000 unique artists and the number of
users who applied each tag to each artist. There are ap-
proximately 100,000 unique tags, and 7.2 million (artist,
tag) pairs, including duplicates. To reduce the size of the
required model, we discarded tags that had been applied
to fewer than 8000 artists (98 tags), and only kept the 200
most frequently tagged artists.

In order to transform this dataset into a form that can be
used by the RBM model, we simulated taggings from indi-
vidual users. We characterized each artist with independent
Bernoulli probabilities over each tag and drew multi-tag
samples from this distribution. The probability of each tag
was proportional to the number of times each tag was ap-
plied to an artist, so the counts were first normalized to sum
to 1. These normalized counts were multiplied by 5 (and
truncated to prevent probabilities greater than 1) so that the
expected total number of tags was 5, a number that a typical
user might provide. To create the dataset, we repeatedly
drew an artist at random and simulated a user’s tagging of
that artist. The artists’ tag probabilities provided a baseline
against which to measure the estimation of the relevant Wa

columns, which only modeled artist auxiliary information.
The dataset from [7] was collected from the MajorMiner

music labeling game over the course of the last three years.
It includes approximately 80,000 (clip, user, tag) triples
with 2600 unique clips, 650 unique users, and 1000 unique
tags. Each observation was encoded as a binary vector
indicating the tags that a single user applied to a single clip.
The a vector in this case indicated both the clip, the track
that it came from, and the user. On average, each track was
represented by fewer than two clips.

Finally, this new Mechanical Turk dataset provides (clip,
user, tag) triples along with relationships between clips and
tracks. While it contains the fewest triples, it contains the
most structure of the datasets because by design there are
five clips per track. To model it, the a vector represents the
user, the track, and the clip, so there is a separate auxiliary
term learned for each of them.

3.3 Textual experiments

Qualitative experiments on the Last.fm dataset showed that
our model successfully learned the auxiliary inputs, i.e.
the Wa matrix acted as a sort of TF-IDF model for tags.
Specifically, the W matrix modeled relationships between
pairs of tags, the b vector modeled overall popularity of
individual tags, and the columns of Wa modeled any tags
that were unusually prevalent or absent for an artist given
its other tags. For example, Nirvana’s Wa column included
a large value for grunge, and the Red Hot Chili Peppers’
included a large value for funk, both of which might not
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have been expected from their other tags like rock and
alternative. Similarly, the Beatles have a negative bias for
seen live because presumably fewer Last.fm listeners have
seen the Beatles live than other artists tagged rock and pop.
These issues are addressed more quantitatively below.

All three of the datasets described in Section 3.2 can be
used in a leave-one-out tag prediction task. In this task,
the relative probability of a novel observation is compared
to that of the same observation with one bit flipped (one
tag added or deleted). If the model has captured important
structure in the data, then it will judge the true observation
to be more likely than the bit-flipped version of it. This ratio
is directly connected to the so-called pseudo-likelihood of
the test set [2]. Because it is a ratio of probabilities, it does
not require the computation of the partition function, Z,
which is very computationally intensive. Mathematically,
the pseudo-likelihood is defined as

PL(v | a) ≡
∏
i

p(vi | v\i, a) =
∏
i

p(v | a)
p(v | a) + p(ṽi | a)

(3)
where vi is the ith visible unit, v\i is all of the visible units
except for the ith unit, and ṽi is the observation v with the
ith bit flipped. Even though our observation vectors are
generally very sparse (∼4% of the bits were 1s), the 1s are
more important than the 0s, so we compute the average log
pseudo-likelihood over the 1s and 0s separately and then
average those two numbers together. This provides a better
indication of whether the model can properly account for
the tags that are present, than the tags that aren’t present.

This leave-one-out tag prediction can be done with any
model that computes the likelihood of tags. Thus we can
train models with different combinations of auxiliary vari-
ables, or different models entirely, as long as they can pre-
dict the likelihood of novel data. A baseline comparison
to all of our RBMs is a factored model that estimates the
probability of each tag independently from training data
and then measures the likelihood of each tag independently
on test data. Because of the independence of the variables,
in this case the pseudo-likelihood is identical to the true
likelihood.

We performed this experiment with the textual compo-
nent of these three datasets, dividing the data 60-20-20 into
training, validation, and test sets. The observations were
shuffled, but then rearranged slightly to ensure that all of the
auxiliary classes appeared at least once in the training set to
avoid “out-of-vocabulary” problems. We ran a grid search
over the number of hidden units, the learning rate, and the
regularization coefficients using only the track-based aux-
iliary variables, those with the most even coverage. This
grid search involved training approximately 500 different
models, each taking 10 minutes on average. We selected the
system with the best hyperparameters based on the pseudo-
likelihood of the validation dataset. Once we had selected
reasonable hyperparameters, we ran experiments using all
combinations of the auxiliary variables with the other hyper-
parameters held constant. Five different random divisions
of the data allowed the computation of standard errors.

The log pseudo-likelihoods of the test datasets under

Auxiliary info
Dataset User Track Item log(PL)± stderr

MajorMiner + + + −0.9179±0.0088
MajorMiner + + − −0.9189±0.0070
MajorMiner + − − −0.9416±0.0074
MajorMiner − − − −1.0431±0.0095
MajorMiner baseline −1.4029±0.0024

Mech. Turk + + − −0.893 ± 0.015
Mech. Turk + − − −0.904 ± 0.013
Mech. Turk + + + −0.914 ± 0.012
Mech. Turk − − − −1.039 ± 0.013
Mech. Turk baseline −1.300 ± 0.007

Last.fm − − + −0.5623±0.0042
Last.fm − − − −0.7082±0.0029
Last.fm baseline −1.1825±0.0018

Table 2. Average per-bit log pseudo-likelihood (less neg-
ative is better) for restricted Boltzmann machines condi-
tioned on different types of auxiliary information. A +
indicates that the auxiliary information was present, a − in-
dicates that it was absent. The baseline system is a factored
model evaluated in the same way.

these systems are shown in Table 2. The results are not
strictly comparable across datasets because they involved
slightly different numbers of visible units. The results are
shown on a per-bit basis, however, to facilitate compari-
son. These results show first that non-conditional restricted
Boltzmann machines (rows with three −s) are much more
effective than the factored models at modeling test data.
This is because in addition to modeling the relative frequen-
cies of tags, the RBM also models the relationships between
tags through its hidden units. Conditioning the RBM on
auxiliary information (rows with at least one +) further
improves the pseudo-likelihoods. Specifically, it seems that
the most useful auxiliary variable is the identity of the user,
but the identity of the track helps as well. Including clip
information is slightly detrimental, although not statistically
significantly so, possibly because it introduces a large num-
ber of extra parameters to estimate in the Wa matrix from
few observations.

4. AUTOTAGGING EXPERIMENTS

The final set of experiments involves not just the textual
tags, but also the audio for both the MajorMiner dataset
and this new data collected from Mechanical Turk. In this
experiment, we measure the usefulness of the RBM model
from Section 3.1 for “smoothing” the tag data. Specifically,
we create two datasets: the first, labeled “raw”, consists of
just the original (clip, user, tag) triples in the dataset. The
second, labeled “smoothed”, consists of labels imputed by
the RBM trained with all of the available auxiliary informa-
tion. For each clip, we drew 1000 samples from the RBM
conditioned on that sample’s auxiliary information, but with
no user indicated. We factored out the user so the taggers
were trained from a general point of view, not that of any
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Mechanical Turk

Tested
Trained Raw Smoothed

Raw 56.87 ± 0.52 56.56 ± 0.36
Smoothed 61.43 ± 0.51 63.40 ± 0.35

MajorMiner

Tested
Trained Raw Smoothed

Raw 65.97 ± 0.49 60.58 ± 0.35
Smoothed 66.67 ± 0.49 63.09 ± 0.35

Table 3. Average classification accuracy and standard errors of autotaggers trained and tested on different tag labelings for
Mechanical Turk and MajorMiner data. The tags were either raw or smoothed from RBM samples.

particular user. Because the model assumes the effects of
user, track, and clip are additive on the tag probabilities,
the effect of one can be factored out by not adding it. This
is further ensured by the regularization of the Wa matrix,
which forces many of the elements of the matrix to 0 and
the rest to be small.

To compare these datasets, we hold the acoustic fea-
tures constant, but change the labels used to train and test
classifiers. We first split the data into 5 cross-validation
folds. Then the positive and negative test examples for a
particular tag are the top- and bottom-ranked clips from
one cross-validation fold. The training examples are the
top- and bottom-ranked clips excluding that fold. Because
the cross-validation breakdowns are preserved across tag
sets, it is possible to train on one tag set and test on another.
For the smoothed dataset, we select the top and bottom 100
examples for each tag. For the raw counts, we choose for
each tag the smaller of the top 100 examples or all of the
examples verified by at least 2 people.

The autotaggers are inspired by those from [7], which
use timbral and rhythmic features and a support vector
machine (SVM) classifier. For this experiment we use Lib-
SVM’s ν-SVM as our SVM implementation, with probabil-
ity estimates and a linear kernel [3]. Performance with the
Gaussian kernel was similar. One binary SVM is trained
per tag using a balanced number of positive and negative
examples selected in order of tag affinity in the training set.
Performance is measured in terms of average accuracy on a
test dataset that is balanced in terms of positive and negative
examples to set a constant baseline of 50% for a randomly
guessing classifier. This metric is more appropriate than
overall classification accuracy for tasks like autotagging
where it is important to recognize positive examples in the
presence of a large number of negative examples. To avoid
the “album effect”, the cross-validation folds were assigned
so that clips from the same track were in the same fold
in the Mechanical Turk data and that clips from the same
album were in the same fold in the MajorMiner data.

The results of these experiments are shown in Table 3
and Figure 2. Each row of the tables represents a training
tag labeling and each column represents a test tag labeling.
The tables show these accuracies averaged over the 95 tags
used by the most people on each dataset. The first column
of each table shows the result of training on different tag
labelings and testing on the raw tags. For both the Ma-
jorMiner and Mechanical Turk datasets, smoothing with the
RBM improves test performance on the raw, user-supplied
tags, although for the MajorMiner dataset, this difference

is not statistically significant. The second column of each
table indicates the performance of both models in predicting
the smoothed data. In this case as well, the smoothed data
trains more accurate models.

The diagonals of these tables show the “learnability” of
the tag labelings. For the Mechanical Turk dataset, the
smoothed tag set is more learnable than the raw tags. For
the MajorMiner dataset, however, the raw tags are more
learnable than the smoothed tags. These accuracies may
not be directly comparable, however, because the measure-
ments differ in both the models used and the test data. The
difference in accuracy might indicate that the smoothing is
less necessary in the MajorMiner dataset due to its larger
size and larger number of repeated (clip, tag) pairs.

Figure 2 shows the autotag classification accuracy on
the raw tags when trained with the raw and smoothed tags.
The tags shown are the 50 used by the most people, and
are sorted in the plots by the performance of the best sys-
tem, that trained on the smoothed tags. For the Mechanical
Turk data, shown in Figure 2(a), these smoothed tags train
better classifiers almost across the board. Certain tags per-
form slightly better when trained on the raw data, but not
significantly so. Smoothing is particularly useful for train-
ing angry, violin, and country, where autotaggers trained
from the raw tags perform at chance levels.

For the MajorMiner data, shown in Figure 2(b), the
smoothed tags and the raw tags perform similarly to one an-
other. The smoothed tags train better autotaggers for club,
folk, pop, and funk, while the raw tags train better auto-
taggers for silence, strings, country, and acoustic. The
occurrence of the silence tag was due to the inclusion of a
few broken clips in the game, which makes it a very specific,
context-dependent tag that the RBM might not be able to
generalize. It is not clear why performance on country is
so different between the two datasets. It could be because in
the Mechanical Turk dataset the top co-occurring tags with
country are guitar 61% of the time and folk 27%, while in
MajorMiner, they are guitar 44% of the time, female 27%,
and male 26%. Thus in Mechanical Turk smoothing gives
better results for country because it occurs more frequently
with guitar and occurs with the more informative tag folk.

5. CONCLUSION

This paper has discussed the relationships between tags and
music at a sub-track scale. We found that Mechanical Turk
was a viable means of collecting ground truth tag data from
humans, although the lack of the immediate feedback of a
game might have contributed to lower inter-user agreement.
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Figure 2. Accuracy of autotaggers for the top 50 tags in the Mechanical Turk and MajorMiner datasets. The autotaggers
were trained on raw and smoothed tags and tested on the raw, human generated tags. Error bars show 1 standard error.

We also found that different parts of the same song tend
to be described differently, especially as they get farther
from one another. By modeling these differences with a
conditional restricted Boltzmann machine, we were able
to recover false negative tags in the user-generated data
and use these data to more effectively train autotaggers,
especially in smaller datasets. In the future we will ex-
plore additional models of tag-tag similarity, joint tag-audio
models, and models of tagging that take into account the
relationships between clips’ different distances from one
another.
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ABSTRACT 

High-level semantics such as “mood” and “usage” are 
very useful in music retrieval and recommendation but 
they are normally hard to acquire. Can we predict them 
from a cloud of social tags? We propose a semantic iden-
tification and reasoning method: Given a music taxonomy 
system, we map it to an ontology’s terminology, map its 
finite set of terms to the ontology’s assertional axioms, 
and then map tags to the closest conceptual level of the 
referenced terms in WordNet to enrich the knowledge 
base, then we predict richer high-level semantic informa-
tion with a set of reasoning rules. We find this method 
predicts mood annotations for music with higher accuracy, 
as well as giving richer semantic association information, 
than alternative SVM-based methods do. 

1. INTRODUCTION 

Semantic information extraction of music is given more 
and more emphasis based on the explosive growth of mu-
sic resources. However, despite its high importance in a 
wide range of applications, there are various challenges in 
extracting semantic information from different existing 
resources. We sum up these existing information re-
sources as three main classes: 

Professional databases, web services, ontologies: 
These resources are created by professional data entry 
staff, editors, and writers.  They commonly consist of ba-
sic editorial metadata such as names, titles, product num-
bers, biographies, nationalities, reviews etc., relational 
content such as similar artists and albums, influences, etc., 
and some culturally descriptive content such as styles, 
tones, moods, themes, etc. There are standard taxonomies 
forcing objects into predefined categories and the infor-
mation is normally very precise, trustful and useful. 
However, information like descriptive content is expen-
sive to generate, besides, the explosive growth of music 
has brought more and more challenge for manipulating 
such large scale content. Professional editors of those sys-
tems such as Allmusic and Pandora are hardly keeping 
pace with the ever-growing content. 

Audio content: Currently content-based methods are 
the dominant players for automatic music information 
extraction. Some of the representative works can be re-
ferred to the Music Information Retrieval Evaluation eX-
change (MIREX) [1]. However, the acoustic aspect is just 

one facet of music, besides there are unneglectable influ-
ences from subjectivity, social and cultural aspects, so 
high-level semantic information extraction purely from 
audio is quite an arduous challenge. For example, in the 
Audio Mood Classification evaluation (Hu et al. 2008), 
the resulting accuracies for 5-cluster mood classification 
was up to 61.5% in 2007, to 63.7% in 2008, and to 65.67% 
in 2009. Some mood perceptions are just too subtle and 
subjective, such as autumnal, brash, passionate, to be cap-
tured well enough by audio features only. 

Social tags: Fortunately, nowadays the Web has be-
come a primary host of a sizeable amount of text-based 
and semantic information. Web 2.0 technologies— e.g., 
Last.fm, MusicBrainz, and the so-called Shared Station in 
Pandora— have drastically augmented social media with 
rich context, such as user-provided tags, comments, re-
views, folksonomies etc. By contrast to the above profes-
sional systems, these resources have some nontrivial ad-
vantages: flexibility to rapid content changes, intrinsically 
containing rich high level semantic information, etc. 
However, due to the noisy and unstructured data, existing 
systems are mainly based on simple keyword matching 
approaches, so knowledge from these resources is barely 
being well discovered. 

The motivation is that the prediction of high level se-
mantic metadata could benefit from a comprehensive 
consideration of information from multiple resources. We 
were inspired by a WordNet-based method proposed in [2] 
acquiring open-domain class attributes. In this work we 
propose a way to automatically identify the social tags’ 
concepts. By mapping a music ontology to a semantic 
lexicon such as WordNet, we acquire more lexicalization 
of the concepts and better semantically classify/cluster 
the social tags (i.e. with more coverage), and we are also 
able to acquire in the ontology-based system the meaning 
and association between tags, to conduct reasoning on the 
resultant knowledge base giving a declarative representa-
tion with well-defined semantics, and to produce higher 
prediction accuracy for high level semantic data. By con-
trast to [2], our work is domain-specific, so it does not 
require applying extraction patterns to text and mining 
query logs to capture attributes. Instead, existing prede-
fined professional taxonomies from reference systems are 
firstly mapped to an ontology’s terminology, i.e. an on-
tology’s terminology (TBox) consists of classes and roles, 
and secondly, we consider their finite set of terms as seed 
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axioms and propose a WordNet-based method to use 
these seed axioms to identify the most appropriate classes 
and roles for social tags, so that social tags can be 
mapped to the ontology’s assertional axioms (ABox) as-
sociated with the constructed TBox. Lastly, we consider 
one of the most challenging tasks in MIR, i.e. mood clus-
ter prediction, and perform a set of DL-safe reasoning 
rules on the resultant knowledge base (KB) to further 
augment the ABox with enriched mood annotation. 

2. RELATED WORK 

Recently researchers have brought up novel web-based 
methods for MIR tasks. In particular, some researchers 
have proposed approaches about automatically extracting 
music semantic information from the social tags. Luke et 
al. [3] consider social tags and web-mined documents as 
feature vectors and input them to Support Vector Ma-
chine (SVM), for classification to determine whether a 
song represents a certain tag. Bischoff et al. [4] apply 
SVM classifier to audio features and apply Naïve Bayes 
Multinomial to tag features, and then combine them in a 
programming way. Although significant improvements 
by combining web information are reported, these ap-
proaches dismiss the semantics of social tags or web-
mined documents and we argue that some valuable in-
formation goes lost. We will look into a detailed compar-
ison in our evaluation section. Algorithms originally de-
veloped in text information retrieval domain, such as La-
tent Semantic Analysis (LSA), probabilistic Latent Se-
mantic Analysis (pLSA) and Latent Dirichlet Allocation 
(LDA) [5] can also be successfully adopted in MIR here, 
e.g., Levy et al. [6] and Laurier et al. [7] apply LSA me-
thod to gain an effective feature space with low dimen-
sionality for capturing similarity. However, a LSA me-
thod has intrinsic limitations that the resultant dimen-
sions might not have interpretable meaning, i.e., the de-
rived semantic spaces still do not have explicitly defined 
semantics. 

On the other hand, the extension of semantic informa-
tion extraction to the field of knowledge representation 
formalisms has been widely deployed in the non-music-
specific multimedia community. Great emphasis has been 
given to the extensional aspects of multimedia ontologies. 
There are many works in the literature proposed for man-
aging multimedia data using ontologies, including image 
annotation, video annotation and recommendation [8, 9]. 
Exclusively for the domain of image and video annota-
tion, novel works have been proposed for obtaining high 
level semantics. For example, Peraldi et al. [8] give a 
concrete example considering the interpretation of images 
of a sports event, and show how retrieval and interpreta-
tion of image data can be obtained by abductive reason-
ing; Penta et al. [9] proposed a novel ontology model for 
organizing low level multimedia data and semantic de-
scription. It exploits abductive reasoning to provide the 
most probable explanation of observed facts. All these 

works are using the benefits of ontology systems, which 
have scalability and extendibility capabilities to achieve 
effective image retrieval. However, to the best of our 
knowledge, ontology-based system for combining high 
level semantic information derived from social tags and 
professional taxonomies with information from audio fea-
tures has rarely been studied in the music annotation do-
main. 

3. SOCIAL TAG SEMANTIC IDENTIFICATION 

For open-domain tasks as in [2], they heuristically 
choose the first sense uniformly in WordNet. Meanwhile 
the authors have pointed out, this heuristic is bound to 
make errors yet proved to be efficient enough in open-
domain experimental results. However, this solution does 
not suit our work. As in a domain-specific system, the 
correct sense should be exclusive, e.g., Blues should be a 
kind of music genre rather than a color. Our approach 
will consider the fact that in professional music databas-
es or web services, there are standard taxonomies forcing 
objects into predefined categories. While manually-
constructed language resource WordNet has open-
domain, wide-coverage conceptual hierarchies, by group-
ing terms and phrases with the same meaning into sets of 
synomyms, associated with the same definition. By 
mapping those predefined categories to WordNet, we 
acquire more lexicalization of the concepts and better 
semantically classify the social tags with more coverage. 

Figure 1. Social tag semantic identification framework. 
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3.1 Mapping to WordNet Concept Hierarchies 

As shown in Fig. 1, the first task is to identify the most 
appropriate concept level in WordNet which best 
represents each category in the professional taxonomy. 
For each category ࣝ  in the professional taxonomy, we 
consider its instances as seed words and retrieve them in 
WordNet. For each pair of seed nodes in WordNet, we 
find the closest common node in the upper level (ances-
tor node) which connects the two seed nodes via shortest 
path, then we get a set ࣮ of candidate ancestor nodes. 
Here we define a scoring function to select the best an-
cestor node in ࣮ as below: 

)log(
#

#)( SS
S

S levellevel
Seeds

dsdescentSeeSScore 
     

(1) 

Where, #݀݁ݏ݀݁݁ܵݐ݊݁ܿݏௌ  means the number of seed 
words that node  ܵ covers in its descent nodes,  #ܵ݁݁݀ݏௌ 
means the number of seed words in the corresponding 
category ࣝ  , and ݈݈݁݁ݒௌ  means the depth from ܵ  to the 
top concept. Finally ܵ with the highest score in ࣮ will be 
selected as the most appropriate concept in WordNet for 
the corresponding category ࣝ. As an example in Fig.1, 
given a set of seed nodes <driving, dancing, dating, exer-
cising, reading>, the approach detect “activity” as the 
most appropriate concept for this set rather than “action” 
or “abstraction”. 

Two facets have been considered in equation (1) defin-
ing the scoring function: concept specificity and concept 
coverage. On the one hand, the score is constrained by 
 ,ௌ because if the level is too close to the top concept݈݁ݒ݈݁
then the node ܵ would be too general and would harm the 
identification precision; on the other hand, the score is 
also constrained by #݀݁ݏ݀݁݁ܵݐ݊݁ܿݏௌ, because if the level 
is too low and too specific, it would cause an insufficient 
coverage and harm the recall since many potential words 
which belong to the category would not be identified. 
Comparing to a simple linear function of ݈݈݁݁ݒௌ, the func-
tion defined in (1) experimentally gives an optimal tra-
deoff between coverage and identification precision. 

3.2 Expanding Word List of Pre-defined Taxonomies 

In this work, we adopt the taxonomies from Allmusic — 
a large-scale music database that provides professional 
reviews and metadata for albums, tracks and artists, and 
are frequently used for MIR research purposes [1]. In 
particular for mood annotation, for the convenience of 
evaluation and comparison to state of the art, we adopt 
the five cluster mood taxonomies from MIREX, which 
have been commonly adopted by the community. 

The taxonomies are mapped to an ontology and it re-
sults in a TBox consisting of classes, related subclasses, 
roles of objects and datatype properties. Details about 
constructing the music ontology are dismissed here. Re-
lated similar works can be referred to [10]. XMLMapper 

tools can automatically transform available Web XML 
based resources (e.g. Allmusic.com) to an OWL ontology.  

Once the concept has been identified via the approach 
as described in section 3.1, we construct a word list with 
more coverage for each pre-defined classes by retrieving 
the hyponyms, their synonyms and siblings, each with 
different weights (hyponyms> synonyms> siblings). In 
all, based on the pre-defined taxonomies it generates a 
word list with 71,022 words. While matching a tag with 
the word list, if the tag exactly matches a word in the list, 
it is then identified as the corresponding class directly; if 
the tag has words matching with different concepts and 
each with different weight, we only consider the word 
with the highest weight and match the tag with this 
word’s related class; or else if the weights of different 
concepts equal, we simply consider the front words, as 
users usually put highly descriptive word in front of a less 
informing word, for example, “road trip”, “brash band”, 
although it is not always the case.  

4. ONTOLOGY-BASED REASONING 

So far, knowledge bases have been constructed using in-
formation from several different sources, including: 

 Social tags identified with well-defined semantics 

 Editorial and relational metadata from professional 
taxonomy systems 

 Probabilistic classification output extracted from au-
dio content 

4.1 TBox and ABox Construction 

As previously described, we map the taxonomies from 
Allmusic to the TBox of our ontology, and result in 155 
classes and 62 roles in all. These roles consist of object 
properties indicating relationships between classes, such 
as <artist, song> <hasStyles> <genre>, <artist> <simi-
larTo, follows, followedBy, inflences> <artist>, <artist> 
<performedVia> <instrument>, <song> <playedBy> 
<artist>, etc., and several datatype properties indicating 
data attributes of classes, such as <artist, song> <has-
MoodProbability1> <”float”>, <artist, song, genre, in-
strument, …> <hasConfidenceFactor> <”float”>, etc. 

In the following we illustrate steps and rules for ontol-
ogy-based reasoning on music mood: 

Initialization. Firstly, we define datatype properties 
<hasMoodProbability1, hasMoodProbability2,… , has-
MoodProbability5>, of which each denotes prediction 
probability that the individual be classified into mood 
cluster1, cluster2,… cluster5. As shown in Fig.2, initial 
assertions about these mood probability properties of 
songs and tags are added in ABox. Given a tag having 
been identified into one of the mood clusters in the con-
cept identification step, we assert an initial mood prob-
ability property, e.g., <0.0, 0.0, 1.0, 0.0, 0.0> for a tag 
identified as in mood cluster 3. For songs, we extract 
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112-dimension audio feature vectors via the library in 
jAudio toolkit, including intensity, timbre and rhythm 
features as well as the overall standard deviation and av-
erage values of Mel-frequency cepstral coefficients 
(MFCCs) and spectral shape features etc. We apply the 
feature selection library CfsSubsetEval in WEKA [11] 
and reduce the feature space from 112 to 23 dimensions, 
then we apply the SMV classification library in WEKA, 
and output the predication probabilities for each of the 
five mood clusters. For more details about the above con-
tent-based system, audience could refer to our previous 
work as FCY1 system in MIREX 2009 audio mood clas-
sification tasks. The output probabilities are asserted in 
ABox as the songs’ initial value of datatype properties < 
hasProbabilityMood1, hasProbabilityMood2,…, hasPro-
babilityMood5>. These audio individuals initialized with 
mood probability properties, e.g., <0.25, 0.12, 0.33, 0.14, 
0.16> in fig. 2, are to be considered as seed atoms as well. 

Reasoning: Secondly, a set of DL-safe rules are applied 
on the ABox to infer mood probability for target atoms 
from seed atoms, as shown in fig. 2. Heuristically, differ-
ent classes and roles should have distinct importance. For 
example, a song’s mood could be inferred with higher 
confidence from its social tags describing mood than 
from its audio content. For another example, a song’s 
mood could be inferred with higher confidence from its 
artist’s mood style than from its genres’. Thanks to the 
well-defined semantics in the ontology, these factors can 
be efficiently considered in a semantic reasoning engine, 
e.g. Racerpro. We use nRQL in Racerpro [12], an expres-
sive ABox query language for the very expressive DL 
ALCQHI_R+ (D-), to apply rules and generate new asser-
tions to ABox. Besides many other advantages, the main 
reason we chose nRQL is that it allows for the formula-
tion of complex retrieval conditions on concrete domain 
attribute fillers of ABox individuals by means of complex 
concrete domain predicates. Atoms of different classes 
are attached with several datatype properties which indi-
cate their corresponding confidence/importance degree 
during the inferring process: 

 Role Factor (RF): constant value related to the seed 
atom’s object property, e.g, an artist <plays> a song, a 
song <hasStyle> a genre. 

 Confidence Factor (CF): dynamic value indicating the 
overall confidence estimation about the precision of 
its mood prediction. Initial CF values for song and tag 
atoms are typically set as 0.3 and 1.0. 

 Weighting Factor (WF): weighting value that a seed 
atom has while propagating its mood prediction to a 
target atom, so that mood prediction value that the 
target atom acquires could be weighted. We simply 
consider WF= CF*RF 

We then apply rules on nRQL and generate new asser-
tions in ABox. Given a set of triggered seed atoms of 

mood tags ൏ tଵ, tଶ, … , t୫  and songs ൏ sଵ, sଶ, … , s୬ , 
for example, Rule I is an illustrative rule as below:  

 
where ܫ denotes the index of mood clusters. The accumu-
lated mood probability values are summed up and nor-
malized to ensure the sum probability of all clusters 
equals 1. In the above example, the artist atom x is trig-
gered and continues to be use as seed atoms for further 
reasoning iterations. The rules are applied iteratively until 
no more atoms are triggered. Rule II and III are another 
two illustrative rules as below: 

 

5. EXPERIMENTAL SETTING 

Our album consists of 1804 songs, covers about 21 major 
genres, 1022 different artists, and evenly covers mood 
labels created by professional Allmusic editors with one 
or more terms in one of the five mood clusters. 

On one hand, each song is processed into 30s, mono, 
22.05 kHz, .wav audio clips. We then apply the content-
based system described in section 4.1. This system gives 
an accuracy of >60% for the data set of MIREX mood 
classification task, yet the same system gives a much 
lower accuracy of ~40% for our data set, which mainly 

x

x

xxxz

x

x

xxxy

cx
mIx

zxmcRF
zxI z

cx
mIx

xymcRF
yxI y

Factor  Confidence has                                                            
; babilityhasMoodPro                                                            

; styles has                                           
genre; a is     artist;an  is          babilityhasMoodPro     :III Rule

Factor  Confidence has                                                            
; babilityhasMoodPro                                                            

; similar to is                                           
artist;an is   artist;an  is          babilityhasMoodPro   :IIRule

　

　

　　

　　

　

　　







><Factor   Weightinghave ><                                                 
>;< babilityhasMoodPro ><                                                 

>;<                                                                        
Factor   Weightinghave ><                                                   

>;<                      }maximum{
babilityhasMoodPro ><       Factor     Confidence have  

>;< with  taggedis                             };
 plays              {
artist;an  is          babilityhasMoodPro 

:I Rule

3131

3131

874

874

87431874

874

313311

874887744

,ww,tt
,mmI,tt

,w,ww
,s,ss

,m,mm,w, w,w,wwc
I ,s,ssx

,ttxm,wmw
>;,s,s<s x ,m, wm, wmw

x Ix 

x 






 

Figure 2. Applying reasoning rules between atoms. 
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song’s datatype properties— hasProbabilityMood1 etc.— 
with mood prediction probabilities learned from the 112-
dimension audio features, as described in the experiment 
setting section; for SVM-based system, we construct its 
feature space by combining the 112-dimension audio fea-
tures with the 982-dimension feature space mapped from 
social tags.  

Tab. 1 gives the confusion matrix of each system, 
where C1 to C5 indicate the five mood clusters. The 
SVM-based system achieves an average classification 
accuracy of 55.7185% in 3-fold cross validation. The 
reasoning-based system achieves prediction accuracy of 
62.07%, which outperforms the SVM-based system, as 
well as having a more even precision distribution among 
clusters. The SVM-based system gives better precision 
only in predicting mood cluster3, indicating that SVM-
based method can well discriminate cluster3 (brooding, 
poignant, sad, somber, etc.). This has also been reflected 
in MIREX [1] reports. 

6.3 Knowledge Base Enrichment 

Relational content such as similar artists and albums, in-
fluences, follows, etc., are much less expensive to acquire 
from professional systems than for high level semantic 
information like music mood and usage. In all, there are 
29,253 assertions acquired from Allmusic about the rela-
tional content such as <artist> <influences, similar to, fol-
lows> <other artists>. 

To evaluate the prediction performance, we conduct a 
prediction process on artist atoms in the Knowledge Base. 
To simplify the process, we consider an artist’s tags and 
mood cluster the same as his song. We partition the artist 
axioms who are players of the album— so that we have 
the ground truth as their song’s mood label— into two 
complementary subsets: a “known” subset A_516 (with 
516 artist atoms) having ABox assertions generated from 
editorial metadata and social tag information, and the 
other is “unknown” subset A_512 (with 512 artist atoms) 
to be predicted and validated. To reduce variability, we 
perform another round by changing the A_512 to “known” 
subset. After the reasoning process, we have got 461 art-
ists in A_512, and 469 artists in A_516, who gained 

mood prediction via the inferring rules. The prediction 
precision is 50.76% for A_512 and 50.32% for A_516 
and the average precision is 50.54%. This prediction me-
thod could be effective, given random five-mood-cluster 
classification’s precision is as low as 20%. 

Some interesting knowledge can also be discovered. 
For example, genre atoms gain a set of mood prediction 
datatype value during the semantic reasoning, and after 
accumulation and normalization, some of them reflect 
very strong associations with mood. Tab. 2 lists the result 
of genre atoms ranked by their bias degree among mood 
clusters, which is in good accordance with people’s 
judgement and discovers the implied semantic associa-
tions. 

7. CONCLUSION 

We found that by unleashing music related information 
from various resources via an ontology-based system and 
by considering the internal semantic links for reasoning, 
we achieve a significant precision improvement for pre-
dicting mood. To augment the knowledge base efficiently 
and to make it free of manual annotation, we propose a 
WordNet-based method to map social tags to a pre-
defined taxomony. Although in this work we mainly dis-
cuss mood, since it is one of the most representative high-
level music semantic information, we argue that the pro-
posed method could also be applied for predicting other 
high-level semantics, for example, if music usage or ge-
nre style are of interest for an application, we could adjust 
the initiation processes and modify corresponding reason-
ing rules accordingly, so this work has potential applica-
tions for other tasks of music recommendation, indexing, 
documentation and retrieval. 
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Table 2. Ranking genre atoms according to mood bias 

Genre 
Mood probability prediction 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
Solo istru. 0 0.14 0.83 0.03 0 
Halloween 0.01 0.23 0 0.76 0 

Noise 0.13 0.07 0 0.07 0.73 
Comedy 0.1 0.06 0.06 0.71 0.07 
Sad core 0.01 0.03 0.71 0.09 0.16 

Punk metal 0.32 0 0.04 0 0.64 
Children’s 0 0.61 0 0.39 0 
Sweet band 0.20 0.58 0.14 0.08 0 
Hair metal 0.54 0.13 0.05 0.09 0.18 

Skiffle 0.53 0.31 0 0.04 0.12 
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ABSTRACT 

We investigate the problem of matching symbolic 
representations directly to audio based representations for 
applications that use data from both domains. One such 
application is score alignment, which aligns a sequence 
of frames based on features such as chroma vectors and 
distance functions such as Euclidean distance. Good 
representations are critical, yet current systems use ad 
hoc constructions such as the chromagram that have been 
shown to work quite well. We investigate ways to learn 
chromagram-like representations that optimize the 
classification of “matching” vs. “non-matching” frame 
pairs of audio and MIDI. New representations learned 
automatically from examples not only perform better than 
the chromagram representation but they also reveal 
interesting projection structures that differ distinctly from 
the traditional chromagram. 

1. INTRODUCTION 

Score alignment [4], score following [3], chord and key 
recognition [6, 7] chorus spotting [1, 8], audio-to-audio 
alignment [9, 13] and music structure analysis [2, 11] are 
all tasks where it is useful to compare two segments of 
music. A common representation for this is the 
chromagram [1], a sequence of chroma vectors, where 
each vector typically has 12 elements and each element 
represents the energy corresponding to one pitch class in 
the spectrum but not necessarily one pitch class in the 
score. Most algorithms use a distance function in 
conjunction with the chromagram representation to 
measure the similarity between frames. While it may be 
obvious, especially in hindsight, why the chromagram 
works well in many applications, it should be noted that 
the chromagram is a contrived representation, and there is 
no reason to believe it should be optimal. Very little 
research has been conducted on alternative ways to 
compare audio to audio let alone audio to symbolic 
representations. The existing approaches are generally 
domain specific. For example, in [12] the chromagram is 

made less timbre dependent by discarding the lower mel-
frequency cepstral coefficients and then projecting the 
remaining coefficients onto the twelve chroma bins. 
Another example can be found in [15] in which a binary 
chroma similarity measure is used for alignment in the 
context of cover song detection. In this work, we explore 
various ways to derive good features and functions from 
real data. We specifically look at the problem of score 
alignment directly from a MIDI representation to audio 
without going through a synthesized version of the MIDI 
data. In this paper we give a formulation based on the 
score alignment task; however, results should be 
applicable to all other problems that require frame-based 
comparison. The goal of this work is to gain insight into 
why the chromagram works in practice and to learn what 
modifications might make it work even better. Our results 
suggest that there is room for at least some improvement. 

2. THE SCORE ALIGNMENT TASK 

Our work is aimed at optimizing score alignment: finding 
a mapping from a symbolic score or standard MIDI file 
to an audio recording. The basic algorithm transforms 
both the MIDI file and the audio file into chromagrams A 
and B, which are sequences of chroma vectors. We will 
denote the chroma vector corresponding to the ith time 
frame (column) of A as Ai. Then, construct a distance 
matrix Di,j = f(Ai, Bj), where f is a distance function. The 
idea is that f is small when Ai is “similar” to Bj and large 
otherwise. Often, f is based on the cosine distance, 
correlation distance, or Euclidean distance from Ai to Bj. 
The next step uses dynamic programming to find the 
lowest-cost path from D0,0 to Dm-1,n-1, where m and n are 
the number of frames in A and B respectively. 

Path smoothing or constraints may be useful to obtain 
even more accurate alignment. Experience has shown 
that the chromagram representation for audio, and a 
chromagram-like representation for MIDI data [9] results 
in a very robust score alignment algorithm. However, the 
chromagram is an arbitrary choice. There are many other 
possible features, including the spectrum and mel 
cepstrum, and even the chromagram has parameters 
including the range of spectral bins considered. How can 
we search for better representations and distance 
functions? 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.  
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3. THE LOG-FREQUENCY SPECTRUM OR 
“SEMIGRAM” REPRESENTATION 

Although we are interested in learning better representa-
tions and distance functions, it would be difficult to learn 
a relationship between audio and symbolic 
representations starting from raw signal frames and raw 
MIDI data. To simplify the representation, we use a 
magnitude spectrum with bins logarithmically spaced by 
semitones (12 bins per octave). The input audio is 
downsampled to a sampling rate of 11025 Hz. A frame 
duration of 93 ms with 50% overlap is used. This 
representation is able to resolve semitone differences in 
frequency across the spectrum with far less data than the 
standard magnitude spectrum where each bin has a 
constant bandwidth. By analogy to the spectrogram, we 
call this representation the semigram S: a matrix where 
each column is a semi vector and each semi vector 
element represents the magnitude associated with the 
frequency range of one semitone. We note that the 
traditional 12-element chromagram can be understood as 
an octave-folded version of the semigram.  

For MIDI data we construct a similar representation, a 
matrix R (also called a semigram), where each column 
represents a time window and each row represents a pitch 
(key number). If only one note is sounding in the time 
window at a given pitch, the matrix element is the note’s 
MIDI velocity. If the note is not on during the entire time 
window, the velocity is weighted by the fraction of time 
the note is on. If there is more than one note on at the 
given pitch, the maximum of the weighted velocities is 
used. 

4. TRAINING DATA FOR LEARNING 
PROJECTIONS 

One way to search for good distance functions is simply 
to attempt alignment with various parameter settings, but 
this kind of evaluation is difficult. How do we score 
alignments? And if the chromagram is already robust, 
then it might take a huge number of examples to find 
enough failure cases for another method to show 
improvement. 

Another possibility is to change the task. In our study, 
we use a classification task that labels frame pairs as 
“matching” or “non-matching.” We assume that opti-
mizing performance on this task will also be very good 
for the alignment task. We derive labeled training data 
(for supervised machine learning) from aligned scores, 
using 7 orchestra and wind ensemble recordings from one 
collection and 2 sets of 20 pieces from the RWC classical 
collection, as listed in Table 1. CLA1 consists of mostly 
symphonic pieces whereas CLA2 is a random selection 
of pieces with different combinations of instruments. 

The alignment for the orchestra and wind ensemble 
recordings was done using chromagrams, but post proc-
essed with some spline fitting and smoothing techniques 
that generally improved the perceptual alignment. The 
alignment for the RWC pieces are taken from alignment 

data provided by Ewert, Müller, and Grosche [5]. The 
alignments of the corresponding scores were verified to 
be acceptable by listening to the MIDI synthesized 
versions simultaneously with the original audio. 

From the aligned data, it is simple to extract all 
matching frames. To increase the number of matching 
frames and reduce overfitting to specific keys, we trans-
pose the matching frames up to +6 and –5 semitone steps, 
thus covering all 12 chromatic degrees. To obtain non-
matching frames, we select a random frame from audio 
for each frame from the MIDI data. These randomly 
selected pairs will run the gamut from very similar to 
very different, but for training purposes, we consider 
them all to be examples of “non-matching.” For the 
training, the number of “non-matching” frames is equal 
to the number of “matching” frames including 
transpositions. All audio listed in the table was used for 
training, resulting in about 106 matching and the same 
number of non-matching frame pairs after transposition. 

Table 1. The training data. 
Recording ID Duration(secs.)
Tarantella from Incidental Suite, C. T. Smith TAR 127
Nocturne from Incidental Suite, C. T. Smith NOC 351
The Music of Disneyland, arr. by J. Brubaker DIS 499
Medieval Legend, M. Story LEG 248
The Travelin’ Hat Rag, D. Bobrowitz HAT 162
The Thunderer, J. Sousa THU 148
Rondo from Incidental Suite, C. T. Smith RON 168
RWC Classical Music Collection (20 pieces) CLA1 1182
RWC Classical Music Collection (20 pieces) CLA2 1192

5. LEARNING A FEATURE VECTOR 

As a preliminary study, to find a good distance function 
for alignment, we trained a multi-layer perceptron neural 
network to classify semi vector pairs as “matching” or 
“non-matching.” The inputs were midi and spectral 
vectors and the output was trained to be 0 or 1 based on 
whether the vectors were matching or not. 20 hidden 
nodes were used. We trained this on a particular set of 
three pieces: HAT, LEG  and RON. These yielded 92.3% 
accuracy on the training data. Testing individually we 
obtained HAT: 89.5%, LEG: 93.0%, RON: 90.5%, TAR: 
83.8%, NOC: 85.3%, DIS: 87.7 % and THU: 86.9%. We 
also trained the neural network separately on the 20-piece 
RWC sets and tested on the remaining 36 pieces in that 
set. We obtained 94.0% and 86.4% accuracy for CLA1, 
and 90.2% and 89.0% accuracy for CLA2 on the training 
and test data respectively. These results showed us that a 
model of this nature could generalize a matched-
unmatched classification quite well with the given input 
representations. To reiterate our aim in this work, we are 
interested in understanding why chroma vectors work so 
well, whether they work better than a trained neural net, 
and whether variations can work even better. After all, 
the chroma vector is basically one particular projection 
from the semi vector. We can use machine learning to 
explore the space of projections and visualize the results 
to gain better understanding of the nature of the 
projections that work better. 

Let us first write the chroma vector computation as a 
projection. For MIDI data, we have the p × m semigram 
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R. We define an r × p matrix L (r = 12) that projects each 
semi vector (column) of R to a chroma vector. Similarly, 
we define an r × q matrix M to project the audio q x m 
semigram S to chroma vectors: 
 A = LR (2) 

 B = MS (3) 
Matrices A and B consist of pairs of feature vectors 

resulting from the respective projections in L and M. We 
first use this framework with fixed projections and then  
generalize the approach by training these projections to 
better understand their nature and compare them with the 
commonly used ones. Figure 1 illustrates the standard 
form of M (and similarly for L), which collapses octaves 
in the semigram to form a 12-element chroma vector. 
Note that the frequency ranges corresponding to the 
audio semigram (the horizontal axis) are labeled with 
midi numbers. 

 
Figure 1. The conventional projection from 
semigram (log-frequency discrete magnitude 
spectrogram) to chromagram. 

Next, a standard distance is taken between two corre-
sponding feature vectors to obtain a measure of 
similarity. Hence, the required distance for the score 
alignment algorithm in terms of two input semi vectors Ri 
and Sj is given by f(Ai, Bj)=C(LRi, MSj), where f 
represents the desired distance and C is the centered 
cosine distance (found by first removing the means of the 
vectors and then calculating the cosine distance). To 
obtain a binary output (“matched” or “non-matched”), the 
distance is compared to a fixed threshold. This result is 
used for evaluation, but for training, we use the 
continuous real value as the output and try to train the 
system to output a zero (0) or one (1) value. 

Now, suppose we generalize the chromagram to allow 
any projection. Although this is not a neural network, the 
back-propagation algorithm can be used to learn weights 
for the matrices L and M. The basic idea is to evaluate 
the partial derivative of the output with respect to each 
element of each matrix. Then, for each training example, 
the partial derivative for each coefficient is scaled by the 
output error, multiplied by a small rate parameter, and 
subtracted from the coefficient, thus adjusting each 
coefficient in a direction that would move the output 
closer to the correct value. This update is applied to all 
elements in the M and L matrices for all training frame 
pairs, and this process is iterated many times until the 
output converges. Given a large enough dimension r, this 
gradient descent algorithm will normally converge to a 
local optimum. 

We can write C(LRi, MSj) as D(xk, R, S) where xk is 
some element of M or L, letting the remainder of M and 
L be constants for the moment. We can then evaluate 
D(xk + eps, R, S) - D(xk, R, S) to estimate the partial 
derivative of D with respect to xk. The learning algorithm 
is as follows: 

 
while convergence criterion not met 
    for all pairs R and S 
        for each parameter indexed by k 
            deltak = D(xk + eps, R, S) - D(xk, R, S) 
            errork = D(xk, R, S) - GT 
            new xk = xk - alpha * errork * deltak 

In this algorithm, eps is a small number used to 
calculate the derivative, GT is the ground truth and it has 
a value of 0 when S matches R and 1 otherwise. The 
constant alpha is the learning rate. 

The training can be performed in different ways. 
Normally, both matrices co-learn but it is also possible to 
fix the weights of one matrix and learn the other. The 
initial values for both matrices can be assigned to chroma 
mappings or assigned random values. In addition to this, 
different learning rates for the matrices can be set. 

One advantage of using a linear projection 
(multiplication by L and M) to obtain paired feature 
vectors is that the matrix can be visualized to give some 
insight as to what features are being used by the system. 
For example, if the chromagram representation were 
optimal, we would expect L and M to maintain their 
projections shown in Figure 1 during training. In 
contrast, Figure 2 shows the actual result of learning 
matrix M starting from a chroma mapping. In this 
particular case, the learned weights are systematically 
different. 

 
Figure 2. The trained matrix M with initial 
chroma pattern and fixed L with chroma 
projection (as in Figure 1). 

 
Figure 3. The trained M matrix with random 
initial values and initial chroma pattern for L. 

In comparison to the preceding two figures, Figure 3 
shows a trained M where initial weights were random. 
The L matrix had initial values for the chroma projection 
and was allowed to co-learn with M. The matrix in 
Figure 3 is similar to the chromagram in that each row 
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corresponds to the detection of a different pitch class or 
chroma. In at least some of the rows, there is a clear 
pattern of high weights separated by octaves. 

The matrix in Figure 2 differs from the chroma 
mapping in several ways. First, the matrix is not 
symmetric, but this would be expected from the 
asymmetry of the training data and the nature of the 
training algorithm. Second, the rows are not just selecting 
octaves and pitch classes. It has been noted that the 
chromagram does not really compute the strength of 12 
pitch classes because harmonics of the fundamental will 
generally include energy in bins that are mapped to other 
pitch classes. Here, we see that learned rows are selecting 
not only octave-related frequencies, but some fifths, 
thirds and other relationships. In fact, the rows are quite 
similar, at least for the octaves, fifths and major thirds, to 
pitch histograms for diatonic scales and the Krumhansl 
template [10] for key finding. This relationship has been 
studied in [16]. In this study, the empirical profiles have 
been found to present statistically significant correlations 
with tonal profiles obtained from human judgments. They 
demonstrate this by extracting tonal profiles based on 
covariance analysis of chroma features computed from 
western tonal musical recordings. Similarly, in our case, 
we find that the rows contain effects of both pitch 
distributions and overtone strength distributions. It seems 
likely that all of these factors play a role in determining 
the optimal patterns. A third property we can observe in 
the learned matrix is that low and high frequencies seem 
to have less significance. There is more variation between 
rows in the middle frequencies. In this work, the note 
range for the midi semigram was chosen to be from E1 to 
D#7 and the range for the audio semigram was chosen to 
be E3 to D#7. The audio semigram has a shorter note span 
than the midi semigram because of the time-frequency 
trade-off for the given time window length, which is kept 
short in the interest of higher time resolution.  

We have learned the matrices many times using 
different training data and different initial conditions. 
Ideally, the matrices would converge to a configuration 
where the 12 rows represent 12 unique transpositions of 
some underlying pattern. To test this, we can rotate each 
row left and right until the correlation with a commonly 
used pitch distribution, such as the Krumhansl template, 
is maximized. For this, the pitch-class Krumhansl 
template is unwrapped to span multiple octaves and is 
weighted by a Hann window. The choice of the type of 
pitch distribution is not critical because the purpose of 
the window is only to shift the elements in a row to line 
up with the other rows.  Figure 4 shows the aligned 
matrix M, the averages over rows of M and the weighted 
Krumhansl template used in the alignment. We observe 
that there is usually a unique shift (modulo 12) for each 
row of a pattern that is somewhat similar between rows 
of both matrices. However, there are also some 
irregularities possibly due to registral pitch effects and 
co-learning dynamics of the matrices.  

It is reasonable to assume that there is some 
underlying “ideal” pattern that is learned in 12 different 

transpositions. Next, we test this assumption by forcing 
all 12 rows to contain the same basic pattern, shifted by 
12 different offsets. First, we average the aligned matrix 
over all rows to find the estimated “ideal” pattern as 
shown in the middle plot of Figure 4. We then form a 
new matrix by copying the “ideal" pattern into every row 
and then un-rotating the rows according to the rotations 
performed to obtain the aligned matrix. The effect is to 
force the matrix to a more symmetric configuration and 
perhaps eliminate any overfitting due to the many 
degrees of freedom offered by an unconstrained matrix. 
Figure 5 shows the resulting un-rotated matrix. We can 
then re-evaluate the test data with the new matrices and 
compare the performance to the trained versions. This 
shows us how well the single pattern captures the 
essential information. The evaluations have been carried 
out with this process applied to L and M separately.  

 

 

 
Figure 4. Matrix M aligned (upper plot). Aver-
age over rows of the aligned matrix (middle 
plot) and the weighted multi-octave Krumhansl 
template (lower plot). The sub-peaks in the 
middle plot represent major 3rds and perfect 
5ths or perhaps 5th and 3rd harmonics. 

 

 
Figure 5. Un-rotated M after averaging over 
rows of the aligned matrix. 

Learning can alternatively be started from random 
weights in both matrices. In this case, comparable 
classification accuracy is achieved, however, neither 
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matrix exhibits an easily visualizable structure similar to 
those seen in the preceding figures.    

6. EVALUATION 

Several different evaluations have been carried out on 
the data set. The first evaluation used a group consisting 
of 4 pieces (TAR, NOC, DIS, RON) for training and the 
remaining three pieces (LEG, HAT, THU) for testing. For 
training, eleven unique transpositions were added to the 
original aligned MIDI semigram - audio semigram pairs. 
The aligned pairs were followed by the same length of 
random pairs. For testing, four transpositions of the test 
pieces and a fresh set of random pairs were added to the 
aligned test set to assess its generalization capability. The 
classification accuracy of this test is given in the top row 
of Table 2 and is abbreviated TNDR. The table is divided 
into two groups of 3 columns with the first group 
showing the accuracy of the model run on the training 
data itself and the second group showing the accuracy for 
the test data. Within each group the column labeled ‘LE’ 
shows the results for the learned matrices, ‘LU’ for the 
aligned, averaged and un-rotated matrices and ‘CH’ for 
the matrices in standard chroma form (as shown in Figure 
1 for M). A similar evaluation was performed by inter-
changing the test and training sets in the evaluation men-
tioned above. The results are given in the second row of 
Table 2 with the abbreviation LHT. We also tried using 
Krumhansl templates (rotated to 12 transpositions) as the 
rows of the projection matrix, but this did not work as 
well as the standard chromagram. Although we omit 
those results here, as a summary, they performed about 
3% less than the chroma mapping. 

Another type of evaluation was carried out by training 
on each piece in Table 1 and then testing the alignment 
function using the remaining six pieces (hold out testing). 
The remaining seven rows of Table 2 show the results of 
this evaluation. 

Table 2. Accuracy for group and hold out tests. 
LE: learned, LU: learned with averaging and 
un-rotating, CH: chroma. 

 Training Data (%) Test Data (%) 
Rec. LE LU CH LE LU CH 

TNDR 89.6 88.7 85.4 90.5 89.6 87.4 
LHT 91.3 90.5 87.3 88.9 88.5 85.3 
TAR 90.0 86.8 83.4 88.2 87.8 86.2 
NOC 87.6 87.0 83.5 88.9 89.1 86.5 
DIS 90.8 90.6 87.4 89.0 88.8 85.3 
LEG 91.9 88.0 88.0 88.1 84.3 85.6 
HAT 91.4 90.0 83.9 88.9 88.6 86.1 
THU 91.6 91.2 88.3 88.5 88.5 85.7 
RON 91.5 89.4 85.1 88.8 88.9 86.2 
CLA1 93.1 92.7 90.6 90.0 89.6 88.3 
CLA2 92.0 91.4 89.2 91.1 90.8 89.1 

 
Overall, for all the tests explained above, learned 

(LE) and learned averaged (LU) tests performed better 
than chroma (CH) with one exception in piece LEG 
where LU was lower than CH. This shows that averaging 
in this particular case did not work well and degraded the 
performance. In general, however, results suggest that an 
asymmetrical multi-octave chroma mapping is better than 

the commonly used octave independent symmetrical 
mapping as suggested by [7] and [14] and others.  

CLA1 and CLA2 refer to the training data given in 
Table 1. Each of these were tested with the remaining 36 
pieces (about 2000 seconds) from the RWC collection. 

The accuracy numbers partially reflect the effects of 
some foreseeable factors in performing this evaluation: 
training alignments are not perfectly aligned at the frame 
level, the time variation of the spectral content in the 
audio is not reflected in the MIDI representation (timbre 
effects), audio contains percussion but the MIDI does 
not.  

7. RESULTS 

The most interesting result is that learned 
representations outperform chroma vectors on the task of 
discriminating aligned vs. unaligned audio frames. 
Perhaps this should not be too surprising since machine 
learning from large sets of training data often 
outperforms hand-tuned algorithms or features. Not only 
is there nothing “magic” about the chromagram, we see 
comparable performance from a neural network trained to 
answer the question “Does this MIDI frame align to that 
spectral frame?” 

We also explored a particular model that maps the 
spectrum (and MIDI data) into 12-element vectors and 
computes similarity between these vectors using a 
standard distance function. Even though this certainly 
loses information, it allows us to study the representation, 
which can be viewed as a projection of the spectrum to a 
new space defined by a set of basis vectors. These 
vectors are particularly interesting. With chromagrams, 
the basis vectors are simply chroma (pitch classes), but 
with our learned projections, the basis vectors also show 
a remarkable similarity to pitch histograms obtained from 
music in a fixed key. Thus, even assuming the general 
form of the chromagram as a projection from the 
spectrum to a lower-dimensional space, we see room for 
improvement. This is evident from the fact that a learning 
system initialized with the chromagram projection will 
systematically adjust and improve to a new projection.    

8. FUTURE WORK 

We have limited our study to a 12-element vector repre-
sentation for comparison to the chromagram. It would be 
interesting to study larger (and smaller) vectors. In par-
ticular, we wonder whether with additional dimensions, 
the learning algorithms would build different patterns for 
major, minor, and dominant tonalities, whether some 
patterns would reflect timbre or overtone characteristics, 
or whether other structures would be formed. The 
projection matrix formulation of the problem allows these 
potential structures to be observed. It should be noted that 
the nature of the M and L matrices is slightly different in 
that M incorporates the spectral structure of notes 
whereas L deals with notes alone. 

The similarity of our learned patterns to the pitch his-
togram or Krumhansl template deserves further analysis. 
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Is this a coincidence? Are the learned patterns a 
reflection of the pitch distributions as well as average 
overtone strength distributions in our training data, or 
have pitch distributions in tonal music evolved to 
optimize the listener’s ability to recognize music 
structures? Perhaps both forces are at work. 

9. CONCLUSIONS 

We have described methods for learning features that are 
useful for score alignment and other comparative and 
similarity based tasks such as identification of repeating 
sections, subsequence searching and template based 
chord recognition. The learned features out-perform the 
chromagram representation at least in the task of 
discriminating aligned from non-aligned frames of music. 
Unlike the chromagram representation, which is a simple 
projection based on pitch classes, the learned 
representation uses a projection that appears to be based 
on pitch distributions as well as the harmonic series 
common to most pitched musical instruments. In 
addition, the middle frequencies and pitches receive the 
most weight in the patterns, indicating that high and low 
frequencies are less useful for alignment. Another 
advantage of such an approach in MIR is that an 
alignment function can be directly learned from and used 
with almost native representations in both spectral and 
symbolic domains, thus bridging the gap between audio 
and symbolic music collections. We believe this work 
represents a significant advance by suggesting better 
features for music audio analysis, particularly for 
alignment and discovering music structure. 
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ABSTRACT

Most current audio-to-score alignment algorithms work on
the level of score time frames; i.e., they cannot differen-
tiate between several notes occurring at the same discrete
time within the score. This level of accuracy is sufficient
for a variety of applications. However, for those that deal
with, for example, musical expression analysis such micro-
timings might also be of interest. Therefore, we propose a
method that estimates the onset times of individual notes in
a post-processing step. Based on the initial alignment and
a feature obtained by matrix factorization, those notes for
which the confidence in the alignment is high are chosen
as anchor notes. The remaining notes in between are re-
vised, taking into account the additional information about
these anchors and the temporal relations given by the score.
We show that this method clearly outperforms a reference
method that uses the same features but does not differenti-
ate between anchor and non-anchor notes.

1. INTRODUCTION

There are several scenarios in which one wants to know
the exact parameters (such as onset time, loudness, and
duration) of each individual note within a musical perfor-
mance. Most of these scenarios can occur in musicology,
where data from different performances is used to extract
general performance rules or to analyze individual artists’
expressive styles. Other applications of such data are ped-
agogical systems or augmented audio editors and players.
Unless the pieces under consideration are played on spe-
cial computer-monitored instruments, audio recordings are
the only sources of data describing expression within ac-
tual musical performances.

Our aim here was to extract timing (note onset) param-
eters from a great variety of classical piano music perfor-
mances automatically. The most general method for this
would be blind audio transcription, but current state of the
art methods in this field are not reliable enough to base per-
formance analysis on their results. However, since in clas-
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sical music the piece and score corresponding to an audio
recording can be assumed to be known, we can address the
much simpler task of audio-to-score alignment.

Here, most state of the art algorithms start by extracting
features (mainly chroma vectors) from each time frame of
the audio signal as well as from the score representation.
To obtain an optimal alignment between the two feature
sequences, a distance measure between the feature vectors
is then used as input either for Dynamic Time Warping
(DTW) or for graphical models, such as Hidden Markov
Models.

However, an inherent shortcoming of these methods is
that – since only time frames are matched – they cannot
distinguish individual onsets of notes that occur simultane-
ously in the score. This impedes the analysis of expressive
elements, such as arpeggios or the asynchronies between
a pianist’s hands or within a chord. To resolve this short-
coming, the method proposed here extracts an onset time
estimation for each individual note. In order to do so, notes
for which the timing can be extracted with a relatively high
confidence level are marked as ”anchor notes”. In a second
pass, the system then tries to refine the timings of the re-
maining notes by combining the expected position between
the anchors with spectral information.

Section 2 gives an overview of related work. We ex-
plain the extraction of anchor notes in Section 3, and de-
scribe the refinement method applied to the notes between
such anchors in Section 4. Section 5 presents our experi-
mental results and Section 6 provides the conclusion and
an outlook on future work.

2. RELATED WORK

Online versus offline differentiation aside, state-of-the-art
audio-to-score alignment algorithms can be clustered into
two main approaches. One is based on statistical, graphical
models built from the score, such as those in [1,2,11]. The
other one uses Dynamic Time Warping (DTW) in order to
align sequences of features calculated from both the audio
and the score representation [5, 8].

The latter method normally uses chroma vectors as fea-
ture, resulting in relatively robust global alignments. How-
ever, their temporal accuracy cannot compete with other
features which are used in onset detection. In [3], so-called
DLNCO-features were introduced, which in essence com-
bine chroma vectors and (pitch-wise) spectral flux. More-
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over, a very high temporal feature resolution is used. This
is not trivial, since DTW is of complexityO(n2), and com-
putational costs constrain the number of frames that are
aligned. A multi-scale approach introduced in [8], how-
ever,allows the temporal resolution to be increased itera-
tively.

Another combination of chroma-based alignment with
onset detection was presented in [6]. Here, an initial align-
ment is used in order to train an onset detector. Results
from the onset detection are then used iteratively to re-
fine the alignment and to train a better onset detector on
this more accurate data. This allows the use of supervised
machine learning techniques without the need for external
training data.

In [7] and [9], results of a DTW-based alignment are
refined in a second pass. Both approaches place a search
window around the tentative onset time of a note. This
window is then scanned for a compatible note onset. While
the first method relies on an STFT spectrogram, the latter
uses a dictionary-based decomposition of the spectrum in
order to differentiate between spectral energies induced by
individual notes.

Like the method proposed here, these two approaches
can distinguish between the onsets of notes that occur at
the same discrete time within the score. This is different
from most other systems, since it is inherent to both the
DTW algorithms and to the graphical models used in [2,
11] that they work on features representing discrete time
steps and that they cannot differentiate between two events
occurring within the same time step.

3. ANCHOR NOTE ESTIMATION

At first the anchor notes are extracted using a two-pass pro-
cedure as proposed in [9]. In the first step, a state-of-the-art
audio-to-score alignment based on chroma vectors and Dy-
namic Time Warping (DTW) is performed. Then, a dictio-
nary of tone models is used in order to extract each note’s
activation function. Notes for which a significant rise in
activation energy can be found near the corresponding es-
timated onset are selected to serve as anchors.

3.1 Chroma Features and DTW

In [5], chroma vectors were found to perform best amongst
several features in the context of audio matching and align-
ment. They consist of 12 elements per time frame corre-
sponding to the pitch classes (C, C#, D,. . . ). The values
are calculated from an audio recording by mapping the fre-
quency bins of a short-time Fourier transform to pitch class
indices i using

i =
[

round
(

12 log2

(
fk
440

))
+ 9
]

mod 12 (1)

where fk represents the center frequency of the kth bin.
The term inside the brackets gives the number of the pitch
(A4 =̂ 0) that is nearest to fk, and applying the module
gives the pitch class. The summand 9 shifts the indices

such that i = 0 corresponds to the pitch class C. The actual
values of the chroma vectors are then obtained by summing
up the energies of all bins mapped to a certain pitch class.

There are two approaches to calculating chroma fea-
tures from score representations [5]. One of them is to
render the score using a software synthesizer to reduce the
problem to the one described above. The other method
calculates the chroma vector directly from the score. Here,
the mapping becomes trivial, since the pitches are already
given. However, one must make assumptions about pitch
energies and either use constant energies or a decay model.
In our experiments, we compared both methods – the first
one using the free software synthesizer timidity 1 , and the
second one using constant midi note energies. Preliminary
experiments showed that the resulting alignments did not
differ significantly between the two approaches. There-
fore, we decided to use the second one, since it is much
cheaper in terms of computational costs.

Given two sequences of feature vectors, a cost function
must be defined which accounts for the error made when
aligning one specific frame within the first sequence to an-
other specific frame within the other sequence. Our ex-
periments showed that the Euclidean distance yields bet-
ter results than other possible measures, such as the cosine
distance.

Based on the cost function, a similarity matrix SM can
be constructed. The rows of this matrix represent the time
frames of the audio recording, whereas the columns repre-
sent the time frames of the score. Hence, the value of each
cell SMij contains the cost of aligning the ith frame of
the audio signal to the jth frame of the score. Any contin-
uous, monotonic path through this matrix that begins and
ends at the two end-points of the main diagonal represents
a valid alignment between the two sequences. The objec-
tive is to minimize the global alignment cost, i.e., the sum
of all local costs SMij along the path through the similar-
ity matrix.

Using DTW, the optimal alignment is calculated in two
steps. The forward step starts at [0, 0] and the correspond-
ing cost SM0,0. Then, all other optimal partial alignments
ending with the ith frame of the audio recording aligned
to the jth frame of the score are obtained by recursively
building a second matrix Accu according to

Accu(i, j) = min


Accu(i− 1, j − 1) + SMij

Accu(i− 1, j) + SMij

Accu(i, j − 1) + SMij

(2)

In the forward step, another matrix stores which of these
three options has been used in order to advance to the next
cell. As soon as the end point [N − 1,M − 1] has been
reached, this information is utilized to reconstruct the path,
i.e., the optimal alignment. A more detailed description of
the DTW algorithm is given in [10].

1 http://timidity.sourceforge.net
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3.2 NMF and Anchor Selection

The global alignment resulting from the DTW is robust.
However, local inaccuracies are inherent to the algorithm.
Therefore, an additional feature based on non-negative ma-
trix factorization (NMF) is used to reestimate the onset of
each individual note.

NMF is the decomposition of one matrix V of size m×
n into two output matrices W and H of sizes m × r and
r× n, respectively, such that all elements of W and H are
non-negative and

V ≈WH (3)

Applied to audio processing, such a decomposition of a
spectrogram results in a dictionary W of r weighted fre-
quency groups and the corresponding activation energies
H of these frequency groups over time.

Here we use a modification, as described in [12] and
[9], in which W is set to a pretrained set of tone models.
These models are computed from audio recordings of sin-
gle tones played on a piano by, in essence, taking each bin’s
weighted average energy over the time span where the tone
is sustained. The weight of a frame is the inverse of the am-
plitude envelope to compensate for different loudnesses.

Assuming a fixed W , only H is estimated. Since the
pitch described by an individual tone model is known, the
ith column of H is a feature representing the activation
energy of each pitch in time frame i.

To improve the onset time estimates, a search window
of length l is centered around the onset time tdtw obtained
by the DTW algorithm. Within this search window a fac-
torization is performed using a dictionary W consisting of
tone models of all those pitches that are expected to be
played within that time span and an additional white noise
component in which the energies are spread uniformly over
all frequency bins. A new onset time candidate tnmf is
then obtained by choosing the time frame with the largest
increase in energy of the pitch under consideration. In con-
trast to tdtw, tnmf can deviate from other notes with the
same score time.

When thinking of repeated notes or of fast passages in
which a certain pitch is played several times within the
search window, it becomes obvious that this method is too
simple to yield meaningful results. However, estimating
the onsets of repeated notes is a relatively hard problem in
itself. Spectral energy of a sustained note weakens the in-
dicators for the onset of a new note if they have the same
pitch. Under these circumstances, algorithms are likely to
get mislead by onsets of other notes with overlapping har-
monics. This fact makes such notes ineligible to be anchor
notes, as a high confidence in the exact estimation of the
onset time is essential. Thus, all notes which are played
twice or even more often within the time span of the search
window, as determined from the score, are discarded from
the anchor candidates.

Likewise, all notes are dropped from the list of anchor
candidates, for which the initial onset estimate tdtw and
the estimate given by the factorization-based feature tnmf
differ by more than a certain time span which could have

plausibly been caused by an arpeggio or a simple asyn-
chrony. This is justified because such a conflict decreases
the confidence in the onset estimation. Moreover, there is
no safe way to give either tdtw or tnmf a preference over
the other. On the one hand, tdtw is supposed to be more ro-
bust, since much more context information is incorporated.
On the other hand, tnmf is not bound by the constraints in-
herent to the DTW algorithm, and therefore able to yield
more accurate results [9].

In summary, the two times tdtw and tnmf are calculated
by the DTW algorithm and finding the maximum slope
within the factorization-based pitch activation. A note is
then selected as an anchor if the following two criteria are
met:

1. |tdtw − tnmf | < threshold

2. there are no other notes of the same pitch within
tdtw ± l/2

In our experiments, we used an STFT with window and
hop sizes of 4095 and 1024 frames, respectively, to com-
pute the chroma features from the audio signal. In or-
der to extract chroma vectors from the score, window and
hop sizes had been scaled such that the overall number
of frames and the overlap ratio remained unchanged rel-
ative to the audio representation. Since the DTW mis-
places only a negligible fraction of all notes by more than
a second, we chose 2.0 seconds for the size l of the search
window. Within this search window the hop size was de-
creased to 256 frames. The maximum difference |tdtw −
tnmf | allowed between the two onset estimates was set to
20 frames, i.e., a little more than a tenth of a second.

An evaluation of the extraction of anchor notes is pre-
sented in Section 5.

4. NOTE REFINEMENT

After extracting the anchor notes, the remaining notes must
be revised. For each of them (with the exception of notes
played before the first or after the last anchor notes) the
span of time during which it can be played is clearly con-
strained by the preceding and the successive anchor.

4.1 Beta distribution

In addition to a new search window, bounded by the near-
est anchors, rhythmic information in the score can be used
to make even more detailed predictions on where to look
for an onset. Therefore, the numbers or fractions of beats
between the anchor notes and the note under considera-
tion are extracted and their relation is transferred onto the
timescale of the audio recording. To account for inex-
actnesses of the anchor extraction and expressive tempo
changes, the ”expectation strength” of the onset occurring
at time t is modeled by a beta distribution 2 . The beta dis-
tribution is defined continuously on the interval [0, 1] and

2 The beta distribution was chosen for pragmatic reasons (the flexibil-
ity of its shape and its restriction to a fixed interval) rather than for precise
probability-theoretic reasons.
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zero outside this range. Depending on the values of its
parameters α and β, the density function can take several
forms, for example, that of a uniform distribution, it can
be strictly increasing or decreasing, U-shaped, or – as in
our case – it is unimodal (α > 1 and β > 1). Its density
function is defined as

f(x)α,β =
1

B(α, β)
xα−1(1− x)β−1 (4)

where B is the beta function

B(α, β) = 2

π/2∫
0

cos2α−1 θ sin2β−1 θ dθ (5)

Mode x̂ and variance σ2 of the distribution are therefore
given by

x̂ =
α− 1

α+ β − 2
(6)

σ2 =
αβ

(α+ β)2(α+ β + 1)
(7)

In our application, we set the parameters α and β by
fixing a mode x̂ and a variance σ2. The former is assumed
to be at the onset time we expect according to score and
anchor notes. Since the density function is only defined
on [0, 1], we use a linear projection to convert between the
domain of the beta distribution and the score time.

The variance is chosen such that it allows for expres-
sive variations and inexactnesses of the anchor extraction,
but prevents notes from being placed at rhythmically un-
reasonable timings. Experiments showed that the value
min(x̂, 1−x̂)/20 results in plausible expectation strengths.

Two such functions are depicted in Figure 1. The up-
per plot shows the onset likelihood for the onset time of
the third note, assuming that the first and fifth note are an-
chors. The time span between the anchor comprises three
beats. Since the note should be played after the first out
of these three beat-to-beat intervals, the function is clearly
skewed. This is desirable because a musician’s freedom of
expressive timing is greater when the score calls for longer
inter-onset intervals. The second function is the likelihood
of the fourth note’s onset time given notes number one and
six as anchors. The function is now symmetric, since the
onset time given by the score is exactly half the time span
(two out of four beat-to-beat intervals).

In order to transfer these expectation strength functions
from the score into the audio domain, another linear pro-
jection is applied.

4.2 Onset estimation

To extract revised onset estimates for non-anchor notes, we
calculate the constant Q spectrogram over the time span in
which the onset likelihood as described above is greater
than zero. The parameters of the constant Q spectrogram
are chosen such that each energy bin corresponds to a spe-
cific pitch. The hop size is set to 256 frames, resulting in a
very high overlap ratio at the lower bins.

Figure 1. Onset expectation strength for the 3rd and 4th

note.

For the purpose of onset detection, energy changes are
calculated and half-wave rectified. In order to incorporate
the score information, the result is then weighted by the
expectation strength. The final onset is set to the time cor-
responding to the maximum of this detection function.

5. EXPERIMENTAL RESULTS

5.1 Evaluation Method

Since this work was done in the context of musical perfor-
mance and style analysis, we used classical (polyphonic)
piano music to evaluate our system. The test data con-
sisted of the first movements of 11 Mozart sonatas played
by a professional pianist. The overall performance time
amounted to more than one hour, comprising more than
30.000 notes. The instrument used for the performance
was a computer-controlled Bösendorfer SE290 grand pi-
ano, which enables exact logging of all events such as keys
being hit or released and changes in pedal pressure.

The evaluation was done using mechanical scores rep-
resented in MIDI format and the real audio recording from
the performances as input data. The data recorded by the
Bösendorfer SE290 served as ground truth. The main eval-
uation criterion was the absolute timing displacement be-
tween aligned notes and the ground truth.

On the one hand, robustness and a high overall accu-
racy are important issues. On the other hand, our work
is directed towards providing methods for semi-automatic
audio annotation. One objective of such a system must
be to minimize human input. In post-processing, the user
must correct the onset time as soon as there is a notice-
able error. Therefore, we investigated not only the median
and percentile errors, but also how many of the notes were
detected well enough for a human to accept it.

In [4], listening tests showed that the human hearing
system does not detect timing variations of up to 10 ms in
sequences of short notes, and even greater displacements
in sequences of very long notes. Therefore, our evaluation
criteria were the proportions of notes aligned with a dis-
placement of less than 10 ms and 50 ms respectively. The
50 ms tolerance was included because it is a common mar-
gin in onset detection.
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50% < x[ms] 75% < x[ms] 95% < x[ms] max [ms]
piece duration # notes # anchors

non.a. anch. non.a. anch. non.a. anch. non.a. anch.
K.279-1 4:55 2803 1136 15.2 5.5 29 11 138 37 879 494
K.280-1 4:48 2491 1257 23.2 5.4 45 11 165 46 687 664
K.281-1 4:29 2648 1235 23.7 6.1 48 12 176 48 993 442
K.282-1 7:35 1907 705 23.8 6.9 60 13 439 72 4805 3008
K.283-1 5:22 3304 1130 16.2 7.9 28 13 75 34 673 467
K.284-1 5:17 3700 1223 15.2 6.1 31 14 120 71 1000 502
K.330-1 6:14 3160 1176 16.3 5.6 30 10 179 35 960 835
K.332-1 6:02 3470 1017 23.2 11.8 42 19 171 82 857 632
K.333-1 6:44 3774 1471 17.8 7.5 31 13 132 38 941 404
K.457-1 6:15 2993 1086 22.0 8.9 42 16 317 62 1773 1787
K.475-1 4:58 1284 483 38.4 16.3 98 24 304 115 4471 2663

Table 1. Comparison between accuracy (median, 75th percentile, 95th percentile, and maximum) of the anchor notes
(anch.) and the non-anchor notes (n.a.)

piece # non-anchors 50% < x[ms] 75% < x[ms] 95% < x[ms] max [ms]
K.279-1 1667 9.1 28 127 879
K.280-1 1234 9.2 24 147 706
K.281-1 1413 11.2 31 187 1035
K.282-1 1202 15.9 42 432 4822
K.283-1 2174 12.0 21 92 464
K.284-1 2477 9.0 26 125 1004
K.330-1 1983 9.6 21 134 835
K.332-1 2453 18.0 30 175 781
K.333-1 2303 12.1 22 93 1000
K.457-1 1907 16.5 37 246 1790
K.475-1 812 24.1 49 398 4377

Table 2. Accuracy of non-anchor notes after the refinement step (median, 75th percentile, 95th percentile, and maximum)

5.2 Evaluation Results

Table 1 presents the results of the anchor detection step.
About a third of the overall notes were chosen as anchors.
Although this seems to be a very large fraction, it is justi-
fied by the high accuracy of the selected notes. For half of
the pieces, the 95th percentile still met the 50 ms criterion
used for the evaluation of onset detection algorithms.

However, for each piece a small number of outliers were
picked as well. Some of them are due to our trade-off
between a small search window at the NMF calculation
and computational costs. Notes for which the initial align-
ment deviates from the real onset by more than a second
are post-processed using a time frame that does not even
contain the correct onset.

Table 2 shows that, in comparison to Table 1, a major-
ity of non-anchor notes were improved by the refinement
step. Both the median deviation and the 75th percentile im-
proved for all the pieces. Only the accuracy of the outliers
decreased further in some cases. This might be due to poor
anchor notes, which mislead onset detection.

The overall result as given by Table 3 shows the poten-
tial of the proposed method. It clearly outperformed the
reference algorithm from [9] in which the initial alignment
and the factorization-based post-processing were done in
a similar way but without using score information to re-
fine critical notes. Especially the proportion of note on-

sets identified with a deviation of less than 10 ms – i.e.,
the threshold of human perception, according to [4] – was
increased significantly from 40.0% to 49.8%. This is im-
portant for the construction of data acquisition tools which
are able to extract descriptions of musical expression from
audio recordings semi-automatically.

6. CONCLUSION AND FUTURE WORK

We have proposed a multi-pass method for the accurate
alignment of musical scores to corresponding audio record-
ings. The main contribution is the introduction of an ex-
pectation strength function modeling the expected onset
time of a note between two anchors. Although results are
encouraging, there are specific circumstances where the al-
gorithm fails, i.e., temporal displacement of notes is large.

One class of such errors are poor alignments at a piece’s
ending. There, two disadvantageous factors coincide. On
the one hand, there is no additional subsequent note which
could serve as hint for the alignment or as anchor in the
post-processing. On the other hand, a high degree of poly-
phony in combination with long and soft notes is to be ex-
pected at endings. Such passages are inherently difficult to
handle from a signal processing point of view.

An interesting example of such an error can be found
in the sonata K.282, in which one note was even wrongly
picked as an anchor although it was out of place by more
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50% < x[ms] 75% < x[ms] 95% < x[ms] x < 10ms x < 50ms
piece # notes

ref. new ref. new ref. new ref. new ref. new
K.279-1 2803 12 7.2 27 18 101 103 43.2% 61.7% 88.4% 90.2%
K.280-1 2491 14 7.1 34 16 127 93 42.5% 63.1% 85.0% 90.8%
K.281-1 2648 15 8.5 36 19 112 114 38.5% 56.8% 83.4% 89.9%
K.282-1 1907 15 11.8 44 27 380 378 39.2% 43.5% 76.8% 83.2%
K.283-1 3304 12 10.2 26 18 65 70 44.2% 49.1% 92.2% 92.4%
K.284-1 3700 13 8.0 29 21 98 110 41.7% 58.2% 87.2% 87.7%
K.330-1 3160 11 7.6 24 15 124 103 46.7% 61.0% 89.7% 91.2%
K.332-1 3470 18 16.0 37 27 147 148 32.5% 29.7% 82.7% 87.9%
K.333-1 3774 13 9.9 20 18 80 68 42.2% 50.5% 90.1% 92.8%
K.457-1 2993 15 13.4 35 26 257 183 35.9% 38.2% 83.2% 84.8%
K.475-1 1284 24 20.1 75 37 393 376 23.6% 22.5% 66.8% 78.6%

all 31534 14 10.1 32 21 137 121 40.0% 49.8% 85.6% 88.9%

Table 3. Overall accuracy of the proposed anchor-based method (new) compared to the reference method as described
in [9] (ref.)

than three seconds. The explanation is, that the last two
chords of this piece differ by only one single note (b[-a[-
d-f and e[-a[-d-f, respectively). The algorithm was not able
to distinguish the two chords. As a consequence, the notes
of the last chord were aligned to the onset of the preced-
ing chord as well. The resulting temporal displacement of
about three seconds is slightly shorter than the duration of
the first of these chords.

This clearly leads further work towards the issues of im-
proved mechanisms for anchor detection and the handling
of inherently ”difficult“ passages, such as the endings. An
approach that could benefit both fields is the introduction
of a more sophisticated local confidence or fitness measure
for arbitrary sections of an alignment.

Another aspect which has not been considered yet is the
detection of deviations from the score, such as when the
pianists adds ornamentations or playing errors occur.
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ABSTRACT

Dynamic Time Warping (DTW) is used to find alignments
between two related streams of information and can be
used to link data, recognise patterns or find similarities.
Typically, DTW requires the complete series of both in-
put streams in advance and has quadratic time and space
requirements. As such DTW is unsuitable for real-time
applications and is inefficient for aligning long sequences.
We present Windowed Time Warping (WTW), a variation
on DTW that, by dividing the path into a series of DTW
windows and making use of path cost estimation, achieves
alignments with an accuracy and efficiency superior to other
leading modifications and with the capability of synchro-
nising in real-time. We demonstrate this method in a score
following application. Evaluation of the WTW score fol-
lowing system found 97.0% of audio note onsets were cor-
rectly aligned within 2000 ms of the known time. Results
also show reductions in execution times over state-of-the-
art efficient DTW modifications.

1. INTRODUCTION

Dynamic Time Warping (DTW) is used to synchronise two
related streams of information by finding the lowest cost
path linking feature sequences of the two streams together.
It has been used for audio synchronisation [3], cover song
identification [13], automatic transcription [14], speech pro-
cessing [10], gesture recognition [7], face recognition [1],
lip-reading [8], data-mining [5], medicine [15], analytical
chemistry [2], and genetics [6], as well as other areas. In
DTW, dynamic programming is used to find the minimal
cost path through an accumulated cost matrix of the ele-
ments of two sequences. As each element from one se-
quence has to be compared with each element from the
other, the calculation of the matrix scales inefficiently with
longer sequences. This, combined with the requirement of
knowing the start and end points of the sequences, makes
DTW unsuitable for real-time synchronisation. A real-time
variant would make DTW viable at larger scales and capa-
ble of driving applications such as score following, auto-
matic accompaniment and live gesture recognition.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Local constraints such as those by Sakoe and Chiba [10]
improve the efficiency of DTW to linear time and space
complexity by limiting the potential area of the accumu-
lated cost matrix to within a set distance of the diagonal.
However, not all alignments necessarily fit within these
bounds. Salvador and Chan proposed, in FastDTW [11],
a multi-resolution DTW where increasingly higher resolu-
tion DTW paths are bounded by a band around the previous
lower resolution path, leading to large reductions in the ex-
ecution time. On-Line Time Warping by Dixon [3] made
real-time synchronisation with DTW possible by calculat-
ing the accumulated cost in a forward manner and bound-
ing the path by a forward path estimation.

While the efficiency of DTW has been addressed in
FastDTW [11] and the real-time aspect has been made pos-
sible with On-Line Time Warping [3], WTW contributes
to synchronisation by offering steps to further improve the
efficiency whilst working in a progressive (real-time ap-
plicable) manner and preserving the accuracy of standard
DTW. This method consists of breaking down the align-
ment into a series of separate bounded sub-paths and using
a cost estimation to limit the area of the accumulated cost
matrix calculated to small regions covering the alignment.

In Section 2 we explain conventional DTW before de-
scribing how WTW works in Section 3. In Section 4 we
evaluate the accuracy and efficiency of WTW in a score
following application. Finally, in Section 5, we draw con-
clusions from this work and discuss future improvements.

2. DYNAMIC TIME WARPING

DTW requires two sets of features to be extracted from the
two input pieces being aligned and a function for calcu-
lating the similarity between any two frames of these fea-
ture sets. One such measurement of the similarity is the
inner product. As the inner product returns a high value
for similar frames, we subtract the inner product from one
so that the optimal path cost is the path with the minimal
cost. Equation 1 shows how to calculate this similarity
measurement between frames Am and Bn from feature se-
quences A = (a1, a2, ..., aM ) and B = (b1, b2, ..., bN )
respectively:

dA,B(m, n) = 1− < am, bn >

‖am‖‖bn‖
(1)

Dynamic programming is used to find the optimum path,
P = (p1, p2, ..., pW ), through the similarity matrix C(m, n)
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Figure 1. Dynamic Time Warping aligning audio with a
musical score. The audio is divided into chroma frames
(bottom) which are then compared against the score’s
chroma frames (left). The similarity matrix (centre) shows
a path where the sequences have the lowest cost (highest
similarity). Any point on this path indicates where in the
score the corresponding audio relates to.

with m ∈ [1 : M ] and n ∈ [1 : N ] where each pk =
(mk, nk) indicates that frames amk

and bnk
are part of the

aligned path at position k. An example of this similar-
ity matrix, including the features used and the lowest cost
path, can be seen in Figure 1. The final path is guaranteed
to have the minimal overall cost D(P ) =

∑W
k=1 dA,B(mk, nk),

within the limits of the features used, whilst satisfying the
following conditions:

Bounds: p1 = (1, 1)
pW = (M, N)

Monotonicity: mk+1 ≥ mk for all k ∈ [1, W − 1]
nk+1 ≥ nk for all k ∈ [1, W − 1]

Continuity: mk+1 ≤ mk + 1 for all k ∈ [1, W − 1]
nk+1 ≤ nk + 1 for all k ∈ [1, W − 1]

3. WINDOWED TIME WARPING

WTW consists of calculating small sub-alignments and com-
bining these to form an overall path. Subsequent sub-paths
are started from points along the previous sub-paths. Real-
time path positions can then be extrapolated from these
sub-paths. The end points of these sub-alignments are ei-
ther undirected, by assuming they lie on the diagonal, or
directed, by using a forward path estimate. As such WTW
can be seen as a two-pass system similar to FastDTW and
OTW. The sub-alignments make use of an optimisation
that avoids calculating points with costs that are over the
cost estimate (provided by the initial direction path), re-
ferred to as the A-Star Cost Matrix. WTW also requires
the use of Features, Window Dimensions, and Local Con-

straints that all affect how the alignments are made. The
overall process is outlined in Algorithm 1. In order to
demonstrate WTW we implemented a score following ap-
plication using this method to synchronise audio and mu-
sical scores.

Input: Feature Sequence A and Feature Sequence B
Output: Alignment Path
Path = new Path.starting(1,1);
while Path.length < min (A.length,B.length) do

Start = Path.end;
End = Start;
while (End - Start).length < Window Size do

End =
argmin(Inner Product(End.next points));

end
Cost Estimate = End.cost;
A-Star Matrix =
A Star Fill Rect(Start,End,Cost Estimate);
Path.add(A Star Matrix.getPath(1,Hop Size));

end
return Path;

Algorithm 1: The Windowed Time Warping algorithm.

3.1 Features

The feature vector describes how the sequence data is rep-
resented and segmented. The sequence is divided up into
feature frames in order to differentiate the changes in the
sequence over time. The frame size and spacing are re-
ferred to as the window size and hop size respectively. The
implementation of WTW for score following requires a
musically based feature vector. In this case, we use chroma
features, a 12 dimensional vector corresponding to the unique
pitch classes in standard Western music. The intensities of
the chroma vectors can be seen as a representation of the
harmonic and melodic content of the music. In our imple-
mentation we use a window size of 200ms and a hop size
of 50ms.

3.2 Window Dimensions

Similar to how the sequence data is segmented, the win-
dows of standard DTW in WTW have a window size and
hop size to describe their size and spacing respectively. A
larger window size and/or smaller hop size will increase
the accuracy of the alignment, as more of the cost matrix
is calculated, however will this will be less efficient. Ex-
amples of different window and hop sizes can be seen in
Figure 2 and a comparison of Window and Hop sizes is
made in Section 4.

3.3 Local Constraints

We refer to two types of local constraints in Dynamic Pro-
gramming. The first, henceforth known as the cost con-
straint, indicates the possible predecessors of a point pk

on a path. The predecessor pk−1 with lowest path cost
D(pk−1) is chosen when calculating the accumulated cost
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Figure 2. The regions of the similarity matrix computed
for various values of the window size (top row) and hop
size (bottom row).

Figure 3. Some example local constraints as defined by
Rabiner and Juang [9].

matrix. The second, referred to as the movement constraint,
indicates the possible successors of a point pk. Standard
DTW doesn’t make use of a movement constraint as all the
frames in the cost matrix are calculated. Examples of local
constraints by Rabiner and Juang [9] are show in Figure 3.
These constraints define the characteristics of the dynamic
programming. For example, Type I allows for horizon-
tal and vertical movement which corresponds to a single
frame of one sequence being linked to multiple frames of
the other. All the other Types allow high cost frames to be
skipped and Type III and II show how the paths can skip
these frames directly or add in the single steps, respec-
tively. The two path finding algorithms, described next,
make use of the Type I and a modified version of the Type
VII (where the steps are taken directly as in Type III) local
constraints.

3.4 Window Guidance

The sequential windows that make up the alignment of
WTW can be either directed or undirected. Whilst it can
help to direct the end point of the windows of DTW (partic-
ularly for alignments between disproportional sequences
where the expected path angle will be far from 45◦), the
sub-paths calculated within these windows can make up
for an error in the estimation. A low hop size should en-
sure the point taken from the sub-path as the starting point
for the next window is likely to be on the correct path.

For the windows to be directed, a forward estimation is
required. The Forward Greedy Path (FGP) is an algorithm
which makes steps through the similarity matrix based on
whichever subsequent step has the highest similarity (min-
imal cost) using a movement constraint to decide which
frames are considered. In this manner the path can work in
an efficient forward progressive manner, however, will be
more likely to be thrown off the correct path by any periods
of dissimilarity within the alignment. The first FGP path
F = (f1, f2, ..., fW ) where fk = (mk, nk) starts from po-
sition f1 = (m1, n1) and from then on each subsequent
frame is determined by whichever of the available frames,
as determined by the local constraint, has the lowest cost.
Therefore the total cost D(m, n) to any point (m, n) on
the FGP path F is D(fk) =

∑k
l=1 d(fl) and any point is

dependent on the previous point: fk+1 = argmin(d(i, j))
where the range of possible values for i and j are deter-
mined by fk and the local constraints.

The FGP path only needs to calculate similarities be-
tween frames considered within the local constraints and
so at this stage a vast majority of the similarity matrix does
not need to be calculated. When the FGP reaches fW , the
window size, the final point fW = (mW , nW ) is selected
as the end point for the accumulated cost-matrix.

Note that some combinations of constraints that skip
points (i.e. where i or j are greater than 1) will require that
jumps in the FGP are filled in order to compute a complete
cost estimate, like in the Type V local constraint, so that
the cost estimation of the FGP is complete. A comparison
of guidance measures is made in Section 4.

3.5 A-Star Cost Matrix

The windowed area selected is calculated as an accumu-
lated cost matrix between the beginning and end points
of the FGP i.e. C(m, n) of m ∈ [mf1 : mfL

] and n ∈
[nf1 : nfL

]. This accumulated cost matrix can be calcu-
lated in either a forward or reverse manner, linking the start
to the end point or vice versa. This uses the standard Type
I cost constraint to determine a frame’s accumulated cost
as shown by Equation 2:

D(m, n) = d(m, n) + min


D(m− 1, n− 1)

D(m− 1, n)
D(m, n− 1)

 (2)

The sub-path S = (s1, s2, ..., sV ) is given by the accu-
mulated cost constraints by following the cost progression
from the beginning point in this window until the hop size
is reached. When the sub-path reaches sV , the final point
fV = (mv, nv) is then taken as the starting point for the
next window and so on until the end of either sequence is
reached. The sub-paths are concatenated to construct the
global WTW path. This process can also be seen in Figure
4.

Either of the undirected and directed window end point
estimations provide an estimate cost D(F ) for each sub-
path. This estimate can be used to disregard any points
within the accumulated cost matrix that are above this cost
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Figure 4. The complete Windowed Time Warping path.

as it is known there is a potential sub-path that is cheaper.
The calculation of the similarity for most of these ineffi-
cient points can be avoided by calculating the accumulated
cost matrix in rows and columns from the end point fL

to the start f1. When each possible preceding point for
the next step of the current row/column has a total cost
above the estimated cost i.e. min(D(m−1, n−1), D(m−
1, n), D(m, n− 1)) >= D(F ) the rest of the row/column
is then set as more than the cost estimate, thus avoiding cal-
culating the accumulated cost for a portion of the matrix.
This procedure can be seen in Figure 5.

4. EXPERIMENTAL EVALUATION

To evaluate WTW we used the score following system with
ground truth MIDI, audio and path reference files and com-
pared the accuracy of the found alignments with the known
alignments. MATCH, the implementation of On-Line Time
Warping [4], was also used to align the test pieces for com-
parison purposes. In both cases the MIDI was converted to
audio using Timidity.

4.1 Mazurka Test Data

The CHARM Mazurka Project by the Centre for the His-
tory and Analysis of Recorded Music led by Nick Cook
at Royal Holloway, University of London has published a
large number of linked metadata files for Mazurka record-
ings in the form of reverse conducted data, 1 produced by
Craig Sapp [12]. We then used template matching to com-
bine this data with MIDI files, establishing links between
MIDI notes and reverse conducted notes at the ms level.
This provided a set of ground truth files linking the MIDI
score to the audio recordings. These ground truths were
compared with an off-line DTW alignment and manually
supervised to correct any differences found. Overall, 217

1 http://mazurka.org.uk/info/revcond/

Figure 5. The calculation of the accumulated cost ma-
trix. The numbering shows the order in which rows and
columns are calculated and the progression of the path
finding algorithm is shown by arrows. Dark squares repre-
sent a total cost greater than the estimated path cost whilst
black squares indicate points in the accumulated cost ma-
trix that do not need to be calculated.

sets of audio recordings, MIDI scores and reference files
were produced.

4.2 Evaluation Metrics

For each path produced by WTW, each estimated audio
note time was compared with the reference and the dif-
ference was recorded. For differing levels of accuracy re-
quirements (100 ms, 200 ms, 500 ms and 2000 ms), the
percentages of notes that were estimated correctly within
this requirement for each piece were recorded. These piece-
wise accuracies are then averaged for an overall rating. The
2000 ms accuracy requirement is used as the MIREX score
following accuracy requirement for notes hit.

4.3 Window Dimensions

The effect of the window size and hop size in WTW is
examined in Table 1. The accuracy tests (shown in the top
half) show a trend that suggests larger window sizes and
smaller hop sizes lead to greater accuracy, as is similar to
feature frame dimensions. However, larger window sizes
and smaller hop sizes also lead to slower execution times
as more points on the similarity matrix were calculated.

4.4 Window Guidance

A comparison of guidance methods for WTW is shown
in Table 2. This comparison shows that for the test data
used, there was not much difference between directed and
undirected WTW and directed only offered an improve-
ment when a large local constraint was used.

426

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Alignment Accuracy at 2000 ms
Window Size

Hop Size 100 200 300 400
100 76.0% 83.1% 81.8% 81.9%
200 63.7% 82.2% 82.0% 82.0%
300 57.7% 77.7% 81.2% 82.5%
400 57.4% 66.1% 81.1% 82.0%

Table 1. Accuracy test results comparing different window
and hop sizes for WTW. For this test there was a guidance
FGP that used a Type VII +6 movement constraint (see
Table 2) and the accumulated cost matrix used a Type I
cost constraint and Type I movement constraint.

Alignment Accuracy
Acc. Req. 100 ms 200 ms 500 ms 2000 ms

None 63.8% 75.9% 82.0% 86.9%
Type I 56.2% 68.7% 74.2% 78.1%

Type IV 63.3% 74.8% 80.7% 86.0%
Type VII 64.0% 76.9% 82.6% 86.6%

Type IV +4 58.0% 70.3% 75.8% 79.5%
Type VII +6 59.4% 72.2% 78.0% 81.2%

Type II 63.9% 75.8% 81.8% 87.3%
Type V 64.9% 78.0% 83.9% 88.1%

Table 2. Accuracy test results comparing different meth-
ods for guiding the windows in WTW. The name of the
guidance method refers to the movement constraint used
in the Forward Greedy Path. The ‘Type 4 +4’ and ‘Type
7 +6’ constraints include additional horizontal and verti-
cal frames to complete the block. For this test the window
and hop size were set at 300ms and the accumulated cost
matrix used a Type I cost constraint and Type I movement
constraint.

4.5 Accuracy Results

The results of the accuracy test can be seen in Table 3.
From this test we can see WTW produces an accuracy
rate comparable with that of OTW. What separates the two
methods is that the OTW method took on average 7.38
seconds to align a Mazurka audio and score file where
as WTW took 0.09 seconds, (approximately one 80th of
the time of OTW). The average length of the Mazurka
recordings is 141.3 seconds, therefore, in addition to hav-
ing the ability to calculate the alignment path sequentially,
both methods achieve greater than real-time performance
by some margin.

4.6 Efficiency Results

The efficiency tests consisted of aligning sequences of dif-
ferent lengths and recording the execution time. The re-
sults of this test can be seen in Table 4. These results show
that WTW has linear time costs in relation to the length
of the input sequence, unlike standard DTW. The optimi-
sations suggested in this work are shown to decrease the
time cost in aligning larger sequences over FastDTW.

Alignment Accuracy
Acc. Req. 100 ms 200 ms 500 ms 2000 ms

WTW 73.6% 88.8% 94.9% 97.0%
OTW 70.9% 86.7% 94.8% 97.3%

Table 3. Accuracy test results comparing WTW and OTW
estimated audio note onset times against references for 217
Mazurka recordings at 4 levels of accuracy requirements.
For this test the window and hop size were set at 300ms and
the accumulated cost matrix used a Type I cost constraint
and Type VII movement constraint.

Execution time (seconds)
Sequence length 100 1000 10000 100000

DTW 0.02 0.92 57.45 7969.59
FastDTW (r100) 0.02 0.06 8.42 207.19

WTW 0.002 0.06 0.90 9.52

Table 4. Efficiency test results showing the execution time
(in seconds) for 4 different lengths of input sequences (in
frames). Results for FastDTW and DTW are from [11].
The r value for FastDTW relates to the radius factor.

5. DISCUSSION AND CONCLUSION

This paper has introduced WTW, a linear cost variation on
DTW for real-time synchronisations. WTW breaks down
the regular task of creating an accumulated cost matrix be-
tween the complete series of input sequence vectors, into
small, sequential, cost matrices. Additional optimisations
include local constraints in the dynamic programming and
cut-off limits for the accumulated cost matrices.

Evaluation of WTW has shown it to be more efficient
than state of the art DTW based off-line alignment tech-
niques. WTW has also been shown to match the accu-
racy of OTW whilst improving on the time taken to process
files. Whilst this difference has little effect when synchro-
nising live sequences on standard computers, the greater
efficiency of WTW could be useful in running real-time
synchronisation methods on less powerful processors, such
as those in mobile phones, or when data-mining large data-
sets for tasks such as cover song identification.

Future work will involve evaluating WTW on a wider
variety of test data-sets, including non-audio related tasks
and features. Possible improvements may be found in novel
local constraints and/or the dynamic programming used to
estimate the start and end points of the accumulated cost
matrices. Presently, WTW assumes the alignment is con-
tinuous from the start to the end. A more flexible approach
will be required to handle alignments made of partial se-
quence matches. Also, the modifications of WTW could
potentially be combined with other modifications of DTW,
such as those in FastDTW in order to pool efficiencies.
Lastly, WTW, like DTW, is applicable to a number of tasks
that involve data-mining, recognition systems or similarity
measures. It is hoped WTW makes DTW viable for appli-
cations on large data sets in a wide range of fields.
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ABSTRACT

We introduce a method for the automatic extraction of
musical structures in popular music. The proposed algo-
rithm uses non-negative matrix factorization to segment re-
gions of acoustically similar frames in a self-similarity ma-
trix of the audio data. We show that over the dimensions
of the NMF decomposition, structural parts can easily be
modeled. Based on that observation, we introduce a clus-
tering algorithm that can explain the structure of the whole
music piece. The preliminary evaluation we report in the
the paper shows very encouraging results.

1. INTRODUCTION

Music structure discovery (MSD) aims at characterizing
the temporal structure of songs. In the case of popular mu-
sic, this means classifying segments of a music piece into
parts such as intro, verse, bridge, chorus or outro. Knowing
this musical structure, one can introduce new paradigms in
dealing with music collections and develop new applica-
tions such as audio thumbnailing and summarization for
fast acoustic browsing, active listening (audio based re-
trieval and organization engines), song remixing or restruc-
turing, learning semantics, etc.

In the past years, MSD has therefore gained an increas-
ing interest in the music information retrieval community.
This also led to the constitution of common evaluation data
sets and evaluation campaigns (MIREX 09) that strongly
stimulate the research in this field.

1.1 Previous work

Structure in music can be defined as the organization of
different musical forms or parts through time. How we de-
fine musical forms and what builds our perception of these
forms is however an open question, and MSD algorithms
that have been proposed yet mainly differ in the way they
answer those questions. However, Bruderer gives in [2] a
general understanding of perception of structural bound-
aries in popular music, and shows that perception of struc-
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ture is mainly influenced by a combination of changes in
timbre, tonality and rhythm over the music pieces. There-
fore, MSD algorithms generally aim at finding similarities
and repetitions in timbre, tonality and rhythm based de-
scriptions of the audio signal.

In [4], Foote and Cooper addressed the task of music
summarization and proposed to visualize and highlight these
repetitions in the audio signal through a self-similarity ma-
trix. The audio signal is therefore parametrized through
the extraction of audio features and the similarity between
each frame is then measured. Thus using different audio
features and similarity measures, most MSD algorithms
are a processing of such a self-similarity representation.

In [13], the author distinguishes two categories of struc-
ture in the self-similarity matrix: the state representation
and the sequence representation. The state representation
defines the structure as a succession of states (parts). Each
state is a succession of frames that show similar acoustic
properties and therefore forms blocks in the self-similarity
matrix. This representation is closely related to the notion
of structural parts in popular music (intro - verse - chorus
- outro), in which the acoustical information does not vary
much. Algorithms based on state representation usually
start with a segmentation by audio novelty score method
[5]. The segments are then merged together with mean of
hierarchical clustering, spectral clustering, or HMM.

On the other hand, the sequence representation consid-
ers series of times (frames), that are repeated over the mu-
sic piece. The sequence representation is more related to
musical concepts such as melody, progression in chords
and harmony. Algorithms based on sequence representa-
tion look for repetitions on the off-diagonals of the self-
similarity matrix. Matrix filtering of higher-order matrix
transformations [14] can also be applied to the self-similarity
matrix in order to emphasize off-diagonals. One of the
main drawbacks of the sequence representation is that the
structure of the music piece can not be fully explained un-
less all sequences are repeated at least once.

1.2 Approach

Non-negative matrix factorization (NMF) is a low-rank ap-
proximation technique that was first introduced in [9]. It
is known for extracting parts-based representation of data,
that strongly relates to some form of inherent structure
in the data. Therefore, it has been successfully used in
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Figure 1. Overview of the proposed music structure dis-
covery system

a wide range of multimedia information retrieval applica-
tions such as text summarization [9] or sound classifica-
tion [1]. Moreover, Foote et al. showed in [3] that de-
composing the self-similarity matrix of a video stream via
NMF could help separating visually similar segments . We
propose to extend the approach of Foote to music data.

Defining structural parts as acoustically similar regions
like in the state-representation, we apply NMF to the self-
similarity matrix. We show that such structural parts can
easily be discriminated over the dimensions of the obtained
decomposition. With a clustering approach, we are thus
able to merge together similar audio segments in the NMF
decomposed matrices, and explain the structure of the whole
music piece.

In the next section, we provide a detailed description
of our system. Evaluation metrics, data set and results are
presented in section 3. Section 4. concludes the paper.

2. PROPOSED METHOD

An overview of our system is shown in Figure 1. In this
section each individual block of the system is described.

2.1 Feature Extraction

We first extract a set of audio features that are likely to
model variations between different musical parts. As men-
tioned in the introduction, perception of structural bound-
aries in music is mostly influenced by variations in timbre,
tonality and rhythm [2]. However, few rhythmical changes
occur between parts in our evaluation data set (see section
3.) and we thus only focus on the description of timbre
and tonality. Nevertheless, the reader might refer to [11]
for interesting work also using rhythmical clues for struc-
ture discovery.

Timbre properties of the audio signal are described by
extraction of the following features: the first 13 MFCC

Figure 2. Self-similarity matrix computed on the timbre-
related features using the exponential variant of the cosine
distance. Audio file : ”Creep” by Radiohead

coefficients, spectral centroid, spectral slope and spectral
spread.

Tonality can be associated to the concepts of melody
and harmony. Songs in a popular music context are how-
ever very diverse and a melody extractor would hardly be
robust over a whole set of popular songs. We thus only fo-
cus on the description of harmonic properties through the
extraction of the chroma features. Chroma features are 12
dimensional, each element corresponding to a pitch-class
profile of a 12 scaled octave.

The frame analysis is performed with mean of a window
size of 400 ms and a hop size of 200 ms. Each feature is
normalized to mean zero and variance one.

Timbre-related features and chroma features are stored
in two different feature matrices and processed separately.

2.2 Self-Similarity Matrix

After parameterization of the audio, we measure the simi-
larity between each signal frame in a self-similarity matrix
S. Each element sij is defined as the distance between the
feature vectors vi and vj , extracted over frames i and j.
The cosine angle is used as a similarity measure :

d(vi,vj) =
< vi,vj >

||vi||||vj ||
(1)

As proposed in [3], an exponential variant of this dis-
tance is used to limit its range to [0,1] :

de(vi,vj) = exp(d(vi,vj)− 1) (2)

As an example, we extracted the timbre-related features
over the song ”Creep” by Radiohead. The resulting self-
similarity matrix is shown in Figure 2. One clearly sees
that structural information is conveyed by the self-similarity
matrix. Regions of acoustically similar frames form blocks
in the matrix and one can also distinguish repetitions of
these blocks. This illustrates the state representation of
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structure, as explained in the introduction. In this spe-
cific example, there are few sequence repetitions to see
on the off-diagonals. In fact, the clearness of such se-
quences in the self-similarity matrix pretty much depends
on the nature of the song and the features that describe it
(chroma features tend to highlight sequences). In our ex-
ample, blocks are formed because of the strong presence
of saturated guitar, which does not yield much timbre evo-
lution within the structural parts.

2.3 Segmentation

Once the audio has been embedded in the self-similarity
matrix S, a segmentation step is needed to estimate po-
tential borders of the structural parts. Therefore the self-
similarity matrix is segmented using the audio novelty score
introduced in [5]. The main idea is to detect boundaries
by correlating a Gaussian checkerboard along with the di-
agonal of the self-similarity matrix S. The checkerboard
basically models the ideal shape of a boundary in S. The
correlation values yield a novelty score in which local max-
ima indicate boundaries. We apply an adaptive threshold
as described in [6] to detect these maxima and generate the
segmentation.

2.4 Non-negative Matrix Factorization

Matrix factorization techniques such as principal compo-
nents analysis (PCA), independent component analysis (ICA)
or vector quantization (VQ) are common tools for the anal-
ysis of multivariable data and are mainly used for dimen-
sionality reduction purposes. In [7], Lee and Seung intro-
duced non-negative matrix factorization (NMF), and pro-
posed to build the decomposition additively by applying
a non-negativity constraint on the matrix factors. Unlike
PCA and other factorization techniques, cancelation of the
decomposed data is thus not allowed, leading to a parts-
based representation of the data. An intuitive justification
is that not allowing negative coefficients in the decompo-
sition will prevent the loss of the physical meaning of the
data.

Given an n ×m non-negative matrix V, NMF aims at
estimating the non-negative factors W (n× r) and H (r×
m), that best approximate the original matrix :

V ≈WH (3)

W contains the basis vectors and H the encoding coef-
ficients for the best approximation of V. The rank of the
decomposition r is usually chosen so that (n+m)r < nm,
thus providing a compressed version of the original data.

In our approach, we compute NMF on the self-similarity
matrix of the audio in order to separate basic structural
parts. The algorithm we use for the estimation of the ma-
trix factors W and H is detailed in [8]. In the next sec-
tion, we describe how the factorization via NMF relates to
structure and show how we can use that result for music
structure discovery.

Figure 3. Matrices A1 and A2 obtained by NMF decom-
position of the timbre self-similarity matrix of the song
”Creep” (see Figure 2).

2.5 NMF based feature space

After decomposition via NMF, each element sij of S can
be written as:

sij ≈
r∑

k=1

Ak(i, j) (4)

with
Ak = W(:, k)H(k, :) (5)

To illustrate how NMF can decompose data into basic struc-
tural parts, we compute NMF on the self-similarity matrix
calculated over the song ”Creep” by Radiohead. The rank
of decomposition is set to 2 and the decomposed matrices
A1 and A2 are shown in Figure 3.
According to the timbre description in Figure 2, we can
say that the music piece is composed of two main struc-
tural parts. Figure 3 shows that these two parts are strongly
separated over the two dimensions of the NMF decompo-
sition.

This suggests that each dimension of the NMF decom-
position somehow relates the contribution of a structural
part in the original data. In other words, that means that
there is a specific energy distribution over the dimensions
of the decomposition for each structural part.

Therefore it seems relevant to study for each segment
how the energy is distributed over the matrices Ak. In or-
der to consider temporal dependencies, we choose to con-
sider segments as successions of frames in matrices Ak,
and not as blocks. That means that each frame from the
music piece is represented by its corresponding values over
the diagonals of matrices Ak. We thus define the feature
vector dk, representing the contribution of the kth decom-
position over all frames:

dk = diag(Ak) (6)

Each frame can then be represented in the (n×r) feature
space D :

D = [d1d2 . . .dr] (7)

To illustrate this approach, we show an example with
the song ”Help” by The Beatles. The self-similarity matrix
S computed on the timbre features of the song and the an-
notated structure are plotted in Figure 4. We compute the
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Figure 4. Self-similarity matrix computed on the timbre-
related features for the song ”Help” by The Beatles. The
black boxes indicate the annotated segments, with A being
the intro, B the verse, C the chorus and D the outro.

Figure 5. Representation of the structural parts of the song
”help” in the feature space D

NMF decomposition of S. For visualization purposes, the
rank of decomposition is set to 3. In Figure 5, each of the
annotated segments is represented in the feature space D.
It is clear that structural parts chorus, verse and outro tend
to be well represented over feature vectors d1, d2 and d3

respectively. In this case, we can say that each dimension
of the NMF decomposition relates the contribution of a
structural part. It is also interesting to note that segments
of the same structural part seem to follow similar trajecto-
ries, suggesting that temporal dependencies should also be
considered.

In classification problems, a feature space should pro-
vide good separability between classes. This means that
the set of observations for a single class should have a
small variance, whereas the set of all observations (for all
the classes) should have a large variance. In that sense and
according to Figure 5, representing segments in the feature
space D should provide a good basis for structural classi-
fication.

2.6 Clustering

Each found segment is now represented in the NMF based
feature space D. In order to merge together segments be-
longing to the same structural part, we propose to use a
classical clustering approach. Therefore, the similarity be-
tween segments in D is measured with:

• The Bayesian information criterion (BIC)

• The Mahalanobis distance

The clustering is performed using the two measures sep-
arately. A comparison of the performance obtained with
both measures is done in section 3. The clustering is done
with a classical hierarchical approach.

3. EVALUATION

3.1 Data set

The evaluation data set consists of 174 songs from The
Beatles, that were first manually annotated at Universistat
Pompeu Fabra (UPF) 1 . Some corrections to the annotation
were made at Tampere University of Technology (TUT) 2 .
We call the data set TUT Beatles.

The structure in each music piece is annotated as a state
representation and not as sequences (see section 1.). Each
frame is thus affected to a label.

3.2 Metrics for the clustering evaluation

Evaluating the performance of a music structure detection
algorithm is not simple. In fact musical structures are mostly
hierarchical [10], meaning that the structure can be ex-
plained at different levels. For example, a structure A-B-
A, could be also be described as abc-def-abc. We choose
to evaluate our system using the pairwise precision, re-
call and F-measure. Therefore, we define Fa the set of
identically labelled frames in the reference annotation, and
Fe the set of identically labelled frames in the estimated
structure. Pairwise precision, recall and F-measure, re-
spectively noted P , R and F are then defined as :

P =
|Fe

⋂
Fa|

|Fe|
(8)

R =
|Fe

⋂
Fa|

|Fa|
(9)

F =
2PR

P + R
(10)

These measures are not perfect for evaluating MSD al-
gorithms because they do not reflect hierarchical aspects
in the description of structure. Nevertheless, they give an
idea of the global performance of the system.

1 http://www.iua.upf.edu/%7Eperfe/annotaions/sections/license.html
2 http://www.cs.tut.fi/sgn/arg/paulus/structure.html
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F-measure Precision Recall
Timbre 58.6% 58.1% 61.9%
Chroma 50% 46.5% 52.2%

both 53.6% 49% 55%

Table 1. Segmentation evaluation with the TUT Beatles
database

3.3 Segmentation Evaluation

We evaluate the segmentation step with classical F-measure,
precision and recall. Table 1 reports the performance of the
segmentation computed on the timbre-related self-similarity
matrix, the chroma-related self-similarity matrix and the
sum of the two matrices.

The low precision rate in the segmentation suggests that
the algorithm tends to over-segment the audio. In fact,
structure is hierarchical and the annotation labels high level
parts of the structure. The clustering might cope with that
by reassembling segments from the same structural part.

3.4 Rank of decomposition

We ran a small experiment in order to choose a suitable
rank for the NMF. Over a subset of ten songs from the
database, we compute the similarity matrices. Varying the
rank of NMF r from 3 to 12, we measure the separability
between structural parts along each dimension di of D. To
do so, we compute the inertia ratio of the variance of di

within segments belonging to the same structural part and
the variance of di over the whole music piece [12]:

s(i) =

∑K
k=1

N
Nk

(mk −mi)(mk −mi)′

1
N

∑N
n=1(di(n)−mi)(di(n)−mi)′

(11)

With K being the number of structural parts, Nk the
number of frames in structural part k and N the total num-
ber of frames. mi is the mean of di over the all piece and
mk the mean value of di over the kth structural part. For
a given rank of decomposition r, the separability is then
measured as the mean of s:

sep(r) =
1
r

r∑
i=1

s(i) (12)

We find a maximum of separability with a rank of 9 for
NMF (see Figure 6). It is larger than the median number
of annotated parts. In fact, as structure can be explained at
different hierarchical levels, we don’t expect the NMF de-
composition to match the parts described in the annotation
one-by-one.

3.5 Experimental set up for the clustering

Self-similarity matrices are computed over the timbre and
chroma features separately. As shown in Table 1, seg-
mentation using the timbre features provides better per-
formances. Therefore, in the evaluation of the clustering
step, we only use the segments positions extracted over
the timbre-related self-similarity matrix. We propose four

Figure 6. Separability of structural parts given different
ranks of decomposition

strategies to evaluate our clustering approach. For the three
first strategies, the NMF based feature space is obtained by
decomposition of the timbre-related self-similarity matrix
(labeled as ”Timbre” ), the chroma-related self-similarity
matrix (labeled as ”Chroma”) and the sum of the two matri-
ces (labeled as ”Fusion 1”). We also study a second fusion
strategy where similarity between segments is computed
separately in the timbre and chroma related feature spaces
and then summed for the clustering algorithm (labeled as
”Fusion 2”).

We also compare the clustering obtained using the auto-
matic segmentation described in section 2. (labeled ”auto”)
and using the annotated segments (labeled ”manual”). Fi-
nally, each configuration is run using the BIC (Table 2) and
the Mahalanobis distance (Table 3) as similarity measure
for the clustering algorithm.

The number of clusters is set to 4, which is the median
number of annotated parts within a song in our evaluation
data set.

3.6 Clustering Evaluation and Discussion

As a reference we use the system described in [11], that
was also evaluated on the TUT Beatles database. The sys-
tem is based on a description of the audio signal through
MFCC, chroma and rhythmogram features. Each of these
features is then used to estimate the probability for two
segments to belong to the same structural part and a fit-
ness measure of the description is introduced. A greedy
approach is used to generate the candidate descriptions.

Evaluation of the whole system is reported in Tables
2 and 3, using BIC and Mahalanobis distance respectively.
Compared to the reference system, our system shows slightly
better F-measure rates. The interesting result is that we
show significantly better recall rates. This suggests that our
algorithm splits the parts in the annotation as sequences of
sub-parts. This also explains why we don’t match the pre-
cision rates in [11]. There again, the annotation relates a
high stage of the structure hierarchy, and over-segmentation
causes a lack of precision. Modeling sequences of basic
parts in our algorithm might cope with that. This also ex-
plains the huge gain of performance when using the anno-
tated segments for the evaluation.
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Method Segmentation F P R
[11] 59.9% 72.9% 54.6 %

Timbre auto 60.2% 64.7% 60%
manual 76.1% 83.6% 72.6%

Chroma auto 60.5% 66% 59.6%
manual 80% 87% 76.6%

Fusion 1 auto 60.6% 65% 60%
manual 78.7% 85% 76.4%

Fusion 2 auto 60.2% 64.7% 60%
manual 80% 86.5% 77%

Table 2. Evaluation on TUT Beatles, BIC

Method Segmentation F P R
[11] 59.9% 72.9% 54.6 %

Timbre auto 61% 62.4% 63.3%
manual 78.4% 82.1% 78.3%

Chroma auto 60.8% 61.5% 64.6%
manual 76.6% 81.2% 75.7%

Fusion 1 auto 62.1% 63.6% 64.5%
manual 77.8% 82.3% 77%

Fusion 2 auto 61% 62.4% 63.3%
manual 78% 81.7% 78.2%

Table 3. Evaluation on TUT Beatles, Mahalanobis

Obviously, fusing both timbral and chroma description
as in the ”Fusion 1” strategy makes sense and improves
the overall performance of the system. Finally, using the
Mahalanobis distance yields better performances than the
BIC.

4. CONCLUSIONS

We introduced a music structure discovery method that
uses the ability of NMF to generate parts-based represen-
tation of data. The evaluation conducted on the TUT Beat-
les data set shows that we are able to obtain slightly better
performances than the reference system introduced in [11].
The improvements we obtain in the recall rates however
suggest that there is still room for improvements. More-
over, the method used for the clustering of segments in the
NMF based feature space only considers statistical similar-
ity between the segments over time. We will consider mod-
eling time dependencies between frames and thus model
trajectories in the feature space instead of clouds of points.
The NMF processing itself could also be enhanced by us-
ing sparse constraints on the matrix factors. Further eval-
uation on more diverse audio material will be done. The
first results we obtained are however very encouraging.
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ABSTRACT

Most musical instrument recognition systems rely entirely
upon spectral information instead of temporal information.
In this paper, we test the hypothesis that temporal informa-
tion can improve upon the accuracy achievable by the state
of the art in instrument recognition. Unlike existing tem-
poral classification methods which use traditional features
such as temporal moments, we extract novel features from
temporal atoms generated by nonnegative matrix factoriza-
tion by using a multiresolution gamma filterbank. Among
isolated sounds taken from twenty-four instrument classes,
the proposed system can achieve 92.3% accuracy, thus im-
proving upon the state of the art.

1. INTRODUCTION

Advances in sparse coding and dictionary learning have in-
fluenced much of the recent progress in musical instrument
recognition. Many of these methods depend upon nonneg-
ative matrix factorization (NMF) – a popular, convenient,
and effective method for decomposing matrices – to ob-
tain low-rank approximations of audio spectrograms [9].
NMF yields a set of vectors, spectral atoms, which ap-
proximately span the frequency space of the spectrogram,
and another set of vectors, temporal atoms, which corre-
spond to the temporal activation of each spectral atom.
The spectral atoms can then be classified by instrument
using features such as mel-frequency cepstral coefficients
(MFCCs).

While these methods are effective in exploiting the spec-
tral redundancy in a signal, redundancy remains in the tem-
poral domain. Psychoacoustic studies have shown that
spectral and temporal information are equally important in
the definition of acoustic timbre [10]. Classification meth-
ods that only utilize spectral information are discarding the
potentially useful temporal information that could be used
to improve classification performance.

In this paper, we combine advances in dictionary learn-
ing, auditory modeling, and music information retrieval to
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propose a new timbral representation. This representation
is inspired by another widely accepted timbral model, the
cortical representation, which estimates the spectral and
temporal modulation content of the auditory spectrogram.
Our method of extracting temporal information uses a mul-
tiresolution gamma filterbank which is computed from the
temporal atoms extracted from spectrograms using NMF.
Extracting and classifying this feature is simple yet effec-
tive for musical instrument recognition.

After defining the proposed feature extraction and clas-
sification method, we test the hypothesis that the proposed
feature improves upon the accuracy achievable by the state
of the art in musical instrument recognition. For isolated
sounds, we show that temporal information can be used to
build a classifier capable of 72.9% accuracy when tested
among 24 instrument classes. However, when combining
temporal and spectral features, the proposed classifier can
achieve an accuracy of 92.3%, thus reflecting state of the
art performance.

2. TEMPORAL INFORMATION

Temporal information is incorporated into timbral mod-
els in different ways. Many attempts to incorporate tem-
poral information use features such as the temporal cen-
troid, spread, skewness, kurtosis, attack time, decay time,
slope, and locations of maxima and minima [5,6]. One tim-
bral representation, the cortical representation, incorpo-
rates both spectral and temporal information. Essentially,
the cortical representation embodies the output of cortical
cells as sound is processed by earlier stages in the audi-
tory system. Fig. 1 illustrates the relationship between the
early and middle stages of processing in the mammalian
auditory system. The early stage models the transforma-
tion by the cochlea of an acoustic input signal into a neural
representation known as the auditory spectrogram, while
the middle stage models the analysis of the auditory spec-
trogram by the primary auditory cortex.

One property of cortical cells, the spectrotemporal re-
ceptive field (STRF), summarizes the way a single corti-
cal cell responds to a stimulus. Mathematically, the STRF
is like a two-dimensional impulse response defined across
time and frequency. Each STRF has three parameters: scale,
rate, and orientation. Scale defines the spectral resolution
of an STRF, rate defines its temporal resolution, and ori-
entation determines if the STRF selects upward or down-
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Figure 1. Early and middle stages of the auditory system.
The auditory spectrogram is convolved across time and fre-
quency with STRFs of different rates and scales to produce
the four-dimensional cortical representation.

ward frequency modulations. Fig. 2 illustrates the STRF
as a function of these three parameters. Each cortical cell
can be interpreted as a filter whose impulse response is an
STRF with a particular rate, scale, and orientation. There-
fore, a collection of cortical cells constitutes a filterbank.
Indeed, it turns out that the cortical representation is math-
ematically equivalent to a multiresolution wavelet filter-
bank [2].

Despite the biological relevance between the cortical
representation and timbre, this representation has disad-
vantages for classification purposes. First, because the cor-
tical representation is a complex-valued four-dimensional
filterbank output, it is massively redundant. Like many
types of redundant data, the cortical representation could
benefit from some form of coding, decomposition, or di-
mensionality reduction. However, proper application of
these tools to the cortical representation for engineering
purposes such as speech recognition and MIR is not yet
well understood. Therefore, these are ongoing areas of re-
search [11]. Second, the STRF is not time-frequency sep-
arable [2]. In other words, computation of the cortical rep-
resentation cannot be decomposed into two procedures that
operate on the time and frequency dimensions separately.
Because spectral and temporal information require differ-
ent classification methods, this obstacle impedes classifi-
cation.

Unlike the cortical representation, the spectrogram com-
puted via short-time Fourier transform (STFT) is easily de-
composed, particularly for musical signals. For example,
many works have applied decomposition methods to mag-
nitude spectrograms of musical sounds in order to identify
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Figure 2. Twelve example STRFs. Together, they con-
stitute a filterbank. The left six STRFs select downward-
modulating frequencies, and the right six STRFs select
upward-modulating frequencies. Top row: seed functions
for rate determination. Left column: seed functions for
scale determination.

a set of spectral and temporal basis vectors from which the
magnitude spectrogram can be parameterized [15]. One
such decomposition method is NMF [9]. Given an element-
wise nonnegative matrix X, NMF attempts to find two
nonnegative matrices, A and S, that minimize some di-
vergence between X and AS. Among the algorithms that
can perform this minimization, one of the most convenient
algorithms uses a multiplicative update rule during each it-
eration in order to maintain nonnegativity of the matrices
A and S [9].

Many researchers have already demonstrated the use-
fulness of NMF for separating a musical signal into indi-
vidual notes [7,15,16]. By first expressing a time-frequency
representation of the signal as a matrix, these methods de-
compose the matrix into a summation of a few individual
atoms, each corresponding to one musical source or one
note. Fig. 3 illustrates the use of NMF upon the spectro-
gram of a musical signal. We define each column of A
as a spectral atom and each row of S as a temporal atom.
The temporal atoms usually resemble envelopes of known
sounds, particularly in musical signals. For example, ob-
serve the difference between the profiles of the temporal
atoms in Fig. 3. The three beats generated by the kick
drum share the same temporal profiles, and the two beats
generated by the snare drum share the same profiles. This
general observation motivates the hypothesis that the en-
ergy distribution of temporal NMF atoms is a valid timbral
representation that can be used to classify instruments.

In the next section, we propose one technique that ex-
tracts timbral information from temporal NMF atoms simi-
lar to that of the cortical representation. Our technique uses
a multiresolution gamma filterbank to perform multires-
olution analysis upon the factorized spectrogram. How-
ever, unlike the cortical representation, this multiresolution
analysis is particularly suited to the energy profiles con-
tained in the temporal NMF atoms.
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Figure 3. The NMF of a spectrogram drum beats. Compo-
nent 1: kick drum. Component 2: snare drum. Top right:
X. Left: A. Bottom: S.

3. PROPOSED METHOD: MULTIRESOLUTION
GAMMA FILTERBANK

The multiresolution gamma filterbank is a collection of
gamma filters. For this work, we define the gamma ker-
nel to be

g(t;n, b) = αtn−1e−btu(t) (1)

where b > 0, n ≥ 1, u(t) is the unit step function, and

α =

√
(2b)2n−1

Γ(2n− 1)
(2)

ensures that
∫
|g(t;n, b)|2dt = 1 for any value of n and

b, where Γ(n) is the Gamma function. Let I be the total
number of gamma filters in the filterbank. For each i ∈
{1, ..., I}, define the correlation kernel (i.e., time-reversed
impulse response) of each gamma filter to be

gi(t) = g(t;ni, bi). (3)

The set of kernels {g1, g2, ..., gI} defines the multiresolu-
tion gamma filterbank. Fig. 4 illustrates some example
kernels of the filterbank.

For each i, let the filter output be the cross-correlation
between the input atom, s(t), and the kernel, gi(t):

yi(τ) =
∫ ∞
−∞

s(t)gi(t− τ)dt (4)

The set of outputs {y1, y2, ..., yI} from the filterbank is
called the multiresolution gamma filterbank response (MGFR).

The gamma filter has convenient temporal properties.
We define the attack time of the kernel g(t) to be the time
elapsed until the kernel achieves its maximum. By differ-
entiating log g(t), we determine the attack time to be

ta = (n− 1)/b seconds. (5)

Fig. 4 illustrates the relationship between the attack time
and the parameter b. Also, as t becomes large, log g(t) ≈

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 2, b = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 2, b = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (seconds)

g(t): n = 2, b = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g(t): n = 4, b = 3
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g(t): n = 4, b = 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (seconds)

g(t): n = 4, b = 12

Figure 4. Kernels of gamma filters. The dashed vertical
line indicates the location of the maxima. Left column:
n = 2. Right column: n = 4.

−bt plus a constant. Therefore, b is the decay parameter of
g(t), where we define the decay rate of g(t) to be

rd = 20b log10 e ≈ 8.7b dB per second. (6)

Together, these two temporal properties imply that a gamma
kernel with any attack time and decay rate can be created
from the proper combination of n and b.

Fig. 5 illustrates the operation of the multiresolution
gamma filterbank. When a temporal NMF atom is sent
through the multiresolution gamma filterbank, the MGFR
reveals the strength of the attacks and decays of the atom’s
envelope for different values for n and b. Observe how the
filterbank response is largest for those filters whose attack
time matches that of the input atom.

The multiresolution gamma filterbank behaves like a set
of STRFs. Both systems perform multiresolution analy-
sis on the input data. Each STRF passes a different spec-
trotemporal pattern depending upon the rate and scale. In
fact, the seed function used to determine the rate of an
STRF is a gammatone kernel – a sinusoid whose envelope
is a gamma kernel. By altering the parameters of the gam-
matone kernel, STRFs can select different rates. Similarly,
in the multiresolution gamma filterbank, each filter passes
different envelope shapes depending upon the parameters
n and b which completely characterize the attack and de-
cay of the envelope. Intuitively, the filter with kernel gi(t)
passes envelopes with attack times equal to (ni − 1)/bi
seconds and envelopes with decay rates equal to 8.7bi dB
per second.

4. PROPOSED FEATURE EXTRACTION AND
CLASSIFICATION

To extract a shift-invariant feature from the MGFR, we
compute the norm for each filter response:

zi =
(∫ ∞
−∞
|yi(t)|pdt

)1/p

(7)
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Figure 5. Top: MGFR as a function of time for n = 2.
Bottom: input atom containing two pulses with attack
times of 160 ms.

The vector z = [z1, z2, ..., zI ] is the extracted feature vec-
tor. To eliminate scaling ambiguities among the input atoms,
every feature vector z is normalized to have unit Euclidean
norm. Different choices of p provide different interpreta-
tions of z. For this work, we use p = ∞. Our future work
will include an investigation into the impact of p on classi-
fication performance.

The proposed feature extraction algorithm is summa-
rized below.

1. Perform NMF on the magnitude spectrogram, X, to
obtain A and S.

2. Initialize the multiresolution gamma filterbank in (3).

3. For each temporal atom (i.e., row of S), compute the
MGFR in (4).

4. Compute the feature vector z in (7).

Finally, we formulate the instrument recognition prob-
lem as a typical supervised classification problem: given
a set of training features extracted from signals of known
musical instruments, identify all of the instruments present
in a test signal. To perform supervised classification, tem-
poral atoms are extracted from training signals of known
musical instruments using NMF. The feature vector z com-
puted from the atom plus its instrument label are used for
training. To predict the label of an unknown sample, z is
extracted from the unknown sample and classified using
the trained model.

An advantage of the proposed feature extraction and
classification procedure is its simplicity. The proposed sys-
tem requires no rule-based preprocessing. Unlike other
systems that contain safeguards, thresholds, and hierarchies,
the proposed system uses straightforward filtering and a
flat classifier. As the next section shows, this simple pro-
cedure can achieve state-of-the-art accuracy for instrument
recognition.

n b ta n b ta

1.2 0.200 1.000 1.5 0.500 1.000
1.2 0.250 0.800 1.5 0.625 0.800
1.2 0.333 0.600 1.5 0.833 0.600
1.2 0.500 0.400 1.5 1.25 0.400
1.2 1.00 0.200 1.5 2.50 0.200
1.2 2.00 0.100 1.5 5.00 0.100
1.2 4.00 0.050 1.5 10.0 0.050
1.2 10.0 0.020 1.5 25.0 0.020
2.0 1.00 1.000 3.0 2.00 1.000
2.0 1.25 0.800 3.0 2.50 0.800
2.0 1.67 0.600 3.0 3.33 0.600
2.0 2.50 0.400 3.0 5.00 0.400
2.0 5.00 0.200 3.0 10.0 0.200
2.0 10.0 0.100 3.0 20.0 0.100
2.0 20.0 0.050 3.0 40.0 0.050
2.0 50.0 0.020 3.0 100 0.020

Table 1. Gamma filterbank parameters used in the follow-
ing experiments.

5. EXPERIMENTS

We perform experiments on an extensive set of isolated
sounds. The data set for these experiments combines sam-
ples from the University of Iowa database of Musical In-
strument Samples [4], McGill University Master Samples
[14], the OLPC Samples Collection [13], and the Freesound
Project [12]. All of these samples consist of isolated sounds
generated by real musical instruments. We have parsed the
audio files such that each file consists of a single musical
note (for harmonic sounds) or beat (for percussive sounds).

From each input signal, x(t), we obtain the magnitude
spectrogram, X, via STFT using frames of length 46.4 ms
(i.e., 2048/44100) windowed using a Hamming window
and a hop size of 10.0 ms. Then, we perform NMF using
the Kullback-Leibler update rules [9] with an inner dimen-
sion of K = 1 to obtain A and S. When applicable, we
use a multiresolution gamma filterbank of thirty-two filters
with the parameters shown in Table 1. These attack times
and decay rates cover a wide range of sounds produced by
common musical instruments. Each 32-dimensional fea-
ture vector, z, is then classified.

For supervised classification, we use the LIBSVM im-
plementation [1] of the support vector machine (SVM) with
the radial basis kernel. For multiple classes, LIBSVM uses
the one-versus-one classification strategy by default. The
remaining programs and simulations were written entirely
in Python using the SciPy package [8]. Source code is
available upon request.

In total, there are 3907 feature vectors collected among
twenty-four instrument classes. Table 2 summarizes this
data set. With few exceptions [3], this selection of instru-
ments is more comprehensive than any existing work on
isolated instrument recognition. Recognition accuracy for
class c is defined to be the percentage of the feature vec-
tors whose true class is c that are correctly classified by the
SVM as belonging in class c. Overall recognition accuracy
is the average of the accuracy rates for each class.
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Instrument # S T ST
Bassoon 131 99.2 75.6 96.9
Clarinet 145 80.7 73.1 86.2
Flute 236 84.7 60.6 89.0
Oboe 118 72.0 77.1 91.5
Saxophone 196 93.4 65.8 86.7
Horn 92 80.4 62.0 85.9
Trombone 99 93.9 53.5 89.9
Trumpet 236 97.5 82.2 97.9
Tuba 111 98.2 75.7 99.1
Cello 349 94.8 89.7 97.4
Viola 309 94.2 67.6 90.9
Violin 390 97.2 86.2 96.2
Cello Pizz. 321 98.1 87.5 98.4
Viola Pizz. 254 99.6 81.9 99.6
Violin Pizz. 315 97.5 85.4 99.0
Glockensp. 10 100.0 90.0 100.0
Guitar 27 51.9 29.6 63.0
Marimba 39 46.2 25.6 79.5
Piano 260 95.0 89.2 98.5
Xylophone 13 61.5 53.8 84.6
Kick 90 98.9 95.6 100.0
Snare 86 96.5 88.4 98.8
Timpani 47 85.1 61.7 87.2
Toms 33 100.0 90.9 100.0
Total 3907 88.2 72.9 92.3

Table 2. Sample sizes and accuracy rates. S: spectral in-
formation. T: temporal information. ST: spectral plus tem-
poral information.

5.1 Spectral Information

As a control experiment, we evaluate the classification abil-
ity of spectral features using MFCCs. From each column
of A, we extract 32 MFCCs with center frequencies log-
arithmically spaced over 5.3 octaves between 110 Hz and
3951 Hz. From the 3907 32-dimensional feature vectors,
we evaluate classification performance through ten-fold cross
validation.

Fig. 6 illustrates the confusion matrix for this experi-
ment, and Table 2 shows the accuracy rates for each class.
The average of the 24 accuracy rates is 88.2%. We no-
tice some understandable misclassifications. For example,
18.5% of guitar samples are misclassified as cello pizzi-
cato and 14.8% are misclassified as piano. 5.5% of clarinet
samples and 13.6% of oboe samples are misclassified as
flute. 10.3% of marimba samples are misclassified as xy-
lophone. In general, these spectral features can accurately
classify the drums, brass, and string instruments. However,
accuracy is poor among the woodwinds and pitched per-
cussive instruments. Some of these misclassifications are
due to an imbalance in the sample size of each class. De-
spite its ability to improve the average accuracy rate, the
reduction of class imbalance in supervised classification is
beyond the scope of this paper.

5.2 Temporal Information

Next, we evaluate the classification ability of temporal fea-
tures using the proposed feature extraction algorithm with
the parameters shown in Table 1. One feature vector z
is computed for each temporal NMF atom as described
in Section 4. Like the previous experiment, we evaluate
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Figure 6. Classification accuracy using spectral informa-
tion. Row labels: True class. Column labels: Estimated
class. Average accuracy: 88.2%.

classification performance through ten-fold cross valida-
tion among the 3907 32-dimensional feature vectors.

Table 2 shows the accuracy rates for each class. The av-
erage accuracy rate is 72.9%. Fig. 7 illustrates the confu-
sion matrix for this experiment. We observe that temporal
features alone do not classify instruments as well as spec-
tral features. Nevertheless, for 11 out of the 24 classes,
accuracy remains above 80%. In particular, there are very
few misclassifications between percussion instruments and
non-percussion instruments. Most misclassifications occur
within instrument families, e.g., cello and viola, bassoon
and clarinet, and guitar and piano.

5.3 Spectral Plus Temporal Information

Finally, we evaluate the classification performance when
concatenating spectral and temporal features. The features
extracted during the previous two experiments are concate-
nated to form 3907 64-dimensional feature vectors. Table
2 shows the accuracy rates, and Fig. 8 illustrates the con-
fusion matrix. The total accuracy rate is 92.3%. Temporal
information improves classification accuracy for 16 of the
24 instrument classes along with the overall accuracy. Ac-
curacy improves most for the string pizzicato, percussion,
brass, and certain woodwind instruments. The remaining
misclassifications occur mostly within families, e.g., clar-
inet and flute, and guitar and piano. For isolated sounds,
this experiment verifies the hypothesis that temporal infor-
mation can improve instrument recognition accuracy over
methods that use only spectral information.

6. CONCLUSION

From the experiments, we conclude that a combination of
spectral and temporal information can improve upon those
instrument recognition systems that only use spectral in-
formation. The proposed method extracts temporal infor-
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Figure 7. Classification accuracy using temporal informa-
tion. Row labels: True class. Column labels: Estimated
class. Average accuracy: 72.9%.

mation using a multiresolution gamma filterbank which
parameterizes each temporal dictionary atom by its most
prominent attack times and decay rates. Like the cortical
representation, the spectral and temporal dictionary atoms
generated by NMF provide a complete timbral representa-
tion of musical sounds. However, unlike the cortical rep-
resentation, each of these dictionary atoms typically rep-
resent an individual musical note, thus facilitating music
instrument recognition further.

We have already begun an investigation of the proposed
method for both solo melodic excerpts and polyphonic mix-
tures. Also, because the proposed method classifies each
individual NMF atom by instrument, we are investigating
the use of the proposed method for source separation by
grouping, emphasizing, or removing atoms that correspond
to chosen instruments.
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ABSTRACT

Music Information Retrieval systems are commonly
built on a feature extraction stage. For applications involv-
ing automatic classification (e.g. speech/music discrimi-
nation, music genre or mood recognition, ...), traditional
approaches will consider a large set of audio features to be
extracted on a large dataset. In some cases, this will lead to
computationally intensive systems and there is, therefore,
a strong need for efficient feature extraction.

In this paper, a new audio feature extraction software,
YAAFE 1 , is presented and compared to widely used li-
braries. The main advantage of YAAFE is a significantly
lower complexity due to the appropriate exploitation of re-
dundancy in the feature calculation. YAAFE remains easy
to configure and each feature can be parameterized inde-
pendently. Finally, the YAAFE framework and most of its
core feature library are released in source code under the
GNU Lesser General Public License.

1. INTRODUCTION AND RELATED WORK

Most Musical Information Retrieval (MIR) systems include
an initial low-level or mid-level audio feature extraction
stage. For applications involving automatic classification
(e.g. speech/music discrimination, music genre or mood
recognition,...), traditional approaches consider a large set
of audio features to be extracted on a large dataset, possi-
bly combined with early temporal integration2 . The im-
portance of the feature extraction stage therefore justifies
the increasing effort of the community in this domain and
a number of initiatives related to audio features extraction
have emerged in the last ten years, with various objectives.

For example, Marsyas is a software framework for au-
dio processing [1], written in C++. It is designed as a
dataflow processing framework, with the advantage of ef-
ficiency and low memory usage. Various building blocks

1 http://yaafe.sourceforge.net
2 Temporal integration is the process of summarizing features values

over a segment or a texture window by computing mean, standard devia-
tion, and/or any relevant statistical function. The termearly refers to an
integration performed before the classification step.
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are available to build real-time applications for audio anal-
ysis, synthesis, segmentation, and classification. Marsyas
is widely and successfully used for various tasks.

Note however, that the audio feature extraction (bex-
tract program) is only a small component of the whole
Marsyas’s framework. Extracted features are written in
ARFF format, and can be directly reused with the WEKA
[6] machine learning toolkit. Some classic features are
available out-of-the-box. The user can select which fea-
tures to extract, but parameters like frame size and overlaps
are global. The user also has low control upon temporal in-
tegration.

VAMP Plugins3 is the specification of a C++ Appli-
cation Programming Interface (API) for plugins allowing
extraction of low level features on audio signals. The very
permissive BSD-style license permits the user to develop
his own plugin or application that uses existing plugins.
Several plugin libraries have been developed by various
research labs. VAMP Plugins comes with the Sonic Visu-
alizer [2] application, a tool for viewing contents of music
audio files together with extracted features.

Batch feature extraction using VAMP Plugins can be
done with the command line tool Sonic annotator4 . Users
can declare features to extract in RDF files5 with precise
control over each feature parameter. Output can be written
to CSV6 or RDF files. Early temporal integration is lim-
ited to predefined segment summaries, and it is not possi-
ble to perform temporal integration over overlapping tex-
ture windows. VAMP Plugins API allows the development
of independent libraries, but prevents the development of
new plugins that would depend on already existing plug-
ins.

Another example, the MIR toolbox, is a Matlab toolbox
dedicated to musical feature extraction [3]. Algorithms are
decomposed into stages, that the user can parameterize.
Functions are provided with a simple and adaptive syn-
tax. The MIR toolbox relies on the Matlab environment
and therefore benefits from already existing toolboxes and
built-in visualization capabilities, but suffers from memory
management limitations.

Other projects also exist. jAudio [5] is a java-based au-
dio feature extractor library, whose results are written in

3 http://vamp-plugins.org/, Queen Mary, University of
London.

4 http://www.omras2.org/SonicAnnotator
5 Resource Description Framework is a semantic web standard.
6 Comma Separated Values
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XML format. Maaate is a C++ toolkit that has been de-
veloped to analyze audio in the compressed frequency do-
main. FEAPI [4] is a plugin API similar to VAMP. MPEG7
also provides Matlab and C codes for feature extraction.
Lately, MIR web services have surfaced. For instance, the
Echo Nest7 provides a web service API for audio feature
extraction. Input files are submitted through the web, and
the user receives a XML description.

Whatever the objectives are, the computational
efficiency of the feature extraction process remains of ut-
most interest. It is also clear that many features share com-
mon intermediate representations, such as spectrum mag-
nitude, signal envelope and constant-Q transform. As al-
ready observed for the VAMP plugins with the Fast Fourier
Transform (FFT), performances can be drastically
improved if those representations are computed only once
and this especially when large feature sets are extracted.
Note also that this philosophy can be extended to the dif-
ferent transformations (such as derivatives) of a given fea-
ture.

YAAFE has therefore been created both to get the best
of the previous tools and to address their main limitations
in situations where a large feature set needs to be extracted
from large audio collections with different parameteriza-
tions. In particular, YAAFE has been designed with the
following requirements in mind:

• Computational efficiency with an appropriate exploita-
tion of feature calculation redundancies.

• Usage simplicity with a particular attention to the fea-
ture declaration syntax.

• Capability to process very long audio files.

• Storage efficiency and simplicity.

The paper is organized as follows: the architecture of
YAAFE is detailed in section 2. A detailed benchmark is
then proposed in section 3. Finally, we suggest some con-
clusions and future work in section 4.

2. YAAFE

2.1 Overview

YAAFE is a command line program. Figure 1 describes
how YAAFE handles feature extraction. The user has to
provide the audio files and a feature extraction plan. The
feature extraction plan is a text file where the user declares
the features to extract, their parameters and transforma-
tions (see section 2.2).

To take advantage of feature computation redundancy,
YAAFE proceeds in two main stages. In a first stage, a
parser analyzes the feature extraction plan in order to find
common computational steps (implemented in C++ com-
ponents), and a reduced dataflow graph is produced. Then
in a second stage, feature extraction is applied to the given
audio files according to the reduced dataflow graph and re-
sults are stored in HDF5 files (see section 2.6).

7 http://echonest.com/

Figure 1. YAAFE internals overview.

Python is preferred to C++ for implementing the feature
library and the parser, because the Python object model
and reflection allow more concise and readable code to be
written. The dataflow engine and the component library
have been developed in the C++ language for performance.

YAAFE can be extended. Anyone can create their own
extension which consists of a feature library and a compo-
nent library. Provided extensions are loaded at runtime.

2.2 Feature extraction plan

2.2.1 Features

YAAFE feature extraction plan is a text file that describes
the features to extract. Each line defines one feature, with
the following syntax:

name: Feature param=value param=value

An example:

m: MFCC blockSize=1024 stepSize=512
z: ZCR blockSize=1024 stepSize=512
l: LPC LPCNbCoeffs=10
ss: SpectralSlope

The example above will produce 4 output datasets (see
section 2.6) namedm, z, l and ss, which will hold fea-
tures MFCC8 , ZCR9 , LPC10 , SpectralSlope with given
parameters. Missing parameters are automatically set to a
predefined default value.

2.2.2 Transformations and temporal integration

One can also use spatial or temporal feature transforms,
such as Derivate11 , StatisticalIntegrator12 , or SlopeInte-

8 Mel-Frequency Cepstral Coefficients
9 Zero Crossing Rate

10 Linear Prediction Coefficients
11 Derivate computes first and/or second derivatives.
12 StatisticalIntegrator computes mean and standard deviation over the

given frames.

442

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 2. Automatic redundancy removal performed when
parsing feature extraction plan. Fr(N) boxes are decompo-
sitions into analysis frames of size N. Step size is omitted
but assumed equal.

grator13 to enrich his feature extraction plan. For exam-
ple, a plan to extract MFCCs along with derivatives and
perform early integration over 60 frames will look like this:

m: MFCC > StatisticalIntegrator NbFrames=60
m1: MFCC > Derivate DOrder=1 ...

> StatisticalIntegrator NbFrames=60
m2: MFCC > Derivate DOrder=2 ...

> StatisticalIntegrator NbFrames=60

Obviously,m, m1, m2are all based onMFCC compu-
tation which should be computed only once. This is dis-
cussed in the next section.

2.3 Feature plan parser

Within YAAFE, each feature is defined as a sequence of
computational steps. For example, MFCC is the succes-
sion of steps: Frames, FFT, MelFilterBank, Cepstrum. The
same applies to feature transforms and temporal integra-
tors.

As shown in Figure 2, the feature plan parser decom-
poses each declared feature into steps and groups together
identical steps which have the same input into a reduced
directed graph of computational steps.

The reduced graph can be dumped into adot file, so
an advanced user can discern how the features are really
computed.

2.4 Dataflow engine

Each computational step is implemented in a C++ compo-
nent which performs computation on a data block. Specific

13 SlopeIntegrator computes the slope over the given frames.

Figure 3. Temporally aligned frame decomposition for
different frame sizes A and B, with same step sizes.

components manage audio file reading and output file writ-
ing.

Thedataflow engineloads components, links them ac-
cording to the given dataflow graph, and manages compu-
tations and data blocks. Reading, computations and writ-
ing is done block by block, so that arbitrarily long files can
be processed with a low memory occupation.

2.5 Feature timestamps alignment

In a feature extraction plan, each feature may have its own
analysis frame size and step size. Some features require
longer analysis frame sizes than others. As we intended to
use YAAFE as input for classification systems, we have en-
sured that extracted features are temporally aligned. This
is especially important with operations like the Constant-Q
Transform (CQT) that may have very large analysis frames.

YAAFE addresses this issue as follows. We assume that
when a feature is computed over an analysis frame, the re-
sulting value corresponds to the time of the analysis frame
center. Then, beginning with a frame centered on the sig-
nal start (left padded with zeros) ensures that all features
with the same step size will be temporally aligned (see
Figure 3).

A feature may also have an intrinsic time-delay. For
example, when applying a derivative filter, we want the
output value to be aligned with the center of the deriva-
tive filter. The design of YAAFE ensures that this is han-
dled properly and that output features will be temporally
aligned.

YAAFE only deals with equidistantly sampled features.
However, some features like onsets have a natural repre-
sentation which is event-based. In the current version,
event-based features are represented as equidistantly sam-
pled features for which the first dimension is a boolean
value denoting the presence of an event.

2.6 Output format

YAAFE outputs results in HDF5 files14 . Other output for-
mats will be added in the future. The choice of the HDF5
format has initially been motivated by storage size and I/O
performance. HDF5 allows for on-the-fly compression.
Results are stored as double precision floating point num-
bers hence with no precision loss.

HDF5 is a binary format designed for efficient storage
of large amounts of scientific data. HDF5 files can be read

14 Hierarchical Data Format,http://www.hdfgroup.org/HDF5/
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in the Matlab environment through built-in functions15 ,
and in the Python environment with the h5py package16 .
HDF5 files are platform independent, so they can be easily
shared.

A HDF5 file can hold several datasets organized into a
hierarchical structure. A dataset can be a table with several
columns (or fields) of different data types, or simply a 2-D
matrix of a specific data type. Attributes can be attached
to datasets, an attribute has a name and a value of any data
type.

YAAFE creates one HDF5 file for each input audio file.
For each feature declared in the feature extraction plan, one
dataset is created, with some attributes attached such as
the feature definition, the frame size, the step size and the
sample rate.

2.7 Availability and License

The YAAFE framework and a core feature library are re-
leased together under the GNU Lesser General Public Li-
cense, so that it can freely be reused as a component of
a bigger system. The core feature library contains sev-
eral spectral features, Mel-Frequencies Cepstrum Coeffi-
cients, Loudness, Autocorrelation, Linear Prediction Coef-
ficients, Octave Band Signal Intensities, OBSI ratios, am-
plitude modulation (tremolo and graininess description),
complex domain onset detection [7], Zero Crossing Rate.
Derivative and Cepstral transforms as well as statistical,
slope and histogram early integrators are also provided.
YAAFE is available for Linux platforms, source code can
be downloaded17 .

A separate feature library will be available in binary
version and for non commercial use only. It will provide
Constant-Q Transform, Chromas [8], Chord detection [9],
Onset detection [10], Beat histogram summary [11]. An
implementation of CQT with normalization and kernels
temporal synchronicity improvements [12] from reference
implementation18 is proposed.

3. BENCHMARK

We have run a small benchmark to compare YAAFE with
Marsyas’ bextract and Sonic Annotator. The objective is to
compare the design of the three system, and not the algo-
rithms used to compute feature. We chose few similar and
well-defined features, available for the three systems for
which we compared CPU time, memory occupation and
output size when extracting those features on the same au-
dio collection.

3.1 Protocol

We chose to extract the following features: MFCC (13 co-
efficients), spectral centroid, spectral rolloff, spectral crest
factor, spectral flatness, and zero crossing rate. Features

15 See thehdf5info, hdf5readand hdf5write functions. YAAFE also
provide useful scripts to directly load feature data into a matrix.

16http://code.google.com/p/h5py/
17http://yaafe.sourceforge.net
18 B.Blankertz, “The Constant Q Transform”, http://wwwmath.uni-

muenster.de/logik/Personen/blankertz/constQ/constQ.html

S.A. Marsyas YAAFE
CPU time 52m05s 24m21s 6m34s
RAM used 14.0 Mbs 10.6 Mbs 15.5 Mbs
Output format CSV ARFF HDF5
Output size 1.74 Gbs 2.7 Gbs 1.22 Gbs
Feature dim. 16 16 (32) 19

Table 1. Feature extraction with Sonic Annotator with
VAMP libxtract plugins, Marsyas’s bextract and YAAFE.
All features are extracted simultaneously. Audio collection
is 40 hours of 32 KHz mono wav files.

Feature S.A. Marsyas YAAFE
MFCC 25m06s 19m28s 2m22s
Centroid 12m04s 15m42s 3m55s
Rolloff 12m11s 15m51s 3m14s
ZCR 3m41s 10m20s 0m57s
Total 53m02s 61m21s 10m28s

Table 2. CPU times for single feature extraction on the
same collection as Table 1.

like chroma or beat detection have been avoided because
the associated algorithms can be very different. In the case
of Sonic Annotator, all features are available in theVamp
libxtract plugins19 [13]. Early temporal integration is not
computed.

We ran the feature extraction over about 40 hours of 32
KHz mono wav files (8.7 Gbs). The collection is composed
of 80 radio excerpts of about 30mn each. The measures
have been done on a Intel Core 2 Duo 3GHz machine, with
4 Gbs of RAM, under the Debian Lenny operating system.
We checked that all systems used one core only. The RAM
used has been measured with theps mem.py script20 .

We first ran the benchmark measuring the extraction of
all features simultaneously. Then we ran the benchmark a
second time measuring the extraction of each feature inde-
pendently.

3.2 Results

The results are described in Table 1 and Table 2. It is im-
portant to note some differences between the 3 systems that
influence the results. Firstly, we could not prevent Marsyas
from performing temporal integration, so we reduced inte-
gration length to 1. Consequently, the output generated
by Marsyas has 32 columns: 16 columns of feature data
(mean) and 16 columns of zeros (standard deviation). This
explains why Marsyas has a larger output size. Secondly,
YAAFE extracts spectral spread, skewness and kurtosis to-
gether with the spectral centroid. This explains why output
feature dimension is 19 for YAAFE and 16 for other sys-
tems.

Due to those differences the measures must be taken
with caution. We can say that all systems performed well.

19 The VAMP libxtract plugins rely on the libxtract library:
http://libxtract.sourceforge.net/

20http://www.pixelbeat.org/scripts/ps mem.py
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YAAFE
CPU time 11m15s
RAM used 30.3 Mbs
Output format HDF5
Output size 0.64 Gbs
Feature dim. 288

Table 3. Large feature set extraction with YAAFE. Audio
collection is 40 hours of 32 KHz mono wav files.

They all succeed at extracting features over audio files of
30 minutes length and with low memory occupation.

The sum of single extraction times in Table 2 compared
to the extraction time in Table 1 shows that Sonic Annota-
tor does not exploit computation redundancy. The VAMP
plugin API allows for computing feature in the frequency
domain, but this is not done by Vamp libxtract plugins.
That explains why Sonic Annotator requires more CPU
time than others.

Marsyas performance clearly suffers from writing 16
column of zeros. For the evaluated task, the CPU times in
Table 1 show that YAAFE tends to be faster than Marsyas.

As Sonic Annotator stored the timestamp in each output
files (one per feature), and half of Marsyas’ output is addi-
tional zeros, we can say that Sonic Annotator and Marsyas
outputs are roughly equivalent in space. This is not a sur-
prise as both CSV and ARFF format are text formats. Us-
ing HDF5 format, YAAFE stores more feature data, with
no precision loss, using less space.

3.3 Extracting many features

YAAFE is designed for extracting a large number of fea-
tures simultaneously. To check how it performs in such sit-
uation we ran YAAFE a second time under the same con-
ditions but with a larger feature extraction plan.

In this run, we extracted MFCCs, various spectral fea-
tures, loudness, loudness-based sharpness and spread, and
zero crossing rate. For each feature except zero crossing
rate, we added first and second derivatives. Then we per-
formed early temporal integration by computing mean and
standard deviation over sliding windows of 1 second with
a step of 0.5 second. The total output dimension is 288.

The results are presented in Table 3. It should be em-
phasized that temporal integration is done, so the output
size is much smaller than in the previous run. As a larger
feature set is extracted, the dataflow graph is larger and
uses more RAM. The CPU time shows that YAAFE re-
mains very efficient in this situation.

4. CONCLUSIONS AND FUTURE WORK

In this paper, a new audio feature extraction software,
YAAFE, is introduced. YAAFE is especially efficient in
situations where many features are simultaneously
extracted over large audio collections. To achieve this,
the feature computation redundancies are appropriately ex-
ploited in a two step extraction process. First, the feature

extraction plan is analyzed, each feature is decomposed
into computational steps and a reduced dataflow graph is
produced. Then, a dataflow engine processes computations
block by block over the given audio files.

YAAFE remains easy to use. The feature extraction
plan is a text file where the user can declare features to
extract, transformations and early temporal integration ac-
cording to a very simple syntax. YAAFE has already been
used in Quaero project internal evaluation campaigns for
the music/speech discrimination and musical genre recog-
nition tasks.

Future plans include the extension of the toolbox with
additional high level features such as fundamental
frequency estimator, melody detection and tempo estima-
tor and the extension to alternative output formats.
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ABSTRACT

Microblogging services, such asTwitter, have risen enor-
mously in popularity during the past years. Despite their
popularity, such services have never been analyzed for MIR
purposes, to the best of our knowledge. We hence present
first investigations of the usability of music artist-related
microblogging posts to performartist labeling and simi-
larity estimationtasks. To this end, we look into different
text-basedindexingmodels andterm weighting measures.
Two artist collections are used for evaluation, and the dif-
ferent methods are evaluated against data fromlast.fm. We
show that microblogging posts are a valuable source for
musical meta-data.

1. INTRODUCTION

With the emergence of blogging services, social networks,
platforms to share user-generated content and correspond-
ing tags, services for music recommendation and person-
alized Web radio, such aslast.fm [12], and in general all
services and platforms commonly summarized by the term
“Web 2.0”, a new era of Web-based user interaction has
started. The term “Web 2.0” was coined in 1999 by DiN-
ucci [5], but did not become popular until 2004, when
O’Reilly launched the first Web 2.0 conference [19].

Microblogging is one of the more recent phenomena in
the context of the “Web 2.0”. Microblogging services offer
their users a means of communicating to the world in real
time what is currently important for them. Such services
had their origin in 2005, but gained greater popularity not
before the years 2007 and 2008 [28]. Today’s most pop-
ular microblogging service isTwitter [30], where millions
of users post what they are currently doing or what is cur-
rently important for them. [9]

Despite the enormous rise in usage of microblogging
services, to the best of our knowledge, they have not been
used for music information extraction and retrieval yet.
Hence, in this paper we present first steps towards assess-
ing microblogging posts for the MIR tasks ofmusic artist
labeling andsimilarity measurement. We will show that

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
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c© 2010 International Society for Music Information Retrieval.

even though such data is noisy and rather sparse, results
comparable to other text-based approaches can be achieved.

The remainder of the paper presents and discusses re-
lated literature (Section 2), elaborates on the methods em-
ployed for similarity measurement and artist labeling (Sec-
tion 3), gives details on the conducted evaluation experi-
ments and discusses their results (Section 4), and finally
summarizes the work (Section 5).

2. RELATED WORK

As this work is strongly related to text-based music infor-
mation extraction and to Web content mining, we are go-
ing to review related work on these topics in the context of
MIR. The past five years have seen the emergence of vari-
ous text-based strategies to address MIR tasks, such as au-
tomated labeling, categorizing artists according to a given
taxonomy, or determining similarities between tracks or
artists.

Early work on text-based MIR focused on extracting in-
formation from artist-relatedWeb pages. Cohen and Fan
[4] query search engines to gather music-related Web pages,
parse their DOM trees, extract the plain text content, and
distill lists of artist names. Similarities based on co-occur-
rences of artist names are then used for artist recommen-
dation. Web pages as data source for MIR tasks are also
used in [7,32], where the authors rely on a search engine’s
results to artist-specific queries to determine artist-related
Web pages. From these pages, weighted term profiles,
based on specific term sets (e.g., adjectives, unigrams, noun
phrases), are created and used for classification and recom-
mendation. Baumann and Hummel [3] extend this work by
introducing certain filters to prune the set of retrieved Web
pages, aiming at suppressing noisy pages. Another exten-
sion is presented in [10] for similarity measurement and
genre classification. Knees et al. do not use specific term
sets, but create a term list directly from the retrieved Web
pages and use theχ2-test for term selection, i.e., to filter
out terms that are less important to describe certain gen-
res. Other Web-based MIR approaches use page count es-
timates returned by search engines. For example, in [8,26]
co-occurrences of artist names and terms specific to the
music domain, as returned by search engine’s page count
estimates, are used to categorize artists.

Another category of Web-based approaches to derive
artist similarity exploitsuser-generated playlists. For ex-
ample, in [2] Baccigalupo et al. analyze co-occurrences of
artists in playlists shared by members of a Web commu-
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Term Set Cardinality Description
all terms 681,334 All terms that occur in the corpus of the retrievedTwitter posts.
artist names 224 Names of the artists for which data was retrieved.
dictionary 1,398 Manually created dictionary of musically relevant terms.
last.fm toptags overall 250 Overall top-ranked tags returned by last.fm’s

Tags.getTopTags function.
last.fm toptags collection 5,932 Aggregated top-ranked tags retrieved fromlast.fmfor all artists

in the collection.
last.fm toptags topartists 12,499 Aggregated top-ranked tags retrieved fromlast.fmfor last.fm’s

2,000 top-played artists.

Table 1. List of the term sets used to index theTwitter posts. The cardinalities of term setsall terms, artist names,
andlast.fm toptags collection arebased on the collectionC224a.

nity. More than one million playlists made publicly avail-
able viaMusicStrands[18] (no longer in operation) were
gathered. The authors not only consider the co-occurrence
of two artists in a playlist as an indication for their similar-
ity, but also take into account that two artists that consec-
utively occur in a playlist are probably more similar than
two artists that occur farther away from each other.

A recent approach derives similarity information from
the Gnutella [22] P2P file sharing network. Shavitt and
Weinsberg [27] collected metadata of shared music files
from more than 1.2 millionGnutellausers.The authors use
this data for artist recommendation and song clustering,
giving special emphasis to adjusting for the popularity bias.

Another data source related to the “Web 2.0” issocial
tags. [11] gives a good overview of their use in MIR. In
[15] a semantic space is built, based on social tags ex-
tracted fromlast.fmand MusicStrands. The authors use
this data for categorizing tracks into mood categories and
present a user interface to browse a music collection ac-
cording to mood. As an alternative to retrieving social tags
from music information systems, tags may also be gathered
via games designed to encourage their players to assign
meaningful descriptions to a music piece [14,17,29]. Due
to their design, this method can effectively reduce noise.

3. MINING TWITTER POSTS

To acquire user posts we queriedTwitter’s Web API [31]
in February and March 2010 with the names of the mu-
sic artists under consideration. We downloaded up to 100
posts per query and extracted the plain text content. Ear-
lier work on text-based music information retrieval [10,
26, 32] suggests to enrich the artist names with additional
keywords, such as “music review” or “music genre style”,
to guide the retrieval process towards sources that con-
tain information on music. However, preliminary classi-
fication experiments with various additional music-related
keywords revealed that this strategy does not work well for
Twitter posts. Restricting the search with any keyword in
addition to the artist name in fact decreases the number of
available user posts so strongly that even for the popular
artists in our test collectionC224a(cf. Subsection 4.1) the
resulting feature vectors become very sparse.

After having downloaded theTwitterposts for each artist,
we built aninverted word-level index[34] based on a mod-
ified version of thelucene[16] indexer. To investigate the
influence of the term set used for indexing, we built various
indexes using the term sets depicted in Table 1. The table

further gives the term sets’ cardinality. In cases where this
cardinality depends on the size of the corpus, the values are
based on collectionC224a(cf. Subsection 4.1). The list
denoted asdictionary consists of terms that we manu-
ally collected from various sources and somehow relate to
music. This list resembles the one used in [21] and [24].
Included terms represent, for example, musical genres and
styles, locations, instruments, emotions, and epochs.

Term weighting is performed using variants of theterm
frequency(tf ) measure and theterm frequency· inverse
document frequency(tf · idf ) measure [33]. The term fre-
quencytft,a is the total number of occurrences of termt in
all Twitter posts retrieved for artista. Thetf · idft,a func-
tion is defined as follows, wheren is the total number of
artists anddft is the number of artists whose retrieved posts
containt at least once:

tf · idft,a = ln (1 + tft,a) · ln
(
1 + n

dft

)
(1)

The basic idea of thetf · idft,a measure is to increase the
weight oft if t occurs frequently in the posts retrieved for
a, and decreaset’s weight if t occurs in a large number of
posts retrieved fordifferentartists and is thus not very dis-
criminative fora.
Since we are not interested in individualTwitter posts, but
rather in a document describing a certain music artist, we
aggregate all posts retrieved for an artist into a virtual doc-
ument, based on which the term weights are calculated.

3.1 Similarity Estimation

Based on the term weighting vectors, we derive similar-
ity between artists by applying thecosine similarity mea-
sure[23]. The cosine measure normalizes the data in that
it accounts for different document lengths. To this end,
only the angle between the weight vectors in the feature
space is considered. In our case, the virtual documents for
two artistsa and b may be of very different length (de-
pending on the number and length of the corresponding
posts), which is likely to distort the weighting.1 There-
fore, we apply the cosine similarity measure between the
tf · idf vectors of each pair of artists(a, b) according to
Formula 2, where|T | is the cardinality of the term set, i.e.,
the dimensionality of the term weight vectors.θ gives the

1 Thefact that usually much more data is available for popular artists
than for lesser known ones, and the resulting likely distortion of results,
is commonly referred to as “popularity bias”.
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angle betweena’s andb’s feature vectors in the Euclidean
space.

sim(a, b) = cos θ =










|T |∑

t=1

tf · idft,a · tf · idft,b

√
√
√
√
√
√

|T |∑

t=1

tf · idf2
t,a·

√
√
√
√
√
√

|T |∑

t=1

tf · idf2
t,b










(2)

3.2 Labeling

A good similarity estimation function is crucial for many
application areas of MIR techniques, for example, to build
recommender systems, to generate intelligent user inter-
faces via clustering, or for automated playlist generation.
Another related MIR task is automatically assigning la-
bels/descriptors to an artist or a song. This allows to per-
form categorization of artists or songs into certain classes,
for example, mood categories or a genre taxonomy.
We were interested in analyzing the potential of user-gen-
eratedTwitterposts to perform automated categorization or
labeling of music artists, also known as “autotagging” [6].
To this end, we compiled a list oflast.fm’s top tags for the
top artists (56,396 unique terms) and subsequently indexed
theTwitter posts, taking this list as dictionary for our mod-
ified luceneindexer. Employing either thetf or thetf · idf
measure, we used the top-ranked terms of each artist to
generate labels.

4. EVALUATION

4.1 Test Collections

To compare the results of the proposed approaches to ex-
isting methods, we first ran evaluation experiments on the
collection presented in [10]. It comprises 224 well-known
artists, uniformly distributed across 14 genres. We will de-
note this collection asC224ain the following.

Since we further aim at evaluating the approaches on a
real-world collection, we retrieved the most popular artists
as of the end of February 2010 fromlast.fm. To this end,
we usedlast.fm’s Web API [13] to gather the most popular
artists for each country of the world, which we then ag-
gregated into a single list of 201,135 artist names. Since
last.fm’s data is prone to misspellings or other mistakes
due to their collaborative, user-generated knowledge base,
we cleaned the data set by matching each artist name with
the database of the expert-based music information system
allmusic.com[1]. Starting this matching process from the
most popular artist found bylast.fm, and including only
artist names that also occur inallmusic.com, we eventu-
ally are given a list of 3,000 artists. We will denote this
collection, which is used for artist labeling, as3000a.

4.2 Similarity Estimation

While the authors are well aware of the fact that “genre” is
an ill-defined concept and that genre taxonomies tend to be
highly inconsistent [20], we unfortunately do not have ac-
cess to reliable and comprehensive similarity data, against
which we could perform comparison. We therefore opted

for a genre classification task that serves as a proxy for
similarity measurement. We employed ak-nearest neigh-
bor classifier (leave-one-out), and we investigated classi-
fication accuracy for different values ofk, different term
sets used for indexing, and different term weighting mea-
sures (tfandtf · idf ). We ran the classification experiments
on collectionC224a, since this artist set is already well-
established in the literature, and results are therefore easy
to compare.

4.2.1 Results

Figure 1 shows a detailed illustration of thek-NN classi-
fication results for different term sets and term weighting
measures, using collectionC224a. In general,tf·idf works
better for the task of similarity estimation than the single
tf value. The best classification results achievable using
tf · idf are72.52% accuracy withall terms and a9-NN
classifier and72.38% accuracy with an8-NN-classifier and
last.fm toptags collection.
Interestingly, the tf -based predictors (which, in general,
perform worse than thetf · idf -based predictors), perform
comparable to the besttf · idf -based classifiers when us-
ing artist names for indexing. This setting resembles
theco-occurrence approach described in [25], where accu-
racies of54% and75% (depending on the query scheme)
were achieved for collectionC224a. Usingtf -weighting,
our approach achieves a maximum of65.34% accuracy
with a 5-NN classifier. The authors of [10] report accu-
racy values of up to77% using ak-NN classifier and up to
85% using aSupport Vector Machine(SVM).
As for the different term sets used for indexing, using all
terms in the corpus ofTwitterposts (term listall terms)
yieldsthe best classification results, but is computationally
most complex. Usingartist names for indexing does
not significantly reduce classification accuracy, while re-
markably decrease space and time complexity. The good
performance of theartist names set can be explained
by manyTwitter posts containing lists of currently listened
or favored artists. Such data therefore reveals information
on personal playlists.

To investigate which genres tend to be confused with
which others, Figures 2 and 3 show confusion matrices of
the two best performing approaches. Usingall terms
(Figure2), “Folk” artists are often confused with “Coun-
try” artists, “Alternative Rock/Indie” performers are fre-
quently predicted to make “Metal” music, and “Rock ’n’
Roll” is often predicted for artists performing “RnB/Soul”.
Usinglast.fm toptags collection (Figure3), the
most frequent confusions are “Electronic” artists predicted
as “Rap” artists and “RnB/Soul” artists mistaken for “Rock
’n’ Roll” artists.
While some confusions are easy to explain, for example,
“Country” and “Folk” music is pretty close and in some
taxonomies even considered one genre, others are likely
only the result of users’ preference relations instead of sim-
ilarity relations. For example, the co-occurrence of two
artists (one from genre “Electronic”, the other from “Rap”)
in a user’s post may not necessarily indicate that these
artists are similar, but that they are similarly liked or played
together by the user.
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predicted genres

co
rr

ec
t g

en
re

s

confusions for C224a

65.6

2.1

8.3

3.1

8.3

6.3

3.1

3.1

93.8

8.3

6.3

93.8

3.1

2.1

68.8

25

6.3

0.7

5.2

6.3

3.1

64.6

3.1

6.3

3.1

15.6

24

0.7

6.3

5.2

2.1

3.1

18.8

6.3

3.1

84.4

5.9

6.3

6.3

6.3

9.4

86.5

2.8

3.1

6.3

6.3

2.1

73.6

12.5

0.7

71.9

3.1

3.1

6.3

2.1

5.9

3.1

93.8

12.5

6.3

9.4

58.3

2.1

3.1

3.1

0.7

6.3

61.5

3.1

3.1

2.1

9.4

2.1

14.6

0.7

3.1

6.3

9.4

21.9

75

AR Blu Cla Cou Ele Folk HM Jazz Pop Punk Rap Reg RnB RnR

Alternative Rock/Indie

Blues

Classical

Country

Electronica

Folk

Heavy Metal/Hard Rock

Jazz

Pop

Punk

Rap/Hip−Hop

Reggae

RnB/Soul

Rock ’n’ Roll

Figure 2. Confusion matrix for the 9-NN classifier on the
C224acollectionusing the term listall terms.

4.3 Labeling

To assess the performance ofTwitter posts for the task of
labeling artists, we use an artista’s top-ranked terms (ac-
cording to each term weighting measure), to predict la-
bels for a. To this end, we index the posts using term
list last.fm toptags overall and a list of tags ex-
tractedfrom last.fmfor several thousands top-played artists.
In total, 56,396 unique terms were obtained.
For evaluation we compare the top-rankedN labels from
Twitter (according to the term weighting measure) with the
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Figure 3. Confusion matrix for the 8-NN clas-
sifier on the C224a collection using the term list
last.fm toptags collection.

top-rankedN tags fromlast.fm. To this end, we calculate
an overlap scorebetween the two term sets. Aggregat-
ing this score over all artists in the collection reveals the
average percentage of overlapping terms, considering dif-
ferent quantitiesN of top-ranked terms. More formally,
the overlap@top-Nis calculated according to Formula 3,
whereA denotes the artist set,#artistsN is the number of
artists with at leastN terms assigned, andoverlaptw,fm,a,N

is the number of terms inTwitter’s set of top-Nterms for
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artist a that also occur inlast.fm’s set of top-ranked tags
for a.

overlap@top−N =

∑

a∈A

overlaptw,fm,a,N

N

#artistsN

(3)

4.3.1 Results

Figures 4 and 5 show the aggregated overlap scores for col-
lectionC3000aat different levels of top-Nterms/tags us-
ing the term set of 56,396 tags and the term setlast.fm
toptags overall, respectively. The dash-dotted line
reveals the number of artists with at leastN terms assigned.
The solid line gives the overlap score usingtf · idf for term
weighting, whereas the dotted line gives the score using
tf -weighting.
The low maximum overlap of2.36% for the 56,396-tag-
set (tf· idf ) is likely caused by a large amount of noise in
the last.fm tags. Usinglast.fm toptags overall,
themaximum overlap scores are13.53% (tf ) and11.67%
(tf· idf ). Taking into account that this is a very challenging
task (an overlap of100% for a certain level ofN would
mean that the top-Nterms according to theTwitter posts
correspond exactly to the top-Ntags fromlast.fm for all

artists), these results are better than the sole numbers sug-
gest.
The corresponding maximum overlap scores for collection
C224ausing the 56,396-tag-set amount to6.68% (tf · idf )
and5.39% (tf ). Term setlast.fm toptags overall
yields maximum overlap scores of16.36% (tf · idf ) and
15.22% (tf ).

5. CONCLUSIONS AND OUTLOOK

We have shown thatTwitter posts provide a valuable data
source for music information research. In particular for
the task of similarity measurement on the artist level, clas-
sification results resemble the ones achieved with other
text-based approaches using community or cultural data
sources, e.g., [10, 25], on the same artist set. For the task
of automated labeling, in contrast, only weak to medium
overlaps betweenTwitter posts andlast.fm tags could be
determined.

As part of future work, we would like to analyze the
localization capabilities of theTwitter API. Provided suf-
ficient accuracy, additional geographic data could be used,
for example, to spot the most popular artists within a re-
gion or country. Successively, such information may be
used to reveal the spreading of listening trends around the
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world. Using geolocation information may also help build-
ing country-specific or culture-specific models of music
similarity.
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ABSTRACT

In this paper an automatic system for the detection of sim-
ilar phrases in music of the Eastern Mediterranean is pro-
posed. This music follows a specific structure, which is re-
ferred to as parataxis. The proposed system can be applied
to audio signals of complex mixtures that contain the lead
melody together with instrumental accompaniment. It is
shown that including a lead melody estimation into a state-
of-the-art system for cover song detection leads to promis-
ing results on a dataset of transcribed traditional dances
from the island of Crete in Greece. Furthermore, a general
framework that includes also rhythmic aspects is proposed.
The proposed method represents a simple framework for
the support of ethnomusicological studies on related forms
of traditional music.

1. INTRODUCTION

In the field of ethnomusicology, computer based methods
are adequate for simplifying musicological studies. Use-
ful methods can be the recognition of intervals played by
an instrument, or determining the meter structure of a sig-
nal. Using such methods, a search engine can be developed
that can detect similarities between different pieces. Such a
tool is valuable for research in ethnomusicology, because it
enables to get a faster access to pieces that are interesting
for a comparison. In this paper, a general framework for
the morphological analysis of the Eastern Mediterranean
traditional music is proposed and the parts related to melodic
characteristics are presented and evaluated.
In general, morphology of music is defined as the me-
thodical description of the structure of the form of mu-
sical works [12]. The elements of this organization are
themes, phrases and motives, which themselves are made
up of sound characteristics like tonal height, duration, in-
tensity and timbre. The analysis aims at the discovery of
the sentence structure (Periodenbau) and the transforma-
tive structure of these elements. This discovery is the core
of morphological analysis.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Recently, the research presented in Sarris et al. [11] shed
light on the difficulty of understanding traditional music in
the eastern Mediterranean area: to a great extent, it is fol-
lowing a different kind of morphology, the logic of parataxis.
The term parataxis stems from the field of linguistics, where
it denotes a way of forming phrases using short sentences,
without the use of coordinating or subordinating conjunc-
tions [10]. In music following this logic, the tunes are
built from small melodic phrases which do not follow a
specific morphologic structure. This means, that there is
no composed elaboration of a theme like for example in a
fuga, neither there is a clear periodic structure, according
to which a musical theme is repeated, like the repeating el-
ement of a chorus in popular western music. As mentioned
in Theodosopoulou [13], it is a major effort to transcribe
and analyze a big number of pieces. In this paper, the goal
is to derive at least some conclusions about the content and
similarity between pieces in an automatic way. Thus, a
concept is presented that is aimed to discover recurring el-
ements in a musical signal. These recurring elements are
the melodic phrases that are the characteristic themes of the
music following the logic of parataxis. The recognition of
these phrases and their assignment to a specific dance ap-
pears to be a complex task even for a human being. In
interviews the author conducted with local musicians, re-
peatedly the recognition of a dance was connected with
the recognition of a specific melodic phrase. This process
was also described in Tsouchlarakis [15]. Also, in listen-
ing test conducted e.g. in [6], it was observed that danc-
ing teachers had memorized almost all melodies they have
been presented with. With this knowledge they were able
to conduct assignments to a class of dance much faster and
with higher accuracy than their students. It is apparent that
the similarity estimation between the used motifs is the key
to a concept for a search engine for this music.
Recently, similarity in folk song and traditional melodies
has drawn increasing attention of the Music Information
Retrieval research community. Most of the related publi-
cations investigate symbolic transcriptions of melodies [7,
14,16]. For audio signals, Moelants et al. [9] and Bozkurt [1]
derive pitch histograms from monophonic recordings, the
former using African music and the latter in the context
of Turkish music. Both methods are aimed towards the
recognition of underlying tonal concepts (i.e. scales or
makams, respectively), and stress the importance of a finer
frequency solution than the one provided by the chroma
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features. Cabrera et al. [2] investigate the estimation of
melodic similarity on a set of mainly monophonic vocal
Flamenco recordings.
In this paper, the goal is to estimate similarities between

OSS RHYTHM

BEAT

MELODYMELHIST

AUDIO

Figure 1. Block diagram of the proposed morphological
analysis system

lead melodies in polyphonic mixtures. The focus lies upon
the melodic aspects of the morphological analysis system
depicted in Figure 1. This is achieved by the beat syn-
chronous computation of melody histograms (MELHIST),
as detailed in Section 4. The rhythmic aspects, such as
the computation of onset strength signals (OSS), rhythmic
similarity and beat tracking on this kind of music has been
the subject of investigation in other publications [4, 6]. An
integration of rhythmic and melodic similarity as depicted
in Figure 1 for such a task is meaningful: It has been re-
peatedly confirmed by local musicians, that not only the
melody is of importance for recognizing a specific dance,
but also the way the instrument player puts emphasis on
particular notes of the melody. However, the type of avail-
able data made it necessary to concentrate on the melodic
aspect, as will be detailed in the following Section.

2. DATASET

A small dataset of polyphonic samples has been collected
that enables for a preliminary evaluation of a system for
the detection of morphological similarity. For this, sam-
ples from the Crinno data of the Institute of Mediterranean
Studies 1 have been used. In the Crinno collection for
some samples of the dance Sousta the lead melodies have
been transcribed by musicologists and then analyzed for
their morphology. All encountered phrases have been in-
dexed, and using the list of these indexes it is feasible to
locate the morphologically identical phrases in different
pieces. The way to index the phrases follows the method
described in Theodosopoulou [13]: the phrases have a length
of either one or two bars as shown in Figures 2 and 3.
Based on Theodosopoulou [13], during the analysis the
first encountered two bar phrase will be titled 1a1b. If, for
example, the next encountered two bar phrase contains the
second part of the first phrase in its second measure, while
its first measure is an unknown phrase, then it will be titled
2a1b, denoting the partial relation with the first pattern. In
Figures 2 and 3 the titles of the depicted melodic phrases
are denoted above the score. It is obvious that an exact

1 http://gaia.ims.forth.gr/portal/

partial or complete matching can be localized by using this
way of indexing the phrases. However, no conclusions can
be drawn about the similarity of phrases with different ti-
tles. As the amount of transcribed data is rather small

Figure 2. Example of a one measure melodic phrase

Figure 3. Example of a two measure melodic phrase

(20 pieces), there are not many phrases that appear several
times in various pieces. It has been achieved to compile
a data set of 40 sound samples, each containing a com-
plex musical mixture signal with the instruments Cretan
laouto and lyra and sometimes singing voice. Each sample
contains several repetitions of melodic phrase of two mea-
sures length. Each of the 40 pieces has a “partner” within
the dataset that contains a similar or equal musical phrase
played by the lyra, according to the analysis of musicolo-
gists. Thus, in this dataset exist 20 pairs of samples that
contain similar phrases. Please note that according to the
musicological analysis these phrases are exactly the same.
However, the audio files differ because they are performed
by different artists and vary due to their different playing
style.

3. MELODIC PATTERN SIMILARITY

For the computation of similarity, a baseline system as
presented in Ellis and Poliner [3] will be used. This sys-
tem uses beat synchronous chroma features to describe the
melodic content. It was proposed for the detection of cov-
ersongs in western pop music, and it will serve as a starting
point for the studies of detecting morphological similarity
in traditional music. The first computational step in this
approach is a beat tracking that uses a spectral flux like
OSS as an input, and derives the beat time instances us-
ing dynamic programming. Then, for each beat time a 12-
dimensional chroma feature is computed. These chroma
features record the intensity associated with each of the
12 semi-tones of the equal-tempered tonal system. In or-
der to determine, how well two songs match, the cross-
correlations between two feature matrices are computed
for each possible transposition. In the following, this sys-
tem will be referred to as BASE-SYS.
As the sound files are complex mixtures, melodic similar-
ity is degraded by the other instruments contained in the
mixture, which play to some extent a similar accompa-
niment in all examples that is characteristic for this type
of dance. Thus, a lead melody extraction using a method
as the one proposed in Klapuri [8] could be included as
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a pre-processing. Furthermore, instead of using chroma
features, in the context of traditional music melodic his-
tograms of a finer resolution have been found useful for
the classification of melodic content [1]. In order to de-
termine if such approaches can be adapted to the beat syn-
chronous melody description framework, the lead melody
will be estimated using the algorithm presented in Kla-
puri [8], which was provided by the author of the paper.
The parameters given as input to the algorithm are the de-
sired number of fundamental frequency tracks to be esti-
mated from the signal (set to 1), and the fundamental fre-
quency range of the desired F0 tracks. This range was set
to 60Hz...480Hz, after an analysis of the available scores
of the recordings. The next step is the computation of
beat synchronous melody histograms. Motivated by the
work presented in Bozkurt [1], the frequency resolution of
these histograms is set higher than necessary for music us-
ing scales of the equal-tempered system. This is because
in Greek traditional music many modal scales are encoun-
tered which make use of tonal steps different from the half
tone of the equal-tempered system. For example, some of
these scales have their roots in the scales investigated in
Bozkurt [1]. Scales like Hidzaz and Kurdi are examples for
this case, and because these scales are also used in Cretan
music the finer resolution of the histograms is theoretically
justified. Thus, for a song a matrix is obtained with one
column for a beat instance which contains the melody his-
togram for this beat. Again, for matching two samples the
method proposed in Ellis and Poliner [3] has been used in
the same way as for the chroma features. The system that
uses this kind of melody histograms will be referred to as
HIST-SYS.
In Ellis and Poliner [3], the features are computed beat syn-
chronous. This means that a beat tracking is necessary as
a pre-processing step. For this purpose, OSS derived from
amplitude are used to perform the beat tracking [3]. How-
ever, results described in Holzapfel and Stylianou [5] indi-
cate that for the investigated type of music a beat tracking
based on phase characteristics gives more accurate results.
Thus, it should be evaluated as well if the accuracy of the
beat tracking has some impact on the results of the match-
ing experiments.

4. EVALUATION METHODS

Two different evaluation methods are suggested. In the
first one, only the 40 short samples containing the melodic
phrases are used to compute their mutual similarity regard-
ing melodic content. The quality of the obtained similarity
measure can be evaluated using the Mean Reciprocal Rank
(MRR)

MRR =
1

|Q|

Q∑
i=1

1
ranki

(1)

where |Q| is the number of queries. For our data set this
means that each sample is used as a query once, i.e. |Q| =
40. If e.g. the correct partner is found on place 3 of the
most similar samples, the reciprocal rank is 1

3 . This means
that the closer the MRR is to the value 1, the better the

similarity measurement.
In the second evaluation method, a sample from the dataset
is used as a query and similarities are computed for the
whole duration of the piece that contains its partner motif
at some time instance. If this similarity measure shows a
peak at the position of the true partner, the goal of locating
it in a continuous piece is achieved.

5. EXPERIMENTS

5.1 Setup 1: Matching pairs

In the first experiment, the BASE-SYS system was applied
to the data set of 40 song excerpts. Each song was used as
a query and the mean reciprocal rank as defined in (1) was
computed, which resulted in a value of MRRBASE−SY S =
0.38, as shown in Table 1.

In the following we will show that the performance in

Table 1. Mean reciprocal rates (MRR)
BASE-SYS 0.38
HIST-SYS 0.58

terms of the mean reciprocal rank of the BASE-SYS sys-
tem can be improved by involving an estimation of the
main melody from the polyphonic samples and the usage
of high resolution histograms in the HIST-SYS system. In
Bozkurt [1], a resolution of one Holdrian comma (Hc) was
referred to as the smallest interval considered in Turkish
music theory, and the authors used a resolution of 1

3 Hc for
their histograms. One Holdrian comma is equal to 22.6415
cents, and the octave interval can be divided into 53 Hc or
1200 cents. Various resolutions have been tried, but no
clear result regarding the optimum value could be obtained
on the limited sized dataset. For that reason, the resolution
was set to 2 Hc, or about 2.25 times higher than the reso-
lution of equal-tempered scales (about 4.5 Hc). As it can
be seen from the second row in Table 1, the obtained mean
reciprocal rank (0.58) is improved compared to the BASE-
SYS system. This improvement is present almost indepen-
dently of the histogram resolution, which indicates that the
sensitivity to microtonal changes is not of importance at
least for the present dataset. We acknowledge, however,
that bigger and more diverse datasets have to be obtained
to achieve more insight into the parameter settings.

5.2 Setup 2: Matching queries in whole songs

As described in Section 4, the second evaluation method is
using one of the short samples contained in the dataset as
a query. For this experiment 10 phrases of two measures
length have been selected as depicted in the first column
of Table 2. For example, the query file 13b42b:234 is
the phrase 13b42b taken from the recording number 234
in the collection. The target file is the whole piece which
contains the partner of the query at some time instance (i.e.
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Table 2. Results of matching patterns from MS1 in whole song files
QUERY FILE max(Rneg) Rsource max(Rpos) MATCH

(1) 13b42b:234 0.5796 0.9200 0.6403 EXACT
(2) 4a31b:217 0.3602 0.9301 0.6741 EXACT
(3) 3a3b:027 0.5059 0.9297 0.6238 CORRECT
(4) 35a35b:196 0.5482 0.9416 0.6866 CORRECT
(5) 3a21b:051 0.4511 0.8549 0.7040 EXACT
(6) 89a46b:143 0.4881 0.6571 0.5451 EXACT
(7) 31a31b:035 0.4830 0.8989 0.6351 WRONG
(8) 6a72a:167 0.5535 0.8778 0.6578 EXACT
(9) 7a6b:008 0.5073 0.8242 0.5870 EXACT
(10) 62a62b:249 0.4484 0.8333 0.5869 EXACT

a different interpretation of the same phrase). It has been
tried to locate the appearance of the phrase in the target file
using the HIST-SYS method, which lead to the best pattern
matching results as shown in Table 1. The highest corre-
lation measures in these files are depicted in the column
titled max(Rpos) in Table 2. In the column titled MATCH
the success of this matching is judged. If the position con-
nected to this highest correlation measure is exactly the po-
sition where the partner file has been extracted from, then
the label EXACT is assigned. If the position of the cor-
relation maximum is related to another appearance of the
same pattern in the file, it is labeled as CORRECT. Finally,
when a different pattern from the query pattern is located
at the position of the correlation peak, the label WRONG is
assigned. This evaluation has been performed entirely by
hand, by locating the time instance of the correlation maxi-
mum of the melody histogram in the related musical score.
It can be seen that only in one case the matching gave a
wrong result, while all the other 9 matches were related to
an appearance of the same melodic phrase in the target file.
Let us stress again that all the target files are different from
the file that the query was taken from: The target files used
in the column titled max(Rpos) are different recordings
than the recordings which contain the query at some time
instance. They have been recorded by different players,
but they contain at one or more time instances a melodic
phrase that has been judged to be identical with the query
by an analysis conducted by musicologists.
The correlation between the F0 histogram of a query sam-
ple and the histogram of the whole recording it has been
extracted from has been computed as well. This means that
at some time instance exactly the same pattern is encoun-
tered, without the variation introduced by a different inter-
pretation. This enables to determine how good the match-
ing works in the perfect case, when the pattern we are look-
ing for, is indeed contained in the file exactly as found in
the query. The resulting correlations are depicted in the
column entitled Rsource in Table 2. It can be seen that the
correlations shown in Rsource are always larger than the
correlation depicted in max(Rpos), but never equal to 1.
This is likely to be caused by slightly differing beat track-
ing and F0 estimation results on the small query samples
and on the whole file.

Furthermore, each query has been applied also to a file,
where according to the annotation the phrase is not con-
tained neither as a whole nor half of it. The correlation
maxima are depicted in the column titled max(Rneg), and
these values are always smaller than the correlation values
computed in the other columns. This supports the assump-
tion that the proposed method is able to separate similar
phrases from those that do not share a large similarity with
the query phrase.
In Figures 4 and 5, all Rpos vectors of the 10 queries shown
in Table 2 are plotted. These vectors have been obtained by
computing the two dimensional correlations between the
query and the target histogram matrices, and the choosing
the row (i.e. the tonal transposition between the files) in
the correlation matrix, that contains the maximum value.
In all plots, maxima have been chosen and it has be evalu-
ated if at the related measures in the score indeed the query
phrase is found. For these cases, maxima are shown with
dashed boxes, while maxima which are not related to the
query pattern have been marked with dotted boxes.
A first and important result of this analysis is that in none
of the cases an occurrence of the query pattern in the in-
vestigated audio file has been missed, which means that in
every case the occurrence of the pattern was related to a
maximum in Rpos. Also the overall number of true posi-
tives (dashed boxes) is 21 while the number of false pos-
itives (dotted boxes) is only 7. However, these false pos-
itives do not imply that there is no similarity between the
query and the target at the time instance of the false posi-
tive. The false positive only indicates that at this position
the phrase played by the lead instrument does not have
exactly the same label. Taking a closer look at the false
positives reveals that for example all wrong detections for
query (3) are phrases which contain the pattern 3a which
is also contained in the query sample (3a3b). A closer
look has been taken at the only case, where the maximum
in Rpos is connected to a false positive (query (7)). The
query phrase and the phrases found in the dotted boxes in
Figure 5.(7) are depicted in Figure 6. It is apparent that at
least the first parts of the two phrases share a big amount
of similarity. Thus, at least in this case, the false positive is
related to a similar melodic phrase.

Another observation from Figures 4 and 5 is that max-
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(1)

(2)

(3)

(4)

(5)

Figure 4. Complete Rpos obtained for queries 1-5 in Table
2, positive matches in dashed boxes, negative matches in
dotted boxes

ima related to true positives seem to be characterized by
a strong oscillation. This oscillation has been observed to
have the frequency of exactly two measures. This means
that the correlation shows a strong peak whenever the be-
ginnings of the query phrase and the related phrase in the
investigated file are aligned. This effect should be further
investigated when a larger dataset is available, and it is pos-
sible that a detection of such oscillations, besides high cor-
relation envelopes, further improves the result of the pat-
tern retrieval.
Finally, the impact of the beat tracker has been evaluated.
In order to determine how large the change in the match-
ing procedures would be if the beat tracking and hence the
synchronization is optimized, all samples in the dataset and
all complete samples used for the computation of Rpos in
Table 2 have been beat annotated by the author. However,
rerunning all experiments in the experimental setups 1 and
2 using these ground truth beat annotations did not quali-
tatively change the results. Since the original beat tracker
used in Ellis and Poliner [3] lead mainly to local misalign-

(6)

(7)

(8)

(9)

(10)

Figure 5. Complete Rpos obtained for queries 6-10 in Ta-
ble 2, positive matches in dashed boxes, negative matches
in dotted boxes

ments with the beat annotation, and it has to be concluded
that these misalignments have no impact on the systems
used in this work, at least when applied to the limited size
of data that is currently available.

(a)

(b)

Figure 6. Two phrases found to be similar in query (7)
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6. CONCLUSION

In this paper, methods have been evaluated that help to de-
tect melodic similarity in polyphonic recordings following
the logic of parataxis. It could be shown that a method
based on histograms of the F0 estimation of the leading
melody enables for an improvement compared to a base-
line system that uses chroma features. Furthermore, it could
be illustrated that the proposed method is capable of spot-
ting appearances of small melodic patterns in a whole au-
dio file, even when both files are polyphonic mixtures and
the query pattern has been derived from a different record-
ing. Such a method can be a valuable tool for research in
the field of musicology, where similar phrases in a large
collection could be located without the necessity of tran-
scription, thus leading to a large saving of time.
Furthermore, the integration of melodic and rhythmic as-
pects is straight-forward, and it is likely to improve results
for datasets in which different types of rhythms are con-
tained. As features for melody and for rhythm can both be
computed in a beat synchronous way, the correlation val-
ues obtained for a query from these two aspects could be
simply added, or by using some weighting that favors ei-
ther melody or rhythm derived correlations. However, the
rhythmic similarity measure is quite questionable on the
available dataset which is rhythmically very homogeneous,
and for that reason it had to be postponed. As a future goal,
the integration of rhythmic similarity as depicted in Figure
1 has to be evaluated on a more diverse dataset. However,
for the compilation of such a dataset the support of experts
in musicology is necessary.
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ABSTRACT

This is an explorative paper in which we present a new
method for music analysis based on pitch class set cate-
gories. It has been shown before that pitch class sets can be
divided into six different categories. Each category inher-
its a typical character which can “tell” something about the
music in which it appears. In this paper we explore the pos-
sibilities of using pitch class set categories for 1) classifica-
tion in major/minor mode, 2) classification in tonal/atonal
music, 3) determination of a degree of tonality, and 4) de-
termination of a composer’s period.

1. INTRODUCTION

In Western classical music a distinction can be made be-
tween tonal and atonal music. Tonal music is based on
a diatonic scale which inherits hierarchical pitch relation-
ships. The pitch relationships are based on a key center or
tonic. In contrast, atonal music is music that lacks a tonal
center or key, and each note is valued in the same way.

From about 1908 onwards atonality has been used in
compositions. Composers such as Scriabin, Debussy, Bartók,
Hindemith, Prokofiev, and Stravinsky have written music
that has been described, in full or in part, as atonal.

In the same way as there exists music that can be de-
scribed as partly atonal, one can wonder if, in tonal mu-
sic, a gradation of tonality can be found. One could argue
for example that, within the category of tonal music, mu-
sic written by Bach is, on average, more tonal than music
written by Debussy. In this paper we will show that it is
possible to make distinctions in tonality in a computational
way.

The method that we will use to investigate these gra-
dations of tonality is based on the notion of pitch class
sets (hereafter pc-sets). Pc-sets have been used before as
a tool to analyze atonal music [11]. Relations between pc-
sets, such as transposition and inversion, have been for-
malized and even similarity measures have been proposed
[15, 16, 20, 21, 25]. With our method, we propose a new
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approach to analyze music by using pc-sets, that may be
valuable by providing statistical information about pieces
of music. Furthermore, the approach has possible applica-
tions in several research areas, among others in automat-
ically separating tonal from atonal music, automatically
distinguishing music in a major key from music in a mi-
nor key, finding degrees of tonality, music classification,
and possibly more.

Modeling tonality has been done in different ways [3,
26], however, to the best of our knowledge, no attempt has
been made to measure degrees of tonality. Style classifica-
tion of music has been investigated using several different
methods [4, 18, 22], ranging from statistical [2, 5, 6, 27] to
machine learning [8, 13] approaches. It will be worth in-
vestigating the possibilities of formalizing the degrees of
tonality as a tool for classification of musical style or pe-
riod. Furthermore, there are, to the best of our knowledge,
no methods based on pc theory for classification of mu-
sic in major/minor mode and classification in tonal/atonal
music.

The rest of this paper is organized as follows. Section 2
explains the notion of pc-set categories and motivates the
type of research questions that can possibly be addressed
with this tool. In section 3 we will show that the (average)
category distribution for tonal music differs from the (av-
erage) category distribution for atonal music. In section 4,
we will show that the category distribution for music in a
major key differs from the category distribution for music
in a minor key. Section 5 explores the question of whether
a degree of tonality can be found when investigating cate-
gory distributions of music from different musical periods.
Finally, section 6 gives concluding remarks.

2. CATEGORIES OF PITCH CLASS SETS

A pc-set [10] can represent both a melody and a chord
since no distinction is made between notes at different on-
set times. Despite these simplifications, pc-sets have proven
to be a useful tool in music analysis [24]. If one exhaus-
tively lists all pc-sets (351 in total), all possible melodies
and chords can fit in this list. It has been shown that all pc-
sets can be grouped into six different categories [14, 19].
This can be done by applying a cluster analysis [19] to sev-
eral similarity measures [15,16,20,21,25] for pc-sets.

Each pc-set category corresponds to a cycle of one of
the six interval classes. This can be understood in the fol-
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lowing way. A cycle of the interval 1 will read: 0,1,2,3,4,
etc. A cycle of the interval 2 will read: 0,2,4,6, etc. A
cycle of the interval 3 will read: 0,3,6,9, etc., and so on.
Since we only take into account the first six of all twelve
pitch classes (the latter six are just the inverses), six differ-
ent cycles appear (see Table 1). Every category turns out
to have its own character resulting from the intervals that
appear most frequently, and sets of notes that belong to the
same category are ‘similar’ in this respect.

A prototype can be identified for each category. If a cer-
tain pc-set is grouped into a certain category, this pc-set can
be said to be similar to the prototype of that category. The
set{0, 1, 2, 3, 4} is the prototype of the Interval Category 1
(IC1) in the pentachord classification, the set{0, 2, 4, 6, 8}
the prototype of IC2, and so on. The cycles of IC’s that
have periodicities that are less than the cardinality of their
class (for example, pc 4 has a periodicity of 3:{0,4,8})
are extended in the way described by Hanson [12]: the
cycle is shifted to pc 1 and continued from there. For ex-
ample, the IC-6 cycle proceeds{0, 6, 1, 7, 2, 8...} and the
IC-4 cycle proceeds{0, 4, 8, 1, 5, 9, 2, ...}. Thus for every
cardinality, a separate prototype characterizes the category.
For example, category IC4 has prototype{0, 4} for sets of
cardinality 2, prototype{0, 4, 8} for set of cardinality 3,
and so on. Table 1 gives an overview of the prototypes of
pc-set categories. Prototypes can been listed for duochords
to decachords. Pc-sets with less than 2 notes or more than
10 notes can not be classified. This is because one pc-set
of cardinality 1 exists,{0}, and it belongs equally to ev-
ery category. The same is true for cardinality 11: only one
prime form pc-set exists:{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and
belongs to every category equally. The pc-set of cardinal-
ity 12 contains all possible pitch classes.

2.1 Music analysis using pc-set categories

Each category can be seen as having a particular charac-
ter resulting from the intervals that appear most frequently.
Interval category1, or category1 for short, consists of all
semitones and is the category of the chromatic scale. Cat-
egory2 is the category of the whole-tones or whole-tone
scale. Category3 is the category of the diminished triads
or diminished scale. Category4 is the category of the aug-
mented triads or augmented scale. Category5 is the cate-
gory of the diatonic scale. Category6 is the category of the
tritones or D-type all-combinatorial hexachord (see [12]).

Because of the typical character of each of the cate-
gories, these categories can ‘tell’ something about the mu-
sic in which they appear. If a piece of music is dominated
by a particular category, the music is likely to broadcast the
character of that category.

Ericksson [9] already argued that music can be divided
into categories similar to the ones described above and says
that “it is often possible to show that one region [category]
dominates an entire section of a piece”. Our approach goes
further in that we fully formalize and automate these cate-
gories. When a piece of music is segmented, the category
of each segment can be calculated and the distribution of
categories for that piece can be presented. The category

distribution of a piece of music can present information
about this piece that is possibly new and can lead to new
insights on specific music. Furthermore, this information
may lead to methods for automatic differentiation of music
in a major key from music in a minor key, automatic clas-
sification of tonal/atonal music, and style classification [2,
5,6,27]. Since a pc-set category is by definition a category
that consists of similar pc-sets [14,19], these categories are
also expected to form a useful tool in the research area of
music similarity problems [1,7,17,21,23,28,29,31].

2.2 Derivation of category distributions

The method has been implemented in Java, using parts of
the Musitech Framework [30], and operates on MIDI data.
The MIDI files are segmented at the bar level, as a first
step to investigate the raw regularities that occur on this
level1 . The internal time signature of the music is rec-
ognized by methods of the Musitech Framework, meaning
that, if there is a time signature change, the segmentation
per bar will correctly continue.

The pitches from each segment form a pc-set. From
each pc-set, the interval class vector can be calculated after
which the pc-set category can be calculated. This is done
as follows. Using Rogers’ cos�[21] as similarity measure
we calculate the similarity to all prototypes of the required
cardinality. The prototype to which the set is most simi-
lar, represents the category to which the set belongs [14].
However, if the pc-set that is constructed from a bar con-
tains less than 2 or more than 10 different pitch classes,
the set belongs equally to every category, as we explained
before. To overcome this problem, the segmentation is
changed as follows. If a set (bar) contains more than 10
different pitch classes, the bar is divided into beats and the
beats are treated as new segments. If a set contains less
than 2 pitch classes, this set is added to the set that is con-
structed from the next bar, forming a new segment. In this
way, the number of occurrences of the categories can be
obtained, taking into account all pitches in the MIDI file.
The number of occurrences of all categories can be pre-
sented as percentages, making comparison to other music
possible.

3. TONAL VERSUS ATONAL

Every category represents a particular character; thus it can
be expected that different types of music will show a differ-
ent occurrence rate for each category. Since category 5 is
the category of the diatonic scale, we expect the occurrence
rate of category 5 to be high for tonal music. Choosing a
data set2 of tonal music, the overall category distribution
can be calculated as we explained in the previous section.

1 Preliminaryexperiments showed that the results following from seg-
mentation per beat, bar or two bars vary only minimally.

2 Music in MIDI format has been downloaded from
the following websites: http://www.kunstderfuge.
com/, http://www.classicalarchives.com/,
http://www.classicalmidiconnection.com/,
http://www.musiscope.com/, and http://www.
classicalmusicmidipage.com/.
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(Interval) Category prototypes (pc sets) ‘character’ of category
IC1 {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, etc. semitones
IC2 {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, etc. whole-tones
IC3 {0, 3}, {0, 3, 6}, {0, 3, 6, 9}, etc. diminished triads
IC4 {0, 4}, {0, 4, 8}, {0, 1, 4, 8}, etc. augmented triads
IC5 {0, 5}, {0, 2, 7}, {0, 2, 5, 7}, etc. diatonic scale
IC6 {0, 6}, {0, 1, 6}, {0, 1, 6, 7}, etc. tritones

Table 1. Prototypes expressed in pc-sets for the six categories. Prime forms have been used to indicate the prototypes (therefore IC5
mayappear differently than one may expect).

composer piece
Bach Brandenburg concerto no. 3
Mozart Piano concerto no. 5 part 1
Beethoven Piano sonata Pathetique
Brahms Clarinet quintet part 1
Mahler Symphony no. 4 part 1
Debussy Nocturnes: Nuages

Table 2. The tonal music that was used to calculate Table 3.

category number of
occurrences

percentage of
occurrence

standard de-
viation

1 54 3.22 % 2.09 %
2 83 4.96 % 5.96 %
3 321 19.16 % 8.48 %
4 247 14.75 % 8.33 %
5 890 53.13 % 19.21 %
6 80 4.78 % 2.50 %

Table 3. Distribution of categories in tonal music listed in Table
2.

Table 2 lists the tonal music that has been used for this
experiment and Table 3 gives the percentages of occur-
rences of the categories that are found in this corpus. We
see from Table 3 that the music is dominated by category
5. We indeed expected a high occurrence rate of category
5, as this is the category that represents the diatonic scale.
However, since the standard deviation is relatively high,
the individual percentages vary quite a bit.

For atonal music, we expect a different behavior. We
have run the program on strict atonal music composed by
Schoenberg, Webern, Stravinsky and Boulez. The com-
plete list of music is shown in Table 4. On average, the
distribution as shown in Table 5 was found, using this cor-
pus of atonal music. We can see that the music is not
dominated anymore by category5 but a much more equal
distribution is present in atonal music. From the difference
in these category distributions, it seems that especially the
occurrence of category 5 could contribute to classification
methods to separate atonal from tonal music. Cross vali-
dation needs to be performed in order to verify this claim.
However, since we could find only few MIDI data of atonal
music (all MIDI data we found on atonal music is given in
Table 4), it is difficult to perform a cross validation with
enough data.

composer piece
Schoenberg Pierrot Lunaire part 1, 5, 8, 10, 12, 14, 17,

21
Schoenberg Piece for piano opus 33
Schoenberg Six little piano pieces opus 19 part 2, 3, 4,

5, 6
Webern Symphony opus 21 part 1
Webern String Quartet opus 28
Boulez Notations part 1
Boulez Piano sonata no 3, part 2: “Texte”
Boulez Piano sonata no 3, part 3: “Parenthese”
Stravinsky in memoriam Dylan Thomas Dirge canons

(prelude)

Table 4. The atonal music that was used to calculate Table 5.

category number of
occurrences

percentage of
occurrence

standard de-
viation

1 313 28.25 % 10.56 %
2 117 10.56 % 6.14 %
3 166 14.98 % 7.68 %
4 179 16.16 % 7.97 %
5 138 12.45 % 7.15 %
6 195 17.60 % 6.20 %

Table 5. Distribution of categories from music of Schoenberg,
Webern, Stravinsky and Boulez.

4. MAJOR VERSUS MINOR

The tonality turns out not to be the only factor to influ-
ence the percentage of occurrence of category 5 in music.
If we focus on tonal music, an obvious difference can be
measured in the occurrence of category 5 between music
in major and in minor mode. To show this behavior, we
have chosen Bach’s Well-tempered Clavier book I as test
corpus and divided the corpus in two parts: 1) the pieces
in a major key, and 2) the pieces in a minor key. From
Table 6 we can see the differences in category distribution
between the two parts and the overall corpus. The pieces in
major mode have an average percentage of occurrence of
category 5 of 79.81 %, while for the pieces in minor mode
this percentage is considerably lower, namely 53.58 % (see
Table 6). As one can see, the standard deviations in Table 6
for the music separated in major and minor are smaller than
for all pieces together, which means that the measurements
are distributed closer around their mean. We can now un-
derstand that the standard deviation in Table 3 was rela-
tively large since the data contained both data in major and
in minor mode. Reconsidering the results of the previous
section, the average percentage of occurrence of category 5
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category occurrences for
piecesin major

standard de-
viation

occurrences for
piecesin minor

standard de-
viation

occurrences for
all pieces

standard de-
viation

1 (31) 2.30 % 1.03 % (85) 4.48 % 2.22 % (116) 3.57 % 2.12 %
2 (25) 1.86 % 1.69 % (98) 5.16 % 2.29 % (123) 3.79 % 2.63 %
3 (149) 11.06 % 3.23 % (453) 23.87 % 3.72 % (602) 18.55 % 7.23 %
4 (47) 3.49 % 3.22 % (199) 10.48 % 3.73 % (246) 7.58 % 4.93 %
5 (1075) 79.81 % 6.52 % (1017) 53.58 % 3.63 % (2092) 64.47 % 13.87 %
6 (20) 1.48 % 1.24 % (46) 2.42 % 1.75 % (66) 2.03 % 1.63 %

Table 6. Distribution of categories in percentages (the number in given between brackets) from the pieces in major mode, and minor
mode,and all pieces together, from Bach’s Well-tempered Clavier book I.

composer percentage of oc-
currenceof cate-
gory 5 formajor
mode

standard de-
viation

percentage of oc-
currenceof cate-
gory 5 forminor
mode

standard de-
viation

Palestrina 71.94 %★ 4.55 %
Bach 85.71 % 3.99 % 57.72 % 11.02 %
Mozart 58.17 % 7.75 % 37.94 % 6.04 %
Beethoven 47.98 % 6.62 % 36.09 % 7.66 %
Brahms 40.79 % 1.42 % 40.11 % 4.55 %
Mahler 53.83 % 18.33 % 35.95 % 9.24 %
Debussy 68.01 % 5.24 % 40.57 % 9.23 %
Stravinsky 27.65 %★ 3.83 %

Table 7. The percentage of occurrence of category 5 for several composers, separating music in a major and minor key.★ For Palestrina
and Stravinsky, the separation between music in major and minor mode has not been made (see text for details).

in the music in minor mode of Table 6 is still considerably
higher than the average percentage of occurrence of cate-
gory 5 in atonal music, where one cannot speak of major
or minor mode. Moreover, the tonal data from the previous
section contained nearly as much music in major mode as
music in minor mode. We have to remark, however, that
in general, many pieces of music contain segments in both
major and in minor mode, although an overall piece is said
to be in either major or minor. In our method, we have
classified the pieces of music only in a global way (based
on the mode of the overall piece), motivated by the con-
sensus that a piece of music in a specific mode will usually
contain a majority of segments that are in that mode.

It is understandable that music in minor mode exhibits a
lower percentage of category 5 than music in major mode,
for the reason that category 5 is the category of the diatonic
(major) scale. Although the natural minor scale is diatonic
as well, in music in a minor key, other variants like the
melodic and harmonic minor scale are frequently used too.
For music in minor mode, apart from a high percentage
of category 5, categories 3 and to a lesser extent category
4 represent relatively high percentages as well. In con-
trast, the atonal music has also relatively high percentages
of categories 1, 2 and 6. The raised percentage of category
3 for tonal music in minor mode may be explained from
the presence of the minor third, and the raised percentage
of category 4 from the presence of the minor sixth.

The example in this section shows that for a particular
type of music, measuring the percentage of occurrence of
category 5, would enable to make a distinction between
music in major and in minor mode.

5. DEGREE OF TONALITY?

In the previous sections, we have seen that of all cate-
gories, especially category 5 can give some information
about both the tonality and the mode. It may be worth to
focus on this category for specific composers and to study
the difference between them. In Table 7 the percentage of
occurrence of category 5 is shown for several composers.
The composers are ordered chronologically. For two com-
posers, Palestrina and Stravinsky, no separation is made
between major and minor mode. A lot of work by Stravin-
sky is difficult to be labeled as completely major or minor,
and some of his later works can even be labeled as atonal.
For Palestrina, no separation between major and minor has
been made, since in Renaissance music, besides the nor-
mal major and minor scales, eight church modes are used
as well. For each composer and for each mode (major or
minor), on average 5 pieces of music have been selected,
such as to form a representative sample that contains the
different musical forms (symphonies, chamber music, con-
certos, etc.) present in the repertoire of the composer.

Based on the result from section 3 stating that tonal mu-
sic contains a higher percentage of category 5, we might
expect a decreasing percentage of category 5 when the com-
posers are ordered chronologically. For example, one might
label Bach as more tonal than for example Mahler since the
latter composer would be closer in time to the contempo-
rary period in which the atonal music flourished. This hy-
pothesis turned out not to be true however. It is indeed the
case that Bach embodies a higher percentage of category 5
than Mahler, but if we focus on the composers for whom
a distinction was made between major and minor music,
we see a decreasing percentage of category 5 from Bach to
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Figure 1. Thepercentage of occurrence of category 5 for most composers from Table 7, in chronological order. The error bars represent
the standard deviation from Table 7.

period percentage of oc-
currenceof cate-
gory 5

standard de-
viation

percentage of oc-
currenceof cate-
gory 5

standard de-
viation

Baroque Bach Händel
85.71 % 3.99 % 77.40 % 4.64 %

Romantic Beethoven Schubert
47.98 % 6.62 % 45.94 % 7.36 %

Impressionist Debussy Ravel
68.01 % 5.24 % 40.96 % 14.14 %

Table 8. The percentage of occurrence of category 5 for different composers from the same musical period.

Brahms(focusing on major mode), although from Brahms
to Debussy the percentage of category 5 increases again,
see Figure 1.

Based on the result from section 4 we expect higher
percentages of category 5 for major music than for minor
music for each composer. Indeed, this turns out to be the
case (see Table 7), although the difference is very small for
Brahms.

One could now wonder whether the results of Table 7
show a general behavior that is typical for composers from
different musical periods from Renaissance to modern, or
that the results are just specific for these composers. We
study the differences between composers who lived in the
same period, since this might explain the results of Ta-
ble 7 a bit further. We have zoomed in on music in ma-
jor mode in three different musical periods, namely the
Baroque, Romantic and Impressionist periods (see Table 8)
and looked at the difference between two composers within
the same period. One can see that for the Baroque and Ro-
mantic period, the percentages of category 5 are very much
alike for the two composers chosen. However, for the Im-
pressionist period there is a substantial difference between
the percentages.

The finding that each composer represents a typical per-
centage of occurrence of category 5 can possibly be used
in applications for style recognition.

6. CONCLUDING REMARKS

In this paper, a new analysis method for music has been
proposed, and we explored a number of possible applica-
tions. We showed that the six pc-set categories [14, 19]
can reveal specific information about music. When mu-
sic is segmented, and when for each bar is calculated to
which category its pc contents belongs, the percentages of
the different categories can reveal information about the
tonality of the piece (tonal or atonal) and the mode of the
piece (major or minor). In particular, category 5, which
represents the major diatonic scale, is indicative of this in-
formation.

Although on the basis of the percentage of occurrence
of category 5, a separation between tonal and atonal music
may be made, it does not allow us to order specific music in
time. More research needs to be done to be able to explore
whether the percentage of occurrence of category 5 can be
indicative of a certain style or musical period.

We fully recognize that cross validation experiments need
to be carried out in order to verify the suggested possibil-
ity of using pc-set categories for the purpose of tonal/atonal
classification and major/minor classification, but this is ham-
pered so far by a lack of MIDI data especially for atonal
music. Furthermore, in future research we hope to be able
to perform an actual classification task. Since the tonal/atonal
classification and the major/minor classification both de-
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pend on the percentage of occurrence of pc-set category 5,
this will not be a trivial task.

To conclude, the distribution of pc-set categories can
reveal information about music on different levels, and we
suggest that they can serve as a new tool in music analysis.
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ABSTRACT

The appeal of music lies in its ability to express emotions,
and it is natural for us to organize music in terms of emo-
tional associations. But the ambiguities of emotions make
the determination of a single, unequivocal response label
for the mood of a piece of music unrealistic. We address
this lack of specificity by modeling human response labels
to music in the arousal-valence (A-V) representation of af-
fect as a stochastic distribution. Based upon our collected
data, we present and evaluate methods using multiple sets
of acoustic features to estimate these mood distributions
parametrically using multivariate regression. Furthermore,
since the emotional content of music often varies within a
song, we explore the estimation of these A-V distributions
in a time-varying context, demonstrating the ability of our
system to track changes on a short-time basis.

1. INTRODUCTION

The problem of automated recognition of emotional con-
tent (mood) within music is the subject of increasing atten-
tion among music information retrieval (MIR) researchers
[1–3]. Human judgements are necessary for deriving emo-
tion labels and associations, but perceptions of the emo-
tional content of a given song or musical excerpt are bound
to vary and reflect some degree of disagreement between
listeners. In developing computational systems for recog-
nizing musical affect, this lack of specificity presents sig-
nificant challenges for the traditional approach of using su-
pervised machine learning systems for classification. In-
stead of viewing musical mood as a singular label or value,
the modeling of emotional “ground-truth” as a probability
distribution potentially provides a more realistic (and ac-
curate) reflection of the perceived emotions conveyed by a
song.

A variety of methods are used for collecting mood-
specific labels for music corpora, for example, annotations
curated by experts (e.g., Allmusic.com) and the analysis
of unstructured user-generated tags (e.g., Last.fm). While
these approaches efficiently provide data for large collec-
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c© 2010 International Society for Music Information Retrieval.

tions, they are not well-suited for reflecting variations in
the emotional content as the music changes. In prior work
we created MoodSwings [4], an online collaborative activ-
ity designed to collect second-by-second labels of music
using the two-dimensional, arousal-valence (A-V) model
of human emotion, where valence indicates positive vs.
negative emotions and arousal reflects emotional intensity
[5]. The game was designed specifically to capture A-V
labels dynamically (over time) to reflect emotion changes
in synchrony with music and also to collect a distribution
of labels across multiple players for a given song or even
a moment within a song. This method potentially pro-
vides quantitative labels that are well-suited to computa-
tional methods for parameter estimation.

In previous work we have investigated short-time re-
gression approaches for emotional modeling, developing
a functional mapping from a large number of acoustic fea-
tures directly to A-V space coordinates [1]. Since the ap-
plication of a single, unvarying mood label across an entire
song belies the time-varying nature of music, we focused
on using short-time segments to track emotional changes
over time. In our current work we demonstrate that not
only does the emotional content change over time, but also
that a distribution of (as opposed to singular) ratings is
appropriate for even short time slices (down to one sec-
ond). In observing the collected data, we have found that
most examples can be well represented by a single two-
dimensional Gaussian distribution.

To perform the mapping from acoustic features to the A-
V mood space, we explore parameter prediction using mul-
tiple linear regression (MLR), partial least-squares (PLS)
regression, and support vector regression (SVR). In mod-
eling the data as a two dimensional Gaussian, our goal is to
be able to predict the A-V distribution parametersN (µ,Σ)
from the acoustic content. We first evaluate the effective-
ness of this system in predicting emotion distributions for
15 second clips and subsequently shorten the analysis win-
dow length to demonstrate its ability to follow changes in
A-V label distributions over time.

No dominant acoustic feature has yet emerged for mu-
sic emotion recognition, and previous work has focused
on combining multiple feature sets [1–3, 6]. We evalu-
ate multiple sets of acoustic features for each task, in-
cluding psychoacoustic (mel-cepstrum and statistical fre-
quency spectrum descriptors) and music-theoretic (esti-
mated pitch chroma) representations of the labeled audio.
Although the large number of potential features can present
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problems, rather than employing dimensionality reduction
methods (e.g., principal components analysis) we explore
an alternative method for combining different feature sets,
using ensemble methods to determine the relative contri-
bution of single-feature systems for improved overall per-
formance.

2. BACKGROUND

The general approach to implementing automatic mood de-
tection from audio has been to use supervised machine
learning to train statistical models based on acoustic fea-
tures. Recent work has also indicated that regression ap-
proaches often outperform classification when using simi-
lar features [1, 2].

Yang et al. introduced the use of regression for map-
ping of high-dimensional acoustic features into the two-
dimensional space [6]. Support vector regression (SVR),
as well as a variety of boosting algorithms including Ad-
aBoost.RT, were applied to solve the regression problem.
The ground-truth A-V labels were collected by recruiting
253 college students to annotate the data, and only one la-
bel was collected per clip. Compiling a wide corpus of
features totaling 114 feature dimensions, they applied prin-
cipal component analysis (PCA) before regression.

Further confirming the robustness of regression for A-V
emotion prediction, Han et al. demonstrated that regres-
sion approaches can outperform classification when ap-
plied to the same problem [2]. Their classification task
consisted of a quantized version of the A-V space into 11
blocks. Using a wide variety of audio features, they ini-
tially investigated the use of classification, obtaining only
∼33%. Still mapping to the same 11 quantized categories,
applying regression they obtained up to ∼95% accuracy.

Eerola et al. introduced the use of a three-dimensional
parametric emotion model for labeling music [3]. In their
work they investigated multiple regression approaches in-
cluding Partial Least-Squares (PLS) regression, an ap-
proach that considers correlation between label dimen-
sions. They achieve R2 performance of 0.72, 0.85, and
0.79 for valence, activity, and tension, respectively, using
PLS and also report peak R2 prediction rates for 5 basic
emotion classes (angry, scary, happy, sad, and tender) as
ranging from 0.58 to 0.74.

3. GROUND TRUTH DATA COLLECTION

Traditional methods for collecting perceived mood labels,
such as the soliciting and hiring of human subjects, can be
flawed. In MoodSwings, participants use a graphical inter-
face to indicate a dynamic position within the A-V space to
annotate five 30-second music clips. Each subject provides
a check against the other, reducing the probability of non-
sense labels. The song clips used are drawn from the “us-
pop2002” database, 1 and overall we have collected over
150,000 individual A-V labels spanning more than 1,000
songs.

1 uspop2002 dataset: http://labrosa.ee.columbia.edu/projects/musicsim/
uspop2002.html

Since the database consists entirely of popular music,
the labels collected thus far display an expected bias to-
wards high-valence and high-arousal values. Although in-
clusion of this bias could be useful for optimizing classifi-
cation performance, it is not as helpful for learning a map-
ping from acoustic features that provides coverage of the
entire emotion space. Because of this trend, we developed
a reduced dataset consisting of 15-second music clips from
240 songs, selected using the original label set, to approxi-
mate an even distribution across the four primary quadrants
of the A-V space. These clips were subjected to intense fo-
cus within the game in order to form a corpus referred to
here as MoodSwings Lite, with significantly more labels
per song clip, which is used in this analysis.

4. ACOUSTIC FEATURE COLLECTION

As previously stated, there is no single dominant feature,
but rather many that play a role (e.g., loudness, timbre,
harmony) in determining the emotional content of music.
Since our experiments focus on the tracking of emotion
over time, we chose to focus on solely on time-varying
features. Our collection (Table 1) contains many features
that are popular in Music-IR and speech processing, en-
compassing both psychoacoustic and music-theoretic rep-
resentations. Instead of raw chroma we utilize the auto-
correlation of each short-time chroma vector, providing
a shift-invariant feature. In preliminary experiments we
found this feature to perform better than raw chroma, since
it promotes similarity in terms of the modes of harmony
(e.g. major, minor, augmented, and diminished chords) as
opposed to particular chords (e.g., A major vs. D major).

Feature Description

Mel-frequency
cepstral coefficients
(MFCCs) [7]

Low-dimensional representation of
the spectrum warped according to the
mel-scale. 20-dimensions used.

Chroma (i.e., Pitch
Class Profile) [8]

Autocorrelation of chroma is used,
providing an indication of modality.

Spectral Spectrum
Descriptors (SSDs)
[9]

Includes spectral centroid, flux,
rolloff, and flatness. Often related to
timbral texture.

Spectral Contrast
[10]

Rough representation of the harmonic
content in the frequency domain.

Table 1. Acoustic feature collection for music emotion
regression.

5. EXPERIMENTS AND RESULTS

Given the continuous nature of our problem, the predic-
tion of a 2-d Gaussian within the A-V space, we explored
several methods for multi-variate parameter regression. In
these experiments we employ multiple linear regression
(MLR), partial least-squares (PLS), and support vector re-
gression (SVR) to create optimal projections from each of
the acoustic feature sets described above. For our initial
distribution regression experiments, we averaged feature
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Feature/ Regression Average Mean Average KL Average Randomized T-test
Topology Method Distance Divergence KL Divergence

MFCC MLR 0.161± 0.008 4.098± 0.513 8.516± 1.566 5.306
Chroma MLR 0.185± 0.010 5.617± 0.707 7.765± 2.135 5.659
S. Shape MLR 0.167± 0.009 4.183± 0.656 7.691± 1.573 5.582
S. Contrast MLR 0.151± 0.008 3.696± 0.657 8.601± 1.467 5.192

MFCC PLS 0.155± 0.008 3.863± 0.56712 8.306± 1.389 5.540
Chroma PLS 0.183± 0.010 5.286± 0.96019 7.146± 1.665 5.565
S. Shape PLS 0.151± 0.008 3.770± 0.84026 8.278± 1.527 4.951
S. Contrast PLS 0.151± 0.008 3.684± 0.644 8.700± 1.831 5.171

MFCC SVR 0.140± 0.008 3.186± 0.597 7.744± 1.252 5.176
Chroma SVR 0.186± 0.008 4.831± 0.737 6.466± 0.935 5.655
S. Shape SVR 0.176± 0.008 4.611± 0.841 7.348± 1.025 5.251
S. Contrast SVR 0.150± 0.008 3.357± 0.500 7.356± 1.341 5.301

Stacked Features MLR 0.152± 0.007 3.917± 0.496 9.355± 1.879 5.737
Fusion Unweighted MLR 0.149± 0.007 3.333± 0.433 6.785± 0.996 5.879
Fusion Weighted MLR 0.147± 0.007 3.280± 0.423 6.803± 1.309 5.980
M.L. Seperate MLR 0.147± 0.007 3.399± 0.478 8.235± 1.598 5.598
M.L. Combined MLR 0.145± 0.007 3.198± 0.454 7.637± 1.389 5.551

Stacked Features PLS 0.145± 0.006 3.403± 0.467 8.407± 1.635 5.543
Fusion Unweighted PLS 0.145± 0.007 3.332± 0.508 7.123± 1.461 5.681
Fusion Weighted PLS 0.145± 0.006 3.309± 0.501 7.160± 1.373 5.619
M.L. Seperate PLS 0.145± 0.008 3.465± 0.577 8.426± 1.705 5.433
M.L. Combined PLS 0.144± 0.007 3.206± 0.515 7.889± 1.656 5.485

Table 2. Distribution regression results for fifteen second clips.

dimensions across all frames of a given 15-second mu-
sic clip, thus representing each clip with a single vector
of features. Preliminary experiments were performed us-
ing second- and higher-order statistics with the 15-second
clips, but in all cases the inclusions of such data failed to
show any significant performance gains.

In all experiments, to avoid the well-known “album-
effect”, we ensured that any songs that were recorded on
the same album were either placed entirely in the training
or testing set. Additionally, each experiment was subject to
over 50 cross-validations, varying the distribution of train-
ing and testing data sets.

5.1 Single Feature Emotion Distribution Prediction

There are many possible methods for evaluating the perfor-
mance of our system. Kullback-Liebler (KL) divergence
(relative entropy) is commonly used to compare proba-
bility distributions. Since the regression problem targets
known distributions, our primary performance metric is the
non-symmetrized (one-way) KL divergence (from the pro-
jected distribution to that of the collected A-V labels). To
provide an additional qualitative metric, we also provide
results as the Euclidean distance between the projected
means as a normalized percentage of the A-V space. How-
ever, to provide context to KL values and to benchmark the
significance of the regression results, we compared the pro-
jections to those of an essentially random baseline. Given a
trained regressor and a set of labeled testing examples, we
first determined an A-V distribution for each sample. The
resulting KL divergence to the corresponding A-V distri-
bution was compared to that of another randomly selected
A-V distribution from the test set. Comparing these cases

over 50 cross-validations, we computed Student’s T-test for
paired samples to verify the statistical significance of our
results.

From Table 2 it can be seen that the best performing
single feature system is SVR with MFCC features at an
average KL of 3.186. However, in both the MLR and PLS
system the highest performing single feature is spectral
contrast with 3.696 and 3.684, respectively. As the main
advantage of PLS over MLR is that it observes any corre-
lation between dimensions in the multivariate regression,
it is surprising that the performance difference between
the two is nearly negligible. Given our degrees of free-
dom (72 test samples), even our lowest T-test value (5.171)
produces confidence of statistical significance greater than
99.999%.

Shown in Figure 1 is the projection of six 15-second
clips into the (A-V) space resulting from multiple regres-
sion methods and acoustic features. The standard deviation
of the ground truth as well as each projection is shown as
an ellipse. The performance of the regression can be eval-
uated in terms of the total amount of overlap between a
projection and its ground truth.

5.2 Feature Fusion

While most individual features perform reasonably in map-
ping to A-V coordinates, a method for combining in-
formation from these domains (more informed than sim-
ply concatenating the features) could potentially lead to
higher performance. In this section we investigate mul-
tiple schemes for feature fusion. Given the very small per-
formance gains and high computational overhead of SVR,
we chose to narrow our focus to MLR and PLS for these
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Figure 1. Collected A-V labels and distribution projections resulting from regression analysis. A-V labels: second-by-
second labels per song (gray •), Σ of collected labels (solid red ellipse), Σ of MLR projection from spectral contrast features
(dash-dot blue ellipse), Σ of MLR Multi-Level combined projection (dashed green ellipse).

experiments. As our ultimate system will require many
predictions over time in order to reflect emotional changes,
the costs of SVR outweigh the benefits.

In our fusion results the performance for simply stack-
ing features into one large feature vector is provided to give
context to the other fusion methods. Our more simple ap-
proach consists of a fusion system that is a combination of
the outputs from the individual feature regression systems.
In the unweighted approach we simply average the param-
eter outputs from each individual feature regressor, and in
the weighted approach we weight each individual feature
regressor by its ability to predict a particular parameter,
which is determined by leave-one-out cross-validation.

In addition, we develop a two-level regression scheme
by feeding the outputs of individual regressors, each
trained using distinct features, into a second-stage regres-
sor determining the final prediction. We investigated two
topologies (Figure 2): in one case the secondary arousal
and valence regressors receive only arousal and valence
estimates, respectively; in the second case the secondary
arousal and valence regressors receive both arousal and va-
lence estimates from the first-stage. We refer to these two
topologies as multi-layer separate and multi-layer com-
bined. In all cases the secondary regressors are trained
using a leave-one-out method (on each iteration we train
the first-stage regressors leaving one example out and use
the estimates of that example from the first stage to train
the second stage). The results for both cases are shown in
Table 2.

μ

MFCC 
Regressor

Contrast 
Regressor

Feature Layer
Regressors

Second Layer
Regressors

Multi-Layer
Separate

μ1

Σ1

μ1
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Σ
Second Layer
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Multi-Layer
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μ
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Figure 2. Multi-layer regression topologies.

5.3 Time-varying emotion distribution prediction

In attempting to predict the emotion distribution over time,
we next shorten label observation rate to once per-second
and attempt to regress multiple feature windows from each
song. For the ground truth data collection this means that
for each 15-second clip we now have 15 examples, increas-
ing our total corpus to 3600 examples. Of course for any
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Feature/ Average Mean Average KL Average Randomized T-test
Topology Distance Divergence KL Divergence

MFCC 0.169± 0.007 14.61± 3.751 27.00± 10.33 10.77
Chroma 0.190± 0.007 18.71± 6.819 22.53± 6.984 9.403
S. Shape 0.173± 0.007 15.46± 6.402 24.61± 9.220 11.06
S. Contrast 0.160± 0.006 13.61± 5.007 27.29± 9.861 10.23

M.L. Combined 0.154± 0.006 13.10± 5.359 28.39± 10.35 10.08

Table 3. Distribution regression results for short-time (one-second) A-V labels.

experiment, multiple examples from the same song must
be either all in the training or testing set. In addition, as
it is clear that some past data may be necessary to accu-
rately determine the current emotional content, we include
past features and investigate the optimal feature window
length.

Given the similar performance of MLR and PLS in fu-
sion methods, for our short time analysis we will restrict
ourselves to only the MLR methods. The similarity in
performance is likely due to the fact that in the multi-
layer combined system, both MLR and PLS are able to
account for the correlation between label dimensions. In
moving forward with time-varying regression, we wish
to be able to apply all methods in real-time as a “vir-
tual annotator” for MoodSwings. This directly addresses
the bootstrapping problem inherent to the system in cases
where multiple annotators are not available at the same
time. A preliminary single-user version of MoodSwings
called MoodSwings Single Player, 2 which demonstrates
our real-time regression system, is available online.
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Figure 3. Window length analysis for different acoustic
features.

For our time-varying approach, we seek to develop re-
gressors that can predict the emotion for a single second
using only current and past audio data. In terms of our data
collection this implies that we have 15 distributions for
each 15-second music clip (for 240 clips this yields a to-
tal of 3600 distributions). But we should also consider the
optimal analysis window length for regression from each
acoustic feature set. In Figure 3 we perform a regression
analysis for each window length from 1 to 45 seconds (in
increments of one second) and plot the average KL diver-

2 MoodSwings Single Player: http://music.ece.drexel.edu/mssp

gence from the projections to the collected distributions.
As in previous experiments, the training/testing data is split
70%/30% and cross-validated 50 times. From the window
length analysis in Figure 3, it can be seen that the optimal
window length is not the same for all feature domains. For
MFCCs we obtain the most accurate prediction using 13
seconds of past feature data, also 13 seconds for SSDs, 15
for spectral contrast, and 41 seconds for chroma. We use
these feature window lengths in the regression analysis to
follow.

In moving to short-time labels, it can be seen from Table
3 that our overall KL has increased, but our average dis-
tance ratings have mostly remained the same. This is most
likely attributed to the fact that the underlying label covari-
ance is less consistent due to the smaller quantity of col-
lected A-V labels. Out T-test values have increased as well,
which can be attributed to the overall increase in examples
(from 240 to 3600). Considering our short-time degrees
of freedom (1080 testing examples), our lowest T value
(9.403) produces confidence of statistical significance (vs.
randomly selected projections) higher than 99.999%. To
visualize emotion regression over time, we have chosen
three clips which display a clear shift in emotion distribu-
tion, plotting both the collected and projected distributions
at one second intervals (Figure 4).

6. DISCUSSION AND FUTURE WORK

In working with highly subjective emotional labels, where
there is not necessarily a singular rating for even the small-
est time slice, it is clear that we can develop a more ac-
curate system (in terms of predicting actual human labels)
by representing the ground truth as a distribution. While
accounting for potential dependence between the distribu-
tion parameters in the A-V emotion space seemed to be of
high importance, some of the best performing techniques
assumed total independence of parameters. In particular,
combining MLR in multiple stages produces results com-
parable to more computationally complex methods.

One of our targeted applications, a “virtual annotator”
to be used in MoodSwings, requires real-time calculation
of projections, which also favors the simpler regression im-
plementations. For the activity, the required degree of ac-
curacy is questionable to begin with [11]. In our observa-
tions, we have found that it is more important for a virtual
annotator to behave “realistically” (appropriate movement
when the emotion changes) in order to keep a human par-
ticipant engaged in the activity. But as we implement the
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Figure 4. Time-varying emotion distribution regression
results for three example 15-second music clips (markers
become darker as time advances): second-by-second labels
per song (gray •), Σ of the collected labels over 1-second
intervals (red ellipse), and Σ of the distribution projected
from acoustic features in 1-second intervals (blue ellipse).

virtual annotator to facilitate the collection of more human
data, we hope to continue increasing the accuracy of our
regression system.
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ABSTRACT 

We present a human-centered experiment designed to 
measure the degree of support for creating musical ac-
companiment provided by an interactive composition de-
cision-support system. We create an interactive system 
with visual and audio cues to assist users in the choosing 
of chords to craft an accompaniment in a desired style. 
We propose general measures for objectively evaluating 
the effectiveness and usability of such systems. We use 
melodies of existing songs by Radiohead as tests. Quanti-
tative measures of musical distance – percentage correct 
and closely related chords, and average neo-Riemannian 
distance – compare the user-created accompaniment with 
the original, with and without decision support. Numbers 
of backward edits, unique chords explored, and repeated 
chord choices during composition help quantify composi-
tion behavior. We present experimental data from musi-
cians and non-musicians. We observe that decision sup-
port reduces the time spent in composition, the number of 
revisions of earlier choices, redundant behavior such as 
repeated chord choices, and the gap between musicians’ 
and non-musicians’ work, without significantly limiting 
the range of users’ choices.  

1. INTRODUCTION 

Building computer-assisted composition software tools 
has long been a common interest among researchers. Be-
sides tools designed for professional use with advanced 
functions such as audio signal editing, many aim to help 
amateurs and music lovers write music and to enhance 
users’ musical creativity. These tools often provide alter-
nate ways for representing music, using interfaces such as 
a drawing pad to avoid score notation. While various sys-
tems have been proposed in recent years, it remains un-
clear how much these systems help the composition proc-
ess. Evaluations of systems that support art creation often 
take the form of subjective opinion with varying degrees 
of success, and cannot be used to systematically study 
and improve the methodology. Music compositions, like 
other art forms, are often evaluated using the Consensual 
Assessment Technique [10], which measures quality ac-
cording to experts’ global and subjective assessment of 
the outcome. For studies that aim to design tools to sup-
port music composition, this technique may not provide 
sufficient detail for evaluating the systems. For example, 
it would be difficult to determine to what extent users’ 

creations are improved by a composition assistance sys-
tem using the Consensual Assessment Technique. 

In this paper we focus on experiments that aim to 
quantifying the added benefit of style-imitating accompa-
niment composition decision-support systems. Such sys-
tems aim to help users create accompaniment to a melody 
in the style of a particular artist of band. When the goal is 
to imitate the style of a known song, the original accom-
paniment serves as ground truth for any user-created ac-
companiment to the song’s melody.  If the user is able to 
produce more chord patterns that are similar to the origi-
nal accompaniment with automated assistance, it can then 
be concluded that the system achieves its design goal. 

For the experiments described in this paper, we built a 
composition decision-support software tool by adapting 
an automated system for generating style-specific accom-
paniment. We designed an intuitive interactive user inter-
face that assumes no formal music knowledge, using vis-
ual cues and sound to make music composition feasible 
for experts and novices alike. The system provides sug-
gestions to the user at two levels: the system generates a 
sequence of stylistically appropriate chords as initial sug-
gestions, a range of triads is then listed to guide users in 
each chord selection.  

To measure the benefits of the system, we conducted a 
human-centered experiment with three composition tasks. 
In each task, participants were given a melody and were 
requested to complete the composition by choosing 
chords to accompany the melody in the style of a particu-
lar artist. Before the experiment, the participants listen to 
several songs by the artist they should emulate. In the 
first task, participants were given a composing interface 
without decision support; in the latter two tasks, they 
worked with a composing interface with decision-support 
that put forward sequences of computer-suggested 
chords. The experiment was designed to explore the 
composition process by examining whether participants 
could mimic an artist’s composition decisions after hav-
ing heard samples of their songs, and by determining how 
much their performance improved when they worked 
with a composition decision-support system. 

We separated the participants into two groups – musi-
cians and non-musicians – according to their musical 
backgrounds, and evaluated the effectiveness of the com-
position decision-support tool by examining whether non-
musicians, with the help of the system, can create accom-
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paniments that are as close to the original style as those 
by musicians. We propose quantitative metrics for evalu-
ating the system’s usability by statistically examining the 
changes in the users’ composition behaviors with and 
without decision support.  

2. RELATED WORK 

In addition to the systems that are designed to model mu-
sic composition [1, 4, 13, 15], efforts have been made to 
build tools to support music composition [2, 7, 8]. Unlike 
music production software that only provide tools for no-
tating scores and recording sound, software such as 
Hyperscore [8] and Sonic Sketchpad [7] offer alternative 
modalities (e.g., drawing) through which to compose mu-
sic. With this kind of software, users do not need to be 
familiar with, or knowledgeable about, music notation or 
instrument-specific characteristics. Evaluations of these 
systems focus on users’ level of satisfaction with the 
software interface and its functionalities. 

In particular, the automatic style-specific accompani-
ment (ASSA) system described in [5] aims to assist ama-
teurs in songwriting by helping them compose music in 
the style they desire. The system incorporates both music 
theoretic knowledge and statistical learning, using small 
numbers of examples of users’ favorite artists to model 
the accompaniment choices of that professional. It then 
applies the learned composition style to new, user-created 
melodies. The ASSA system has been evaluated based on 
subjective opinion through a Turing test, and on style-
related quantitative metrics [6]. 

3. SYSTEM DESIGN 

3.1 Interactive User Interfaces 

In this study, the ASSA system [5] forms the basis of our 
composition decision-support tool. The interactive user 
interface allows users to create accompaniment to any 
melody through simple mouse-click actions on graphic 
icons. Users can explore different chords in each bar and 
listen to parts of the melody in any order with the accom-
paniment they create. Users can also adjust the tempo of 
the song to better fit their listening pace during composi-
tion. The system takes care of composition details such as 
voice arrangement and chord alignment, leaving users 
free to concentrate on using their aural perception to se-
lect the appropriate chords. 

To test the improvement resulting from computer as-
sistance in music composition, we created two interface 
designs. The first interface, shown in Figure 1, provides 
users with all possible chord choices at all times, i.e. 
without decision support. The chord collection, all 24 tri-
ads (major and minor), appears in the top panel of the in-
terface. Triads are arranged according to the circle-of-
fifths, with the major chord cycle on the left and the mi-
nor triad cycle  relative  to  the  major  on the  right.  The 

 

Figure 1. Composing interface without ASSA support. 

 

Figure 2. Composing interface with ASSA support and 
graph of neo-Riemannian distance. 

tonic triad is centered at the top. Each triad is assigned a 
different color to help users identify chords and the rela-
tionships between them. We used the color assignment 
described in [12], in which related colors are assigned to 
chords considered close one to another.  

During composition, users can choose chords by click-
ing on one of the colored circles in the chord collection. 
Once a chord is selected, a corresponding triad with 
proper pitch arrangements is inserted in the accompani-
ment MIDI track, and a circle of the same color is placed 
in the composing panel, the black rectangle in the center 
of Figure 1. The composing panel allows users to visually 
examine the chord sequence they create. Major triads ap-
pear as larger colored disks, minor triads as smaller ones.  

Figure 2 depicts the second interface. The most visible 
difference between this interface and the previous one is 
the graph at the bottom of the interface. Each point on the 
grid represents the neo-Riemannian distance [3] between 
adjacent chords. In neo-Riemannian chord space, chords 
are connected by neo-Riemannian operations (NROs), 
and the number of operations between chords reflects 
their musical distance. The user can select the time slice 
to be examined, and edit the neo-Riemannian distance 
they wish to consider at that time slice. Other chords 
within that number of NROs from the previous chord are 
displayed in the top panel. In this manner, the number of 
chord choices is reduced and constrained by the NRO 
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distance, which helps users categorize chords into sub-
groups that reflect their musical distance in the transition. 

In addition to the use of neo-Riemannian distance, the 
user starts with an ASSA-produced chord sequence and 
its corresponding sequence of neo-Riemannian distances. 
The providing of this initial suggestion simplifies the 
process of creating accompaniments from scratch to one 
of editing the chords until the user is satisfied with the 
accompaniment. 

4. EXPERIMENT DESIGN 

Our study aims to determine the effectiveness of a com-
position decision-support system through quantitative 
comparisons of users’ compositions, and of their decision 
pathways, with and without decision support.  This sec-
tion presents our experiments to further these goals. 

4.1 Experiment Setup 
We designed a three-part experiment using the two com-
position interfaces described in the previous section. In 
the first part of the experiment, participants were given a 
melody extracted from a song with which they are famil-
iar, and were asked to compose a sequence of chords 
without decision support, using the interface shown in 
Figure 1. In parts two and three, participants were pre-
sented with the interface shown in Figure 2, and asked to 
compose accompaniments for two unfamiliar melodies in 
a familiar style with decision support. 

We used songs by Radiohead, a British rock band, for 
the experiment. We chose Radiohead not only because of 
the band’s popularity and reputation, but also because 
their unique style has been analyzed by music theorists in 
several book-length studies [9, 11, 14]. We selected 13 
songs from Radiohead’s albums Pablo Honey and The 
Bends as samples to familiarize participants with the 
band’s style and as the training set for the ASSA system. 
As test melodies for the three-part experiment, we extract 
the melodies of three “hit” songs from the two albums, as 
indicated by their popularity ratings on the iTunes online 
music store. The participants’ training samples included 
the test song for the first part, but not for the second and 
third parts. Each participant was asked to complete all 
three parts in the experiment. The idea behind these 
choices was to investigate whether participants, espe-
cially non-musicians, could create accompaniments for 
new melodies (the second and third tasks) in a style simi-
lar to the original with decision support. 

4.2 Experiment Procedure 

The participants for this study consisted of 26 volunteers: 
8 musicians and 18 music lovers. The majority of the 
non-musician participants were college students from 
various disciplines. Participants who were categorized as 
musicians either majored in Music at a university or 
played an instrument in a rock band. Participants were 
requested to spend at least three days listening to the 

sample Radiohead songs provided, and to schedule an 
appointment for the experiment after they are familiar 
with the band’s style.  

The experiment was conducted in a computer lab, 
where each participant was assigned a computer and a 
headset to complete the task individually. Before begin-
ning, participants first watched a 10-minute instructional 
video on how to use the two interfaces to create accom-
paniments. Before they started composing with the soft-
ware, participants were reminded to choose chords that 
they think Radiohead would choose, based on their expe-
rience listening to music by the band. Participants were 
then left alone to compose without time constraints. 

4.3 Evaluation Metric 
This section describes the evaluation criteria designed to 
fulfill the aforementioned goals. 

4.3.1 Effectiveness 
The effectiveness of system assistance can be measured 
in many ways.  If musicians as well as non-musicians 
take less time to complete their compositions with the de-
cision support, we can say that the system helps users by 
speeding up the composition process. 

Decision support effectiveness can also be measured in 
the improvement of musicians’ and non-musicians’ com-
positions produced with (vs. without) decision support, 
and of non-musicians’ compositions with regard to their 
similarity to musicians’ compositions. For instance, if 
non-musicians create accompaniments more similar to 
the ones by musicians with decision support than without, 
it can be claimed that the decision support helps non-
musicians make more knowledgeable decisions to better 
reach the targeted music style.  

To measure the quality of the user-created accompa-
niments, we compared them to that of the original pro-
duction, as documented in the commercial sheet music. 
We counted the number of chords in the user-created ac-
companiment that are identical to the original, and di-
vided it by the total number of chords to report the same 
chord percentage. For the chords in the user-created ac-
companiment that are different from the original, we fur-
ther determined the percentage of chords that are closely 
related to the original. The metric, chords-in-grid, reports 
the percentage of chords that are related to the original by 
a Dominant (D), Subdominant (S), Parallel (P), Relative 
(R), or by one of the compound relations: DP, SP, DR, 
and SR. We also measured the average NR distance be-
tween the user-created and the original accompaniment to 
assess how dissimilar the user-chosen chords are from the 
original in terms of NROs. 

4.3.2 Usability 
Another goal of the study is to examine how the decision 
support system affects users’ composition processes. We 
analyzed the changes in the way chords are selected 
(without decision support) or edited (with decision sup-
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port) to investigate whether the decision support guides 
users in their compositions or limits their choices. Spe-
cifically, we focused on three types of behavior patterns: 
backward editing, exploration, and hesitation. 

Backward editing occurs when users change the chord 
in a bar that is before the current one after they select a 
chord in the current position. For example, the following 
action sequence contains two backward edits at times T2 

and T4, respectively: 

Bar:   5 4 5 3 
Chord selected: C Am G Dm 
Time:   T1 T2 T3 T4 

Backward editing indicates that the user has become un-
certain about a previous choice they made because of a 
later decision.  

We define exploration as the average number of 
unique chords that users have tried assigning in each bar, 
including the ones they choose and then changed later. 
For example, in the scenario above, two unique chords 
were explored in bar 5 at time T1 and T3 respectively. In 
contrast, hesitation is defined as the total number of re-
peated chord choices during the entire composition proc-
ess. For instance, the following sequence contains a re-
peated choice at time T4 in bar 6: 

Bar:   5 6 6 6 
Chord selected: C Am C Am 
Time:   T1 T2 T3 T4 

For each of the two groups, musicians and non-
musicians, we calculated the means and standard devia-
tions of the backward editing, exploration, and hesitation 
values with and without decision support. Suppose µ1, m, b 
represents the true mean of musicians’ backward editing 
without decision support and µ2, m, b the true mean with 
decision support. We conducted a hypothesis test on 
whether decision support has a positive impact on the be-
havior pattern (i.e. reduces backward editing) by setting 
the null hypothesis, H0, and the alternative hypothesis, 
H1, as: 

H0: µ1, m, b ≤ µ2, m, b 

               H1: µ1, m, b > µ2, m, b                         (1) 

We calculated the observed level of significance, the p-
value, using the Student’s t-distribution with the calcu-
lated means and standard deviation.  We chose the Stu-
dent’s t-distribution over the normal distribution due to 
the small sample size.  We then compare the p-value with 
the standard 5% significance level.  Similar hypothesis 
tests were conducted as well for the exploration and hesi-
tation mean values. 

5. EXPERIMENT RESULTS AND ANALYSES 

In this section, we report the results of the experiments, 
and describe the analyses of these results.  Twenty-six 
participants volunteered for the experiment, each spend-
ing approximately about one hour in completing the 

tasks.  These users, and their composition results, are 
separated into two groups, namely musicians and non-
musicians, according to their musical backgrounds. 

5.1 Effectiveness: Inter-Group Comparisons 
This section presents analyses of composition decision 
support effectiveness within the musician and non-
musician groups. 

5.1.1 Task Completion Time 

Table 1 lists the average time musicians and non-
musicians spent on each composition task. For song 1, 
which was included in the participants’ training samples, 
musicians and non-musicians spent an almost equal 
amount of time choosing the 15 chords for the accompa-
niment without decision support. For songs 2 and 3, 
which were new to the participants, non-musicians spent 
a slightly shorter amount of time generating an accompa-
niment with an initial computer-produced suggestion fol-
lowed by edits guided by the neo-Riemannian interface. 
If we calculate the time spent on each chord in the ac-
companiment, we can observe that both musicians and 
non-musicians spent significantly less time on the second 
and third task than on the first.  

Time (min) Song 1 
(15 chords) 

Song 2 
(36 chords) 

Song 3 
(30 chords) 

Musicians 17.54 20.59 12.76 
Non-musicians 17.51 14.13 7.77 

Table 1. Time spent on each accompaniment task. 

5.1.2 Created Accompaniment versus the Original 

Figure 4 shows the mean same chord, chords in grid, and 
average NR distance percentages for the user-created ac-
companiments. The results of accompaniments produced 
with decision support are the average of that for song 2 
and song 3.  

 

Figure 4. Evaluation of user-created accompaniments. 

Figure 4(a) shows that the average percentage of chords 
in the user-created accompaniment that are identical to 
those in the original accompaniment is much higher in 
compositions by musicians than in those by non-
musicians. This performance gap between musicians and 
non-musicians is greatly reduced with the assistance of 
the ASSA system. Similar patterns can be observed in 
Figure 4(b) with the chords-in-grid metric and in Figure 
4(c) with the average NR distance metric. 
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If we focus on the musicians’ results, we will find that, 
even with decision support, musicians performed worse 
on songs 2 and 3, when they are unfamiliar with the test 
song, than on song 1, when they had heard the song in its 
entirety. This finding implies that it is more difficult for 
musicians to come up with exactly the same chords as the 
original if they have never heard the song before. In con-
trast, non-musicians chose more suitable chords for songs 
2 and 3, in collaboration with the system, than they did 
for song 1. With decision support, as in songs 2 and 3, the 
performance of non-musicians approached that of musi-
cians. 

Note that in the bars labeled without in Figures 4(a) 
and 4(b), the standard deviation for the percentage of 
same chords for the musicians’ accompaniments is much 
greater than that for chords-in-grid for the same group. 
This difference is due to the fact that the musician group 
consists of classical music majors as well as rock band 
members. It appears that imitating Radiohead’s style is a 
challenge for some classical musicians who were less fa-
miliar with the band than rock musicians. However, be-
cause of their training in music theory, their choices are 
closely related to the original as the high chords-in-grid 
values suggest. 

5.2 Usability: Intra-Group Comparisons 
This section presents analyses of user composition pat-
terns, with and without decision support, comparing the 
results of musicians against that of non-musicians. 

5.2.1 Backward Editing 

Figure 5 presents the average number backward edits 
with and without decision support for (a) musicians and 
(b) non-musicians. Note that for both musicians and non-
musicians, decision support reduces the amount of back-
ward editing. The results are confirmed statistically by 
the p-values; both the p-values for musicians (p-value = 
0.0066) and non-musicians (p-value = 0.015) are less 
than 0.05, indicating that the reduction in backward edits 
is statistically significant. 

 

Figure 5. Average backward edit counts with and without the 
decision support. 

5.2.2 Exploration 
Figure 6 shows the average number of unique chords ex-
plored in each bar for (a) musicians and (b) non-
musicians, with and without the decision support. 

 

Figure 6. Average number of unique choices explored in each 
bar with and with the decision support. 

While both musicians and non-musicians explore fewer 
numbers of unique chords on average with system sup-
port, the p-values are higher than 0.05.  Thus, the ob-
served reduction in unique chords explored is not statisti-
cally significant, and we conclude that the system does 
not significantly limit participants’ exploration. 

5.2.3 Hesitation 

The average number of repeated choices in each bar with 
and without decision support are shown in Figure 7 for 
(a) musicians and (b) non-musicians. It can be observed 
that the number of repeats is reduced when the system 
provides suggestions during composition, as reflected in 
the figures as well as the p-values. The result implies that 
the system helps musicians and non-musicians reach their 
goals with less confusion. 

 

Figure 7. Average number of repeated choices in each bar with 
and without decision support. 

6. CONCLUSION AND FUTURE WORK 

In this paper we described an interactive decision support 
system that aims to assist amateurs in the creating of ac-
companiments in a desired style. The system uses visual 
cues to offer chord suggestions and sounds to evaluate 
chord choices, making composition feasible for people 
without formal musical training. To investigate the bene-
fits associated with the decision support, we designed 
three composition tasks. In the first task, participants 
were provided with the interface without decision sup-
port, and asked to create an accompaniment for a melody 
of a familiar song. In the latter two tasks, participants 
were given the interface with decision support, and in-
structed to produce accompaniments for unfamiliar melo-
dies in a familiar style.  
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With the data obtained in the experiment, we first ana-
lyzed how well the user-created accompaniments con-
curred with the desired style, separating the results by 
user group, using the quantitative measures: same chord 
and closely-related chord percentages, and average neo-
Riemannian distance. We observed that when decision 
support was present, the performance gap between musi-
cians and non-musicians was greatly reduced.  

To understand the usability of the system, we proposed 
methods to measure the changes in participants’ composi-
tion behavior. Statistical analyses revealed that when de-
cision support was available, the number of backward ed-
its and repeat choices were reduced, and the range of 
unique chords explored was not significantly limited by 
the system.  

Additional analyses that can be performed on the data 
include examining whether common or distinct decision 
patterns exist between the two user groups, and separat-
ing the support given by the initial ASSA-produced se-
quence from the assistance provided by the interactive 
interface and differentiating between them. 

In the future, we plan to extend the experiment by con-
sidering other musical factors such as timbre and instru-
ment arrangement to investigate the impact of different 
stimuli on musical creativity. We will refine the interface 
and conduct studies with larger groups of users, and de-
sign questionnaires to obtain their feedback on the sys-
tem. Last but not least, we will further study the degree to 
which automation affects music creativity so as to design 
better composition decision support tools. 
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ABSTRACT

This paper presents an interface for finding interpretations
of a user-specified music, Query-by-Conducting. In clas-
sical music, there are many interpretations to a particular
piece, and finding “the” interpretation that matches the lis-
tener’s taste allows a listener to further enjoy the piece. The
critical issue in finding such an interpretation is the way
or interface to allow the listener to listen through differ-
ent interpretations. Our interface allows a user, by swing-
ing a conducting hardware interface, to conduct the desired
global tempo along the playback of a piece, at any time in
the piece. The real-time conducting input by the user dy-
namically switches the interpretation being played back to
the one closest to how the user is currently conducting. At
the end of the piece, our interface ranks each interpretation
according to how close the tempo of each interpretation
was to the user input.

At the core of our interface is an automated tempo es-
timation method based on audio-score alignment. We im-
prove tempo estimation by requiring the audio-score align-
ment of different interpretations to be consistent with each
other. We evaluate the tempo estimation method using a
solo, chamber, and orchestral repertoire. The proposed
tempo estimation decreases the error by as much as 0.94
times the original error.

1. INTRODUCTION

Classical music is unique in that many audio recordings
exist for a given piece of music. For example, as of
March 2010, a search on an on-line shopping site for
“Mendelssohn Violin Concerto” returns 1200+ hits, or that
of “Beethoven Spring Sonata” returns 300+ hits. Each
of these recordings is an acoustic rendition of a particu-
lar music score, embodied by an unique interpretation of
the performer. Finding an interpretation that matches the
listener’s taste is an important aspect of enjoying classical
music. However, searching for such recording is tiresome
because it requires the listener to listen through the same
piece many times.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c⃝ 2010 International Society for Music Information Retrieval.

Figure 1: System diagram of Query-by-Conducting.

Our goal is to retrieve interpretations1 on the basis of
various aspects of music interpretation, similar to content-
based music information retrieval (CBMIR), which re-
trieves pieces on the basis of various aspects of music such
as rhythm and timbre [2, 3]. What constitutes musical in-
terpretation is a difficult question, though it seems that mu-
sicians express interpretation by manipulating the tempo,
the timbre, or bringing out interesting melodic lines. This
paper focuses on the global tempo – the average tempo
of a piece over a few beats. We believe tempo is an as-
pect of music interpretation that many listeners take note
of. Studies in music cognition suggest that similarity of in-
terpretations is strongly reflected in global tempo [4], and
many studies are motivated by the significance of tempo
on interpretation [1, 5].

We present Query-by-Conducting, a new interface for
finding interpretations of a user-specified music by con-
ducting the global tempo. The interface reads, as the mu-
sic score, a standard MIDI file of a piece of music, and
different interpretations of the music score as audio files.
The interface facilitates playback, visualization and query
of interpretations by supporting the following features, as
shown in Figure 1:

1. Visualization of global tempi of the interpretations
2. Hardware conducting interface (a Nintendo Wii re-

mote) for intuitively entering, along the playback of
a piece, the user’s tempo query in real time

3. Ranking and retrieval of interpretations on the basis
of the similarity between each interpretation and the
current tempo query entered by the user.

Visualization allows the user to view the range of in-
terpretations available, and thus, the valid range of tempo

1 We shall use the term “interpretation” to mean a rendition of a par-
ticular symbolic representation of music, as per [1].
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Figure 2: System-level state diagram. The interface alternates
between (1) and (2) until the piece ends.

in which the user should conduct to obtain a meaningful
query. As a particular interpretation is played back, the
user may become dissatisfied with its tempo. Then, the
user would “conduct” the desired tempo using the hard-
ware conducting interface. Based on the user’s tempo in-
put, the interface retrieves and switches the interpretation
being played back to one that is closest to the input. The
user may stop conducting if the current interpretation is
satisfactory. At the end of playback, the system ranks each
interpretation on the basis of how similar the overall global
tempo trajectory was to the user’s conducting.

Our interface differs from existing conducting inter-
faces [6–9] in three respects. First, we use conducting de-
vice to switch the interpretation being played back, instead
of specifying the tempo of the entire piece. The user has
the freedom of either listening to a piece, or conducting
the tempo of an interpretation that the user wants to lis-
ten. Second, our method allows the user to control only
the global tempo instead of local tempo or dynamics. We
believe that such restriction is an effective way to retrieve
a particular interpretation; global tempo is easy for a typ-
ical user to specify, but specifying local tempo requires
a precise control of the tempo. The notion of restricting
the user control to a few dimensions has been proposed
in other studies aimed at easily manipulating expressive
music [10]. Finally, our conducting interface is meant to
retrieve a particular interpretation to play back, whereas
most conducting interfaces are aimed at real-time tempo-
ral manipulation of a particular audio signal. Unlike query
by tapping [11], which uses rhythm pattern as the query,
as our method uses the tempo as the query.

The interface relies on tempo estimation that is deter-
mined through audio-score alignment. In existing stud-
ies [1, 12–14], audio-score alignment was created using
only the information obtained from the audio of interest
and the score. There may be errors in the alignment, but
given one alignment, there is no way of knowing where
an error is. When aligning multiple interpretations, how-
ever, it is also possible to create audio-score alignment by
aligning the score to some other audio, and then aligning
that audio to the audio of interest. Thus, given N inter-
pretations to align, N unique audio-score alignments to
one interpretation can be generated. We use these multi-
ple audio-score alignments generated to estimate the true
audio-score alignment that is error-free.

Figure 3: The interface in playback-mode visualizes the tempo
along playback of an interpretation.

A video demonstration of our interface is available at
http://www.youtube.com/QueryByConducting

2. INTERFACE DESIGN

The interface offers functions in a conventional music
playback interface such as playback and rewind. More-
over, it features a visualizer of global tempi of various in-
terpretations, a conducting hardware to enter the global
tempo query in real time, and retrieval of interpretations
on the basis of the user query. As shown in the state di-
agram in Figure 2, our system alternates between playing
back the current interpretation (“playback-mode”), and ac-
cepting user conducting and retrieving appropriate inter-
pretation to play back (“conduct-mode”). At the end, our
system ranks each interpretation on the basis of the tempo
(“ranking-mode”).

Figure 3 shows the interface during playback
(playback-mode). Bottom of the screen displays the
title, the performer and the playback time, similar to
conventional music playback interface. Top of the screen
visualizes the global tempi, and presents each interpre-
tation sorted in descending order of the current global
tempo. Bottom right shows the state of the conducting
interface.

As the piece is played back, the user may become dis-
satisfied with the tempo of the piece (“I liked the introduc-
tion, but the development section is too slow,” a user might
think). As shown in Figure 4, the interface allows a user
to “conduct” the desired global tempo in conduct-mode,
in real time. In conduct-mode, the interface accepts beat
input from the conducting hardware interface, and also vi-
sualizes the beat at the bottom left to facilitate proper con-
ducting. The entered tempo is used as a query to retrieve
the interpretation whose global tempo is closest to what
the user conducts, and to switch the current playback to
it. This mode offers the user an active listening experience
by constantly retrieving and cross-fading the playback to
interpretation that plays like how the user is conducting.

At the end of the piece, the interface enters the ranking-
mode, and ranks each interpretation based on how similar
each interpretation was to the user’s overall conducting.
The ranking is presented to the user.
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Figure 4: The interface in conduct-mode accepts user’s con-
ducting using a controller, and switches interpretations being
played back. Beat visualizer facilitates user’s conducting.

2.1 Interpretation Visualizer

Top half of the interface (in Figure 3) is the interpretation
visualizer. It shows the tempi of different interpretations,
along with tempo trajectory of the interpretation that is be-
ing played back and the user query.

Figure 5 shows the visualizer in further detail. It
presents tempo information against time. To allow the user
to view the detailed tempo near the current playback posi-
tion as well as the tempo of the entire piece, we distort the
normalized x-coordinate, x(t). x(t) is distorted such that
the vicinity of current playback position tc is zoomed like
a lens. Let t, the current beat of playback, be defined for
[0, tl], where tl is the duration of the piece, and the range
of x ∈ [0, 1]. Then, the visualizer applies the following
function:

x(t) =
t

2tl
+

1

2

exp
`

t−tc
T

´

exp
`

t−tc
T

´

+ 1
(1)

This shows approximately T -neighborhood of the current
playback position in more detail than the rest. T is chosen
to be four quarter notes.

A vertical straight line indicates the current playback
position. Line segment to the left of the current playback
position is the past tempo trajectory of the user’s global
tempo query. Line segment to the right of the current play-
back position is the future tempo trajectory of the inter-
pretation that is being played back. This way, the user is
able to view the query entered so far, and how the current
interpretation will unfold.

To show the range of possible interpretations, the range
of global tempi is expressed as a colorful strip, overlayed
to to the line segments described above. The strip is col-
ored using a gradation of hue angle, such that fast tempo is
associated with small hue (orange), and slow tempo with
large hue (blue). At beat t, given the slowest tempo τmin(t),
fastest tempo τmax(t), and some tempo in between, τ(t),
we set the hue to the following angle:

hue(t) = 240◦ − τ(t) − τmin(t)

τmax(t) − τmin(t)
230◦ (2)

Right half of the visualizer prints the performer of each
interpretation, sorted in descending order of the current
global tempo. The interpretation that is being played back
is highlighted. Next to each name, a box whose hue value
is as described in Equation (2) is painted.

Figure 5: Interpretation visualizer shows the tempo trajectory
of the current interpretation, how the user has conducted, and the
range of tempi.

2.2 Hardware Conducting Interface

The hardware conducting interface detects beat from an
accelerometer embedded in the hardware controller, and
converts it into tempo. The user interface shows beat visu-
alizer to facilitate tempo entry.

2.2.1 Beat detection

We accept the user’s conducting query using a game con-
troller that features a 3-axis accelerometer (a Nintendo Wii
controller). Our system detects beat by checking for peaks
in the axis vertical to the controller. Such peak is gener-
ated when the controller is flicked up, as a conductor would
flick the baton to indicate the beat.

Once a beat is detected, the accelerometer input is ig-
nored for 200msec to prevent false triggering. Therefore,
our system accepts tempo of up to 300 beats-per-minute
(BPM), which is sufficient for virtually all classical music.

2.2.2 Converting beat input to tempo query

To specify a new tempo, the user must conduct a tempo dif-
ferent from the playback. We observed that people tends
to conduct not in the desired tempo, but instead ahead or
behind of the beat of the playback to indicate faster or
slower tempo relative to the current playback. We con-
jectured that such phenomenon occurs because people are
distracted by the downbeat of the playback, and sets the de-
sired beat location relative to the last downbeat he/she has
heard. Therefore, we convert the offset of the user’s con-
ducting with respect to the beat of the playback, to the de-
sired tempo in BPM. Suppose the user conducts ∆t behind
the beat. Then, supposing the current BPM of the playback
is BPM0, we convert ∆t to user-specified tempo, BPM ,
as follows:

BPM = BPM0
1

∆t
60/BPM0

+ 1
(3)

The average of user-specified BPM over four beats is used
as the query.

2.2.3 Beat visualizer

We observed that, in a preliminary experiment using a few
test subjects, people did not always have a clear sense of
rhythm, and had trouble finding where the beat is. This
was especially true for music whose instrumentation did
not include instrument with strong attack and decay, such
as the piano or plucked strings.

To facilitate tempo input, we display a beat visualizer,
as shown at the bottom left of Figure 3, and in detail in
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Figure 6: Visualizer for facilitating tempo input. The color bar
rotates in synchrony with the beat so that the user could easily
grasp the downbeat.

Figure 6. The visualizer has a colored stripe that rotates
around the large circle, in synchrony with the beat of the
playback. At each downbeat, the stripe crosses the small
circle at the bottom. The arc-length of the rotating stripe
corresponds to the range of global tempi at the current beat,
and the hue is calculated using Equation (2). Therefore, if
the user wants to switch to fast interpretation, for exam-
ple, from tempo shown as green in the tempo visualizer to
orange-colored tempo, the user could flick the controller
as the orange-colored segment of the arc crosses the small
circle at the bottom.

2.3 Interpretation Retriever

After the user has finished listening through a piece, the
interface ranks, in ranking-mode, each interpretation on
the basis of the similarity between the tempo trajectory of
the interpretation and the user query.

We use the tempo trajectories of the interpretations that
were played as the query. For example, if the user listened
to interpretation x for the first minute and y for the next two
minutes, our query would consist of the tempo trajectory of
interpretation x for the first minute and y for the next two.

Let us define the dissimilarity score of the user query
and each interpretation. Let τi(t) be the global tempo tra-
jectory of the ith interpretation, and τq(t) be the query
tempo trajectory. Then, we define tempo dissimilarity for
interpretation i, ri as follows:

ri =
1

T

Z T

0

„

τi(t) − τq(t)

τq(t)

«2

dt (4)

The interpretations are sorted in the ascending order of
tempo dissimilarity, as shown in Figure 7. A transparency
value is associated to each interpretation being drawn, such
that interpretation with lowest dissimilarity is opaque, and
the highest transparent. Moreover, dissimilarity measure
that is inverted, shifted and scaled between 0 and 1 is
shown next to each interpretation.

3. TEMPO EXTRACTION METHOD

Global tempo extraction is based on evaluating the audio-
score alignment. Since accurate alignment is essential for
accurate tempo estimation, we propose a method to im-
prove the audio-score alignment.

3.1 Initial Audio-Score Alignment

The initial audio-score alignment is based on dynamic
time-warping (DTW) using chroma vector as the feature,
similar to other works [13–15].

Let c
(t)
k be a 12 dimensional vector that contains the

chroma vector computed for tth audio frame of the kth

Figure 7: Ranking-mode ranks each interpretation based on
the tempo similarity, presents similar interpretations as opaque
and dissimilar ones transparent.

interpretation. Let c
(t)
S be a 12 dimensional chroma vec-

tor computed from the music score at tick t. We generate
the alignment from the score to the kth interpretation, de-
noted Mk←s, or from interpretation i to j, denoted Mj←i.
To generate Mk←s, a similarity matrix Rk←s is first com-
puted. Let Ns be the number of ticks in the music score
and Nk be the number of audio frames contained in in-
terpretation k. Let Rk←s be a Ns-by-Nk matrix, whose
element i, j contains:

Rk←s(i, j) = 1 −
c
(i)
s · c(j)

k

∥c(i)
s ∥ · ∥c(j)

k ∥
(5)

Next, we find the alignment path using DTW. Formally, we
define a cost matrix Ns-by-Nk matrix, as follows:

Ck←s(i, j) = Rk←s(i, j) + min

8

>

<

>

:

Ck←s(i − 1, j)

Ck←s(i, j − 1)

Ck←s(i − 1, j − 1)

(6)

where for all t, Ck←s(t,−1) = Ck←s(−1, t) = 0. Next,
we determine the parametric representation of the audio-
score alignment, M

(t)
k←s, by backtracking the cost matrix.

First, we set M
(0)
k←s to (Ns, Nk), and update in the follow-

ing manner while incrementing t, until M
(t)
k←s = (0, 0):

M
(t+1)
k←s := argmin

(I,J)∈S

Ck←s(I, J) (7)

S = {(i − 1, j), (i, j − 1), (i − 1, j − 1)}
where (i, j) = M

(t)
k←s. Audio-audio alignment from inter-

pretation i to j, Mj←i, can be achieved in the same way,
by computing the similarity matrix between chroma vector
sequence of interpretation i and j.
3.2 Improving Audio-Score Alignment
We improve audio-score alignment by requiring the align-
ments of different interpretations to be consistent with
each other. Given one music score and N interpretations,
there are N possible paths to generate the alignment from
the music score to interpretation i, as shown in Figure 8.
Namely, in addition to the direct mapping from the score
to interpretation i, it is also possible to generate mapping
from the score to interpretation j (audio-score alignment),
which is then mapped by using the map from interpretation
j to i (audio-audio alignment). Ideally, all N paths from
the score to an interpretation should be identical. In real-
ity, however, they are not because they are generated using
different similarity matrices.

In order to generate a map from the score to some inter-
pretation i via interpretation j, Mi←j ◦Mj←S , both Mj←S

and Mi←j must be one-to-one, but the alignments gener-
ated in the previous section are not.

Therefore, we trace, over the alignment determined in
the previous section, a new map that is one-to-one. We per-
form the following procedure for each alignment between
some interpretation (or score) s and k:
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Figure 8: By combining two alignments, there are multi-
ple ways to align the score to an interpretation.

1. Set t = 0, and the initial point of the refined alignment
M̃

(t)
k←s to (0, 0).

2. For ϵ < θ < π
2
− ϵ, compute the following cost function:

c(θ) = Eq∼exp (−3q/Q)[min
n

d(t)
n (q, θ)] (8)

where
d(t)

n (q, θ) = ∥M̃ (t)
k←s + q (cos(θ), sin(θ))−M

(n)
k←s∥ (9)

Q is chosen to be 20 frames, and ϵ to be π/20 radian. θ is
evaluated every π/20 radians.

3. Update M̃k←s as follows, for some ∆r ∈ (0, 1]:

M̃
(t+1)
k←s := M̃

(t)
k←s + ∆r

“

cos(θ̂), sin(θ̂)
”

(10)

θ̂ = argmin
θ

c(θ)

We chose ∆r = 1 frame.

4. Exit if M̃
(t)
k←s · (1, 0) ≥ Ns or M̃

(t)
k←s · (0, 1) ≥ Nk.

5. Set t := t + 1, and go to 2.

We assume that observed alignments are corrupted by
independent and identically distributed noise that follows
the Laplace distribution with location parameter M̂i←S(t)
and scale parameter b, for each beat t:

p(t) = exp
“

−∥Mi←S(t) − M̂i←S(t)∥/b
”

/2b (11)

and likewise for Mi←j ◦ Mj←S for j ̸= i. We interpret
M̂i←S as the underlying “correct” alignment that generates
Mi←S and Mi←j ◦Mj←S . Since an estimator of M̂i←S is
the sample median, we update Mi←S as follows:

Mi←S(t) := median({Mi←j ◦ Mj←S(t)}) (12)

As will be shown in the experiment, iterating this step
yields in improved alignment accuracy.
3.3 Tempo Extraction

The tempo is estimated by determining the slope of the
audio-score alignment. We compute the tempo at MIDI
tick t using alignment information obtained between tick
t − T to t + T for T > 0. Only information at note onsets
are used, as alignment results between two note onsets are
not reliable. We choose T dynamically such that at least 20
audio frames that correspond to note onsets are within this
range. Let (s(p), a(p)) contain a parametric representation
of Mi←S that contain the audio frames chosen. s corre-
sponds to the domain (tick of note onsets) and a the range
(audio frame). Then, we compute the BPM at tick t, τ(t)
by first finding the slope m(t) of (s(p), a(p)) using linear
regression, and multiplying its inverse by a scalar factor:

τ(t) =
1

m(t)

audio frame-per-minute
ticks-per-beat

(13)

4. EXPERIMENTS
We evaluate the tempo estimation method, and retrieval of
interpretation on the basis of global tempo query. We ana-
lyzed nine classical pieces of varying instrumentation. Of

Table 1: Average MSE (mean-squared error) improvement
in thousandths (10−3) after iterating Equation (12).

Piece (No. Interp.) None Iter. 1 Iter. 2 Iter. 10
solo-1 (13) 8.9 8.6 8.4 8.4
solo-2 (6) 17.3 15.0 13.0 12.7
solo-3 (5) 266.7 73.1 85.4 98.8
duo-1 (5) 4.5 3.9 3.7 3.8
duo-2 (4) 34.8 22.1 20.6 20.4
duo-3 (4) 185.4 12.5 10.2 10.2
orch-1 (5) 646.8 54.4 47.2 44.9
orch-2 (5) 231.5 14.7 13.3 13.2
orch-3 (5) 3941.6 1091.4 1038.3 833.2

nine pieces, three are orchestral (denoted orch-1 to orch-
3), three are written for small ensemble (denoted duo-1 to
duo-3), and three are solo piano (denoted solo-1 to solo-3).
For each work, multiple interpretations (between four and
thirteen) were obtained and their ground truth tempo data
were entered using an in-house tempo entry utility.
4.1 Evaluation of Audio-Score Alignment
Let τg(t) be the ground truth tempo trajectory. Given an
estimated tempo trajectory τ̂(t), we evaluate the error us-
ing scaled mean squared error (MSE), defined as follows:

MSE =
1

T

Z T

0

„

τg(t) − τ̂(t)

τg(t)

«2

dt (14)

MSE can be considered as the dissimilarity measure be-
tween the ground truth and the estimated tempo.

Table 1 shows the average of MSE over all interpreta-
tion for each of the nine pieces, as the number of iterations
of the update step (Equation (12)) is changed.

The results suggest that, first, our method is capable of
decreasing the error, more so if the initial error is high. For
example, duo-3 has its error decreased by 0.94 times the
original error, after ten iterations. Second, in most cases,
iterating our method multiple times yields in decreased er-
ror. When the error increases with increased number of
iterations, we believe that our assumption that alignments
are corrupted by independent noise fails. For example, in
pieces that involve unnotated candenza (e.g. solo-3), incor-
rect alignment occurs consistently at the cadenza. Then,
taking the median of such corrupted data yields not in
the underlying “true” alignment, as our method posits, but
some meaningless data instead.
4.2 Evaluation of Music Query
We evaluate the robustness of our system against errors in
conducting. When a user conducts like some interpretation
i, the system should retrieve i as the most similar interpre-
tation. Other results may be returned for two reasons:

1. The user could not conduct the piece accurately
enough to return the desired query.

2. Imprecision in tempo estimation method causes in-
correct result to be returned.

In these cases, i may not be the most similar, but one of M
most similar interpretations.

First, we synthesize an artificial query that models hu-
man errors in conducting, by adding a smooth noise to the
ground truth tempo trajectory of each data. For each in-
terpretation i, we use the following tempo trajectory as the
query with some noise variance s :

τquery,i(t; s) = τg,i(t) · 2
√

s
L

PL−1
l=0 n(t−l)|L = 10 (15)

n(t; s) ∼ N (0, 1)
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(c) orch-1
Figure 9: Evaluation results when retrieving up to top 5 results
that are similar to artificially generated query which deviates from
the ground truth by variance s.

Next, we retrieve M interpretations that are most simi-
lar to the artificial query for each interpretation, and eval-
uate the performance of retrieval the F-measure. Let n
be the number of interpretations correctly retrieved by the
query. Let N be the total number of interpretations. Then,
we let recall R = n/N , and precision P = n/(N × M).
The F-measure F is 2PR/(P + R). We show the results
from solo-1, duo-1, and orch-1 in Figure 9 (a), (b), and (c).

Figure 9 (a) and (b) show that the system tolerates small
error in conducting, of up to about s = 0.15, or 0.7 to 1.3
times the original tempo (three-sigma). Figure 9 (c), how-
ever, shows that the F-measure of orch-1 is considerably
lower than the other two.

Retrieving orchestral piece (orch’s) is difficult because
there is very small variation in the two closest playing, and
exacerbated by the particularly unreliable tempo estima-
tion. We compute the smallest dissimilarity measure be-
tween ground truth tempo trajectories of any pair of inter-
pretations. The smallest dissimilarity of orch-1 is about
2×10−3, solo-1 is 20×10−3, and duo-1 is 23×10−3. We
similarly observed that for orchestral piece, the smallest
dissimilarity is much smaller compared to that of cham-
ber (duo’s) or solo (solo’s). On the other hand, we observe
that the average MSE, as seen in Table 1, is substantially
greater for orchestral pieces than chamber or solo.

These results suggest that our system retrieves the de-
sired interpretation with robustness against minor errors in
conducting, as long as the average MSE is small enough to
differentiate the most similar pair of interpretations. The
similarity of interpretation is typically influenced by the
scale of orchestration, and the average MSE is influenced
by the complexity of the ensemble, and the degree to which
the interpretation deviates from the music score.

5. CONCLUSION
This paper presented Query-by-Conducting, an interface
for finding interpretations of a given piece of music. It of-

fers the listener an interactive experience of “conducting”
the global tempo to dynamically tailor the interpretation
played back to the user’s choice. It moreover presents the
listener with a ranking of interpretation based on how the
user conducted through the piece, offering the listener with
a list of interpretations whose tempi that the user might
like, without the hassle of listening through various inter-
pretations. The accuracy of tempo estimation method im-
proved as a result of considering the consistency of audio-
score alignment among different interpretations.

As future work, we would like to deal with aspects
of music interpretation other than the global tempo, such
as the local tempo deviation and emphasis of a particu-
lar melodic line. Integrating these aspects would further
enhance the system’s capability to retrieve the interpreta-
tion of choice. Furthermore, we would like to realize more
ways to visualize and interact with various aspects of mu-
sic interpretation, to allow a listener to further enjoy clas-
sical music.
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ABSTRACT

Improvisers are often keen to assess how their performance
practice stands up to an ideal: whether that ideal is of tech-
nical accuracy or instant composition of material meeting
complex harmonic constraints at speed. This paper reports
on the development of an interface for querying and navi-
gating a collection of recorded material for the purpose of
presenting information on musical similarity, and the ap-
plication of this interface to the investigation of a set of
recordings by jazz performers. We investigate the retrieval
performance of our tool, and in analysing the ‘hits’ and
particularly the ‘misses’, provide information suggesting a
change in one of the authors’ improvisation style.

1. INTRODUCTION

Query-by-Example systems for musical search offer the
promise of rich interaction for their users with collections
of music. The purpose of a search can be goal-driven or
exploratory, while the musical content being searched can
be highly focused (as in a curated collection in a sound
archive), heterogenous and largely known to the user (a
personal collection on a user’s personal music player) or
heterogenous and largely unknown (an online music ven-
dor’s catalogue). The first Query-by-Example systems [8,
16] stored their collections in MIDI format; they admitted
audio queries (hence the ‘Query-by-Humming’ term in the
Music Information Retrieval community), and one of the
technical hurdles in those systems was a sufficiently ac-
curate transcription of the hummed input – and a search
relevance filter that could account for error from imperfect
human humming as well as from imperfect transcription
algorithms. This mode of interacting with a collection of
MIDI-encoded music is available over the web at Musi-
pedia 1 .

However, for usable systems, Query-by-Example needs
to be augmented by some means of navigating the collec-

1 http://www.musipedia.org/
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tion; typically, that navigation mode is specialized to the
particular use case enviseaged (and details of the collection
being investigated); there exist numerous interfaces and vi-
sualisations of collections (such as [9,12,17,18]) and their
use for music discovery has been discussed in tutorial ses-
sions 2 .

Achieving intuitive navigation through collections re-
quires some kind of notion of similarity (of which there
are many kinds [2]); for systems using primarily content-
based information, this means that the audio features or
descriptors must encode not only identity but one or more
similarity relationships at some level of specificity. Viewed
from this perspective, systems based on audio features for
classifying and clustering musical tracks [10, 18] or seg-
ments [1] are Query-by-Example systems, just as are more
modern implementations of the original idea (e.g. [7]).

In our work, we are interested in both small-scale and
large-scale collections, and in particular at allowing the
user to search for and retrieve fragments of tracks (rather
than track-to-track or fragment-to-track matches); in prin-
ciple if given a 5-second audio snippet as a query, we con-
sider all similarly-sized segments in the database – up to
some reasonable granularity – as potential matches. This
means that collections of even a small number of tracks
have a large number of effective database entries to be
considered. Achieving fast search through large databases
of musical content has been considered in a few applica-
tions [14, 15], including the ability to search for specific
content within a track in a manner which can still be im-
plemented efficiently [3] and can be generalized [6].

In this paper, we describe a practical use-case for ex-
ploratorily searching for fragments of audio by similarity
within a small collection. In section 2, we describe in more
detail the use case in question; in section 3, we describe
how the technology we have developed can meet this need.
Our preliminary experiments are reported in section 4, and
we draw conclusions and suggest further work in section
5.

2. CASE STUDY

It is often the case that when amateur and semi-professional
musicians hear themselves play they cringe at just how

2 e.g. http://musicviz.googlepages.com/home
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far away they are from being like the professional heroes
that have influenced them. There is a sense of ‘I wish I
could sound a bit less like me and more like someone re-
ally good’. We propose to build a tool that provides a gen-
eral framework for the analysis of performance, allowing
performers to both self-analyse and also discover how they
relate to their influences.

Performers are often concerned with knowing if their
playing has improved in over a time period; whether they
can learn about their approach and technique from how
professional musicians play particular phrases; or whether
they play differently depending on the instrument, event,
ensemble, etc.

As such, we are interested in building a tool that en-
ables performing musicians to analyse certain performance
characteristics. We propose an iterative development cy-
cle where we increase the scope incrementally in terms of
what performance characteristics may be considered, the
range of media, the range of extractors, the type of searches
(point, track, catalogue) and the options which we make
available to a user in the interface. The planned function-
ality includes, but is not limited to, investigating the fol-
lowing queries:

1. How do performance characteristics of a musician
develop over time?

2. How does the performance context (e.g. home record-
ing, studio recording) affect performance character-
istics?

3. How does the ensemble (e.g. solo, duo, trio, big band)
affect performance characteristics?

4. How does the type of instrument (e.g. in the case
of piano, grand, upright, electric) affect performance
characteristics?

5. How do certain performance characteristics compare
with great musicians?

6. How do performance characteristics develop through
a single piece performance?

One of the authors is a reasonable jazz pianist (he has
received good reviews in the UK Guardian and Observer
newspapers), so we chose to focus on jazz piano perfor-
mance, with our ultimate goal as being able to ask the
question: ‘How much of a performer’s improvisation is
genuinely improvised, and how much is made from stock
patterns?’

Many jazz musicians can come up with phrases or ‘licks’
that work over chord changes but it is only the greats who
can actually approach improvisation as ‘instant composi-
tion’: where what they play is not only appropriate to the
sequence but an original passage of notes. The co-author
would ideally like to find out where the stock patterns arise
in their playing in order to remove them to free up space
for more creative improvisation.

3. TECHNOLOGY

3.1 Similarity Measurement

The necessary functionality for our application is the in-
sertion and storage of numerical audio feature information
extracted from tracks, and their subsequent searching for
similarity. These two aspects are illustrated in figure 1: in
the left panel, we schematically show a track which has
had d-dimensional audio features extracted for a number
of regions of audio. Subsequently, a user wishes to search
using a query of region length sl, so successive feature vec-
tors are concatenated (illustrated by the arrows in the left
panel) to arrive at shingled [4] feature vectors (right panel).
These shingled feature vectors are then compared against
the query by summing squared Euclidean distances, and a
retrieved list is assembled.

3.2 Interface

iAudioDB is an application developed for Mac OSX in
Objective C which provides an intuitive user interface for
the creation and exploration of feature databases. As such,
it binds directly to the audioDB libraries for creation and
querying, and employs Sonic Annotator to extract features
from files provided by the user.

Usage of iAudioDB follows a straight-forward process,
with the interface providing intuitive abstractions to pa-
rameters where possible. The first step is to create the
database itself, which is achieved via the interface in Fig-
ure 2. The user is prompted for the feature they wish to
extract, which corresponds directly to the VAMP plugin 3

which is used with Sonic Annotator, and then a selection
of parameters which are database-specific. The first two,
‘Max Tracks’ and ‘Max Length’ correspond to the number
of audio files the user expects to import into the database
and the maximum length in seconds of those tracks. The
hop size and window size, equivalent to the step and block
size detailed above, are used in conjunction with these val-
ues to determine the initial size (in bytes) of the database.
Furthermore, the chosen parameters are stored alongside
the database to remove the need to enter the settings at the
import stage.

Once created, the user imports any audio files, both
ground truth and queries. Aside from a standard file di-
alogue, there is no interface for this, as all parameters re-
quired are obtained at creation time. Multiple files may be
selected, and progress is indicated as files are imported.
At this stage, Sonic Annotator extracts feature informa-
tion as n3-serialized RDF, which is then imported into the
database. Future increments of the software will see it act-
ing as a VAMP host, allowing the use of extractors via a na-
tive library. The filenames of the audio files are preserved
alongside the unique keys of the tracks in the audioDB in-
stance, thus easing the playback process.

The query process again has an intuitive user interface,
shown in Figure 3. The user selects the audio file they wish
to use as the query, and from this the length is determined.
This length is displayed in the Query Length fields in units

3 http://vamp-plugins.org/
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d

d× sl

n− sl + 1

Figure 1. Illustration of the construction of concatenated or shingled feature vectors for our search. Note that while in
principle this construction can be done for features over audio regions with temporally-varying extent and step (adjusted to
the local tempo), in this paper the step size and block size were kept constant.

Figure 2. Creating a new database in iAudioDB. The fea-
ture extractor is chosen on the left-hand side, while param-
eters related to the database and the extractor are on the
right.

of Vectors and Seconds, and both of these fields may be
customized by the user to vary the length of the query. The
fields are dynamically updated, so a change to the seconds
value reflects instantly in the vectors value. If desired, the
length may also be reset to the full duration of the query
file. Finally, the user may opt to locate multiple matches
of a query within the corpus, or to only determine the best
match per track.

Once queried, results are displayed in the main appli-
cation window (see Figure 4). By default, these are sorted
by ascending distance values, but this may be customized
by clicking the column headers. The other columns are,
from left to right, a visual indicator of the closeness of
the match (though this varies depending on extractor, so
should not be used for comparison), the unique key within
the audioDB instance, and the position in seconds at which
the query occurs in the track. Results may be played in iso-
lation from the match position, or synchronized with the
original query.

Figure 3. Querying a database in iAudioDB. The query
length is generated dynamically from the query audio file,
and may then be customized by the user.

Figure 4. Results generated from an iAudioDB query.
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4. FEATURE SPACE INVESTIGATION

The first step in this investigation was to turn our attention
to one track and to focus on a single element of the tune.
This would at least give us some ground truths whereby we
could start to map out a method for getting to our ultimate
goal. The track we chose was Looking Up, written by the
late great jazz pianist Michel Petrucciani. Specifically, we
chose the following performance scenarios that would in
time enable us to look at all the issues of our case study:

1. The co-author at home using the internal microphone
of a laptop recorded three versions of Looking Up
solo on a Kawai grand piano in an informal setting.
These were stored as stereo 44100Hz WAV files.

2. The co-author again, in the same session, but record-
ing three versions of two other tracks – Ambleside
Days by John Taylor and My Romance by Rogers
and Hart. (The significance of recording these will
become clear later.) As above, these were stored as
44100Hz WAV files.

3. The co-author again, but recorded in a studio con-
text, in trio ensemble and on a Technics electric pi-
ano ten years previously.

4. The composer of Looking Up and an influence of the
co-author, Michel Petrucciani recorded in a concert
on a solo grand piano.

5. Michel Petrucciani again but in a band context on a
grand piano in a live setting.

6. Another well-regarded pianist and influence of the
co-author, Christian Jacob in a trio ensemble, a record-
ing studio with a grand piano.

To begin our iterative development cycle for this appli-
cation, we focus on one specific phrase in the tune Looking
Up (the very first phrase, an 8-note Mixolydian scale in E).
This run appears several times in the piece, though the fre-
quency and positions vary on a per-recording basis. The
co-author recorded this phrase five times in the same set-
ting as 1 and 2 above to build a library of different queries.
These query tracks were played at an even tempo, with no
missing or muffled notes.

From this set of tracks three feature databases were built,
all with a step size of 2048 samples (0.046s) and a block
size of 16384 (0.372s):

1. An MFCC feature database with 20 cepstral coeffi-
cients.

2. A constant-Q feature database with 12 bins per oc-
tave, a minimum frequency of 65.4064Hz, and a max-
imum frequency of 1046.5Hz.

3. A chromagram database with the same bins per oc-
tave and frequency range as the constant-Q database,
and a sum of squares accumulation method.
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LU1

15 x
37
59 x
86 x
162 x x

LU2

15 x x
37
59 x
107 x x

LU3

16 x x x
38
59
80 x

Table 1. Locations and comments of fragments corre-
sponding to our queries in the three single-take recordings
through a laptop microphone.

The 3 Looking Up tracks were examined to locate the
positions of the queried tune and thence act as a ground
truth. The resultant locations and notes on these instances
are shown in Table 1.

Each feature database was then queried with each of
the 5 recorded queries, with a maximum length of 20 vec-
tors (1.3s). The recordings of My Romance and Amble-
side Days were used as a boundary, with results examined
up to the first match of a track in this set, and duplicated
results were discarded. From this set, it was possible to
determine those which matched the segments in Table 1
and those which did not. Note that with queries of this
length, and with the audio features extracted every 2048
audio samples, there are over 50,000 candidate matching
points in our 9-track database; the fact that we are search-
ing for fragments of track rather than whole tracks enlarges
the problem.

The mean precision and recall values from these queries
can be seen in Table 2, and it is immediately apparent
that chromagram features produce the most useful results.
While the precision is not as high as that of the constant-Q
database the recall is significantly improved, and thus of
most benefit to this case study, where the user is looking
for a variety of similar matches rather than a small number
of exact matches.

Within the results, some notable differences between
feature performance were present. Riff instances with muf-
fled notes (15s, 59s, and 86s in Looking Up 1) were located
in 73% of queries using the chromagram database, 47%
using constant-Q, and 20% using MFCCs. Instances with
rhythm alterations (107s in Looking Up 2 and 16s in Look-
ing Up 3) were found in 100% of queries using the chroma-
gram database, 50% using constant-Q (matching the Look-
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Feature Precision Recall F-Score
MFCC 0.89 0.29 0.44
Constant-Q 1.00 0.57 0.73
Chromagram 0.97 0.83 0.89

Table 2. Average precision, recall, and balanced F-score
for our queries against recordings in the same recording
environment.

ing Up 2 instance throughout), and none using MFCCs.
Finally, the chromagram and constant-Q databases were
more resilient to missing notes, matching 75% of the cases
in the former and 40% in the latter, with MFCC matching
10%. Interestingly, the riff at 162s in Looking Up 1 was
entirely unmatched, possibly due to the number of notes
missing from the melody.

As a second case, 4 performances of Looking Up by
professional jazz pianists were added to the databases: a
trio studio recording (MDI), a solo piano studio recording
(CJ), a live band recording (MP(B)), and a live solo pi-
ano recording of the same (MP(S)). The ground truth for
this collection is shown in Table 3, and the precision/recall
means for the MFCC and chromagram databases in Table
4.

As before, chromagrams provided the most useful re-
sults, with a comparatively high mean precision and re-
call. The CJ recording obtained a mean recall of 1.00
and a mean precision of 0.72, while the MDI recording
resulted in a mean recall of 0.43 and a mean precision of
1.00. MP(B) and MP(S) both obtained low recall (0.27
and 0.32 respectively) and good precision (1.00 and 0.78
respectively). Both MP(B) and MP(S) were recorded in
a live setting, which may suggest the distance from the
query, but notably the queries which didn’t match often oc-
curred in locations where the sustain pedal was employed.
The CJ recording, while in a studio, was classically precise
in terms of note velocity, timing, and consistency, with no
sustain pedal employed during the riff instances. The MDI
recording only missed matches across all queries when the
sustain pedal was used. Further investigation will examine
this characteristic more closely.

5. CONCLUSIONS

Our study, while still at a preliminary stage, is promising:
we can achieve good precision and recall for fragments of
audio, both for queries recorded under the same conditions
as the test database and for queries recorded on consumer
hardware against a database of professional studio record-
ings.

Treated as a pure retrieval task, recall performance is
perhaps not as good as might be desired; our observation
is that our audio features are not sufficiently robust to the
kinds of difference that arise in practice between the query
and the matches desired by our userbase. Enhancements
in this area would be to incorporate more aspects of de-
sired invariance [11] into our feature, such as for exam-
ple: constant-Q translations or chroma rotations to model
transposition invariance; and beat-based analysis windows
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MDI

9 x
37 x
64 x

258
285 x
310

CJ

15
40
66

250
276
300

MP(B)

17 x
43 x
70 x

342 x x
368 x x
394 x x

MP(S)

32 x x
65 x x
92 x x

202 x x
227 x

Table 3. Locations and comments of fragments corre-
sponding to our queries in the three professional-quality
recordings.

Feature Precision Recall F-Score
MFCC 0.77 0.04 0.08
Chromagram 0.80 0.51 0.62

Table 4. Average precision, recall, and balanced F-score
for our queries against the professional, studio recordings.
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to incorporate tempo invariance. Because we desire to al-
low our users to search large databases of audio as well
as small ones, we wish to avoid providing invariants using
methods scaling worse than linearly with the database size
(such as dynamic time warping [14, Chap. 4] for tempo
invariance).

However, these invariants are not desired for all appli-
cations of our searching technology; in particular, when
exploring a corpus for changes in stylistic aspects of per-
formance, it is important for sufficiently different rendi-
tions not to match a query. The success of our initial ex-
periment in this respect is the observation that one appar-
ently robust characteristic of the ground truth matches in
the professionally-recorded corpus that are not found by
our current features is that they are executed in the record-
ings with the sustain pedal on (which has previously been
identified as a problem in other MIR tasks [5,10]); design-
ing a feature to cope with this would be very desirable,
but the distinction between the performance practice with
sustain and without was new information to our co-author
pianist.

We expect to go through several more design-and-test
iterations for our implementation of a user interface; known
currently-missing features include: a quasi-live interface
for rapid, experimental search; and a means for navigation
between regions [1,13]. However, we believe that what we
have already developed is good enough for a sophisticated
user to be able to explore his own performance practice, or
for a composer to use as a thesaurus. The software will be
available to download from the OMRAS website 4 shortly
after publication, and we welcome feedback from users.
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ABSTRACT

In this paper, we investigate the problem of real-time poly-
phonic music transcription by employing non-negative ma-
trix factorization techniques and the β-divergence as a cost
function. We consider real-world setups where the mu-
sic signal arrives incrementally to the system and is tran-
scribed as it unfolds in time. The proposed transcription
system is addressed with a modified non-negative matrix
factorization scheme, called non-negative decomposition,
where the incoming signal is projected onto a fixed basis of
templates learned off-line prior to the decomposition. We
discuss the use of non-negative matrix factorization with
the β-divergence to achieve the real-time decomposition.
The proposed system is evaluated on the specific task of
piano music transcription and the results show that it can
outperform several state-of-the-art off-line approaches.

1. INTRODUCTION

The task of music transcription consists in converting a
raw music signal into a symbolic representation such as a
score. Considering polyphonic signals, this task is closely
related to the problem of multiple-pitch estimation which
has been largely investigated for music as well as speech,
and for which a wide variety of methods have been pro-
posed [8]. Non-negative matrix factorization has already
been used in this context, with off-line approaches [1, 3,
20, 22–24] as well as on-line approaches [4, 6, 7, 17, 21].

Generally speaking, non-negative matrix factorization
(NMF) is a technique for data analysis where the observed
data are supposed to be non-negative [16]. The main phi-
losophy of NMF is to build up these observations in a con-
structive additive manner, what is particularly interesting
when negative values cannot be interpreted (e.g. pixel in-
tensity, word occurrence, magnitude spectrum).

In this paper, we employ NMF techniques to develop a
real-time system for polyphonic music transcription. This
system is thought as a front-end for musical interactions in
live performances. Among applications, we are interested
in computer-assisted improvisation for instruments such as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

the piano. We do not discuss such applications in the paper
but rather concentrate on the system for polyphonic music
transcription and invite the curious reader to visit the com-
panion website 1 for complementary information and ad-
ditional resources. The proposed system is addressed with
an NMF scheme called non-negative decomposition where
the signal is projected in real-time onto a basis of note tem-
plates learned off-line prior to the decomposition.

In this context, the price to pay for the simplicity of
the standard NMF is the overuse of templates to construct
the incoming signal, resulting in note insertions and sub-
stitutions such as octave and harmonic errors. In [6, 7],
the issue has been tackled with the standard Euclidean cost
by introduction of a sparsity constraint similar to [14]. We
here investigate the use of more complex costs by using the
β-divergence. This is in contrast to previous systems for
real-time audio decomposition which have either consid-
ered the Euclidean distance or the Kullback-Leibler diver-
gence. NMF with the β-divergence has recently proved its
relevancy for off-line applications in speech analysis [18],
music analysis [11] and music transcription [3, 23]. We
adapt these approaches to a real-time setup and propose
a tailored multiplicative update to compute the decompo-
sition. We also give intuition in understanding how the
β-divergence helps to improve transcription. The provided
evaluation show that the proposed system can outperform
several off-line algorithms at the state-of-the-art.

The paper is organized as follows. In Section 2, we
introduce the related background on NMF techniques. In
Section 3, we focus on NMF with the β-divergence, pro-
vide a multiplicative update tailored to real-time decompo-
sition, and discuss the relevancy of the β-divergence for the
decomposition of polyphonic music signals. In Section 4,
we depict the general architecture of the real-time system
proposed for polyphonic music transcription, and detail the
two modules respectively used for off-line learning of note
templates and for on-line decomposition of music signals.
In Section 5, we perform evaluations of the system for the
specific task of piano music transcription.

In the sequel, uppercase bold letters denote matrices,
lowercase bold letters denote column vectors, lowercase
plain letters denote scalars. R+ and R++ denote respec-
tively the sets of non-negative and of positive scalars. The
element-wise multiplication and division between two ma-
trices A and B are denoted respectively by A⊗B and A

B .
The element-wise power p of A is denoted by A.p.

1 http://imtr.ircam.fr/imtr/Realtime_Transcription
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2. RELATED BACKGROUND

This section introduces the NMF model, the standard NMF
problem, and the popular multiplicative updates algorithm
used to solve it. We then present the relevant literature in
sound recognition with NMF.

2.1 NMF model

The NMF model is a low-rank approximation for unsu-
pervised multivariate data analysis. Given an n ×m non-
negative matrix V and a positive integer r < min(n,m),
NMF tries to factorize V into an n×r non-negative matrix
W and an r ×m non-negative matrix H such that:

V ≈WH (1)

In this model, the multivariate data are stacked into V,
whose columns represent the different observations, and
whose rows represent the different variables. Each column
vj of V can be expressed as vj ≈ Whj =

∑
i hijwi,

where wi and hj are respectively the i-th column of W
and the j-th column of H. The columns of W then form
a basis and each column of H is the decomposition of the
corresponding column of V into this basis.

2.2 Standard problem and multiplicative updates

The standard NMF model of Equation 1 provides an ap-
proximate factorization WH of V. The aim is then to
find the factorization which optimizes a given goodness-
of-fit measure called cost function. In the standard for-
mulation, the Euclidean distance is used, and the NMF
problem amounts to minimizing the following cost func-
tion subject to non-negativity of both W and H:

1
2
‖V −WH‖2F =

1
2

∑
j

‖vj −Whj‖22 (2)

For this particular cost function, factors W and H can
be computed with the popular multiplicative updates intro-
duced in [16]. These updates are derived from a gradient
descent scheme with judiciously chosen steps, as follows:

H← H⊗ WTV
WTWH

W←W ⊗ VHT

WHHT
(3)

The updates are applied in turn until convergence, and en-
sure both non-negativity and decreasing of the cost, but not
necessarily local optimality of factors W and H.

A flourishing literature exists about extensions to the
standard NMF problem and their algorithms [5]. These ex-
tensions can be thought of in terms of modified cost func-
tions (e.g. using divergences or adding penalty terms), of
modified constraints (e.g. imposing sparsity), and of mod-
ified models (e.g. using tensors). For example, the cost
function defined in Equation 2 is often replaced with the
Kullback-Leibler divergence for which specific multiplica-
tive updates have been derived [16].

2.3 Applications in sound recognition

NMF algorithms have been applied to various problems in
vision, sound analysis, biomedical data analysis and text
classification among others [5]. In the context of sound
analysis, the matrix V is in general a time-frequency rep-
resentation of the sound to analyze. The rows and columns
represent respectively different frequency bins and succes-
sive time-frames. The factorization vj ≈

∑
i hijwi can

then be interpreted as follows: each basis vector wi con-
tains a spectral template, and the decomposition coeffi-
cients hij represent the activations of the i-th template wi

at the j-th time-frame.
NMF has already been used in the context of polyphonic

music transcription (e.g. see [1, 22]). Several problem-
dependent extensions have been developed to this end such
as a source-filter model [24], an harmonic constraint [20],
an harmonic model with temporal smoothness [3], or an
harmonic model with spectral smoothness [23]. These ap-
proaches rely in general on the off-line nature of NMF, but
some authors have used NMF in an on-line setup.

A real-time system to identify the presence and deter-
mine the pitch of one or more voices is proposed in [21].
This system is also adapted for sight-reading evaluation of
solo instrument in [4]. Concerning automatic transcrip-
tion, a similar system is used in [17] for transcription of
polyphonic music, and in [19] for drum transcription. A
real-time system for polyphonic music transcription with
sparsity considerations is proposed in [6]. The approach
is further developed in [7] for real-time coupled multiple-
pitch and multiple-instrument recognition. Yet, all these
approaches are based on NMF with the Euclidean distance
or the Kullback-Leibler divergence. We discuss the use of
the more general β-divergence as a cost function and its
relevancy for decomposition of music signals in Section 3.

3. NON-NEGATIVE DECOMPOSITION WITH
THE BETA-DIVERGENCE

In this section, we define the β-divergence, give some of its
properties, and review its use as a cost function for NMF.
We finally formulate the non-negative decomposition prob-
lem with the β-divergence and give multiplicative updates
tailored to real-time for solving it.

3.1 Definition and properties of the beta-divergence

The β-divergences form a parametric family of distortion
functions [9]. For any β ∈ R and any points x, y ∈ R++,
the β-divergence from x to y is defined as follows:

dβ(x|y) =
1

β(β − 1)
(
xβ + (β − 1)yβ − βxyβ−1

)
(4)

As special cases when β = 0 and β = 1, taking the limits
in the above definition leads respectively to the well-known
Itakura-Saito and Kullback-Leibler divergences:

dβ=0(x|y) = dIS(x|y) =
x

y
− log

x

y
− 1 (5)

dβ=1(x|y) = dKL(x|y) = x log
x

y
+ y − x (6)
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For β = 2, the β-divergence specializes to the widely used
half squared Euclidean distance:

dβ=2(x|y) = dE(x|y) =
1
2
(x− y)2 (7)

Concerning their properties, all β-divergences are non-
negative and vanish iff x = y. However, they are not nec-
essary distances in the strict terms since they are not sym-
metric and do not satisfy the triangle inequality in general.
A property of the β-divergences relevant to the present
work is that for any scaling factor λ ∈ R++ we have:

dβ(λx|λy) = λβdβ(x|y) (8)

We discuss further the interest of this scaling property for
decomposition of polyphonic music signals in Section 3.3.

3.2 NMF and the beta-divergence

The β-divergence was first used with NMF to interpolate
between the Euclidean distance and the Kullback-Leibler
divergence [15]. Starting with the scalar divergence in
Equation 4, a matrix divergence can be constructed as a
separable divergence, i.e. by summing the element-wise
divergences. The NMF problem with the β-divergence
then amounts to minimizing the following cost function
subject to non-negativity of both W and H:

Dβ(V|WH) =
∑
i, j

dβ(vij | [WH]ij) (9)

For β = 2, this cost function specializes to the cost defined
in Equation 2 for standard NMF.

As for standard NMF, several algorithms including mul-
tiplicative updates have been derived for NMF with the
β-divergence and its extensions [5, 15]. The β-divergence
has also proved its relevancy as a cost function for audio
off-line applications in speech analysis [18], music analy-
sis [11] and music transcription [3, 23].

3.3 Problem formulation and multiplicative update

We now formulate the problem of non-negative decompo-
sition with the β-divergence. We assume that W is a fixed
dictionary of note templates onto which we seek to decom-
pose the incoming signal v as v ≈ Wh. The problem is
therefore equivalent to minimizing the following cost func-
tion subject to non-negativity of h:

Dβ(v|Wh) =
∑
i

dβ(vi | [Wh]i) (10)

To solve this problem, we update h iteratively by using
a vector version of the corresponding multiplicative update
proposed in the literature [5, 15]. As W is fixed, we never
apply its respective update. The algorithm thus amounts to
repeating the following update until convergence:

h← h⊗
WT

(
(Wh).β−2 ⊗ v

)
WT (Wh).β−1

(11)

This scheme ensures non-negativity of h, but not neces-
sarily local optimality. Unfortunately, no proof has been

found yet to show that the cost function is non-increasing
under this update for a general parameter β, even if it has
been observed in practice [11]. However, even if such theo-
retical issues need to be investigated further, the simplicity
of this scheme makes it suitable for real-time applications
and gives good results in practice.

Concerning implementation, we can take advantage of
W being fixed to employ a multiplicative update tailored
to real-time decomposition. Indeed, after some matrix ma-
nipulations, we can rewrite the updates as follows:

h← h⊗
(
W ⊗ (veT )

)T (Wh).β−2

WT (Wh).β−1
(12)

where e is a vector full of ones. This helps to reduce
the computational cost of the update scheme as the matrix(
W ⊗ (veT )

)T
needs only to be computed once.

The scaling property in Equation 8 may give an insight
in understanding the relevancy of the β-divergence in our
context. For β = 0, the Itakura-Saito divergence is the
only β-divergence to be scale-invariant as it was remarked
in [11]. This means that the corresponding NMF problem
gives the same relative weight to all coefficients, and thus
penalizes equally a bad fit of factorization for small and
large coefficients. Considering music signals, this amounts
to giving the same importance to high-energy and to low-
energy frequency components. When β > 0, more em-
phasis is put on the frequency components of higher en-
ergy, and the emphasis augments with β. When β < 0,
the effect is the converse. In our context of music decom-
position, we try to reconstruct an incoming music signal
by addition of note templates. In order to avoid common
octave and harmonic errors, a good reconstruction would
have to find a compromise between focusing on the funda-
mental frequency, the first partials and higher partials. The
parameter β can thus help to control this trade-off.

4. GENERAL ARCHITECTURE OF THE SYSTEM

In this section, we present the real-time system proposed
for polyphonic music transcription. The general architec-
ture is shown schematically in Figure 1. The right side of
the figure represents the music signal arriving in real-time,
and its decomposition onto notes whose descriptions are
provided a priori to the system as templates. These tem-
plates are learned off-line, as shown on the left side of the
figure, and constitute the dictionary used during real-time
decomposition. We describe the two modules hereafter.

4.1 Note template learning

The learning module aims at building a dictionary W of
note templates onto which the polyphonic music signal is
projected during the real-time decomposition phase.

In the present work, we use a simple rank-one NMF
with the standard cost function as a learning scheme. We
suppose that the user has access to isolated note samples of
the instruments to transcribe, from which the system learns
characteristic templates. The whole note sample k is first
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Non-negative matrix factorization
V(k) ≈ w(k)h(k)

Non-negative decomposition
vj ≈Whj

Note templates Note activations

V(k)

hj

vj

W

w(k)

Short-time sound representation Short-time sound representation

Note template learning (off-line) Music signal decomposition (on-line)

Figure 1. Schematic view of the general architecture.

processed in a short-time sound representation supposed to
be non-negative and approximatively additive (e.g. a short-
time magnitude spectrum). The representations are stacked
in a matrix V(k) where each column v(k)

j is the sound rep-
resentation of the j-th time-frame. We then solve standard
NMF with V(k) and a rank of factorization r = 1, us-
ing the multiplicative updates in Equation 3. This learning
scheme simply gives a template w(k) for each note sample
(the information in the row vector h(k) is discarded).

4.2 Music signal decomposition

Having learned the templates, we stack them in columns
to form the dictionary W. The problem of real-time tran-
scription then amounts to projecting the incoming music
signal vj onto W, where vj share the same representa-
tional front-end as the note templates. The problem is thus
equivalent to a non-negative decomposition vj ≈ Whj
where W is kept fixed and only hj is learned. The learned
vectors hj would then provide successive activations of the
different notes in the music signal. Following the discus-
sion in Section 3, we learn the vectors hj by employing
the β-divergence as a cost function and the multiplicative
update tailored to real-time decomposition in Equation 11.

As such, the system reports only a frame-level activity
of the notes. Some post-processing is thus needed to ex-
tract more information about the eventual presence of the
notes, and provide a symbolic representation of the music
signal for transcription. This post-processing potentially
includes activation thresholding, onset detection, temporal
modeling, etc. It is however not thoroughly discussed in
this paper where we use a simple threshold-based detec-
tion followed by a minimum duration pruning.

5. EVALUATION AND RESULTS

In this section, we evaluate the system on polyphonic tran-
scription of piano music. We provide a subjective evalu-
ation with musical excerpts synthesized from MIDI refer-
ences. We also perform an objective evaluation with a real
piano music database and standard evaluation metrics.

5.1 Subjective evaluation

As sample examples, we transcribed two musical excerpts
synthesized from MIDI references with real piano samples
from the Real World Computing (RWC) database [12].

For the non-negative decomposition, β was set to 0.5
since this value was shown optimal for music transcrip-
tion in [23] and provided good results in our tests. The
threshold for detection was set to 2 and no minimum du-
ration pruning was applied. For the dictionary, one note
template was learned and max-normalized for each of the
88 notes of the piano using corresponding samples taken
from RWC. We used a simple short-time magnitude spec-
trum representation, with a frame size of 50 ms leading
to 630 samples at a sampling rate of 12600 Hz, and com-
puted with a zero-padded Fourier transform of 1024 bins.
The frames were windowed with a Hamming function, and
the hopsize was set to 25 ms for template learning and re-
fined to 10 ms for decomposition. The decomposition was
computed in real-time simulation under MATLAB on a
2.40 GHz laptop with 4.00 Go of RAM, and was about
three times faster than real-time.

The results of the decomposition are shown in Figure 2.
Figures 2(a) and 2(b) depict the piano-roll representations
of the two piano excerpts. The ground-truth references
are represented with rectangles and the transcriptions with
black dots. Overall, this shows that the system is able
to match reliably the note templates to the music signals.
During note attacks, more templates are used due to tran-
sients but some post-processing such as minimum duration
pruning would help to remove these errors. We also remark
a tendency to shorten sustained notes which may be due to
a different spectral content during note releases.

5.2 Objective evaluation

For a more rigorous evaluation, we considered the stan-
dards of the Music Information Retrieval Evaluation eX-
change (MIREX) [2] and focused on two subtasks: (1) a
frame-level estimation of the present events in terms of
musical pitch, and (2) a note-level tracking of the present
notes in terms of musical pitch, onset and offset times.

For the evaluation dataset, we chose the MIDI-Aligned
Piano Sounds (MAPS) database [10]. MAPS contains real
recordings of piano pieces with ground-truth references.
We selected 25 pieces and truncated each of them to 30 s.

Concerning parameters, β was set to 0.5. The thresh-
olds for detection were set empirically to 1 and 2 for the
frame and note levels respectively. The minimum dura-
tion for pruning was set to 50 ms. The templates were
learned from MAPS with the same representation front-
end as above. This algorithm is referenced by BND.

In addition, we tested the system with the standard Eu-
clidean decomposition algorithm referenced by END, and
with the sparse algorithm of [14] with projection onto the
cone of sparsity s = 0.9. For these two algorithms, the
detection thresholds were set to 2 and 4 for the frame and
note levels respectively. To compare results, we also per-
formed the evaluation for two off-line systems at the state-
of-the-art: one based on NMF but with an harmonic model
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(a) 1st movement, Pavane de la Belle au bois dormant.
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(b) 4th movement, Les entretiens de la Belle et de la Bête.

Figure 2. Transcription of two piano excerpts from Ma
mère l’Oye, Cinq pièces enfantines pour piano à quatre
mains (1908-1910), Maurice Ravel (1875-1937).

and spectral smoothness [23], and another one based on
a sinusoidal analysis with a candidate selection exploiting
spectral features [25].

We report the evaluation results per algorithm in Ta-
bles 1 and 2 at the frame and note levels respectively. Stan-
dard evaluation metrics from the MIREX are used as de-
scribed in [2]: precision P , recall R, F -measure F , ac-
curacy A, total error Etot, substitution error Esubs, missed
error Emiss, false alarm error Efa, mean overlap ratioM.
At the note level, the subscripts 1 and 2 represent respec-
tively the onset-based and the onset/offset-based results.

Overall, the results show that the proposed real-time
system performs comparably to the state-of-the-art off-line
algorithms of [23,25]. Using the β-divergence, the system
BND even outperforms the other algorithms. The sparse
algorithm of [14] reduces insertions and substitutions, but
augments the number of missed notes so that it actually
does not perform better than the standard scheme END.
The standard Euclidean cost also shows its limits for tran-
scription where more complex costs with the β-divergence
give better results. We finally remark that the mean over-
lap ratio scores corroborate the observation that sustained
notes tend to be shortened.

Alg. P R F A Etot Esubs Emiss Efa

BND 63.9 67.3 65.5 48.7 58.9 11.9 20.8 26.2

END 55.3 58.6 56.9 39.8 71.4 17.3 24.1 29.9
[14] 58.5 55.2 56.8 39.7 67.1 16.8 28.0 22.3

[23] 61.0 66.7 63.7 46.8 65.6 10.4 22.9 32.3
[25] 60.0 70.8 65.0 48.1 60.0 16.3 12.8 30.8

Table 1. Frame-level transcription results per algorithm.

Alg. P1 R1 F1 A1 M1 P2 R2 F2 A2

BND 75.5 67.1 71.1 55.1 56.7 30.0 26.6 28.2 16.4

END 57.9 58.2 58.1 40.9 53.9 21.4 21.6 21.5 12.0
[14] 57.2 56.3 56.8 39.6 54.1 21.0 20.7 20.8 11.6

[23] 58.1 73.7 65.0 48.1 57.7 20.7 26.3 23.2 13.1
[25] 33.0 58.8 42.3 26.8 55.1 11.6 20.7 14.9 8.0

Table 2. Note-level transcription results per algorithm.

6. CONCLUSION

This paper addressed the problem of real-time polyphonic
music transcription by employing NMF techniques. We
discussed the use of the β-divergence as a cost function
for non-negative decomposition tailored to real-time tran-
scription. The obtained results show that the proposed
system can outperform state-of-the-art off-line approaches,
and are encouraging for further development.

A problem in our approach is that templates are inher-
ently considered as stationary. One way to tackle this is
to consider representations that capture variability over a
short time-span as in [7]. We could also combine NMF
with a state representation and use templates for each state.

The template learning method can be further improved
by using extended NMF problems and algorithms to learn
one or more templates for each note. Such issues have not
been developed but interesting perspectives include learn-
ing sparse or harmonic templates. Using the β-divergence
during template learning in our experience did not improve
the results. Further considerations are needed on this line.

In a live performance setup such as ours, the templates
can be directly learned from the corresponding instrument.
Yet in other setups, the issue of generalization must be
carefully considered and will be discussed in future work.
We think of considering adaptive templates by adapting an
approach proposed in [13] to real-time decomposition.

We would like also to improve the robustness against
noise, by keeping information from the activations during
template learning, or by using noise templates as in [7].
In addition, we want to develop more elaborate sparsity
controls than in [6, 7, 14]. In our approach, sparsity is
controlled implicitly during decomposition. Yet in some
applications, specially for complex problems such as audi-
tory scene analysis, controlling explicitly sparsity becomes
crucial. A forthcoming paper will address this issue.

Last but not least, the proposed system is currently un-
der development for the Max/MSP real-time computer mu-
sic environment and will be soon available for free down-
load on the companion website.
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[20] S. A. Raczyński, N. Ono, and S. Sagayama. Harmonic
nonnegative matrix approximation for multipitch anal-
ysis of musical sounds. In Proc. of ASJ Autumn Meet-
ing, pages 827–830, September 2007.

[21] F. Sha and L. K. Saul. Real-time pitch determination
of one or more voices by nonnegative matrix factoriza-
tion. In Proc. of NIPS 2004, volume 17, pages 1233–
1240, Cambridge, MA, USA, 2005.

[22] P. Smaragdis and J. C. Brown. Non-negative matrix
factorization for polyphonic music transcription. In
Proc. of WASPAA 2003, pages 177–180, New Paltz,
NY, USA, October 2003.

[23] E. Vincent, N. Bertin, and R. Badeau. Adaptive har-
monic spectral decomposition for multiple pitch esti-
mation. IEEE Transactions on Audio, Speech and Lan-
guage Processing, 18(3), March 2010.

[24] T. Virtanen and A. Klapuri. Analysis of polyphonic au-
dio using source-filter model and non-negative matrix
factorization. In Proc. of NIPS Workshop AMAC 2006,
2006.

[25] C. Yeh. Multiple fundamental frequency estimation of
polyphonic recordings. PhD thesis, Université Pierre et
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ABSTRACT 

In collections of recordings of classical music, it is 
normal to find multiple performances, usually by 
different artists, of the same pieces of music. While there 
may be differences in many dimensions of musical 
similarity, such as timbre, pitch or structural detail, the 
underlying musical content is essentially and 
recognizably the same. The degree of divergence is 
generally less than that found between ‘cover songs’ in 
the domain of popular music, and much less than in  
typical performances of jazz standards. MIR methods, 
based around variants of the chroma representation, can 
be useful in tasks such as work identification especially 
where disco/bibliographical metadata is absent or 
incomplete as well as for access, curation and 
management of collections. We describe some initial 
experiments in work-recognition on a test-collection 
comprising c. 2000 digital transfers of historical 
recordings, and show that the use of NNLS chroma, a 
new, musically-informed chroma feature, dramatically 
improves recognition.  

1. INTRODUCTION 

As was pointed out by Richard Smiraglia in a paper at 
ISMIR 2001, “musical works (as opposed to musical 
documents, such as scores or recordings of musical 
works) form a key entity for music information retrieval. 
… However, in the [general] information retrieval 
domain, the work, as opposed to the document, has only 
recently received focused attention.” [1] This largely 
remains true today; despite a steady advance in content-
based MIR techniques, we have hardly begun to realize 
the potential power of using them to extract higher-level 
musical knowledge corresponding to what is embedded in 
bibliographical metadata, hitherto the exclusive domain 
of music-librarianship. In this paper we use the term 
‘work’ simply to refer to the musical composition as 
represented by the notes in a musical score (though we 
acknowledge that the concept is much more complex than 
this naïve definition assumes). The importance of the 
work concept in classical music becomes immediately 

apparent when one is confronted with the kind of 
confused or inaccurate metadata that often results from 
the use of online CD-recognition systems which rely on 
the ID3 tagging scheme [2] used for identifying mp3 
tracks, which is rarely applied correctly to classical 
music. Further problems arise when a track becomes 
isolated from its original media (e.g. by digital copying or 
‘ripping’ from a CD). The situation is even more 
problematic when works are segmented differently in 
different recorded manifestations: there is, for example, 
no standard way to divide up the continuous music of an 
opera into CD tracks; although there exist musicological 
conventions about the navigation through numbered acts 
and scenes, even these can break down when, for 
example, it is not clear from the score whether an 
introductory recitative forms part of an aria or forms an 
independent number.  

In the controlled environment of the digital music 
library these issues can be addressed by adopting 
cataloguing standards such as FRBR [3], which deals 
comprehensively with the musical work concept and its 
various manifestations in physical and recorded form. 
The correct identification of classical works (for example, 
on uncatalogued archive tapes), or fragments from them 
(as frequently encountered on movie or advertisement 
sound-tracks) remains a time-consuming task demanding 
considerable expertise. The solution to some of these 
problems may lie in a system built around content-based 
work-recognition, operating over the internet on well-
documented ‘authority’ collections of recorded works 
whose metadata can be trusted. 

For much of the mainstream classical repertory, 
however, the work concept is fairly straightforward. The 
collection  investigated here can be claimed to be fairly 
representative of the taste of classical-music record 
buyers in the years before the Second World War. This 
paper deals with the particular case of historical 
recordings of classical music, much of which is still in 
the mainstream repertory, but in which the integrity of the 
work may be compromised by the restrictions of the 
recording process itself. 

Music recorded before about 1960 almost exclusively 
exists in the form of 78-rpm gramophone recordings. 
Many of these, by famous artists from Caruso to Glenn 
Miller, are available in modern commercial transfers, 
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often painstakingly enhanced using a variety of digital 
technologies.2 But there remains a vast heritage of 
recorded music performed by less well-known artists that 
is unlikely ever to prompt the investment necessary to 
make commercial release viable. Digitization initiatives 
in a number of countries are increasingly making these 
recordings available to scholars investigating the history 
of recording and of musical performance as well as to the 
general public.3 Music information retrieval (MIR) 
techniques offer rich possibilities for the curation and 
management of, as well as the access to, such collections. 
Professional metadata standards used by music librarians 
for cataloguing mainstream classical music, whether in 
the form of scores or recordings, universally make use of 
the work concept, and it is natural to seek ways to aid 
them using MIR techniques such as those described in 
this paper. 

The task we employ as a use-case in this paper, 
Classical Work Recognition, is described in Section 2.  
Early recordings present special problems and are not 
suitable for many MIR methods, which are usually 
developed with modern commercial recordings of 
popular music in mind. We discuss some of these special 
features of early recordings and our approach to them in 
section 2.1.  

In section 3 we discuss the chroma features we use on 
the historical recordings, introducing a new feature, the 
NNLS chroma (Non-Negative Least Squares chroma), 
which proves to offer great advantages for this task. Here 
we also discuss certain aspects of the search method we 
adopt in using the OMRAS2 specialized audio search 
system, audioDB. 

Section 4 gives further details of our test collection 
and some of its special features. We describe the retrieval 
experiment we carried out on the test, which 
demonstrates clearly the advantage of a musically-
informed approach, as is the case with NNLS chroma; this 
is followed in Section 5 by a discussion of the results and 
mentions further work we shall be doing in the near 
future. 

2. CLASSICAL WORK RECOGNITION 

We situate the research described here as a step towards 
automatic metadata enrichment. The long-term aim, 
simply put, is to develop a system which can help to 
identify classical works in a collection of digital audio 
whose descriptive metadata is either incomplete or 
inaccurate; the more modest task reported here is the 
identification of classical works that appear more than 
once in a collection of digitized historical recordings. 
Such duplicates may range from identical repetitions of 
the same digital file, through multiple digitizations (with 
                                                             
2 For a detailed overview of the special features of early recordings that 
need to be borne in mind, see [4]. 
3 Useful lists of URLs for online collections of historical recordings are 
[5, 6]; to these [7, 8, 9] should be added. 

or without different parameter settings) of the same 78-
rpm disc, different performances by the same or different 
artists, to re-scorings, arrangements, extracts and 
medleys, examples of all of which occur in our test 
collection. 

In order to evaluate our method’s performance on this 
task, we have to establish ‘ground-truth’ in the form of a 
list of duplicates and ‘covers’ within the test collection. 
In principle, we should be able to process the 
accompanying machine-readable metadata for this, but, 
for various reasons, this was not possible, so this has 
inevitably been a largely manual process (see 4.2, below). 
Since almost all commercial historical recordings carry 
clearly-printed labels, in general it should not be hard 
naively to identify the works performed on a 78-rpm disc 
or set of discs. However, once the music has been 
digitized and separated from this graphical information 
(as was the situation for us), the problem becomes 
potentially more complex. In general, for example, we 
cannot identify tracks with works in a one-to-one 
correspondence, as will be discussed below. 

Furthermore, classical works often – perhaps usually – 
comprise more than one movement. In the experiment 
reported here we actually treat work-movements as if 
each was a separate ‘work’; we make no attempt to 
categorise different movements as belonging to the same 
work, an exercise that would presuppose a degree of 
musical unity which cannot be said to apply universally. 
In a different use-case, matching music between different 
movements of a work may be of great interest to 
musicologists, as may close matches between different 
works, or even works by different composers. Similarly, 
we ignore multiple matches of musical sequences within 
a single track, although this is of central importance for 
musical structure analysis. 

If classical work-recognition could be robustly 
achieved with historical recordings despite their technical 
drawbacks (discussed below) this would offer a useful 
tool for metadata enrichment when used online in 
conjunction with a standard reference collection of 
recordings with high-quality metadata. 

2.1 Early Recordings 

Some of the special features of early recordings which 
can cause problems in audio analysis, and thus in audio 
MIR, are: limited frequency range, surface noise, 
distortion, variability of pitch (both global and local) and 
the problem of side-breaks. We briefly mention some of 
these in this section, though space precludes a full 
discussion here. 

The frequency range attainable in 78-rpm recordings 
ranged from 168–2000 Hz in early acoustic recordings to 
100–5000 Hz in electrical recordings from 1925. 
However, this is complicated by the various degrees of 
equalization that were applied to compensate for the fact 
that mechanical recording systems respond much more 
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strongly to low-frequency sounds, leading to various 
kinds of distortion when global gain levels are adjusted to 
capture the higher frequencies [9]. In this research, we 
take on trust the work of the professional transfer 
engineers who carried out the digitizations.4  

The most immediately obvious difference between a 
78-rpm recording and a modern digital one is the amount 
of broadband background noise known as ‘surface noise’; 
this has various causes, usefully summarized in [10]. 
There is often other noise present, usually due to 
mechanical aspects of the recording process. Not all of 
this can be completely eliminated by digital techniques, 
especially when it has a more-or-less definite ‘pitch’. 
Problems due to broadband noise can mostly be avoided 
by using chroma features such as NNLS chroma, 
designed to ignore the non-harmonic components from 
percussion instruments. Distortion is a common feature in 
early recordings, like noise due to a variety of causes, and 
it is a problem that cannot easily be sidestepped. We have 
observed that highly-modulated loud passages in certain 
recordings tend to be distorted and often behave 
anomalously in content-based matching. This will need to 
be the subject of future research. 

As Daniel Leech-Wilkinson demonstrates5, the pitch 
of early recordings is by no means reliable; in general we 
can neither be sure of the global pitch-standards used by 
the performers (e.g. A=440Hz) nor of the actual 
frequencies sounding in the studio during recording. We 
mention some strategies for overcoming this problem in 
Section 3, below. The problem of side-breaks is 
addressed in  Section 4. 

3. FEATURE SELECTION & SEARCH 

The classical work-recognition problem is close, though 
not identical, to the well-known MIR ‘cover song’ 
problem. In fact, in some respects it is somewhat simpler, 
since cover songs vary from their original model in ways 
that are generally unpredictable and can occur in several 
directions simultaneously. In general, we can be fairly 
sure that sequences of pitch-based data will be more-or-
less invariant between recorded instances of the same 
work. This is more likely to be true where the scoring and 
instrumentation are the same, and both performers are 
working from the same (or a similar) score; where more 
radical re-arrangement or rearranging of the music has 
taken place there will be less similarity. For this reason, 
we match sequences of chroma features, rather than 
whole-track features; unless the latter embody some 
notion of sequence (as might be the case in an n-gram 
model) the number of false positives is likely to be high, 
since many work-movements in the same key and using 
the same general harmonic language are likely to share 
similar overall pitch-class content. Furthermore, chromas 

                                                             
4 http://www.charm.kcl.ac.uk/history/p20_4_4_1.html 
5 [4], chapter 3.1, heading ‘Misrepresentations in early recordings’ 

are robust to variation in timbre, which allows us to 
match radically-differing instrumentations (subject to 
limits of noise caused by percussive sounds or distortion). 

In this paper we compare the performance of two 
chroma features in our classical work-recognition task. 
These are: (a) 36-bin chroma features extracted using 
fftExtract [11] (FE); (b) the new NNLS chroma features 
described in the following section (NNLS).  

3.1 NNLS Chroma 

In this section we give a brief description of the new 12-
dimensional NNLS chroma feature which has been 
developed for the purpose of chord transcription [12].  
But first we explain our reasons for comparing this with 
the performance of 36-d chromas in the same task, as this 
may not be immediately obvious. 

One commonly-observed feature of early recordings is 
that they were often recorded on machines operating at 
different speed than the standard 78 revolutions per 
minute that was normal. An additional complication here 
is that we cannot always be sure what pitch-standard was 
being used by the performers; a variety of pitch standards 
have co-existed across the world of music in the past, 
some flatter, some sharper than today’s accepted standard 
of A=440Hz. While there is little we can do to reconcile 
these conflicting sources of error, we can allow some 
tolerance in matching covers recorded at different global 
pitch standards by using three (or more) bins per equal-
temperament semitone bin in the chroma feature, rotating 
the query by plus or minus a single bin at query time, and 
choosing the best match from these three queries. We 
present results using non-rotated queries and also rotated 
by ± one semitone below. 

Although our new NNLS chroma features have only 
12-dimensions, corresponding to the 12 chromatic pitch 
classes of conventional music theory, they are derived 
from a spectrogram with three bins per semitone, with the 
intention of achieving a similar invariance to small pitch 
deviation; the most important practical difference is that a 
single exhaustive search of a collection of 12-dimensional 
features will inevitably be more efficient than three 
searches of one of 36-dimensional features. 

NNLS chroma features are obtained using a prior 
NNLS-based approximate note transcription [12, 13]. We 
first calculate a log-frequency spectrogram (similar to a 
constant-Q transform), with a resolution of a three bins 
per semitone. We derive the tuning of the piece in a 
quartertone neighbourhood of 440 Hz and adjust the log-
frequency spectrogram by linear interpolation such that 
the centre bin (of the three) of every note corresponds to 
the fundamental frequency of that note in equal 
temperament, as is frequently done in chord- and key-
estimation [e.g. 14], we adjust the chromagram to 
compensate for differences in the tuning pitch. First, the 
tuning is estimated from the relative magnitude of the 
three bin classes. Using this estimate, the log-frequency 
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spectrogram is updated by linear interpolation to ensure 
that the centre bin of every note corresponds to the 
fundamental frequency of that note in equal temperament. 
The spectrogram is then updated again to attenuate 
broadband noise and timbre. This is done using a kind of 
running standardization combining the removal of the 
background spectrum and a form of spectral whitening. 

We assume a linear generative model in which every 
frame Y of the log-frequency spectrogram can be 
expressed approximately as the linear combination Y ≈ Ex 
of note profiles in the columns of a dictionary matrix E, 
weighted by the activation vector x. Finding the note 
activation pattern x that approximates Y best in the least-
squares sense subject to x ≧ 0 is called the non-negative 
least squares problem (NNLS). We choose a semitone-
spaced note dictionary with exponentially declining 
partials, and use the NNLS algorithm proposed by 
Lawson and Hanson [15] to solve the problem and obtain 
a unique activation vector. This vector is then mapped to 
the twelve pitch classes C,...,B by summing the values of 
the corresponding pitches.  

In the work reported here, our feature-vectors are all 
averaged into one-second frames; future work will 
investigate the effect on retrieval of using finer 
granularity. Similarly, we do not consider here the effect 
of low-level DSP parameters such as FFT window-
length, using default values in most cases. 

3.2 Search 
Searching was carried out using the audioDB software 

developed at Goldsmiths College in the OMRAS2 project 
[16]. Independent audioDB databases for each feature-set 
were searched for best matches by Euclidean distance 
between queries and items in the database specified as 
feature-vector sequences of a given length.  

4. TEST COLLECTION & EXPERIMENT 

The collection of audio files we used is a subset of one 
provided by the King’s Sound Archive (KSA) which 
represented the set of their digitisations completed by 
February 2009. The current KSA is considerably bigger, 
numbering over 4,500 sides with highly-reliable 
metadata, and free download access to most of the 
collection is available via a metadata-searchable web 
interface.6 

4.1 King’s Sound Archive (KSA) 

The King’s Sound Archive is based on the BBC’s 
donation of their holdings of duplicate 78-rpm records in 
2001; KSA now holds over 150,000 discs including 
classical and popular music as well as spoken-word and 
sound-effect recordings from c. 1900 to c. 1960.7 

Our test collection comprises digitizations (undertaken 
in the CHARM project [17]) of 2,017 78-rpm sides, 
                                                             
6 www.charm.kcl.ac.uk/sound/sound_search.html 
7 www.kcl.ac.uk/schools/humanities/depts/music/res/ksahistory.html 

mostly classical but including some jazz, spoken-word 
and sound-effect recordings. This number was arrived at 
by chance, being the number of sound files that we could 
process conveniently and reconcile with the metadata 
provided by the KSA. We received the sound-files before 
the detailed discographical data now on the CHARM 
web-site8 was ready; we thus had to rely on the technical 
production metadata, which was not primarily concerned 
with work identification, although it did include 
catalogue numbers from the disc-labels as well as the 78-
rpm matrix numbers. This necessitated a lot of manual 
metadata editing. 

4.2 Relevance judgements 
In the metadata editing process we have identified a 

‘cover list’ of around 88 works for which duplicates or 
multiple performances exist in the test collection. This 
list forms the basis for relevance judgments in our 
experiments. We are aware that there are often other 
‘relevant’ tracks for a given query, but since our 
experiments are comparative in nature we do not regard 
this as a problem; in fact their effect is likely to be 
detrimental to our precision results.  

The existence of multi-side recordings of work-
movements in the collection complicates the issue of 
establishing reliable relevance judgments. (The various 
possibilities for the disposition of work-movements and 
side-breaks is shown diagramatically in Figure 1.) While 
it is often the case that the same musical material is 
repeated or alluded to throughout a single movement of a 
classical work, we cannot be sure that such repetitions are 
distributed evenly so that each 78-rpm side over which a 
movement is spread contains a roughly-equal proportion 
of similar musical material. Furthermore, side-breaks do 
not always occur at the same point in the music. 

There are two basic approaches that can be taken to 
solve this problem, both of which present some difficulty: 
post-processing of results or pre-manipulation of the data. 
Given a list of tracks in the database (each of which 
corresponds to a 78-rpm side), we can post-process the 
search results so as to regard as mutually-relevant all 
matches between a query and tracks that come from 
anywhere in the same movement. Alternatively, we can 
in a preprocessing stage digitally concatenate tracks that 
we suspect are from the same movement. Clearly the 
latter procedure does not fairly represent the case where 
we cannot rely on our metadata, and the exact 
correspondence between sides and movements is unclear. 
In our experiment we adjusted the lists to consider as 
relevant only sections from similar sections of a work-
movement (so ‘side 1’ of a given recording of a work-
movement, say, is not considered relevant to ‘side 2’ of 
another recording of the same movement); while we 
acknowledge the limitations of this approach it does not 
affect our comparative evaluation.  
                                                             
8 http://www.charm.kcl.ac.uk/discography/disco.html 
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Figure 1. Disposition of work-movements on the sides 
of 78-rpm gramophone records. 

One problem that is not solved either way is that many 
of our database tracks contain material from more than 
one movement (as in Figure 1, cases 4 and 5); 
furthermore, because all performances are not necessarily 
at the same tempo, or do not observe the same repeats, or 
are recorded on 78-rpm discs of different size (and 
consequent time-duration) the same pattern of side-breaks 
is generally not duplicated. This is one good reason why 
we use sequence-based matching, rather than using 
whole-track features in which material extracted from the 
whole of a track – even if some of it comes from a 
different movement in a different key – are consolidated 
into a single feature-vector. 

4.3 Experiment 

4.3.1 Method 

We extracted one-second features as described in Section 
3; we built an audioDB database with each set of features 
corresponding to the 2,017 tracks; with each pre-
discovered ‘cover’ track in turn as query9, we searched 
the database for best query/track matches of various-
length sequences of feature vectors. We found that a 

                                                             
9 The query track will, of course, be in the database at search-time; since 
the identity-match is always returned at the top of the ranked result-list 
we adjust the result-lists accordingly for our evaluation. 

sequence of 25 vectors consistently gave the best retrieval 
performance for this task across all tested features. We 
repeated the search with the queries rotated by up to a 
semitone flat and sharp (± 1 bin for NNLS; ± 1 and 2 bins 
for FE) taking the best result for each search. 

4.3.2 Results 

The 11-point recall/precision graph in Fig. 2 and the 
average precision values in Table 1 show a dramatic 
improvement (20%) in performance in this particular task 
brought about by the use of the NNLS chroma feature as 
opposed to the ‘standard’ chroma we used. While query-
rotation for both features significantly improved retrieval 
performance, NNLS still did far better than FE. Bearing 
in mind the generally poor acoustic quality of the 
recordings in the collection, this is particularly 
encouraging and suggests that the new feature will be 
generally useful for classical work-recognition tasks on 
collections of higher recording quality, though as yet this 
remains to be tested. 

Figure 2. 11-point interpolated Recall/Precision graph 
for the classical work-recognition task. 

 NNLS 
chroma 

NNLS 
rotated 

FE 
chroma 

FE 
rotated 

Average precision 
over all rel docs 

0.80 0.83 0.57 0.
 
54 

Table 1. Average precision (non-interpolated) for non-
rotated and rotated queries over all 322 relevant tracks. 

4.3.3 Discussion 

The improvement in the retrieval performance of the 
system with the NNLS chroma feature (and no other 
changes) is striking; particularly since the feature was not 
designed with search or similarity judgments in mind. 
 The model underlying it (described in section 3.1) does 
attempt to capture similar note content (in a way that 
generic chroma features attempt to capture similar 
acoustic pitch content) but there is potential to perform 
even better than our current results by tuning the NNLS 
features to better reflect perceptual musical similarity. 
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The fact that a query-sequence length of 25 
seconds/vectors gave the best retrieval results with all 
features may be useful in distinguishing complete 
‘covers’ of the kind we are dealing with here from works 
by classical composers which contain references to, or 
quotations of, other music. In general these are most 
likely to be short. However, this interesting topic needs to 
be the subject of further investigation. 

5. CONCLUSIONS AND FUTURE WORK 

We have demonstrated that using a chroma feature based 
on prior NNLS approximate transcription gives a 20% 
improvement in retrieval performance over conventional 
chroma for the work-recognition task that is the main 
focus of this paper.  Since this copes with historical 
recordings of varying quality and a number of the special 
features of the collection (such as the arbitrary 
distribution of movements across 78-rpm sides), we are 
encouraged to hope that it will prove a particularly 
effective feature for general musical work recognition in 
other MIR contexts. 

Amongst other work, then, we plan to characterize the 
details of the NNLS chroma feature in order to be able to 
align it better to human judgments of note-
content musical similarity, as well as designing other 
audio features which reflect other aspects of musical 
sound such as timbre or rhythm. 
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Figure 1. The first four bars of the theme of Mozart‘s 

variations K.265 (using a tune known in English as ‗Twin-

kle, twinkle little star‘), and the highest-scoring reduction 

derived from these bars by the software. 

RECOGNITION OF VARIATIONS USING AUTOMATIC 

SCHENKERIAN REDUCTION 

Alan Marsden 

Lancaster Institute for the Contemporary Arts, Lancaster University, UK 

A.Marsden@lancaster.ac.uk 

ABSTRACT 

Experiments on techniques to automatically recognise 

whether or not an extract of music is a variation of a giv-

en theme are reported, using a test corpus derived from 

ten of Mozart‘s sets of variations for piano. Methods 

which examine the notes of the ‗surface‘ are compared 

with methods which make use of an automatically derived 

quasi-Schenkerian reduction of the theme and the extract 

in question. The maximum average F-measure achieved 

was 0.87. Unexpectedly, this was for a method of match-

ing based on the surface alone, and in general the results 

for matches based on the surface were marginally better 

than those based on reduction, though the small number 

of possible test queries means that this result cannot be 

regarded as conclusive. Other inferences on which factors 

seem to be important in recognising variations are dis-

cussed. Possibilities for improved recognition of match-

ing using reduction are outlined. 

1. SCHENKERIAN REDUCTION 

Earlier work [6] has shown that Schenkerian analysis by 

computer is possible, though not easy. (Currently only 

short segments of music can be analysed, and confidence 

in the analyses produced cannot be high.) The aim of the 

research reported here is a first attempt at testing whether 

these automatic analyses produce information which is 

useful for information retrieval. 

Schenkerian analysis is a technique, with a long pedi-

gree in music theory, which aims to discover the struc-

tural ‗framework‘ which is believed to underlie the ‗sur-

face‘ of a piece of music (see [1], for example). Reduc-

tion according to the theory of Lerdahl & Jackendoff, 

which has also been subject to computational implemen-

tation [2], is broadly similar. Figure 1 shows the first four 

bars of the theme of a set of variations for piano by Mo-

zart, and its reduction as derived by the software used 

here. (This is by far the simplest of the themes used here; 

to show other themes and their reductions would take 

more space than is available.) Schenker‘s reductions were 

notated in a different fashion, and also included informa-

tion not given here, but the basic information of which 

pitches are regarded as more ‗structural‘, and so included 

in the higher levels, is similar. 

The research reported here fits into that body of MIR 

research which aims to improve MIR procedures through 

the application of ideas from music theory. 

2. VARIATIONS 

A common type of composition in classical music is 

‗theme and variations‘. In this kind of piece, a theme is 

presented, followed by a number of variations of that 

theme. There is no single and established definition of 

what constitutes a variation of a theme, but in the Classi-

cal period (the period of Haydn, Mozart and Beethoven) 

it is clear that a variation is not simply the presentation of 

the same melody in different arrangements (as it was for 

some later composers) but rather a composition which has 

the same structural features as the theme. This is particu-

larly clear in Mozart‘s variations: they are almost always 

the same length as the theme, have the same number of 

phrases, and have matching cadences for those phrases (at 

least in their harmony; often in other features also). The 
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internal structure of those phrases can also show common 

features: the harmony is often similar; there can be com-

mon notes, especially in important positions like begin-

nings and endings, and the variation sometimes clearly 

gives a decorated version of the melody and/or bass of the 

original. Figure 2 shows the first four bars of two varia-

tions of the theme shown in Figure 1. 

If Schenkerian analysis validly reveals musical struc-

ture, then the analysis of each variation should, to some 

degree, match the analysis of the theme. To test this re-

quires analyses of variations and themes which are unbi-

ased in the sense that the analyses of each variation 

should be made with no knowledge of the theme. To 

achieve unbiased analyses with human analysts would be 

very difficult: expert analysts are required, and one would 

have to recruit as many analysts as there are variations in 

a set. Furthermore, it is well known that different analysts 

produce different analyses, and it would be difficult to 

neutralise these personal differences. The computer soft-

ware described below gives a means for generating unbi-

ased analyses, and so allows this kind of empirical test of 

the validity of Schenkerian analysis. 

3. REDUCTION SOFTWARE 

The method of reduction used here is described more 

fully in [6]. There is space here only to give a brief out-

line. An analysis of a piece is a binary tree whose leaves 

are the ‗segments‘ of the surface of the music (the notes 

of the score). A segment is a span of music, containing all 

the notes sounding at that time. At least one note begins at 

the start of the segment and at least one note finishes at its 

end. No notes begin or finish at other points within the 

span. A note is defined by its pitch and by whether or not 

it is tied to a note in the preceding segment. A single note 

in the score can be split into a series of tied notes across 

several segments. 

Segments above the surface are related to a pair of 

‗child‘ segments through a set of ‗atomic elaborations‘. 

These define how a note in a higher-level segment can be 

elaborated to become two shorter notes (or a note and a 

rest) in the child segments. The set of atomic elaborations 

is derived from Schenkerian theory and consists of such 

things as repetitions, neighbour notes, anticipations, con-

sonant skips, etc. Atomic elaborations can imply that cer-

tain pitches are consonant, and the implications of the set 

of atomic elaborations relating a higher-level segment to 

its children must be consistent (i.e., the consonant pitches 

must form an acceptable harmony). 

An analysis is therefore a kind of parse tree employing 

a grammar defined by the atomic elaborations. The soft-

ware used here effectively employs a chart parser [4] as a 

step towards generating such a tree, but the computational 

complexity of the algorithm is of order O(n
4
) time. With 

typical computing resources, it is therefore possible to 

derive a parse chart from extracts of simple piano music 

up to only four to eight bars in length.  

The parse chart is a triangular matrix whose cells con-

tain the possible reductions at each stage of reduction. 

The bottom (longest) row contains the segments of the 

surface. The first row above contains segments which re-

sult from reduction of each of the pairs of consecutive 

segments below. Rows further above contain segments 

which result from reductions of those with other seg-

ments, etc., until the top row, with just one cell, contains 

the segments which derive from reduction of the entire 

extract. The top part of Figure 1 shows a reduction chart 

in which the best-scoring analysis has been selected (see 

below). Most of the cells of this chart are empty and those 

that are not contain just one segment, each containing two 

to four notes. Before an analysis is selected from a chart, 

its cells are generally fuller, and each contains a number 

of segments corresponding to the different ways in which 

a group of surface segments may be reduced. Each de-

rived segment has an associated score, intended to sug-

gest how likely that segment is to be a part of a complete 

‗good‘ analysis of the entire extract.  

An analysis can be derived from the chart by selecting 

a high-scoring segment in the top cell, and then recur-

sively selecting its highest-scoring children until a com-

plete tree to all the segments of the surface has been de-

rived. However, complications of context-sensitivity 

mean that selecting the locally highest-scoring children at 

each stage does not guarantee the highest-scoring com-

plete analysis. The current procedure to ensure derivation 

of the highest-scoring analysis from the chart is of expo-

nential complexity, so in some cases a chart containing 

information on possible analyses can be derived, but it is 

not practical, by current means, to derive a single best 

analysis from this chart. 

The research reported in [6] derived some scoring 

mechanisms by comparing the output of the analysis-

derivation software with pre-existing analyses of the same 

pieces. One can therefore have some confidence in the 

scores the software derives, but because of a lack of read-

 

 

Figure 2. The beginning of two variations of the theme 

shown in Figure 1. 
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ily available test material, the research so far has been 

based on a very small quantity of music (just five short 

themes by Mozart). At this stage, therefore, results from 

research in this general area can only really be regarded 

as provisional. 

That earlier research also showed that low-scoring pos-

sible reductions can be omitted from the chart, vastly re-

ducing the computation time required for its derivation, 

without jeopardising the derivation of a good analysis. 

This project has used the same limits as outlined in [6]. In 

deriving the reduction chart, no more than 25 segments 

were recorded in each cell, discarding lower-scoring pos-

sibilities if necessary. In [6] scores were computed from 

comparison of good analyses with random analyses con-

taining an Ursatz (a structure Schenker regarded as indi-

cating a complete musical statement). In this project, the 

extracts of music do not constitute complete statements 

(most importantly they often do not end on the tonic), so 

new scores were computed from the same raw data from 

comparisons of good analyses with random analyses, re-

gardless of the presence of an Ursatz. The new scores 

were similar to the old ones. 

Small changes were also made to the set of possible 

atomic reductions because certain configurations not 

found in the five themes used in [6] were found in the ma-

terial used here. An ‗échappée‘ (a following incomplete 

neighbour note) elaboration was added, with tight har-

monic constraints. New harmonic constraints, looser in 

some respects but tighter in others, were defined for some 

elaborations to allow situations where a dissonant note 

can be elaborated by ‗repetition‘, ‗delay‘ or ‗shortening‘ 

(i.e., being preceded or followed by a rest).  

4. RECOGNISING VARIATIONS 

The objective of the research reported here is to explore 

mechanisms for recognising whether or not a passage of 

music is a variation of a given theme, and in particular to 

test whether or not a procedure using reduction yields bet-

ter recognition than one relying only on the ‗surface‘ of 

the music. To be precise, if a procedure which uses reduc-

tions of the theme and variations produces better results 

than a similar procedure which does not use reductions, 

then we can conclude with some confidence that the re-

duction software does produce useful information con-

cerning musical structure. 

4.1 Materials 

The materials used in this project are encodings made by 

myself of four bars from the theme and most of the varia-

tions of 10 sets of variations for piano by Mozart: K. 179, 

180, 264, 265, 352, 354, 398, 455, 573 and 613. These 

are all the sets of variations in section 26 of the Neue 

Mozart Ausgabe—the source used—with the exception of 

two sets written when Mozart was nine years old, and 

which cannot therefore safely be regarded as mature 

compositions, one set in the metre 6/8, and one which has 

a theme beginning and ending half-way through a bar. In 

all but one case it is the first four bars which are used. In 

K. 613 the first four bars are taken from the theme proper, 

which begins after an introduction. In each case the four 

bars form a coherent phrase. Variations in a minor key, or 

in a different metre from the theme, were omitted. Some 

small changes to the music were required in order to fa-

cilitate successful reduction by the software: all anacruses 

(pickups) were omitted as the reduction software cannot 

cope with these; all grace notes, and trills plus any termi-

nating turn, were omitted; in a very few cases notes from 

some middle voices were omitted because the software 

operated with a limit of 4 notes in a segment; notes at the 

end of the last bar which clearly led into the following bar 

rather than belonging to the first phrase were omitted. 

The encoding gave the pitch of each note (the pitch 

spelling of the score is used in the encoding, but pitches 

are converted to MIDI values in the software) and its du-

ration. Voices are indicated, and were determined by 

hand when the encoding was made. This information is 

used only when matching surfaces as the reduction proce-

dure changes the composition of voices. 

To neutralise differences of key, each theme and varia-

tion was transposed to the key of F major, a key selected 

because it allowed each entire set of theme and variations 

to be transposed in the same direction and still remain in 

range for the software. It is not so simple to neutralise dif-

ferences of metre, so themes in a triple metre were only 

compared with variations in a triple metre, and similarly 

for themes in a duple metre. This made a corpus in two 

parts, for duple and triple metres, of 5+5 themes and 

41+36 variations. This is not a sufficiently large corpus 

for definitive results, but further materials are not readily 

available. 

4.2 Procedure 

A reduction ‗chart‘ (i.e., a matrix of the possible reduc-

tions) was derived from each of the extracts of themes 

and variations, using the software as described above. 

(This took about 24 hours of computing time.) The best-

scoring analyses were derived for each of the themes. 

(This was not possible for the variations because of the 

excessive demand of computing time in some cases.)  

There has been considerable research on techniques of 

measuring melodic similarity (see, for example [3]), but 

to ask if some extract of music is a variation of another, at 

least in the case of ‗Classical‘ variations as described 

above, is not the same as to ask if two extracts are similar. 

Some work in measuring melodic similarity has attempted 

to make use of concepts of structure from music theory 

[5, 7], with encouraging results. Unlike that work, the re-

search reported here is concerned with full textures rather 

than just melodies, and unlike [7], which shares some of 
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the underlying concepts of this work, the comparison 

method requires no manual intervention (though it does 

make use of an encoding which gives the key and metre). 

Instead a large number of methods specialised to compar-

ing extracts to determine if one is a variation of the other, 

both at the surface and comparing a best analysis to a re-

duction chart, were implemented in software. Each 

method resulted in a single match value for each pair 

compared. If a comparison method is successful, it will 

consistently yield higher values for comparisons between 

a theme and a variation of that theme than between a 

theme and a variation of a different theme.  

4.2.1 Comparison Methods 

Similar principles were used in the design of the methods 

for comparing both surfaces and reductions, as follows. 

1. Pitch-matching: pitches/pitch classes. Some meth-

ods count exactly matching pitches; some methods ac-

cept matching pitch classes (i.e., the matched pitch 

can be transposed up or down any number of octaves). 

2. Voices to test: all/melody+bass/melody/bass. There 

are four different kinds of match under this heading: 

those which seek to match all notes of each segment 

from the theme, those which match only the melody 

and bass, those which match only the melody, and 

those which match only the bass. For reduction 

matches, the lowest note of a segment is taken to be-

long to the bass and the highest to the melody.  

3. Voice-matching: yes/no. Some methods only accept 

matches of pitches in the same voice; some accept 

matches no matter in which voice the note occurs in 

the variation. The concept of voice used here is only 

‗melody‘, ‗middle‘ and ‗bass‘. The middle contains all 

the notes which are not in the melody and bass. 

4. Match tied notes: yes/no.  Some methods seek to 

match only notes which are not tied to a preceding 

note, while others seek to match all notes. 

5. Weighting by duration: yes/no. Some methods 

weight matches in proportion to the duration of the 

segment in the theme to be matched. 

6. Weighting by metre/level: yes/no. In surface-

matching methods, matches can or cannot be weighted 

by the metrical level of the beginning of the note, giv-

ing notes at the beginning of the bar the greatest 

weight. (The metre of a piece is specified in the en-

coding.) In reduction-matching methods, the corre-

sponding weight is determined by the level of the 

segment in the analysis tree. Weight steadily decreases 

from the root to the leaves.  

7. Limiting by parent match: yes/no (reduction only). 

Some matching methods for reductions limit the level 

of match found for child segments to be no greater 

than the level of match found for their parents, on the 

grounds that matches of children when the parent is 

not matched are accidental. 

8. Values: present/proportion/bar; maximum/aver-

age/score-weighted/score-weighted*2. Different 

values can be recorded for any individual segment. In 

the case of surface matches, some methods only look 

for a matching pitch to be present within the time span 

occupied by the original pitch. In other cases, the pro-

portion of the original time span during which a 

matching pitch is sounding in the variation is used. In 

yet others, it is sufficient merely for a matching pitch 

to be present somewhere with the same bar, since 

variations clearly sometimes involve changes in 

rhythm. For reduction-matching measures, a segment 

of the theme can be matched with up to 25 possible 

segments in the reduction chart for the variation. In 

different methods, four different values are recorded: 

the maximum match; the average match; the average 

match weighted by the score of the matching segment; 

and the average match weighted by the square of the 

score of the matching segment. Score weights are 

computed in relation to the maximum weight in a re-

duction chart so as to always fall in the range 0 to 1 

and decrease exponentially in relation to decreases in 

score. 

The combination of all these parameters results in 384 

comparison methods for surfaces and 1024 for reductions. 

In each case, the match value for a segment is based on 

the number of notes from the segment of the theme which 

are matched in the corresponding segments of the varia-

tion, divided by the number of notes to be matched, 

weighted as appropriate by proportion for surfaces or 

score for reductions with parent-match limiting applied if 

appropriate. The overall result of a comparison between a 

theme and a variation is the average of the results from 

matching each segment of the theme (and its reduction, if 

appropriate) with the corresponding segments of the 

variation (and its reduction), weighted by duration and/or 

metre/level as appropriate. 

4.2.2 Testing Methods 

Every theme was compared with every variation in the 

same class of metre—those which were variations of this 

theme and those which were variations of another 

theme—using each of the comparison methods outlined 

above. Each test can be thought of as retrieval from a da-

tabase using a theme as the query. A perfect response 

would retrieve all the variations of that theme, and none 

of the variations of other themes. An appropriate measure 

of success is therefore the F-measure, the harmonic mean 

of ‗precision‘ (the proportion of correctly retrieved varia-

tions to the total retrieved) and ‗recall‘ (the proportion of 

correctly retrieved variations to the total number of varia-

tions for that theme).  
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A simple query mechanism would retrieve all varia-

tions whose comparison with the theme yields a value 

above a certain threshold. Possible values for this thresh-

old lie between the lowest value for any comparison be-

tween a theme and one of its variations, and the highest 

value for any comparison between a theme and a variation 

of a different theme. For each comparison method, the 

average F-measure, using each theme as a query, was 

computed, at each candidate value of the threshold. The 

best possible F-measure (on this corpus) using each com-

parison method was thus be computed. 

An alternative test is to ask, for each variation, of 

which of the five candidate themes is it a variation. The 

simple answer would be the theme which yields the high-

est comparison value. This test will be called the ‗recog-

nition measure, and for each comparison method the 

value recorded is the percentage of variations whose 

theme is correctly recognised. 

5. RESULTS 

The main hypothesis of this study, that reduction will lead 

to better recognition of variations, is not confirmed by the 

results, as shown in Table 1. In fact twelve of the 384 

methods comparing surfaces produced a better average  

F-measures than the best reduction-comparing method, 

and two produced better recognition measures. The dif-

ference is small, however. It is impossible to know with-

out further research whether this is because the fundamen-

tal idea that variations share common reductions is mis-

taken, or whether it is because the reductions produced by 

this reduction software are incorrect. Currently there is no 

simple way of determining the correctness of an analysis. 

The values of match between the analysis of a theme 

and the reductions of its variations are generally high, but 

they can also be high for reductions of variations of other 

themes. This is illustrated in Figure 3, which shows a 

graph of the match values for K. 265, using the best re-

duction-matching method (matching pitch classes from 

the melody and bass in the appropriate voice in the varia-

tion, but not matching tied notes; weighted by duration 

but not level and not limited; taking the maximum match 

among alternative segments). The best threshold value for 

this comparison method is 0.78, which causes one varia-

tion of this theme not to be recognised, and a number of 

false positives from variations of other themes. According 

to Schenkerian theory, pieces of tonal music become 

more alike each other the higher up the structural tree one 

looks, until all (proper) pieces share one of only three 

possible Ursätze. Perhaps the reduction-matching meth-

ods have been confounded by this underlying universal 

similarity. 

The match values for surface matches are typically 

lower and more spread out, as illustrated in Figure 4, 

which shows the results for the same theme using the best 

surface-matching method (matching all pitch classes in 

the appropriate voice in the variation, including tied 

notes; weighted by duration but not metre; taking the pro-

portion a pitch class is present in a segment‘s span). The 

best threshold for this method is 0.36, causing all varia-

tions of this theme to be correctly recognised but also a 

false positive. 

5.1 Factors leading to better recognition 

Analysis of the results indicates that many of the factors 

listed above make little difference to the quality of a rec-

ognition method. One notable exception is that weighting 

by level in the case of reduction matches generally leads 

to worse results. This is consistent with the general con-

clusion above that reduction does not lead to better rec-

ognition of variations. Also consistent with this is a 

weaker result that weighting by duration does not improve 

recognition in the case of reduction matches, probably 

because higher-level segments are likely to have longer 

durations. In the case of surface matches, however, 

weighting by duration, but not by metre, leads to a slight 

improvement. 

On average, counting a surface match simply by the 

presence of the required pitch or pitch class within the 

span of a segment gives slightly better results than meas-

uring the proportion of the span in which it is present, and 

both give better results than counting matches anywhere 

within the bar. However, there are interdependencies 

among the various parameters. For example, when pitch 

classes are matched within voices, measuring the propor-

tion gives consistently better results. 

In the case of reduction-based methods, taking the 

maximum match among alternative segments yields the 

best results, on average. This is consistent with the idea 

that variations should have reductions which match the 

reductions of the theme. The listener hears the theme first, 

and so ambiguities in the structure of variations can be 

resolved by reference to the structure of the theme. It is 

therefore sufficient that there be some possible reduction 

of the variation which matches the theme. 

In both surface- and reduction-based methods, the 

worst results come from matching only the bass, followed 

by matching only the melody. The difference between 

matching all notes and just the melody and bass is small. 

In every case, if pitch classes are matched, the best results 

come from matching them in the appropriate voices, 

 Surface methods Reduction methods 

Average  

F-meas. 

Recog. 

measure 

Average  

F-meas. 

Recog. 

measure 

Best  0.867 94.8% 0.842 90.9% 

Average 0.776 74.8% 0.748 70.3% 

Worst  0.540 42.9% 0.671 35.1% 

Table 1. Summary results. 
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whereas if pitches are matched, the best results come from 

ignoring the voice in which they occur in the variation. 

This might be because sometimes Mozart writes a new 

part above the melody, and in such cases the melody often 

occurs at its original register. 

5.2 Possible Improvements 

A half-way house has been tested, which looked for 

matches of segments at higher levels only if there was no 

match at a level below. However, this produced no better 

results than those given above. Better results might come 

from matching melody and bass voices separately, possi-

bly at different levels, but this has not yet been tested. 

In examination of some of the false negatives and false 

positives, similarities and dissimilarities are revealed in 

the reductions which are not present at the surface, but as 

yet no consistent pattern has been discerned which would 

lead to a consistently better variation-recognition method. 

It is possible that harmony should be taken into account. 

(Harmonic analysis is a bi-product of the reduction pro-

cedure.) Matching on harmony alone, however, would not 

produce good results because many of the themes have 

similar harmonic structures; it would have to be combined 

with other factors. 

Overall, variation has been found to be more compli-

cated than first thought. The quantitative results do not 

show reduction to reveal the relationship between theme 

and variations, but examination of false results suggests 

that further research might yet show this to be the case. 
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Figure 3. Match values for the theme of K. 265 using a reduction-based comparison method. 

 
Figure 4. Match values for the theme of K. 265 using a surface-based comparison method. 
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ABSTRACT

Cepstral analysis is effective in separating source from fil-
ter in vocal and monophonic [pitched] recordings, but is it
a good general-purpose framework for working with mu-
sic audio? We evaluate covariance in spectral features as an
alternative to means and variances in cepstral features (par-
ticularly MFCCs) as summaries of frame-level features.
We find that spectral covariance is more effective than mean,
variance, and covariance statistics of MFCCs for genre and
social tag prediction. Support for our model comes from
strong and state-of-the-art performance on the GTZAN
genre dataset, MajorMiner, and MagnaTagatune. Our clas-
sification strategy based on linear classifiers is easy to im-
plement, exhibits very little sensitivity to hyper-parameters,
trains quickly (even for web-scale datasets), is fast to ap-
ply, and offers competitive performance in genre and tag
prediction.

1. INTRODUCTION

Many features for music classification have a longer his-
tory in speech recognition. One of the first steps taken
by most speech recognizers is to transform audio contain-
ing speech into a sequence of phonemes. A phoneme is
the smallest segmental unit of sound, for example the /b/
in “boy”. For a speech recognizer to work with multiple
speakers, it needs to generalize over a range of voice types
(adult verus child, male verus female). To achieve this
generalization it can be useful to separate the audio sig-
nal into two parts: the source excitation at the vocal cords
and the transfer function (filtering) of the vocal tract. Cep-
stral analysis is commonly used to achieve this separation.
The cepstrum C is defined as

C = |Glog(|Fx|2)|2 (1)

where F is the discrete Fourier transform and G is the
inverse discrete Fourier transform or the discrete cosine
transform. One important property of the cepstrum is that
convolution of two signals can be expressed as the addition
of their cepstra.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

In general cepstral analysis for speech recognition or
music analysis is done on a power spectrum |Fx|2 that
has been downsampled (compressed) non-linearly to bet-
ter model human perception of equidistant pitches (the Mel
scale). The resulting cepstral-domain values are called Mel-
Frequency Cepstral Coefficients (MFCCs). See Section 2
for details.

In the domain of music, cepstral analysis can be used
to model musical sounds as a convolution of a pitched
source (perhaps a vibrating string) and an instrument body
that acts as a filter. This deconvolution of musical source
(pitch) from musical filter (instrument) can be seen for sev-
eral instruments in Figure 1. If our goal is to generalize
across different pitches for a single instrument timbre, it
is clear that the cepstral domain has advantages over the
spectral domain.

The main use of source / filter deconvolution in speech
is allow for the elimination of the source. This is achieved
by only retaining the first few cepstral coefficients (usu-
ally 12 MFCCs for speech recognition). However, music
is not speech. The assumption that recorded music consists
of a filter with it’s own sound quality (instrument timbre)
acting on an irrelevant source is certainly false. For many
instruments, it is difficult to distinguish between pitch and
timbre, and certainly the assumption breaks down in poly-
phonic recordings.

This paper presents segment covariance features as an
alternative to means and variances in MFCCs for condens-
ing spectral features for linear classification. The covari-
ance, together with mean and variance in spectral features
provides a better basis for genre and tag prediction than
those same statistics of MFCCs. These features are quick
and easy to compute (pseudo-code given below) work well
with linear classification. Together they offer a viable ap-
proach to web-scale music classification, and a competitive
null model for research on new datasets.

2. FEATURES

We follow [1] in distinguishing two levels, or stages, of
feature extraction. Firstly, at the frame level (typically
20-50 milliseconds) we extract features such as Mel Fre-
quency scale Cepstral Coefficients (MFCCs). Secondly,
at the segment level (typically 3-10 seconds) we summa-
rize frame-level features via statistics such as the mean,
variance and covariance. For our frame-level features we
partitioned the audio into contiguous frames of either 512,
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Figure 1. Comparison of spectral and cepstral analysis for eight notes from twelve instruments. Right: The six panels
show spectral and cepstral anslysis for three of the twelve instruments. The horizontal axis is frequency for the three
spectral panels, and time for the three cepstrum panels. The vertical axis for each of the eight subplots is coefficient
magnitude. Spectral analysis (above) highlights the overtone series. Cepstral analysis separates pitch and timbre for pitched
instruments, separation less clear for marimba. Left: Nearest neighbor classifiers using spectral and cepstral features to
predict note and instrument labels–cepstrum predicts instruments, spectrum predicts notes.

1024, or 2048 samples, depending on the samplerate –
whichever corresponded to a duration between 25 and 50
ms.

We compare two kinds of frame-level features in this
work: MFCCs and Log-scaled Mel-Frequency Spectro-
grams (denoted LM features). MFCCs have been used ex-
tensively for music classification [1, 3, 6–8, 12, 14]. As our
null model, we implemented MFCCs as in Dan Ellis’ Ras-
tamat toolbox’s implementation of HTK’s MFCC. 1 Our
MFCC frame-level feature was 16 coefficients computed
from 36 critical bands spanning the frequency range 0-
4kHz using the HTK Mel-frequency mapping

Mel(freq) = 2595 log10(1 + freq/700), (2)

using a type-II DCT, and with Hamming windowing. Here
the variable freq denotes the frequency of an FFT band,
and it is in units of Hz.

The definition of our LM features differs subtly from the
MFCCs in ways that make the feature computation faster
and the implementation simpler. The audio is scaled to
the range (-1.0,1.0). No windowing is applied to the raw
audio frames prior to the Fourier transform. A small con-
stant value (10−4) is added in the Fourier domain to rep-
resent a small amount of white noise and prevent division
by zero. The Fourier magnitudes (not the power of each
band) were projected according to a Mel-scale filterbank
(the M in Table 2). The loudness in each critical band was
approximated by the logarithm of its energy. Our experi-
ments used from 16 to 128 critical bands (LM coefficients)
to cover the frequencies from 0Hz to 16kHz.

LM = log10(|FA|M + 10−4) + 4 (3)

MFCC = G(LM) (4)

Equations 3 and 4 describe the computation of the MFCC
and LM features in terms of an audio matrix A that has a

1 HTK: http://htk.eng.cam.ac.uk/

sr <-samplerate
nf <-number of Fourier bins
nm <-number of mel-scale coefficients

nyq = sr/2
nyq_mel = 2595 * log10(1 + nyq/700.)

# Build a Mel-Frequency Scale
# Filterbank matrix M
M = zero_matrix(rows=nf, cols=nf)
for i in 0..(nf-1):
f = i * nyq / nf
f_mel = 2595 * log10(1 + f/700.)
m_idx = f_mel/nyq_mel*nm
j = floor(m_idx)
M(j+1,i) = m_idx-j
M(j+0,i) = 1.0-m_idx+j

Table 1. Pseudo-code for building a Mel-Frequency
Scaled filterbank in the frequency domain. This code as-
sumes 0-based array indexing.

row for each frame in a segment, and a column for each
sample in a frame. The FFT is taken over columns. The
constant 10−4 quantifies our uncertainty in |FA| and pre-
vents taking a logarithm of zero. The subtraction of 4 from
the logarithm ensures that LM features are non-negative,
but take value zero when the audio is silent. The MFCCs
are the discrete cosine transform G of LM.

3. PERFORMANCE

We used three datasets to explore the value of these fea-
tures in different descriptor prediction settings: tag fre-
quency, tag presence, and genre. Segments were summa-
rized by the mean, variance, and/or covariances of frame-
level features. The summaries were classified by either a
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logistic regression model, or where noted, by a Support-
Vector Machine (SVM) with an RBF kernel.

In linear models, we trained binary and multi-class lo-
gistic regression to maximize the expected log-likelihood

−
∑
x∈X

∑
l∈L

Ptrue(l|x) log(Ppredicted(l|x)) (5)

where X is the set of examples, and L the set of labels.
The linear (technically affine) prediction was normalized
across the classes using a Gibbs distribution.

Ppredicted(l|x) =
eZlf(x)+bl∑

k∈L e
Zkf(x)+bk

(6)

where f(x) is the features we extract, Zl is the lth row
of the linear model, and bl is a scalar bias for the lth pre-
dictor. We fit this model by gradient descent with a small
learning rate and regularize it by early stopping on held-
out data. Our SVM experiments were performed using
LIBSVM with the RBF kernel to implement all-pairs mul-
ticlass prediction. Held-out data was used to choose the
best kernel and cost parameters (typically called γ and C
in SVM literature). Features [by dimension] were normal-
ized to have zero mean and unit variance prior to training
a classifier.

3.1 Genre Prediction

Genre classification performance was estimated using the
GTZAN dataset of 1000 monophonic audio clips [12], each
of which is 30 seconds long. The dataset features 100
clips each of the 10 genres: blues, classical, country, disco,
hiphop, pop, jazz, metal, reggae, and rock. Although this
collection is relatively small, it has been used in several
studies of genre classification [1, 5, 10, 13]. Classification
was performed by partitioning the audio into 3-second seg-
ments and voting over the segments, as in [1]. Following
standard practice, performance was measured by standard
10-fold cross-validation. For each fold, the training set was
divided into a hold-out set (of 100 randomly chosen songs)
and fitting set (of the remaining 800). The results of our
models and some results from the literature are shown in
Table 2

Our best results with both the linear and SVM classi-
fiers were with the mean and covariance (or correlation) in
LM features rather than MFCC features. Our linear model
using covariance in LM features was approximately 77%
accurate, while the more expensive SVM was 81% accu-
rate. The small size of the GTZAN dataset leaves con-
siderable variance in these performance estimates (scores
are accurate to within about 4 percentage points with 95%
probability). To our knowledge, the only systems to sur-
pass our baseline linear classifier are the AdaBoost-based
model of [1] and the model of [10] based on L1-regularized
inference and non-negative tensor factorization. Both of
these superior models are significantly more complicated
and CPU intensive than our baseline. In larger datasets, the
capacity of the linear model to use more data in a tractable
amount of time should make its performance improve in
comparison to the SVM.

Algorithm Acc.(%)
Sparse rep. + tensor factor. [10] 92
AdaBoost + many features [1] 83
*RBF-SVM with LM (m32,r32) 81
*RBF-SVM with LM (m32,c32) 79
*Log. Reg. with LM (m32,r32) 77
*RBF-SVM with MFCC (m32,c32) 76
*Log. Reg. with LM (m32,c32) 76
*RBF-SVM with MFCC (m32,r32) 74
*Log. Reg. with MFCC (m32,r32) 72
*Log. Reg. with MFCC (m32,c32) 70
RBF+MFCC [11] 72
LDA+MFCC(m5,v5) + other [5] 71
GMM+MFCC(m5,v5) + other [13] 61

Table 2. Classification accuracies on the GTZAN dataset
of our algorithms (*) and others in the literature. ‘m32’
is the means of 32 frame-level features, ‘c32’ is the upper
triangle in their covariance matrix, ‘r32’ is the upper trian-
gle in their correlation matrix. These scores are accurate to
within about 4 percentage points with 95% probability.

3.2 Tag Frequency

We estimated our models’ performance at tag frequency
prediction using the MajorMiner dataset. The MajorMiner
dataset consists of short audio clips labeled by players of
the MajorMiner web game [7]. In this game, players listen
to 10-second clips of songs and describe them with free-
form tags. They score points for using tags that agree with
other players’ tags, but score more points for using orig-
inal tags that subsequent players agree with. There are
1000 unique tags that have been verified by two players
and there are a total of 13,000 such verified usages on 2600
clips. The average clip has been seen by 7 users and de-
scribed with 30 tags, 5 of which have been verified. The
tags describe genres, instruments, the singer (if present),
and general musical or sonic qualities.

The MajorMiner dataset includes the number of times
each tag was applied to each clip, which gives a graded
relevance for each (tag, clip) pair. After removing clips
that were tagged ‘silent’,‘end’,‘nothing’ or had a length
less than eight seconds, 2578 remained. Clips are typically
nine seconds in length but we used the first 8 seconds. As
second-level features, we summarized each clip as a sin-
gle 8-second segment. We followed [7] in using the top 25
tags (drum, guitar, male, synth, rock, electronic, pop, vo-
cal, bass, female, dance, techno, piano, jazz, hip hop, rap,
slow, beat, voice, 80s, electronica, instrumental, fast, sax-
ophone, keyboard) which accounted for about half of the
tag usages in the dataset. To ensure that each clip had a
valid distribution over these tags, we added to every clip
an extra virtual tag with a usage of 0.1. For most clips this
usage accounted for about 1.5% of the total tag usage, but
for a small number of clips with none of the top 25 tags it
accounted for 100%. The clips in the dataset were sorted
by their order of occurrence in the ”three columns.txt” file.
The dataset was partitioned into train, validation, and test
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sets by taking the 6th of every 10 clips for validation, and
by taking the 7th and 8th for testing.

We interpreted the tag usages in the MajorMiner dataset
as being samples from clip-conditional multinomial distri-
butions. We would like a function to infer that whole dis-
tribution by conditioning on the audio of the clip. This
learning setup differs from multiple independent label pre-
diction, for that case see the Tagatune results below.

Our results are summarized in Figure 2. Our best results
were obtained by using LM features and keeping many co-
efficients: 128 means, 128 variances, covariance in a 32-
dimensional downsampling of all 128 features. The best
model (m128,v128,c32) had an average (across tag) AUC-
ROC of 0.78, which is competitive with the best models
from the MIREX 2009 MajorMiner evaluation. The av-
erage AUC-ROC values across the 25 tags used here for
the MIREX 2009 submissions range from 0.72 (submis-
sion “HBC”) to 0.79 (submission “LWW2”). 2

There are two interesting things to note about the ef-
fect of covariance features in the MajorMiner experiments.
Firstly, the covariance in MFCC features was strictly harm-
ful in this prediction task, when used alongside the mean
and variance. It has been argued that MFCC features are al-
ready relatively decorrelated compared with spectral mag-
nitudes [9]. Perhaps when we normalize the MFCC co-
variance features we add features with a very low signal
to noise ratio. Secondly, the LM features without covari-
ance are poorer than a like number of MFCC features.
This is similar to the simple experiment in the introduction
that demonstrated the superior ability of cepstral features
to generalize across pitch—that simple experiment corre-
sponds to using the mean frame-level feature. Spectral fea-
tures do not generalize as well across pitch without covari-
ance information, but with covariance information they are
better at it.

All the models were trained in just a few minutes on
a desktop PC. Extracting features and training the model
were fast enough that the decoding of the MP3 files was a
significant part of the overall experiment time.

3.3 Tag Presence

We also tested spectral covariance features in a larger and
sparser descriptor-based retrieval setting using the Magna
Tagatune (Tagatune) dataset. Tagatune contains 25863 30-
second audio clips [4]. Each clip is labeled with one or
more binary attributes from a collection of 188 potential
descriptors such as ‘guitar’, ‘classical’, ‘no voices’, ‘world’,
‘mellow’, ‘blues’, ‘harpsicord’, ‘sitar’. These descriptors
were collected from an online game in pairs of players use
these words/phrases to determine whether they are listen-
ing to the same song or not. The descriptors generally
refer to instrumentation, genre, and mood (see Table 4).
Attributes in the dataset are binary and do not reflect the
degree to which any attribute applies to a song. Further-
more, the nature of the data-collection game is such that
the non-occurrence of an attribute is weak evidence that

2 MIREX 2009 Results:
http://www.music-ir.org/mirex/2009/index.php
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Figure 3. Histogram of the success of a linear classifier at
predicting Tagatune attributes from LM (light) and MFCC
(dark) means and covariance. AUC-ROC reflects both pre-
cision and recall; 0.5 is expected from a random predictor,
and 1.0 from a perfect one. The MFCC features get 3 more
tags 80% right, but the LM features get 16 more tags 90%
right. Overall, LM features give better performance.

the attribute does not apply. There are many descriptors
which might apply to a song, but no player thought to use
them. Still, the Tagatune dataset provides a great deal of
human-verified annotations and audio–despite these minor
problems it is a great resource.

For the Tagatune dataset an independent logistic regres-
sion model was used to predict each potential attribute.
Only logistic regression was used because the size of the
dataset was prohibitive of the SVM’s quadratic training al-
gorithm. Song classification was performed by partition-
ing each clip into 3-second segments and voting over the
segments, as in [1]. The dataset was partitioned into train,
validation, and test sets by taking the 6th of every 10 clips
for validation, and by taking the 7th and 8th for testing.
A plateau in validation-set accuracy (averaged across all
tasks) was reached after about 20 minutes of CPU (wall)
time, after about 10 passes through the training data.

The results of a linear classifier applied to the LM and
MFCC mean and covariance feature are shown in Figure 3
and Table 4. Again, the LM features with covariance out-
performed statistics of MFCC features. For the LM-based
model, 140 of 188 descriptors were over .8 ROC and 68 of
those are over .9. The MIREX 2009 Tagatune evaluation
used a test protocol almost identical to ours, and found that
the participants’ average ROC scores ranged from 0.67 to
0.83. Our simple model appears actually to score slightly
better than the MIREX 2009 participants did.
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Feature Predicted�weights�sorted�by�true�rank

LM�m128,v128,c32

MFCC�m128,v128,c32

MFCC�m32,v32,c32

MFCC�m16,v16,c16

LM�m16,v16,c16

2.65

2.74

2.76

2.68

2.71

True�weights�sorted�by�predicted�rank

2.63

LM�m32,var32,c32

Cross-entropy

MFCC�m32,v32 2.71

LM�m32,v32 2.72

Ground�Truth

Figure 2. LM features outperform MFCC features for predicting tag distributions in the MajorMiner dataset. ‘m32’
(similarly ‘m16’,‘m128’) denotes the mean in 32 coefficients, ‘v32’ the variance, and ‘c32’ the covariance (the upper
triangle of the 32x32 matrix). When covariance information is used, LM features outperform MFCCs. Images in the
middle column illustrate the recall of each model for each of the 25 most popular tags: the greater the density toward the
left, the higher the recall of the model. Images in the right column illustrate the corresponding precision. The best model
has AUC-ROC of 0.78.

4. DISCUSSION

Our covariance and correlation features help to summarize
(in a time-independent way) the different kinds of timbres
observed during a segment. The covariance (or correla-
tion) in LM frame-level features summarizes the way that
energy/loudness in different frequency bands co-occur in
a signal. Recall that the timbre of a sustained instrument
note can be crudely approximated by the shape of the spec-
tral envelope. The difficulty in recognizing instruments
in a segment after it has been summarized by the mean
or variance is that when different instruments are present
in one segment, the mean envelope can be indistinguish-
able from the mean that would come from other instru-
ment combinations. The covariance is an improvement in
this respect. If different instruments in a segment do not
play simultaneously, then the covariance will encode ac-
tivity corresponding to the (pairs of) peaks in the envelope
of each instrument. To the extent that these instruments
have timbres with different pairs of peaks, the instruments
will not interfere with one another in the segment-level fea-
ture. Still, when instruments are played simultaneously (as
often happens!) there is more interference.

4.1 MAP vs. ROC

Table 4 lists the mean average precision (MAP) and clas-
sification error rate (ERR) for some of the most popular
and least popular attributes. The classification accuracies
for most descriptors is quite close to the baseline of ran-
dom guessing. That is because most descriptors are so rare
that when a trained model is forced to take a hard classi-
fication decision, it is very difficult for the evidence from
the song feature to outweigh the overwhelming prior that
a rare descriptor does not apply. A similar finding is de-
scribed in [2]. Since the attributes are rare, even the best
models rank many negative-labeled examples also near the
beginning of the clip collection, so precision and classifi-

Attr Count
female vocals 386

male vocals 465
female vocal 644

no vocal 995
male vocal 1002

no vocals 1158
vocals 1184
vocal 1729

Table 3. The number of applications of several Tagatune
attributes over all 25863 clips. One of the difficulties with
Tagatune is the frequency of false negative attributes in the
dataset. For example, although vocal was applied 1729
times, the ’no vocal’ attribute was applied only 995 times;
90% of the clips are labeled as neither ’vocal’ nor ’no vo-
cal’.

cation error are low. But the high rate of false-negative la-
bels (see Table 3) biases the MAP and ERR measures more
than the ROC. In the case of MagnaTagatune, where there
are many false-negative labels (true instances, labeled as
non-instances) MAP and ERR criteria are potentially very
biased estimators of model performance. The ROC mea-
sure a more appropriate criterion in this context.

5. CONCLUSION

The covariance of log-magnitude Mel frequency scale spec-
tral coefficients (LM features) offer a superior alternative
to statistics of MFCCs when summarizing frame-level au-
dio features for genre and tag prediction. We have demon-
strated the advantage of our LM features on three standard
genre and tag prediction datasets: GTZAN, MajorMiner,
and Tagatune. Furthermore, these features make state of
the art performance available with just a linear classifier
(such as L1- or L2-regularized logistic regression, or lin-
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Attr Freq ERR MAP ROC
guitar 0.187 0.159 0.62 0.85
classical 0.169 0.157 0.63 0.91
slow 0.135 0.135 0.32 0.77
techno 0.110 0.090 0.58 0.92
strings 0.110 0.110 0.44 0.87
drums 0.102 0.102 0.34 0.84
electronic 0.096 0.097 0.33 0.84
rock 0.093 0.057 0.71 0.96
fast 0.093 0.093 0.31 0.79
piano 0.077 0.074 0.54 0.84
repetitive 0.001 0.001 0.15 0.77
scary 0.001 0.001 0.02 0.97
woodwind 0.001 0.001 0.01 0.82
viola 0.001 0.001 0.08 0.95
quick 0.001 0.001 0.00 0.56
soprano 0.001 0.001 0.17 0.97
horns 0.001 0.001 0.00 0.68
soft rock 0.001 0.001 0.00 0.70
monks 0.001 0.001 0.31 0.99
clasical 0.001 0.001 0.00 0.83
happy 0.001 0.001 0.00 0.61

Table 4. Test set performance of best model on the 10
most popular (above) and least popular (below) descrip-
tors in Tagatune. Freq is application frequency, ERR is
classification error, MAP is mean average precision, and
ROC is the area under the ROC.

ear SVM). Our results on the GTZAN dataset suggest that
RBF SVMs may offer slightly better performance when
time allows for training.

The LM features are straightforward to implement, com-
putationally cheap, and the use of a linear classifier makes
our model viable on any size of genre or tag-prediction
dataset. We believe that the model presented here has great
potential for working with industrial-scale audio datasets.

Finally, the results presented here demonstrate that the
discrete cosine transform (or inverse Fourier transform) re-
sponsible for the cepstrum’s deconvolution property actu-
ally hinders performance in some circumstances. One ex-
planation of this behavior is that our model learns a better
deconvolution-like transform of the spectral data than is
provided by the cepstrum. We admit that this is only one
possible explanation of these results and that further anal-
ysis is necessary in order to make conclusions. We believe
that this is one fruitful direction for future research.
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ABSTRACT 

In this article a method of computing similarity of two 
Chinese pop songs is presented. It is based on five 
attributes extracted from the audio signal. They include 
music instrument, singing voice style, singer gender, 
tempo, and degree of noisiness. We compare the com-
puted similarity measures with similarity scores obtained 
with subjective listening by over 200 human subjects. 
The results show that rhythm and mood related attributes 
like tempo and degree of noisiness are most correlated to 
human perception of Chinese pop songs. Instrument and 
singing style are relatively less relevant. The results of 
subjective evaluation also indicate that the proposed 
method of similarity computation is fairly correlated with 
human perception.  

1. INTRODUCTION 

With the rapidly increasing popularity of digital music 
and related technologies, thousands of new songs are 
made available over the Internet everyday. The conven-
ience of low-cost digital storage also promotes the in-
crease in personal collection of music files. However, a 
user may find it more difficult to look for a song that he 
or she likes to listen. This calls for music recommenda-
tion systems to sort and find music efficiently.  

A recommendation system aims to identify songs that 
match a user’s taste and recommend these songs to the 
user. There are two types of music recommendation sys-
tems: Content-based and metadata-based recommenda-
tion. A content-based system mainly exploits audio fea-
tures extracted from the music file itself to make recom-
mendation [2], [6]. Metadata-based systems, like the 
Last.fm music network [11], make use of textual meta-
data associated with music documents, such as the artist’s 
name, the song title, or the album name. These systems 
are often combined with collaborative filtering tech-
niques to capture users’ preferences. Lyrics of a song can 
also be used [1]. There are also hybrid systems that com-
bine audio content and metadata for recommendation, 
[3],[4],[10]. 

  

In content-based recommendation system, the recom-
mended songs are those that sound similar to the existing 
songs that the user likes to listen to. Recommendation 
becomes a task of matching in this case. A kind of simi-
larity between a query song and a set of candidate songs 
needs to be computed. The candidates with the highest 
similarity measure will be returned as the results of rec-
ommendation. The computation of an effective similarity 
measure is therefore a crucial step in many recommenda-
tion systems.  

Similarity of two songs can be computed from the con-
tents or textual metadata embedded in the songs. In this 
article, we focus on studying content-based music simi-
larity computed from songs in a specific genre, namely, 
Chinese pop songs. Most recommendation systems pre-
viously proposed were developed in a cross-genre envi-
ronment [2],[10]. The song database contains a large 
number of songs of different genres, and genre classifica-
tion is performed to put songs into the right group. Rec-
ommendation of songs within the same genre also has 
important applications. For example, a pop music pro-
ducer may wish to promote his/her new productions by 
matching the taste of potential listeners. It is necessary to 
understand the aspects that humans consider when they 
decide if two songs are similar in intra-genre case. In ad-
dition, to the best of authors’ knowledge, there does not 
exist any content-based recommendation system for Chi-
nese pop songs. Our investigation results can provide 
valuable information in building such system in the fu-
ture. 

To facilitate the computation of a similarity measure, 
the important attributes of a song must be represented 
numerically. There are many attributes that can be used 
to represent a song, such as melody structure and chord. 
Such features, however, are difficult to extract accurately.  
Therefore, in the proposed method, we use a set of low-
level audio descriptors, i.e., instrument identity, singing 
style, gender of the singer, tempo, and degree of noisi-
ness (DoN) to represent the songs. The usefulness of 
these features is verified via subjective evaluation.  

The paper is organized as follows. Section 2 describes 
the audio attributes that are used to represent Chinese pop 
songs, and the method of computing similarity from these 
attributes. Section 3 explains the process of subjective 
evaluation. Section 4 gives the experimental results, and 
the correlation between the proposed similarity measure 
and the findings of subjective evaluation. Conclusions 
are drawn in section 5.  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page.  
© 2010 International Society for Music Information Retrieval  

513

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  
 

2. MUSIC ATTRIBUTES 

Prior to signal analysis, all audio files are down-sampled 
to 16 KHz. Most digital music are recorded at sampling 
rate above 16 KHz. By unifying to this common fre-
quency, we try to minimize the discrepancies of signal 
quality among the many possible data sources. In the 
case of stereo recording, the two tracks are averaged to 
obtain a monaural wave signal. In short, all signal analy-
sis operations are performed based on monaural wave 
signal at 16 kHz sampling rate. 
 

2.1 Vocal / Non-vocal Segmentation 
 

A typical Chinese pop song is about 3 to 4 minutes in 
duration and is composed of four parts. It starts with an 
instrument intro, followed by vocal verse, and instru-
ment interlude, and finally the chorus. The vocal part is 
sung in the Cantonese dialect or Mandarin. Assuming 
this song structure, we divided each song into the vocal 
part (with human singing voice) and the non-vocal part 
(instruments only) in our analysis. The extraction of in-
strument attribute is done on the non-vocal part, while 
the attributes of singing style and gender are extracted 
from the vocal part.  Tempo and DoN are estimated from 
the whole song. This is illustrated in Figure 1.  

The wave signal is divided into short-time frames of 
100ms long with frame shift of 50ms. Short-time Fourier 
Transform (STFT) of 2048 points is applied to each 
frame and 13 Mel-frequency cepstral coefficients 
(MFCC) are computed. A statistical classifier is built for 
vocal / non-vocal segmentation. About 500 songs are 
manually segmented into vocal and non-vocal parts. 
These songs, along with other songs used in our experi-
ments, are all Chinese pop songs purchased from CD 
stores. These segments are used as the training data for 
the vocal / non-vocal classifier. The minimum segment 
length was set to be 1 second. A vocal class and a non-
vocal class are modeled by two Gaussian mixture models 
(GMM), each with 64 mixtures.  

The segmentation is performed by dividing the audio 
signals into non-overlapping segments of 1 second long, 
i.e., 20 frames, and classifying these segments as either 
vocal or non-vocal. For each segment, the log-likelihood 
with respect to the vocal class is computed as 

� �� ��
�

�
20

1
,,log

n
vocalvocalvocalnvocal ProbL �μw�  (1) 

where n� is the MFCC feature vector of the nth frame in 
the segment, and vocalvocalvocal �μw ,,  are respectively the 
mixture weights, means, and covariance matrices of the 
vocal GMM.  The log-likelihood with respect to the non-  

 
Figure 1.  Segments of songs 
 
vocal class, denoted by Lnon-vocal, is computed in the same 
way. The segment is classified to the class with the 
higher log-likelihood. This method of statistical classifi-
cation is also used in the extraction of instrument, sing-
ing style, and gender attributes. The classification accu-
racy of the vocal / non-vocal classifier is 90%. The test 
data used in our experiments are not included in the 
training set and this applies to all other classification ac-
curacy reported in this article.  Readers may also notice 
that the numbers of mixtures used vary for different clas-
sifiers described in latter sections. These numbers are 
determined empirically to achieve the best trade-off be-
tween computation time and accuracy. 
 

2.2 Extraction of Music Attributes  
 
Five attributes are used to describe a Chinese pop song:  
instrument, singing style, gender of singer, tempo, and 
degree of noisiness.  Instrument, singing style, and gen-
der are computed based on MFCC features and the statis-
tical classification technique. 

2.2.1 Instrument 
 
For simplicity, we assume that only a single instrument is 
present or dominant at a particular time instant. Eight in-
struments commonly used in Chinese pop songs are mod-
eled: reedy, electronic-guitar, piano, strings, synthesizer, 
guitar, flute, and percussion. Each instrument is repre-
sented by a GMM of 256 mixtures. The training data in-
cludes the 500 manually annotated songs and part of the 
RWC database [7]. Following an approach similar to vo-
cal/non-vocal segmentation, each non-vocal segment in a 
song is assigned to an instrument class. Then the instru-
ment attribute is represented by a vector with eight ele-
ments, i.e., 

 � �821 ,...,, IIIinst �F  (2) 

where Ii is the percentage of segments in the song that are 
assigned to the ith instrument class. In our experiments, 
the classification accuracy was 72%. 
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2.2.2 Singing Style 
 
It is not trivial to describe the singing style in a Chinese 
pop song. In our study, singing style is defined with ref-
erence to a few famous singers of Chinese pop songs. For 
a given song, we try to measure the degree of similarity 
between the singing voice in the song and the voice of 
each reference singer. Among the 500 training songs, we 
choose 6 male and 6 female singers with distinct voices 
and styles. Each singer has about 30 training songs. A 
separate class is established for children’s voice. As a re-
sult, we have a total of 13 singing style classes. Each 
class is represented by a GMM of 64 mixtures. The sing-
ing style attribute, Fsing, is defined as  

� �1321sing ,...,, SSS�F  (3) 

where Si is the percentage of segments in the song that 
are assigned to the ith class. In our experiments, the clas-
sification accuracy of singing style is 82%. 

2.2.3 Gender 
 
An explicit gender classifier is built. A male voice and a 
female voice model are trained to be 128–mixture GMM.  
The gender attribute, Fgend, is defined as: 

� �femalemalegend GG ,�F  (4) 

where Gmale and Gfemale are the percentage of male and 
female voice segments in the song, respectively. The 
song-level gender classifier has an accuracy of 97%.  

2.2.4 Tempo 
 
The tempo detection method proposed in [9] is used to 
generate the tempo information we need. The tempo of a 
given song is estimated by the Fourier analysis of the 
beat onset pattern. Complex domain spectral difference is 
used as the detection function for the beat onset. To find 
the spectral difference, we first estimate the instantaneous 
spectral change �(m) at the mth short-time frame, which is 
defined as 

� � � � � �� 	�
k

mm kYkYm ˆ
  (5) 

where Ym(k) is the spectral value (DFT coefficient) at 
frame m and frequency bin k, and � �kYm

ˆ  is the corre-
sponding value predicted from the immediately preceding 
frame, i.e. 

� � � � � �k�j
mm

mekYkY ˆ
1

ˆ
	� . (6) 

The expected phase � �k�m
ˆ  is predicted from phase in 

previous two frames as follows: 

� � � � � � � �� �kkkk� mmmm 211
ˆ

			 	�� ���  (7) 

where �m-1(k) and �m-2(k) are the observed phases for 

frame m-1 and m-2 respectively. Frame size of 100ms 
and frame shift of 10ms are used. The frame shift is much 
shorter than the 50ms shift as used in the extraction of 
other attributes because of the need to detect fast tempo. 
To obtain a beat onset pattern with clear and well-defined 
peaks, �(m) is subtracted by the moving average thresh-
old � �m
  with window size W = 10, i.e. 

� � � ��
�

	�

�
2

2

1
Wm

Wmi

i
W

m 

 . (8) 

Half-wave rectification is then performed on the differ-
ence to obtain � �m
̂ , the beat onset value of frame m, i.e. 

� � � � � �� �mmHWRm 


 	�ˆ  (9) 

where HWR(x) = (x + |x|)/2.  
To handle tempo variations over the entire duration of 

a song, we divide a song into segments of 12s long, with 
time shift of 4s. Each of these segments contains 1200 
frames. Fourier analysis is performed on beat onset pat-
tern of each segment, and the frequency axis is mapped 
into tempo values. The analysis result is represented by a 
tempogram, which is a two-dimensional time-tempo rep-
resentation of the strength of tempo values in local seg-
ments. An example of tempogram is shown in Figure 2. 
The tempo value is limited to the range of 30 beat per 
minute (bpm) to 300 bpm, which covers most of the pop 
music. The tempo value with the strongest impulse is 
picked as the local tempo value for each segment. The 
local tempo values of all segments in the song form a dis-
tribution, from which the tempo attribute is derived as  

� �321 ,, TTTtempo �F  (10) 

where T1, T2, and T3 corresponds to the 25%, 50%, and 
75% percentile tempo values.  
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Figure 2.  An illustration of the tempogram 

2.2.5 Degree of Noisiness 
 
The mood of a song is an important factor to be consid-
ered when computing similarity of songs. The energy of a 
song is in some way related to the mood of the song. Ac-
cording to Thayer’s emotion model [8], songs with low 
intensity are usually associated with calm, relax, or de-
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pressed emotions, while songs with high intensity, are 
associated with exciting or angry emotion. This is illus-
trated in Figure 3. In addition, songs with thick texture, 
i.e., many instruments and voices playing simultaneously, 
are generally associated with more intense and excited 
feeling. On the other hand, songs with thin texture, i.e., a 
few instruments or voices, are commonly found in calm 
and relax music. Audio signals in thick-texture music are 
likely to have flatter spectra, compared to those in the 
thin-texture music. Thus we propose to use both the sig-
nal intensity and spectral flatness features to compute a 
“degree of noisiness” (DoN) attribute, which is related to 
the mood of the song.  
 

 
Figure 3.  Thayer’s model of mood [8] 

 
Three values are defined as the DoN label: 0. 0.5, and 

1, which correspond to “low”, “medium”, and “high” re-
spectively. A low DoN means that the song is perceived 
as quiet and calm, while a high DoN means loud and 
noisy. We found that in many pop songs, the DoN level 
varies noticeably between the first and the second half of 
the song. Therefore, two DoN labels are used to describe 
a song, one for the first half of the song and one for the 
second half.  

Prior to the DoN analysis, the audio signal is normal-
ized by its maximum amplitude. Since the beginning and 
ending of the songs usually contains silence, the first 
10% and the last 10% of the signal in each song are dis-
carded. The remaining signal is then divided into two 
halves as described above. For each frame of 100 ms 
long, the signal intensity is computed by  
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m tX

T
mP  (11) 

where P(m) is the power of mth frame, Xm is the signal of 
mth frame in time domain, and T is equal to 1600 for 
16KHz sampling and 100ms frame size. From the frame-
level signal intensity values, we compute the mean and 
standard deviation of the whole segment (half of the 
song), which are denoted by Mpower and SDpower, respec-
tively. Similarly, we compute the mean and standard de-
viation of the spectral flatness over each segment, which 
are denoted by MSF and SDSF, respectively. The spectral 
flatness, SF(m), is defined by 

� �
� �

� ��
�

�
�

� K

k
m

K
m

K

k

kF
K

kF
mSF

1

1

1
 (12) 

where |Fm(k)| is the magnitude spectrum of Xm computed 
by 2048-point DFT, K is equal to 1023. The DC term 
(k=0) is ignored in the computation.  

Each DoN class is represented by a single-mixture 
Gaussian model, which models the four-element feature 
vector {Mpower, SDpower, MSF, and SDSF}.  The DoN attrib-
ute vector of a song is defined as: 

� �21 , NNDoN �F  (13) 

where N1 and N2 corresponds to the label in the first and 
second half of the song, respectively.  
 

2.3 Computation of Similarity Score 

Let A and B denote two songs. The overall similarity be-
tween A and B is the weighted sum of the similarities 
computed for the five audio attributes. The similarity 
value of each attribute has the range of 0 (most dissimi-
lar) to 1 (identical). The superscript in the attribute vec-
tors and elements denotes the song from which the at-
tribute is computed. For instrument and singing style at-
tributes, the similarities sinst(A,B) and ssing(A,B) are com-
puted by cosine similarity, i.e.  
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and 
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For gender, the similarity, sgend(A,B), is defined as: 
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Tempo similarity, stempo(A,B) , is computed in a similar 
way as the gender, except that we take the average over 
the three components in the tempo attribute vector, i.e.,  
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For the discrete class labels in the DoN attribute vectors, 
a normalized form of Euclidean distance is used for 
sDoN(A,B), which is defined as, 
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Energy 
Level 

Stress 
Level 

Anxious 
Angry 
Terrified 

Sad 
Depressed 
Bored 

Excited 
Happy 
Pleasure 

Calm 
Relaxed 
Serene 
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The overall similarity score is the weighted sum of the 
similarities by all attributes, 

� � � ��
�

�
attributemusicx

xx BAswBAs
 

,,  (19) 

where wx denotes the weight for attribute x. The weights 
are determined empirically based on the observations 
from subjective evaluation. 

3. SUBJECTIVE EVALUATION 

Subjective evaluation is carried out to obtain a set of ref-
erence similarity scores that can be considered as the 
ground truth. These similarity scores will be used for two 
purposes: (a) to analyze which attributes are more impor-
tant to human listeners when comparing two songs, and 
(b) to determine the optimal weights in the proposed ob-
jective similarity computation.  

A total of 215 subjects participated in the listening 
tests. 43 Chinese pop songs, each with duration of about 
4 minutes, were selected as the test materials. These 
songs were not included in the training set of 500 songs. 
They are chosen in a way that within this limited number 
of test songs, the varieties of instruments, singers, tempo, 
and mood are maximized. For the test song Q, 10 candi-
date songs were manually selected from the remaining 
songs in the test set so that we have various degrees of 
differences in the attributes between the candidates and 
the query songs. Five subjects were asked to listen to Q 
and the 10 candidate songs, denoted as Ci, i={1,2,…,10}. 
The subject was asked to rate the similarity between Q 
and Ci, on the scoring scale as shown in Figure 4.  

A test session was divided into two parts, in the first 
part, a subject was asked to first listen to song Q, and 5 of 
the candidate songs. The subject was allowed to repeti-
tively listen to Q if he/she liked to. There was a short 
break after the first part. Then the second part starts by 
listening to Q again, and then the remaining 5 candidates. 
The orders of playing the candidate songs are different 
from one listener to another. 

4. EXPERIMENTAL RESULTS 

We first investigated on the importance of each music 
attribute in the proposed similarity measure. This is done 
by assigning the weight of one attribute to be 1 and the 
others to be zero. For the query song Q in the set of sub-
jective test songs, we compute the objective similarity 
score of Q and each of the 10 candidates using (19) and 
obtain a similarity vector SQ = {s(Q,C1), s(Q,C2), … , 
s(Q,C10)}. From the results of subjective evaluation, we 
compute the average subjective similarity scores from all 
subjects that were tested with this set of songs. The re-
sulted scores form the subjective similarity vector de-
noted as EQ={e(Q,C1), e(Q,C2), … , e(Q,C10)}. The 
Spearman’s rank correlation between SQ and EQ, denoted  

 
Figure 4.  Scoring scale 

by �Q, is computed for each query song. Subsequently, 
the overall average of correlation is computed over the 43 
songs. The results are shown in Table 1. It is observed 
that the importance of the attributes in human listening is 
highly uneven. Instrument and gender are the least rele-
vant attributes. The correlation values are close to zero, 
indicating that subjective scores are almost uncorrelated 
to the objective similarity. Singing style and tempo are 
more important, with a small but positive correlation. 
DoN is the most important attribute with the highest cor-
relation between objective similarity and subjective 
scores.  

 
Attribute Average Correlation 

Instrument 0.07 
Singing style 0.20 
Gender 0.06 
Tempo 0.24 
Degree of Noisiness 0.49 

 
Table 1. Correlation of each attribute to subjective scores 

 
Next we try to determine a set of optimal weights for 
similarity computation in (19) by maximizing the 
correlation to subjective listening. Exhaustive search is 
performed. The attribute weights are varied from 0 to 10 
with an increment step size of 1. It was found that the op-
timal set of weights are 1, 2, 0, 3, and 4 for instrument, 
singing style, gender, tempo, and DoN, respectively. The 
average correlation achieved with this set of weights is 
equal to 0.544. Although it is not a very high correlation, 
the result shows that these audio attributes are still useful 
in modeling subjective similarity judgment of Chinese 
pop songs. The weights are in agreement with our obser-
vations on the study of single attribute. 

Figure 5 shows the distribution of the correlation val-
ues for all test songs when the optimal weights are ap-
plied. Among the 43 songs, 5 songs have negative values 
of correlation, and 27 have correlations higher than 0.6. 
This indicates that the proposed objective similarity 
measure can fairly model the subjective similarity for 
most of the songs. 

As part of the subjective test, each human subject was 
asked to fill in a survey questionnaire. The subject had to 
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rank from 1 (most important) to 5 (least important) the 
following attributes when he/she considers the similarity 
of a pair of songs: rhythm, accompaniment instrument, 
singing style, lyrics, and languages. The average ranks of 
these attributes are tabulated in Table 2. The results 
match with what we found from the study of correlation 
between objective and subjective scores. Tempo and 
DoN, which somehow affect the perception of the rhythm, 
are the most important factors. Instrument and singing 
style are more or less the same in importance. Lyrics and 
languages (Cantonese or Mandarin) are the least impor-
tant factors. At the current stage, we only use attributes 
like tempo and DoN to model the rhythm. More complex 
attributes such as melody and chord information should 
give us a better model for the rhythm and obtain an ob-
jective similarity metric that better correlates with subjec-
tive scores. One interesting note is that some subject sug-
gests that attributes like atmosphere of the song, style of 
songs in different generations, and harmony of the songs 
may also be important. However these attributes are more 
abstract and difficult to extract from low-level audio fea-
tures. Metadata such as publication year, genre, etc. may 
be used in future system to better describe these attributes. 

 

 
Figure 5.  Histogram of correlations of 43 songs 
 

Attributes Average rank 
Rhythm 1.3 
Instrument 2.7 
Singing Style 2.9 
Lyrics 4.1 
Language 4.4 

 
Table 2. Average rank of attributes from survey 

5. CONCLUSIONS 

In this article we proposed five audio signal attributes 
that can be used to generate an attribute vector for a song 
in the Chinese pop song genre. The attribute vectors can 
then be used to compute similarity between songs, which 
is a fundamental process in content-based music recom-
mendation system. We found that among these attributes, 
tempo and degree of noisiness play the most important 
role in approximating the subjective scores, followed by 
singing style and instrument. The results also indicate 
that rhythmic and mood information is crucial in objec-
tive similarity computation.  
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ABSTRACT

In this paper, a system for the classification of the vo-

cal characteristics in HipHop / R&B music is presented.

Isolated vocal track segments, taken from acapella ver-

sions of commercial recordings, are classified into classes

singing and rap. A feature-set motivated by work from

song / speech classification, speech emotion recognition,

and from differences that humans perceive and utilize, is

presented. An SVM is used as classifier, accuracies of

about 90% are achieved. In addition, the features are an-

alyzed according to their contribution, using the IRMFSP

feature selection algorithm. In another experiment, it is

shown that the features are robust against utterance-speci-

fic characteristics.

1. INTRODUCTION

According to the IFPI Digital Music Report 2010 [11] , the

catalogue of digital music from the licensed music services

contained more then 11 million tracks in 2009. For some

years, researchers have been working on tools that sim-

plify the handling of this large amount of data. Automatic

content-based analysis is now part of a multitude of differ-

ent applications. The algorithms help people to visualize

their music collections and generate playlists. Music lovers

can discover new music with the help of music recommen-

dation engines. DJs use software for automatic tempo and

beat detection.

This work is about automatically labeling short snippets

of isolated vocal tracks according to their vocal character-

istics. The segments are classified into two classes, rap and

singing. These two classes are the dominant vocal styles

in HipHop and contemporary R&B music. A successful

labeling could further be useful in urban sub-genre clas-

sification, serve as a basis for vocal characteristics song

segmentation, and help analyzing the song structure. Also,

intelligent audio players could be designed, that automati-

cally skip all sung or all rapped parts in R&B and HipHop

music songs, depending on the preferences of their users.

Rap is a form of rhythmically speaking, typically to ac-

companiment music. As pointed out in [7], singing con-

tains a larger percentage of voiced sounds than speaking.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

For Western music, the singing voice also covers a wider

range of fundamental frequencies. In addition, singing

tends to have a much wider dynamic range in terms of am-

plitude. According to [8], singing voice tends to be piece-

wise constant with abrupt changes of pitch in between.

In natural speech, the pitch frequencies slowly drift down

with smooth pitch change in an utterance. This peculiarity

can also often be observed in rap passages. While rapping,

artists are quite free in their choice of the pitches, while the

fundamental frequencies in singing are usually related to

the harmonic or melodic structure of the accompaniment.

In a survey conducted in [5], subjects had to label vocal

utterances with a value from 1 (speaking) to 5 (singing),

and explain their decision. For one utterance, 5 subjects

used the word ”rap” in their explanation. The mean score

of this utterance was 3.74. Rap seems to be perceived

somewhere in between singing and speaking, in that spe-

cial case even a bit more singing than speaking. Differ-

ent subjects mentioned melody, rhythm, or rhyming com-

bined with musical scales as features to discriminate sing-

ing from speaking. However, rhythm descriptions might be

less important for rap / singing classification, since rap and

singing are both rhythmically while speech is not. Further,

repetitions, the clarity and sharpness of pitch, or the pres-

ence of vibrato have been identified to be present in singing

rather than speaking. Another feature for the discrimina-

tion of speech and song as denoted in [9] is stress. It is

stated that in English language speech, stress affects the

meaning of the utterance. This is another one of the points

where speech and rap differ. In rap, where the voice is used

as instrument, accentuation often is part of the rhythm.

In previous work [4] the classification into singing and

rap has been investigated on full songs (vocals + accompa-

niment), using common low-level features and a Gaussian

mixture model based classifier. One of the outcomes of

this work has been, that, although the classifier produced

reasonable results, the classification was highly influenced

by the accompaniment music. We therefore suggest to

build the system composed of two major components: vo-

cal track isolation and the classification of isolated tracks,

using a feature set designed towards this task. This paper

focuses on the second objective.

To the knowledge of the authors, automatic content-

based discrimination of isolated singing and rap tracks has

not yet been investigated elsewhere. However, research has

been carried out on the task of singing and speaking clas-

sification. Investigations on the rap voice in a musicology

context have been carried out though, e.g., [6].
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In [5], a set of features is presented to discriminate be-

tween singing and speaking including statistics over F0

and ∆F0, vibrato detection, repetition detection, and the

proportions of voiced frames, unvoiced frames, and silent

frames, and repetition features.

Another system is presented in [19]. Based on features

like the rate of voiced sounds, the standard deviation of

the duration of voiced sounds, and the mean silence dura-

tions, an SVM is trained for singing / speaking classifica-

tion. This classifier is used to forward sung queries to a

query by humming system, and spoken queries to a speech

recognition system.

[12] present another study on speaking / singing dis-

crimination. The first part addresses human performance.

They find that already 1 second of audio signal is enough to

classify with an accuracy of 99.7% accuracy. Still 70% are

reported on signals of 200 ms length. Further, it is inves-

tigated, that the performance drops, when either spectral

or prosodic information is distorted in the audio signal. In

the second part, the task is performed using Mel frequency

cepstral coefficients (MFCCs), ∆MFCCs, and ∆F0 as fea-

tures and a maximum likelihood classifier based on Gaus-

sian mixture models (GMM).

Another field working with energy-based and pitch-fea-

tures on vocal signals is speech emotion recognition (e.g.,

[17, 18]).

The remainder of this paper is organized as follows. In

Section 2, the features and classifier are described. Sec-

tion 3 deals with the experiments that have been conducted.

There, also the used data and the general experimental set-

up is introduced. The results and their meaning are dis-

cussed in Section 4. Finally, the conclusions and an out-

look are given in Section 5.

2. APPROACH

In this section, the used features and the classifier that has

been utilized, are explained.

2.1 Features

The features contain the information about the audio sig-

nal, that is accessed by the classifier. Therefore, it is im-

portant, that the features are well designed with respect to

the task.

Some of the features are calculated from the pitch of the

vocal segment. YIN [3] has been used as F0-estimator. In

addition to an F0-estimation in octaves over time, YIN’s

output also includes the instantaneous power (IP) and the

ratio of aperiodic power to the total power (ATR).

All F0-estimations are transformed in the relative pitch

representation (RPR), which is a mapping into an interval

of one octave width around the dominant frequency. First,

a histogram with 100 bins is calculated over the estimated

F0 values. The center frequency of the bin with the highest

value in the histogram is used as dominant frequency. Too

large or small frequencies are halved or doubled respec-

tively, until they fit into the chosen interval. By doing so,

octave-errors are removed. Of course, also absolute pitch

information is removed, but absolute pitch is mainly artist

depended, and a contribution to rap / singing classifica-

tion is not expected. The resolution of the YIN features is

1378 samples per second. Figure 1 and Figure 2 show the
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Figure 1. RPR progression of a singing snippet.
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Figure 2. RPR progression of a rap snippet.

RPR progression for an exemplary singing and rap snip-

pet respectively. One difference between the two examples

is, that for singing, regions of almost constant pitch (RPR

values of approximately 0.2, 0.0, -0.2, and -0.45 in Figure

1) can be observed, while for rap the RPR values are per-

manently changing. Based on RPR, IP, and ATR, a set of

features is extracted.

First of all, the number of non-silent frames is deter-

mined, based on thresholding of IP. The ratio of non-silent

frames to the number of overall frames will be denoted

ERatio.

Next, from the non-silent frames, the number of voiced

frames is determined, using a threshold on ATR. The ratio

of voiced frames to the number of non-silent frames will

be denoted VRatio. As already stated, rap is supposed to

contain less voiced frames than song.

In another in-house study it has been discovered, that

song segments have a lower syllable-density than rap seg-

ments. IP can be used as onset detection function. Based

on adaptive thresholding, the number of onsets is estimat-

ed, which is then divided by the length of the segment.

This feature is denoted ORatio.

As another step, from the voiced frames the segments

are determined, during which |∆RPR| is below a thresh-

old. Segments of a length smaller then 10 frames are dis-

carded. The ratio of frames that contribute to such a seg-

ment and the number of voiced frames is denoted CRatio.

All the following calculations are performed on the RPR

frames, that belong to a segment.

The mean of∆RPR and the mean of∆∆RPR also serve

as features, denoted PitchDiff and PitchDDiff. Further,

the mean of |RPR|, MeanC, and the variance of RPR,

VarC are calculated.
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The ratio of the number of frames with negative ∆RPR

and the number of frames with positive ∆RPR is denoted

SLRatio. In sung segments, either constant or with vi-

brato, both components are balanced. However, in rap seg-

ments a decreasing pitch can often be observed, and as a

consequence, the SLRatio would be larger than 1.

A histogram over RPR with a resolution of 3 bins for

each note is calculated, for a coarse approximation of the

shape of the pitch distribution. Rap segments tend to have

an unimodal RPR-distribution (Figure 3). Sung segments

often have multimodal RPR-distributions, depending on

the number of different notes that are sung in an utterance,

as depicted in the example of Figure 4. Further, the RPR-

distribution of a sung segment tends to have much sharper

peaks than the distribution of a rap segment. The distance

of the two bins with the largest values, divided by the width

of the histogram will be denoted NoteDist. Dividing the

second largest value in the histogram by the largest one,

leads to the NRatio.
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Figure 3. RPR-histogram for a rap snippet.
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Figure 4. RPR-histogram for a singing snippet.

In addition, MFCCs are extracted from the audio sig-

nal. MFCCs are a popular feature in speech recognition

and describe the spectral envelope. In [10], their applica-

bility to modeling music has been shown, and as a conse-

quence they have been successfully used in different mu-

sic information retrieval tasks since then. For each snippet,

the mean of all contributing frames is calculated. MFCCs

are not part of the feature-set, they are used in a system

for comparison reasons to describe the robustness of the

feature-set in terms of utterance-sensitivity.

2.2 Classifier

Support vector machines (SVM, [2]) have been used as

classifier. An SVM consists of a set of support vectors,

that span a hyperplane in the feature space. This hyper-

plane separates two classes. The class of a test-observa-

tion depends on on which side of the hyperplane the test-

observation is located in the feature-space. This can be cal-

culated incorporating the dot-products of the feature vector

and the support vectors. In the training stage, the support

vectors are determined based on training observations.

In order to use non-linear hyperplanes, the feature space

is transformed in a higher-dimensional space by the use of

a kernel function. Computational costs for the transforma-

tion and the calculation of the dot-products can be reduced

by selecting the kernel in a way that the dot-product can

also be expressed in the original feature space. A radial

basis function (RBF) kernel has been used, that is parame-

terized by γ.

Another parameter of the SVM is C, the weight of the

error term during training. LibSVM [1] has been used as

SVM implementation.

3. EXPERIMENTS

Following the approach section, the system setup, includ-

ing the data, and the performed experiments are explained.

3.1 Data

A dataset of 62 songs from 60 different artists has been

used in this study. Acapella versions of commercial Hip-

Hop and contemporary R&B songs, performed in English

language have been used. In these genres, songs are of-

ten released including an acapella and instrumental ver-

sion. Other artists or DJs then can make remixes. For all

songs, the segments containing only monophonic singing

or monophonic rap have been determined.

Each segment is cut into 3s snippets, that overlap by

0.5s. The influence of the segment length is not evaluated

in this paper. Although [12] reports that already snippets

of 1 second length contain enough information for humans

to accurately classify speech and singing, a larger snippet

size has been chosen, since it is then more likely to ob-

serve notes with different pitches in singing snippets. The

final dataset consists of 815 rap-snippets and 584 singing-

snippets.

3.2 System setup and evaluation

Training and evaluation is performed using 5-fold cross-

validation. All snippets are randomly distributed amongst

the 5 folds using an utterance filter, which means, that all

snippets from one song (belonging to one utterance) are

distributed in the same fold. Each of the folds serves as

test-data once and is part of the training-data in the other

cases. The training data is used to determine the parame-

ters of the SVM, i.e., the support vectors, C, and γ. It is

crucial in SVM training / classification that all the features

have approximately the same range. Therefore the data has

to be normalized. Variance-normalization is used, in order

to make the data zero mean unit variance. The mean µ and

the standard deviation σ have to be estimated.

A reasonable choice of C and γ is important for good

classification results. Both parameters are estimated us-

ing 3-fold cross-validation on the training data. This stage
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will later be referred to as development stage. The distri-

bution into the folds is done randomly again. However,

at this point it is possible to decide whether an utterance

filter should be applied or not. A three-stage grid-search

has been employed. Since this process itself also consists

of training and evaluation, µ and σ have to be determined

every time the training-data changes due to recomposition

from different folds.

Having determined C and γ, µ and σ are estimated

based on the whole training-data, the training-data is nor-

malized, and the SVM is trained with the previously de-

termined C and γ. Finally, the performance is measured

using the test-data, which is the test-observations from the

one out of five folds, that has not been used for training and

development.

The performance of a trained system both in evaluation

At and development Ad is measured in accuracy. The ac-

curacy of a classifier on given data is calculated by dividing

the number of correctly classified test-observations by the

number of all test-observations. Accuracy can be sensitive

to imbalanced test-data. So if for example the test-data

contains 80% observations from one class and only 20%

observations from the other class, a classifier, that would

always choose the same class would lead to a performance

of either 80% or 20%, depending on which class he always

choses. Therefore the test data is made balanced during the

evaluation by randomly picking 584 observations from the

815 rap snippets.

The whole process, incorporating the random distribu-

tion into five folds, the development and training of the

classifier, and its evaluation, is performed multiple times

(denoted #runs), since this process contains random ele-

ments and is therefore indeterministic. The mean and vari-

ance of the accuracies in the test series are given as final

measure, denoted µA,t and σ2
A,t. Further, in Table 2 also

µA,d and σ2
A,d, are given, which are the accuracies during

development for the chosen C and γ. Matlab is used as

experimental framework.

3.3 Feature selection

A feature selection algorithm (FSA) has been used to give

an estimation of the contribution of each of the features.

Inertia ratio maximization using feature space projection

[16] is a filter FSA, where the criteria of choosing features

is distinct from the actual classifier. For each feature di-

mension an r-value is determined, which is the ratio of

the between-class inertia to the total-class inertia. The fea-

ture with the largest r is chosen, then an orthogonalization

process is applied to the feature space, in order to avoid

the choice of redundant dimensions during following it-

erations. These steps are repeated until a stop criterium

applies. The order of the features after feature selection

reflects their importance according to the feature selection

criterion, that should be correlated to the classification per-

formance to a certain extend.

3.4 Utterance filter

One of the goals in machine learning is to build systems

that are able to generalize. Also, performances of classi-

fiers should be compared based on unseen test data. In

order to achieve this, it is necessary to strictly discrimi-

nate training-data and testing-data during development and

evaluation of the system. The distribution of the data in

training and test-set can be even more restricted. It is com-

mon practice to put all the segments of a song in the same

dataset, to for example avoid that the system is trained with

a segment from the song and tested with a similar segment

from the same song. In [15], it is suggested to put all pieces

of an artist in the same dataset in a genre classification task.

With experiments it is shown, that the performance of a

system decreases significantly, if this so called artist filter

is used. A possible reason for this is, that the system might

focus on perceptually not so relevant information such as

production effects [14].

As described in 3.2, an utterance filter is always ap-

plied in the 5-fold cross-validation setup, since it is pos-

sible, that the suggested feature set also reflects utterance-

specific characteristics. In the 3-fold cross-validation de-

velopment stage however, the utterance-filter can be ei-

ther applied or omitted. Comparing performances based on

systems with and without utterance-filter helps in describ-

ing the robustness towards utterance-specific characteris-

tics. If a system generalizes well, µA,t and µA,d should be

approximately equal.

The mean over the MFCC-frames of a snippet is a fea-

ture, that is supposed to be utterance-specific. In 4.3, the

use of an utterance-filter is analyzed for the proposed fea-

ture-set and the mean-MFCC feature.

4. RESULTS AND DISCUSSION

The results of the performed experiments are listed and dis-

cussed in this section.

4.1 Feature contribution

In Table 1, the outcome of the FSA is denoted. Overall,

feature selection has been performed 69425 times. In all

runs, the VRatio feature has been selected first, as can be

seen in column 2, belonging to rank 1. Further important

features are CRatio, SLRatio and ORatio, that have been

chosen 54989, 8175, and 6240 times as second feature re-

spectively. The most unimportant features according to the

IRMFSP are PitchDDiff and VarC (often chosen on rank

10 or 11 according to the values in column 11 and column

12).

The mean r-value of the first selected feature is 0.52,

followed by 0.47 for the second selected feature. r de-

creases drastically from the second to the third selected

feature. In [16], it is suggested to stop the iterative fea-

ture selection process as soon as r of the current iteration

is below 1/100 of r in the first iteration. Following this

criterion, the 6 top features would have been selected.
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Rank 1 2 3 4 5 6 7 8 9 10 11

r̄ 0.5191 0.4716 0.0459 0.0151 0.0094 0.0068 0.0046 0.0034 0.0018 0.0004 0.0001

CRatio 0 54989 0 2 91 54 891 4511 5932 1678 1277

ERatio 0 0 0 359 2218 6062 13300 24101 17819 3644 1922

MeanC 0 0 0 1367 21200 9070 8650 13060 12116 3257 705

NoteDist 0 21 6432 50987 8455 2720 686 120 4 0 0

NRatio 0 0 0 3505 12729 8077 12597 9916 21221 1305 75

ORatio 0 6240 1880 10822 11029 9791 20787 7385 1376 112 3

PitchDDiff 0 0 0 0 5 54 794 3593 7596 39962 17421

PitchDiff 0 0 12249 2342 12096 27695 9244 4585 1195 17 2

SLRatio 0 8175 48864 41 1601 5902 2464 1999 357 22 0

VarC 0 0 0 0 1 0 12 155 1809 19428 48020

VRatio 69425 0 0 0 0 0 0 0 0 0 0

Table 1. Ranks of different features in the feature selection process.

4.2 System Performance

Number of features determined with IRMFSP

µ
A
,t

82

84

86

88

90

92

0 2 4 6 8 10 12

Figure 5. Performance subject to the number of features.

The final performance of the system is plotted against

the number of features after IRMFSP in Figure 5. The top

performance, 90.62% is achieved using 9 features. Using

the feature-set consisting of all 11 features leads to a mean

accuracy of 90.53%. The largest gain in performance is

reported from 2 features (85.14%) to 3 features (88.78%).

4.3 Influence of the utterance filter

Table 2 contains the results of the investigation of utter-

ance-sensitivity. For the suggested feature-set (full) the

performance decrease is 1.09% (91.63% down to 90.54%

from development to testing) with utterance filter. Without

utterance-filter 3.07% (from 93.88% down to 90.81%) are

observed. These small decreases originate in the fact that

µA,d is result of the optimization of C and γ, while µA,t is

not. Further, during development, imbalanced test-data is

used for the evaluation, which can also lead to differences

between both values. On the full feature-set, µA,t is almost

similar for both systems, with and without utterance filter.

Feat. u.filter µA,t σ2
A,t µA,d σ2

A,d #runs

full yes 90.54 0.53 91.63 0.16 1588

full no 90.81 0.49 93.88 0.03 1583

MFCC yes 67.71 6.71 72.84 1.17 1084

MFCC no 65.08 3.85 96.36 0.04 934

Table 2. Influence of the utterance-filter.

Applying an utterance-filter to the MFCC-feature re-

sults to an decrease from 5.13% (from 72.84% down to

67.71%), which again can be explained with the optimiza-

tion procedure. If the system is trained with the MFCC-

feature without using an utterance-filter, the development-

performance is 96.36%, which is the highest one achieved

in the experiments. But on new utterances, the perfor-

mance drastically decreases to 65.08%. In our data, artists

that rap do not sing and vice versa. Without the utterance-

filter, different parts of the same utterance are in the test-set

and the training-set during the system-development, and a

task like that can also be performed by an artist-detection

or utterance-detection system. MFCCs are well known for

their capabilities to capture speaker characteristics, and are

therefore often used in speaker recognition systems. So in

the development stage, the system is trained to classify into

rap and singing by actually identifying utterances. A µA,d-

value of 96.36% shows, that, MFCCs are an appropriate

feature for this task. On the contrary, µA,t is determined

classifying snippets from unknown utterances. An utter-

ance detection system cannot do that well, which leads to

a low accuracy of 65.08%. For the MFCC-system with

utterance filter, as already reported the difference is much

smaller. For the full feature-set, no large difference be-

tween µA,t and µA,t could be observed. This set therefore

is not sensitive to utterance-specific characteristics.

Comparing µA,t for the MFCC-systems with and with-

out utterance-filter, one can see that the system trained with

utterance-filter performs 2.63% better. A possible reason

is that MFCCs seem to be able to also classify based the

vocal characteristics to a certain extend, but when trained
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without utterance-filter, the classifier seems to ”learn the

task that is easier to perform”, which might be utterance-

identification instead of vocal characteristics classification.

When trained with utterance-filter, there is no utterance-

identification development data provided. But since the

difference is so small, there might be other reasons.

5. CONCLUSIONS AND OUTLOOK

A system for the classification of isolated vocal tracks into

the classes singing and rap has been presented. A feature

set, motivated by differences perceived by human is devel-

oped. Accuracies of over 91% are achieved on 3 second

snippets of isolated vocal tracks from commercial urban

music recordings. Further, it has been shown in experi-

ments with an utterance-filter, that the suggested feature-

set is not sensitive to utterance-specific characteristics.

As a next step, the application on full tracks, where

no isolated vocal tracks are available, will be investigated.

Since the described system is not designed to also work

on mixtures of vocal tracks and accompaniment, the vocal

track has to be separated from the song. Methods for the

separation of the vocal track as described in, e.g., [13, 20,

21] are currently investigated. The system that has been

described in this paper can also serve as benchmark for the

source separation algorithms. Further, a study incorporat-

ing listening test is intended, in order to evaluate human

performance on this task.
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ABSTRACT 

This paper proposes a novel and effective approach to 
extract the pitches of the singing voice from monaural 
polyphonic songs. The sinusoidal partials of the musical 
audio signals are first extracted. The Fourier transform is 
then applied to extract the vibrato/tremolo information of 
each partial. Some criteria based on this vibrato/tremolo 
information are employed to discriminate the vocal par-
tials from the music accompaniment partials. Besides, a 
singing pitch trend estimation algorithm which is able to 
find the global singing progressing tunnel is also pro-
posed. The singing pitches can then be extracted more 
robustly via these two processes. Quantitative evaluation 
shows that the proposed algorithms significantly improve 
the raw pitch accuracy of our previous approach and are 
comparable with other state of the art approaches submit-
ted to MIREX. 

1. INTRODUCTION 

The pitch curve of the lead vocal is one of the most im-
portant elements of a song as it represents the melody. 
Hence it is broadly used in many applications such as 
singing voice separation, music retrieval, and auto-
tagging of the songs. 

Lots of work which focuses on extracting the main 
melody of songs has been proposed in the literature. Po-
liner et al. [1] comparatively evaluated different ap-
proaches and found that most of the approaches roughly 
follow the general framework as follows: Firstly, the 
pitches of different sound sources are estimated at a giv-
en time and some of them are then selected as the candi-
dates. The melody identifier then chooses one, if any, of 
these pitch candidates as a constituent of the melody for 
each time frame. Finally the output melody line is formed 
after smoothing the raw pitch line. Since the goal of most 
of these approaches is to extract the melody line carried 
by not only the singing voice but also the music instru-

ments, they do not consider the different characteristics 
between the human singing voice and instruments: for-
mants, vibrato and tremolo. More related work can be 
found in our previous work [3]. 

In the present study, we apply the method suggested 
by Regnier and Peeters [2], which was originally used to 
detect the presence of singing voice. This method utilizes 
the vibrato (periodic variation of pitch) and tremolo (pe-
riodic variation of intensity) characteristics to discrimi-
nate the vocal partials from the music accompaniment 
partials. We apply this technique to the singing pitch ex-
traction so that the singing pitches can be tracked with 
less interference of instrument partials. 

The rest of this paper is organized as follows. Section 
2 describes the proposed system in detail. The experi-
mental results are presented in section 3, and section 4 
concludes this work with possible future directions. 

2. SYSTEM DESCRIPTION 

Fig. 1 shows the overview of the proposed system. The 
sinusoid partials are first extracted from the musical au-
dio signal. The vibrato and tremolo information is then 
estimated for each partial. After that, the vocal and in-
strument partials can be discriminated according to a 
given threshold, and the instrument partials can be there-
fore deleted. With the help of instrument partials dele-
tion, the trend of the singing pitches can be estimated 
more accurately. This trend is referred to as global pro-
gressing path and indicates a series of time-frequency 
regions (T-F regions) where the singing pitches are like-
ly to be present. Since the T-F regions consider relatively 
larger periods of time and larger ranges of frequencies, 
they are able to provide robust estimations of the energy 
distribution of the extracted sinusoidal partials.  

On the other hand, the normalized sub-harmonic 
summation (NSHS) map [3] which is able to enhance the 
harmonic components of the spectrogram is computed, 
and the instrument partials which are discriminated with 
lower thresholds are deleted from NSHS map. After that, 
the global trend is applied to the instrument-deleted 
NSHS map. 

 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. 

© 2010 International Society for Music Information Retrieval  

The energy at each semitone of interest (ESI) [3] is 
then computed from the trend-confined NSHS map. Fi-
nally, the continuous raw pitches of the singing voice are 
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estimated by tracking the ESI values using the dynamic 
programming (DP) based pitch extraction. 

An example is shown in the evaluation section (3.2). 
The following subsections explain these blocks in detail. 

2.1 Sinusoidal Extraction 
This block extracts the sinusoidal partials from the 

musical audio signal by employing the multi-resolution 
FFT (MR-FFT) proposed by Dressler [4]. It is capable of 
covering the fast signal changes and maintaining an ade-
quate discrimination of concurrent sounds at the same 
time. Both of these properties are extremely well justified 
for the proposed approach. 

The extracted partials with short duration are excluded 
in this stage because they are more likely to be produced 
by some percussive instruments or unstable sounds. 

2.2 Vibrato and Tremolo Estimation 

After extracting the sinusoidal partials, the vibrato and 
tremolo information of each partial are estimated by this 
block by applying the method suggested by Regnier and 
Peeters [2]. 

Vibrato refers to the periodic variation of pitch (or 
frequency modulation, FM) and tremolo refers to the pe-
riodic variation of intensity (or amplitude modulation, 
AM). Due to the mechanical aspects of the voice produc-
tion system, human voice contains both types of the 
modulations at the same time, but only a few musical in-
struments can produce them simultaneously [5]. In gen-
eral, wind and brass instruments produce AM dominant 
sounds, while string instruments produce the FM domi-
nant sounds. 

Two features are computed to describe vibrato and 
tremolo: frequencies (the rate of vibrato or tremolo) and 

amplitudes (the extent of vibrato or tremolo). For human 
singing voice, the average rate is around 6Hz [6]. Hence 
we determine the relative extent values around 6Hz by 
using the Fourier transform for both vibrato and tremolo. 
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Figure 1. System overview 
 

More specifically, to compute a relative extent value 
of vibrato for a partial existing from time to  , 

the Fourier transform of its frequency values is 

given by: 
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Lastly, the relative extent value around 6Hz is computed 
as follow: 
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The relative extent value for tremolo can be computed in 
the same way except that amplitude  is used instead 

of . 
kpa

kpf

2.3 Instrument/Vocal Partials Discrimination 

The instrument and vocal partials are discriminated ac-
cording to the given thresholds of the relative extent of 
vibrato and tremolo. The instrument partials can then be 
deleted if both the relative extents are lower than speci-
fied values. By selecting the thresholds, we can adjust the 
trade-off between instrument partials deletion rate and 
vocal partials deletion error rate. The higher thresholds 
are, the more instrument partials are deleted, but the more 
deletion errors of the vocal partials are. Usually a lower 
threshold is applied for instrument partials deletion from 
NSHS map, while a higher threshold is applied for the 
singing pitch trend estimation. The reasons will be ex-
plained in the following subsections. 

2.4 Singing Pitch Trend Estimation 

One of the major error types of singing pitch extraction is 
the doubling and halving errors where the harmonics or 
sub-harmonics of the fundamental frequency are erro-
neously recognized as the singing pitches. Here we refer 
the harmonic partials to those partials whose frequencies 
are multiples of the F0 partials. And we use “vocal par-
tials” to indicate the union of the disjoint sets of “vocal 
F0 partials” and “vocal harmonic partials”. Although the 
error can be handled by considering the time and fre-
quency smoothness of the pitch contours, most of the ap-
proaches only consider the local smoothness during a 
short period of time. However, there are many ‘gaps’ be-
tween successive vocal partials such as the non-vocal pe-
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Because the singing pitch trend should be smooth, the 
problem is defined as the finding of an optimal path 

riod between two segments of lyrics where instrument 
partials may be predominant in these gaps. These instru-
ment partials often act like ‘bridges’ which may mislead 
the pitch tracking algorithm to connect two vocal partials 
erroneously. 
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To deal with this problem, we propose a method to es-
timate the trend of the singing pitches. Firstly, higher 
thresholds are applied to delete more instrument partials. 
This might also delete some vocal partials, but it will not 
affect the pitch trend estimation as long as we still have 
enough vocal partials. Secondly, the harmonic partials 
are deleted based on the assumption that the lowest-
frequency partial within a frame is the vocal F0 partial. 
Moreover, these deleted harmonic partials are accumu-
lated into their vocal F0 partials. This process is repeated 
until we have only several low-frequency partials 
representing potential vocal F0 partials. As a result, most 
of the harmonic partials are deleted and the energy of the 
vocal F0 partials is strengthened. The energy of the re-
maining partials is then max-picked for each frame and 
summed up within a time-frequency region (T-F region). 
More precisely, given a spectrogram  computed 
from the previous MR-FFT, the strength  of the T-F 
region is defined as: 

],[ ftx

FTs ,

where  is the strength of the T-F region at the time 

index  and frequency index . The first term in the 
score function is the sum of strength of the T-F region 
along the path, while the second term controls the 
smoothness of the path with the use of a penalty coeffi-
cient 

TFTs ,

T TF

θ . If θ  is larger, the computed path is smoother. 
The dynamic programming technique is employed to 

find the maximum of the score function, where the opti-
mum-valued function  is defined as the maximum 
score starting from time index 1  to 
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t  is the index of the time frame. 
f  is the index of the frequency bin. 
n  is the number of T-F regions in the time axis 
m  is the number of T-F regions in the frequency axis 
T ,  F are the indices of the T-F region in time and frequency 

axes respectively. 

timeL ,  freqL are the time and frequency advance of the T-F region 
(hop-size) respectively. 

timeM ,  freqM are the number of the time frames and the number of 
the frequency bins of a T-F region respectively. 

 
The size of the T-F region should be large enough so 

that the global trend of the singing pitches can be ac-
quired. On the other hand, the T-F region should also be 
small enough so that the harmonics of the singing pitches 
can be separated in different frequency bands and the 
pitch changes can be captured in different time periods. 
Note that although  is fixed for all T-F regions, the 
frequency ranges are different for the T-F regions in dif-
ferent frequency bands. This is because the frequency 
bins in the result of sinusoidal extraction via MR-FFT are 
spaced by 0.25 semitone. In other words, the lower fre-
quency T-F region has smaller frequency range since the 
frequency differences between low fundamental frequen-
cy partials and their harmonics are relatively smaller than 
that of high fundamental frequency partials. 
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. At last, this optimal path is applied to 

the instrument-deleted NSHS map described in section 
2.6. 

2.5 NSHS Computation 

Instead of simply extracting the singing pitches by track-
ing the remaining vocal partials, the NSHS proposed by 
our previous work [3] is used since the non-peak values 
of the spectrum are also useful for the later DP-based 
pitch extraction algorithm. The NSHS is able to enhance 
the partials of harmonic sound sources, especially the 
singing voice. It is modified from the sub-harmonic 
summation [7] by adding a normalizing term. The reason 
of the modification is based on the observation that most 
of the energy in a song locates at the low frequency bins, 
and the energy of the harmonic structures of the singing 
voice decays slower than that of instruments [8]. It is 
therefore that, when more harmonic components are con-
sidered, energy of the vocal sounds is further streng-
thened. 

2.6 Instrument partials deletion and trend confine-
ment  

In these two blocks, the instrument partials detected with 
the lower thresholds in the previous block are first re-
moved from the NSHS map by setting their magnitude to 
zero (within the range of neighboring local minima). For 
extracting singing pitches, the thresholds are set to be 
lower in order to delete the instrument partials without 
deleting too many vocal partials. After that, the instru-
ment deleted NSHS map can be further confined to the 
estimated pitch trend (section 2.4). In other words, only 
the energy along the trend will be retained.                                              
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2.7  ESI Extraction from NSHS 
The ESI computed from the trend-confined NSHS 

map in the time frame t  can be obtained as follows [3]: 
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Class2 = vocal F0 partials with different α
Class2 = all vocal partials with different α
Class2 = vocal F0 partials with different β
Class2 = all vocal partials with different β

Figure 2. The DET curves of instrument partials false 
alarm rate versus instrument partials miss error rate by 
using different  values of α and β as the thresholds 
alone, respectively. (Here we assume class 1 is instru-
ment partials, and class 2 is either vocal F0 partials or 
all vocal partials.) 
 

where  is the NSHS map calculated in the previous 
stage, ,  is the total number of semi-
tones that are taken into account, and  is the frequency 
of the -th semitone in the selected pitch range. 
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Note that we also need to record the maximal frequen-
cy within each frequency range of ESI in order to recon-
struct the most likely pitch contours. 

2.8  DP-based Pitch Extraction 

The DP-based pitch tracking algorithm is previously pro-
posed in [3]. It is very similar to the algorithm described 
in section 2.4. The most likely pitch contour can be final-
ly acquired by tracking the ESI computed in the previous 
block. Note that we do not perform vocal/non-vocal de-
tection since it is not the focus of this study. In addition, 
the vocal/non-vocal detection can be implemented by 
various methods such as [2][3]. 

3. EVALUATION 

3.1 Evaluation for Instrument Partials Detection 

The frame size and hop size used in the sinusoidal extrac-
tion by MR-FFT are 64 ms and 8 ms respectively. The 
frequency bins in MR-FFT are spaced by 0.25 semitone 
from 80Hz to 1280Hz, resulting a total of 192 bins. The 
partials whose durations are less than 56 ms are removed 
since they are more likely to be generated by percussive 
instruments or unstable sounds. With regard to the rela-
tive vibrato and tremolo extent estimation, the parameters 
are set to be the same as those suggested by [2]. 

Two datasets were used to evaluate the proposed ap-
proach. The first one, MIR-1K, is a publicly available 
dataset proposed in our previous work [9]. It contains 
1000 song clips recorded at 16 kHz sample rate with 16-
bit resolution. The duration of each clip ranges from 4 to 
13 seconds, and the total length of the dataset is 133 mi-
nutes. These clips were extracted from 110 karaoke songs 
which contain a mixed track and a music accompaniment 
track. These songs were selected (from 5000 Chinese pop 
songs) and sung, consisting of 8 females and 11 males. 
Most of the singers are amateurs with no professional 
training. The music accompaniment and the singing voice 
were recorded at the left and right channels respectively. 
The ground truth of the pitch values of the singing voices 
were first estimated from the pure singing voice and then 
manually corrected.  All songs are mixed at 0 dB SNR, 
indicating that the energy of the music accompaniment is 
equal to the singing voice. Note that the SNRs for com-
mercial pop songs are usually larger than zero, indicating 
that our experiments were set to deal with more adversary 
scenarios than the general cases. The second dataset, 
ADC2004, is one of the testing dataset for audio melody 
extraction task in MIREX. It contains 20 song clips and 
the average length of the clips is around 20 seconds. Only 
the 12 vocal songs of ADC2004 are used for testing in 
this study. Although the size of ADC2004 is much small-
er than that of MIR-1K, it is convenient for comparing 
the performance of different algorithms which were sub-
mitted to MIREX. 

Figure 2 shows the DET (detection error tradeoff) 
curves of instrument partials false alarm rate versus in-
strument partials miss error rate by using different rela-
tive vibrato extent (α) and relative tremolo extent (β) as 
the thresholds alone, respectively. A higher instrument 
partials false alarm rate indicates more vocal partials are 
erroneously recognized as instrument partials. On the 
other hand, a higher instrument partials miss error rate 
indicates more instrument partials are recognized as vocal 
partials. Here we assume class 1 is instrument partials, 
and class 2 is either vocal F0 partials or all vocal partials. 
The solid line and dotted line show the results of using 
vocal F0 partials as class 2 with different α and β respec-
tively. The dashed line and dash-dot line show the results 
of using all vocal partials as class 2 with different α and β 
respectively. We want to show the results of using vocal 
F0 partials as class 2 because the goal of this study is to 
extract the singing pitches carried by these vocal F0 par-
tials. In contrast, the harmonic partials of the singing 
voice are comparably not as important. All of these par-
tials are extracted from the MIR-1K dataset. Since the 
MIR-1K has separated tracks of singing voice and ac-
companiment, the sources of the partials can be distin-
guished. 

From Figure 2, it is obvious that α has better discri-
minative capability to detect instrument partials than β. 
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This is because the pop music in MIR-1K has less wind 
and brass instruments than string instruments. We have 
found in our preliminary experiment1 that β has better 
vocal/instrument discriminative power for wind and brass 
instruments. 

The instrument partials deletion block applied α = 
0.1125 and β = 3. The vocal F0 remaining rate is around 
94.3% (or equivalently, 5.7% instrument partials false 
alarm rate) and instrument partial deletion rate is around 
60.4% (or equivalently, 39.6% instrument partials miss 
error rate). On the other hand, singing pitch trend estima-
tion applied α = 0.3 and β = 5.5 as the thresholds. The 
vocal F0 partials remaining rate is 72.9% and instrument 
partials deletion rate is 82.8%. 

3.2 Evaluation for Singing Pitch Trend Estimation 

The parameters for this experiment were set as follows. 
The sizes along time and frequency axes for each T-F re-
gion were 3 seconds and 13.5 semitones, respectively. 
Their hop sizes were 1.5 seconds and 4 semitones, 
respectively. The penalty coefficient θ  for the dynamic 
programming step was set to 1 empirically. 

Table 1 shows the results of the singing pitch trend es-
timation. More than 82% of vocal F0 partials remain in 
the pitch trend tunnel and the singing pitches remaining 
rate is 86%. On the other hand, only 19.19% of instru-
ment and vocal harmonic partials are retained within the 
pitch trend tunnel. In addition, 66.18% of the non-vocal 
F0 partials left in the pitch trend tunnel are deleted by the 
NSHS computation stage, and 8.07% of the remaining 
vocal F0 partials are deleted erroneously at the same time. 
Finally, 75.82% of vocal F0 partials remain while only 
6.49% of non-vocal F0 partials are kept in both deletion 
procedures. 

Figure 3 shows the stage-wise results in singing pitch 
extraction. Figure 3(a) shows all the partials after sinu-
soidal extraction. Figure 3(b) and 3(c) applies different 
thresholds on 3(a) to delete instrument partials for differ-
ent purposes. Because 3(b) applies lower thresholds than 
those of 3(c), more instrument partials are removed in 
3(c). The harmonic partials in Figure 3(c) are then further 
deleted in 3(d). Figure 3(f) is obtained by subtracting the 

                                                           

/

1 The experiment was also performed on the University of Iowa 
Musical Instrument Samples which is available 
at http://theremin.music.uiowa.edu  

detected instrument partials in Figure 3(b) from the 
NSHS map in 3(e). Figure 3(g) illustrates the T-F regions 
computed from Figure 3(d), with color depth indicating 
the strength each T-F region. Finally, Figure 3(h) is the 
NSHS map (Figure 3(f)) confined by the pitch trend tun-
nel. As can be seen in this example, the identified pitch 
trend tunnel is capable of covering the vocal F0 partials 
(represented by solid lines) while most of the instrument 
partials are deleted. 
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(a) Sinusoidal extraction using MR-FFT
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(e) The NSHS map
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(b) Instrunet partial deletion with α  = 0.1125 and β =3
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(f) Instrument partial-deleted NSHS map with α =0.1125 and β =3
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(c) Instrunet partial deletion with α  = 0.3 and β =5.5 
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(g) The estimated singing pitches trend-diagram
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(d) Harmonic partials deletion

0 1 2 3 4 5 6 7 8 9
80

107

143

190

254

339

453

604

806

1076

Time (secs)

Fr
eq

en
cy

 (H
z)

(h) Trend confined NSHS map
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Figure 3. Stage-wise results of singing pitch extraction 
for the clip ‘Ani_4_05.wav’ in MIR-1K. (a) Results af-
ter sinusoidal extraction using MR-FFT. (b) The re-
maining partials after instrument partial deletion thre-
sholds of α = 0.1125 and β = 3. (c) The remaining par-
tials after instrument partial deletion after threshold of α 
= 0.3 and β = 5.5. (d) The result after harmonic partials 
deletion. (e) The NSHS map. (f) Instrument partial-
deleted NSHS map with threshold of α = 0.1125 and β 
= 3. (g) The estimated singing pitches trend-diagram. 
(h) Trend confined NSHS map, where the solid line 
represents the ground truth of the singing pitches. 

 Vocal F0 Non-vocal F0 
Partials remaining in the 

pitch trend tunnel 
82.47 % 19.19 % 

Partials remaining in the 
pitch trend tunnel but de-
leted by instrument par-

tial deletion 

8.07 % 66.18 % 

Final partials remaining 75.82% 6.49% 
Vocal pitches remaining 
in the pitch trend tunnel 

86.30% 

Table 1. Performance of singing pitch trend estimation 
 

3.3 Evaluation for Singing Pitch Extraction 

Figure 4 shows the results of singing pitch extraction. 
The raw pitch accuracy is computed over the frames 
which were labeled as voiced in the ground truth. An es-
timated singing pitch is considered as correct if the devia-
tion from the ground truth is small than 1/4 tone (or 1/2 
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Since only the features suggested in [2] were used in 
this study, other characteristics of voice vibrato and tre-
molo could be use as new features for improving the per-
formance. Moreover, it is worth noting that the proposed 
instrument partial deletion and singing trend estimation 
techniques are general for pitch extraction, in the sense 
that they can be applied to any other spectrum-based me-
thods to delete the unlikely pitch candidates. Our imme-
diate future work is to explore the use of the proposed 
techniques on top of existing methods to confirm their 
feasibility in further improving the performance. semitone). The black bars show the performance of the 

previous NSHS-DP method [3] (ranked 5-th out of 12 in 
MIREX2009). The dark gray bars show the result of 
combining the proposed instrument partial deletion and 
dynamic programming without using the NSHS. The 
light gray bars are the same as the dark gray bar except 
that the NSHS map is applied. The light gray bars per-
form better than the ones without using the NSHS map, 
which confirms the argument that the non-peak values of 
the spectrum are also useful. Lastly the white bars show 
the performance of the proposed approach where instru-
ment partial deletion, singing pitch trend estimation, and 
NSHS are applied. 
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Figure 4. The results of singing pitch extraction. 
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Figure 5. Performance comparison. 
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ABSTRACT

The lyrics of a song are an interesting, yet underused type
of symbolic music data. We present SongWords, an ap-
plication for tabletop computers that allows browsing and
exploring a music collection based on its lyrics. Song-
Words can present the collection in a self-organizing map
or sorted along different dimensions. Songs can be ordered
by lyrics, user-generated tags or alphabetically by name,
which allows exploring simple correlations, e.g., between
genres (such as gospel) and words (such as lord). In this
paper, we discuss the design rationale and implementation
of SongWords as well as a user study with personal music
collections. We found that lyrics indeed enable a different
access to music collections and identified some challenges
for future lyrics-based interfaces.

1. INTRODUCTION

Lyrics are an important aspect of contemporary popular
music. They are often the most representative part of a
song. They verbally encode the songs general message,
thereby strongly contributing to its mood. For most people,
singing along is one of the easiest ways to actively partici-
pate in the music experience. Lyrics are also regularly used
for identifying a song, since the first or most distinct line
of the chorus often also is the song’s title. This importance
of lyrics makes purely instrumental pieces rather rare in
contemporary popular music.

Despite this central role of lyrics, computer interfaces
mostly still ignore them. Media player software for per-
sonal computers mostly only shows lyrics after installing
additional plug-ins, and although the ID3 metadata stan-
dard for digital music contains a field for lyrics, it is rarely
used. More complex operations, such as browsing and
searching based on lyrics, are even further away and scarce-
ly touched in research (e.g., [6]). We therefore think that
looking at music from the perspective of lyrics can allow
users a fresh view on their collection, reveal unknown con-
nections between otherwise different songs and allow them
to discover new patterns between the lyrics and other as-
pects of the music.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Figure 1. Browsing a music collection through its lyrics
on a tabletop

In this paper, we give an overview of SongWords (see
figure 1 and video 1 ), an application for tabletop computers
which supports navigating music collections and investi-
gating correlations based on the lyrics of songs. We present
related research on browsing and tabletop interfaces, de-
scribe and explain our interface and interaction design de-
cisions, talk about the implementation of SongWords and
present the results of a user study.

2. RELATED WORK

Content-based MIR often uses not only the instrumental
but also the vocal parts of a song. However, since ex-
tracting the words of a song directly from the audio sig-
nal has proven to be difficult, a common approach is to
gather lyrics from the internet based on available metadata
(e.g., [14]). These lyrics then enable tasks that go beyond
pure retrieval, such as semantic or morphologic analysis
(topic detection [13], rhymes in hip hop lyrics [9], genre
classification from rhyme and style features [16]). Other
work is approaching the problem of mapping textual lyrics
to an audio signal ( [12], [7]). Combining an ontology
with lyrics enables even more sophisticated tasks: Bau-
mann et al. used natural language processing and mapped
text to a vector space model to calculate a lyrical simi-
larity value for pairs of songs [1]. Fujihara et al. pre-
sented an approach for creating bi-directional hyperlinks
between words in songs that could be applied not only to
textual lyrics but also to the actual audio data [6]. They

1 http://www.youtube.com/watch?v=FuNPhN6zyRw
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Figure 2. Songs are organized on a map based on lyrics or tags (left), or sorted alphabetically by their artist’s name (right)

also describe an application called LyricSynchronizer [8]
that allows browsing collections by navigating through the
aligned song lyrics. There is, however, no work on visual-
izing a complete music collection based on lyrics.

In order to make complex music collections accessible,
a multitude of browsing interfaces are available. Beyond
the sorted lists commonly used in media player software,
abstraction and filtering capabilities are useful, e.g., by ap-
plying techniques from information visualization [23] or
by providing views based on different facets [2]. Since mu-
sic content provides a very high-dimensional data set, com-
plexity also has to be reduced for visualization. Pampalk’s
Islands of Music [17] is the best known example for this
approach. It has also been extended to incorporate multiple
views on different acoustic aspects [18]. Self-organizing
maps have also widely been used for visualizing text doc-
uments (e.g., [5]). In a similar vein, several projects al-
low browsing a music collection on tabletop displays using
self-organizing maps of different low- and high-level au-
dio features (SongExplorer [11], MarGrid [10], DJen [3],
MusicTable [22]). Lyrics, however, haven’t been used for
browsing so far.

3. INTERFACE DESIGN

When designing SongWords we started from two user tasks:
First, users should be able to easily browse and search
through their personal collections based on lyrics. Song-
Words should give them a new perspective on their own
songs and let them browse through the collection from word
to word (similar to [7]). Second, we wanted to allow users
to corroborate or disprove hypotheses about connections
between lyrics and genres. It should be easy to discover
correlations between different genres and words, such as
”Hip hop lyrics often use cuss words” or ”Pop songs often
revolve around ’love’ and ’baby’”.

Since such patterns are hard to discover by scrolling
through a text-based list, we decided to map the high-di-
mensional information space to a two-dimensional canvas
using Self-Organizing Maps [15]. Furthermore, as the re-
sulting map at a reasonable level of detail largely exceeded
the screen size, we also implemented a Zoomable User In-
terface to navigate the large virtual canvas on a physical

display. With a potentially very large number of items, we
finally chose to use an interactive tabletop display for its
advantages regarding screen space [24] and its potential for
multi-user interaction. In addition, zooming and panning
was found to work better using direct touch and bi-manual
interaction than using mouse input [4].

3.1 Visualization and Interaction

SongWords analyzes a given music collection and displays
it on a two-dimensional canvas. The visualization consists
of two self-organizing maps for lyrics and for tags, as well
as an alphabetical list by artist’s names for direct access to
songs (see figure 2). In addition, there is a view for the
results of text searches (see below). The user can switch
between these different views by pressing one of a number
of buttons at the border of the screen.

All songs of the collection are represented on the virtual
canvas by their cover art. To optimize the use of screen
space, each item is displayed as large as possible with-
out overlapping with other songs. The underlying self-
organizing map guarantees spatial proximity between sim-
ilar items regarding the currently chosen aspect (lyrics or
tags). The map contains black areas in the background that
connect clusters of items and displays the most relevant
words or tags next to the song items to give overview and
allow orientation. A common interaction that is possible
in each context is pan and zoom (see figure 3). Panning
is triggered by putting the finger to the canvas outside of a
song icon and dragging, with the canvas sticking to the fin-
ger. Zooming and rotation are controlled by two or more
fingers and the system calculates the geometric transfor-
mation of the canvas from their movements.

In addition to this geometric zoom for the virtual can-
vas, SongWords also implements a semantic zoom for song
icons (see figure 4): At the least detailed zoom level, songs
are represented as colored squares to reduce screen clutter
with thousands of items. The item’s colors represent the
home collection of the song when several collections are
available. When zooming in, the solid colors are replaced
by the artwork of the corresponding record. By zooming
further in (or tapping once on the song icon) the artist, ti-
tle and lyrics of the song become available. Here, the user
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Figure 3. Uni- and bi-manual gestures for panning, rotation and zoom

can scroll through the text if the screen space does not suf-
fice, mark sections of it and search for these sections in
the collection. Despite SongWords’ focus on text, we de-
cided against using an on-screen keyboard for text search.
Not only would it have taken up screen space (or required
an explicit mode switch) and suffered from typical prob-
lems of virtual keyboards such as missing tactile feedback,
it would also have allowed erroneous search terms. Search
results in turn are displayed on a spiral based on their rele-
vance (see below). If multiple song collections are visible
(e.g., from different users), each song icon has a colored
border that represents its home collection.

Figure 4. Different semantic zoom levels for song icons

Touching a song with two fingers displays the artist, ti-
tle and tags for this song. Touching a section of the map
with one finger displays the relevant tags or words from
the lyrics. Songs can be played by holding a finger on their
icon for a short time. In order to allow the discovery of
new music based on lyrics, songs with similar lyrics are re-
trieved from the internet and displayed alongside the songs
from the collection. They are rendered slightly transparent
in order to distinguish them from local songs. If the user
wants to listen to them, a thirty-second sample is down-
loaded and played.

One challenge in designing for tabletop displays is the
so-called orientation problem. While PC screens have a
fixed ’up’ direction, users can interact with a tabletop com-
puter from any side. The straightforward two-finger rota-
tion of SongWords prevents problems of readability (for
a single user) and lets the user quickly change position.
When the canvas’ orientation changes, the view buttons at
the bottom of the screen move along to always remain at
the bottom and thus well reachable.

Figure 5. Search results are arranged on a spiral based on
their relevance

3.2 User tasks

SongWords enables several distinct user tasks from sim-
ple browsing to gaining novel insight and testing hypothe-
ses. By their working principle, the self-organizing maps
visualize the similarity between different songs regarding
either lyrics or tags. While user-generated keywords can
be expected to be relatively consistent for one artist, the
lyrics map can bear greater surprises: When songs by one
artist are spread widely across the map, this means that this
artist produces very diverse lyrics (or employs different
songwriters). Similarly, the (in)consistency between songs
from different collections can also be seen from their col-
ored borders: If each color is dominant in a different corner
of the map, the overlap between the lyrics of the collections
is not very high. Discovery of new music based on lyrics is
supported in SongWords, as the lyrics and preview clips of
related but unknown songs are automatically downloaded
and added to fill the map.

The user can navigate from song to song using the text
search. By selecting a portion of the lyrics and double-
tapping, the system switches to the search view, in which
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all songs containing this sequence of words are arranged
by relevance. To use the two-dimensional space most effi-
ciently, the linear result list is furled into a spiral (see figure
5). Thereby, the user can quickly find all songs that contain
a favorite text section.

To keep track of one or more songs across different
views, they can be selected. Songs are selected by press-
ing the select-button and drawing one or more arbitrary
polygons around them. This causes all contained songs to
be highlighted with an overlay color, and when switching
from view to view their movement can thus be followed
effortlessly.

SongWords’ different views also allow the user to ver-
ify hypotheses. To confirm the hypothesis Hip hop lyrics
often use cuss words a possible workflow is to switch to
the lyrics view, select songs that gather around cuss words,
then switch to the tag-view (where the genre of a song is
usually the most prominent tag) and see how many songs
appear near to the hip hop area. Similarly, other hypothe-
ses regarding the lyrics of one artist (selected from the al-
phabetical view) or songs containing a certain word can be
examined.

4. IMPLEMENTATION

The SongWords prototype has been implemented in C++
for Windows XP. We use the OpenGL framework for ren-
dering and the BASS library for audio playback. Song-
Words was deployed on a custom-built FTIR tabletop dis-
play (99 x 74 cm, 1024 x 768 resolution) and multi-touch
input is handled by the Touchlib library. We rely on the in-
ternet for all information besides the actual artist, title and
album information of a song: After extracting this informa-
tion from the MP3’s ID3 tag, we use the search capabilities
of various internet lyrics databases (e.g., lyrics.wikia.com)
and parse the resulting HTML pages (similar to, for exam-
ple, [14]) to retrieve the lyrics. Album covers and user-
generated tags are accessed through the API of Last.FM.
In order to find the most representative words for a song,
we filter the text for stop words and afterwards perform
a term frequency inverse document frequency (TF/IDF)
analysis [21] to find discriminative terms. The resulting
word lists are stemmed with Porter’s stemming algorithm
[20], to merge related words. These stemmed words are
also shown on the map, and in some cases look misspelled.
The list of all discriminative stemmed terms forms the fea-
ture vector which is used for computing the self-organizing
map [15].

For creating the self-organizing map of tags, each song
item again receives a feature vector consisting of the tags
and their popularity. Our self-organizing maps are based
on the classical machine learning approach by Kohonen
[15] with one tweak: Since we wanted to make sure that
items do not appear at completely different positions in the
lyrics and tag views of SongWords, we don’t initialize the
learning phase of the tag map with random values, but with
the results from the lyrics map. Therefore, the chances that
identical items appear at similar positions on the two maps
are much higher without disturbing the dimensionality re-

duction capabilities. We also use a relatively low number
of 400 iterations for training in order to generate the visu-
alization sufficiently fast.

To allow discovery and fill the map with relevant re-
lated music, for every five songs in the collection a ran-
dom artist is picked, and a related artist is acquired from
Last.FM’s API beforehand (related artists are calculated
based on collaborative filtering of their massive user base).
For this artist, a search on Amazon.com is performed and
for each resulting song an audio sample is downloaded.
SongWords then tries to find lyrics on the aforementioned
online databases and once it succeeds, the complete song
is added to the training set of the map.

5. USER STUDY

After implementing SongWords, we evaluated it in order
to verify whether it properly supported the tasks for which
it was designed. As evaluating a complete visualization
system is difficult and an active field of research [19], we
decided to rely on qualitative user feedback and a small
number of participants.

5.1 Study Design

The main objectives of the study were to check usability
of the application and identify possible design flaws that
could prevent the user from fulfilling the two main tasks.
In addition, we wanted to test the application under real-
istic conditions and therefore asked participants to select a
sample of roughly thousand songs from their personal col-
lections. For this set of songs we gathered covers and lyrics
before the study and presented the participants with them.
As a third aspect of the evaluation we wanted to verify the
choice of using a tabletop display compared to a desktop
PC. Therefore, we ported SongWords to a PC and mapped
the input to the mouse: A left mouse-click was used for
panning and selection, a right click for displaying contex-
tual information and the scroll wheel for zooming.

5.2 Study Tasks

The participants were asked to fulfill tasks of increasing
complexity to find potential shortcomings of the user in-
terface. Basic tasks were ”Play three different songs” or
”Choose a song and find out the last line of the lyrics”
which could be easily completed using basic interaction
techniques. The more complex compound tasks required
participants to combine multiple aspects of the application:
”Find your favorite song, pick a word from the text that you
regard as special and find other songs that contain it” and
”Find words that are typical for a certain genre” were two
of them. For each task, we let our participants play around
with SongWords without previous instructions in order to
gather spontaneous feedback and see how self-explanatory
the interaction techniques were. If users weren’t able to
finish the task on their own the experimenter explained
how to do it after a few minutes. Initially, all participants
worked on and explored the desktop version of SongWords.
After they had fulfilled all tasks, they moved on to the
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Tabletop version and completed the same tasks again to
find the differences between the two setups. We were only
interested in the differences they perceived between the
two conditions interaction-wise and not quantitative data
like the required time, so using the same tasks and a pre-
defined order of desktop and tabletop led to no problems.

Finally, we also wanted to examine the influence of po-
tential multi-user interaction on SongWords: Therefore,
we matched our participants to pairs after each of them
had worked on their own, displayed their two collections at
the same time with color coding and presented them with
multi-user tasks. Exemplary tasks were ”Find genres that
appear in both collections” and ”Find the song from the
other’s collection that you like best”. We thereby wanted
to identify potential problems in coordinating the access to
the interface and in collaboration between the pairs. In the
end, the participants were asked to fill out a questionnaire
that collected demographic information and their opinions
for the desktop and tabletop version of SongWords.

5.3 Participants

We recruited six participants from the undergraduate and
graduate students of the University of [Removed for anony-
mous submission] (age: 24-30 years, one female). We sup-
plied them with a small Java application beforehand that al-
lowed them to conveniently choose a thousand songs from
their collections, retrieved required meta-data and sent the
results to us via e-mail. Only one of the participants was
recruited on short notice and was not able to provide us
with his song set, so we used a different participant’s col-
lection and adapted the tasks accordingly.

5.4 Results

Using both the tabletop version and the desktop version of
SongWords showed that the concepts work similarly well
on both platforms. Also, the participants mostly were able
to transfer their knowledge from one to the other. One no-
table exception was ”hovering” by using two fingers. None
of the users figured this out by themselves. We also ob-
served an artifact from desktop computing: Participants
kept trying to double click for starting song playback. The
change from a map view to the results view after searching
often went by unnoticed as the song’s text filled the screen
and occluded the switch. Additionally, none of the partic-
ipants actually discovered new music, as the slight trans-
parency of the suggested items obviously wasn’t enough
to make them stand out. Most of these flaws can easily be
fixed. Besides them, we didn’t discover any major usabil-
ity problems.

Finally, we also observed the participants while inter-
acting in pairs with SongWords. Observations were that
the color-coding of items from collections worked, even
though clear textual or tag distinctions between the col-
lections were not visible. Also as expected from previous
research on tabletop displays, participants quickly began
taking turns when interacting with the system in order not
to get tangled up.

6. DISCUSSION AND LIMITATIONS

One principal limitation of this approach is the fact that it
doesn’t apply to purely instrumental music. As discussed
in the introduction, this is not a very strong limitation for
contemporary popular music, but entirely excludes much
of the classical music genre, for example. One of the major
challenges in working with actual music collections is their
size. The hardware-accelerated graphics of SongWords
currently produce interactive frame rates for collections of
several thousands of songs, but for a practical deployment
there are other restrictions: Gathering the lyrics for a song
takes several seconds and has to be performed sequentially
(in order not to flood the web servers with requests). The
time for training the self-organizing map grows linearly
with the number of songs and has to happen twice (once
for the lyrics, once for the tags) when the program first
reads a new collection. Fortunately, the map can be incre-
mentally updated when new songs are added.

The text analysis capabilities of SongWords are cur-
rently limited to the most discriminative terms from each
song. These most important words can be seen in the maps
at first glance and spatial organization is correctly based
on these statistical relationships. As the analysis uses the
TF/IDF approach [21], it works especially well when the
collection is quite dissimilar regarding the words to pro-
duce clear distinctions. Subtler differences will go unno-
ticed, and would require more sophisticated methods from
Natural Language Processing.

7. CONCLUSION AND FUTURE WORK

We have presented SongWords, a user interface for brows-
ing music collections based on their lyrics. The visualiza-
tion using self-organizing maps, combined in a zoomable
user interfaces with interactions for searching, marking and
reordering, allows a new perspective on music collections.
In particular, we observed that users were able to explore
correlations between fragments of the lyrics and genre or
other user-generated tags. These correlations would be im-
possible to discover with current list-based interfaces or vi-
sualizations purely based on audio data analysis.

In an evaluation we identified a number of minor de-
sign flaws of our current prototype, which we will fix in
a future version. We will also explore more sophisticated
natural language processing and visualization methods, for
example involving synonyms and hierarchical clusters of
similarity in order to create an even more meaningful sim-
ilarity measure on lyrics.
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ABSTRACT

Polyphonic music classification remains a very challeng-
ing area in the field of music information retrieval. In this
study, we explore the performance of monophonic mod-
els on single parts that are extracted from the polyphony.
The presented method is specifically designed for the case
of voiced polyphony, but can be extended to any type of
music with multiple parts. On a dataset of 207 Haydn and
Mozart string quartet movements, global feature models
with standard machine learning classifiers are compared
with a monophonicn-gram model for the task of composer
recognition. Global features emerging from feature selec-
tion are presented, and future guidelines for the research of
polyphonic music are outlined.

1. INTRODUCTION

In the field of music information retrieval, much research
has been done in symbolic music genre classification, where
a model has to assign an unseen score to a certain class, for
example style, period, composer or region of origin. There
are two main categories of models that have been widely
investigated:global feature models and n-gram models.
Global feature models express every piece as a feature vec-
tor and use standard machine learning classifiers, whereas
n-gram models rely on sequential event features.

In a recent paper [10] the results of a thorough compar-
ison of these types of models are reported for the task of
classifying folk songs based on their region of origin on a
large monophonic data set. That study demonstrates that
the n-gram models are always outperforming the global
feature models for this classification task. It is an interest-
ing question whether this result still holds in a polyphonic
setting.

In the literature, it appears that most research has been
investigating classification or characterization of melodies
(monophonic) [5, 14, 16], but only few efforts have been
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made to develop polyphonic models. In [15], orchestrated
polyphonic MIDI files are classified using global features,
including some features about musical texture and chords.
A set of polyphonic features based on counterpoint proper-
ties was developed by [19], and applied to the task of com-
poser classification. They find that the distinction between
Haydn and Mozart string quartets, which is very interesting
from a musicological point of view, is a hard classification
task.

When considering polyphonic music, it is essential to
qualify the form of input. Two formats can be considered:

voiced: a fixed and persistent number of parts; and,

unvoiced: free polyphony that is not available in, or can-
not be easily divided into parts.

A typical example of voiced polyphony is a string quar-
tet, consisting of 4 well-defined voices (Violin 1, Violin
2, Viola and Cello). Unvoiced polyphony is common, for
example, in piano music.

Another way to view this dichotomy of polyphonic mu-
sic is in terms of a MIDI file type: voiced (type 1), or un-
voiced (type 0), realizing of course the grey area where
tracks within a type 1 file may contain internal polyphony,
and where type 0 files identify voices by use of channel
numbers.

This paper investigates how monophonic global feature
andn-gram models perform on the classification of Haydn
and Mozart string quartets in their original voiced format.
The voiced structure is exploited since these monophonic
models are applied to separate voices. The initial database
used in [19] containing 107 string quartet movements was
extended to a total of 207 movements in order to measure
statistically more relevant differences.

Two tentative hypotheses from previous work [11] are
being verified in this paper:

1. n-gram models also perform better than global fea-
ture models on monophonic parts extracted from the
polyphonic texture.

2. the first violin is the most distinctive voice of the
string quartets.
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Adagio
Wolfgang Amadeus Mozart
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Figure 1. The voice separation of the string quartets into Violin 1, Violin 2, Viola and Cello.

For the global feature models, special care has been
taken to apply feature selection within the inner loop of the
cross validation scheme, in order to avoid overoptimistic
evaluation estimates [8, 17]. A similar procedure has been
set up to tune the parameters of the learning algorithms
during the training phase. Features that emerge recurrently
in the feature selection process are highlighted.

The remainder of this paper is structured as follows. We
start by introducing the dataset and the music representa-
tions, global feature andn-gram models, and the classi-
fication methodology in the next section. Then, we give
the results of the described models on the Haydn/Mozart
dataset. We end with a discussion and some directions for
future work.

2. METHODS

In this section we describe the dataset used for our exper-
iments and we will give a short overview of both global
feature andn-gram models. Furthermore, we introduce
our classification methodology outlining the cross valida-
tion setup combined with supervised feature selection and
SVM parameter tuning.

2.1 Dataset and music representation

The Haydn/Mozart dataset is composed of 112 string quar-
tet movements from Haydn and 95 string quartet move-
ments from Mozart, including most of the pieces from the
dataset used in [19], but extending it as much as possible
to nearly double its size. We chose to focus on the pe-
riod 1770-1790 in which both composers were active, dis-
carding early or late Haydn quartets which might be easy
to classify. In order to maximize the number of quartet
movements from Mozart, we included 8 movements from
two flute quartets (K.285, K.298) and one oboe quartet
(K.370), which are written for flute/oboe, violin, viola and
cello, and thereby very similar to the string quartets. The
original scores in **kern format were found on the website
of the Center for Computer Assisted Research in the Hu-
manities at Stanford University [1]. We transformed these
to clean MIDI files, ensuring that the four voices appear on
separate tracks and that all barlines are correctly synchro-
nized in all voices by correcting several errors in note du-

rations. We retained only the highest note of double stops,
thereby reducing each voice to a purely monophonic se-
quence of notes. To enable the use of monophonic classi-
fication techniques, we created four monophonic data sets
called Violin 1, Violin 2, Viola and Cello by isolating each
voice of every string quartet movement, as illustrated in
Figure 1.

2.2 Global feature models

In this section we introduce global features and the cor-
responding global feature models. A global feature sum-
marizes information about a whole piece into a single at-
tribute, which can be a real, nominal or boolean value, for
example “average note duration”, “meter” or “major/minor”.
With a set of global features, pieces can be simply re-
expressed as feature vectors, and a wide range of standard
machine learning algorithms can then be applied to evalu-
ate the feature set.

Voiced polyphony presents the advantage of having a
fixed number of monophonic parts, which enables us to
isolate these parts and apply monophonic models. In this
paper three global feature sets are used to represent the
monophonic parts. These features describe melody char-
acteristics, mainly derived from pitch or duration, whereby
we mean that at least one pitch or duration value is in-
spected for the feature computation.

The global feature sets chosen are the following :

• The Alicante set of 28 global features, designed by
P.J. Ponce de Léon and J.M. Iñesta in [16]. This set
was applied to classification of MIDI tunes in jazz,
classical, and pop genres. From the full set, we im-
plemented the top 12 features that they selected for
their experiments.

• TheJesser set, containing 39 statistics proposed by
B. Jesser [13]. Most of these are derived from pitch,
since they are basic relative interval counts, such as
“amajsecond”, measuring the fraction of melodic in-
tervals that are ascending major seconds. Similar
features are constructed for all ascending and de-
scending intervals in the range of the octave.
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• The McKay set of 101 global features [15], which
were used in the winning 2005 MIREX symbolic
genre classification experiment and computed with
McKay’s software package jSymbolic [2]. These
features were developed for the classification of or-
chestrated polyphonic MIDI files, therefore many fea-
tures, for example those based on dynamics, instru-
mentation, or glissando, were superfluous for this
analysis of monophonic single voices and we were
able to reduce the set down to 61 features.

These global feature sets do not show many overlapping
features, only some very basic ones occur in maximum two
of the sets, such as the “pitch range”. Therefore it is inter-
esting to join the three feature sets to form theJoined set,
which means every piece is represented as a data point in a
112-dimensional feature space. We are interested in find-
ing out which features are relevant for this specific task
of composer classification, therefore we will apply feature
selection on this Joined set.

2.3 n-gram models

In this section we introducen-gram models and how they
can be used for classification of music pieces using event
features.n-gram models capture the statistical regularities
of a class by modeling the probability of an event given
its preceding context and computing the probability of a
piece as a product of event probabilities. This technique
is particularly well-known for language modeling, a word
in language being roughly analogous to an event in mu-
sic. The contextei−1 = [e1, e2, . . . , ei−1] of an eventei is
usually limited to a short suffix[ei−n+1, . . . , ei−1], mean-
ing the probability of the current event only depends on the
n − 1 previous events. Then-gram counts of the training
data are used to estimate the conditional event probabili-
ties p(ei | ei−1), and the probability of a new pieceeℓ is
obtained by computing the joint probability of the individ-
ual events in the piece:

p(eℓ) =

ℓ∏

i=1

p(ei | ei−1) (1)

To use ann-gram model for music classification, for each
class a separate model is built, and a new piece is then sim-
ply assigned to the class with the highest piece probability.

For monophonic music,n-gram models and more pow-
erful extensions are naturally applicable [6, 10], but poly-
phonic music needs first to be converted into a sequential
form. One way to do this is to simply extract a voice (e.g.,
Violin 1) from the polyphonic texture.

To reduce the sparseness of then-gram counts, we do
not model the pitch or duration directly, but we first trans-
form the music events by means of event features. An
event feature assigns a feature-value to every event, in our
case to every note in the music piece. The chosen event
feature determines the level of abstraction of the data rep-
resentation. The event feature we will use is the melodic
interval. Models are constructed for a class by extracting
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Figure 2. First measures of the first violon of the Ada-
gio K.080 of W.A. Mozart, illustrating the contrast be-
tween global features (lower three) and event features (up-
per four).

the same voice (e.g., Violin 1) for every piece in a corpus,
and viewing that piece as a sequence of melodic intervals.

Figure 2 illustrates the difference between global fea-
tures and event features on an excerpt of the first violon of
the Adagio K.080 of W.A. Mozart. A global feature de-
scribes a constant property of the whole piece, whereas an
event feature is associated to one particular note. A global
feature summarizes the data much more, but one uses a
whole collection of global features to build a global fea-
ture model, whereasn-gram models are constructed using
one single event feature.

2.4 Classification methodology

In this paper, two fundamentally different types of models
are applied to the task of composer classification. In order
to present any comparative results, we have to find a com-
mon way of evaluating the performance of these models. It
is common practice to set up a cross validation scheme to
obtain classification accuracies that generalize reasonably
well.

Our data set is very small from a general machine learn-
ing point of view, only 207 samples, it is therefore prefer-
able to doleave-one-out cross validation, where one uses
as much training data as possible to train the model, dis-
carding only one instance for testing purposes. For both
global feature andn-gram models, a leave-one-out cross
validation scheme was implemented.

Since global features represent every instance as a mul-
tidimensional feature vector, any standard machine learn-
ing classifier can be applied to get a performance accu-
racy. Simple classifiers such as Naive Bayes andk-nearest
neighbours can give us a good indication, but in this work
we opt for the more sophisticated Support Vector Machine,
shortly SVM, which has been proven to be a state-of-the-
art classifier [7]. An SVM makes use of a so-called ker-
nel function to determine non-linear decision boundaries
between classes, and a well-known kernel function, the
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RBF-kernel, is used in this paper [4]. In this setting, an
SVM has two parameters that need to be trained. The first
is related to the softness of the decision margin, expressing
the tradeoff between generality and classification accuracy,
commonly denoted asC. The second is a parameterσ spe-
cific to the RBF kernel function. In practice, these param-
eters can simply be tuned by doing a “grid-search” over a
large search-space of pairs(C, σ) as described in [12].

Another common machine learning technique isfeature
selection, which is often used to reduce the dimensionality
of the data or to discover which features are highly corre-
lated with the target class. In principle, feature selection
is decreasing the size of the hypothesis space, which leads
to a faster and more effective search for the learning al-
gorithms and tends to avoid overfitting. Therefore, it has
led to improved classification accuracies in some cases, or
to a compact feature set that describes the data in a more
interpretable, summarized way.

However, there is a subtlety in both feature selection
and SVM parameter optimization, a pitfall to avoid when
one usessupervised learning methods in combination with
a cross validation scheme [8,17]. In the simple case where
a separate training and test set are given, one has to apply
supervised preprocessing methods followed by the learn-
ing algorithm on the training set only, before testing the
resulting model on the test set. Expanding this to a cross
validation scheme, this means one must take care to apply
these methods within the inner cross validation loop. As
pointed out by [17], it is a common mistake to use both
training and test set for supervised feature selection, which
leads to overoptimistic and exaggerated performance re-
sults.

In this paper, SVM* denotes the model in which param-
eter tuning with a grid search has been done within the in-
ner loop of the cross validation scheme. Feature selection
is also implemented taking this special consideration.

3. RESULTS

In this section we describe the experimental results for the
classification of the Haydn and Mozart string quartet move-
ments. As a baseline, we keep in mind that the classes are
quite equally distributed (112 Haydn, 95 Mozart), which
means that 54.1% classification accuracy can be achieved
by always predicting Haydn.

To evaluate the global feature approach, the SVM* clas-
sifier method is applied to the Joined set. As described
above, this includes an SVM parameter tuning by doing a
grid search within each loop of the leave-one-out cross val-
idation. Furthermore, a supervised feature selection method
called Correlation-based Feature Selection (CFS) is also
applied. CFS is a filter method aiming to find a subset of
features that are highly correlated with the class but have
few intercorrelation among them [9]. The implementation
of SVM* and the CFS make use of the Weka machine
learning toolbox [3,20].

For then-gram model, we use a simple trigram model
of the melodic intervals. For each Haydn and Mozart a
separate model is built on the training set and a test piece

Voices SVM* SVM*+feat.sel. 3-grams
Violin 1 74.4 73.4 63.8
Violin 2 66.2 66.2 61.4
Viola 62.8 57.0 61.4
Cello 65.7 59.4 75.4

Table 1. The l.o.o. classification accuracies of the Joined
global feature set and the trigram model on the separate
voices extracted from the voiced string quartet movements.

is assigned to the class of which the model generates it with
the highest probability according to Equation 1. A global
classification accuracy is also computed with leave-one-
out cross validation. The results for both the global feature
models and the trigram models on the separate voices are
reported in Table 1.

It appears immediately that the results of previous work
done on a smaller database of 107 pieces do not hold up
[11]. Previously, we noticed a consistent tendency forn-
gram models to perform better than global feature models
regardless of the voice. Now we observe that then-gram
models perform well on the Cello dataset with an accu-
racy of 75.4%, but poorly on the other voices, whereas the
global feature models achieve an almost equally high ac-
curacy of 74.4% on the Violin 1. Our second hypothesis,
about the first violin being the most predictive one for a
composer, is also weakened because of this surprising re-
sult withn-gram models on the Cello. However, the global
feature result on Violin 1 is still an indication of its predic-
tive value. Additional computation of global feature mod-
els on the separate Alicante, Jesser and McKay sets con-
firm this indication, and show that we can order the voices
according to there predictiveness with global feature mod-
els as follows: Violin 1, Cello, Violin 2 and Viola.

The second column of Table 1 is showing the results of
the SVM* with CFS feature selection. These classification
accuracies are slightly lower than without applying feature
selection, which confirms that supervised feature selection
does not necessarily lead to an improvement when it is ap-
plied in the inner loop of the cross validation scheme. Nev-
ertheless, it is interesting for musicological reasons to see
which features emerge in the selected feature subsets for
each voice. Below we give three short examples of fea-
tures that are selected in one or more voices.

• “dmajsec”, i.e. the fraction of melodic intervals that
are descending major seconds, is selected for both
Violin 1 and Violin 2. Looking at the relative fre-
quencies of this feature, it appears that Mozart uses
more descending major seconds than Haydn for the
two violins.

• “shortestlength” emerges in both the Violin 2 and the
Viola. This is the shortest duration such that all dura-
tions are a multiple of this shortest duration (except
for triplets). Again by looking at the relative distri-
butions, one notices that Mozart tends to use smaller
shortest lengths in these voices.
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• “ImportanceMiddleRegister” is one of the features
selected for the Cello. This denotes simply the frac-
tion of notes with MIDI pitches between 55 and 72,
which is roughly the upper range of the instrument.
It seems that Haydn uses the cello more often in this
range than Mozart in these string quartets.

4. CONCLUSIONS AND FUTURE WORK

This paper has applied monophonic classification models
to the task of composer recognition in voiced polyphonic
music, specifically Haydn and Mozart string quartets writ-
ten in the period 1770-1790. An earlier dataset of string
quartet movements is extended to a total of 207 pieces to
obtain more statistical significance. The voiced structure
is exploited by extracting the separate voices to enable the
use of monophonic models. Several conclusions emerge:
that a simple trigram model of melodic interval performs
very well on the cello, achieving the best classification ac-
curacy of 75.4%, but is outperformed by the global feature
models on the other voices. Therefore, we are also unable
to conclude that the first violin is indeed the most predic-
tive voice for a composer, even though the results on Violin
1 are consistently best with the global feature approaches.

At first sight, these observations are rather disappoint-
ing, but they confirm the necessity of having a sufficiently
large dataset before making any claims. Learning algo-
rithms in symbolic music have to cope with this kind of
challenge, what shows there is still room for improvement
on a machine learning level.

Currently, we are investigating what causes this remark-
able result with the trigram model on the cello and the low
accuracy on the first violin, by looking carefully which
pieces are correctly classified by one method and not by
another, or correctly by both. Perhaps there is a core part
of this dataset that is ‘easy’ to classify, or else we might
consider using an ensemble model where one combines
the global feature models and then-gram models in order
to improve the overall accuracies. One could also wonder
how the so-called Haydn Quartets, six quartets written by
Mozart but famously inspired by and dedicated to Haydn,
influence these results. So far we have only found an indi-
cation that these particular movements are slightly harder
to recognize, this topic will be part of further research.

Further future work will address the issue of polyphonic
music in different ways. Figure 3 illustrates the global
structure of these future directions. As we detailed ear-
lier in this paper, polyphonic music can be voiced, like the
string quartets used for this study, or unvoiced, for exam-
ple piano sonatas. Each of these types of polyphony can
be modelled by monophonic or polyphonic models. The
models from this work were monophonic models, which
are situated in the outer left branch of the tree. Polyphonic
models for voiced polyphony can for example be based on
polyphonic global features taking into account voice in-
formation or harmonic global features, such as those used
in [15,19]. To apply monophonic models to unvoiced poly-
phonic music, one has to apply some voice extraction al-
gorithm first, for example theskyline method [18], which

POLYPHONIC MUSIC

VOICED UNVOICED

MONOPHONIC

MODELS

POLYPHONIC

MODELS

MONOPHONIC

MODELS

POLYPHONIC

MODELS

Figure 3. Tree structure outlining the possible ways to
approach the classification of polyphonic music.

simply slices polyphony at each distinct onset and takes the
highest pitch of every slice. The outer right branch of the
tree is dealing with unvoiced polyphonic music by means
of polyphonic models. One can easily imagine global fea-
tures representing this kind of data, for example by com-
puting relative frequencies of vertical intervals, i.e. in-
tervals between simultaneous notes. However, building a
truly polyphonicn-gram model remains a challenge, as
one has to deal with segmentation and representation is-
sues to cope with sparsity.
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ABSTRACT

We aim at improving a text-based music search engine by

applying different techniques to exclude misleading infor-

mation from the indexing process. The idea of the original

approach is to index music pieces by “contextual” informa-

tion, more precisely, by all texts to be found on Web pages

retrieved via a common Web search engine. This represen-

tation allows for issuing arbitrary textual queries to retrieve

relevant music pieces. The goal of this work is to improve

precision of the retrieved set of music pieces by filtering

out Web pages that lead to irrelevant tracks. To this end we

present two unsupervised and two supervised filtering ap-

proaches. Evaluation is carried out on two collections pre-

viously used in the literature. The obtained results suggest

that the proposed filtering techniques can improve results

significantly but are only effective when applied to large

and diverse music collections with millions of Web pages

associated.

1. MOTIVATION AND CONTEXT

Searching for music by issuing “semantic” and descriptive

queries has become a hot research topic recently [2, 4, 8,

11–13, 15]. While typical query-by-example systems re-

quire the user to have a specific piece of music at hand (or

at least in mind) when searching for other music, query-

by-description systems allow for typing in a short charac-

terisation or a related term to find desired music. More-

over, it is generally desirable to build systems that are ca-

pable of linking music to meaningful textual descriptions

(i.e., bridging what is often misleadingly called “seman-

tic gap” [17]). For instance, this capability can be used to

recommend music based on other textually represented in-

formation, e.g., by analysing the user’s currently viewed

Web page [7].

For the dedicated task of building a music search en-

gine, several approaches have been presented. In [4], Bau-

mann et al. describe a system incorporating various kinds

of meta-data, lyrics, and acoustic properties. To analyse
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queries, natural language processing methods and knowl-

edge from a semantic ontology are applied to map the query

tokens to the corresponding concepts. In [8], Celma et al.

propose usage of a Web crawler focused on audio blogs to

obtain textual descriptions for music. Blog entries are ex-

tracted and the associated music pieces are indexed based

on this information. From a text-based retrieval result,

also acoustically similar songs can be discovered. Yang

et al. [18] index a music collection using lyrics and apply a

combination of text and audio descriptors to cluster results.

In [15,16], Turnbull et al. present a method for semantic

retrieval. Based on the CAL500 data set – a collection of

500 songs manually labelled with descriptions represent-

ing music-relevant properties – models of these properties

are learned from audio features. The system can then be

used to retrieve relevant songs based on queries consist-

ing of the words used for annotation. In [2], this approach

is extended by incorporating multiple sources of features

(i.e., acoustic features related to timbre and harmony, so-

cial tags, and Web documents). These largely complemen-

tary sources are combined to improve prediction accuracy.

In [13], we propose an unsupervised strategy for music

retrieval that is capable of dealing with a large and arbitrary

vocabulary. Contrary to learning a pre-defined set of labels

(cf. [2,15]), music pieces are represented in a vector space

constructed from related Web documents. An improved

version of this approach is presented in [11]. Instead of

aggregating Web pages to construct term vectors, the re-

trieved Web documents are stored in an index. A given

query is processed by passing the query to this index and

applying a technique called rank-based relevance scoring

to the resulting document ranking. This scoring is based on

the associations between music tracks and Web documents

(as we further extend this approach in this paper, a more

detailed description can be found in Section 2). In [12],

we propose unsupervised methods to improve search re-

sults by integrating audio similarity. Results show that the

combinations can raise performance slightly but mainly in-

troduce noise.

With this work, we aim at enhancing the approach from

[11] by constructing filters that remove misleading infor-

mation from the Web document index and raise precision

of the retrieved music piece rankings (cf. [3]). Two of

these filters are built in an unsupervised manner, whereas

the other two make use of external annotations for learning

to distinguish between informative and noisy content.
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2. WEB-BASED MUSIC INDEXING

In the approach from [11, 12], music is indexed by using

“contextual” meta-information about the pieces under con-

sideration. This context-data is assumed to be found on

related Web pages retrieved via Google by issuing three

queries for each music piece m. Constructed from the

meta-information categories artist name, album name, and

track title, these queries are “artist” music, “artist” “al-

bum” music review -lyrics, and “artist” “title” music re-

view -lyrics. For each of these queries, the top-100 Web

pages are retrieved and joined into Dm, the set of pages

associated with m. All retrieved documents are also stored

in an index I . Relevance of a music piece m wrt. a given

query q is assessed by querying I with q and applying

rank-based relevance scoring (RRS) to the n most relevant

Web documents in I (Equation 1).

RRSn(m, q) =
∑

p∈Dm∩Dq,n

1 + |Dq,n| − rnk(p,Dq,n) (1)

In this equation, n denotes the maximum number of top-

ranked documents when querying I , Dq,n the ordered set

(i.e., the ranking) of the n most relevant Web documents

in I with respect to query q, and rnk(p,Dq,n) the rank of

document p in Dq,n. For retrieval, the final ranking of mu-

sic tracks is obtained by sorting the music pieces according

to their RRS value.

In the published evaluations [11, 12], precision hardly

ever exceeds 30% using this scoring approach, i.e., rank-

ings usually contain three times more irrelevant music piec-

es than relevant. Based on this, also subsequent steps such

as combination with audio similarity may suffer from er-

roneous input. Clearly, the reason for the high number of

irrelevant pieces has to be searched for in the underlying

Web pages. For indexing, all pages returned by Google

are considered relevant, irrespective of whether they actu-

ally contain information about or descriptions of the cor-

responding music piece or artist. Furthermore, the page

indexer does not distinguish between text that occurs in

the “main part” of the Web page and text that is used for

navigation or links to stories about other, completely un-

related artists. Thus, to improve precision of the retrieved

set of music pieces, in the next section, we propose four

different filtering approaches to remove noisy information

and documents.

3. DOCUMENT FILTERING TECHNIQUES

This section describes the proposed filtering methods to

exclude noisy information from the indexing process. We

explore two types: Unsupervised and supervised filters.

3.1 Unsupervised Filtering

The characteristic of these filters is that they aim at iden-

tifying misleading texts without information from external

sources. Hence, they can be applied to the index directly

after building it. The first filter does not remove full doc-

uments from the index, but tries to identify those portions

within the indexed text that do not contain specific infor-

mation. The second approach identifies and removes com-

plete documents.

3.1.1 Alignment-Based Noise Removal

As mentioned earlier, most indexed Web pages do not only

contain relevant and interesting information (if any at all).

Almost every page contains a site-specific header, naviga-

tion bar, links to related pages, and copyright disclaimers,

frequently automatically generated by a content manage-

ment system, cf. [9, 19]. Especially on music pages, these

segments often feature lists of other music artists, genres,

or tag clouds to facilitate browsing. This surrounding in-

formation is usually not relevant to the associated music

piece and should thus be ignored.

Removal of this kind of text is the aim of this filter.

Since large parts of the surrounding text remain the same

for most pages within a Web domain, we can identify re-

dundant segments by comparing several texts from the same

domain. Coherent parts are most likely to be non-specific

for a given music piece and can therefore be removed.

To this end, we adopt the multiple lyrics alignment tech-

nique originally used to extract lyrics from multiple Web

sources by matching coherent parts and preserving over-

lapping segments [14]. In the current filtering scenario, the

overlapping segments are going to be removed.

To apply the filter, we collect all documents belonging

to the same domain. Since for many blogs, the domain

alone does not indicate similarly structured pages – differ-

ent blogs are typically accessible via separate subdomains

(e.g., for blogspot.com) – we keep the subdomain if the

host section of the URL contains the word “blog”. For do-

mains that occur only up to five times in the page index,

no filtering is performed. For all other domains up to eight

documents are chosen randomly and used for alignment.

From the alignment, we choose all aligned tokens occur-

ring in at least 60% of the aligned texts and finally select

all text sequences consisting of at least 2 tokens. The re-

sulting sequences are then removed in all Web pages orig-

inating from the domain.

3.1.2 Too-Many-Artists Filtering

With this filter, the goal is to detect pages that do not deal

with only one type of music, i.e., pages that provide an

ambiguous content and are therefore a potential source of

error. Some of these pages can be identified easily, since

they contain references to many artists. Hence, we query

the page index with all artist names from the music collec-

tion and count the occurrences of each page in the result

sets. Constructing the filter simply consists in selecting a

threshold for the maximum number of allowed artists per

page. By systematically experimenting with this thresh-

old, we yielded most promising results when removing all

pages containing more than 15 distinct artists. Throughout

the rest of this paper, too-many-artists filtering refers to the

removal of pages containing more than 15 artists.
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3.2 Supervised Filtering

As already mentioned in [12], automatic optimisation of

the (unsupervised) Web-based indexing approach is diffi-

cult, since for arbitrary queries, there is no learning tar-

get known in advance (in contrast, for instance, to the ap-

proaches presented in [2, 15], where the set of possible

queries is limited). However, in terms of identifying sources

of noise, automatic optimisation approaches are somewhat

more promising, provided that a set of potential queries

with corresponding relevance judgements is available. The

idea is that by observing performance on a given set of

queries, it should be possible to learn to identify and ex-

clude misleading Web pages and therefore yield better re-

sults also on other, previously unseen queries. This is based

on the assumption that documents responsible for introduc-

ing noise to a music piece ranking contain erroneous (at

least ambiguous) information and are likely to introduce

noise to other queries too.

3.2.1 Query-Based Page Blacklisting

Following the general idea outlined in Section 3.2, we con-

struct a simple filter that blacklists (i.e., excludes) Web

pages contributing more negatively than positively to query

results. Hence, based on RRS we calculate a simple score

to rate a page p:

Sn(p) =
∑

q∈Q

(
∑

m∈Mp∩Tq

RRSn(m, q)−
∑

m∈Mp∩Tq

RRSn(m, q)

)

(2)

where Q denotes the set of all available queries/annota-

tions, Mp the set of all music pieces associated with page

p, Tq the set of all pieces annotated with q (i.e., relevant

to query q), and Tq its complement (i.e., all music pieces

not relevant to q). Informally speaking, over all queries,

we subtract the sum of RRS scores contributed to nega-

tive examples from the sum of RRS scores contributed to

positive examples. We then remove all Web documents p

with Sn(p) < 0, i.e., all documents that contributed more

negatively than positively over the course of all queries.

3.2.2 Query-Trained Page Classification

While the query-based page blacklisting filter represents

(if any) just the “laziest” form of machine learning (i.e.,

merely recognising instances without any kind of general-

isation), this filter aims at learning to automatically clas-

sify Web pages as either “positive” (keep) or “negative”

(remove). Hence, it should be better suited to deal with

new queries that provoke previously unseen (and thus un-

rated) Web pages. To get positive and negative examples as

training instances for the classifier, only pages that have ei-

ther contributed exclusively positively or exclusively neg-

atively are considered. Positive examples are defined as

{p | p ∈ Dq,n,∀q ∈ Q : Mp ∩ Tq = ∅} and negative

as {p | p ∈ Dq,n,∀q ∈ Q : Mp ∩ Tq = ∅} (cf. Eq. 2).

As a further requirement, only pages that appear in at least

two query result sets are considered. As feature represen-

tation for Web pages, we incorporate characteristic values

such as the length of the page’s (unparsed) HTML content,

the length of the parsed content, the number of different

terms occurring on the page, the number of associated mu-

sic pieces (i.e., |Mp|), the number of contained artist names

(cf. 3.1.2), as well as ratios between these numbers. Fur-

thermore, we utilise title and URL of the pages as very

short textual representations that are converted into a term

vector space (using the functions provided by WEKA [10])

and added as numerical features.

For classification, we decided to use the Random For-

est Classifier [5] from the WEKA package (with 10 trees).

Since there are usually significantly more negative than

positive examples, we also apply a cost-sensitive meta-

classifier to raise importance of positive instances (mis-

classification of positive instances is penalised by the ratio

of negative to positive examples).

4. EVALUATION

For evaluation of the different filtering approaches, we use

both test collections from [12]. The first collection, called

c35k, is a large real-world collection and contains 35,000

mostly popular pieces. For evaluation purposes, a bench-

marking set consisting of 200 queries and relevance judge-

ments has been created from Last.fm tags 1 . The second

collection is the CAL500 set, a collection of 500 songs

manually labelled with words representing various music-

relevant properties [15]. For comparison, we adopted the

139 category subset used in [12]. To test effectiveness of

the retrieval approaches, annotations are used as queries to

the system. They also serve as relevance indicator, i.e., a

track is considered to be relevant for query q if it has been

tagged with tag q. For evaluation of the supervised filtering

approaches, a 10-fold cross validation is performed on the

test collections, i.e., in each fold, 90% of the queries are

used to train the filters which are then applied and evalu-

ated on the remaining 10%.

To measure the quality of the obtained rankings, stan-

dard evaluation measures for retrieval systems are calcu-

lated, cf. [1]. Additionally to the “global” measures preci-

sion and recall, ranking measures like precision@10 doc-

uments, r-precision (i.e., precision at the rth returned doc-

ument, where r is the number of tracks relevant to the

query), and (mean) average precision (MAP, i.e., the arith-

metic mean of precision values at all encountered relevant

documents) are used for evaluation. To further compare

different retrieval strategies, we calculate precision at 11

standard recall levels. For each query, precision P (rj) at

the 11 standard recall levels rj , j ∈ {0.0, 0.1, 0.2, ..., 1.0}
is interpolated according to P (rj) = maxrj≤r≤rj+1

P (r).
This allows averaging over all queries and results in char-

acteristic curves for each retrieval algorithm, enabling com-

parison of distinct settings. To obtain a single value for

comparison of these curves, we calculate the area under the

curve (prec@11std.recall - AUC). For presentation of the

c35k collection, we decided to use tables instead of graphs

to show more detailed results (including significance tests).

1 http://www.last.fm

545

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Recall Precision

UNF ANR 2MA A+2 QPB QPC UNF ANR 2MA A+2 QPB QPC

n = 10 2.18 2.01 2.07 1.95 2.01 2.69 30.15 31.89 35.72 30.71 34.32 36.98

n = 20 3.74 3.95 3.93 3.66 3.89 4.93 29.02 31.30 32.86 30.91 33.91 37.11

n = 50 7.17 7.48 7.87 7.34 8.15 9.15 27.61 29.50 31.13 28.56 32.50 34.79

n = 100 12.72 12.09 12.58 11.92 12.80 14.26 25.99 27.64 29.05 27.25 31.75 32.42

n = 200 18.67 18.22 18.13 17.95 19.08 20.73 23.77 25.77 26.21 25.26 28.60 28.74

n = 500 29.31 29.60 29.84 28.16 29.96 32.00 20.12 21.69 21.71 21.00 24.76 23.19

n = 1, 000 40.38 40.31 40.11 36.41 40.43 41.52 16.88 17.86 18.19 18.00 20.75 18.92

n = 10, 000 80.50 79.56 76.80 57.55 73.50 73.32 7.29 7.42 7.87 11.90 9.63 8.62

Prec@10 r-Precision

UNF ANR 2MA A+2 QPB QPC UNF ANR 2MA A+2 QPB QPC

n = 10 31.19 34.94 37.76 32.74 36.45 37.32 2.16 1.99 2.05 1.79 2.01 2.68

n = 20 32.40 34.96 37.05 31.93 36.75 37.89 3.63 3.68 3.67 3.39 3.69 4.57

n = 50 38.45 36.20 41.70 36.52 40.25 43.90 6.52 6.85 7.08 6.29 7.30 8.38

n = 100 44.10 39.05 46.65 40.52 43.40 48.40 10.24 10.41 10.78 10.27 11.52 12.48

n = 200 47.75 42.15 48.90 43.82 46.95 49.60 14.22 14.54 14.68 14.27 16.03 16.83

n = 500 50.30 45.95 51.20 47.32 49.75 52.45 19.84 21.01 20.35 19.85 22.54 23.52

n = 1, 000 52.55 48.75 52.85 48.47 53.15 54.20 24.22 25.43 25.00 23.66 27.48 27.85

n = 10, 000 57.45 57.20 56.70 50.12 62.35 58.00 35.20 35.77 35.03 28.28 35.69 34.70

Avg. Prec (MAP) Prec@11Std.Recall - AUC

UNF ANR 2MA A+2 QPB QPC UNF ANR 2MA A+2 QPB QPC

n = 10 1.19 1.32 1.38 1.12 1.39 1.83 3.05 3.15 3.34 2.95 3.23 3.61

n = 20 1.84 2.14 2.24 1.86 2.26 2.95 3.64 3.98 4.07 3.74 4.06 4.78

n = 50 3.24 3.79 4.06 3.58 4.49 5.22 4.99 5.63 5.86 5.44 6.39 6.67

n = 100 5.54 5.93 6.29 5.67 7.00 7.64 7.11 7.56 7.91 7.34 8.51 9.14

n = 200 8.23 8.61 8.78 8.26 10.24 10.65 9.62 10.12 10.19 9.75 11.72 12.20

n = 500 12.39 13.30 13.19 12.38 15.06 15.93 13.76 14.69 14.57 13.89 16.45 17.43

n = 1, 000 16.10 17.37 17.01 15.45 19.41 19.84 17.22 18.84 18.36 16.82 20.82 21.03

n = 10, 000 29.98 30.60 29.80 21.86 30.92 29.22 31.25 31.84 31.07 23.07 32.05 30.39

Table 1. Comparison of unfiltered RRS (UNF) vs. Alignment-Based Noise Removal (ANR), Too-Many-Artists Filtering

(2MA), ANR+2MA (A+2), Query-Based Page Blacklisting (QPB), and Query-Trained Page Classification (QPCn=200)

for the c35k collection and different values of n, i.e., the maximum number of retrieved Websites incorporated in RRS.

QPB and QPC are performed upon ANR. Values (given in %) are obtained by averaging over 200 evaluation queries (for

supervised approaches via 10-fold Cross Validation). Entries in bold face indicate that there is no significant difference

between this entry and the best performing, i.e. bold entries indicate the “best group” (Friedman test, α = 0.01). Note that

due to the rank-based nature of the non-parametric Friedman test, results may belong to the best group even with lower

average values than significantly worse results.

Table 1 shows evaluation results on the c35k collection

for different values of n (number of top ranked Web docu-

ments when querying the page index). For the alignment-

based noise removal (ANR), we observe slight improve-

ments for the averaged results especially for precision, r-

precision, average precision and the area under the stan-

dardized precision-recall curve. However, in the Friedman

test these results are not significant. For recall and preci-

sion@10 we can see a significant drop in performance.

The too-many-artists filter (2MA) outperforms the un-

filtered RRS significantly in terms of precision and aver-

age precision for smaller values of n. A decrease is most

clearly visible for recall. In addition, we evaluated also the

combination of both unsupervised filters (A+2). In most

cases, this combination worsens results significantly which

is rather surprising, considering that these filters target dif-

ferent levels of noise removal. However, it seems that too

much information is excluded when using both.

Except for recall, both supervised approaches are con-

stantly in the best performing group, superiority is clearly

visible for precision. For the query-trained page classifica-

tion filter (QPC), it has to be mentioned that for values of

n > 500 the number of training instances gets very high,

slowing down the evaluation progress. For this reason, we

decided to use the QPC filter with the n = 200 setting also

for experiments with n 6= 200. This explains also the slight

drop for n ≥ 1, 000. Still, results are more than acceptable

for QPC.
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Recall Precision

UNF ANR 2MA A+2 QPB QPC UNF ANR 2MA A+2 QPB QPC

n = 10 5.96 6.10 5.85 6.00 6.10 6.69 25.77 27.17 25.72 26.99 27.22 28.35

n = 20 10.19 9.68 9.46 9.49 9.83 10.69 24.87 25.39 24.69 25.44 25.07 25.73

n = 50 17.99 18.09 17.20 17.61 18.23 17.89 22.84 23.14 22.44 22.94 23.22 22.68

n = 100 26.80 26.34 25.48 25.90 27.11 24.34 21.02 21.05 20.80 21.10 21.69 20.16

n = 200 38.63 38.62 37.24 37.21 37.95 31.75 19.15 19.30 19.11 19.25 19.67 18.54

n = 500 56.31 55.65 54.26 53.31 51.21 38.09 16.86 16.95 16.92 17.05 17.74 17.24

n = 1, 000 66.91 66.48 63.78 62.69 53.10 40.10 15.54 15.81 15.74 16.01 17.36 16.74

n = 10, 000 73.27 72.93 69.06 68.02 37.98 40.76 14.56 14.84 14.82 15.17 20.75 16.56

Table 2. Comparison of unfiltered RRS vs. the filter approaches for the CAL500 set averaged over 139 queries (cf. Table 1).

Note that in contrast to Table 1, in this table, bold and italic appearing entries indicate a significant difference to the group

of best approaches, i.e., worse results are marked. For all experiments with QPC, the setting QPCn=50 is used.
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Figure 1. Precision@10 (upper curves) and Avg. Prec

(MAP) (lower curves) for the CAL500 set and different

values of n (cf. Table 2).

For the CAL500 set, results are very disappointing (Ta-

ble 2). No proposed filter can significantly improve results

(except for precision of the supervised filters with high val-

ues of n, which go along with a dramatic loss in recall due

to a very high number of excluded pages). The reasons are

not directly comprehensible. One possibility could be that

in the case of the c35k set with associated Last.fm tags, the

approaches benefit from the inherent redundancies in the

tags/queries (e.g., metal vs. black metal vs. death metal).

In the case of the CAL500 set, queries exhibit no redun-

dancy, as the set is constructed to describe different di-

mensions of music. However, this would only affect the

supervised filters.

Another explanation could be that the CAL500 page in-

dex contains considerably less pages than the c35k index

(approx. 80,000 vs. approx. 2 million pages). First, and

also in the light that the CAL500 set has been carefully de-

signed, it seems possible that the index does not contain

so much noise. Hence, the proposed noise removal strate-

gies don’t work here. Second, since the index is rather

small, removal of a relatively high number of pages has a

higher impact on the overall performance. This becomes

especially apparent when examining the results of the su-

pervised approaches for high n. Apart from the results,

it should be noted that the CAL500 set is without doubt

very valuable for research (high quality annotations, freely

available, etc.) but at the same time, it is a highly artificial

corpus which can not be considered a “real-world” collec-

tion. Hence, some “real-world” problems maybe can not

be tested with such a small set.

5. CONCLUSIONS AND FUTURE WORK

We have demonstrated the usefulness of two unsupervised

and two supervised filtering approaches for Web-based in-

dexing of music collections. Evaluation showed inconsis-

tent results for two collections with very different charac-

teristics and suggests that the proposed filtering techniques

can improve results significantly when applied to large and

diverse music collections with millions of Web pages as-

sociated.

Regarding the proposed filtering techniques, more or

less all of them proved to be useful and could improve not

only the overall precision but also the ranking of music

pieces. By introducing supervised optimisation into this

originally unsupervised technique, there is still more po-

tential to tweak performance. For instance, we are con-

vinced that a more carefully selected feature set can easily

improve results of page classification further. Using anno-

tated sets for learning, also proper combination with audio

similarity, e.g., to raise recall, could be possible.

Instead of finding redundant portions in Web pages from

the same domain by aligning and matching their content,

techniques like vision page segmentation [6] could help in

identifying the relevant parts of a Web page. By extract-

ing smaller segments from Web pages, the principle of the

RRS weighting could be transferred to “blocks” and scor-

ing could be designed more specifically.

Another aspect not directly related to filtering pages be-

came apparent during experiments with the Too-many-ar-

tists filter. When querying the page index with the names
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of the contained artists, artists with common speech names

can be easily identified. As each artist only has a limited

number of associated pages in the index, true occurrences

are somehow normalised. For artists that occur much more

often than expected (outlier), it can be assumed that they

have common speech names. This finding could be inter-

esting for related tasks in future work.
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ABSTRACT 

Researchers in the field of OMR (Optical Music Recogni-
tion) have acknowledged that the automatic transcription 
of medieval musical manuscripts is still an open problem  
[2, 3], mainly due to lack of standards in notation and the 
physical quality of the documents. Nonetheless, the 
amount of medieval musical manuscripts is so vast that 
the consensus seems to be that OMR can be a vital tool to 
help in the preserving and sharing of this information in 
digital format. 

In this paper we report our results on a preliminary 
approach to OMR of medieval plainchant manuscripts in 
square notation, at the symbol classification level, which 
produced good results in the recognition of eight basic 
symbols. Our preliminary approach consists of the pre-
processing, segmentation, and classification stages. 

1. INTRODUCTION 

Several groups are currently working to build digital ar-
chives and catalogues using digital technologies [10, 11, 
12, 13, 14], of the huge number of early musical manu-
scripts accessible from multiple sources. The lines of re-
search of these groups in early music information re-
trieval range from the design of web protocols for digital 
representation of scanned early music sources to the 
automatic transcription of those sources through adaptive 
techniques [2, 5, 9, 10]. Given the physical and semantic 
characteristics of many of these documents (degradation, 
non-standard notation, etc.), great variability is intro-
duced to the data, and the subsequent analysis can be a 
quite difficult and time consuming task, usually requiring 
advanced expert knowledge. So, until very recently, those 
mentioned efforts were restricted mostly to build text 
catalogues and repositories of scanned images. 

In the case of standard modern music notation, OMR 
has achieved high levels of accuracy, and there are sev-
eral OMR systems commercially available [1, 15]. In the 
case of early music manuscripts, attempts to achieve good 
OMR results become more challenging as our sources go 
back in time. Still, researchers have extended their work 
to early music manuscripts, and in the past years we have 
observed advances in renaissance printed music and 
handwritten music [4, 5, 17], but still little has been re-

ported about experimental results with western plainchant 
medieval sources [2]. The work done by the NEUMES 
project [10], and most recently by Burgoyne et al. [3], are 
among the few experimental results with this particular 
type of source. In [2] the problem of non-standard nota-
tion is mentioned as the most critical issue for early 
manuscript OMR. For this reason, we start our research 
by restricting the manuscripts in square notation to be-
long to the XIV century and later, when square notation 
was already an established practice and basic symbols 
were more standardized than in previous neumatic alpha-
bets [16]. 

In this paper we aim to successfully classify the eight 
basic characters of western square notation, see Figure 1, 
using relatively simple and widely known image process-
ing and pattern recognition algorithms. If this proves suc-
cessful, we believe that more complex models, context 
information, and adaptive techniques can be used in the 
future to minimize the errors at the classification stage, to 
extend the span of examples that can be analyzed, i.e. less 
standard documents, and to include a whole semantic 
analysis. 

    
clivis climacus. pes scandicus 

    
punctum porrectus torculus virga 

Figure 1: Square notation basic symbols. 

Finally, it is necessary to mention that a big concern 
in this research area is the evaluation methods to be used. 
Symbol classification can be evaluated using the usual 
techniques, but creating a ground-truth for a full manu-
script (where even the experts sometimes disagree) would 
require an effort that is beyond the scope of this paper. 

2. OUTLINE 

In section 3 we describe the preprocessing stage, which 
includes binarization of the manuscript image, location of 
staff lines and staves that define our ROI (Region of In-
terest), and stave deskewing. In section 4 we describe our 
segmentation and classification strategy. Lastly, in sec-
tion 5 we present our conclusions and delineate some fu-
ture work ideas.  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
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3. PREPROCESSING 

3.1 Binarization and ROI Extraction 
As we said above, one of the biggest difficulties in 

analyzing early music manuscripts comes from the high 
variability on the image data introduced by the deterio-
rated state of the documents [9]. Besides dealing with a 
non-standard notation or non-standard scanning methods, 
the physical condition of some documents (high degrada-
tion, discoloration, missing parts, etc.) calls for an ade-
quate amount of preprocessing. Some possibilities for the 
preprocessing stage include filtering, spatial transforms 
(Hough transform has been proposed to correct staff line 
positions [5]), and adaptive thresholding. 

In order to binarize and extract the ROI we implement 
the adaptive approach proposed by Gatos et al. in [6]. The 
main advantage of this method is that it is able to deal 
with degradations due to shadows, non-uniform illumina-
tion, low contrast, smear, and strain. The disadvantage is 
that it is a parametric method, and in order to obtain good 
results some amount of parameter tuning is required [4]. 
The steps include an initial denoising using a 3x3 Wiener 
filter, a rough foreground estimation using Sauvola’s Lo-
cal Adaptive Threshold, a background estimation, and a 
final local thresholding using the distance between the 
Wiener filtered image and the background estimation. We 
did not implement the up-sampling stage in [6], because 
preliminary tests showed that it was not critical to detect 
our ROI. 

The original image I, the filtered image Iw, the back-
ground image Ib, and the final binary image If are shown 
in Figure 2. 

 

 
Original image I 

 
Filtered imaged Iw 

 
Background image Ib 

 
Final binary image If 

Figure 2: Binarization stages. 

We use the binary image If to detect our region of in-
terest, the area of the image where the relevant symbols 

are located, which in a musical document is a stave, i.e. a 
group of staff lines. There can be many staves in one 
document and we want to extract each one of them sepa-
rately. This also helps to minimize the presence of text 
and drawings in the analyzed images, elements that could 
make our analysis more difficult. 

As an initial approach, we perform a rough localiza-
tion of the staff lines by first detecting the positions of all 
the lines in the document using polar Hough transform. 
After the lines are extracted, we use another feature to 
decide if a group of lines is a stave. This feature is the 
space between lines, which can be also estimated from 
the Hough transform. Here we use the hypothesis that 
spaces between staff lines on the same stave are relatively 
smaller than the space between staves. We use a k-means 
classifier to group the spaces and detect the staves. Figure 
3 shows an example of stave detection. Only whole 
staves will be extracted, so staff lines that do not form a 
complete stave are not considered as part of the ROI. 

 

 
Figure 3: Stave detection. 

In Figure 3 it can be noticed that the whole length of 
the stave is not detected. To solve this problem we use 
heuristics based on the inter-staff line and inter-staves 
spaces and the dimensions of the image. 

3.2 Staves Deskewing 
Many OMR algorithms assume that staff lines are hori-
zontal, but this is not necessarily true in old manuscripts.  

 
Figure 4: Aligned staves. 

In order to facilitate the analysis, and in case we want 
to apply standard OMR techniques, it is useful to hori-
zontally align the images as much as possible. This can 
be done with the information already obtained from the 
Hough transform, by rotating against the Hough angle. 
The result of applying this rotation can be seen in Figure 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page.  
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4. Note that this approach does not address the issue of 
deformed staff lines. 

4. SEGMENTATION AND CLASSIFICATION 

As explained in the introduction, we aim to obtain good 
symbol classification results while at the same time using 
a relatively simple methodology. In general, the standard 
approach is to binarize the document and then segment 
and classify the symbols using binary representations. We 
cannot use this approach because, even though the binari-
zation we used above allows us to find the region of in-
terest in the image, it is not accurate enough to conserve 
all the pixel information of the symbols across all the 
documents in our database. Hence, we carry out the seg-
mentation directly from the extracted staves in grayscale. 
Due to the difficulty in removing lines from heavily de-
graded and deformed documents, we decided to skip the 
staff lines removal stage, and thus avoid a pixel-wise ap-
proach for symbol segmentation. Instead, we detect and 
segment whole symbols using pattern matching via corre-
lation, and then we use a SVM (Support Vector Machine) 
to classify the symbols from gradient-based features. 

4.1 Segmentation 

We use normalized correlations on each stave image to 
match an artificially generated binary pattern of each 
symbol to the regions where that symbol potentially ap-
pears. Some of the binary patterns can be seen in Figure 
1, but the classes that present more variability in size and 
geometrical distribution (pes, torculus, porrectus, clivis) 
are also divided in subclasses. These patterns were ap-
plied in 3 different scales, based in the height of the stave, 
to each stave image. After this process, a set of detected 
candidates is obtained. These candidates are the input for 
the SVM. An example of this process is shown in Figures 
5, 6, and 7. 

 

Figure 5: From top to bottom. Grayscale stave, 
normalized correlation image, and peaks of the 

correlation image. 

 

Figure 6: Pattern Detection, class virga. 

 
Figure 7: Segmented symbols, class virga (left, 

false detection). 

After testing our detection algorithm in real docu-
ments [14], we observe that all basic symbols were de-
tected with the binary patterns, but also many “false” 
candidates were extracted. These “false” candidates were 
mainly due to two causes: first, a basic pattern is actually 
part of another one, and second, a geometrical configura-
tion similar to the basic pattern is formed by certain ele-
ments in the document. Examples of both conditions are 
shown in Figure 8. 

  
Figure 8: Left, false pes detection (part of 

scandicus). Right, false torculus detection (part of 
porrectus flexus). 

4.2 Classification 

For Classification purposes, 1334 sample images of the 8 
basic symbols were manually segmented and labeled 
from 47 sheets of music available at the Digital Scripto-
rium [14]. These sources are square notation manuscripts 
from the XIV to the XVII centuries (to avoid transitional 
times [16]), and from different geographical locations 
(Spain, Germany, Italy, etc.). 

A size and position normalization using aspect ratio 
was performed on the samples [7], and 4 directional 
Sobel masks were applied to them (horizontal, vertical, 
left-diagonal, and right-diagonal) to obtain the gradient-
based features used for classification. These Sobel images 
were divided in 96 blocks, and the mean gradient for each 
block was calculated. Finally, all the values were stacked 
in a feature vector [8]. 

We trained a SVM with a quadratic kernel function, 
and we tested it using cross-validation. The training was 
made using a one-against-all approach, thus obtaining a 
classifier for each of the eight classes. A simple voting 
algorithm is used to decide the final class from the out-
puts of the eight independent classifiers. Three experi-
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ments were conducted, each with a different type of in-
put. In the first experiment, we used grayscale samples 
without any quality enhancement, in the second experi-
ment we used grayscale samples with contrast enhance-
ment, and in the third experiment we used binary sam-
ples. Results are shown in Table 1. 
 

Sample Recall 
Binary 0.8453 
Grayscale 0.9208 
Contrast enhanced 0.9610 
Table 1: Classification rates for SVM cross-

validation experiments. Values range from 0 to 1. 
 
Table 2 shows the test results from 3000 independent 

examples, by class, for contrast-enhanced samples.  
 

Class Precision Recall 
Clivis 0.9331 0.9914 
Climacus 0.9429 0.9519 
Pes 0.9646 0.9542 
Punctum 0.9674 0.9132 
Porrectus 0.8476 0.8580 
Scandicus 0.8667 0.8228 
Torculus 0.9261 0.9482 
Virga 0.9744 0.9311 

Table 2: Classification results for contrast-
enhanced samples. Values range from 0 to 1. 

The candidates extracted from Section 4.1 were tested 
in the most successful of the three SVMs, with good clas-
sification rates. In the case of  “false” candidates, the 
classifier is currently not capable of discern them as a dif-
ferent class, i.e. a class of  “wrong” samples independent 
of the 8 basic classes. 
 

5. SUMMARY AND DISCUSSION 

We believe that our results, while not being completely 
conclusive, show that using a gradient-based feature gen-
erates good classification results of square notation at the 
symbol level provided the results from both detection and 
segmentation stages are good. When combining the de-
tection stage with the classification stage, the perform-
ance is degraded by the presence of “false” detections ob-
tained with the normalized correlation pattern matching. 
However, even if these results are not ideal, we consider 
that the errors in the classification of the “false” candi-
dates can be reduced if we introduce two valuable ele-
ments into the analysis. The first element is the use of the 
redundancy in the detection, i.e. when two or more can-
didates are extracted from similar or overlapping posi-
tions in the image; the second element is the use of the 
context in which the symbol is found. In the first case, the 
sole presence of redundancy will alert us to the occur-

rence of an abnormal situation, and therefore allow us to 
act on it accordingly. In the second case, context informa-
tion can be used to minimize errors: think of a basic pat-
tern being part of another (for the worst case scenario, 
think of a punctum!). In that case, observing the context 
is essential to obtain complete information about the 
symbol under analysis, and be able to determine its cor-
rect class. 

In terms of future work, our first concern is to im-
prove the segmentation via pattern matching, without re-
nouncing to other segmentation techniques. It is quite in-
tuitive to imagine that some classes are more difficult to 
deal with. For instance, we observed that in many cases 
the classes virga and punctum were detected as the other, 
which makes us think that the characteristic stem of the 
virga has a weak influence in the normalized correlation 
pattern matching. 

Finally, we believe that a robust analysis of these 
manuscripts cannot be completely achieved without also 
taking in account semantic context information. In gen-
eral terms, plainchant is a sequence of sounds and rhyth-
mic patterns evolving in time, and as such, models or 
techniques that deal with time sequences look like an at-
tractive alternative to complement the symbol-based 
analysis and improve error management strategies. We 
know that certain rules are observed in Gregorian Chant, 
so, if some probabilistic rules can be derived from its se-
mantics, even soft ones, we would like to undertake that 
direction of research. 
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ABSTRACT 

This paper presents an algorithm that extracts the tempo 

of a musical excerpt. The proposed system assumes a 

constant tempo and deals directly with the audio signal. A 

sliding window is applied to the signal and two feature 

classes are extracted. The first class is the log-energy of 

each band of a mel-scale triangular filterbank, a common 

feature vector used in various MIR applications. For the 

second class, a novel feature for the tempo induction task 

is presented; the strengths of the twelve western musical 

tones at all octaves are calculated for each audio frame, in 

a similar fashion with Pitch Class Profile. The time-

evolving feature vectors are convolved with a bank of 

resonators, each resonator corresponding to a target 

tempo. Then the results of each feature class are com-

bined to give the final output. 

The algorithm was evaluated on the popular ISMIR 

2004 Tempo Induction Evaluation Exchange Dataset. Re-

sults demonstrate that the superposition of the different 

types of features enhance the performance of the algo-

rithm, which is in the current state-of-the-art algorithms of 

the tempo induction task.  

1. INTRODUCTION 

Tempo Induction has gained a great interest within the 

Music Information Retrieval community the past few 

years. Although in most systems, the tempo induction is 

made simultaneously with the beat tracking process as a 

unified task, the need for an individual handling of these 

tasks is apparent. An example can be found in Gouyon 

and Dixon in [1], where a genre classifier for 8 different 

music genres, based solely on the tempo of each excerpt 

has given remarkable results. 

Beyond the scope of music classification, tempo induc-

tion and beat tracking are essential in many diverse appli-

cations, such as music similarity and recommendation, 

automatic transcription, audio editing, music to MIDI 

synchronization, and automatic accompaniment. They al-

most always serve as an inter-step in algorithms handling 

more complicated problems such as meter extraction [2] 

and rhythm description. 

The algorithms that extract tempo can be divided into 

two main categories. The first consists of algorithms that 

use onset lists as input (either extracted directly from 

MIDI or audio). Indicative work can be found in [3], [4]. 

Most of these algorithms extract periodicities from the 

inter-onset intervals (IOIs) or by applying the autocorre-

lation function (ACF) to the onsets list in order to extract 

the tempo. In the latter belong the algorithms that search 

for periodicities directly from the audio (e.g. the ACF ap-

plied to frame features). Respective work can be found in 

[5], [6]. Although the former have the advantage of gen-

eralization (handling both MIDI and audio), evidence that 

the latter achieves better results is reported in [7]. An ex-

tensive review on the rhythm description algorithms can 

be found in [8]. 

A first step to systemize the tempo extraction task was 

the evaluation exchange organized during the 5
th
 Interna-

tional Conference on Music Information Retrieval [7]. 

Seven participants submitted twelve different algorithms, 

tested on a collection of 3199 tempo-annotated music ex-

cerpts. The data was hidden from the participants. After 

the contest was conducted, the data were made available 

online (except of the Loops data that are available under a 

fee). Detailed description can be found in [7]. In a similar 

fashion, MIREX 2005
1
 and MIREX 2006

2
  Audio Tempo 

Extraction evaluation exchanges were conducted, with the 

difference that the evaluation procedure was more fo-

cused on the perceived than actual tempo. Unfortunately, 

the data is still not available except of a small portion that 

was used as training data. 

Although a benchmark collection was created, few 

tempo induction algorithms have been tested on this data-

set. A remarkable exception is Seyerlehner, Widmer and 

Schnitzer’s work [9]. They proposed two versions of an 

algorithm that extracts rhythmic patterns using the auto-

correlation function (ACF) as described in [10] and the 

Fluctuation Pattern as described in [11], respectively, in 

order to determine the tempo. Their approach is based on 

the assumption that pieces with similar rhythmic patterns 

are more likely to have similar tempo as well. The rhyth-

mic patterns of excerpts are compared with those of a 

tempo-annotated music database. Their results showed 

that the proposed algorithm outperformed all the algo-

rithms presented in the ISMIR 2004 evaluation exchange 

                                                           
1
 http://www.music-ir.org/mirex/2005/index.php/Audio_Tempo_Extraction 
2
 http://www.music-ir.org/mirex/2006/index.php/Audio_Tempo_Extraction 
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on the ballroom data, and had similar results with the top 

performing algorithm [2] on the songs excerpts data. Note 

that the results presented are based on accuracy1, and not 

on accuracy2, where correct tempi are considered the 

fractions of the ground-truth tempo (half, double, three 

times, 1/3) which partly can be considered perceptually 

more relevant. Another example is the work of Alonso et 

al. in [12]. They proposed a system that estimates the 

tempo by decomposing the music signal sub-bands into 

harmonic and noise components.  Then musical events are 

extracted with an “accentuation” weighting and peri-

odicities are estimated. They tested the proposed algo-

rithm on a corpus consisting of the songs excerpts collec-

tion and excerpts from the author’s private collection. The 

evaluation measures were accuracy1 and accuracy2, but 

with a 5% tolerance. Thus, their algorithm cannot be 

compared directly with the aforementioned. 

In this paper we present a system that extracts tempo 

without onset detection, in a similar fashion that Scheirer 

does in [5]. The difference is that additionally to the fil-

ter-bank analysis, we incorporate a novel feature for the 

tempo induction task, similar to Pitch Class Profile, intro-

duced by Fujishima [13]. The proposed algorithm as-

sumes no significant tempo variation within the music ex-

cerpt.   

The rest of the paper is organized as follows. In Sec-

tion 2 we describe the architecture of our system. Section 

3 focuses on details concerning the algorithm and indi-

vidual processes of the implemented system. Comparable 

results on the ballroom and songs excerpts data of the 

ISMIR 2004 tempo induction evaluation exchange are 

provided in Section 4. Conclusions, drawbacks and future 

work conclude this paper in Section 5.  

2. ALGORITHM OVERVIEW 

The overall architecture and the individual components 

of the proposed algorithm are shown in Figure 1. Initially 

a moving Gaussian window is applied on to the input sig-

nal. For each frame a filterbank of equally spaced trian-

gular filters in the mel-scale is applied, and the log-

energy of each bank is calculated, in order to produce a 

vector m for each frame. Simultaneously, a similar proc-

ess takes place, using a larger window. Each frame is 

convolved with twelve filters, each one corresponding to 

one of the twelve musical tones, forming the vector t. 

Then a larger window of 8secs length is applied to 

each time-evolving feature, with a 1sec shift. Afterwards, 

the features are differentiated and convolved with a bank 

of resonators, with frequencies corresponding to the target 

tempi, and the 
∞
i of each convolution is calculated. 

Then the norms are summed across features, independ-

ently for each feature type, forming two vectors 
mSC and 

tSC of length T, where T denotes the plurality of the tar-

get tempi. Each vector indicates the strength of each tar-

get tempo to the specific frame. Finally 
mSC and 

tSC  are 

summed across the segments of the whole excerpt, to get 

the final tempo strengths for each feature class. The two 

vectors are combined to get the final output. 

 

Figure 1. System Overview 

3. ALGORITHM DETAILS 

3.1 Extracting Filterbank Features 

A moving Gaussian window of 20ms length with 5ms 

shift is applied to the input signal. Each segment is ana-

lyzed by a mel-scale triangular filterbank consisting of 12 

bands, and the log-energy for each band is computed. 

This process forms a 12-dimensional feature vector m, for 

each frame. 

3.2 Extracting Tonal Features 

In a similar fashion with filterbank analysis, a Gaussian 

window is applied to the signal. In order to have better 

frequency resolution, the window is chosen much larger 

than the case before. A window with 80ms length and 

5ms shift was chosen after experiments.  

Each segment is convolved with 12 reference signals 

of same length with the sliding window. Each signal 

represents one the 12 western musical tones. The refer-

ence signals are the sum of cosines of equal amplitudes, at 

frequencies equal to the 
0F  of each musical tone, at all 

octaves within a range from 27.5Hz to 10 kHz. No har-

monic partials are considered. Formally, the reference 

signals are given by the following formula: 

 
( ) ( ) (2 ),     1..12

i k

tone k i

f

R n cos f n kπ
∈Ω

= =∑  (1) 

where kΩ  denotes the set of fundamental frequencies of 

tone k in the range of 27.5Hz to 10 kHz and n the time 

index. Afterwards the 
2
i of the twelve convolutions are 

calculated to form the tonal feature vector t for each 

frame. Formally 
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 ( ) 2
( ) ( ( ) )( ) ,    1...12k tone kt l s l R n k= ∗ =  (2) 

where ( , )s n l  is the signal frame l and 
( )tone kR  the refer-

ence signal defined in Equation 1. 

3.3 Convolving with the Bank of Resonators 

The feature extraction process is followed by the convolu-

tion of the feature vectors with a bank of resonators. 

Firstly, we segment each time-evolving feature using a 

rectangular window of 8 secs with 1 sec overlap.  

In order to compute the rhythmic periodicities of the 

signal, we convolve each feature segment with a bank of 

resonators, each resonator representing a specific tempo. 

We consider resonators with impulse response support 

that equals to the segment length for every integer value 

from 40 up to 280 bpm. The resonators can be any system 

with periodic impulse response, making our algorithm 

flexible to adapt to different signals. Motivated by the 

mathematical model of entrainment, as it was presented 

by Large and Kolen in [14], we adopted the basic oscilla-

tory unit as the impulse response of the resonator. The 

equation of the oscillatory unit is given by 

 ( ) 1 tanh( (cos(2 ) 1))tr l lγ πψ= + ⋅ −  (3) 

where tψ denotes the frequency of tempo t. Parameter γ is 

called the output gain.  

After this process the 
∞
i is computed for the convolu-

tion of every feature-resonator pair, resulting a vector in-

dicating the strength of all tempi for each specific feature. 

Formally, we can write 

 ( ) ( )( ) ,     
if t iS t r f l t T

∞
= ∗ ∈  (4) 

where ( )
if

S t is the strength of feature if  at tempo t and 

T  is the target tempi set. ( { , , 1..12}i i if i∈ =m t  ) 

3.4 Combining the Feature Vectors 

To compute the tempo for a specific segment, we sum-

mate the tempo strengths ( )
if

S t across the features, indi-

vidually for each feature class, thus taking two vectors 

mSC and tSC , for filterbank and tonal features respec-

tively. Formally, we can write 

 
12 12

1 1

( ) ( ),   ( ) ( ),    
i im m t t

i i

t t t t t T
= =

= = ∈∑ ∑SC S SC S  (5) 

where T is the target tempi set. 

Finally, to combine the results of the two tempo detec-

tors, we summate ( ), ( )m tt tSC SC  across the segments of 

the music excerpt. Then by point-wise multiplication we 

compute the final vector SC, indicating the tempo st-

rengths within the excerpt. The tempo with the maximum 

strength is considered as the correct tempo.  

4. EXPERIMENTAL RESULTS 

In this section we present the evaluation of the proposed 

algorithm. The data we used for the experiments consists 

of 1163 excerpts from the ballroom and songs excerpts 

datasets of the ISMIR 2004 Tempo Induction evaluation 

exchange. Details on the statistics, collection and annota-

tion of the corpus can be found in [9]. 

Firstly, we evaluated our algorithm for each feature 

class individually. Afterwards we combined the outputs of 

the individual features as described in the previous sec-

tion. The results on both ballroom and songs excerpts 

datasets are presented in Table 1. 

 

 Ballroom Songs 

Feature Type Acc1 Acc2 Acc1 Acc2 

Filterbank 56.34 93.33 23.01 88.39 

Tonals 50.32 81.08 46.45 73.33 

Combination 61.08 93.98 42.15 90.11 

Table 1. Results (%) of the algorithm for the Ballroom 

and Songs Excerpts datasets, using feature classes indi-

vidually and in combination . 

It is clear that the algorithm yields better results using 

the filterbank features in the Ballroom dataset for the ac-

curacy1 measure. On the other hand, the algorithm per-

formed poorly in the songs data based on accuracy1 (only 

23%).  The above can be explained by the fact that the 

Ballroom data consists of more “percussive” excerpts, 

thus the filterbank energies represent sufficiently the data.  

Additionally, the experimental results demonstrate that by 

using solely the filterbank features, the proposed system 

“tends” to capture tempi double of the groundtruth tempo. 

For most of the excerpts classified correctly using accu-

racy2 and misclassified using accuracy1, the detected 

tempo was double of the correct tempo. 

When we used solely tonal features as input to the sys-

tem, the accuracy1 on the songs data increased signifi-

cantly (from 23% to 46.5%) for the Songs data. This can 

be explained by the more “melodic” nature of the ex-

cerpts consisting Songs data, which prove tonal features 

to be more suitable for that case. On the other hand accu-

racy2 measure degraded from 88.39% to 73.3%. A possi-

ble explanation is the large window used in the preproc-

essing stage, which “cuts off” frequencies double or triple 

of the actual tempo. 

When combining the results from the two versions, we 

observe that in both Ballroom and Songs excerpts data, 

the superposition increases the algorithm performance, 

especially in the Songs Data. Considering the filterbank 

features as base features, tonal features provide additional 

information about the rhythm periodicities of the signal.  

Comparative results of the presented algorithm, namely 

GK, with the best five performing algorithms in [7], 

namely Miguel Alonso (AL), Simon Dixon (DI), Anssi 
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Klapuri (KL), Christian Uhle (UH) and Eric Scheirer 

(SC), plus Klaus Seyerlehner (SE1,SE2)[9] are presented 

in Table 2. 

 

 Ballroom Songs 

Method Acc1 Acc2 Acc1 Acc2 

GK 61.08 93.98 42.15 90.11 

AL 34.1 69.48 37.42 68.6 

DI 43.12 86.96 16.99 76.99 

KL 63.18 90.97 58.49 91.18 

UH 56.45 81.09 41.94 71.83 

SC 51.86 75.07 37.85 69.46 

SE1 78.51 - 40.86 - 

SE2 73.78 - 60.43 - 

Table 2. Comparative results (%) on Ballroom and Songs 

datasets. 

5. CONCLUSION AND FURTHER WORK 

In this paper we presented a system that extracts the 

tempo of a music signal. The proposed algorithm was 

evaluated on the benchmark corpus of the ISMIR 2004 

with encouraging results. Without taking into considera-

tion any high-level musical information, our system per-

formed within the current state-of-the-art algorithms of 

the tempo induction task.  

The tonal features introduced in this work prove to 

capture additional aspects of rhythmic periodicity in a 

musical signal. It is evident that underlying rhythmic pe-

riodicities of a musical signal can be found beyond the 

filterbank energies, in a more “pitched context”. Without 

any multi-pitch estimation or chord detection process, we 

observe that the simpler and more abstract tonal features 

presented in this paper similar to Pitch Class Profile, con-

tain rhythmic information that can enhance the perform-

ance of a tempo induction system that does not take into 

account any tonal information. 

However, during the experiments we observed that the 

performance of the presented algorithm is sensitive to the 

window length and shift during the extraction process of 

tonal features, an effect that will be investigated in the 

future. Moreover we intend to extend tonal features in a 

more sophisticated way, such as chords, and incorporate 

harmonic partials information. Finally, the superposition 

of the output for the features classes is a subject for future 

research. 
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ABSTRACT

Most of methods for audio similarity evaluation are based
on the Mel frequency cepstral coefficients, employed as
main tool for the characterization of audio contents. Such
approach needs some way of data compression aimed to
optimize the information retrieval task and to reduce the
computational costs derived from the usage of cluster ana-
lysis tools and probabilistic models. A novel approach is
presented in this paper, based on the standardized vario-
gram. This tool, inherited from Geostatistics, is applied to
MFCCs matrices to reduce their size and compute compact
representations of the audio contents (song signatures), ai-
med to evaluate audio similarity. The performance of the
proposed approach is analyzed in comparison with other
alternative methods and on the base of human responses.

1. INTRODUCTION

The computation of the degree of similarity among songs is
one of the most demanded tasks in the field of multimedia
processing, and its interest is still growing with the increa-
sing popularity of on line services and databases. Music
Information Retrieval (MIR) stands for the tools to access
audio contents with the aim to reorder, search and classify
them [1]. In MIREX 2006 [3], the term ‘Audio Similarity’
was introduced for the first time in the tasks list and, conse-
quently, a human evaluation system (Evalutron6000) was
created to make quantitative evaluations of the proposed
algorithms.

The main task of audio similarity evaluation is based on
the definition of some form of representation of the songs
(signatures) to compare them and measure the closeness
of the signature songs. The base of most of the known
algorithms for audio similarity evaluation are the Mel fre-
quency cepstral coefficients (MFCCs) [10]. The spectral
information supplied by the MFCCs is proposed to be com-
pressed in a wide variety of different approaches by diffe-
rent authors [13] [4] [11] [1]. In this work, the standardized
variogram [8] is presented as a novel tool to conveniently
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compress the MFCCs vectors for sorting similar songs.

The outline of the paper follows: in Section 2, a gene-
ral description of the MFCCs is presented. In Sections 3
and 3.2, the details of the approach based on the variogram
and its application to signal processing are described. In
Section 4, the use of MFCCs matrices is presented and in
Section 5 the application of the variogram is discussed in
detail. Finally, in Section 6, the experimental results are
presented and in Section 7, the conclusions and future pro-
posals are discussed.

2. MEL COEFFICIENTS AND AUDIO
SIMILARITY

The MFCCs are short-term spectral-based features, origi-
nally developed for speech recognition and successfully
adapted to music information retrieval [10]. The compu-
tation of MFCCs follows some crucial steps [13]: 1) the
calculus of the short-term spectrum of the signal, 2) the
transformation of the spectrum into the Mel scale (through
a triangular filter bank), 3) the calculus of the logarithm
of the Mel spectrum and 4) the compression of the resul-
ting matrix through the application of the DCT (Discrete
Cosine Transform). MFCCs are widely used to generate
compact spectral representations of the song: the signal
is framed into short fragments (usually some tens of mil-
liseconds) and their coefficients are computed frame by
frame [13]. In order to conveniently represent the global
spectral behavior of the song in a compact way, the MFCCs
vectors have to be clustered. For this task, several ap-
proaches have been proposed by different authors. Pam-
palk [13] uses GMM and EM approach, by modelling the
probability distribution functions of the coefficients vec-
tors. Foote [4] proposes a supervised tree-structured quan-
tizer as discriminant approach for the sequential labeling
of the coefficients. Aucouturier and Pachet [1] present a
combination of GMM/EM and Monte Carlo approaches to
evaluate the likelihood between the MFCCs of two diffe-
rent songs. Finally, Logan and Salomon [11] propose the
popular K-means method for MFCCs clustering. In this
article, an alternative approach is proposed based on the
computation of the variogram of the MFCCs, allowing for
a computationally low-cost compression of the coefficients
and a simple calculus of the distance among the spectral
signatures.
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3. THE STANDARDIZED VARIOGRAM

Theterm ‘variogram’, inherited from Geostatistics, stands
for the function describing the evolution of the spatial de-
pendence of a random field [16]. Empirically used by the
mine engineer D.G. Krige in South Africa mines [9], and
later formalized by G. Matheron in its pioneer works [12],
the variogram or ‘semivariance function’ is widely em-
ployed in spatial statistics to perform uncertainty model-
ing in a spatial framework. It is often used as characteristic
weighting function for the spatial interpolation technique
known asKriging [9].

3.1 Some mathematical issues

A formal definition of the variogram is now provided. Let
zα, withα = 1, · · · , n represents a set ofn sampled obser-
vations of a spatial phenomenon. The variogram is defined
as half the variance of the increment[zα − zα+h] [16]:

γ(α, h) =
1

2
E{[zα − zα+h]

2} − {E[zα − zα+h]}
2 (1)

Assuming the intrinsic stationarity of order two [16],
the mean of the variableE[z] is invariant for any transla-
tion, that isE[zα] = E[zα+h], the second term of equation
(1) can be neglected and the variance of the increment is
said to be depending only on the distance vectorh and not
on the positionα [8]:

γ(h) =
1

2
E{[zα − zα+h]

2} (2)

wherezα andzα+h are two different samples of the ran-
dom variablez separated by a distanceh.

Given a set of spatially distributed samples, the vario-
gram can be estimated empirically [16]:

γ∗
(h) =

1

2N(h)

Nh∑
α=1

[zα − zα+h]
2 (3)

where the number of pairsN(h) depends on the value of
h. For its mathematical relation with the variance, the va-
riogram is also known as semivariance function (or semi-
variogram).

The variogram is strictly related with the auto-covaria-
nce function of the increment. In particular the covariance
of the incrementCov(zα, zα+h), in condition of transla-
tion invariance of the mean, can be expressed as follows:

Cov(zα, zα+h) = Cov(h) = E[zα · zα+h]−E[zα]
2 (4)

whereE[zα] = E[zα+h]. Whenh is zero,Cov(0) is max-
imum and it corresponds to the variance of the variable:

Cov(0) = E{[zα]
2} − {E[zα]}

2
= V ar(zα) (5)

Note that equation (2) can be written as:

γ(h) =
1

2
E{[zα]

2 − 2 · zα · zα+h + [zα+h]
2} (6)

and using equations (4) and (5), we can express the vario-
gram in term of the covariance function:

γ(h) = Cov(0)− Cov(h) (7)

The last equation shows the relation between the vario-
gram and the covariance function [14]. Under the condi-
tion of translation invariance of the mean, ath = 0, the
covariance is just the variance of the variable,Cov(0) =

V ar(z), and the variogram is zero,γ(0) = 0. Conversely,
when the pair of elements,zα andzα+h, are too far away to
show any kind of relation, their covariance is zero and the
variogram is the variance of the variable,γ(h) = V ar(z).
In general, the covariance function shows a behavior op-
posed to the behavior of the variogram (see Fig. 1).

The empirical variogram is usually fitted by a theore-
tical model to obtain a continuous function, modeling the
covariance exhaustively in the whole domain. The models
are chosen within a group ofadmissible models that must
be positive-definite [6]. Moreover, the theoretical models
can be characterized by few shape parameters [6]: theSill,
the asymptotic variance value the function tends to when
the lag distance,h, increases, theRange, the lag value at
which the theoretical variogram reaches the sill, and the
Nugget effect, the discontinuity of the function at the ori-
gin.

When semivariance values are normalized by the global
variance, the variogram is reported asstandardized vario-
gram [8] and its correspondence covariance function is the
correlation function. Both the empirical and its correspon-
dent theoretical standardized variogram are shown in Fig.
1. The correspondent correlation function is shown too.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

Lag (h)

S
ta

n
d
a
rd

iz
e
d
 s

e
m

iv
a
ri
a
n
c
e
 (

γ)

Experimental variogram

Theoretical variogram
Range

Sill

Nugget

effect

Covariance function

Figure 1. An example of a typical standardized variogram.
Theempirical variogram (dotted line) is fitted by the theo-
retical model (solid line). The correlation function (dashed
line) is shown too.

3.2 The variogram in signal processing

Many authors have dealt with the use of the variogram cou-
pled to classical signal processing techniques, as a tool
for periodicity analysis of signals and time series analy-
sis. Khachatryan and Bisgaard [8] employ the variogram
as tool for estimating the stationarity of industrial time se-
ries data. Haslett [5] proposes the use of the variogram
as a functional approach for time estimation in case of
fault of the stationarity conditions. Kacha et al. [7] ap-
ply the generalized variogram to the linear prediction in
disordered speech analysis.

In spite of the different origins of the spatial variogra-
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phic approach and the time series analysis in signal pro-
cessing,the former can be successfully applied as an alter-
native tool for spectral analysis. In the case of time-signal
processing, the parameterh is unidimensional and it repre-
sent the time lag among the samples.

If we take a signal and we add an uncorrelated noise
component with known mean and variance (see box inside
Fig. 2(a)), we can observe that it is well reflected both in
the waveform and in the frequency spectrum. In the va-
riogram, the added signal leads to a very small change in
the general shape of the curve (Fig. 2(b) and 2(c)), while
a marked increase of the variance at the origin (nugget
effect) is noticeable. Such value corresponds to a contri-
bution of about the 31% of the total variance of the dirty
signal. However, in the frequency spectrum, this change
is mainly reflected in central-high frequency bands, where
only a diffused increase in amplitude is apparent (Fig. 2(a)).
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Figure 2. Spectra and standardized variograms of a clean
signal and of the same signal corrupted with additive noise.
Experimental variograms are represented with a dotted line
and the theoretical fitted model with a solid line.

The variogram can also be conveniently used as tool for
sound analysis applications. Dillon et al. [2] noted as the
variogram fluctuations, once reached the sill, are strictly
related with signal spectrum. He remarks that the vario-
gram can be especially useful for fundamental frequency
detection, by taking into account the variance pseudope-
riodic pattern known ashole effect [6].

4. COMPRESSION OF MATRICES

The standardized variogram described in Section 3 is pro-
posed here as a novel method for reducing the dimensiona-
lity of the MFCCs matrices. It is computed on each vector

of coefficients throughout the frames of the song, to ob-
tain a function describing the evolution of the covariance
through the time. With the aim to compress the MFCCs
information, the variogram is computed only on a reduced
number of lags (values of distanceh for which the vario-
gram is calculated). As shown in Fig. 1, the variogram
typically presents a logarithmic-like rising behavior at the
lowest lags and an asymptotic trend to the global variance
(equal to one in the case of standardized variogram) from
lags approaching the range, forward. Taking into account
these two factors, a total amount of ten lags values are sam-
pled logarithmically from 1 to half the length of Mel coef-
ficients.

For each row of the MFCCs matrices, the semivariance
is computed for all the pairs of samples located at distances
equal to the lags selected, and the values are normalized
by the variance of the MFCCs row data. The outcome is
a compact function keeping enough information to charac-
terize the signal.

The experimental standardized variogram can be chara-
cterized on the basis of two parameters extracted from its
correspondent theoretical function (although the latter is
not explicitly calculated in this application): the range and
the nugget effect. In this case, these parameters can be
interpreted on the base of their spectral meaning.

The range can be interpreted as the time scale at witch
the periodicity of the signal begins to be evident. Up to the
range, the structured variability of the variable masks its
periodicity, while, when the pairwise covariance starts to
be weak enough (from range forward), that periodic beha-
vior rises and it becomes evident. Clearly, due to the strong
reduction of lags, sometimes the range can be poorly de-
tected by the reduced variogram.

The nugget effect is very important to understand the
small-scale behavior of the Mel coefficients. The discon-
tinuity at lagh → 0 explains the variation of the signal at
very small-scale. In terms of spectral analysis, it stands for
the high frequency contribution to the total variance in the
Mel spectra.

An example of the application of the variogram to the
MFCC spectra is shown in Fig. 3. The first song (Fig.
3(a)) is a piece from the genre ‘Classic’ [3], its spectrum
shows a rather clear periodicity, with some peculiar pat-
terns repeating with a certain regularity. The second song,
belonging to the genre ‘Heavy metal’, shows a more fuzzy
spectrum with higher frequency variations and a less evi-
dent periodicity. Such differences are well reflected in their
correspondent variograms.

The clearer regularity of the classic piece is reflected by
a certain degree of periodicity in the variogram (although
not exhaustively revealed by the reduced number of lags).
Moreover, the very low nugget variance value reflects the
high degree of regularity with reduced high frequency os-
cillations (Fig. 3(b)).

In the case of the heavy metal piece, the very high fre-
quency oscillations (Fig. 3(c)) are well reflected by a no-
table nugget variance (about the 50% of the total variance)
and by a larger range indicating the lack of a structured
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Figure 3. A comparison between the variograms of the
MFCCs spectra of two very different songs, a classical mu-
sic song (top) and a heavy metal song (bottom). Fitted
theoretical model (thick lighter line) and global variance
(dashed line) are shown too. The pieces are 35 seconds
length.

variability. Note that, although poorly reflected by the re-
duced availability of lags, some degree of non-stationarity,
expressed as the lack of a well definite asymptoticity of the
variogram [16], is present in this case.

5. STANDARDIZED VARIOGRAM FOR AUDIO
SIMILARITY ASSESSMENT

As mentioned before, the variogram has been employed
for audio similarity assessment. For each piece, the Mel
coefficients are calculated and the standardized variogram
is computed for each coefficient, obtaining a compact sig-
nature of the track. Successively, the signatures are com-
pared, by computing a weighted difference of their ele-
ments.

After computing the standardized variogram (10 lags)
of the 19 Mel coefficients for each song (the first one has
been neglected [13]), the resulting10 × 19 matrices (sig-
natures) are compared by averaging the weighted absolute
value of their difference, according to the following equa-
tion:

D =
1

I · J

10∑
j=1

19∑
i=1

ωj |Va(i, j)− Vb(i, j)| (8)

whereVa andVb are the signature matrices for songa and
b, respectively and the indexesi andj are referred to the 19
coefficients and the 10 lags, respectively. Differences are
linearly weighted in order to give more importance to the
small-scale lags of the variogram vectors. The vectorΩ =

[ω1, . . . , ω10] contains the10 linearly decreasing weights
ωj , such that

∑10
j=1 ωj = 1. Eachj-th weight is computed

as follows:

ωj =
11− j

D
(9)

whereD =

10∑
j=1

j. Audio similarity is simply evaluated by

sorting the songs with respect to a reference piece, accord-
ing to their reciprocal distance, computed using equation
(8).

6. EXPERIMENTAL RESULTS AND DISCUSSION

An objective evaluation of the sorting capability of the me-
thod is very hard to achieve because of the subjectiveness
of the concept of ‘audio similarity’. Actually, one song
can be judged as more similar to another one depending on
a series of parameters (rhythm, spectral content, melody
etc.) that are subconsciously evaluated by the listeners.

In order to obtain a robust and objective estimate of the
performance of the method, a series of tests performed by
a group of users, have been carried on. A total of 5 lists
of songs have been submitted to 10 users who sorted them
with respect to a set of reference songs, without any pre-
vious knowledge about any tagging or taxonomy of the
dataset. The test songs are sampled by the Audio Descrip-
tion Context database of the ISMIR2004 [3] and belong to
all the genres presented in the database.

Successively, the lists created manually have been com-
pared with the outcomes of 4 automatic methods, the va-
riogram-based method and other three methods that can be
found in the literature:

1. Fluctuation Patterns [13]

2. MFCCs with GMM/EM clustering approach [13]

3. MFCCs with K-means clustering approach

The fluctuation patterns, describing the amplitude mod-
ulation of the loudness of the frequency bands, are used by
Pampalk [13] to briefly characterize the song spectral con-
tent. The Gaussian Mixture Models coupled with Expec-
tation/Maximization approach are employed by the same
author to cluster the Mel coefficients in 30 vectors (G30)
of 19 elements. The third method is the same approach
used by Logan and Salomon [11], based on the calculus of
the MFCCs clustered by the popular K-means, with the Eu-
clidean distance instead of the Kullback-Leibler distance.

A total amount of some tens of lists have been obtained
by the manual sorting by the users. A rapid look at these
lists reveals a strong lack of homogeneity among them. It
is related to the high subjectiveness of the sorting process
and the variability of the human perception of the ‘audio
similarity’. This leads to the lack of a representative list for
each reference song. Instead of trying to extract a unique
reference list among the users, the authors turned to derive
a measure of the agreement among the users.

A weighted matching score has been computed, taking
into account the reciprocal distance of the songs (in terms
of position index in the list). Such distances have been line-
arly weighted, such that the first songs in the lists reflected
more importance than the last ones. Actually, it is easier to
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define the order of few very similar songs, than to sort the
very different ones.

Let Lα andLβ represent two different lists ofn songs,
for the same reference song, the matching scoreS has been
computed using the following equation:

S =

n∑
i=1

|i− j| · ωi (10)

wherei andj are the indexes for listsLα andLβ , respec-
tively. In particular,j is the index of thej-th song in list
Lβ , such thatLα(i) ≡ Lβ(j). In practice, thei-th song
in the list Lα is searched inLβ and their correspondent
indexes are compared. The absolute difference is linearly
weighted by the weightsωi as referred in equation (9).

Finally, the scores are transformed to be represented as
percentage of the maximum score attainable.

For each reference song, the matching scores have been
computed among all the available lists, both among the
users lists and among the users lists and the ones returned
by the automatic methods. Thus, two different sets of scores
have been obtained: the inter-users scores and the users-
automatic scores. The measure of the performance of the
automatic method is drawn by the degree of similarity of
the two sets, that is, how close are the scores computed
among the users lists and the lists returned by the automatic
method. In order to have an estimation of such closeness,
the coherence among the two sets of scores is computed
by a statistical test. The Kolmogorov-Smirnov test [15]
has been used to measure the correspondence between the
two distributions of the two sets of scores, before and after
the inclusion of the automatic list.

In Table 1, the basic statistics for both the distributions
of the inter-users scores set and the users-automatic scores
sets are shown. The results of the statistical test (H) is
shown too.

The degree of similarity among the songs is a very sub-
jective response and only a high number of cases can gua-
rantee a reliable response. Nevertheless, the statistical re-
sults are enough to have an idea of the performance of the
automatic methods. The response of the users can be seen
as some form of quantifying the difficulty level of the sort-
ing task. When the songs are easily sortable, the users
show a high degree of agreement (high mean scores). Con-
versely, when the similarity among the songs is not very
clear, the discrepancy among the users increases and, to-
gether with a decrease of the centrality measures (mean
and median), an increase of the variance is appreciable.
Actually, the standard deviation is an index of the disagree-
ment among the users and can be related with the complex-
ity of the sorting procedure.

In the test results, the discordance among the users is
well reflected by high values of the standard deviation in
most of the cases. The mean standard deviation for the 5
cases is about the 14% of the mean score.

In general, a wide variety of performances are shown by
the different methods. The method based on the clustering
of the Mel coefficients by the GMM/EM approach reaches
the best score in 3 cases, for songs B,C and D, while it fails

Ref.song Method Mean Median Min Max Skewness St.Dev. H

Song A

Users 72.3 74.9 33.4 90.9 -1.0 13.2 -

MFCC-Var 71.5 75.2 42.8 82.5 -1.8 11.3 0
FP 71.2 72.5 43.5 85.3 -1.3 11.6 0
MFCC-EUC 70.8 71.8 41.8 84.8 -1.4 12.1 0
MFCC-G30 55 54.3 41.3 69.4 0.1 9 1

Song B

Users 81.8 83.9 52.7 99.2 -1 9.6 -

MFCC-Var 75.4 76.8 54.4 87.8 -1.2 8.7 1
FP 66.6 66.1 58 81.8 0.9 6.9 1
MFCC-EUC 67.5 66.6 61.5 72.9 0.1 4.3 1
MFCC-G30 76.7 82.3 41.5 99.2 -0.7 14.2 1

Song C

Users 84.3 85.6 66.6 96.2 -0.2 6.6 -

MFCC-Var 71.3 70.8 66.1 76.2 0.2 3.5 1
FP 70 69.9 58 82.8 0.1 6.5 1
MFCC-EUC 81.8 83.2 71.4 90.9 -0.4 6.1 0
MFCC-G30 86.9 89.1 73.7 92.9 -1.1 6.2 0

Song D

Users 77.2 77.7 57.5 96.2 0 8.2 -

MFCC-Var 60.8 60.1 57.2 71.1 1.4 4.5 1
FP 57.3 54.6 50.9 73.4 1.3 7 1
MFCC-EUC 66.1 65.1 59.7 84.6 1.9 7 1
MFCC-G30 77.8 83.0 63.0 86.6 -0.5 8.8 0

Song E

Users 65.7 66.1 22.8 93.2 -0.4 15.4 -

MFCC-Var 67.8 68.5 56.2 82.3 0.1 8.1 0
FP 59.2 60.6 42.3 70.1 -0.5 9.8 0
MFCC-EUC 34.1 34.2 11.6 62 0.1 15.4 1
MFCC-G30 49.9 49.4 30.9 63.3 -0.4 9.7 1

Mean

Users 76.3 77.6 - - - 10.6 -

MFCC-Var 69.4 70.3 - - - 7.2 -
FP 64.9 64.7 - - - 8.4 -
MFCC-EUC 64.0 64.2 - - - 9.0 -
MFCC-G30 69.3 71.6 - - - 9.6 -

Table 1. Basic statistics of the distributions of the inter-
usersscores set and the users-automatic scores set. Val-
ues are in percent. Results of statistical test are shown
too: H = 0 means that the two distributions are coher-
ent, whileH = 1 stands for a distributions mismatch. The
codes for the automatic methods stand for: MFCC/Var =
MFCCs clustered by standardized variogram, FP = fluc-
tuation patterns, MFCC-EUC = MFCCs clustered by K-
means, MFCC-G30 = MFCCs clustered by GMM/EM me-
thod. Best results in bold.

the test for song B. The method based on the clustering of
the Mel coefficients by the variogram returns the highest
scores for songs A and E. It also returns the second highest
score for song B, although failing the test, but with the
highestp-value (not shown in the table).

The best results are attained for the song A, where three
of the four methods pass the test, while, for song B, none
of them return a sufficient matching with the inter-users
distribution. This last issue is basically related with the
high agreement shown by the users (about 82%) that is
hardly attained by the automatic methods. Quite the same
situation occurs for song C and D, with high mean scores
among the users lists (more than 84% and 77%, for songs
C and D, respectively) approached by only two of the four
methods proposed. Finally, the song E reveals a very low
mean inter-users score (about 66%), well reflected by all
the methods. Globally, all the methods show a good perfor-
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mance, with averaged mean values higher than 64%. The
variogram-basedapproach shows the highest mean value,
with 69.4%, very close to the result by the GMM/EM based
method.

7. CONCLUSIONS AND FUTURE WORKS

A new approach based on the use of the standardized va-
riogram for the clustering of the Mel coefficients for audio
similarity evaluation has been proposed. The variogram
is calculated on a reduced vector of ten lag elements and
it is standardized by the global variance, in order to ob-
tain comparable signature matrices for different songs. The
method capability is evaluated on the base of a statistical
comparison among the distributions of the matching scores
computed among a set of users lists and the ones returned
by the automatic method. Moreover, for a more complete
assessment of the method performance, other three known
methods employed in literature for audio similarity eval-
uation are computed, and their correspondent scores are
compared.

Performances vary from quite poor to very good for all
the methods, with mean matching scores varying from the
lowest mean value of about 34% for the method based
on the Euclidean distance and the highest value of about
87% for the method based on the clustering by GMM/EM.
The averaged mean values reveal a good global perfor-
mance of the method based on the variogram and on the
GMM/EM approach, with quite poorer results by the other
two ones. In practice, the variogram-based method pro-
posed here works quite well and its performance can be
compared with the one of other more popular methods that,
in some cases, show a higher degree of computational com-
plexity.

The capability of the method can be improved, by opti-
mizing some calculation parameters, as the sampling of the
distance lags values. Moreover, the theoretical variogram
can be evaluated and its shape parameters can be taken
into account to optimize the modeling of the spectral con-
tent of the song to improve the audio similarity assessment
task. The evaluation task can be improved by increasing
the number of users and broadening the test samples.
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ABSTRACT 

Musical perception is non-visual and people cannot de-
scribe what a song sounds like without listening to it. To 
facilitate music browsing and searching, we explore the 
automatic generation of visual thumbnails for music. Tar-
geting an expert user groups, DJs, we developed a con-
cept named ThumbnailDJ: Based on a metaphor of music 
notation, a visual thumbnail can be automatically gener-
ated for an audio file, including information of tempo, 
volume, genre, aggressiveness and bass. We discussed 
ThumbnailDJ and other 3 selected concepts with DJs, 
and our concept was preferred most. Based on the results 
of this interview, we refined ThumbnailDJ and conducted 
an evaluation with DJs. The results confirmed that 
ThumbnailDJ can facilitate expert users browsing and 
searching within their music collection. 

1. INTRODUCTION 

People can easily gain an overview of a photo by glimps-
ing at its thumbnail.  With assistance of multiple thumb-
nails, people can browse many photos in parallel and lo-
cate the desired ones quickly. On the contrary, music car-
ries no visual information and people cannot describe 
what a song sounds like without listening to it. Cover art 
is commonly used as a visual assistance for music. How-
ever, it only visually encodes the relevant artist and al-
bum, and has no reflection on the intrinsic music content. 
Will a visualization of musical content help, and who will 
benefit from it? To answer these questions, we explore 
the automatic generation of visual thumbnails for music 
content and develop a concept named ThumbnailDJ. We 
conducted several rounds of survey and interview, and 
the results confirmed that our concept can help expert us-
ers browsing and searching within their music collec-
tions. 

2. RELATED WORK 

A map-based representation is widely used to display 
music collections. Islands of Music [6] and MUSICtable 
[9] cluster songs based on their acoustic similarity. In 
Artist Map [13] the user can chose any two of the four 
criteria of mood, genre, year and tempo to display music 
on a map. In iCandy [3], songs are displayed in a grid 
layout and their order is determined by the selected crite-
ria such as genre, most played artist or album. Besides 
map-based representation, there are other visualizations 
of music collections. Torrens et al. [10] presented three 
visualization concepts: a disc, a rectangle and a tree. In 
MusicRainbow [7] artists are displayed in rings of a rain-
bow. 

The aforementioned visualizations focus on the repre-
sentation of an entire music collection, in which single 
songs are either displayed with the cover art or as the 
name of artist, album or song, and none of them reflect 
the intrinsic music content. Some work addressed this 
issue by producing visualization for the file content. Se-
manticons [8] produce semantically meaningful icons for 
different file types. Music Icon [5] is a similar concept 
using a blossom metaphor: Each music file is represented 
as a blossom icon with two rings of petals (see Figure 1d 
for a simplified version). The music feature is reflected 
by the color, shape and number of petals.  

Besides these metaphoric visualizations, some re-
searchers focus on the sequential representation. Beat 
Histogram [11] is a temporal representation of beat 
strength in audio signals (see Figure 1a). It helps to gain 
an overall impression of how beat strength changes over 
time. TimbreGrams [12] represents an audio file as se-
quential stripes. Bright colors correspond to speech or 
singing, and purple and blue ones associate to classical 
music (see Figure 1c). In Arc Diagrams [14], instances of 
the identical notes are connected by arcs, thus depicting 
the repetitive structure in a music file (see Figure 1b).  

 

Permission to make digital or hard copies of all or part of this work for 
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3. ONLINE SURVEY 

In order to assess the understandability and suitability of 
the concept of visualizing music content, we conducted 
an online survey with four selected concepts (see Figure 
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1): Beat Histogram, Arc Diagram, TimbreGrams and 
simplified Music Icon.  

  
(a)                                    (b)   

  
              (c)                                         (d) 

Figure 1. Four selected concepts. a) Beat Histogram [11]. b) 
Arc Diagram [14]. c) TimbreGrams [12]. d) A simplified Mu-
sic Icon has one ring of petals. The number and shape of petals 
represent tempo and aggressiveness respectively. 

3.1 Survey Design 
The participants first filled out a questionnaire about their 
personal information and general experience with music. 
Then the four visualization concepts were briefly intro-
duced. The participants answered 15 questions about 
these concepts: We chose 8 popular songs and asked the 
participants about their familiarity with these songs. They 
could follow the corresponding links to listen to these 
songs online. For each concept, they were required to 
map one visualization to a correct song out of 4 candi-
dates, then map one song to a correct visualization out of 
4 candidates. After this, they were asked about informa-
tion that can be derived from each concept. Then we 
asked them about their preference between and comments 
about these concepts. All scores were rated on a 5-point 
Linkert-scale where 5 represented the highest score. 

3.2 Participants 

In total we received 38 complete questionnaires, 9 female 
and 29 male. Their age ranged from 18 to 55 with an av-
erage age of 26.6 years. 31 out of 38 participants were 
students and employees from Europe. 

3.3 Results 

Regarding the reflection on music content, the partici-
pants thought attributes such as melody, mood, rhythm, 
instrument and genre were more important than the gen-
eral information of lyrics, length and release year. Con-
cerning the usefulness of different information in helping 
gaining an overall impression of a song, the 30-second 
preview clip received the highest score (M=3.84, 
SD=0.17). Similar artists/tracks (M=3.16, SD=0.19) and 
top tags (M=2.78, SD=0.19) were scored lower. Unfortu-
nately, our concept of visual thumbnails of music content 
was rated lowest (M=2.22, SD=0.16). 

Although the participants were generally familiar with 
the tested songs (M=3.50, SD=0.74), the correctness of 
their answers was quite low: To map a visualization to a 
correct song out of 4 candidates, 14 participants (36.8%) 
chose the correct song for Music Icon, 12 (31.6%) for 
TimbreGrams, 9 (23.7%) for BeatHistogram and 8 
(21.1%) for Arc Diagrams. To map a song to a correct 
visualization out of 4 candidates, the performance was 
slightly better but still low: 17 (44.7%) for Music Icon, 
16 (42.1%) for BeatHistogram, 10 (26.3%) for Arc Dia-
grams and 8 (21.1%) for TimbreGrams. 

Concerning the information that can be derived from 
each concept, the results illustrated that BeatHistogram 
helped to learn tempo and volume, and Music Icon tempo 
and volume.  TimbreGrams and Arc Diagrams facilitated 
gaining song structure and information of harmony. In 
general, the scores for easiness of deriving each informa-
tion were rather low (all below 3). The usefulness of each 
concept was also rated quite low: BeatHistogram 
(M=2.17, SD=1.40), Arc Diagrams (M=2.09, SD=1.17), 
Music Icon (M=1.97, SD=1.32) and TimbreGrams 
(M=1.40, SD=0.55). 

3.4 Discussion 
All the participants commented that these visualizations 
were overall too complicated for them. Although they 
agreed that attributes such as melody and rhythm are im-
portant features of a song, they did not think such infor-
mation can help them to gain the overall impression of a 
song. Instead, they would prefer direct and non-trivial 
assistance, such as 30-second preview clips. 

4. CONCEPT DEVELOPMENT 

The results of the survey revealed an overall low appre-
ciation for the concepts of visualizing musical content. 
The normal music listeners seem not be unsuitable as the 
consumers of those thumbnails, as they have neither re-
quirements nor efficient knowledge in understanding 
technical details of a song. Therefore, we shift our focus 
to more professional users, Disk Jockeys (DJs). We de-
velop a concept named ThumbnailDJ. We discussed 
ThumbnailDJ and 3 other concepts with DJs. Thumb-
nailDJ was preferred most, and we derived implications 
for the refinement of this concept. 

4.1 Four Tested Concepts 

We first conducted a preliminary discussion with 7 DJs 
with the four concepts presented in Figure 1. They were 
overall appreciated the idea of visualizing musical con-
tent. Arc Diagram and TimbreGrams were commented as 
helpful to gain an overall impression of a song, but lack-
ing of precise values, such as those shown in Beat Histo-
gram. Beyond the single criterion displayed in Beat His-
togram, more attributes were requested, such as aggres-
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siveness and volume. Music Icon was generally preferred 
most among these four tested concepts. 

The results of the preliminary test illustrated that ex-
pert users require multiple attributes with precise values, 
and simplicity is vital for mental perception [1]. There-
fore, we selected four simple and compact visualizations 
and tested them with DJs. Havre et al. [4] introduced a 
river metaphor to represent topical changes within a 
document collection. We employ this concept to describe 
temporal changes of attributes (see Figure 2a). Border 
Community1 offers hand-drawn graphs to show the com-
position of songs. The amplitude depicts intensity and 
gray color represents bass strength. We name this visu-
alization TensionDiagram and map its background color 
to genre (see Figure 2b). The third concept is Music Icon, 
which has already been tested in the previous online sur-
vey (see Figure 1d). 

   
(a)                            (b)                           (c)  

Figure 2. Tested concepts with DJs. a) ThemeRiver [4]. b) 
TensionDiagram1. c) Initial concept of ThumbnailDJ. 

Besides these three selected visualizations, we develop 
our own concept ThumbnailDJ (see Figure 2c). Our de-
sign is built on the metaphor of music notation, the most 
common symbolic representation of music, from which 
abundant information can be read out: Pitch is shown as 
the vertical position of notes on a five-line staff. Duration 
is illustrated as the note value and additional symbols 
such as dot and tie. A dot extends the value of a note and 
a tie connects two notes with same pitch. Tempo and dy-
namics are shown above or below the staff. Tempo is 
normally represented as Beats per Minute (BPM), and 
dynamics as the overall volume of the whole piece. By 
reading the staff from left to right, the overall temporal 
impression can be gained.  

In our initial concept, we made some modification of 
the original metaphor. The lengthy notation contradicts to 
the fundamental characteristic of compactness, and thus 
we decided to employ only three notes, each representing 
1/3 of the song. The vertical location of a note in the staff 
depicts the aggressiveness. Two notes are connected by a 
tie if they share similar aggressiveness. On the contrary, a 
dot on the top of a note stands for change in aggressive-
ness. Tempo and volume are shown in the top and bottom 
left corners respectively. Crescendo (<) and decrescendo 
(>) describe the increase/decrease of volume. The genre 
is shown in the top right corner and associated with the 
background color of the entire graphics. Figure 2c shows 

                                                           
1http://www.bordercommunity.com

a medium-tempo calm rock song which gets louder over 
time. Aggressiveness keeps constant in the first two parts 
and changes in the third part. 

4.2 Discussion with DJs 

In order to test the suitability of the four selected con-
cepts, we conducted a second round of discussion with 
the same 7 DJs. The open questions covered mainly their 
routine tasks and general impression of the tested con-
cepts, which were introduced in a blind fashion. The par-
ticipants have DJ experience about 10 years in average. 
They are all male, and their age range from 24 to 37 with 
an average age of 28.4 years. Two of them play mainly 
Hip-Hop music, three play Electronic, and the other two 
play diverse genres. Two DJs play analogue music and 
the others play digital. All DJs can read music notation. 

Analogue DJs organize their collections on shelves, ei-
ther sorting them by alphabet or genre, or no ordering at 
all. Digital DJs store their collections on hard disk and 
sort them by folders and ID3tags. They rely heavily on 
the search functionality in DJ software to look for music.  

Concerning the desired music attributes, DJs playing 
multiple genres required a general impression of a song. 
DJs playing only one or few genres requested detailed 
temporal information. The generally important attributes 
were genre, tempo, aggressiveness and volume.  

The idea of visualizing music content was overall ap-
preciated. TensionDiagram was well accepted, as it is 
similar to the signal histogram shown in most of the DJ 
software. Consistent with the preliminary test, Music 
Icon and ThemeRiver were commented as lacking of pre-
cise values. ThumbnailDJ was preferred most, as it uses 
the general metaphor of music notation and reflects both 
overview and precise information for the most desired 
attributes of genre, tempo, aggressiveness and volume. 
The participants’ comments indicated further improve-
ment of ThumbnailDJ. Representing the entire piece of 
song as three separated parts was commented as simple 
and easy to learn. But a continuous flow description was 
desired, which helps to gain temporal changes and facili-
tate observation of the representative parts, such as peaks 
and gaps. Bass value was desired, as it helps to achieve 
smooth transition between songs. The symbols of cres-
cendo, decrescendo, dot and tie were commented as less 
important and poor readable in a size-limited thumbnail.  

5. CONCEPT REFINEMENT 

Based on the implications derived in the discussion with 
DJs, we refined ThumbnailDJ (see Figure 3a): We ex-
cluded the symbols of crescendo, decrescendo, dot and 
tie. We associated pitch (namely the vertical location of a 
note in the staff) with bass value. For example, a note on 
the bottom line implies a higher bass value. The bass 
value is also represented by the position of note head: A 
note with head on the bottom represents higher bass 
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value, and head on the top lower bass value. Aggressive-
ness is depicted as note value, for example, half note for 
calm and sixteenth for aggressive (see Figure 3b). A light 
gray flow is drawn under the staff, indicating changes of 
aggressiveness. Genre is displayed in the top right corner 
and also represented as the background color of the entire 
graphics. Tempo is represented as BPM in the top left 
corner, and volume as decibel (dB) in the bottom left cor-
ner. Currently we define 6 main categories of genres (see 
Figure 3c), and more genres can be easily included. Fig-
ure 3a shows an example thumbnail for a rock song, with 
average tempo of 108 BPM and volume of 94 dB. It is 
quite aggressive and very heavy on bass in both begin-
ning and end parts. The background flow illustrates that 
aggressiveness descends constantly in the middle part, 
rises again and becomes quite fluctuate in the last part. 

      
(a)                                (b) 

   
(c) 

Figure 3. The refined ThumbnailDJ. a): Rock song“ Biffy 
Clyro-As dust dances”. b) 8 kinds of notes. The values of ag-
gressiveness and bass are both mapped to a discrete value be-
tween 1 and 4. The note with head on the bottom represents 
bass value of 3 or 4, and on the top 1 or 2. Half to sixteenth 
notes indicate aggressive values from 1 to 4 respectively. c) 
Some example thumbnails for different genres. 

5.1 Implementation 
ThumbnailDJ is implemented in Java. All songs and their 
relevant data are saved in a SQLite database. We use Tri-
tonus1 to read in the ID3tags of a song. JLayer2 is used to 
decode the audio file. After comparing the performance 
of different audio features, we decided to use zero cross-
ings and Fast Fourier Transformation (FFT) to calculate 
values of aggressiveness and bass. We first use mp3splt3 
to cut the audio file into 15 snippets with equal length. 

                                                           

                                                          
1http://www.tritonus.org/ 
2http://www.javazoom.net/javalayer/javalayer.html
3http://mp3splt.sourceforge.net/mp3splt_page

We then apply jAudio4 to extract the corresponding low-
level features from each snippet. We compute the value 
of zero crossings over each snippet. The average value of 
each successive 5 snippets represents aggressiveness for 
each 1/3 part of the song. Bass is determined by the FFT 
frequencies. For each snippet, the frequencies are sorted 
from low to high. The bass value is represented as the 
sum of lower 1/4 frequencies divided by the sum of all 
frequencies. The average value of each successive 5 snip-
pets represents bass value for each 1/3 part of the song. 
Both aggressiveness and bass are normalized to a discrete 
value between 1 and 4, in order to map them to one of the 
8 note shapes (see Figure 3b). Volume is determined by 
the average value of Root Mean Square (RMS) and 
tempo by the average value of beats in the beat histo-
gram. 

6. EVALUATION 

We conducted a user study with DJs to evaluate the per-
formance of ThumbnailDJ. We were specifically inter-
ested in how it helps gaining an overall impression of a 
song, and facilitating browsing and searching in a music 
collection. 

6.1 Settings and Procedure 

As DJ equipments were required, the evaluation was con-
ducted in the work places of the participants. Each par-
ticipant was asked to offer a collection of 100 songs. For 
each collection, the thumbnails were generated before 
hand and shown in Windows Explorer in another laptop. 
On average the user study lasted about 90 minutes per 
participant. It was recorded on video using the Think-
Aloud protocol was applied. All scores were rated on a 5-
point Linkert-scale where 5 represented the highest score. 

Since the participants already joined the former inter-
view and they preferred ThumbnailDJ most, in this 
evaluation we focused on ThumbnailDJ and did not com-
pare it with other concepts. After a brief introduction of 
refined ThumbnailDJ, the participants were asked to de-
scribe their impression of two unfamiliar songs by view-
ing the corresponding thumbnails. Then they were shown 
thumbnails of two familiar songs and asked to rate how 
well these thumbnails describe these songs. After that, 
they executed a routine task with their own methods (two 
participants with analogue music and the other three with 
digital) and through browsing the corresponding thumb-
nails respectively: Finding some appropriate songs as in-
tro, bridge and outro respectively for an X (the genre the 
participant often plays) party. The order of their own 
methods and ThumbnailDJ was counterbalanced between 
the participants to minimize learning effects. After com-

 
4http://jmir.sourceforge.net/jAudio.html
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pleting all tasks, they filled out a questionnaire concern-
ing their overall impression of ThumbnailDJ. 

6.2 Participants 

We recruited 5 DJs, who took part in the earlier discus-
sions. Their age ranged from 24 to 31, with an average 
age of 27.4 years. They are all experience DJs with aver-
age experience about 10 years. Two participants play 
mainly Electronic music, two play Hip-Hop, and the 
other one plays multiple genres. Two participants play 
analogue music and the other three digital. All partici-
pants can read musical notation. 

6.3 Results 

The meaning of attributes shown in the thumbnails was 
clear to all participants. They claimed that these thumb-
nails reflected efficiently the features of the tested songs. 
However, the combination of multiple attributes was still 
insufficient to help gaining the sense of an unfamiliar 
song. The participants were reluctant to “guess” the feel-
ing of an unfamiliar song without listening to it. Thumb-
nailDJ was thus considered rather useful as a quick visual 
reminder of a familiar song. Some additional attributes 
were desired, such as vocal and instrument.  

Song selection was overall very subjective, which was 
also influenced by the context, such as the audience feed-
back, the performance duration, the order of DJs in the 
same show and music played by the previous DJ. Songs 
played as intro were characterized as moody and relax-
ing, and thus slow and calm songs were selected. Outro 
songs were similar to the intros, and those with similar 
tempo were composed in a block. Bridge song should fit 
the tempo and bass intensity of the connecting songs. 

Using their own methods and ThumbnailDJ respec-
tively, there were on average 5 songs selected in each 
session. Among these selections each DJ picked 2 to 3 
same songs and other songs were quite similar. When 
asked about their selection criteria, the participants 
pointed out the decisive factors such as song attributes 
and other contextual considerations. However, they could 
not formulate formally why they chose a specific song, as 
“music is kind of sense that can not be precisely de-
scribed” (DJ 6). Therefore, with the general open tasks of 
song selection, we could not collect details about how 
ThumbnailDJ assisted search and browsing in certain as-
pects. 

Considering the completion time, digital DJs were 
overall faster. Their tag-based search was comparable 
with browsing thumbnails. Analogue DJs were slightly 
slower by flipping through the analogue collections. 
They claimed the time difference would become more 
noticeable with a larger collection.  

The concept of visualizing music content was gener-
ally appealing (M=4.20, SD=0.84). The impression of 
ThumbnailDJ was quite positive in the aspects of ease of 

use (M=4.0, SD=1.40), learnability (M=4.80, SD=1.84) 
and understandablity (M=4.20, SD=1.27). Enjoyment 
was rated lower (M=3.40, SD=0.63). Most participants 
believed that the performance of ThumbnailDJ was 
promising, but needed more graphical and acoustical ap-
pealing effects. All participants expressed high willing-
ness to have ThumbnailDJ as plug-in in their DJ soft-
ware, (M=4.80, SD=0.45). 

6.4 Discussion 

The final feedback was quite encouraging, and we re-
ceived valuable implications for further improvement. 
Besides the included attributes of tempo, volume, genre, 
aggressiveness and bass, some additional information is 
desired, such as vocal and instrument, which are impor-
tant for a smooth transition between songs. Currently, 
attributes are directly extracted from low-level features, 
and more elaborate mapping algorithms should be inte-
grated to achieve a better association between low-level 
features and high-level perception. Music taste is subjec-
tive and different users may have different requirements. 
Besides, it is not practical to display too much informa-
tion in a compact thumbnail. Therefore, we suggest em-
ploying a personalization mechanism, and thus the user 
can produce personalized thumbnails, for example, by 
defined the desired attributes shown in the thumbnail.  

Concerning the evaluation method, the collected data 
was mainly qualitative. Detailed information about the 
performance of ThumbnailDJ could not be collected with 
the open tasks. To derive deeper understanding of how 
such visualization facilitates browsing and decision mak-
ing, more controlled tasks should be considered. With a 
possible integration in existing DJ software, a field study 
in a real DJ working environment will help to gain more 
insights on the practical usage of such a tool. 

7. CONCLUSION AND FUTURE WORK 

We explore how to facilitate browsing and searching 
within music collections with the assistance of visual 
thumbnails of music content. Based on the metaphor of 
music notation, we developed ThumbnailDJ to generate 
thumbnails for music content, which include information 
of tempo, volume, genre, aggressiveness and bass. We 
discussed ThumbnailDJ and other 3 selected concepts 
with DJs, and our concept was preferred most. We then 
refined ThumbnailDJ and conducted an evaluation with 
DJs. Our concept received overall positive feedback, es-
pecially towards its helpfulness for quickly recalling of a 
familiar song. Moreover, DJs showed high willingness to 
have such a plug-in in their DJ software.  

We discussed with a senior developer of Traktor1 the  
potential integration of ThumbnailDJ into their DJ soft-
ware. The feedback was quite encouraging. The different 

                                                           
1http://www.native-
instruments.com/en/products/dj/traktor-pro  
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representations of the same information, such as genre, 
bass and aggressiveness, were especially appreciated. 
Considering a possible integration into a commercial 
product, some modification of ThumbnailDJ is necessary, 
for example, displaying more meaningful information for 
tempo and volume beyond the currently discrete values. 

Besides DJs, online audio searchers might be another 
potential user group. For example, in iStockPhoto1 , to 
determine which audio file to buy, the user has to listen 
to many retrieval results, which is quite time-consuming. 
We expect that browsing and decision-making can be fa-
cilitated by assisting the audio files with visual thumb-
nails of their content. Then the user can exclude un-
matching files quickly, or scan all thumbnails in parallel 
while looking for candidates satisfying certain graphical 
features. We discussed ThumbnailDJ with 10 online au-
dio searchers. They were offered a set of 20 thumbnails, 
covering diverse genre, tempo, volume and aggressive-
ness. They first categorized these thumbnails and sorted 
them in each category. They then selected an audio file 
for a coffee advertisement. All participants could manage 
these tasks and commented the assistance of Thumb-
nailDJ as helpful. 

We agree that “Music is more of an art than science” 
[2]. We also believe that visualizations can help people 
gaining more musical insights. We hope our exploration 
can shed some light on facilitating browsing and search-
ing within music collections by bridging the perceptions 
of vision and acoustics. 
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ABSTRACT

The rapid expansion of social media in music has pro-
vided the field with impressive datasets that offer insights
into the semantic structures underlying everyday uses and
classification of music. We hypothesize that the organiza-
tion of these structures are rather directly linked with the
”qualia” of the music as sound. To explore the ways in
which these structures are connected with the qualities of
sounds, a semantic space was extracted from a large collec-
tion of musical tags with latent semantic and cluster anal-
ysis. The perceptual and musical properties of 19 clus-
ters were investigated by a similarity rating task that used
spliced musical excerpts representing each cluster. The re-
sulting perceptual space denoting the clusters correlated
high with selected acoustical features extracted from the
stimuli. The first dimension related to the high-frequency
energy content, the second to the regularity of the spec-
trum, and the third to the fluctuations within the spectrum.
These findings imply that meaningful organization of mu-
sic may be derived from low-level descriptions of the ex-
cerpts. Novel links with the functions of music embedded
into the tagging information included within the social me-
dia are proposed.

1. INTRODUCTION

Attempts to craft a bridge between acoustic features and
the subjective sensation they provoke [3] have usually started
with concepts describing instrument sounds, using adjec-
tives or bipolar scales (e.g., bright-dark, static-dynamic)
and matching these with acoustic descriptors (such as shape
of the envelope and energy distribution) [11, 20].

In this study, we present a purely bottom-up approach
to the conceptual mapping between sound qualities and
emerging meanings. We utilized social media to obtain a
wide sample of music and extract an underlying semantic
structure of this sample. Next, we evaluated the validity
of the obtained mapping by investigating the acoustic fea-
tures underlying the semantic structures. This was done
by an analyzing of the examples representing the semantic
space, and by having participants to rate the similarity of
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random spliced sound examples representing the semantic
space.

Social tagging is an activity, where descriptive verbal
characterizations are given to items of interest, such as
songs, images, or links as a part of the normal use of the
popular online services. Tags can be considered as se-
mantic representations of abstract concepts created essen-
tially for mnemonic purposes and used typically to orga-
nize items [14]. Tagging music is not a novel idea, as any
labeling scheme such as musical genres may be considered
as tags themselves, but in recent years in the context of so-
cial networks, tagging has acquired a new relevance and
meaning [1].

Despite all the possibilities offered by large databases
containing tags, a central problem remains on how to de-
rive an ontology from them [19]. Starting with the assump-
tion of an underlying structure existing in an apparently
unstructured set, we consider a sample of tags to extract a
semantic structure, explained next.

2. ANALYSIS OF TAGS

2.1 Material

A collection of 6372 songs [7] representing 15 musical
genres (Alternative, Folk, Finnish Iskelmä, Pop, World,
Blues, Gospel, Jazz, Rock, Classical, Heavy, Soul, Elec-
tronic, Hip-Hop, Soundtrack) served as the initial database
of music. Musical genres were used in establishing the
sample in order to maximize musical variety in the collec-
tion and to be compatible with a host of music preference
studies (e.g., [6, 22]) that have provided lists of 13 to 15
broad musical genres relevant for most Western adult lis-
teners. The tags related to the songs in this collection were
retrieved from an online music service (last.fm 1 ) with a
dedicated API (Application programming interface) named
Pylast 2 .

2.2 Description of the corpus

The retrieved corpus consists of 5,825 lists of tags (mean
length of 62.27 tags), each list (document in this context)
is associated with a piece of music. The number of times
each tag had been used in the system until the time of
the retrieval was also obtained, representing a measure of
“popularity”.

1 http://www.last.fm
2 http://code.google.com/p/pylast/
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In total, the corpus contains 362,732 tags, from which
77,537 are distinct. Each tag is formed by one or more
words (M=2.48, SD=1.86), a small proportion of the dis-
tinct tags in the corpus contain long expressions (e.g. 6%
of the distinct tags are formed by 5 words or more). In
this study a tag is considered as a unit representing an ele-
ment of the vocabulary, disregarding the number of words
that compose it. Treating tags as collocations (i.e. frequent
juxtaposition of words) shifts the focus from data process-
ing to concept processing [2], also allowing the tags to
function as conceptual expressions [23] instead of words
or phrases.

2.3 Lexical layers of the vocabulary

Preprocessing is necessary in any text mining application
because retrieved data does not follow any particular set of
rules, and there are not standard steps to follow [13].

Three filtering rules where applied to the corpus in the
quantitative domain. First, hapax legomena (i.e. tags used
only once in the corpus), are removed under the rationale
of discarding unrelated data. To capture the most prevalent
and relevant tags, a second filter uses the associated popu-
larity measure of each tag to eliminate the tags below the
mean popularity index of the vocabulary. The third step
eliminates tags with three or more words to prune short
sentence-like descriptions from the corpus. The subset re-
sulting from such reductions represents 46.6% of the cor-
pus (N=169,052, Vocabulary=2,029 tags).

At this point, data has been de-noised but for the ex-
traction of a meaningful semantic ontology from the tags,
a semantic analysis and qualitative filtering is necessary.
To categorize the tags at a functional level [24] (e.g. musi-
cological and lexicological), an analysis was performed by
using the Brown Corpus [9] as parts-of-speech (POS) tag-
ger, Wordnet database [8] for word sense disambiguation,
and Urban Dictionary online 3 and Last.fm database for
general reference. Tags are looked-up in these sources and
the selection of a category is decided by reviewing each
case. The criteria applied in this process favors categories
closely related to music, such as genre, artist, instrument,
form and company, then adjectives, and finally other types.
For instance, “Acid” is a noun but it is also a term exten-
sively used to describe certain musical genres, so it was
classified according to its musical function. Proposed cat-
egories, percentage of the vocabulary, definition and exam-
ples are shown in Table 1. The resulting layers were used
to make a finer discrimination of the tags to uncover the se-
mantic structure. Since one of the main motivations of this
project was to obtain prototypical timbral descriptions, we
focused on tags related to adjectives, nouns, instruments,
temporal and verbs.

2.4 Semantic structure

Tag structure (or folksonomy) is obtained by using latent
semantic analysis (LSA) as a framework [5], a method
that has been used before in the domain of musical tags

3 http://www.urbandictionary.com

[17, 18]. In this study, detection of semantic structure has
three stages: 1) construction of a Term-Document Matrix,
2) calculation of similarity coefficients, and 3) cluster anal-
ysis. First, a Term-Document Matrix X = {xij} is con-
structed. Where each song i, corresponds to a “Document”
and each unique tag (or item of the vocabulary) j, to a
“Term”. The result is a binary matrix X(0, 1) containing
information about the presence or absence of a particular
tag to describe a given song. Second, a similarity matrix
n × n D with elements dij where dii = 0 for all i, is cre-
ated by computing similarity indexes between tag vectors
xi∗j of X with:

dij =
ad√

(a+ b)(a+ c)(d+ b)(d+ c)
(1)

where a is the number of (1,1) matches, b for (1,0), c for
(0,1) and d for (0,0).

There are several methods to compute similarity coef-
ficients between binary vectors (c.f., [10]). This coeffi-
cient was selected because of its symmetric quality, which
considers the double absence (0,0) as important as (1,1),
that presumably has positive impact on ecologic applica-
tions [10]. A hierarchical clustering algorithm was used to
transform the similarity matrix into a sequence of nested
partitions. The method used in the hierarchical clustering
was Ward’s minimum variance, to find compact, spheri-
cal clusters [21] and because it has demonstrated its profi-
ciency in comparison to other methods [12].

After obtaining a hierarchical structure, the clusters are
derived from the resulting dendrogram by “pruning” the
branches with an algorithm that uses a partitioning around
medioids (PAM) clustering method in combination with
the height of the branches [15]. Figure 1 shows a two di-
mensional projection (obtained with multidimensional scal-
ing) of the similarity matrix used in the hierarchical clus-
tering. Each dot represents a tag, and the numbers show
the centers of their corresponding clusters. Each number
is enclosed in a circle that shows the relative size of the
cluster in terms of the number of tags contained in it. A
more detailed reference on the content of the clusters can
be consulted in Table 2.

2.5 Ranking of musical examples in the clusters

In order to explore any acoustic or musical aspects of the
clusters, we need to link the clusters with the specific songs
represented by the tags. For this, a m × n Term Docu-
ment Matrix (TDM) X = {xij} is constructed, where lists
of tags attributed to a particular song are represented as
m, and preselected tags as n. A list of tags is a finite set
{1, ..., k}, where 1 ≤ k ≤ 96. Each element of the matrix
contains a value of the normalized rank of a tag if found on
a list, and it is defined by:

xij =
(rk
k

)−1

(2)

Where rk is the cardinal rank of the tag j if found in i, and
k is the total length of the list. To obtain a cluster profile,
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Categories % Definition Examples
Genre 36.72% Musical genre or style Rock, Alternative, Pop
Adjective 12.17% General category of adjectives Beautiful, Mellow, Awesome
Noun 9.41% General category of nouns Love, Melancholy, Memories
Artist 8.67% Artists or group names Coldplay, Radiohead, Queen
Locale 8.03% Geographic situation or locality British, American, Finnish
Personal 6.80% Words used to manage personal collections Seen Live, Favourites, My Radio
Instrument 4.83% Sound source Female vocalists, Piano, Guitar
Unknown 3.79% Unclassifiable gibberish aitch, prda, <3
Temporal 2.41% Temporal circumstance 80’s, 2000, Late Romantic
Form 2.22% Musical form or compositional technique Ballad, Cover, Fusion
Company 1.72% Record label, radio station, etc. Motown, Guitar Hero, Disney
Verb 1.63% General category of verbs Chillout, Relax, Wake up
Content 1.03% Emphasis in the message or literary content Political, Great lyrics, Love song
Expression 0.54% Exclamations Wow, Yeah, lol

Table 1. Main categories of tags, their prevalence, definition and examples.

Figure 1. 19 clusters obtained with hierarchical clustering
and hybrid pruning.

mean rank of the tag across the TDM is calculated with:

r̄j =

∑m
i=1 xij

m
(3)

Thus the cluster profile or mean ranks vector is defined
as:

pl = r̄j∈Cl
(4)

Cl denotes a given cluster l for 1 ≤ l ≤ 19 (optimal num-
ber of clusters for this dataset), and p is a vector {5, ..., k},
where 5 ≤ k ≤ 334.

Last step aims to obtain ranked lists of songs ordered
in terms of its closeness to each cluster profile. This is
carried out by calculating the euclidean distance between
each song rank vector xi,j∈Cl

and the cluster profile pl:

di =

√∑
j∈Cl

(xij − pl)2 (5)

The examples of the results can be seen in Table 2, where
top artists of each cluster are displayed below central tags
of the cluster.

3. EXPERIMENT

In order to explore whether the obtained clusters are per-
ceptually meaningful and to further understand what kinds
of acoustic and musical attributes they consist of, empirical
data unrelated to the existing structures about the clusters
is needed. A similarity rating experiment was designed to
assess the timbral qualities of songs pertaining to each of
the clusters. We chose to emphasize the low-level, non-
structural qualities of music since we wanted to minimize
the confounding factors caused by recognition of songs,
artists and the subsequent associations with these as well
as the lyrical contents of the music. To this end, the stim-
uli for the experiment consisted of semi-randomly spliced,
brief excerpts, explained in detail below.

3.1 Experiment details

3.1.1 Stimuli

Initially, 5-second audio samples were taken from a ran-
dom middle part (25% after the beginning and 25% before
the end) of the 25 top ranked songs (see ranking proce-
dure in section 2.5) from each cluster. For each sample,
the temporal position of notes onsets were estimated based
on spectral flux using MIRToolbox [16]. The highest onset
was selected as a reference point from which slices of ran-
dom length (150ms ≤ t ≤ 250ms) were taken from 10ms
before the peak onset of each sample, then equalized in
loudness, and finally mixed together using a fade in-out of
50ms with an overlap window of 100ms This resulted in
19 excerpts (each representing a cluster) of variable length,
that were finally trimmed to 1750ms, with a fade in-out of
100ms To prepare these 19 excerpts for a similarity rating,
the 171 paired combinations were mixed with a silence of
600ms. between them.

3.1.2 Participants

12 females and 9 males (age M=26.8, SD=4.15) partici-
pated to the experiment. 9 of them possessed least one
year of musical training. 12 reported listening to music
attentively between one and 10 hours per week.
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Cluster ID Tags proximate to cluster centroids Top artists in the cluster
1 Energetic, Female vocal, Powerful, Hot, Sex Amy Adams, Fred Astaire, Kelly Clarkson
2 Dreamy, Chill out, Haunting, Sleep, Moody Nick Drake, Radiohead, Massive Attack
3 Sardonic, Sarcastic, Cynical, Humorous, Funny Alabama 3, Yann Tiersen, Tom Waits
4 Awesome, Amazing, Male vocalist, Loved, Great Guns N’ Roses, U2, Metallica
5 Composer, Cello, Piano, Cello rock, Violin Camille Saint-Saëns, Tarja Turunen, Franz Schubert
6 Female vocalist, Female vocalists, Female, 00s, Sexy Fergie, Lily Allen, Amy Winehouse
7 Mellow, Beautiful, Chillout, Chill, Sad Katie Melua, Phil Collins, Coldplay
8 Hard, Angry, Loud, Aggressive, Rock out System of a Down, Black Sabbath, Metallica
9 60s, 70s, Guitar virtuoso, Sixties, Guitar solo Simon & Garfunkel, Janis Joplin, The Four Tops
10 Feelgood, Summer, Feel good, Cheerful, Gute laune Mika, Goo Goo Dolls, Shekinah Glory Ministry
11 Autumnal, Wistful, Intimate, Sophisticated, Reflective Soulsavers, Feist, Leonard Cohen
12 High school, 90’s, 1990s, 1995, 1996 Fool’s Garden, The Cardigans, No Doubt
13 50s, Saxophone, Trumpet, Tenor sax, Sax Miles Davis, Thelonious Monk, Charles Mingus
14 1980s, 80’s, Eighties, 80er, Voci maschili Ray Parker Jr., Alphaville, Michael Jackson
15 Affirming, Lyricism, Life song, Vocalization Lisa Stansfield, KT Tunstall, Katie Melua
16 Choral, A capella, Acapella, Choir, A cappella Mediæval Bæbes, Alison Krauss, Blackmore’s Night
17 Voce femminile, Femmina, Voci femminili, Femmine Avril Lavigne, The Cranberries, Diana Krall
18 Tangy, Coy, Sleek, Attitude, Flirty Kylie Minogue, Ace of Base, Solange
19 Rousing, Exuberant, Confident, Playful, Passionate James Brown, Does It Offend You, Yeah?, Tchaikovsky

Table 2. Most representative tags and typical artists of each of the 19 clusters.

3.1.3 Procedure

Participants were presented with pairs of sound excerpts in
random order using a computer interface and high-quality
headphones. Their task was to rate the similarity of sounds
on a 9-level Likert scale, whose extremes were labeled as
dissimilar and similar. Before the actual experimental tri-
als, they were given instructions and practice trials to fa-
miliarize themselves with the task.

3.1.4 Audio features

To explore the acoustic and musical features underlying
the perceptual similarities of the clusters, 41 audio features
(listed on Table 3) were extracted from each spliced stim-
uli using MIR toolbox [16]. The choice of features was
restricted to those which would be applicable to spliced
examples and would not require high-level feature analysis
such as structural repetition or tonality. The extraction was
carried out using frame-based approach with 50ms analy-
sis frame using 50% overlap.

3.2 Results

Highly consistent pattern of similarities between the 21
participants were obtained (Cronbach α = 0.94). For this
reason, a mean similarity matrix of the individual ratings
was subjected to metric multidimensional scaling (MDS)
analysis based on stress minimization by means of ma-
jorization (SMACOF) [4]. This yielded adequate low -
dimensional projections of the data, from which we fo-
cus on 2 - dimensional (stress=0.065) and 3 - dimensional
(stress=0.027) solutions.

The organization of the clusters (represented with sliced
samples) illustrates a clear organization in terms of the se-
mantic qualities of the clusters (see Figure 2), showing the
Awesome and Hard examples on the left uppermost corner,
and the semantically distant, Autumnal and Dreamy in the
lower right-hand corner.

To investigate the perceived organization of the seman-
tic clusters in terms of the acoustic qualities, the 3 dimen-
sions were correlated with the extracted audio features.

Category No. Feature
Dynamics 1-2 RMS energy

3-4 Attack time (M, SD)
Rhythm 5-6 Fluctuation peak pos. (M, SD)

7 Fluctuation centroid (M, SD)
Pitch 8-9 Pitch (M, SD)

10-11 Chromagram (unwr.) centr. (M, SD)
Harmony 12 Entropy (oct. collap. spectr.) (M)

13 Roughness (M)
14 Inharmonicity (M, SD)

Timbre 15-16 Brightness (cut-off 110 Hz) (M, SD)
17-18 Spectral centroid (M, SD)
19-20 Zerocross (M, SD)
20-21 Spread (M)
22 Spectral entropy (M)
23 Spectral flux (M)
24 Flatness (M)
25 Kurtosis (M)
26-27 Regularity (M, SD)
28-29 1st MFCC (M, SD)
...

...
30-41 7th MFCC (M, SD)

Table 3. List of extracted audio features (M= mean, SD=
standard deviation)

Highly significant correlations, top five shown in Table 4,
were observed for dimensions 1 and 2. We may interpret
these correlations in terms of the qualities of the sound
spectrum: The first dimension is related to the distribution
of energy along the frequency (spectral centroid, flatness,
brightness, MFCC1, etc.), where the items in the MDS so-
lution are arranged from the high-frequency energy content
in the left to the prevalence of low-frequency energy con-
tent in the right. The second dimension may be interpreted
as the periodic organization of the spectrum, i.e., whether
the spectrum is harmonic (roughness,skewness, spread and
fluctuation centroid). The clusters represented by the items
in the lower part of the MDS solution possess clearer orga-
nization of the spectrum in comparison with the the items
high on the MDS solution. The third dimension seem to be
related the temporal fluctuation of the spectrum (MFCC6
[SD], Fluctuation position [M], MFCC22 [M]).
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Dimension 1 Dimension 2 Dimension 3
Acoustic feature r Acoustic feature r Acoustic feature r
MFCC 1 (M) 0.94 *** Fluctuation centroid (M) -0.72 *** MFCC 6 (SD) 0.51 *
Flatness (M) -0.86 *** Roughness (M) 0.68 ** Fluctuation position (M) -0.50 *
Centroid (M) -0.83 *** Skewness (M) 0.67 ** MFCC 2 (M) -0.46 *
Brightness (M) -0.81 *** Spread (M) -0.65 ** Fluctuation peak (M) 0.45
Spectral entropy (M) -0.80 *** Kurtosis (M) 0.57 * Irregularity (SD) 0.44
∗ ∗ ∗ = p < .001, ∗∗ = p < .01, ∗ = p < .05

Table 4. Correlations between the dimensions of the multidimensional scaling solution and acoustic descriptors.
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Figure 2. Dimensions 1 and 2 of the MDS with be-
havioural responses and associated tags

3.3 Discussion

In sum, when brief and spliced excerpts taken from the
clusters representing semantic structures of the music de-
scriptions are presented to listeners, they are able to form
coherent distances between them. An acoustic analysis of
the excerpts was used to label the dimensions embedded
in the cluster similarities. This analysis showed clear cor-
relations between the dimensional and timbral qualities of
music. However, it should be emphasized that the high rel-
evance of many timbral features is only natural since the
timbral characteristics of the excerpts were preserved and
structural aspects were masked by the semi-random splic-
ing.

We are careful in not taking these early results to mean
literally that the semantic structure of the initial sample
would be explainable by means of the same timbral fea-
tures. This is of course another question which is easily
empirically approached using feature extraction of the typ-
ical examples representing each cluster and either classify
the clusters based on features, or predict the coordinates of
the clusters within a low dimensional space by means of
regression using a larger set of acoustic features (includ-
ing those that are relevant for full excerpts such as tonality
and structure). However, we are positively surprised at the

level of coherence from the part of the listener ratings and
their explanations in terms of the acoustic features despite
the limitations we imposed on the setting (i.e. discarding
tags connected with musical genres), splicing and having a
large number of clusters to test. Our intention is to follow
this analysis with more rigorous selection of acoustic fea-
tures (PCA and other data reduction techniques) and use
multiple regression to assess whether linear combinations
of the features would be necessary for explaining the per-
ceptual dimensions.

4. CONCLUSIONS

The present work provided a bottom-up approach to se-
mantic qualities of music descriptions, which capitalized
social media, natural language processing, similarity rat-
ings and acoustic analysis. Semantic structures of music
descriptions have been extracted from the social media pre-
viously [18] but the main difference here was the careful
filtering of such data. We used natural language process-
ing to focus on categories of tags that are meaningful but
do not afford immediate categorization of music in a way
that, for example, musical genre does.

Although considerable effort was spent on finding the
optimal way of teasing out reliable and robust structures
of the tag occurrences using cluster analysis, several other
techniques and parameters within clustering could also have
been employed. We realize that other techniques would
probably have led to different structures but it is an open
empirical question whether the connections between the
similarities of the tested items and their acoustic features
would have been entirely different. A natural continua-
tion of the current study would be to predict the typical
examples of the clusters with the acoustic features by us-
ing either classification algorithms or mapping of the clus-
ter locations within a low dimensional space using corre-
lation and multiple regression. However, the issue at stake
here was the connection of timbral qualities with semantic
structures.

The implications of the present findings are related to
several open issues. The first one is the question whether
structural aspects of music are required in explaining the
semantic structures or whether the low-level, timbral char-
acteristics are sufficient, as was indicated by the present
findings. Secondly, what new semantic layers (as indicated
by categories of tags) can be meaningfully connected with
the acoustic properties of the music? Finally, if the timbral
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characteristics are indeed strongly connected with such se-
mantic layers as adjectives, nouns and verbs, do these arise
by means of learning and associations, or are the underly-
ing regularities connected with emotional, functional and
gestural cues of the sounds?
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TOWARDS MORE ROBUST GEOMETRIC
CONTENT-BASED MUSIC RETRIEVAL

Kjell Lemström
Department of Computer Science

University of Helsinki

ABSTRACT

This paper studies the problem of transposition and
time-scale invariant (ttsi) polyphonic music retrieval
in symbolically encoded music. In the setting, music
is represented by sets of points in plane. We give two
new algorithms. Applying a search window of size w
and given a query point set, of size m, to be searched
for in a database point set, of size n, our algorithm for
exact ttsi occurrences runs in O(mwn log n) time; for
partial occurrences we have an O(mnw2 log n) algo-
rithm. The framework used is flexible allowing devel-
opment towards even more robust geometric retrieval.

1. INTRODUCTION

Query-by-humming type problems have been under
study for over fifteen years. First, the music under
investigation was assumed to be monophonic [3], later
the term has been used with a wider meaning address-
ing problems where the task is to search for excerpts
of music, resembling a given query pattern, in a large
database. Moreover, both the query pattern and the
database may be polyphonic, and the query pattern
constitutes only a subset of instruments appearing in
the database representing possibly a full orchestra-
tion of a musical piece. Although current audio-based
methods can be applied to rudimentary cases where
queries are directed to clearly separable melodies, the
general setting requires methods based on symbolic
representation that are truly capable of dealing with
polyphonic subset matching.

To this end, several authors have recently used geo-
metric-based modeling of music [1, 7–9]. Geometric
representations usually also take into account another
feature intrinsic to the problem: the matching process
ignores extra intervening notes in the database that do
not appear in the query pattern. Such extra notes are
always present because of the polyphony, various noise
sources and musical decorations. There is, however, a
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notable downside to the current geometric methods:
they do not usually allow distortions in tempo (ex-
cept for individual outliers that are not even discov-
ered) that are inevitable in the application. Even if
the query could be given exactly on tempo, the occur-
rences in the database would be time-scaled versions
of the query (requiring time-scale invariance). If the
query is to be given in a live performance, local jit-
tering will inevitably take place and a stronger invari-
ance, namely the time-warping invariance [4], would
be a desired property for the matching process.

In this paper, new time-scale invariant geometric
algorithms that deal with symbolically encoded, poly-
phonic music will be introduced. We use the pitch-
against-time representation of note-on information, as
suggested in [9] (see Fig 1). The musical works in a
database are concatenated in a single geometrically
represented file, denoted by T ; T = t0, t1, . . . , tn−1,
where tj ∈ R2 for 0 ≤ j ≤ n − 1. In a typical re-
trieval case the query pattern P , P = p0, p1, . . . , pm−1;
pi ∈ R2 for 0 ≤ i ≤ m− 1, to be searched for is often
monophonic and much shorter than the database T
to be searched. Sometimes a search window w is ap-
plied and typically w < m, that is w < m � n. It is
assumed that P and T are given in the lexicographic
order. If this is not the case, the sets can be sorted in
O(m logm) and O(n log n) times, respectively.

The problems under consideration are modified ver-
sions of two problems originally represented in [8].
The following list gives both the original problems and
the modifications under consideration; for the partial
matches in P2 and S2, one may either use a threshold
α to limit the minimum size of an accepted match, or
to search for maximally sized matches only.

(P1) Find translations of P such that each point in P
matches with a point in T .

(P2) Find translations of P that give a partial match
of the points in P with the points in T .

(S1) Find time-scaled translations of P such that each
point in P matches with a point in T .

(S2) Find time-scaled translations of P that give a
partial match of the points in P with the points
in T .

Fig. 2 gives 4 query patterns to be searched for in
the excerpt of Fig. 1, exemplifying these 4 problems.
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In [6], Romming and Selfridge-Field gave a geomet-
ric hashing-based algorithm for S2. Without window-
ing, it works in O(n3) space and O(n2m3) time. This
paper studies another way to solve problems S1 and
S2. The new algorithms to be introduced resemble
Ukkonen et al’s PI and PII algorithms. The algo-
rithm for S1 runs in time O(mn2 log n) and O(mn2)
space; the algorithm for S2 in O(m2n2logn) time and
O(m2n2) space. An advantage of our method over the
one by Romming and Selfridge-Field is that the perfor-
mance can be spedup by applying an index-filter pre-
processing [5]. Our method also seems to be adaptable
to time-warping invariant cases. Thus, the method
is an important step towards more robust geometric
content-based music retrieval.

2. RELATED WORK

Let α denote a similarity threshold for P2, and let
p0, p1, . . . , pm−1 and t0, t1, . . . , tn−1 be the pattern and
database points, respectively, lexicographically sorted
according to their co-ordinate values: pi < pi+1 iff
pi.x < pi+1.x or (pi.x = pi+1.x and pi.y < pi+1.y),
and tj < tj+1 iff tj .x < tj+1.x or (tj .x = tj+1.x
and tj .y < tj+1.y). In our application the elapsing
time runs along the horisontal axes, represented by
x, the perceived height, the pitch, is represented by
y. A translation of P by vector f is denoted P + f :
P + f = p0 + f, . . . , pm−1 + f . Using this notation,
problem P1 is expressible as the search for a subset I
of T and some f such that P + f = I. Note that
decomposing translation f into horisontal and ver-
tical components f.x and f.y, respectively, captures
two musically distinct phenomena: f.x corresponds
to aligning the pattern time-wise, f.y to transposing
the musical excerpt to a lower or higher key. Note
also that a musical time-scaling σ, σ ∈ R+, has an
effect only on the horisontal translation, the vertical
translation stays intact.

Example 2.1. Let p = 〈1, 1〉, f = 〈2, 2〉 and σ = 3.
Then p+ σf = 〈7, 3〉.

A straight-forward algorithm solves P1 and P2 in
O(mn log(mn)) time. The algorithm first exhaustively
collects all the translations mapping a point in P to
another point in T . The set of the collected translation
vectors are then sorted in lexicographic order. In the
case of P1, a translation f that has been used m times
corresponds to an occurrence; in the case of P2, any
translation f that has been used at least α times would
account for an occurrence. Thoughtful implementa-
tions of the involved scanning (sorting) of the transla-
tion vectors, will yield an O(mn) (O(mn logm)) time
algorithm for P1 (P2) [8].

Indeed, the above O(mn logm) time algorithm is
the fastest online algorithm known for P2. Moreover,
any significant improvement in the asymptotic run-
ning time, exceeding the removal of the logarithmic
factor, cannot be seen to exist, for P2 is known to be

a 3SUM-hard problem [2]. It is still possible that P2
is also a Sorting X+Y -hard problem, in which case
Ukkonen et al’s PII algorithm would already be an
optimal solution. In [2], Clifford et al introduced an
O(n log n) time approximation algorithm for P2.

To make the queries more efficient, several index-
ing schemes have been suggested. The first indexing
method using geometric music representation was sug-
gested by Clausen et al. [1]. Their sublinear query
times were achieved by using inverted files, adopted
from textual information retrieval. The performance
was achieved with a lossy feature extraction process,
which makes the approach non-applicable to problems
P1 and P2. Typke [7] proposed the use of metric
indexes that works under robust geometric similar-
ity measures. However, it is difficult to adopt his
method to support translations and partial matching
at the same time. Lemström et al’s approach [5] com-
bines sparse indexing and (practically) lossless filter-
ing. Their index is used to speed up a filtering phase
that charts all the promising areas in the database
where real occurrences could reside. Once a query
has been received, the filtering phase works in time
O(gf (m) logn+n) where function gf (m) is specific to
the applied filter f . The last phase involves checking
the found cf (cf ≤ n) candidate positions using Ukko-
nen et al’s PI or PII algorithm executable in worst-case
time O(cfm) or O(cfm logm), respectively.

The only non-brute-force solution known for S1 and
S2 is by Romming and Selfridge-Field [6]. It is based
on geometric hashing and works in O(n3) space and
O(n2m3) time. By applying a window on the database
such that w is the maximum number of events that
occur in any window, the above complexities can be
restated as O(w2n) and O(wnm3), respectively.

3. MATCHING ALGORITHMS

Our matching algorithms for the time-scale invariant
problems S1 and S2 resemble somewhat Ukkonen et
al’s PI and PII algorithms in that they all use a prior-
ity queue as a focal structure. Ukkonen et al’s PI and
PII work on trans-set translations, or trans-set vectors,
f = t − p, where p and t are points in a given query
pattern, of length m, and in the underlying database,
of length n, respectively. Let us assume (without loss
of generality) that all the points, both in the pattern
and in the database, are unique. The number of trans-
set vectors is within the range [n+m−1, nm]. In order
to be able to build an index on the database in an of-
fline phase, Lemström et al’s method [5] is based on
intra-set vectors. For instance, translation vector f is
an intra-pattern vector, if there are two points p and
p′ (p, p′ ∈ P ) such that p+f = p′. Intra-database vec-
tors are defined accordingly. Naturally, the number
of intra-pattern and intra-database vectors are O(m2)
and O(n2), respectively.

The set of positive intra-pattern vectors include trans-
lations pi′ − pi where in the case of S1: 0 ≤ i < m
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Figure 1. On top, an excerpt from Franz Schubert’s song
cycle Winterreise. Below, the related geometric, point-set
representation. The points associated with the vocal part
are represented distinctly (by squares). The depicted 6
intra-database vectors will be discussed later.

and i′ = i + 1, and in the case of S2: 0 ≤ i < i′ ≤
m. The set of positive intra-database vectors include
translations tk′ − tk where, independently of the case,
0 ≤ k < k′ ≤ n. To reduce the search space, one may
apply a window that restates the bounds for i′ (in the
case of S2) and k′ in the obvious way: 0 ≤ i < i′ ≤
min{i+ w,m} and 0 ≤ k < k′ ≤ min{k + w, n}.

For the convenience of the algorithms, we pretend
that there is an extra elements pm in the pattern and
tn in the database. The matching algorithms take
as input intra-set vectors, stored in tables K[i], 0 ≤
i < m. Table K[i] stores intra-database translations
that may match 1 the positive intra-pattern vectors
pi′ − pi, i.e., translation vectors starting at point pi.
See Fig. 3 for an illustration on tables K[i].

The entries in our main data structures will be
sorted in a lexicographic order. We will specify the
underlying order by an ordered set ℵ. ℵ is formed by
members of {a, b, s}, where a, b and s correspond to
the columns named accordingly in tables K[i]. For in-
stance, lexicographic order 〈a, s〉 is firstly based on the
values on column a (the starting point of the associ-
ated intra-database vector), secondly on the values on
column s (the associated scaling value). A main loop
that goes exhaustively through all the possibilities of
positive intra-pattern and positive intra-database vec-
tors to initialise the tables K[i] is needed. To this end,
let a positive intra-database vector g = tk′−tk be such
that there is a positive intra-pattern vector f = pi′−pi

1 Please note the distinction between an occurrence and a
match. An occurrence involves as many matching pairs of intra-
database and intra-pattern vectors as is required.

〈0, 7〉 〈0, 12〉 〈2, 15〉 〈0, 5〉 〈2, 8〉 〈4, 4〉
〈2, 3〉 〈4,−1〉 〈4, 2〉 〈2,−4〉 〈2,−1〉 〈4,−8〉
〈0, 3〉 〈2,−4〉 〈4, 3〉 〈2,−7〉 〈4, 0〉 〈6,−14〉
〈2, 7〉 〈4,−7〉 〈4, 0〉 〈2,−14〉 〈2,−7〉 〈2,−2〉
〈0, 7〉 〈0, 12〉 〈0, 24〉 〈0, 5〉 〈0, 17〉 〈1, 24〉
〈0, 12〉 〈1, 19〉 〈2, 17〉 〈1, 7〉 〈2, 5〉 〈3, 8〉
〈1,−2〉 〈2, 1〉 〈3, 0〉 〈1, 3〉 〈2, 2〉 〈4,−14〉
〈1,−1〉 〈3,−17〉 〈3,−8〉 〈2,−16〉 〈2,−7〉 〈4,−18〉
〈0, 9〉 〈2,−1〉 〈2, 11〉 〈2,−10〉 〈2, 2〉 〈4,−12〉
〈0, 12〉 〈2,−2〉 〈2, 13〉 〈2,−14〉 〈0, 1〉 〈0, 15〉

Table 1. The intra-database vectors generated by the
example given in Fig. 1 when ignoring the first bar and
setting w = 3. The first and the last intra-database vectors
under consideration are depicted in Fig. 1 as arrows with
solid and dashed stems, respectively.

for which g.y = f.y (ie. the pitch intervals of the two
vectors match). Because g may be part of an occur-
rence, a new row, let it be the hth, in K[i] is allocated
and the following updates are conducted:

K[i]h.a ← k; K[i]h.b← k′; (1)

K[i]h.s ← tk′ .x− tk.x
pi′ .x− pi.x

; (2)

K[i]h.y ← nil; K[i]h.w ← 1; (3)
K[i]h.c ← i′; K[i]h.z ← 0. (4)

Above, in (1), the associated starting and ending points
of the matching intra-database vector are stored in
K[i]h.a and K[i]h.b, respectively. The required time
scaling for the intra-vectors to match is stored inK[i]h.s
(2); here extra carefulness is needed to avoid zero di-
vision: If both the numerator and the denominator
equal zero, we set K[i]h.s = 1. If only one of them
equals zero or both equal infinity, the whole row is
deleted from the table (they would represent impos-
sible time scalings). Columns y and w, initialised in
(3), are used for backtracking a found occurrence and
storing the length of a candidate occurrence, respec-
tively. The last columns, initialised in (4), will be
needed when searching for partial occurrences (in Sec-
tion 3.2): column c stores the ending point of the as-
sociated intra-pattern vector, z is used for identifying
an occurrence.

Denoting by Σpi the number of rows generated above
for table K[i], 0 ≤ i < m, for the aforementioned ex-
tra elements we set:

K[i]Σpi .a← K[i]Σpi .b←∞;
K[i]Σpi .s← K[i]Σpi .w ← 0; K[i]Σpi .c← i+ 1

As each iteration of the main loop takes constant
time, this exhaustive initialisation process runs in time
O(nmw2). Finally, the columns in K[i] are sorted in
lexicographic order 〈a, s〉. The matching algorithms
have an associated priority queue Qi for each table
K[i], 0 < i ≤ m 2 . For Qi, a lexicographic order
〈b, s〉 is used. As a reminder, the order is given in the
superscript of a priority queue (e.g. Q〈b,s〉i ).

2 A single priority queue would suffice, but the algorithm
would become more complicated.
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〈6,3〉 〈6,−2〉 〈6,−7〉 〈6, 7〉 〈12,−2〉

Figure 2. On top, 4 example queries. For query A an
occurrence in the excerpt given in Fig. 1 would be found
in all four cases P1, P2, S1 and S2; for B in cases P2, S1
and S2; for C in S1 and S2; and for D in S2 only. At the
bottom, the positive intra-pattern vectors, associated with
the query C in case S1.

3.1 S1: Time Scaled Exact Matching

Once the tables K[i] have been initialised and their
columns have been sorted in lexicographic order 〈a, s〉,
the transposition-invariant time-scaled exact occur-
rences can be found using the matching algorithm
given in Fig. 4. The algorithm works by observing
piecewise matches between positive intra-database and
intra-pattern vectors

tki′ − tki = σi(pi+1 − pi) (5)

that are stored in the associated K[i]. Above σi ∈
R+ is the time-scaling factor (recall Example 2.1).
The piecewise matches may form a chain Tτ0...τm−1 =
tτ0 , tτ1 , . . . , tτm−1 , where τ0, τ1, . . . , τm−1 is an increas-
ing sequence of indices in T ; tτi+1 − tτi = σ(pi+1− pi)
for 0 ≤ i < m − 1 and σ ∈ R+ is a time-scaling fac-
tor common to all the piecewise matches in the chain.
As such chains represent transposition-invariant, time-
scaled exact occurrences, the task is to look for them.

A chain Tτ0...τm′ m
′ < m − 1, is called a prefix

occurrence (of length m′); Tτm′−1,τm′ is the final suffix
of the prefix occurrence Tτ0...τm′ . Let tτi+1 − tτi (that,
by definition, equals σ(pi+1−pi)) be the final suffix of
a prefix occurrence Tτ1...τm′ . The prefix occurrence is
extensible if there is a piecewise match tk′i+1

− tki+1 =
σ(pi+2 − pi+1) such that

tτi+1 = tki+1 (6)

and scaling factor σ is the one that was used in form-
ing Tτ1...τm′ . The binding in Equation 6 is called the
binding of extension, tτi+1 − tτi the antecedent and
tk′i+1

− tki+1 the postcedent of the binding.

Lemma 3.1. If a prefix occurrence is extensible, its
final suffix is also extensible.

Proof. Immediate.

To be more efficient, at point i + 1, the algorithm
actually considers any piecewise match tk′i − tki =
σi(pi+1 − pi) as an antecedent to the binding and
tries to extend it. Because in this case the piecewise

1 0

 

LEGEND

i

i’

h: running index on the associated table

a: id of the point in T associated with p 

w: cumulative weight; the length of the occurrence thus far

z: running number (id) of an associated occurrence

b: id of the point in T associated with p

y: backward link to be able to construct the match

s: scaling factor of the associated vector 

c: i’

     = # of matches (−1) found for p − p

0 12 13 1 1 / 3 1 nil 0

Σp
0
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K[1]

h

 

 
K[0]  

a b c yw z

14 17 1 2 / 3 1 nil 0

23 24 1 1 / 3 1 nil 0

1

2=

Σp
0

Figure 3. Illustration of tables K[i] when considering
problem (S1) and searching for occurrences for the query
C of Fig. 2 within the two last bars of Fig. 1, w = 3. The
intra-database vectors under consideration are the ones
given in Table 1. Having initialized the tables K in equa-
tions (1-4), K[0] contains the depicted 3 rows.

matches in an occurrence chain have to be consecu-
tive in P , the antecedents of the binding are all found
in K[i] and their possible extensions, postcedents, in
K[i + 1]. To process all the bindings of extension at
point i + 1, therefore, involves going through all the
entries both in K[i] and in K[i+1]. To make this pro-
cess efficient, no entry of either of the tables should be
observed more than once for one iteration. In order
for this to be possible, both sides of the binding of ex-
tension (associated with antecedents and postcedents)
should be enumerated in the same (increasing) order.
However, the lefthand side of the binding involves end
points of the intra-database vectors in K[i] and the
righthand side the start points of the intra-database
vectors in K[i+ 1]. Therefore, we use a priority queue
Q
〈b,s〉
i whose entries are addresses to rows associated

with the antecedents of the binding at i. In this way,
the binding of extension at i can be done efficiently
by enumerating the entries in Qi and K[i]. Note that
the set of piecewise matches extended this way also
includes all the final suffixes, and therefore, according
to Lemma 3.1, also all the prefix occurrences.

The binding of extension takes place in line (8) of
the algorithm. If a piecewise match is extensible, its
length is updated (line 9) and a backtracking link is
stored (line 10). The latter becomes useful if any of
the extended piecewise matches extends into a proper
occurrence, and the whole occurrence is to be revealed
(instead of just reporting it).

Let us now demonstrate the main idea of the algo-
rithm by using a musical example.

Example 3.2. The vocal line in Fig. 1 ends in a sus-
pension that is dissolved at the beginning of the third
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TimeScaledExactOccurrence(K[i])
(0) K[0]Σp0 .s←∞
(1) for j ← 0, . . . ,Σp0 do
(2) Q

〈b,s〉
1 ← push(&K[0]j)

(3) for i← 1, . . . ,m− 2 do
(4) q ← pop(Q〈b,s〉i )
(5) for j ← 0, . . . ,Σpi − 1 do
(6) while [q.b, q.s] < [K[i]j .a,K[i]j .s] do
(7) q ← pop(Q〈b,s〉i )
(8) if [q.b, q.s] = [K[i]j .a,K[i]j .s] then
(9) K[i]j .w ← q.w + 1
(10) K[i]j .y ← q

(11) Q
〈b,s〉
i+1 ← push(&K[i]j)

(12) q ← pop(Q〈b,s〉i )
(13) K[i]Σpi .s←∞
(14) Q

〈b,s〉
i+1 ← push(&K[i]Σpi )

(15) if K[m− 2]j .w = m− 1 for some 0 ≤ j ≤ Σpm−2

(16) then report an occurrence

Figure 4. Algorithm for finding transposition-invariant
time-scaled exact occurrences.

bar. As the expectation for the dissolution is strong
and the lower part of the accompaniment resides in
the same register as the vocal part, if suitably arranged,
the listener perceives the higher ”a” of the lower part of
the accompaniment to belong to the vocal melody. The
queries in Fig. 2 look for occurrences with such a dis-
solution. To solve S1 with the query C of Fig. 2, the
algorithm first fills Table K[0] with rows corresponding
to the intra-database vectors that match the interval of
the first intra-pattern vector 〈6,3〉 (bolded in the fig-
ure). The matching vectors are depicted in Fig. 1 (ar-
rows with a dotted stem) and given bolded in Table 1.
Note that the vector 〈0,3〉 is not accepted since the
associated scaling would actually squeeze any melody
to a chord. The three accepted piecewise matches are
stored in K[0] (see Fig. 3) and the algorithm contin-
ues by looking for piecewise matches in K[1] that could
extend them.

Analysis. Let us denote by |Qi| and |K[j]| the num-
ber of entries in Qi and K[j], respectively. Clearly,
in this case, |Qi| = |K[i − 1]| for 1 ≤ i ≤ m. More-
over, let Σ = maxmi=1(|Qi|, |K[i− 1]|). The outer loop
(line (3)) is iterated m times. Within the inner loop
(line (5)), all the entries in Qi and in K[i] are pro-
cessed exactly once, resulting in O(Σ) entry processing
steps. The only operation taking more than a constant
time is the updating of the priority queue; it takes at
most O(log Σ) time. Thus, the algorithm runs in time
O(mΣ log Σ). Moreover, the tables K[i] and priority
queues Qi require O(mΣ) space.

In this case Σ = O(wn), because each table K[i]
contains the piecewise matches for the positive intra-

TimeScaledPartialOccurrence(K[i])
(0) `← 0; K[0]Σp0 .s←∞
(1) for i← 0, . . . ,m− 2
(2) for j ← 0, . . . ,Σp0
(3) Q

〈b,s〉
K[i]j .c

← push(&K[i]j)
(4) for i← 1, . . . ,m− 2 do
(5) q ← pop(Q〈b,s〉i )
(6) for j ← 0, . . . ,Σpi − 1 do
(6,5) if [q.b, q.s] > [K[i]Σpi .a,K[i]Σpi .s] break
(7) while [q.b, q.s] < [K[i]j .a,K[i]j .s] do
(8) q ← pop(Q〈b,s〉i )
(9) if [q.b, q.s] = [K[i]j .a,K[i]j .s] then
(10) while min(Q〈b,s〉i ) = [q.b, q.s] do
(11) r ← pop(Q〈b,s〉i )
(12) if r.w > q.w then q ← r
(13) K[i]j .w ← q.w + 1
(14) K[i]j .y ← q
(15) if K[i]j .w = α then
(16) `← `+ 1
(17) K[i]j .z = `
(18) κ[`]← &K[i]j
(19) if K[i]j .w > α then
(20) K[i]j .z = q.z
(21) κ[q.z]← &K[i]j
(22) Q

〈b,s〉
K[i]j .c

← push(&K[i]j)
(23) K[i]Σpi .s←∞
(24) Q

〈b,s〉
i+1 ← push(&K[i]Σpi )

(25) ReportOccurrences(κ)

Figure 5. Algorithm for finding transposition-invariant
time-scaled partial occurrences. The optimizer at line (6,5)
can be omitted without breaking functionality; it can also
be used to optimize the previous algorithm (as line (5,5)).

pattern vector pi+1 − pi, and there are O(wn) possi-
bilities to this end. Naturally w = n if no windowing
has been applied.

3.2 S2: Time Scaled Partial Matching

In order to be able to find transposition-invariant time-
scaled partial occurrences, we need the two extra columns
c and z, that were initialised in Equation 4, for tables
K[i]. Recall that K[i]h.c stores the ending point i′ for
an intra-pattern vector pi′ − pi that is found to match
an intra-database vector tk′−tk with some scaling fac-
tor σi. Column z is used for storing a running number
that is used as an id, for a found partial occurrence.
Furthermore, we use an extra table, denoted by κ, for
storing all the found occurrences.

The structure of the algorithm (see Fig. 5) is sim-
ilar to the previous algorithm. Again, at point i, the
antecedents in Qi are to be extended by postcedents
found in K[i]. However, as we are looking for par-
tial occurrences this time, we cannot rely on piecewise
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matches that are consecutive in P but any piecewise
match associated with a positive intra-pattern vector

tki′ − tki = σi(pi′ − pi) (7)

has to be considered. Here 0 ≤ ki < ki′ ≤ min{ki +
w, n}; 0 ≤ i < i′ ≤ min{i+w,m} and σi ∈ R+. Given
a threshold α, a chain Tτ0...τβ−1 , such that tτj−tτj−1 =
σ(pπj − pπj−1), for 0 < j ≤ β − 1, β ≥ α, where
τ0 . . . τβ−1 and π0 . . . πβ−1 are increasing sequences of
indices in T and P , respectively, would constitute for a
transposition-invariant time-scaled partial occurrence
(of length β).

That piecewise matches can now be between any
two points in the pattern makes the problem some-
what more challenging. This has the effect that, at
point i, pushing a reference to a priority queue (lines
(2) and (21) of the algorithm) may involve any fu-
ture priority queue, from Qi+1 to Qm, not just the
successive one as in the previous case; the correct pri-
ority queue is the one that is stored in K[i]j .c (recall
that it stores the end point of the intra-pattern vec-
tor associated with the piecewise match). Conversely,
the antecedents at point i (stored in Qi) may include
references to any past tables within the window size,
expanding the size of the priority queue Qi.

The two remaining differences to the algorithm above,
are in lines (11) and (14-20). In line (11), the algo-
rithm chooses to extend the piecewise match that is
associated with the longest prefix occurrence. This is
a necessary step, once again, because we are no more
dealing with piecewise matches that are consecutive in
P . In lines (14-20) the algorithm deals with a found
occurrence. Lines (14-17) deal with a new occurrence:
generate a new running number, `, for it (that is used
as its id) and store a link to the found occurrence to
the table of occurrences κ. Lines (18-20) deal with
extending a previously found occurrence.

Analysis. Let Σ = maxmi=1(|Qi|, |K[i − 1]|). With
an analogous reasoning to that of the previous anal-
ysis, we arrive at similar complexities: the algorithm
runs in O(mΣ log Σ) time and O(mΣ) space. Let us
now analyse the order of Σ in this case. Still it holds
that for a positive intra-pattern vector, pi+1−pi, there
are O(wn) possible piecewise matches. However, the
table K[i] may contain entries associated with piece-
wise matches with any positive intra-pattern vector
ending at point i + 1. Thus, maxmi=1(|K[i − 1]|) =
O(min{m,w}wn). As |Qi| = |K[i− 1]| for 0 < i ≤ m
and assuming w < m, we conclude that the algorithm
has an O(mnw2 log n) running time and works in a
space O(mnw2).

4. CONCLUSIONS

In this paper we suggested novel content-based mu-
sic retrieval algorithms for polyphonic, geometrically
represented music. The algorithms are both transpo-
sition and time-scale invariant. Given a query pat-
tern P = p0, . . . , pm−1 to be searched for in a music

database T = t0, . . . , tn−1 and applying a search win-
dow of size w, the algorithms run in O(mΣ log Σ) time
and O(mΣ) space, where Σ = O(wn) when search-
ing for exact occurrences under such a setting, and
Σ = O(nw2) when searching for partial occurrences.
Whether this is an improvement in practice over the
existing algorithm by Romming and Selfridge-Field
[6], working in space O(w2n) and time O(wnm3), is
left for future experiments on real data.

However, the framework seems to be very flexible:
it is currently under modification to a more complex
case, where an uneven time deformation is known just
to preserve the order of the notes; there are no known
solutions for this time-warping invariant problem [4].
Moreover, it seems that with some modifications to
the data structures and ideas presented in [5] it would
be possible to adopt the idea of using a three-phase
searching process (indexing, filtering and checking) re-
sulting in a smaller search space and a better running
time to those presented here.

Acknowledgements This work was supported by
the Academy of Finland (grants #108547 and #218156).

5. REFERENCES

[1] M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz.
Proms: A web-based tool for searching in polyphonic
music. In Proc. ISMIR’00, Plymouth, MA, October
2000.

[2] R. Clifford, M. Christodoulakis, T. Crawford,
D. Meredith, and G. Wiggins. A fast, randomised,
maximal subset matching algorithm for document-level
music retrieval. In Proc. ISMIR’06, pp. 150–155, Vic-
toria, BC, October 2006.

[3] A. Ghias, J. Logan, D. Chamberlin, and B. Smith.
Query by humming - musical information retrieval in
an audio database. In Proc. ACM Multimedia, pages
231–236, San Francisco, CA, 1995.

[4] K. Lemström and G. Wiggins. Formalizing invariances
for content-based music retrieval. In Proc. ISMIR’09,
pp. 591–596, Kobe, October 2009.

[5] K. Lemström, N. Mikkilä, and V. Mäkinen. Filter-
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ABSTRACT 

In this paper we present two new query-by-playing 
(QBP) music information retrieval (MIR) systems aimed 
at musicians playing traditional Irish dance music. 
Firstly, a browser hosted system - tunepal.org is pre-
sented. Secondly, we present Tunepal for iPhone/iPod 
touch devices - a QBP system that can be used in situ in 
traditional music sessions. Both of these systems use a 
backend corpus of 13,290 tunes drawn from community 
sources and “standard” references. These systems have 
evolved from academic research to become popular tools 
used by musicians around the world. 16,064 queries have 
been logged since the systems were launched on 31 July, 
2009 and 11 February, 2010 respectively to 18 May 
2010. As we log data on every query made, including 
geocoding queries made on the iPhone, we propose that 
these tools may be used to follow trends in the playing of 
traditional music. We also present an analysis of the data 
we have collected on the usage of these systems. 

1. INTRODUCTION 

There exist approximately seven thousand unique tradi-
tional Irish dance tunes [1]. Musicians playing traditional 
music have a personal repertoire of up to a thousand 
tunes. Many of these tunes are known by multiple names, 
while many more are known simply as “gan anim” (with-
out name). In the past, commercial recordings of tradi-
tional music were accompanied by extensive sleeve notes 
providing biographic information on the tunes in the re-
cording. In the modern age two trends have emerged. 
Firstly, the use of digital audio formats and digital 
downloading of music has meant that personal music col-
lections do not contain this biographic data and many 
musicians are unfamiliar with the history and background 
to the tunes they are playing. This fact is compounded by 
the fact that although traditional tunes often have colour-
ful and memorable titles (Table 1), there is nothing to link 
the title of a tune with its melody [2].  

The second trend is the development of extensive; 
crowd sourced biographic references and discographies 
for tunes on websites such as thesession.org [3]. Linking 
the melodies of traditional Irish dance tunes to biographic 
data about the tune, including names, is the goal of an 
ongoing project at the DIT School of Computing. 
 
 

 
Name 

The Bucks Of Oranmore 
Come West Along The Road 
Repeal Of The Union 
The Chicken That Made The Soup 
More Power To Your Elbow 
If It's Sick You Are Tea You Wants 
The Night We Made The Match 
Last Night’s Fun 
My Former Wife 
The First Night In America 

 
Table 1: Tune names taken from [4] 
 

In our previous work [5-7], we described a proof of 
concept music information retrieval (MIR) system 
adapted to the characteristics of traditional Irish dance 
music that addressed this very problem. In this paper, we 
present follow up work in developing this research into 
robust and reliable tools that are now being used by thou-
sands of musicians around the world. Specifically we pre-
sent tunepal.org – a browser hosted query-by-playing 
(QBP) system and Tunepal for the iPhone/iPod touch – a 
QBP system that can be used in situ in traditional music 
sessions. As these systems log details of every query be-
ing made (including geotagging queries made on the 
iPhone), they represent a unique opportunity to analyse 
the zeitgeist of traditional music. In other words, to iden-
tify trends, popular tunes and tune types being played 
around the world. 

 Section 2 of this paper presents a brief overview of 
our previous work in this area. Section 3 presents the ar-
chitecture of tunepal.org. Section 4 presents Tunepal for 
iPhone. Section 5 presents a summary of usage data col-
lected from the two systems. Section 6 presents a sum-
mary and conclusions.  

2. RELATED WORK 

Our previous work describes Tunepal for Windows Mo-
bile devices such as smartphones and PDA’s [8,9]. This 
is a symbolic MIR system that allows musicians to search 
for tunes by name, retrieve the ABC notation [10] for the 
tune and playback the tune. Figure 1 presents screenshots 
of Tunepal running on a Windows Mobile smartphone. 
Our aim with this system was to facilitate musicians to 
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start tunes that they could recall the name of, but not the 
melody. 

 

 
 
Figure 1: Screenshot of Tunepal for Windows Mobile 
 

MATT2 (Machine Annotation of Traditional Tunes) 
is a standalone QBP MIR system for traditional Irish 
dance tunes initially developed for the tin-whistle and 
wooden flute [7] and subsequently enhanced to support 
queries on a range of traditional instruments including the 
uilleann pipes, concertina and fiddle [5,11]. MATT2 is 
based on two subsystems – a transcription subsystem and 
a matching subsystem. The transcription subsystem uses 
an onset detection function based on comb filters (ODCF) 
developed especially for the transcription of traditional 
music [12]. A harmonicity, pitch detection algorithm 
based on Klapuri’s [13] multi-pitch estimator is used to 
extract frequencies from the FFT (Fast Fourier Trans-
form) of a note frame. MATT2 incorporates Ornamenta-
tion Filtering (OF) to remove expressiveness from the 
transcription. The corpus used in MATT2 is Norbeck’s 
reel and jig collection [14], which is pre-processed to ex-
pand parts, separate variations, remove ornamentation 
and normalise for register. This collection contains 1582 
reels and jigs, with variations. Matching is achieved using 
the substring edit distance algorithm [15], with a cost 
function modified to take account of breath marks in the 
transcription. An evaluation of this system is presented in 
[11]. 

An enhancement to MATT2 is the TANSEY (Turn 
ANnotation from SEts using SimilaritY profiles) algo-
rithm, named after the traditional flute player Seamus 
Tansey [6].  TANSEY is a segmentation algorithm to an-
notate tunes played in set (sequences of multiple tunes 
repeated multiple times and played segue). TANSEY 
makes use of melodic similarity profiles and can retrieve 

the start and end of each repetition of a tune, count the 
repetitions and retrieve the name and associated bio-
graphic data associated with each tune in a recording of a 
set of tunes. 

3. TUNEPAL.ORG 

Our first task in disseminating the work described in sec-
tion 2 was to expand the corpus used in the experiments 
described in [5,11] to include a comprehensive collection 
of traditional Irish music from definitive sources avail-
able in ABC notation. The tunepal.org database contains 
13,290 tunes drawn from community sources, such as the 
website thesession.org [3] and “standard” references in-
cluding O’Neills Dance Music of Ireland [16] and Bren-
dan Breathneach’s Ceol Rince Na hÉireann series in five 
volumes [17]. Our corpus also includes collections of 
Welsh, Scottish and Breton music in addition to several 
different transcriptions of the same tune from the canon 
of Irish traditional music. Table 2 presents an analysis of 
sources of the tunes in the tunepal.org corpus. 
 

Source Count 

thesession.org 9,310 
Henrik Norbeck 1,474 
O’Neills Dance Music of Ireland 994 
Ceol Rince na hÉireann 1 73 
Ceol Rince na hÉireann 2 192 
Ceol Rince na hÉireann 3 37 
Ceol Rince na hÉireann 4 220 
Jonny O’Leary 196 
Nigel Gatherer 794 
Total: 13,290 

 
Table 2: Sources of Tunepal tunes 

 
In order to make the system easily accessible to tradi-

tional musicians without the necessity of installing soft-
ware, a browser hosted version of MATT2 – tunepal.org 
was developed. For this version, the transcription algo-
rithms were deployed in a Java applet, while the tune 
corpus and matching subsystems were hosted on a server.  
Figure 2 presents a screenshot of tunepal.org.  

To find a tune, a musician records a query played on 
an instrument such as the concert flute, tin-whistle, uil-
leann pipes, accordion or concertina. An energy based 

Figure 2: A screenshot of tunepal.org 
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silence detection algorithm removes silence at the start of 
recorded queries, which would affect the 
the quaver length (a core element of our 
user can then click the transcribe button and the system 
will extract the melody spelled in ABC notation from the 
recording [10]. tunepal.org differs from similar web 
based QBP systems such as Musipedia 
tional instrument queries are explicitly supported. A
though Musipedia contains traditional Irish dance tunes 
as part of its corpus, it does not generate positive results 
when queries are played on the tin-whistle
flute (as tested by the author).  

Users are also offered the ability to change the tra
scription fundamental. This changes the frequencies used 
by the pitch spelling algorithm, so that 
work with differently pitched instruments, such as Eb 
flutes and uilleann pipes pitched in B and 

The query is then submitted to the matchi
J2EE web application; hosted on tunepal.org
ing engine uses the substring edit distance algorithm 
against the corpus of search keys - strings of musical 
notes extracted from the tunes and normalised as d
scribed in [5,11]. These are stored in a MySQL data
For each submitted query, tunepal.org 
closest matches in order of descending distance. MATT2 
gives the correct tune as the closest match for 9
queries in experiments using real-world field recordings 
of traditional musicians from sessions, classes, concerts 
and commercial recordings including solo and ensemble 
playing on traditional instruments recorded in a variety of 
real-world settings such as noisy public 
tunepal.org therefore we log the closest match
a query in the database. tunepal.org incorporates a fee
back system, so users can however proof listen to the r
sults and give feedback as to which (if any) of the r
turned tunes was the correct one. We also store a conf
dence score for the match calculated as per (1), where 
the query length and ed is the minimum
distance between the query and the closest match

 

� � 1 � ���
	 
 

 
Each tune in the database can be played, 

ABC notation or stave notation. Stave notation display 
uses ABCJS, an open source, browser hosted rendering 
engine for ABC notation [19].  

tunepal.org was launched on 31 July, 2009
Windows, Mac and Linux systems. We 
tunepal.org on popular traditional music discussion f
rums such as thesession.org and the chiff and fipple f
rum. tunepal.org has been quite successful
now well known amongst traditional musicians having 
been profiled in a national newspaper [20]
writing (18 May 2010), 7,885 queries have been logged
A more detailed analysis of the usage of 
presented in section 5. 

silence at the start of 
recorded queries, which would affect the evaluation of 
the quaver length (a core element of our system). The 
user can then click the transcribe button and the system 

in ABC notation from the 
tunepal.org differs from similar web 

 [18] in that tradi-
tional instrument queries are explicitly supported. Al-

contains traditional Irish dance tunes 
as part of its corpus, it does not generate positive results 

whistle or wooden 

Users are also offered the ability to change the tran-
changes the frequencies used 

by the pitch spelling algorithm, so that tunepal.org can 
work with differently pitched instruments, such as Eb 

B and C. 
ubmitted to the matching engine, a 

tunepal.org. The match-
ing engine uses the substring edit distance algorithm 

strings of musical 
notes extracted from the tunes and normalised as de-

stored in a MySQL database. 
 presents the ten 

closest matches in order of descending distance. MATT2 
gives the correct tune as the closest match for 93% of 

world field recordings 
of traditional musicians from sessions, classes, concerts 

solo and ensemble 
playing on traditional instruments recorded in a variety of 

 sessions [11].  In 
the closest matching tune for 

incorporates a feed-
proof listen to the re-

give feedback as to which (if any) of the re-
turned tunes was the correct one. We also store a confi-

per (1), where q is 
minimum substring edit 

distance between the query and the closest match [6].  

(1) 

Each tune in the database can be played, displayed in 
ABC notation or stave notation. Stave notation display 

an open source, browser hosted rendering 

31 July, 2009. It runs on 
Windows, Mac and Linux systems. We promoted 

on popular traditional music discussion fo-
rums such as thesession.org and the chiff and fipple fo-

successful and the site is 
now well known amongst traditional musicians having 

[20]. At the time of 
have been logged. 

analysis of the usage of tunepal.org is 

4. TUNEPAL FOR IPHONE

Traditional Irish music is most commonly played by 
groups of musicians in a community setting known as a 
session [21]. Sessions usually take place in shared public 
spaces. It was felt important therefore that for this work 
to become ubiquitous, it had to be made available on a 
mobile handheld device. We therefore p
tionality of tunepal.org to the iPhone platform.
presents screenshots of Tunepal running on an iPhone.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
  

Figure 3: Screenshots of Tunepal
iPhone 

Certain compromises were 
version of Tunepal in order to make transcription speed 
acceptable. Firstly queries are limited to twelve seconds 
of audio (similar to Shazam [22]
rate is reduced to 22.05KHz and finally, onset detection is 
achieved using a combination of a
Fourier Transform) with a Han
speller instead of using ODCF
the signal using a frame size of 2
50% overlap. This gives a frequency resolution of 
10.76Hz, discriminant enough to detect pitches of trad
tional instruments without interpolation. Our 
based, pitch detection algorithm 
intervals in the frequency spectrum 
use in Tunepal for iPhone. Identified frequencies 
assigned pitch classes using the pitch spelling algorithm. 
A note onset is annotated when the pitch class changes in 
the time domain. The quaver length is determined using 
the fuzzy histogram clustering algorithm described in 
[5,7,11]. Ornamentation notes are removed from the tra
scription and long notes (crochets, dotted crochets) are 

 

TUNEPAL FOR IPHONE 

music is most commonly played by 
groups of musicians in a community setting known as a 

. Sessions usually take place in shared public 
spaces. It was felt important therefore that for this work 
to become ubiquitous, it had to be made available on a 

We therefore ported the func-
to the iPhone platform. Figure 3 

screenshots of Tunepal running on an iPhone. 

       
 

: Screenshots of Tunepal running on an 

Certain compromises were necessary in the iPhone 
version of Tunepal in order to make transcription speed 
acceptable. Firstly queries are limited to twelve seconds 

[22]). Secondly, the sample 
KHz and finally, onset detection is 

achieved using a combination of an STFT (Short-time 
with a Hanning window and a pitch 

instead of using ODCF. An STFT is carried out on 
the signal using a frame size of 2,048 samples, with a 

This gives a frequency resolution of 
enough to detect pitches of tradi-

tional instruments without interpolation. Our harmonicity 
based, pitch detection algorithm [5] that analyses peak 
intervals in the frequency spectrum was ported to C++ for 

nepal for iPhone. Identified frequencies are then 
pitch classes using the pitch spelling algorithm. 

A note onset is annotated when the pitch class changes in 
me domain. The quaver length is determined using 

the fuzzy histogram clustering algorithm described in 
. Ornamentation notes are removed from the tran-

scription and long notes (crochets, dotted crochets) are 
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split into multiple quaver notes. The transcription string 
(a sequence of pitch classes) is then submitted to 
tunepal.org for matching.  

Tunepal for iPhone uses the same back end database 
and infrastructure as tunepal.org and so has access to a 
corpus of 13,290 tunes. The iPhone version of Tunepal, 
returns the top ten closest matching tunes for a query with 
confidence scores. Similar to tunepal.org, we log each 
query, with the closest matching tune and confidence 
score. When a tune is matched both tunepal.org and 
Tunepal for iPhone offer the option to link back to the 
original source of the ABC notation on the internet. In the 
case of tunes indexed from the website thesession.org, 
this often includes extensive discussions on the origin of 
the tune, the source of transcription and recordings on 
which the tune appears (Figure 4). 

 

 
 

Figure 4: Biographic reference for the tune "Kiss the 
Maid Behind the Barrel" from the website thesession.org 
displayed on an iPhone 
 

Retrieved tunes are stored in a “My Tunes” tab on the 
user’s device, in order of most recently tagged to facili-
tate future retrieval for learning purposes. Playback is 
achieved using ABC2MIDI [23] and the FMOD audio 
engine [24]. The iPhone version of Tunepal has one ma-
jor advantage over tunepal.org and that is the ability for 
accurate geocoding (Figure 5).  

 

 

Figure 5: Geotagged tunes displayed within Tunepal 
on the iPhone 

Therefore with the users permission, we geotag each 
query on the iPhone and store the longitude and latitude 

with each query in the tunepal.org database. This makes it 
possible for a user to track their queries on a map. 
Tunepal for iPhone was released on 11 February, 2010 
and at the time of writing (18 May 2010), 5,866 QBP 
queries have been made, while 2,313 title searches were 
made (title searches were added as a feature on 13 Febru-
ary 2010).  As the iPhone does not support programs 
written in Java, it was necessary to port the transcription 
subsystem of MATT2 and tunepal.org to a combination 
of C++ and Objective C. Tunepal for iPhone was listed in 
the top twenty cultural apps available on the iPhone by 
the Sunday Times (an Irish national newspaper) [25]. 

5. RESULTS 

To date (18 May 2010) tunepal.org and Tunepal for 
iPhone have logged 16,064 queries since being released 
(Table 3).  
 

Client QBP 

tunepal.org QBP 7,885 
iPhone QBP 5,866 
iPhone Title 2,313 
Total: 16,064 

 
Table 3: Queries logged from tunepal.org and Tunepal for 
iPhone  
 

Table 4 gives the top ten tune types queried by users 
of tunepal.org and Tunepal for iPhone. The tunepal.org 
count was generated by counting the user verified tunes 
for each query. The iPhone count was generated by se-
lecting the closest matching tune for each query.  

 
 tunepal.org  

(Verified) 

iPhone  

(QBP) 

# Type Count Type Count 

1 Reel 521 Reel 1,594 
2 Jig 240 Jig 913 
3 Hornpipe 68 Hornpipe 211 
4 Polka 57 Polka 116 
5 Slip Jig 28 Waltz 111 
6 Slide 23 Slip Jig 89 
7 Waltz 20 Slide 56 
8 Double Jig 13 Barndance 46 
9 Barndance 9 Double Jig 38 
10 Strathspey 7 Strathspey 18 

 
Table 4: Top ten tune types queried by users of 
tunepal.org and Tunepal for iPhone 
 

In order to minimise the effect of false positives on 
the iPhone counts, tunes with a confidence of < 65% are 
excluded. The cut-off of 65% was derived by stochastic 
sampling and proof listening. While this undoubtedly re-
moves many true positives, it does eliminate most of the 
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false positives. The scores in Table 4 correspond broadly 
with the profile of tunes in most traditional musicians’ 
repertoire, where reels and jigs assume prominence [26]. 
While it would be interesting to analyse the frequency 
that particular tunes appear in search results, more data is 
needed to make this analysis significant as the profile of 
tune appearances is in fact mostly flat, with the majority 
of tunes appearing only once or twice and even the top 
tunes appearing less than twenty times.      

Table 5 gives a breakdown of QBP queries submitted 
by day of the week, though as these are in the local time 
of the server (the server is hosted in Ireland), there will be 
“bleed” from day to day due to the different time zones of 
users. Nevertheless, it is significant that weekends are 
more popular than weekdays for uses of tunepal.org, 
playing music being a leisure activity for many musi-
cians. Tunepal for iPhone however demonstrates consis-
tent usage across the week, which could be attributed to 
its portability. 

 

 
tunepal.org iPhone Total 

Mon 999 793 1,792 
Tue 1,039 862 1,901 
Wed 985 728 1,713 
Thurs 860 957 1,817 
Fri 743 887 1,630 
Sat 1,773 744 2,517 
Sun 1,486 895 2,381 
Total: 7,885 5,866 1,3751 

 
Table 5: Analysis of queries by day of the week 
 

Figure 6 better illustrates the trend towards high vo-
lumes of usage over the weekend, with significant usage 
on Monday and Tuesday, dropping off on Wednesday 
and Thursday to peak at the weekends. 
 

 
 
Figure 6: Plot of daily usage 

 
We geotag queries generated by Tunepal for iPhone. 

An extract of this plot is given in Figure 7.  
 

 
 

Figure 7: An extract from the worldwide geotagged 
query map  

This is an optional feature that users must agree to; 
however 74% of queries made on an iPhone are geo-
tagged. The realtime worldwide map of geotagged QBP 
queries can be viewed on a google map at the website 
http://tunepal.org. 

Table 6 was generated by reverse geocoding the lon-
gitude and latitude from tagged queries to generate a pro-
file of usage by country.  

 
Country Count 

Ireland 1,276 
United States 1,092 
United Kingdom 393 
Germany 179 
Canada 122 
Sweden 91 
Spain 89 
France 73 
Netherlands 44 
Australia 20 

 
 
Table 6: Top ten countries for Tunepal for iPhone 

QBP queries 
 
Although the amount of data collected is insufficient 

to draw any firm conclusions, it is nonetheless interesting 
to observe that the United States and the United Kingdom 
are significant sources for queries, these being major cen-
ters for the Irish Diaspora. This is a correlation we hope 
to explore in more detail in future work. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we presented two new QBP MIR systems 
for traditional music that developed from academic re-
search. These tools have become popular, being used by 
musicians around the world to connect playing with tune 
names and biographic data. To achieve this, we use a 
corpus of 13,290 compositions collected by both the tra-
ditional music community and noted collectors such as 
O’Neill and Breathneach. Further we presented an analy-
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sis of the data we have collected on the usage of these 
systems since being launched.  

It is our aim to further disseminate these query-by-
playing systems to the traditional music community by 
making them available on a greater variety of platforms 
such as the iPad, Android, Symbian, Maemo and Win-
dows Phone 7 platforms. Usage of Tunepal is growing as 
are our usage logs. Once sufficient data is collected we 
hope to be able to mine these to gather new insights into 
musical trends and correlations that we hope to present in 
future work.  
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ABSTRACT

Many different onset detection methods have been pro-

posed in recent years. However those that perform well

tend to be highly specialised for certain types of music,

while those that are more widely applicable give only mod-

erate performance. In this paper we present a new onset

detector with superior performance and temporal precision

for all kinds of music, including complex music mixes. It

is based on auditory spectral features and relative spectral

differences processed by a bidirectional Long Short-Term

Memory recurrent neural network, which acts as reduction

function. The network is trained with a large database of

onset data covering various genres and onset types. Due to

the data driven nature, our approach does not require the

onset detection method and its parameters to be tuned to a

particular type of music. We compare results on the Bello

onset data set and can conclude that our approach is on par

with related results on the same set and outperforms them

in most cases in terms of F1-measure. For complex music

with mixed onset types, an absolute improvement of 3.6%

is reported.

1. INTRODUCTION

Finding onset locations is a key part of segmenting and

transcribing music, and therefore forms the basis for many

high level automatic retrieval tasks. An onset marks the

beginning of an acoustic event. In contrast to music infor-

mation retrieval studies which focus on beat and tempo de-

tection via the analysis of periodicities (e. g. [7, 9]), an on-

set detector faces the challenge of detecting single events,

which need not follow a periodic pattern. Recent onset de-

tection methods (e. g. [5, 16, 17]) have matured to a level

where reasonable robustness is obtained for polyphonic

music. However, the methods are specialised or tuned to

specific kinds of onsets (e. g. pitched or percussive) and

lack the ability to perform well for music with mixed onset

types. Thus, multiple methods need to be combined or a

method has to be selected depending on the type of onsets

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

to be analysed.

In this paper we propose a novel, robust approach to

onset detection, which can be applied to any type of music.

Our approach is based on auditory spectral features and

Long Short-Term Memory (LSTM) [13] recurrent neural

networks. The approach is purely data driven, and as we

will see, yields a very high temporal precision as well as

detection accuracy.

The rest of this paper is structured as follows. A brief

overview of the state of the art in onset detection is given in

Section 2, and Section 3 provides an introduction to LSTM

neural networks. Section 5 describes the Bello onset data

set [2] as well as introducing a new data set. Experimental

results for both data sets are provided in Section 6, along

with a comparison to related systems.

2. EXISTING METHODS

Most onset detection algorithms are based on the three step

model shown in Figure 1. Some methods include a prepro-

cessing step. The aim of preprocessing is to emphasise

relevant parts of the signal. Next, a reduction function is

applied, to obtain the detection function. This is the core

component of an onset detector. Some of the most com-

mon reduction functions found in the literature are sum-

marised later in this section.

Reduction Peak detectionSignal OnsetsPreprocessing

Figure 1. Traditional onset detection workflow

The last stage is to extract the onsets from the detec-

tion function. This step can be subdivided into post pro-

cessing (e. g. smoothing and normalising of the detection

function), thresholding, and peak picking. If fixed thresh-

olds are used, the methods tend to pick either too many on-

sets in louder parts, or miss onsets in quieter parts. Hence,

adaptive thresholds are often used. Finally the local max-

ima above the threshold, which correspond to the detected

onsets, are identified by a peak picking algorithm.

Early reduction functions, such as [14], operated in the

time domain. This approach normalises the loudness of the

signal before splitting it into multiple bands via bandpass
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filters. Onsets are then detected in each band as peaks in

the first order difference of the logarithm of the amplitude

envelope. These band-wise onsets are then combined to

yield the final set of detected onsets. More recent systems

employ spectral domain reduction functions. We describe

the most common ones in the following paragraphs.

2.1 Spectral domain reduction functions

Since onsets are often masked in the time domain by higher

energy signals, many reduction functions operate on a spec-

tral representation of the audio signal. The methods listed

below are all based on a short-time Fourier transform (STFT)

of the signal.

2.1.1 High Frequency Content

Percussive sounds have a high energy in the upper fre-

quency bands. This is exploited by weighting each STFT

bin with a factor proportional to its frequency. Summing

all weighted bins yields a measure called the high frequency

content (HFC), which is used as a detection function. Al-

though this method works well for percussive onsets, it

shows weaknesses for other onset types [2].

2.1.2 Spectral difference

For computation of the spectral difference function (SD),

the difference of two consecutive short-time spectra is com-

puted bin by bin. All positive differences are then summed

up across all bins. Some approaches use the L2-norm [2]

for calculating the difference, whereas others use the L1-

norm [5], in which case the function is referred to as spec-

tral flux (SF). Onset detection methods based on these meth-

ods are among the best overall performers so far.

2.1.3 Phase deviation

The methods mentioned so far rely on the spectral magni-

tudes. In [2] a method utilising phase information is de-

scribed. The change of the phase in a STFT frequency

bin is a rough estimate of its instantaneous frequency. A

change of this frequency is an indicator of a possible onset.

To reduce the chance of a missed onset due to phase wrap

around, the mean phase change over all frequency bins is

used. Dixon proposes an improvement to the phase devi-

ation (PD) detection function called normalised weighted

phase deviation (NWPD) [5], where each frequency bin’s

contribution to the phase deviation function is weighted by

its magnitude. The result is normalised by the sum of the

magnitudes.

2.1.4 Complex Domain

Another way to incorporate both magnitude and the phase

information is proposed in [6]. First, the expected ampli-

tude and phase is calculated for the current frame based

on the two previous frames, assuming constant amplitude

and phase change rate. The sum of the magnitude of the

complex differences between the actual values for each fre-

quency bin and the estimated values is then computed and

used as a detection function. A variant of this method is

called the rectified complex domain (RCD) [5]. Observing

that increases of the signal amplitude are generally more

relevant than decreases for onset detection, RCD modifies

the original algorithm by only summing over positive am-

plitude changes.

2.2 Probabilistic reduction functions

An alternative approach is to base the description of sig-

nals on probabilistic models. The negative log-likelihood

method [1] defines two different statistical models and ob-

serves whether the signal follows the first or the second

model. A sudden change from the first model to the second

can be an indication of an onset. This method shows good

results for music with soft onsets, e. g. non-percussive sounds

[2].

2.3 Pitch-based onset detection techniques

Collins describes an onset detection function based on a

pitch detector front-end [4]. Zhou presented a combination

of pitch and energy based detection functions [17]. In prin-

ciple pitch-based onset detection is based on identification

of discontinuities and perturbations in the pitch contour,

which are assumed to be indicators of onsets.

2.4 Data-driven reduction functions

To build general detection functions, which are capable of

detecting onsets in a wider range of audio signals, clas-

sifier based methods emerged. In [15] an onset detection

algorithm based on a feed forward neural network, namely

a convolutional neural network, is described. This system

performed best in the MIREX 2005 audio onset detection

evaluation.

3. NEURAL NETWORKS

Motivated by the high performance of the onset detection

method of Lacoste and Eck, we investigate a novel artificial

neural network (ANN) based approach. Instead of a simple

feed forward neural network we use a bidirectional recur-

rent neural network with Long Short-Term Memory [13]

hidden units. Such networks were proven to work well

on other audio detection tasks, such as speech recogni-

tion [10].

This section gives a short introduction to ANN with a

focus on bidirectional Long Short-Term Memory (BLSTM)

networks, which are used for the proposed onset detector.

3.1 Feed forward neural networks

The most commonly used form of feed forward neural net-

works (FNN) is the multilayer perceptron (MLP). It con-

sists of a minimum of three layers, one input layer, one

or more hidden layers, and an output layer. All connec-

tions feed forward from one layer to the next without any

backward connections. MLPs classify all input frames in-

dependently. If the context a frame is presented in is rel-

evant, this context must be explicitly fed to the network,

e. g. by using a fixed width sliding window, as in [15].
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3.2 Recurrent neural networks

Another technique for introducing past context to neural

networks is to add backward (cyclic) connections to FNNs.

The resulting network is called a recurrent neural network

(RNN). RNNs can theoretically map from the entire his-

tory of previous inputs to each output. The recurrent con-

nections form a kind of memory, which allows input values

to persist in the hidden layer(s) and influence the network

output in the future. If future context is also necessary re-

quired, a delay between the input values and the output

targets can be introduced.

3.3 Bidirectional recurrent neural networks

A more elegant incorporation future context is provided by

bidirectional recurrent networks (BRNNs). Two separate

hidden layers are used instead of one, both connected to the

same input and output layers. The first processes the input

sequence forwards and the second backwards. The net-

work therefore has always access to the complete past and

the future context in a symmetrical way, without bloating

the input layer size or displacing the input values from the

corresponding output targets. The disadvantage of BRNNs

is that they must have the complete input sequence at hand

before it can be processed.

3.4 Long Short-Term Memory

Although BRNNs have access to both past and future in-

formation, the range of context is limited to a few frames

due to the vanishing gradient problem [11]. The influence

of an input value decays or blows up exponentially over

time, as it cycles through the network with its recurrent

connections and gets dominated by new input values.

Forget
Gate

Output
Gate

Input

Input
Gate

•

•

•

1.0

Output

Memory
Cell

Figure 2. An LSTM block with one memory cell

To overcome this deficiency, a method called Long Short-

Term Memory (LSTM) was introduced in [13]. In an LSTM

hidden layer, the nonlinear units are replaced by LSTM

memory blocks (Figure 2). Each block contains one or

more self connected linear memory cells and three multi-

plicative gates. The internal state of the cell is maintained

with a recurrent connection of constant weight 1.0. This

connection enables the cell to store information over long

periods of time. The content of the memory cell is con-

trolled by the multiplicative input, output, and forget gates,

which – in computer memory terminology – correspond

to write, read, and reset operations. More details on the

training algorithm employed, and the bidirectional LSTM

architecture in general can be found in [10].

4. PROPOSED APPROACH

This section describes our novel approach for onset de-

tection in music signals, which is based on bidirectional

Long Short-Term Memory (BLSTM) recurrent neural net-

works. In contrast to previous approaches it is able to

model the context an onset occurs in. The properties of

an onset and the amount of relevant context are thereby

learned from the data set used for training. The audio data

is transformed to the frequency domain via two parallel

STFTs with different window sizes. The obtained mag-

nitude spectra and their first order differences are used as

inputs to the BLSTM network, which produces an onset

activation function at its output. Figure 3 shows this basic

signal flow. The individual blocks are described in more

detail in the following sections.

STFT & 
Difference

STFT & 
Difference

BLSTM 
Network

Peak
detection

Signal Onsets

Figure 3. Basic signal flow of the new neural network

based onset detector

4.1 Feature extraction

As input, the raw PCM audio signal with a sampling rate of

fs = 44.1 kHz is used. To reduce the computational com-

plexity, stereo signals are converted to a monaural signal

by averaging both channels. The discrete input audio sig-

nal x(t) is segmented into overlapping frames of W sam-

ples length (W = 1024 and W = 2048, see Section 4.2),

which are sampled at a rate of one per 10 ms (onset an-

notations are available on a frame level). A Hamming

window is applied to these frames. Applying the STFT

yields the complex spectrogram X(n, k), with n being the

frame index, and k the frequency bin index. The com-

plex spectrogram is converted to the power spectrogram

S(n, k) = |X(n, k)|2.

The dimensionality of the spectra is reduced by apply-

ing psychoacoustic knowledge: a conversion to the Mel-

frequency scale is performed with openSMILE [8]. A fil-

terbank with 40 triangular filters, which are equidistant on

the Mel scale, is used to transform the spectrogram S(n, k)
to the Mel spectrogram M(n, m). To match human per-

ception of loudness, a logarithmic representation is cho-

sen:

Mlog(n, m) = log (M(n, m) + 1.0) (1)
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The positive first order difference D+(n, m) is calcu-

lated by applying a half-wave rectifier function H(x) =
x+|x|

2
to the difference of two consecutive Mel spectra:

D+(n, m) = H (Mlog(n, m) − Mlog(n − 1, m)) (2)

4.2 Neural Network stage

As a neural network, an RNN with BLSTM units is used.

As inputs to the neural network, two log Mel-spectrograms

M23
log(n, m) and M46

log(n, m) (computed with window sizes

of 23.2 ms and 46.4 ms (W = 1024 and W = 2048 sam-

ples), respectively) and their corresponding positive first

order differences D+

23s(n, m) and D+

46s(n, m) are applied,

resulting in 160 input units. The network has three hidden

layers for each direction (6 layers in total) with 20 LSTM

units each. The output layer has two units, whose outputs

are normalised to both lie between 0 and 1, and to sum

to 1, using the softmax function. The normalised outputs

represent the probabilities for the classes ‘onset’ and ‘no

onset’. This allows the use of the cross entropy error crite-

rion to train the network [10]. Alternative networks with a

single output, where a value of 1 represents an onset frame

and a value of 0 a non-onset frame, which are trained us-

ing the mean squared output error as criterion, were not as

successful.

4.2.1 Network training

For network training, supervised learning with early stop-

ping is used. Each audio sequence is presented frame by

frame (in correct temporal order) to the network. Stan-

dard gradient descent with backpropagation of the output

errors is used to iteratively update the network weights.

To prevent over-fitting, the performance (cross entropy er-

ror, cf. [10]) on a separate validation set is evaluated af-

ter each training iteration (epoch). If no improvement of

this performance over 20 epochs is observed, the training

is stopped and the network with the best performance on

the validation set is used as the final network. The gradi-

ent descent algorithm requires the network weights to be

initialised with non zero values. We initialise the weights

with a random Gaussian distribution with mean 0 and stan-

dard deviation 0.1. The training data, as well as validation

and test sets are described in Section 5.

4.3 Peak detection stage

A network obtained after training as described in the previ-

ous section is able to classify each frame into two classes:

‘onset’ and ‘no onset’. The standard method of choosing

the output node with the highest activation to determine

the frame class has not proven effective. Hence, only the

output activation of the ‘onset’ class is used. Thresholding

and peak detection is applied to it, which is described in

the following sections:

4.3.1 Thresholding

One problem with existing magnitude based reduction func-

tions (cf. Section 2) is that the amplitude of the detection

Figure 4. Top: log Mel-spectrogram with ground truth on-

sets (vertical dashed lines). Bottom: network output with

detected onsets (marked by dots), ground truth onsets (dot-

ted vertical lines), and threshold θ (horizontal dashed line).

4 s excerpt from ‘Basement Jaxx - Rendez-Vu’.

function depends on the amplitude of the signal or the mag-

nitude of its short time spectrum. Thus, to successfully

deal with high dynamic ranges, adaptive thresholds must

be used when thresholding the detection function prior to

peak picking. Similar to phase based reduction functions,

the output activation function of the BLSTM network is

not affected by input amplitude variations, since its value

represents a probability of observing an onset rather than

representing onset strength. In order to obtain optimal clas-

sification for each song, a fixed threshold θ is computed

per song proportional to the median of the activation func-

tion (frames n = 1 . . . N ), constrained to the range from

θmin = 0.1 to θmax = 0.3:

θ∗ = λ · median{ao(1), . . . , ao(N)} (3)

θ = min (max (0.1, θ∗) , 0.3) (4)

with ao(n) being the output activation function of the

BLSTM neural network for the onset class, and the scaling

factor λ chosen to maximise the F1-measure on the valida-

tion set. The final onset function oo(n) contains only the

activation values greater than this threshold:

oo(n) =

{
ao(n) for ao(n) > θ

0 otherwise
(5)

4.3.2 Peak picking

The onsets are represented by the local maxima of the on-

set detection function oo(n). Thus, using a standard peak

search, the final onset function o(n) is given by:

o(n) =

{
1 for oo(n − 1) ≤ oo(n) ≥ oo(n + 1)

0 otherwise
(6)
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5. DATA SETS

We evaluate our onset detector using the data set intro-

duced by Bello in [2], which consists of 23 sound excerpts

with lengths ranging from a few seconds to one minute

(cf. Table 1). the data set is divided into four categories:

pitched percussive (PP ), pitched non-percussive (PNP ),

non-pitched percussive (NPP ), and complex music mixes

(MIX). The set includes audio synthesised from MIDI

files as well as original recordings.

In order to effectively train the BLSTM network, the

onset annotations had to be corrected in a few places: miss-

ing onsets were added and onsets in polyphonic pieces

were properly aligned to match the annotation precision of

the MIDI based samples. For rule-based onset detection

approaches, minor inaccuracies of a few frames are not

crucial since these are levelled out by the detection win-

dow during evaluation. For the BLSTM network, however,

it is necessary to have temporally precise data for train-

ing. Nonetheless, the original, unmodified transcriptions

are used for evaluation, to ensure a fair comparison.

To increase the size of the training data set, 87 10 s ex-

cerpts of ballroom dance style music (BRDo in the ongo-

ing) from the ISMIR 2004 tempo induction contest 1 [9]

were included (cf. Table 1). A part of the annotation work

was done by Lacoste and Eck for their neural network ap-

proach 2 . The remaining parts were manually labelled by

an expert musician 3 . As with the Bello data set, all anno-

tations have been revised for network training.

Set # files # onsets min/max/mean length [s]

BRDo 87 5474 10.0 / 10.0 / 10.0

PNP 1 93 13.1 / 13.1 / 13.1

PP 9 489 2.5 / 60.0 / 10.5

NPP 6 212 1.4 / 8.3 / 4.3

MIX 7 271 2.8 / 15.1 / 8.0

Table 1. Statistics of the onset data sets.

For network training, the full set (BRDo and Bello set)

is initially randomly split on the file level into eight dis-

junctive folds. Next, in an 8-fold cross validation, results

for the full set are obtained. Thereby for each fold six sub-

sets are used for training, one for validation, and one for

testing. Since the initial weights of the neural nets are ran-

domly distributed, the 8-fold cross validation is repeated

10 times (using the exact same folds) and the means of the

output activation functions are used for the final evaluation.

6. RESULTS

In [2] and [5], an onset is reported as correct if it is detected

within a 100 ms window (±50 ms) around the annotated

ground truth onset position. In [3] a smaller window of

±25ms was used for percussive sounds. We therefore de-

cided to report two results for each set, one using a 100 ms

1 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
2 http://w3.ift.ulaval.ca/˜allac88/dataset.tar.gz
3 Data available at: http://mir.minimoog.org/

window ω100 for comparison with results in [2] and [5],

and the second using a 50 ms window ω50. All results were

obtained with a fixed threshold scaling factor of λ = 50.

Table 2 shows the results of our BLSTM network ap-

proach for each set of onsets in comparison to six other on-

set detection methods as reported in [2] and [5].The PNP
data set consists of 93 onsets from only one audio file of

string sounds. As a consequence, the results are not as rep-

resentative as the others, and can vary a lot, depending on

the used parameters, as shown by [5]. The number of on-

sets of the PP set has changed from originally 489 (used

in [2, 5]) to 482 now, due to modifications by its author.

The new results are therefore slightly worse (up to max.

1.4%) than the original results but can still compete.

BRDo & Bello-set Precision Recall F1-measure
BLSTM (ω100) 0.945 0.925 0.935

BLSTM (ω50) 0.920 0.901 0.911

BLSTM (comb, ω100) 0.938 0.916 0.927

BLSTM (comb, ω50) 0.911 0.890 0.900

Table 3. 8-fold cross validation results for BLSTM on the

full data set with 100 ms and 50 ms detection windows (ω).

comb: all onsets within 30 ms combined.

Table 3 shows the results obtained by cross validation

for the full data set. The first two rows reflect the results

obtained with the same settings as for the individual Bello

sets. It has been shown that two onsets are perceived as one

if they are not more than 30 ms apart [12]. Hence we also

report results, where all onsets less than 30 ms apart have

been combined to a single one. There are 6 605 onsets in

the original annotations and 5 861 after combining.

6.1 Discussion

The results show that our algorithm can compete with, and

in most cases outperform, a range of existing methods for

all types of onsets. However, we must temper this conclu-

sion by adding that we were not able to compare to the lat-

est MIREX participants (e.g. [16]), since the MIREX test

data is not publicly available and the authors did not pub-

lish results on the Bello data set. Perhaps the most exciting

aspect of our approach is that it does not require adaptation

to specific onset types to achieve good results. This is an

important step towards a universal onset detector.

If a detection window of only 50 ms is chosen our ap-

proach even outperforms the reference algorithms in some

cases. This shows the excellent temporal precision of the

BLSTM onset detector. In our opinion the results given

for a detection window of 50 ms with all onsets less than

30 ms apart combined to a single one should be used in the

future, as they better reflect the temporal precision of the

algorithm and the perception of the human ear.

7. CONCLUSION

We have presented a novel onset detector based on BLSTM-

RNN, which – on the Bello onset data set – achieves results
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PNP PP NPP MIX
P R F P R F P R F P R F

HFC [2] 0.844 0.817 0.830 0.947 0.941 0.944 1.000 0.967 0.983 0.888 0.845 0.866

SD [2] 0.910 0.871 0.890 0.983 0.949 0.966 0.935 0.816 0.871 0.886 0.804 0.843

NLL [2] 0.968 0.968 0.968 0.968 0.924 0.945 0.980 0.929 0.954 0.889 0.860 0.874

SF [5] 0.938 0.968 0.952 0.981 0.988 0.984 0.959 0.975 0.967 0.882 0.882 0.882

NWPD [5] 0.909 0.968 0.938 0.961 0.981 0.971 0.950 0.966 0.958 0.916 0.845 0.879

RCD [5] 0.948 0.978 0.963 0.983 0.979 0.981 0.944 0.983 0.963 0.945 0.819 0.877

BLSTM (ω100) 0.968 0.968 0.968 0.987 0.987 0.987 0.991 0.995 0.993 0.941 0.897 0.918
BLSTM (ω50) 0.918 0.957 0.937 0.955 0.981 0.968 0.982 0.995 0.989 0.844 0.865 0.855

Table 2. Results for the Bello data sets PNP , PP , NPP , and MIX . Precision (P), Recall (R), and F1-measure (F) (as

used in [5]). BLSTM with 100 ms and 50 ms detection windows (ω) in comparison to other approaches: high frequency

content (HFC), spectral difference (SD), negative log-likelihood (NLL), spectral flux (SF), normalised weighted phase

deviation (NWPD), and rectified complex domain (RCD).

on par with or better than existing results on the same data

(wrt. F1-measure), regardless of onset type. We have also

introduced a new thoroughly annotated data set of onsets

in ballroom dance music.

The average improvement on the whole Bello data set,

is 1.7% F1-measure absolute. The improvement was best

(3.6% F1-measure, absolute) for complex music mixes, re-

flecting the adaptivity of our method to different musical

genres. Competitive results are obtained even if the detec-

tion window is halved in size (50 ms instead of 100 ms).

In future work we will investigate whether the approach

is suitable for identifying the onset type (e. g. instrument

type, vocal, etc.) via detectors trained on respective data.
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ABSTRACT

This paper introduces a new method for improving the
accuracy in medium scale music similarity problems. Re-
cently, it has been shown that the raw accuracy of query
by example systems can be enhanced by considering pri-
ors about the distribution of its output or the structure of
the music collection being considered. The proposed ap-
proach focuses on reducing the dependency to those priors
by considering an eigenvalue decomposition of the afore-
mentioned system’s output. Experiments carried out in the
framework of cover song detection show that the proposed
approach has good performance for enhancing a high accu-
racy system. Furthermore, it maintains the accuracy level
for lower performing systems.

1. INTRODUCTION

Expressing the similarity between music streams is of in-
terest for many multimedia applications [3]. Though, in
many tasks in music information retrieval (MIR), one can
observe a glass ceiling in the performance achieved by cur-
rent methods and algorithms [5]. Several research direc-
tions can be considered for tackling this issue. In this pa-
per, we focus on the cover song detection task, but most of
the argumentation may be transferred to more general sim-
ilarity tasks involving a query by example (QBE) system.

One option to boost the accuracy of current QBE sys-
tems is to use an enhanced description of the musical stream
using the segregation principle [2]. Intuitively, a lot can
be gained if an audio signal is available for each instru-
ment. This way, one can easily focus on the stream of in-
terest for each MIR task. In this line, Foucard et al. [8]
show that considering a dominant melody removal algo-
rithm as a pre-processing step is a promising approach for
observing more robustly the harmonic progression and, in
this way, achieve a better accuracy in the cover song de-
tection task. However, it may be a long way until such

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

pre-processing based on segregation will be beneficial for
managing medium to large scale musical collections.

An efficient alternative is to consider post-processing
approaches exploiting the regularities found in the results
of a QBE system for a given music collection. Indeed,
music collections are usually organized and structured at
multiple scales. In the case of cover detection, songs nat-
urally cluster into so-called cover sets [17]. Therefore, if
those cover sets can be approximately estimated, one can
gain significant retrieval accuracy, as evidenced by Serrà et
al. [17] and Egorov & Linetsky [6]. A different and very
interesting post-processing alternative is the general classi-
fication scheme proposed by Ravuri & Ellis in [15], where
they employ the output of different cover song detection
algorithms and a z-score normalization scheme to classify
pairs of songs.

Unsupervised post-processing methods that have been
introduced so far are rooted on (a) the knowledge of an ex-
perimental similarity threshold defining whether two songs
are covers or not [17], or (b) the potential number of or
cardinality of clusters of the dataset being considered [6].
Thus, these methods are either algorithm or data-dependant.
The scheme in [15] is a supervised system trained on dif-
ferent algorithms outputs for some ground truth data. There-
fore, it might potentially fail into one or both of the afore-
mentioned dependencies 1 .

In this paper, we focus on improving the output of a
single QBE system in an unsupervised way. In contrast
with the aforementioned references, we propose to con-
sider “more global” approaches in order to alleviate their
needs and in order to advance towards unsupervised param-
eter-free post-processing steps for QBE systems. To this
extent we introduce spectral connectivity network (SCN).
In addition, we focus on the benefits this technique might
provide if the raw accuracy of the QBE system is rather
low. This could be the case of a particularly difficult dataset,
of a more simple and efficient system (or merely a subop-
timal one), or a combination of both cases.

The remaining of the paper is organized as follows: af-
ter a presentation of previous work in Sec. 2, we intro-
duce our new accuracy improvement scheme in Sec. 3. In
this section, the algorithm is motivated and illustrated on

1 Furthermore, issues could arise with the employed z-score normal-
ization for some intricate data structures or algorithm outputs (e.g., bino-
mially distributed classifier inputs).
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Figure 1. Combination scheme used for clustering based
systems.

generic artificial datasets. In Sec. 4 we use the evaluation
methodology considered in [17] to show the potential of
the proposed approach.

2. PREVIOUS WORK

There exist different proposals for the unsupervised post-
processing of the output of a single QBE cover song de-
tection system [6, 17]. Most promising strategies so far
consist in first estimating the cover sets and use this clus-
tering information in order to increase the overall accuracy
as shown in Fig. 1. This can be achieved by considering
a classical agglomerative hierarchical clustering algorithm
such as the well-known group average linkage (UPGMA)
method [10,19] or alternatively the Community Clustering
method (CC) presented in [17], which looks for connected
components in a complex network built upon the results of
the considered QBE system. Once a clustering solution is
obtained, the output distance for a couple of song entries
(ei, ej) given by a QBE system can be modified to increase
the overall accuracy [17]:

d′i,j =

{
d(ei,ej)
max(d) if ei, ej ∈ Ek,
d(ei,ej)
max(d) + β otherwise.

(1)

We denote di,j as the raw dissimilarity output of the QBE
system between two songs ei and ej , Ek represents a given
cluster, and β > 1.

Both UPGMA and CC depend on the setting of a thresh-
old similarity value that overall discriminates between
cover and non-cover song pairs. This parameter is usu-
ally algorithm-dependent. Therefore, for different music
collections analyzed through the same QBE system, one
should expect similar values for the similarity threshold.
That seems to be the case for the algorithm presented in
[16] when analyzing different datasets 2 (Fig. 2).

At a first glance one could screen Fig. 2 and set a dis-
similarity threshold for roughly separating between covers
and not covers. In the present case this threshold could be
around 0.6 (or below, if we want to have less false pos-
itives). The threshold then would provide the necessary
information to the post-processing clustering stage. How-
ever, this dissimilarity threshold might not directly corre-
spond to what the clustering algorithm is using internally
(e.g., intra-cluster cophenetic distances [10, 19]). In the
end one might better perform a grid search for the involved
parameter.

In a more general scenario, one might not always be
sure about the data or algorithm dependencies of the prob-

2 We notice however that both datasets have some similarities, e.g., in
terms of genres.
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Figure 2. Normalized histograms for the dissimilarity
measure [16] on the music collection of [17] (lines with
crosses) and on the “covers80” dataset [7] (lines with tri-
angles).

lem. So, to be on the safe side, some data exploration, al-
gorithm analysis, and/or parameter optimization needs to
be done. To avoid those tedious steps is what motivates us
to consider unsupervised parameter-free post-processing
strategies.

3. SPECTRAL CONNECTIVITY NETWORK (SCN)

Without any a priori knowledge about the problem at hand,
one needs to root the method on a statistical analysis that is
able to identify the underlying structure of the observation,
being in our case the output of a QBE system over a large
music collection.

Spectral graph clustering has gained popularity in many
information retrieval areas, specially in gene, web, image,
and audio processing [1,11,18]. The interested reader may
be referred to [12] for a tutorial introduction.

If S is a square matrix encoding the similarities of all
the entries ei of our music collection E, it can be shown
[14] that the eigenvectors of the corresponding Laplacian
are relevant clustering indicators for determining the k dis-
joint set of clusters E1, ..., Ek (see Fig. 3). We propose to
consider this property in order to increase the overall accu-
racy of QBE systems using the processing scheme shown
in Fig. 4. Each of the steps are further detailed in the re-
maining of this section.

3.1 Similarity Computation

As most QBE systems output a dissimilarity value di,j

measuring how “far” a given couple of entries (ei, ej) are,
one needs to convert this distance into a similarity value
si,j . This is performed using the traditional radial basis
function

si,j = e

„
−d2(ei,ej)

σ2

«
, (2)
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Figure 3. Eigenvalues and eigenvectors of the Laplacian
graph corresponding to a dataset made of 4 bi-dimensional
sets of 50 components with low overlapping.

-QBE Laplacian-
Enhanced
Similarity

-Connectivity

Network
-Eigenvectors

Figure 4. Processing scheme used for the proposed system
based on SCN.

with σ determined using the local scaling procedure pro-
posed in [20]. The similarities si,j lead to a matrix S,
which is further normalized as [18]:

Sd = D−1/2SD−1/2, (3)

where D is a diagonal matrix with the degrees d1, ..., dn
along the diagonal, dk =

∑
j sk,j .

3.2 Eigenvalue Decomposition

As proposed in [14] and illustrated in Fig. 3, the eigenvec-
tors corresponding to the k highest eigenvalues of Sd can
be considered as cluster indicators. For that purpose, the
contribution of each eigenvector is first normalized with
respect to each of the entries, (i.e., per rows).

For a clustering task, any traditional clustering algo-
rithm may then be considered. The k-means algorithm is
usually considered in the literature. Though, in the case
of cover set detection, the number of clusters is high and
their cardinality is low, which makes the algorithm rather
slow and highly sensitive to the random initialization. In
pre-analysis, it was found more suitable to use the afore-
mentioned UPGMA algorithm. However, in this scenario,
one still needs to perform the clustering decision based on
a prior, be it the number of clusters or the similarity thresh-
old and consider Eq. 1 for accuracy improvement.

3.3 Connectivity Network

An alternative approach is to consider the Connectivity
Network (CN) as our enhanced dissimilarity d′(i, j) by us-
ing the projection matrix of the normalized eigenvectors:

P =
Nq∑
k=1

qkq
T
k , (4)

where qk is the eigenvector corresponding to the k high-
est eigenvalue λk and Nq is the number of eigenvectors to
consider. This principle has been originally used for corre-
spondence analysis of contingency tables [9] and reintro-
duced later in the context of spectral clustering [4].

The usual procedure is to set Np = k in order to retain
only the relevant eigenvectors. If k cannot be considered as
a prior (which is the case for cover set detection), one has
to consider a method that can robustly estimate k. Unfor-
tunately, no standard estimation procedure gave satisfying
results both in terms of accuracy and complexity.

However, notice that in Fig. 3 the eigenvalues are high
for the first k eigenvalues and lower afterwards. Consider-
ing the eigenvalues as weights in the computation leads us
to the so-called Green’s function

G =
Nq∑
k=2

qkλkq
T
k , (5)

where Ng can more safely be set to a high value. An alter-
nate formulation was proposed in [4]:

SPCA = D

Nq∑
k=2

qkλkq
T
k D. (6)

In the experiments reported in this paper, the Green’s
function outperformed significantly the two others in the
case of unknown k, i.e. whenNg is set to the total number
of eigenvectors. Since we are interested in a parameter-free
system, only the results obtained using this function are re-
ported. Fig. 5 illustrates the use of the Green’s function
while considering a dataset made of four bi-dimensional
Gaussian clusters with significant overlap. Fig. 5(b) is ob-
tained by a bi-dimensional scaling of the Green’s function.

4. RESULTS

We split our results into two parts. The first part concerns
accuracy improvements related to QBE systems expected
to have already a good accuracy and the second part relates
to what might happen to systems with worse raw accura-
cies before the post-processing stages applied in this paper.

4.1 High accuracy QBE systems

In this subsection we attempt to improve a QBE system
with quite high raw accuracy. We exactly use the same
methodology and input data as in [17].
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Figure 5. Four bi-dimensional Gaussian clusters with sig-
nificant overlap (a) and bi-dimensional scaling plot of the
corresponding Green’s function (b).

4.1.1 Methodology

In order to replicate those experiments we use both the
same synthetic and real data. Synthetic data is generated
by considering a Gaussian noise fontN (0, 0.25) with zero
mean and 0.25 standard deviation. A dissimilarity measure
between songs i and j is then defined as:

di,j =


0 if i = j,
|N (0, 0.25)| if i and j are covers,
1− |N (0, 0.25)| otherwise.

(7)

Real data is provided by the Qmax measure presented in
[16] and sampled from the 2125 song collection of [17].

We also employ the same data setups as in [17] (Table 1,
where var. means that cover sets have a variable cardinal-
ity). Different number of cover sets (nC) and cardinalities
are considered, as well as the fact of adding a different
number of noise songs (nN ). For setups 1.1 to 2.4 we re-
peat the experiments 20 times.

To evaluate QBE systems we employ the mean of aver-
age precisions (MAP) over all queries. The MAP is rou-
tinely employed in a wide variety of tasks in the IR [13]
and MIR communities, including the MIREX cover song
identification task [5]. The average precision (AP) for a

Setup Parameters
nC Card. nN Trials

1.1 25 4 0 20
1.2 25 var. 0 20
1.3 25 4 100 20
1.4 25 var. 100 20
2.1 125 4 0 20
2.2 125 var. 0 20
2.3 125 4 400 20
2.4 125 var. 400 20
3 525 var. 0 1

Table 1. Setup summary.

query i is calculated from the retrieved answer Ai as

APi =
1
Ci

N∑
r=1

Pi(r)Ii(r), (8)

where Ci is the total number of covers for the i-th query,
N is the total number of songs in the dataset, Pi is the
precision of the sorted list Ai at rank r,

Pi(r)=
1
r

r∑
l=1

Ii(l), (9)

and Ii is a relevance function such that Ii(z)=1 if the song
with rank z in Ai is a cover of the i-th song, Ii(z) = 0
otherwise. A relative MAP increase is then computed just
dividing the post-processed MAP by the raw one, subtract-
ing 1, and multiplying by 100. For further details about
methodology we resort to [17]. In the case of UPGMA
and CC we report results with the optimal threshold found,
independently for each data source.

4.1.2 Results

As it can be seen in Table 2, a significant accuracy im-
provement can be gained over the synthetic dataset. UP-
GMA performs best, followed by SCN which is handi-
capped by the cluster size variability (setups 2.2 and 2.4).

On the real dataset, UPGMA and CC perform equally
well (Table 3). SCN achieves lower performance, proba-
bly due to the fact that real data has less intrinsic regularity

UPGMA CC SCN
1.1 10.17 5.49 6.17
1.2 9.76 4.31 4.08
1.3 10.01 3.88 10.20
1.4 9.54 3.73 3.27
2.1 20.95 5.33 20.00
2.2 20.70 4.95 5.98
2.3 21.54 4.62 25.20
2.4 20.35 5.08 10.90

Table 2. Accuracy improvement (expressed as relative
MAP-improvement %) for the synthetic dataset processed
using the QBE proposed in [17] as input.
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UPGMA CC SCN
1.1 5.49 4.91 3.55
1.2 4.31 4.00 3.15
1.3 3.88 3.97 3.26
1.4 3.73 4.05 3.45
2.1 5.33 6.44 2.82
2.2 4.95 5.02 2.47
2.3 4.62 6.08 2.43
2.4 4.77 5.06 1.70
3 5.08 5.57 1.14

Table 3. Accuracy improvement (expressed as relative
MAP-improvement %) for the real dataset processed using
the QBE proposed in [17] as input.

than the synthetic one. Actually, no post-processing im-
proves more than 5-6%. This may be explained by the fact
that the MAP achieved by the considered system over this
concrete dataset is rather high. As a consequence, setting
a threshold distance can be done reliably (recall Fig. 2).
Therefore, one can speculate that the best MAP that can be
achieved given this configuration is in that range.

As a conclusion, it seems that approaches focusing on
locality (UPGMA and CC) are more relevant than global
approaches (SCN) for improving the performance of a QBE
system with rather high raw accuracy provided that their
clustering threshold can be set reliably.

4.2 Lower Accuracy QBE systems

In light of the previous results, we are interested in seeing
how these clustering schemes perform on lower accuracy
systems. Motivations for that could be that we either do
not have a good, high performing QBE system for a given
task, but a more modest one, or either that we are using
a faster and more efficient version of the original system.
Furthermore, we could be dealing with a particularly dif-
ficult dataset where our (otherwise reliable) QBE system
performs more poorly.

In these cases, the accuracy improvement provided by
the post-processing steps outlined in this paper could be
more significant than with the original high accuracy sys-
tem. It could even be the case that, with a (in principle)
lower performing QBE system, we reached the same (or a
higher) final MAP.

For lower accuracy systems it is theoretically relevant to
consider more global approaches, as setting a dissimilarity
threshold is more difficult due to the noise level. However,
the overall structure of the dataset might not be completely
lost, and therefore we can still take benefit of this fact by
using a method like SCN. This can be asserted by com-
paring the MAP increase achieved by the studied methods
when considering as input a lower accuracy system [7] (Ta-
ble 4).

4.2.1 Methodology

We propose to further verify the previous assertion by sim-
ulating a QBE system with a controllable accuracy. For

MAP UPGMA CC SCN
Serrà et al. [16] 0.73 4.01 1.27 1.14

Ellis & Cotton [7] 0.42 8.06 3.04 19.70

Table 4. MAP and MAP increase (%) for two QBE systems
over the “covers80” dataset [7]. UPGMA and CC thresh-
olds were specifically optimized for this dataset (however
no significant difference was observed, c.f. Sec. 2).
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Figure 6. Normalized histograms for real data with no
noise (lines with crosses) and with σ = 0.45 (lines with
triangles).

that purpose, noise is added to our real data di,j (the out-
put of the high accuracy reference QBE system) such that

d̃i,j = |di,j +N (0, σdmx)| , (10)

where σ is the noise level and dmx is a normalization factor
set to the maximal dissimilarity found (see Fig. 6 for the
corresponding histograms).

4.2.2 Results

As it can be seen in Fig. 7, CC does not maintain its initial
MAP increase when the noise level raises up. In contrast,
UPGMA maintains or slightly increases its relative MAP.
We finally see that SCN really boosts the MAP increase
as more noise is added. This confirms our hypothesis and
leads us to speculate that these methods are more robust
for low accuracy QBE systems.

5. CONCLUSION

We proposed a global approach for improving the accu-
racy of query-by-example (QBE) systems based on spec-
tral connectivity network. Contrasting with other state-of-
the-art approaches, it does not rely on any parameter set-
ting such as a dissimilarity threshold or the expected num-
ber of or cardinality of clusters within the data.
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Figure 7. Relative accuracy increase as a function of the
noise level for setup 2.4 using Serra’s data/QBE combina-
tion as input.

The experiments showed that the proposed approach
exhibits comparable results for improving high accuracy
QBE systems and becomes highly competitive for improv-
ing lower accuracy QBE systems. Future research will in-
clude a more in depth study upon the selection of the rele-
vant eigenvectors (a problem closely linked to the estima-
tion of the number of clusters in a dataset).
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ABSTRACT 

The paper presents the findings of a qualitative study on 
the way young adults make relevance inferences about 
music items when searching for music for recreational 
purposes. Data were collected through in-depth interviews 
and analyzed following the constant comparative method. 
Content analysis revealed that participants used four types 
of clues to make relevance inferences: bibliographic 
metadata (e.g., names of contributors, labels), relational 
metadata (e.g., genres, similar artists), associative meta-
data (e.g., cover arts), and recommendations/reviews.  
Relevance judgments were also found to be influenced by 
the external context (i.e., the functions music plays in 
one’s life) and the internal context (i.e., individual tastes 
and beliefs, state of mind).  

1. INTRODUCTION 
In recognition of the need to provide researchers with an 
infrastructure for the evaluation of MIR systems and algo-
rithms, Music Information Retrieval Evaluation eXchange 
(MIREX) was established in 2005. Contests have been 
held annually since then. Like Text Retrieval Conference 
(TREC) experiments from which it is inspired, MIREX 
uses precision-recall measures to evaluate system per-
formance. These are used to measure “the probability of 
agreement between what the system retrieved or failed to 
retrieve as relevant (systems relevance) and what the user 
assessed as relevant (user relevance) where user relevance 
is the gold standard on the basis of which evaluations are 
made” [1]. Hence, to establish ‘ground truth’ for the 
evaluation of MIR tasks that called for human judgment 
(e.g., audio music similarity), user surrogates (as opposed 
to the real users who originated the search queries) were 
asked to judge a posteriori whether the results retrieved 
were relevant [2].  

Although this approach has the advantage of taking 
into account the human dimension of the process, it also 
presents limitations. The validity of relevance judgments 
made in experimental setting is questionable since the cri-
teria used by participants might not correspond to those 
used by people in real situations. Studies on user-defined 
relevance conducted in naturalistic settings show that, 
apart from content-based criteria, criteria pertaining to the 
user and the user’s situation play a significant role in the 
evaluation of relevance [3, 4]. Therefore, failing to take 

into consideration the situation within which relevance 
judgments occur raises concerns and stresses the import-
ance of studying how relevance judgments are made in 
real life. While research on relevance criteria used in tex-
tual information retrieval can have some utility for the 
MIR community, studies on video and image information 
retrieval suggest that differences in information type can 
result in differences in the criteria used to make relevance 
judgments [5, 6], hence the need to conduct research on 
user-based relevance in the context of MIR. Unfortu-
nately, this area of research has hitherto remained essen-
tially unexplored. 

The present study was designed to bridge this gap by 
investigating how young adults make relevance inferences 
about music items when searching for music for recrea-
tional purposes. More specifically, it aims to address the 
following research questions: (1) What clues do young 
adults use to make relevance inferences about music 
items? (2) How do individual characteristics (e.g., knowl-
edge, experience) influence their relevance judgments? 
(3) How does the context influence their relevance judg-
ments? By providing a rich understanding of relevance 
judgments in context, this study will be beneficial in many 
ways. It will provide the MIR community with a better 
understanding of the behavior of current and potential 
MIR systems users, which may translate into improve-
ments in MIR system design and evaluation measures. 

2. RELATED RESEARCH 
Since the 1990s, information scientists have conducted 
numerous empirical studies on user-based relevance. This 
has led to a redefinition of the concept of relevance and to 
an increased knowledge of the criteria used by people 
when making relevance judgments. 

2.1 Concept of Relevance 
Researchers distinguish system-oriented (or objective) 
relevance from user-oriented (or subjective) relevance [7]. 
According to the former, a document is considered rel-
evant if it is topically related to the search query, a meas-
ure that has the useful property of being objective. From 
the user’s point of view, however, topicality was found to 
be the most important but not necessarily the only rel-
evance criterion. Therefore, a user-oriented definition of 
relevance was proposed where a document is considered 
relevant if the user who originated the query judges that it 
meets his/her information need. This conception of rel-
evance implies that relevance judgments are interpreta-

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page.  
© 2010 International Society for Music Information Retrieval  
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tional: they can only be made by end-users and are closely 
tied to the context within which they occur.  

User-oriented relevance can be studied from different 
standpoints: some researchers have focused on its cogni-
tive aspects (cognitive relevance) [8]; some on its psycho-
logical aspects (psychological relevance) [9]; some on its 
dynamic nature (dynamic relevance) [10]; and others on 
its relation with the situation or task at hand (situational 
relevance or utility) [11]. Hence, in an attempt to encom-
pass all these dimensions, Barry and Schamber [12] de-
scribe relevance in the following terms: 

“[…] relevance is (1) cognitive and subjective, depend-
ing on users’ knowledge and perceptions; (2) situational, 
relating to users’ information problems; (3) complex and 
multidimensional, influenced by many factors; (4) dy-
namic, constantly changing over time; and yet (5) sys-
tematic, observable and measurable at a single point in 
time.” 

It is with this multidimensional and situational perspective 
of relevance in mind that the present research project was 
designed.  

2.2 Studies on User-Defined Relevance 
In 1998, Barry and Schamber compare the findings of two 
studies on user-defined relevance and conclude that a high 
degree of overlap exists in the relevance criteria used by 
the participants in both studies. Subsequent studies have 
confirmed it since: there seems to exist a core set of crite-
ria people use to make relevance judgments regardless of 
the context [13]. However, depending on the nature of the 
information, the situation or the user, the weight people 
attribute to each criterion varies and additional criteria 
may be employed. Of particular importance to MIR is the 
research on relevance criteria used when searching for 
non-textual documents. Choi and Rasmussen [6] found 
that in the context of image information retrieval, author-
ity was less important than in textual information re-
trieval, whereas subjectivity and affectiveness—the emo-
tional reaction to an image—played a significant role in 
the selection stage. Yang and Marchionini [5] found that 
users of video retrieval systems used textual criteria to 
start their search but mostly employed visual criteria (e.g., 
style, color, motion) in the final selection stage. In both 
cases, as in textual information retrieval, topicality was 
the most common and important criterion.  

Also of interest for MIR is the research on relevance in 
non-problem-solving contexts, which correspond more 
closely to situations where people search for music for 
recreational purposes. Xu [14], who studied how users 
make relevance judgments when searching for informa-
tion for its epistemic or entertainment value, found that 
novelty displaces topicality as the most commonly used 
relevance criterion. 

3. RESEARCH DESIGN 
The purpose of the present study was to provide a rich de-
scription of the way young adults make relevance judg-
ments when seeking music for recreational purposes.  
Considering the complex and subjective nature of the 
phenomenon, a qualitative approach was considered best 
suited.  

3.1 Data Collection 
The subjective and interpretational nature of relevance 
called for a method that would allow us to gain insights 
into the internal behavior of participants (e.g., thoughts, 
feelings, intentions). In-depth interviewing was deemed 
the most appropriate method to attain this objective. The 
literature review on user-oriented relevance provided a 
useful theoretical background for the development of an 
interview guide. This guide enabled us to ensure consis-
tency in the topics covered in the interviews while facili-
tating comparison between participants. During the inter-
views, participants were asked to talk about their pre-
ferred music information sources, to discuss the strengths 
and weaknesses of these sources, and to explain how, why 
and in which contexts they use them. Participants were 
also asked to relate in detail a recent music information-
seeking experience. 

3.2 Participants 
Since music behavior is known to vary according to age 
and culture, we decided to reduce the heterogeneity of the 
population by limiting our study to the French-speaking 
young adults (18-29 years) of the Montreal metropolitan 
community.  Participants (n=15) were selected following 
the maximum variation sampling strategy as described in 
[11]. Recruitment continued until the saturation point was 
reached, that is when the information obtained through 
interviews started to be redundant so that no new themes 
or patterns were emerging from the analysis.  

Among the fifteen participants, ten were male. At the 
time of the interview, five were full-time students, seven 
were full-time workers, and three were unemployed. All 
had a high school diploma, 13 had a college diploma (or 
the equivalent), and ten had a university degree or were 
currently enrolled in a university program. None of them 
were professional musicians but six played at least one 
musical instrument. The group comprised a majority of 
avid music listeners, although the sample also included a 
few light or moderate music consumers.     

3.3 Data Analysis 
The interviews were recorded and transcribed. Each inter-
view lasted between 38 and 62 minutes, for a total of 724 
minutes of recording and over 120,000 words of transcrip-
tions and notes. The software package NVivo by QSR In-
ternational was used to facilitate the encoding and analy-
sis process. 

The data were analyzed inductively using the constant 
comparative method (CCM) as defined in [12]. CCM con-
sists in a step-by-step method according to which the re-
searchers (1) prepare the data for analysis by subdividing 
the transcripts into units of meaning (in this case into 
paragraphs); (2) read through the data to identify emerg-
ing themes and patterns in order to create a provisional set 
of categories; (3) categorize each unit of meaning into a 
category, forming new categories as needed; (4) refine the 
categories by comparing all units comprised into each 
category in order to identify the common properties or 
characteristics, merging, subdividing, or restating catego-
ries as needed; and (5) explore relationships and patterns 
across categories.  
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4. RESULTS 
The interviews elicited a wealth of information about par-
ticipants’ music information-seeking behavior, including 
their likes and dislikes in terms of music information 
sources and the way they interact with these sources. The 
analysis revealed that the participants’ relevance judg-
ments were the results of a combination of different crite-
ria and factors: criteria pertaining to the music itself (e.g., 
quality), the physical document (e.g., disk), the external 
context (e.g., intended use), the internal context (e.g., dis-
position), and their personal knowledge and experience. 
To determine the likelihood that a music item meets these 
criteria, participants used a variety of clues.  

The results presented here cover the clues used to make 
relevance inferences and the criteria associated with the 
internal and external contexts of the search. Quotes were 
translated from French to English, while maintaining as 
much as possible the level of language used by the par-
ticipants.  

4.1 Relevance Clues  
For all participants, listening to the music retrieved played 
a crucial role in determining its relevance. This, however, 
requires time and effort that, in some conditions, partici-
pants did not consider worthwhile. Moreover, the content 
of the music was not the only criterion. Therefore, at least 
in the first stage of their search, participants reported em-
ploying a variety of clues or extra-musical information to 
make inferences about the type of experience a music 
item offers, and assess the probability that it meets their 
desired criteria. As these clues are not always self-
explanatory, previous knowledge and experience was of-
ten called upon to interpret them.  

4.1.1 Bibliographic Metadata 
Bibliographic metadata refer to the information used to 
describe an item, which, for music recordings, includes 
performers, composers, authors of lyrics, titles of 
songs/pieces and albums, labels, etc. This type of infor-
mation appeared to be commonly used by participants in 
the selection process. The names of the main contributors 
(e.g., singers, bands) seemed to have the greater impact on 
their selection. A good experience with an artist could 
even transform some of them into committed fans having 
an almost unwavering faith in any new project to which 
this artist contributes. This explains why a few partici-
pants admitted buying CDs of their favorite artists without 
even listening to them beforehand. Conversely, disap-
pointing experiences with an artist also increase the likeli-
hood of discarding an item without listening to it. This 
speaks of the notion of authority, a relevance criterion 
also used in other contexts of information retrieval. 

In the same way, for the most avid music listeners, 
trusted labels represented a guarantee of quality. When 
asked whether he would borrow an album by an unknown 
artist from the library, one participant explains: “if it’s on 
a label, maybe. […] if it’s a bluegrass band, for instance, 
because it’s on Smithsoninan, it must be good.” Another 
affirms that he “pretty much trust[s] what [Matador] re-
lease.”  Of course, metadata regarding contributors or la-
bels are only useful if those are familiar. The fact that la-
bels were only used by heavy music listeners suggests that 

extensive music knowledge is required to interpret this 
type of information. 
  Other bibliographic metadata proved to be of lesser im-
portance for relevance judgments. Composers and authors 
of lyrics were explicitly mentioned by none of the partici-
pants, which might be due to the fact that many of the par-
ticipants’ favorite bands and singers composed their own 
songs. Album titles did not seem to affect selection either 
and only one participant affirmed relying on song titles to 
determine if an album was worth borrowing from the li-
brary.  

4.1.2 Relational Metadata 
Lee and Downie [15] define relational metadata as data 
regarding relationships between music items (e.g., music 
genres and similarity). Relationship between artists (e.g., 
collaborations, influences) could be added to this cate-
gory. For several participants, links between artists allow 
them to situate an unknown artist in the music sphere, 
thus helping them assess the probability that the music of 
this artist corresponds to their taste. Hence, one partici-
pant related having discovered a group by reading an in-
terview in a music magazine in which the group members 
were citing “their inspirations”, which turned out to be 
“things [he] like[s]”, which convinced him to listen to 
their music. This could also explain why MySpace Music 
and allmusic, two sources that incorporate a plethora of 
relational metadata, reached the top of the list as the most 
popular music information sources on the Web among 
participants. In MySpace Music, the “Friend Space” that 
connects artists and regular users was considered the 
source’s most useful feature. Browsing the list of friends 
of a group one loves was a common strategy to discover 
new (but similar) groups as exemplified by this quote 
from a participant: “It’s also a good way […] to find 
groups that make similar music and groups with which 
they do concerts… It’s really, really useful!” Likewise, in 
allmusic, participants greatly appreciated the links to in-
fluencers, followers and similar artists in the articles, al-
though the ‘similar artists’ links, which are created by 
music experts, were not unanimously considered reliable. 
Indeed, two participants complained about links leading to 
artists that “were not really similar” or “not similar at all.” 

While links between artists are primarily used to make 
inferences about individual objects, music genres, which 
are meant to bring similar or somewhat similar albums 
together, were mostly employed at an earlier stage, for 
instance to discard several items at once in order to get a 
manageable set of items to browse. Hence, one participant 
reported going directly to the “Film Music” section at the 
library, whereas another mentioned regularly searching 
for “rock” in online music stores. Even though partici-
pants widely used genres to search or browse music col-
lections, they also frequently complained about them. 
Common criticisms included (1) some groups do not 
clearly fit into one genre (“It’s oversimplified. You can’t 
always categorize a group into something.”); (2) genres 
are too broad (“[searching by genres on the Web] gener-
ates endless lists”, or “[In music stores] they put every-
thing that is rock, alternative, punk, metal together!); and 
(3) genres are too narrow (“[On allmusic] they have 
something like 600 styles of music, it’s not concise 
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enough. […] They make up terms I’ve never seen and 
there are basically two groups that make this type of mu-
sic, maybe even just one!”). As illustrated by this last 
quote, genres that are too specific also often sound unfa-
miliar and are therefore useless (“I could tell you there are 
40-50% [of the genres on Limewire] I have no idea where 
it comes from or what it is”). The apparent contradiction 
between participants’ complains regarding the level of 
specificity of genres can be explained by the source used 
to find music: genres in brick-and-mortar music stores are 
usually very broad, whereas specialized music sources on 
the Web tend to use very specific genres. But this does not 
explain entirely their dissatisfaction. Their knowledge of 
music or of a particular genre also influenced their per-
ception of genres. While one participant admits knowing 
“seven genres, eight at most!” another explains that “there 
are five, six styles of punk.”  

4.1.3 Associative Metadata 
Lee and Downie [15] define associative metadata as data 
about the relationship of a music item with events or other 
forms of art, which includes cover arts. While some ap-
preciated cover arts for their intrinsic beauty, participants 
also appeared to attach importance to them for what they 
tell about the music. When little or no costs are involved, 
assessing the potential value of an album on the basis of 
its cover art could even represent a valid alternative to 
sampling the music: “At Cheap Thrills [a music store], 
they have a one-dollar rack. There are groups I don’t 
know. The only thing I can look at, really, is the cover art. 
If it looks cool… And it often happens to fit. I find music 
I like in jackets I like!” Most of the time, however, par-
ticipants employed cover arts only to make a first selec-
tion among albums, the following step being to listen to 
the music. Hence, when asked how she selects CDs in 
music stores, one participant describes that she looks at 
CDs “one by one” and selects those who have a nice 
cover art because “it says a lot” and “it has to represent 
something.” She will then wait to be at home to download 
the album and see if it is worth buying it. Another partici-
pant, whose previous experiences had led him to conclude 
that cardboard jewel cases often contained music he liked, 
had come to use that criterion to make a first selection, a 
method that seemed to pay off (“Often, it happens to be 
albums I like!”). For two participants, however, cover arts 
had no influence on their selection. One participant ex-
plains that “[shopping for] music is not really visual” and 
cannot be done “simply by wandering around, looking at 
album covers.” Another mentions that her previous expe-
riences have convinced her that cover arts should not be 
considered as indicators of quality (“I’ve bought so many 
good albums in hideous jackets in my life!”).  

4.1.4 Recommendations and Reviews 
A majority of participants affirmed that they attached im-
portance to recommendations, reviews and ratings. The 
trustworthiness of the source was determinant in the value 
they ascribed to the information. Hence, recommendations 
from friends or colleagues perceived has having discrimi-
nating judgment and tastes that are similar to theirs had 
the greatest influence on their relevance judgments. A few 
participants also relied occasionally on record store staff. 

In these cases, as they did not know them personally, the 
decision to trust a person was based on (1) his/her general 
look: the person has to look like someone who “pretty 
much listens to what I listen”); and/or (2) where that per-
son works: people working in small and specialized music 
stores (“a small, underground CD store”) tended to be 
perceived as especially trustworthy. In contrast, because 
of past disagreements with critics’ reviews, a majority of 
participants affirmed not being influenced by them.   

Recommendations and reviews provided information 
that could be useful at different stages of a search. Partici-
pants sought recommendations to begin a search, to obtain 
information that has been filtered specifically for them 
(“It’s like a filter [or] a bit like a shortcut”). It saves them 
time, while increasing their chances of finding something 
interesting (“You’re more likely to come across some-
thing good right away”). This information can also be use-
ful to make relevance inferences en route. Hence, they 
were more likely to pick up an album if they had heard of 
the artist before. Star ratings or popularity sorting, on the 
contrary, were used at a later stage, to identify albums or 
songs “that best represent the career of an artist.” Reviews 
or recommendations could even change their initial rele-
vance judgment. Indeed, one participant admitted having 
changed her mind about some music artists because of 
friends who “had found arguments” that had allowed her 
to listen to the music “from a new angle.”  

To conclude this section on the clues participants used 
to make relevance inferences about music items, we shall 
mention the types of information that had little or no in-
fluence. Interviews or biographies were mentioned only 
by a two, who were mostly interested in the professional 
life of the artists and in the relational metadata (influ-
ences, collaborators, etc.) they find in them. Related to 
that, participants seemed to favor information that could 
be scanned quickly: ratings or editor’s picks, for instance, 
were far more popular than long, written reviews. Also 
absent from the picture were the lyrics (or the topic of the 
lyrics). Although the topic of a song or an album could 
sometimes be determinant in deciding what one would 
listen to in a specific situation, the lyrics appeared to be of 
little importance in determining the relevance of an item 
during the search process. This might be explained by the 
fact that although the participants spoke French, a major-
ity mostly listened to Anglophone music. 

4.2 Context 
Saracevic [16] maintains that relevance “cannot be con-
sidered without a context” and defines the context as the 
result of a “dynamic interaction between a number of ex-
ternal and internal aspects.” In line with this definition, 
our analysis revealed that the context in which a search 
occurs affected the relevance judgments of the partici-
pants in various ways.  

4.2.1 Situation 
We usually define situational relevance as the relationship 
between an information object and the user’s information 
problem or task. This definition, however, did not seem 
entirely appropriate for this study since, according to our 
participants’ accounts, searching for music for recrea-
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tional purposes is rarely a task-oriented activity. But this 
does not mean that the situation had no influence on their 
relevance judgments. In reality, the roles music plays in 
their lives affect their information-seeking behavior. Par-
ticipants used music for a variety of functions. While 
some reported listening to the same type of music regard-
less of the context, most affirmed selecting different gen-
res of music in different situations. Thus, when seeking 
music, they always bore in mind the potential functions 
the music encountered could potentially fulfill.   

It is easy to see how this can affect relevance judg-
ments. Music, for instance, was the soundtrack of mental 
or artistic work for 11 participants. The reasons for listen-
ing to music while working were various: music can (1) 
contribute to inducing concentration (“when I forget my 
headphones, I’m kind of not productive”); (2) make the 
work more pleasant, especially a tedious or repetitive task 
(“it helps me get through the day”); or (3) provide inspira-
tion for artistic activities (“[it] helps me get into a mood”). 
When used in this context, the primary selection criterion 
was that music did not interfere with their thinking, which 
usually meant instrumental and/or repetitive music such 
as classical, techno, or electronic; music genres they 
would not necessarily listen to otherwise. Hence, for one 
participant who usually listened to old French music, the 
music that played in the background when she was work-
ing was totally different: “If I’m at work and need a lot of 
concentration, I will put on techno music with no lyrics.”  

When music is used to maintain or establish interper-
sonal relationships, the selection is once again affected. 
As a matter of fact, some participants mentioned listening 
to different genres of music with different persons so that 
it would please everyone, maybe even music they 
wouldn’t have listened alone, as illustrated by this quote: 
“My mother hates Pink Floyd. […] So when I’m with my 
father, we listen to Pink Floyd, but when I’m with my 
mother, I’ll listen to something else. I can even listen to 
some Luce Dufault.”   

Music is also used to manage one’s mood. Whereas 
some participants used music to modulate or enhance their 
mood (“If I get up on the wrong side of the bed, I put on 
music that will make me happy for the rest of the day”); 
others sought music that matched their current —usually 
depressed— mood (“If you’re broken-hearted [… and you 
listen to] Rose by Portishead, you clearly know that they 
feel like shit, just like you.”).  

4.2.2 Individual Tastes and Beliefs 
Not surprisingly, one of the main criteria employed to 
make relevance judgments was affectiveness or the emo-
tional response to music. In other words, music usually 
has to meet one’s taste to be considered relevant. Indeed, 
although participants reported occasionally selecting mu-
sic outside of their regular tastes to fulfill specific func-
tions, they still wanted this music to be as good as it could 
be. This explains why participants believed listening to 
the music was an essential step in formulating relevance 
judgments unless, as mentioned before, they considered 
that the risk incurred was low (e.g., highly trusted artist, 
music is free or almost free). For that purpose, partici-

pants frequently visited the MySpace profiles of artists or 
downloaded music illegally to be able to listen to entire 
songs or albums (“it allows you to really see what the 
song is like, the melody, see if you like it or not”). Indeed, 
although most online music stores or other music informa-
tion sources propose 30-second excerpts, this was consid-
ered insufficient to make inferences about the work of an 
artist. 

As seen in Section 4.2.1, music serves different func-
tions, one of which being to help people define their iden-
tity, an area of research that has been widely studied by 
sociologists and psychologists. Through their music 
tastes, people express who they are—their attitudes, val-
ues, and opinions. Of course, people also use music pref-
erences to make inferences about others. This has reper-
cussions on their information-seeking behavior: people 
want the music they retrieve to correspond to their values 
and beliefs. Such behavior was common among partici-
pants. One participant said that he liked music that “has 
meaning” and “would feel guilty if [he] liked the music of 
someone [he] hated.” Another admitted attributing a lot of 
importance to finding underground groups “because I tend 
to want to be unique.” In fact, many participants showed a 
strong penchant for non-commercial music, which could 
be explained by their desire to distinguish themselves 
from others by having unique music taste. 

 Related to that, the geographical provenance of music 
artists seemed to influence the perception of a few since 
five participants showed a marked preference for local 
artists (one confessed that she was more “opened” to 
Quebec groups, while another explained that she really 
liked following “what’s happening on the Quebec scene”).      

4.2.3 State of Mind 
One’s state of mind also affects music perception. As a 
matter of fact, nine participants admitted that discovering 
new music artists or genres required mental effort and an 
openness of mind they only had in certain contexts. Four 
said they could only appreciate unfamiliar music if they 
had “time to waste” so that they could settle down and 
concentrate on the music. Three affirmed they needed to 
be receptive to novelty (“I need to be in a different state of 
mind. […] You really have to say ‘Ok, I need to adapt’”). 
Moreover, since music is often used for mood manage-
ment (as seen in Section 4.2.1), one’s current mood also 
influenced music selection.   

5. CONCLUSION 
This study sheds light on some of the particularities of 
relevance judgment in the context of MIR, more specifi-
cally in situations where people seek music information 
for recreational purposes. Although we found that a sig-
nificant set of criteria used in textual information retrieval 
were also applicable in this context (e.g., quality, author-
ity, familiarity, situation, user’s knowledge and experi-
ence), some unique characteristics also emerged. Findings 
suggest that criteria pertaining to the user, especially indi-
vidual tastes and beliefs, have a greater impact on selec-
tion than in other contexts. This could be due to the sub-
jective nature of music perception and to the fact that mu-

605

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  
 
sic tastes often act as a ‘social badge’ that conveys infor-
mation about people. Moreover, while topicality was 
found to be the most common and important relevance 
criterion in textual, image and video information retrieval, 
our study revealed that it was not used by our participants, 
possibly because they attached little importance to lyrics. 
Therefore, genre, which has the property of allowing one 
to obtain rapidly a manageable set of items, displaced 
topicality as the most commonly used criterion to start a 
search. Our analysis also uncovered the importance of 
recommendations and reviews from trustworthy sources at 
different stages of the music selection process. On the 
other hand, this study reinforces findings from previous 
studies by confirming the importance of affectiveness as a 
criterion for making relevance judgments about non-
textual information [5]; and the importance of novelty in 
recreational contexts [14].  

This study provides indications for the design of MIR 
systems and interfaces that support users in their rel-
evance judgments. It reiterates the need to provide rich 
metadata, including links between artists, not only to fa-
cilitate the search but also to better assist users in their se-
lection. However, the fact that some metadata were use-
less to people who did not have the required knowledge to 
interpret them suggest that systems should also assist the 
user in this task, for instance by providing descriptions for 
music genres or music labels. The importance ascribed to 
recommendations from people one knows and trusts indi-
cates that systems should include social networking tools 
that facilitate the sharing of information between users. 
The study also revealed that music preferences could 
change depending on the context (e.g., one’s current 
mood, functions music plays in one’s life). A successful 
recommender system should therefore be able to handle 
this complexity and allow people to have multiple ‘music 
personalities,’ thus recognizing the dynamic nature of rel-
evance. 
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ABSTRACT 

This paper presents the jWebMiner 2.0 cultural feature 
extraction software and describes the results of several 
musical genre classification experiments performed with 
it. jWebMiner 2.0 is an easy-to-use and open-source tool 
that allows users to mine the Internet in order to extract 
features based on both Last.fm social tags and general 
web search string co-occurrences extracted using the 
Yahoo! API. The experiments performed found that the 
features based on social tags were more effective at 
classifying music into a small (5-genre) genre ontology, 
but the features based on general web co-occurrences 
were more effective at classifying a moderate (10-genre) 
ontology. It was also found that combining the two types 
of features resulted in improved performance overall. 

1. INTRODUCTION 

The field of music information retrieval (MIR) has 
benefited greatly from the explosion of information that 
is available on the Internet. The musical information that 
can be mined from the web is extremely rich in both 
depth and breadth, and the on-line contributions of both 
musical experts and general listeners has provided music 
researchers with a rich resource of cultural information. 
This information can be accessed not only via traditional 
web mining approaches like web scraping and crawling, 
but also via powerful APIs provided by a variety of on-
line organizations, such as Last.fm [19] and Yahoo! [20]. 
This information is of particular value to researchers in 
automatic music classification, as they can harvest it in 
the form of numerical features that can then be processed 
by machine learning algorithms in order to automatically 
label music with categories associated with domains of 
interest such as genre, mood or listening scenario. 

This paper has two main foci. The first is an 
investigation of the relative utility of features mined from 
the web in general and features mined from listener tags, 
in this case from Yahoo! and Last.fm, respectively. This 

investigation involves genre classification experiments 
based on features derived using the APIs provided by 
these two organizations. The classification effectiveness 
of each of these two groups of features is analysed both 
individually and in combination. Results derived from 
several different feature extraction configurations are also 
studied, as different configurations can have an important 
impact on results, but this area has not been methodically 
investigated to date in the MIR literature. 

The emphasis on genre classification in this inquiry is 
due to the fact that it can be a particularly difficult type of 
classification that examines the effectiveness of various 
classification approaches. Although genre classification 
can certainly have value in and of itself [11], the ultimate 
goal of this research is to evaluate approaches that can, 
hopefully, be effectively extended to other types of music 
classification as well. 

The second primary focus of this paper is the 
presentation of jWebMiner 2.0, a feature extraction tool 
for mining data from the Internet. This tool has been 
expanded since the publication of the original jWebMiner 
1.0 [12], and the updated version is presented here to the 
MIR community for their research use. jWebMiner 2.0 
was used to perform all of the experiments described in 
this paper. 

2. BACKGROUND INFORMATION 

2.1 Mining the Internet for Musical Features 

There has been too much research on mining useful 
information from the Internet to cite with any 
completeness here. It is, however, valuable to emphasize 
certain particularly influential papers, namely [2, 5–10, 
16–18]. 

2.2 Social Tags 

As noted in by McKay and Fujinaga [11], genre (and 
other types of musical categories) can be strongly 
characterized by how an audience understands and 
perceives music and musicians, not just on objective 
content-based characteristics. This has important 
implications for genre classification. “True” class labels 
are essentially specified by the opinion of millions of 
listeners and evolve over time. These labels are 
influenced by many cultural factors, some of which may 
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be independent of purely sonic musical characteristics. 
The labels that one might assign to a song are based not 
only on the song itself, but one’s overall perception of an 
artist. Furthermore, it might be said that there is no one 
ground truth, as is the “truth” is indeed the sum of the 
opinions of all listeners.  

“Social tags” are unstructured text labels assigned by 
non-expert users to an entity, such as a song, an album or 
the collected work of an artist. A variety of on-line 
services, such as Last.fm, permit users to aggregate their 
tags for a variety of musical resources. There are 
typically no restrictions on the choice of words or phrases 
that users can tag resources with, although users do in 
practice often seem to select tags that other users have 
already used, thus creating a kind of shared and navigable 
system [10]. Tagged resources can therefore be said to, in 
some way, share certain characteristics with other 
resources that have been tagged with the same category 
or categories in the perception of users [1]. The value of 
social tags increases when they are aggregated into such a 
large public access community repository, as they 
provide access to information on how all the users of the 
system perceives and organize the resources [8]. In the 
context of musical communities and libraries, social tags 
are used by people for playlist organization; personal 
song retrieval; the expression of taste and opinion; and 
general contribution to public knowledge [10]. 

It is clear that social tags are a source of valuable 
human-generated contextual knowledge about music. 
They provide researchers with information about mood, 
emotion, genre and other types of categories that are 
based on the subjective perceptions of millions of users 
[3]. Mining this data from the web can thus be effective 
in acquiring information that can be used in the 
evaluation and training of MIR systems, and at least in 
the short term, as the aggregation of cultural perceptions 
that are in constant flux as culture and individual 
opinions change [12]. 

2.3 Last.fm 

Last.fm is a music service that has been in operation 
since 2003. Internet radio is the core service that it offers 
to its users, but it also provides them with a broad range 
of additional functionality. For example, Last.fm allows 
users to create personal profiles and contribute social 
tags to songs, albums and artists. Of particular interest, 
Last.fm automatically generates custom radio playlists 
using recommendation algorithms based primarily on 
collaborative filtering. These algorithms consider both 
user tags and listening behaviour, as mined by Last.fm’s 
“Scrobbler” software, which monitors the music played 
by listeners both on the Last.fm site and on their enabled 
local media players.  

The amount of information managed by Last.fm is 
enormous, consisting of more than 39 billion tracks 
scrobbled to date, a number that is increasing at a rate of 
over 400 million tracks per week.1 The company provides 
free access to portions of its data through an API [19], 
                                                             
1 http://www.last.fm/community 

something that permits developers to build their own 
tools. 

2.4 jWebMiner and jMIR 

jWebMiner [12] is part of the jMIR automatic music 
classification research suite [14]. In addition to 
jWebMiner, jMIR also includes tools for extracting 
features from audio files and MIDI files; a machine 
learning engine based on metalearning; datasets to serve 
as ground truth for training and testing classification 
models; and software for profiling and detecting 
metadata errors in music collections. jMIR is designed 
specifically to facilitate the integration of information 
extracted from different types of musical data, and 
jWebMiner is the component that provides access to 
social context features (i.e., cultural musical information) 
available on-line. 

jWebMiner, like all of the jMIR software components, 
is designed to be usable by users with both technical and 
non-technical backgrounds, and as such includes an easy-
to-use and flexible graphical interface. All of the jMIR 
components, including jWebMiner, are open-source and 
available for free at http://jmir.sourceforge.net. 

At its most basic level, the original jWebMiner 1.0 
operates by accessing Yahoo’s web search API to acquire 
hit counts for various search strings. For example, 
calculations measuring how often the names of different 
musicians or composers co-occur on the same web pages 
(taking into account how often they occur individually) 
can provide insights on the relative similarity of the 
musicians to each other. Similarly, the cross tabulation of 
song or artist names with musical class labels associated 
with genre, or mood, for example, can be used to classify 
music. Of course, basic hit counts can result in noisy 
data, so it is necessary to include additional processing to 
improve results. 

jWebMiner begins by parsing either iTunes XML, 
ACE XML, Weka ARFF or text files in order to acquire 
strings to use in searches. Users may also manually enter 
search strings in the GUI. The software then accesses 
Yahoo’s API to either measure the co-occurrence of each 
value in one field with other values in the same field, or 
to measure the cross tabulation of values in different 
fields. 

The optimal statistical procedure for processing hit 
counts and dealing with noise contained in them can vary 
depending on the task at hand. One must consider not 
only the accuracy of an approach, but also its search 
complexity, as web services typically involve daily limits 
on queries. jWebMiner therefore allows users to choose 
between a variety of metrics and scoring systems. 

One option offered by jWebMiner is the ability to 
allow users to specify “string synonyms” so that hit 
counts will be combined for linked synonyms. This 
would be useful, for example, in a genre classification 
task where the class names “R&B” and “RnB” are 
equivalent. 

jWebMiner also allows user-definable “filter strings.” 
This permits the software to be set to ignore all web 
pages that do not contain general filter terms such as 
“music,” for example, or application-specific terms such 
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as “genre” or “mood.” This can be useful in avoiding 
irrelevant and noisy hit counts. For instance, a feature 
extraction should not count co-occurrences of “The 
Doors” with “Metal” or “Rap” unless they refer to music 
rather than unrelated topics such as the building industry 
or door knockers.  

It is also possible to set jWebMiner to limit searches to 
particular sites, such as the All Music Guide or Pitchfork, 
in order to emphasize musically relevant and reliable 
sites. jWebMiner also allows users to assign varying 
weights to particular sites as well as to the web as a 
whole when feature values are calculated.  

The feature values generated by jWebMiner essentially 
consist of relative similarities measured between various 
specified search strings, after appropriate statistical 
processing. These feature values can be exported to ACE 
XML, Weka ARFF, delimited text or HTML files. 
Feature values may also be browsed directly via the GUI.  

3. MINING LAST.FM WITH JWEBMINER 2.0 

The most significant improvement incorporated into the 
new jWebMiner 2.0, in addition to the existing 
functionality described in Section 2.4, is the ability to 
extract social tag-based information using the Last.fm 
API [19]. For example, users can specify artist names 
and have the software extract the most common tags for 
that artist from the Last.fm API, ranked by popularity. 
The user can also specify class labels of interest, and 
have jWebMiner derive features based on whether each 
artist has been tagged by Last.fm with any of these labels 
and, if so, have the feature value reflect the tag’s relative 
Last.fm ranking. 

jWebMiner 2.0 can extract just the Last.fm-derived 
features, just the Yahoo!-derived features or both. If the 
latter option is selected, then jWebMiner will not only 
extract each of the two feature sets individually, but will 
also provide the user with levels of support associated 
with each class label based on the normalized 
combination of the Last.fm-derived and Yahoo!-derived 
features. This normalization process is performed to level 
all queries to the same number-base in the case of the 
Yahoo!-mined features, and to represent the position of a 
given artist’s Last.fm tag on a normalized scale. For an 
artist and genre we define a scoring function S(a,g), 
where P(a,g) is the Last.fm position of the queried tag 
and P(a,i) the position for  all genre tags:  

 

 
  

(1) 

 
To exemplify the normalization process let us query 

the german band Tarwater with the tags indie, post-rock 
and electronic. These tags appear respectively in the 
position 6, 7 and 1 of the top tags for that artist. Being n 
equals 3, the value of the sum is 1/6 + 1/7 + 1/1, which is 
55/42. Thus, the scoring function values are 7/55 for 
indie, 6/55 for post-rock, and 42/55 for electronica.  

jWebMiner automatically bases its score on only the 
Yahoo!-derived features if a particular artist is not on 
Last.fm, or if an artist has not been tagged with any of the 
queried class names. In addition, jWebMiner can show 
the web search normalized feature score, the Last.fm 
normalized ranking score, and the averaged results. These 
values can be processed independently afterwards. 

It is hoped that the combination of social tag-based 
feature extraction with more general web search-based 
feature extraction will provide MIR researchers with a 
unified and accessible cultural feature extraction tool that 
provides access to two different kinds of valuable cultural 
musical information available on-line. Although 
jWebMiner 2.0 can certainly be used alone, it also carries 
the significant advantage of allowing features extracted 
with it to be easily processed using jMIR’s ACE machine 
learning tool, or combined with features extracted from 
audio or MIDI by, respectively, jMIR’s jAudio and 
jSymbolic feature extractors [13]. 

4. EXPERIMENTS 

4.1 Overview 

A series of experiments were performed in order to 
investigate the relative performance of features derived 
from Last.fm social tags, features derived from Yahoo! 
web searches and the combination of features derived 
from both sources. Attention was also given to various 
possible web search feature extraction configurations, 
involving the use of various different filter words and site 
weightings (see Section 2.4). 

The feature groups and extraction configurations were 
evaluated based on their performance in genre 
classification. As noted in Section 1, genre classification 
was chosen because it can be a particularly difficult task, 
and is thus a good stress test for features. 

All experiments were performed using jWebMiner 2.0, 
which harvested features using the Last.fm and Yahoo! 
web services, as described above. 

4.2 Dataset used 

The experiments were conducted using the SAC 
(Symbolic, Audio and Cultural) dataset [13]. This dataset 
consists of 250 matching MIDI files and audio 
recordings, as well as accompanying metadata (e.g., title, 
artist, etc.). This metadata was stored in an iTunes XML 
file, which was parsed by jWebMiner in order to extract 
cultural features from the web [13]. 

The files of the SAC dataset are divided into 10 
different genres with equal numbers of artists per genre 
(Modern Blues, Traditional Blues, Baroque, Romantic, 
Bebop, Swing, Hardcore Rap, Pop Rap, Alternative Rock 
and Metal). It is clear upon observation that these 10 
genres consist of 5 pairs of similar genres. This 
arrangement makes it possible to perform 5-class genre 
classification experiments as well as 10-class experiments 
on the same dataset simply by combining each pair of 
related genres into one class. An additional advantage is 
that it becomes possible to measure an indication of how 
serious misclassification errors are in 10-class 
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experiments by examining how many misclassifications 
are in an instance’s partner genre rather than one of the 
other 8 genres. The ground truth was created using expert 
sources, such as AllMusic.com, combined with the 
personal expertise of the authors of the dataset. 

SAC was chosen partly because it provides two tiers of 
genre classification; partly because the similarity of each 
of the 5 genre pairs makes 10-class classification 
particularly difficult, and thus a good test of jWebMiner’s 
effectiveness; and partly because it can be used in other 
research to investigate the utility of combing the cultural 
features extracted by jWebMiner with other kinds of 
features, such as features extracted from audio, symbolic 
and lyrical data. This latter application was previously 
investigated with jWebMiner 1.0 in [13], and an update to 
this research using jWebMiner 2.0 is presented in [15] . 
 

4.3 Text filtering and site weighting 

In order to optimize classification accuracy using 
jWebMiner’s filtering capabilities, we designed and 
tested several sample filters for the Required Filter 
Words and Excluded Filter Words fields. Sources such as 
[2], [4], [7], and [17] have recommended certain required 
filter words, such as music, review, like, work and artist x 
played y music, and have also recommended certain 
excluded filter words, such as mp3, download, videos, 
cart, prices and login. In general, our results matched 
those obtained in [7], which is to say that better 
performance was achieved when only simple filters were 
used. Thus, only mp3 and store were used as excluded 
filter words, and no required filter words were used. It 
was found through informal experimentation that too 
much noise was otherwise introduced by web pages in 
which many of these terms co-occur with in non-specific 
ways with many other artists and genres. 

We also developed a set of synonyms for different 
genres and artist names in order to take into account the 
variety that one finds in practice. So, for example, we 
used the terms Bebop and Be-bop as synonyms for Bop. 
On the other hand, an artist such as Derek and the 
Dominos could be found as Derek and the Dominoes. 

We also tested different site weighting schemes. To 
begin with, we tried simply querying the whole network 
(NC, as described in Table 1) using the 5-genre 
taxonomy. We then queried the web as a whole as well as 
three predetermined websites (wikipedia.org, 
allmusic.com and amazon.com), using weight values of 
0.5 for the whole network and 0.166 for each one of the 
sites (W1). For 10-genre classification, we tried a third 
arrangement that did not take into account the whole 
network, and where each of the above three sites was 
assigned a weight of 0.333 (W2). Experiments with these 
these different arrangements were performed in order to 
gain insights into how data mined from the web as a 
whole performed relative to specialized websites. 

  
 

MK08 
Previous experiment with jWebMiner performed in 
[13]. 

NC 
No constraints involving weighting, required filter 
words or excluded filter words. 

F/W1 
MP3 and store as excluded filter words. Site 
weightings of 1/6 for wikipedia.org, allmusic.com, 
and amazon.com; the whole web weighted by 1/2.  

F/W1/S 
Same settings as F/W1, plus a set of synonyms for 
the genres and artist names. 

ST  Classification results when using only social tags. 

C NC 
Combined and averaged results using web search 
with no constraints, as well as social tags. 

C F/W1 
Combined and averaged results using social tags and 
web search in F/W1 configuration. 

C F/W2 

Combined and averaged results of social tags and 
web search, MP3 and store as excluded filter words, 
and site weightings of 1/3 for wikipedia.org, 
allmusic.com, and amazon.com.  

 

Table 1. The different configurations tested on the SAC 
dataset. Some experiments involved 5-genre 
classification, while others involved 10-genre 
classification. 

4.4 Results 

4.4.1 SAC dataset 5-genre classification 

Table 1 provides brief descriptions of each experimental 
setup, as well as specifications of the identifying notation 
used. The average classification accuracy rates for 
experiments involving only web search-based 5-genre 
classification are shown in Table 2.  

 
MK08  NC  F/W1  F/W1/S  ST  C F/W1 

87.2  82.4  90.1  93.1  95.4  96.9 

 

Table 2. Average classification accuracy rates for 5-
genre classification experiments on the SAC dataset. 

It can be seen that the NC experiment classification 
accuracy was worse than MK08, which is not surprising 
because the MK08 experiments used some filtering 
constraints, namely the use of “music” as a required filter 
word. However, with the F/W1 and F/W1/S 
configurations we observed improvements of 2.9% and 
5.2% over MK08, and 7.7% and 10.7% over NC, 
respectively. These results suggest that highlighting 
particular music-related sites can provide better results 
than simply extracting information from the web as a 
whole. 

On the other hand, retrieving social tags alone resulted 
in improvements in genre classification performance of 
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8.2% over the MK08 mark, and the combined approach 
of retrieving social tags as well as querying the web 
resulted in the highest classification rate of 96.9%. 
Hence, it appears that combining the features from web 
searches and social tags can increase accuracy and 
diminish the problems associated with each method, such 
as noisy web search hits (as reviewed in [13] and [6]) and 
the cold start, polysemy, annotation accuracy, popularity 
bias, and malicious behaviour issues associated with 
social tags (as reviewed in [8] and [14]). 

4.4.2 SAC dataset 10-subgenre classification 
For 10-genre classification, we performed the same 

experiments but separated synonyms, filter words and site 
weights in order to gain insights on how each one of them 
affect results. The same SAC genre-pair weighting 
scheme used in [13] and described in Section 4.2 was also 
used to evaluate the seriousness of those classification 
errors that did occur Specifically, if a misclassification is 
within a genre pair, the error is reduced to 0.5 of an error, 
and if the misclassification is outside of a pair, then the 
error is increased to 1.5. Table 3 shows the weighted (W) 
and unweighted (UW) Yahoo! web search-only accuracy 
rates that we found. 

 
   MK08  NC  F/W1/S  F/W1  F/W2  ST 

UW  61.2  56.5  50.4  67.2  77.9  43.5 

W  67.4  63.7  51.9  76.7  82.8  43.9 

 

Table 3. Classification accuracy rates in 10-genre 
classification experiments, including both unweighted 
(UW) and weighted (W) results. 

As in the 5-genre experiments, NC performed worse 
than MK08. On the other hand, F/W1 and especially 
F/W2 were more accurate than MK08 by 6.0% and 16.7%  
respectively in terms of unweighted classification 
accuracy, and by 9.3% and 15.4% respectively in terms 
of weighted classification accuracy. Also, in the 5-genre 
classification experiments social tags gave excellent 
results. In contrast, in the 10-genre classification 
experiments using social tags (ST) social tags actually 
performed the worst amongst all configurations.  

To understand this phenomenon, we studied the tags 
that Last.fm users use and found that, in general, they are 
very well defined for broad genres, such as those used in 
the 5-genre experiment. However, when one delves into 
finer classification, there are many subtle differences in 
the ways that different people perceive genres. For 
example, how substantially different is the genre Rock 
from Punk if we think of a band such as Green Day? In 
addition, a number of problems related to tagging such as 
polysemy, synonymy, accuracy, and spam are present in 
large collections of social tags [8]. Furthermore, tags do 
not represent only genres or styles, but anything that 
individual users want, from mood to BPM, so they can be 
very noisy if one wishes to extract detailed class labels. 

To overcome these problems, we tried combining the 
features extracted from both Last.fm  social tags and 
Yahoo! web searches. The obtained results are shown in 
Table 4. 

 
   C NC  C F/W1  C F/W2 

UW  75.6  74.8  77.9 

W  78.6  79.8  81.3 

 

Table 4. Classification accuracy rates for 10-genre 
classification experiments using combined data from both 
web search and social tags, unweighted and weighted. 

It can be seen that for the C NC experiment, the 
combined data results in improvements of 19.1% (UW) 
and 14.9% (W) relative to using only web searches 
without any constraints. For the C F/W1 experiment, the 
results were 7.6% (UW) and 3.1% (W) better. The genre 
classification accuracy was thus improved by using the 
combined approach, despite the fact that social tags alone 
performed very poorly. However, for the last experiment 
C F/W2, the results were the same for the W scale (as 
F/W2), and slightly worse in the case of the UW  scale. 
These last results make some sense because the F/W2 
experiment weights only the three predetermined 
websites mentioned above, rather than querying the 
whole web.  
 

5. CONCLUSIONS 

We have provided jWebMiner with new functionality, 
namely the ability to extract features based on Last.fm 
social tags. These features can be used alone or combined 
with jWebMiner’s already existing Yahoo! search-based 
features, and the feature values can be summarized and 
saved in convenient formats for machine learning 
processing in future research.  

We also performed web search experiments on 
different sets of excluded filter words and site weightings, 
in order to investigate their effect on genre classification 
accuracy. The experiments were performed on the SAC  
ground truth dataset, and improvements of 5.9% and 
16.7% were achieved respectively for 5- and 10-genre 
classification compared to the results from earlier 
published experiments [13].  

When performing the same experiments using social 
tags, we achieved an improvement of 8.2% for the 5-
genre taxonomy, but also observed a 17.7% decrease in 
performance with the 10-genre taxonomy. It was thus 
found that social tags performed very well for broad 
genres, but lacked sufficient precision for more detailed 
sub-genre classes. However, the best results overall were 
achieved when both social tags and the web search data 
were combined. We conclude that the information 
obtained by each approach is at least partially, 
complementary. 

In summary, the genre classification results obtained 
using both Last.fm social tags and Yahoo! web search-co-
occurences were the highest observed amongst all 
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configurations experimented with. Indeed, this combined 
approach actually achieved results comparable to those 
found in [13], where symbolic and audio data were also 
available and more sophisticated machine learning-based 
classification methodologies were used. The combined 
approach described in this paper was also extremely 
successful in a just-published followup to the [13] 
experiments, as described in [15]. 

6. FUTURE RESEARCH 

Although the music classification results obtained in our 
experiments with jWebMiner 2.0 are very promising, we 
believe that there is still more space for improvement in 
accuracy. First, in order to properly filter music tags used 
by contributors to social sites, we will work on the 
development of a thesaurus of terms that can group 
together related words, something that should result in 
more precise tag rankings. Secondly, we will develop 
software for customizing web search site weightings 
through the automated application of genetic algorithms. 
A third research step will be to explicitly experiment with 
other types of classification, such as mood classification. 
Finally, efforts will be made to take advantage of any 
open-source web services in order to reduce the 
dependency on the excellent but proprietary Last.fm and 
Yahoo! services. 
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ABSTRACT

We introduce the task of vocalist gender recognition in
popular music and evaluate the benefit of Non-Negative
Matrix Factorization based enhancement of melodic com-
ponents to this aim. The underlying automatic separation
of drum beats is described in detail, and the obtained sig-
nificant gain by its use is verified in extensive test-runs on
a novel database of 1.5 days of MP3 coded popular songs
based on transcriptions of the Karaoke-game UltraStar. As
classifiers serve Support Vector Machines and Hidden Naive
Bayes. Overall, the suggested methods lead to fully auto-
matic recognition of the pre-dominant vocalist gender at
87.31 % accuracy on song level for artists unkown to the
system in originally recorded music.

1. INTRODUCTION

Determination of the gender of the (main) vocalist(s) is an
astonishingly untouched task in the field of Music Informa-
tion Retrieval (MIR): while there is a substantial body of
literature dealing with gender in spoken language, e. g. to
improve automatic speech recognition systems by switch-
ing or adapting acoustic models (e. g. [1]) or accordingly
to improve emotion recognition systems (e. g. [22]), only
some works consider singer identification (on artificial sig-
nals) [3, 10]. However, explicit recognition of the gender of
the main performing vocal artist in original audio record-
ings of e. g. contemporary popular music has apparently not
been addressed in MIR research, yet, which is to overcome,
as like genre, mood or style, it can be an important feature
for organizing and querying music collections, for example
to find a song whose artist’s name is unknown to the user, or
for recommendation systems in on-line stores. In addition,
it might be considered interesting as mid-level attribute for
other MIR tasks as audio mood classification [14] or tran-
scription of the sung lyrics with gender-adapted models –
shown to be beneficial in [9].

Apart from finding suitable features and an appropriate
classification method, as is the pre-concern for gender iden-
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c© 2010 International Society for Music Information Retrieval.

tification in (spoken) speech analysis, a setting dealing with
the named original audio recordings of music demands for
reasonable enhancement of the singer(s) voice given the
background ‘noise’ of musical and rhythmic accompani-
ment. It is comparably easy to eliminate the main singer’s
voice in stereophonic recordings, e. g. for Karaoke appli-
cation: often stereophonic channel subtraction killing the
mid-panned parts suffices, as the lead singer’s voice is usu-
ally panned there to be well audible at any position carrying
the main melody (in fact the bass is usually panned there as
well, which can be by-passed first). However, to separate
these vocals is a non-trivial and challenging task – ‘intel-
ligent’, i. e. data-driven, spectral decomposition is usually
required to this end.

Non-negative Matrix Factorization (NMF) is one of the
increasingly popular algorithms used within blind source
separation of audio signals. Among other fields (e. g. speech
recognition [18] or non-linguistic vocalisation recognition
[16]), it has been successfully used in speaker separation
[12], instrument separation [17, 23], especially drum beat
separation [4, 15, 20], and vocal separation [10, 21]. While
these methods provide audible results of great quality, it
is not fully clear to which extent blind source separation
can aid in general Music Information Retrieval tasks [15].
Here, we employ it to separate drum-beats from the rest
of a popular music piece. While one could directly aim at
separation of the vocals, this is considerably more difficult
giving the large spectral overlap with other instruments. We
thus decided to remove the relatively easier separable drum
and percussion part and recognize gender in combination
with general vocal presence in the remaining audio.

In this work the recognition system has to identify
the gender of the performing artist particularily on ‘real-
world’ data, i. e. originally recorded music without any pre-
selection of ‘friendly cases’, which is a challenging task not
only due to the above-named instrumental accompaniment,
but also to the variety of genre and singing styles. In our
experiments we introduce a database of popular songs from
the Karaoke game UltraStar, which includes annotations
of the tempo and the location of the sung parts. Gender is
additionally labelled for the following experiments.

In the remainder of this paper, we first introduce the
UltraStar database in section 2, then explain the acoustic
features and the classifiers used for vocalist gender recogni-
tion in music in section 3, and the methodology applied for
separating the drum beat with NMF in section 4. Then, sec-
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tion 5 presents the data partitioning throughout test-runs and
the experimental results before finally deriving conclusions
in section 6.

2. ULTRASTAR DATABASE

We first introduce a data set of songs with annotations in
the file format of the open-source Karaoke game Ultra-
Star [2] for vocalist gender evaluation, referred to as Ul-
traStar database in the ongoing. This set contains 582
complete songs and is encoded in MP3 (MPEG-1 Audio
Layer 3) format with 44.1 kHz PCM and variable bit rate
with a minimum of 128 kbit/s. In total length, this set corre-
sponds to 37 h 06 min of music, i. e. 1.5 days of continuous
music. The set covers generations from the 1960s until
today and is a good example of typical popular music from
diverse genres like Rock, Pop, Electronic Music, Ballads or
Musical.

As annotation, we use the tempo and the information
on the location of vocal presence in a song. In addition,
we carried out a gender annotation on song level for this
data set: per song we assigned the gender of the vocalist
that is perceived as pre-dominant over the total run-time
after listening to each full song. This was done by two
labellers individually and in random order without any dis-
agreement. Overall, 178 songs were labelled as female,
and 404 songs as male, respectively 11 h 08 min female and
25 h 58 min male playtime. Prior to the processing all songs
were down-mixed to monophonic by non-clipping stereo
channel-addition.

Since every user of the UltraStar Karaoke game has the
possibility to contribute annotations to the game’s website,
we chose songs according to their popularity among users,
assuming that high popularity of a song indicates that a
robust ground truth can be established.

3. GENDER RECOGNITION

3.1 Acoustic Features

For the actual gender recognition we consider the short-time
energy, zero-, and mean-crossing rate known to indicate vo-
cal presence [24]. In addition we extract values from the nor-
malized autocorrelation sequence of the DFT coefficients,
namely voicing probability, F-zero, and harmonics-to-noise
ratio (HNR). F-zero is the location of the highest peak of
the autocorrelation sequence aside from the maximum at
zero. HNR is computed by the value of this peak. We fur-
ther calculate Mel frequency cepstral coefficients (MFCC)
0–13 and their respective first-order delta regression co-
efficients. MFCC are known to capture the characteristic
qualities of individual voices in speech and music for singer
identification [8,10,11] and have proven highly meaningful
in various speech gender recognition tasks [1, 22]. Thus,
altogether we employ a set of 32 features.

Vocals in popular music are synchronous to the beats of a
song most of the time. For every quarter beat we know from
the annotations in the UltraStar database whether sung vo-
cals are present or not. From this we derived an annotation

on beat level by a non-ambiguous majority vote procedure:
we judged vocals to be present in a beat if they are present
in at least two of the quarter beats.

Based on this, every song in our data set is divided into
analysis frames corresponding to the beats of the song. As
the tempo and the locations of vocal presence are known for
each song, beat synchronous chopping is possible for the
training section and test section, to focus on the problem
at hand. However, using the highly reliable automatic beat-
tracker as introduced in [13] led to non-significant (one-
tailed test, for testing conditions cf. below) differences in
accuracy on song level. We divide the signal into non-
overlapping frames with a Hamming window function of
the length of a beat of the particular song – a strategy found
beneficial over smaller units in previous tests. Per likewise
beat-synchronous frame the above mentioned features are
computed.

For easy reproducibility of the results we decided for
open-source feature extraction by using the real-time toolkit
for ‘Speech and Music Interpretation by Large Space Ex-
traction’ (openSMILE) 1 .

3.2 Classifiers

We evaluate Support Vector Machines (SVM) with polyno-
mial Kernel, sequential minimal optimization learning, and
pairwise multi-class decision, as well as different Bayesian
classifiers for our gender recognition task to be more inde-
pendent of classifier influence.

A Bayesian network in general is a directed graph in
which nodes represent attributes and branches represent
attribute dependencies. It is quantified by conditional prob-
abilities for each node dependent on its parents. In naive
Bayes, each attribute node has the class node as its parent
only, without any relation to other attributes, so it is the sim-
plest Bayesian network [6]. In structure learned Bayesian
networks every attribute node can have other attribute nodes
as its parents, thus all dependencies between attributes are
considered. However, achieving an optimal structure by
learning from data is often impracticable in reasonable time.
Hidden naive Bayes represents attribute dependencies by
creating a hidden parent for each attribute node. This par-
ent combines all influences of other attributes. Although
attribute dependencies are considered, it keeps the structure
of naive Bayes and does not need to be structure learnt [25].

For Bayes classification we found discretization by
Kononenko’s minimal description length criterion [5] based
on the training instances beneficial (significant gain in av-
erage accuracy of 5.54 % on beat level with and without
enhancement in the experiments as follows, for testing con-
ditions cf. below), and Hidden Naive Bayes (HNB) superior
to the considered alternatives (significant gain as before of
2.41 % over structure learned Bayesian networks, and of
7.68 % over Naive Bayes).

1 http://www.openaudio.eu
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4. DRUM BEAT SEPARATION USING
NON-NEGATIVE MATRIX FACTORIZATION

4.1 Definition of NMF

Given a matrix V ∈ Rm×n
≥0 and a constant r ∈ N, non-

negative matrix factorization (NMF) computes two matrices
W ∈ Rm×r

≥0 and H ∈ Rr×n
≥0 , such that

V ≈W ·H (1)

For information reduction one generally chooses r such
that (m+ n)r � mn.

4.2 Application to Blind Source Separation

An important application area of NMF in signal processing
is blind source separation. In the particular field of music
processing, NMF has been successfully used to separate
drum from harmonic sounds [4, 15, 20].

NMF-based blind source separation is usually realized
in the frequency domain. Thereby the signal is split into
overlapping frames of constant size. In our experiments, a
frame size of 60 ms and an overlap of 50 % produced best
results. Each frame is multiplied by a window function and
transformed to the frequency domain using Discrete Fourier
Transformation (DFT), with transformation size equal to the
number of samples in each frame. We use the square root
of the Hann function for windowing, as this helps to reduce
artifacts when transforming back to the time domain [4].

Only the magnitudes of the DFT coefficients are retained,
and the frame spectra are put in the columns of a matrix.
Denoting the number of frames by n and the frame size by
T , and considering the symmetry of the coefficients, this
yields a (bT/2c+ 1)× n real matrix.

To exploit NMF for blind source separation, one assumes
a linear signal model. Note that Eq. 1 can be written as
follows (the subscripts :, t and :, j denote the tth and jth

matrix columns, respectively):

V:,t ≈
r∑

j=1

Hj,tW:,j , 1 ≤ t ≤ n (2)

Thus, if V is the magnitude spectrogram of a signal (with
short-time spectra in columns), the factorization from Eq. 1
represents each short-time spectrum V:,t as a linear com-
bination of spectral basis vectors W:,j with non-negative
coefficients Hj,t (1 ≤ j ≤ r).

We define the jth component of the signal to be the pair
(wj ,hj) of a spectrum wj := W:,j along with its time-
varying gains hj := Hj,: (the subscript j, : denotes the jth

matrix row).
It has turned out that the non-negativity constraint on the

coefficients alone is sufficient to decompose a signal into
the underlying sources [17, 20]. Note that a ‘source’ in the
intuitive sense, e. g. an instrument, can consist of multiple
components.

When there is no prior knowledge about the number of
spectra that can describe the source signal, the number of
components r has to be chosen empirically. In our experi-
ments, best results were achieved by setting r = 30.

4.3 Factorization Algorithm

A factorization according to Eq. 1 is usually achieved by
iterative minimization of cost functions. For the purpose
of drum beat separation, an extended form of the Kullback-
Leibler (KL) divergence has been shown to yield good
results [15, 20]:

cd(W,H) =
m∑
i=1

n∑
t=1

(
Vi,t log

Vi,t

(WH)i,t
− (V −WH)i,t

)
(3)

Eq. 3 can be enhanced by a term that enforces temporal
continuity of the gains, improving separation quality [20] at
the expense of increased computational costs. Because the
perceived audio quality of components is of minor relevance
for our task, we chose cd from Eq. 3 as cost function and
minimized it using Lee and Seung’s multiplicative update
algorithm [7]. It performs the following iterative updates of
the matrices W and H:

Hj,t ← Hj,t

∑m
i=1 Wi,jVi,t/(WH)it∑m

i=1 Wi,j
(4)

for j = 1, . . . , r; t = 1, . . . , n and

Wi,j ←Wi,j

∑n
t=1 Hj,tVi,t/(WH)i,t∑n

t=1 Hj,t
(5)

for i = 1, . . . ,m; j = 1, . . . , r.
Since in our scenario the spectral characteristics of the

drum and harmonic sources in the signal are not known
beforehand, we initialize W and H with random numbers
drawn from a uniform distribution on the interval ]0, 1].

To reduce computational cost, instead of detecting con-
vergence by computing the cost function (Eq. 3) after each
iteration step, we run the algorithm for 100 iterations, after
which in separation of popular music a reasonable sep-
aration quality is reached and convergence slows down
considerably [15].

4.4 Synthesis of Harmonic Signals

Our goal is to obtain a drum-free signal from the NMF rep-
resentation computed according to the previous section. To
this end, we first classify the signal components (wj ,hj),
1 ≤ j ≤ r into two classes, ‘drum’ and ‘harmonic’. Note
that the gains hj may also contain valuable features for
discrimination of drum and harmonic sounds, since e. g.
drum sounds are expected to be more periodic than har-
monic sounds. The exact feature set and parameters used
for classification will be described in the next section.

After classification, we compute a magnitude spectro-
gram Vharm of a signal that contains only harmonic sounds:
Let Jharm = {j : (wj ,hj) classified as harmonic}. Then,

Vharm =
∑

j∈Jharm

wjhj (6)

We transfer Vharm back to the time domain applying a
column-wise inverse DFT, using the phase matrix from the
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# beats training develop test sum
female 39 267 25 354 12 856 77 477
male 60 210 55 429 40 805 156 444
no voice 73 512 64 568 37 447 175 527
sum 172 989 145 351 91 108 409 448

Table 1: Number of beats per set of the UltraStar database.

original signal. Finally, we obtain a ‘harmonic’ time signal
by windowing each time frame with the square root of the
Hann function, then employing an overlap-add procedure.

4.5 Discrimination of Drum and Harmonic
Components

For discrimination of drum and harmonic components, we
use a linear SVM classifier with a feature set similar to the
ones proposed in [4] and [15].

From the spectral vectors wj , we compute MFCC, using
26 triangular filters on a bank ranging from 20 Hz to 8 kHz.
10 first MFCC plus the zeroth (energy) coefficient are con-
sidered. Furthermore, we add sample standard deviation
(using the common unbiased estimator), spectral centroid,
95 % roll-off point, and noise-likeness [19]. While these
spectral features are quite common in pattern recognition,
the temporal features computed from the gains vectors hj

are more specific to the drum beat separation task. In de-
tail, we use percussiveness [19], periodicity, average peak
length, and peak fluctuation [4, 15].

For NMF computation and extraction of the named fea-
tures the open source ‘Blind Source Separation for Audio
Retrieval Tasks’ (BliSSART) 2 package is used for repro-
ducibility reasons. To train the SVM classifier, we used a
data set generated from a popular music collection which
is presented in detail in [15]. It consists of 95 drum and
249 harmonic components computed by NMF on song ex-
tracts. In 10-fold stratified cross validation of this data set,
a classification accuracy of 96.2 % was achieved.

5. EXPERIMENTS

5.1 Data Partitioning

We partitioned the UltraStar database introduced in section
2 into the three groups: training, develop, and test. The
training set (241 songs) contains all artists beginning with
A,D,G,..., the develop set (207 songs) artists beginning with
B,E,H,..., and the test set (134 artists) those beginning with
C,F,I,...,0-9. Note that this dividing setup provides that all
songs of one artist are in the same set, thus processing is
strictly independent of the artist. See Table 1 for the gender
distribution on beat level.

The features for the actual gender determination as in-
troduced in section 3 were extracted from the original song
files. In addition we created the same sets with the features
extracted from the discriminated harmonic segments after

2 http://www.openaudio.eu

1
0

1

FPR

T
P

R

 

 

w/o NMF: AUC = 0.712
w/ NMF:   AUC = 0.848

(a) SVM, 2-class

Figure 1: ROC by true (TPR) over false positive rate
(FPR), and the area under the curve (AUC) for the two-
(female / male) class task.

applying our NMF algorithm and drum beat separation as
introduced in section 4 on the original song.

We evaluate two different tasks: first, three classes (no
voice / female / male) to evaluate vocal presence localiza-
tion in combination with gender recognition; second, two
classes (female / male) where we only consider beats with
vocal presence to judge whether performance is increased
particularly in gender discrimination by NMF-based drum
separation.

We trained with our training set and evaluated on the
develop set to verify feature relevance before and after drum-
beat separation. For optimization, we applied random down-
sampling – i. e. elimination of instances – to the training
set to achieve a balanced distribution of instances among
classes.

5.2 Results

While training with the training and evaluating with the
develop set, we found that every extracted feature was rele-
vant, as classification performance could not be improved
by removing features of a certain type. We thus kept the
full feature-set as described in section 3 for the oncoming
evaluations. For our final results we next merged the train-
ing and develop sets for classifier training, and evaluated
on the test set for representative performances.

First we consider the results with three classes on beat
level (cf. Table 2, columns ‘beat’): performance is improved
for SVM and HNB by NMF-based drum-beat separation,
and a maximum accuracy of 58.84 % is reached by HNB.
Next looking at the obtained performances with only two
classes (female / male) on beat level, one again notices a
considerable boost by drum-beat separation for all classi-
fiers. Again, SVM benefit most, while HNB reaches highest
level at 80.22 % accuracy.

Next, we shift to the level of the whole song, and identify
the gender of the mainly heard vocalist(s): after classifi-
cation per beat we estimate a song’s overall gender either
by majority vote or alternatively by adding the prediction
scores per gender and choosing the maximum overall score.

Table 2 (columns ‘song’) shows the according results.
Minor differences – and only for HNB – are observable
between majority vote and the maximum added score. The
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w/o NMF w/ NMF
Accuracy [%] classification scheme beat song beat song

HNB vote
58.54

79.85
58.84

84.33
- / f / m HNB added score 79.85 85.07

SVM vote / added score 52.06 79.85 56.54 87.31
HNB vote

70.35
82.09

80.22
85.82

f / m HNB added score 83.58 86.57
SVM vote / added score 67.52 82.09 79.97 89.55

Table 2: Accuracies of vocalist gender recognition on beat level and on song level by majority voting or maximum added
score for HNB and SVM as classifier – once with (w/) and once without (w/o) separation of drum-beats by NMF. Considered
are no voice (-), female (f), and male (m) discrimination on all beats or only gender on those with vocal presence.
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w/o NMF: AUC = 0.715
w/ NMF:   AUC = 0.680

(a) no voice (SVM, 3-class)
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w/o NMF: AUC = 0.713
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(b) female (SVM, 3-class)
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w/o NMF: AUC = 0.689
w/ NMF:   AUC = 0.734

(c) male (SVM, 3-class)

Figure 2: ROC by true (TPR) over false positive rate (FPR), and the area under the curve (AUC) for the three-class
(female / male / no voice) task.

latter is found beneficial – as one would assume – as in-
formation on certainty is preserved prior to the song level
decision. The results further indicate that the accuracy of
classification on beat level is sufficiently above chance level
to allow for repairing of mispredictions over the duration of
a song. Here, SVM perform slightly better with a maximum
of 87.31 % accuracy for the three classes, and the difference
to the two-class task is drastically reduced. Overall, the
statistical significance on song level for the improvement
gained by NMF utilization is 0.05. Thus, we can state that
drum separation by NMF helps recognizing gender even on
the song level.

To shed light on this effect per class, according Receiver
Operating Characteristics (ROC) are depicted in Figure 1
for the two-class task of gender recognition, and in Figure
2 for the three-class task with additional determination of
positions that contain vocals by SVM. To provide a single
value rather than a curve, one can calculate the area under
the ROC curve, called AUC. The highest possible AUC is
1.0, equal to the whole graph area, and achievable only by
a perfect classifier. Random guessing has an AUC of 0.5
since it corresponds to the diagonal line in the ROC space.
A reasonable classifier should therefore have an AUC that is
significantly greater than 0.5, with better classifiers yielding
higher values. The values obtained are also shown in Figure
1: For the two-class task (female / male) the difference in
the AUC with and without NMF is highly significant at the
10−3 level. In the three-class problem clear differences are
observable: the highest benefit is reached for female vocals,

next come male vocals, and interestingly the recognition
of parts without vocal presence is negatively affected by
reduction of the drum beat presence.

6. CONCLUSION

It was our primary goal to predict the vocalist gender in
originally recorded popular music, and our secondary to
analyze whether NMF usage for separation of the drum-
beat can help improve on this task. The results clearly
demonstrate the significant improvement obtained, and we
are by that able to fully automatically identify the gender of
the main vocalist in popular music at a high and reasonable
accuracy for system unknown artists and songs. On beat
level NMF application slightly impairs vocals presence
estimation, but increases the overall performance of gender
classification explaining the better results on song level.

Considering the choice of classifier, no clear tendency
was found, apart from the fact that the overall best result
was obtained by SVM.

Future refinement can be invested in improved annota-
tion: as mentioned, the UltraStar annotations were created
by members of the game community. Therefore errors
among the ground truth tempo and vocals’ locations might
be present though we chose the most frequently used files.
A widespread verification of the annotations would mini-
mize the error rate and maybe reduce false classifications.
But that would need a huge investment of time.

Further, we assigned the main vocalist gender. How-
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ever, alternatively local labeling and consideration of mixed
gender or choir passages could be provided.

Finally and self-evident, tailored vocal instead of drum
separation should be targeted now that the more robustly
obtainable separation of drum-beats was already found sig-
nificantly beneficial.
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ABSTRACT 

This paper builds upon and extends previous work on 
multi-modal mood classification (i.e., combining audio 
and lyrics) by analyzing in-depth those feature types that 
have shown to provide statistically significant improve-
ments in the classification of individual mood categories. 
The dataset used in this study comprises 5,296 songs 
(with lyrics and audio for each) divided into 18 mood 
categories derived from user-generated tags taken from 
last.fm. These 18 categories show remarkable consistency 
with the popular Russell’s mood model. In seven catego-
ries, lyric features significantly outperformed audio spec-
tral features. In one category only, audio outperformed all 
lyric features types. A fine grained analysis of the signifi-
cant lyric feature types indicates a strong and obvious 
semantic association between extracted terms and the cat-
egories. No such obvious semantic linkages were evident 
in the case where audio spectral features proved superior.  

1. INTRODUCTION 

User studies in Music Information Retrieval (MIR) have 
found that music mood is a desirable access point to mu-
sic repositories and collections (e.g., [1]). In recent years, 
automatic methods have been explored to classify music 
by mood. Most studies exploit the audio content of songs, 
but some studies have been using song lyrics in music 
mood classification as well [2-4].   

Music mood classification studies using both audio and 
lyrics consistently find that combining lyric and audio 
features improves classification performance (See Section 
2.3). However, there are contradictory findings on wheth-
er audio or lyrics are more useful in predicting music 
mood, or which source is better for individual mood 
classes. In this paper, we continue our previous work on 
multi-modal mood classification [4] and go one step fur-
ther to investigate these research questions: 1) Which 
source is more useful in music classification: audio or lyr-
ics? 2) For which moods is audio more useful and for 
which moods are lyrics more useful? and, 3) How do lyr-
ic features associate with different mood categories? An-
swers to these questions can help shed light on a pro-
foundly important music perception question: How does 
the interaction of sound and text establish a music mood?  

This paper is organized as follows: Section 2 reviews 

related work on music mood classification. Section 3 in-
troduces our experimental dataset and the mood catego-
ries used in this study. Section 4 describes the lyric and 
audio features examined. Section 5 discusses our findings 
in light of our research questions. Section 6 presents our 
conclusions and suggests future work.   

2. RELATED WORK 

2.1 Music Mood Classification Using Audio Features 

Most existing work on automatic music mood classifica-
tion is exclusively based on audio features among which 
spectral and rhythmic features are the most popular (e.g., 
[5-7]). Since 2007, the Audio Mood Classification 
(AMC) task has been run each year at the Music Informa-
tion Retrieval Evaluation eXchange (MIREX) [8], the 
community-based framework for the formal evaluation of 
MIR techniques. Among the various audio-based ap-
proaches tested at MIREX, spectral features and Support 
Vector Machine (SVM) classifiers were widely used and 
found quite effective [9]. 

2.2 Music Mood Classification Using Lyric Features 

Studies on music mood classification solely based on lyr-
ics have appeared in recent years (e.g., [10,11]). Most 
used bag-of-words (BOW) features in various unigram, 
bigram, trigram representations. Combinations of uni-
gram, bigram and trigram tokens performed better than 
individual n-grams, indicating higher-order BOW fea-
tures captured more of the semantics useful for mood 
classification. Features used in [11] were novel in that 
they were extracted based on a psycholinguistic resource, 
an affective lexicon translated from the Affective Norm 
of English Words (ANEW) [12].  

2.3 Multi-modal Music Mood Classification Using 
Both Audio and Lyric Features 

Yang and Lee [13] is often regarded as one of the earliest 
studies on combining lyrics and audio in music mood 
classification. They used both lyric BOW features and the 
182 psychological features proposed in the General In-
quirer [14] to disambiguate categories that audio-based 
classifiers found confusing. Besides showing improved 
classification accuracy, they also presented the most sa-
lient psychological features for each of the considered 
mood categories. Laurier et al. [2] also combined audio 
and lyric BOW features and showed that the combined 
features improved classification accuracies in all four of 
their categories. Yang et al. [3] evaluated both unigram 
and bigram BOW lyric features as well as three methods 
for fusing lyric and audio sources and concluded that le-
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veraging lyrics could improve classification accuracy 
over audio-only classifiers.  

Our previous work [4] evaluated a wide range of lyric 
features from n-grams to features based on psycholinguis-
tic resources such as WordNet-Affect [15], General In-
quirer and ANEW, as well as their combinations. After 
identifying the best lyric feature types, audio-based, lyric-
based as well as multi-modal classification systems were 
compared. The results showed the multi-modal system 
performed the best while the lyric-based system outper-
formed the audio-based system. However, our reported 
performances were accuracies averaged across all of our 
18 mood categories. In this study, we go deeper to inves-
tigate the performance differences of the aforementioned 
feature types on individual mood categories. More pre-
cisely, this paper examines, in some depth, those feature 
types that provide statistically significant performance 
improvements in identifying individual mood categories. 

2.4 Feature Analysis in Text Sentiment Classification 

Except for [13], most existing studies on music mood 
classification did not analyze or compare which specific 
feature values were the most useful. However, feature 
analysis has been widely used in text sentiment classifica-
tion. For example, a study on blogs, [16] identified dis-
criminative words in blog postings between two catego-
ries, “happy” and “sad” using Naïve Bayesian classifiers 
and word frequency thresholds. [17] uncovered important 
features in classifying customer reviews with regard to 
ratings, object types, and object genres, using frequent 
pattern mining and naïve Bayesian ranking. Yu [18] 
presents a systematic study of sentiment features in Dick-
enson’s poems and American novels. Besides identifying 
the most salient sentiment features, it also concluded that 
different classification models tend to identify different 
important features. These previous works inspired the 
feature ranking methods examined in this study. 

3. DATASET AND MOOD CATEGORIES 

3.1 Experimental Dataset 

As mentioned before, this study is a continuation of a 
previous study [4], and thus the same dataset is used. 
There are 18 mood categories represented in our dataset, 
and each of the categories comprises 1 to 25 mood-
related social tags downloaded from last.fm. A mood cat-
egory consists of tags that are synonyms identified by 
WordNet-Affect and verified by two human experts who 
are both native English speakers and respected MIR re-
searchers. The song pool was limited to those audio 
tracks at the intersection of being available to the authors, 
having English lyrics available on the Internet, and hav-
ing social tags available on last.fm. For each of these 
songs, if it was tagged with any of the tags associated 
with a mood category, it was counted as a positive exam-
ple of that category. In this way, one single song could 
belong to multiple mood categories. This is in fact more 
realistic than a single-label setting since a music piece 
may carry multiple moods such as “happy and calm” or 
“aggressive and depressed”.  

    A binary classification approach was adopted for each 
of the mood categories. Negative examples of a category 
were songs that were not tagged with any of the tags as-
sociated with this category but were heavily tagged with 
many other tags. Table 1 presents the mood categories 
and the number of positive songs in each category. We 
balanced equally the positive and negative set sizes for 
each category. This dataset contains 5,296 unique songs 
in total. This number is much smaller than the total num-
ber of examples in all categories (which is 12,980) be-
cause categories often share samples. 

Category No. of 
songs 

Category No. of 
songs 

Category No. of 
songs 

calm 1,680 angry 254 anxious 80 

sad 1,178 mournful 183 confident 61 

glad 749 dreamy 146 hopeful 45 

romantic 619 cheerful 142 earnest 40 

gleeful 543 brooding 116 cynical 38 

gloomy 471 aggressive 115 exciting 30 

 Table 1. Mood categories and number of positive examples 

3.2 Mood Categories 

Music mood categories have been a much debated topic 
in both MIR and music psychology. Most previous stu-
dies summarized in Section 2 used two to six mood cate-
gories which were derived from psychological models. 
Among the many emotion models in psychology, Rus-
sell’s model [19] seems the most popular in MIR research 
(e.g., [2, 5]).  

Russell’s model is a dimensional model where emotions 
are positioned in a continuous multidimensional space. 
There are two dimensions in Russell’s model: valence 
(negative-positive) and arousal (inactive-active). As 
shown in Figure 1, this model places 28 emotion-
denoting adjectives on a circle in a bipolar space subsum-
ing these two dimensions. 

 

Figure 1. Russell’s model with two dimensions 

From Figure 1, we can see that Russell’s space de-
monstrates relative distances or similarities between 
moods. For instance, “sad” and “happy”, “calm” and “an-
gry” are at opposite places while “happy” and “glad” are 
close to each other. 

The relative distance between the 18 mood categories 
in our dataset can also be calculated by co-occurrence of 
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songs in the positive examples. That is, if two categories 
share many positive songs, they should be similar. Figure 
2 illustrates the relative distances of the 18 categories 
plotted in a 2-dimensional space using Multidimensional 
Scaling where each category is represented by a bubble in 
a size proportional to the number of positive songs in this 
category. 

 

Figure 2. Distances between the 18 mood categories in 
the experimental dataset 

The patterns shown in Figure 2 are similar to those 
found in Figure 1: 1) Categories placed together are intui-
tively similar; 2) Categories at opposite positions 
represent contrasting moods; 3) The horizontal and ver-
tical dimensions correspond to valence and arousal re-
spectively. Taken together, these similarities indicate that 
our 18 mood categories fit well with Russell’s mood 
model which is the most commonly used model in MIR 
mood classification research.  

4. LYRIC AND AUDIO FEATURES 

In [4], we systematically evaluated a range of lyric fea-
ture types on the task of music mood classification, in-
cluding: 1) basic text features that are commonly used in 
text categorization tasks; 2) linguistic features based on 
psycholinguistic resources; and, 3) text stylistic features. 
In this study, we analyze the most salient features in each 
of these feature types. This section briefly introduces 
these feature types. For more detail, please consult [4].  

4.1 Features based on N-grams of Content Words 

“Content words” (CW) refer to all words appearing in 
lyrics except function words (also called “stop words”). 
Words were not stemmed as our earlier work showed 
stemming did not yield better results. The CW feature set 
used was a combination of unigrams, bigrams and tri-
grams of content words since this combination performed 
better than each of the n-gram types individually [4]. For 
each n-gram, features that occurred less than five times in 
the training dataset were discarded. Also, for bigrams and 
trigrams, function words were not eliminated because 
content words are usually connected via function words 
as in “I love you” where “I” and “you” are function 
words. There were totally 84,155 CW n-gram features.  

4.2 Features based on General Inquirer 

General Inquirer (GI) is a psycholinguistic lexicon con-
taining 8,315 unique English words and 182 psychologi-
cal categories [14]. Each of the 8,315 words in the lex-
icon is manually labeled with one or more of the 182 psy-
chological categories to which the word belongs. For ex-
ample, the word “happiness” is associated with the cate-
gories “Emotion”, “Pleasure”, “Positive”, “Psychological 
well being”, etc. GI’s 182 psychological features were a 
feature type evaluated in [4], and denoted as “GI”. 

Each of the 8,315 words in General Inquirer conveys 
certain psychological meanings and thus were evaluated 
in [4]. In this feature set (denoted as “GI-lex”), feature 
vectors were built using only these 8,315 words. 

4.3 Features based on ANEW and WordNet 

Affective Norms for English Words (ANEW) is another 
specialized English lexicon [12]. It contains 1,034 unique 
English words with scores in three dimensions: valence (a 
scale from unpleasant to pleasant), arousal (a scale from 
calm to excited), and dominance (a scale from submissive 
to dominated). As these 1,034 words are too few to cover 
all the songs in our dataset, we expanded the ANEW 
word list using WordNet [20] such that synonyms of the 
1,034 words were included. This gave us 6,732 words in 
the expanded ANEW. We then further expanded this set 
of affect-related words by including the 1,586 words in 
WordNet-Affect [15], an extension of WordNet contain-
ing emotion related words. Therefore, this set of 7,756 
affect-related words formed a feature type denoted as 
“Affe-lex”.  

4.4 Text Stylistic Features 

The text stylistic features evaluated in [4] included such 
text statistics as number of unique words, number of 
unique lines, ratio of repeated lines, number of words per 
minute, as well as special punctuation marks (e.g., “!”) 
and interjection words (e.g., “hey”). There were 25 text 
stylistic features in total. 

4.5 Audio Features 

In [4] we used the audio features selected by the 
MARSYAS submission [21] to MIREX because it was 
the leading audio-based classification system evaluated 
under both the 2007 and 2008 Audio Mood Classification 
(AMC) task. MARSYAS used 63 spectral features: 
means and variances of Spectral Centroid, Rolloff, Flux, 
Mel-Frequency Cepstral Coefficients (MFCC), etc. Al-
though there are audio features beyond spectral ones, 
spectral features were found the most useful and most 
commonly adopted for music mood classification [9]. We 
leave it as our future work to analyze a broader range of 
audio features.   

5. RESULTS AND DISCUSSIONS 

5.1 Feature Performances 

Table 2 shows the accuracies of each aforementioned fea-
ture set on individual mood categories. Each of the accu-
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racy values was averaged across a 10-fold cross valida-
tion. For each lyric feature set, the categories where its 
accuracies are significantly higher than that of the audio 
feature set are marked as bold (at p < 0.05). Similarly, for 
the audio feature set, bold accuracies are those signifi-
cantly higher than all lyric features (at p < 0.05). 

Category CW GI GI-lex Affe-lex Stylistic Audio 
calm 0.5905 0.5851 0.5804 0.5708 0.5039 0.6574 
sad 0.6655 0.6218 0.6010 0.5836 0.5153 0.6749 
glad 0.5627 0.5547 0.5600 0.5508 0.5380 0.5882 
romantic 0.6866 0.6228 0.6721 0.6333 0.5153 0.6188 
gleeful 0.5864 0.5763 0.5405 0.5443 0.5670 0.6253 
gloomy 0.6157 0.5710 0.6124 0.5859 0.5468 0.6178 
angry 0.7047 0.6362 0.6497 0.6849 0.4924 0.5905 
mournful 0.6670 0.6344 0.5871 0.6615 0.5001 0.6278 
dreamy 0.6143 0.5686 0.6264 0.6269 0.5645 0.6681 
cheerful 0.6226 0.5633 0.5707 0.5171 0.5105 0.5133 
brooding 0.5261 0.5295 0.5739 0.5383 0.5045 0.6019 
aggressive 0.7966 0.7178 0.7549 0.6746 0.5345 0.6417 
anxious 0.6125 0.5375 0.5750 0.5875 0.4875 0.4875 
confident 0.3917 0.4429 0.4774 0.5548 0.5083 0.5417 
hopeful 0.5700 0.4975 0.6025 0.6350 0.5375 0.4000 
earnest 0.6125 0.6500 0.5500 0.6000 0.6375 0.5750 
cynical 0.7000 0.6792 0.6375 0.6667 0.5250 0.6292 
exciting 0.5833 0.5500 0.5833 0.4667 0.5333 0.3667 
AVERAGE 0.6172 0.5855 0.5975 0.5935 0.5290 0.5792 

Table 2.Accuracies of feature types for individual categories 

From the averaged accuracies in Table 2, we can see 
that whether lyrics are more useful than audio, or vice 
versa depends on which feature sets are used. For exam-
ple, if using CW n-grams as features, lyrics are more use-
ful than audio spectral features in terms of overall classi-
fication performance averaged across all categories. 
However, the answer is reversed if text stylistics is used 
as lyric features (i.e., audio works better).  

The accuracies marked in bold in Table 2 demonstrate 
that lyrics and audio have their respective advantages in 
different mood categories. Audio spectral features signif-
icantly outperformed all lyric feature types in only one 
mood category: “calm”. However, lyric features achieved 
significantly better performance than audio in seven di-
vergent categories: “romantic”, “angry”, “cheerful”, “ag-
gressive”, “anxious”, “hopeful” and “exciting”.  

In the following subsections, we will rank (by order of 
influence), and then examine, the most salient features of 
those lyric feature types that outperformed audio features 
in the seven aforementioned mood categories. Support 
Vector Machines (SVM) were adopted as the classifica-
tion model in [4] where a variety of kernels were tested 
and a linear kernel was finally chosen. In a linear SVM, 
each feature was assigned a weight indicating its influ-
ence in the classification model, and thus the features in 
this study were ranked by the assigned weights in the 
same SVM models trained in experiments in [4].  

5.2 Top Features in Content Word N-Grams 

There are six categories where CW n-gram features sig-
nificantly outperformed audio features. Table 3 lists the 
top-ranked content word features in these categories. 
Note how “love” seems an eternal topic of music regard-

less of the mood category! Highly ranked content words 
seem to have intuitively meaningful connections to the 
categories, such as “with you” in “romantic” songs, 
“happy” in “cheerful” songs, and “dreams” in “hopeful” 
songs. The categories, “angry”, “aggressive” and “an-
xious” share quite a few top-ranked terms highlighting 
their emotional similarities. It is interesting to note that 
these last three categories sit in the same top-left quadrant 
in Figure 2.  
romantic cheerful hopeful angry aggressive anxious 
with you i love you ll baby fuck hey 
on me night strong i am  dead to you 
with your ve got i get shit i am change 
crazy happy loving scream girl left 
come on for you dreams to you man fuck 
i said new i ll run kill i know 
burn care if you shut baby dead 
hate for me to be i can love and if 
kiss living god control hurt wait  
let me rest lonely don t know but you waiting 
hold and now friend dead fear need 
to die all around dream love don t i don t 
why you heaven in the eye hell pain i m 
i ll met coming fighting lost listen 
tonight she says want hurt you i ve never again and 
i want you ve got wonder kill  hate but you 
love more than waiting if you want have you my heart 
give me the sun i love oh baby love you hurt 
cry you like you best you re my yeah yeah night 

Table 3. Top-ranked content word features for moods 
where content words significantly outperformed audio 

5.3 Top-Ranked Features Based on General Inquirer 

“Aggressive” is the only category where the GI set of 182 
psychological features outperformed audio features with 
a statistically significant difference. Table 4 lists the top 
GI features for this category. 

GI Feature Example Words 

Words connoting the physical aspects of well 
being, including its absence 

blood, dead, drunk, pain 

Words referring to the perceptual process of 
recognizing or identifying something by means 
of the senses 

dazzle, fantasy, hear, 
look, make, tell, view   

Action words hit, kick, drag, upset 
Words indicating time noon, night, midnight 
Words referring to all human collectivities people, gang, party 
Words related to a loss in a state of well being, 
including being upset 

burn, die, hurt, mad 

Table 4. Top GI features for "aggressive" mood category 

It is somewhat surprising that the psychological fea-
ture indicating “hostile attitude or aggressiveness” (e.g., 
“devil”, “hate”, “kill”) was ranked at 134 among the 182 
features. Although such individual words ranked high as 
content word features, the GI features were aggregations 
of certain kinds of words. The mapping between words 
and psychological categories provided by GI can be very 
helpful in looking beyond word forms and into word 
meanings.  

By looking at rankings on specific words in General 
Inquirer, we can have a clearer understanding about 
which GI words were important. Table 5 presents top GI 
word features in the four categories where “GI-lex” fea-
tures significantly outperformed audio features.  
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romantic aggressive hopeful exciting 
paradise baby i’m come 
existence fuck  been now 
hit let would see 
hate am what up 
sympathy hurt do will 
jealous girl in tear 
kill be lonely bounce 
young another saw to 
destiny need like him 
found kill strong better 
anywhere can there shake 
soul but run everything 
swear just will us 
divine because found gonna 
across man when her 
clue one come free 
rascal dead lose me 
tale alone think more 
crazy why mine keep 

Table 5. Top-ranked GI-lex features for categories 
where GI-lex significantly outperformed audio  

5.4 Top Features Based on ANEW and WordNet 

According to Table 2, “Affe-lex” features worked signifi-
cantly better than audio features on categories “angry” 
and “hopeful”. Table 6 presents top-ranked features.  

Category Top Features (in order of influence)  

angry 
one, baby, surprise, care, death, alive, guilt, happiness, hurt, 
straight, thrill, cute, suicide, babe, frightened, motherfucker, 
down, misery, mad, wicked, fighting, crazy 

hopeful 
wonderful, sun, words loving, read, smile, better, heart, lone-
ly, friend, free, hear, come, found, strong, letter, grow, safe, 
god, girl, memory, happy, think, dream  

Table 6. Top Affe-lex features for categories where 
Affe-lex significantly outperformed audio 

Again, these top-ranked features seem to have strong se-
mantic connections to the categories, and they share 
common words with the top-ranked features listed in 
Tables 3 and 5. Although both Affe-lex and GI-lex are 
domain-oriented lexicons built from psycholinguistic re-
sources, they contain different words, and thus each of 
them identified some novel features that are not shared by 
the other.   

5.5 Top Text Stylistic Features 

Text stylistic features performed the worst among all fea-
ture types considered in this study. In fact, the average 
accuracy of text stylistic features was significantly worse 
than each of the other feature types (p < 0.05). However, 
text stylistic features did outperform audio features in two 
categories: “hopeful” and “exciting”. Table 7 shows the 
top-ranked stylistic features in these two categories. 

Note how the top-ranked features in Table 7 are all 
text statistics without interjection words or punctuation 
marks. These kinds of text statistics capture very different 
characteristics of the lyrics from other word-based fea-
tures, and thus combining these statistics and other fea-
tures may yield better classification performance. Also 
noteworthy is that these two categories both have rela-
tively low positive valence (but opposite arousal) as 
shown in Figure 2. 

hopeful exciting 
Std of number of words per 
line 

Average number of unique words 
per line 

Average number of unique 
words per line 

Average repeating word ratio per 
line 

Average word length Std of number of words per line 
Ratio of repeating lines Ratio of repeating words 
Average number of words per 
line 

Ratio of repeating lines 

Ratio of repeating words Average number of words per line 
Number of unique lines Number of blank lines 

Table 7. Top-ranked text stylistic features for categories 
where text stylistics significantly outperformed audio 

5.6 Top Lyric Features in “Calm” 

“Calm”, which sits in the bottom-left quadrant and has 
the lowest arousal of any category (Figure 2), is the only 
mood category where audio features were significantly 
better than all lyric feature types. It is useful to compare 
the top lyric features in this category to those in catego-
ries where lyric features outperformed audio features. 
Top-ranked words and stylistics from various lyric fea-
ture types in “calm” are shown in Table 8.  

CW GI-lex Affe-lex Stylistic 
you all look float list Standard derivation (std) of  

repeating word ratio per line all look eager moral 
all look at irish saviour Repeating word ratio 
you all i appreciate satan Average  repeating word ratio 

per line burning kindness collar 
that is selfish pup Repeating line ratio 
you d convince splash Interjection: “Hey” 
control foolish clams Average number of unique 

words per line boy island blooming 
that s curious nimble Number of lines per minute 
all i thursday disgusting Blank line ratio 
believe in pie introduce Interjection: “ooh” 
be free melt amazing Average number of words per 

line speak couple arrangement 
blind team mercifully Interjection: “ah” 
beautiful doorway soaked Punctuation: “!” 
the sea lowly abide Interjection: “yo” 

Table 8. Top lyric features in "calm" category 

As Table 8 indicates, top-ranked lyric words from the 
CW, GI-lex and Affe-lex feature types do not present 
much in the way of obvious semantic connections with 
the category “calm” (e.g., “satan”!). However, some 
might argue that word repetition can have a calming ef-
fect, and if this is the case, then the text stylistics features 
do appear to be picking up on the notion of repetition as a 
mechanism for instilling calmness or serenity. 

6. CONCLUSIONS AND FUTURE WORK 

This paper builds upon and extends our previous work on 
multi-modal mood classification by examining in-depth 
those feature types that have shown statistically signifi-
cant improvements in correctly classifying individual 
mood categories. While derived from user-generated tags 
found on last.fm, the 18 mood categories used in this 
study fit well with Russell’s mood model which is com-
monly used in MIR mood classification research. From 
our 18 mood categories we uncovered seven divergent 
categories where certain lyric feature types significantly 
outperformed audio and only one category where audio 
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outperformed all lyric-based features. For those seven 
categories where lyrics performed better than audio, the 
top-ranked words clearly show strong and obvious se-
mantic connections to the categories. In two cases, simple 
text stylistics provided significant advantages over audio. 
In the one case where audio outperformed lyrics, no ob-
vious semantic connections between terms and the cate-
gory could be discerned. 

We note as worthy of future study the observation that 
no lyric-based feature provided significant improvements 
in the bottom-left (negative valence, negative arousal) 
quadrant (Figure 2) while audio features were able to do 
so (i.e., “calm”). This work is limited to audio spectral 
features and thus we also plan on extending this work by 
considering other types of audio features such as rhyth-
mic and harmonic features. 
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ABSTRACT

Humans tend to organize perceived information into hi-

erarchies and structures, a principle that also applies to

music. Even musically untrained listeners unconsciously

analyze and segment music with regard to various musi-

cal aspects, for example, identifying recurrent themes or

detecting temporal boundaries between contrasting musi-

cal parts. This paper gives an overview of state-of-the-

art methods for computational music structure analysis,

where the general goal is to divide an audio recording

into temporal segments corresponding to musical parts and

to group these segments into musically meaningful cate-

gories. There are many different criteria for segmenting

and structuring music audio. In particular, one can identify

three conceptually different approaches, which we refer

to as repetition-based, novelty-based, and homogeneity-

based approaches. Furthermore, one has to account for

different musical dimensions such as melody, harmony,

rhythm, and timbre. In our state-of-the-art report, we ad-

dress these different issues in the context of music struc-

ture analysis, while discussing and categorizing the most

relevant and recent articles in this field.

1. INTRODUCTION

The difference between arbitrary sound sequences and mu-

sic is not well-defined: what is random noise for some-

one may be ingenious musical composition for somebody

else. What can be generally agreed upon is that it is the

structure, or the relationships between the sound events

that create musical meaning. This structure starts from

the level of individual notes, their timbral characteristics

and pitch and time intervals. Notes form larger structures,

phrases, chords, and chord progressions, and these again

form larger constructs in a hierarchical manner. At the

level of entire musical pieces the subdivision can be made
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to musical sections, such as intro, chorus, and verse in pop-

ular music. Recovering a description of this structure, of-

ten referred to as musical form, is what is here meant by

music structure analysis. In this paper, we mainly focus on

Western popular music in terms of the musical structures

and acoustic assumptions we make, even though many of

the employed principles can be utilized to analyze other

kinds of music as well. For a tutorial and a review of ear-

lier methods for music structure analysis, we refer to the

book chapter by Dannenberg and Goto [16]. Our objective

is to give an updated overview on this important topic by

discussing a number of new trends and recent research ar-

ticles. Computational analysis of the structure of recorded

music constitutes a very active research field within the

area of music information retrieval. Here we focus on mu-

sic structure analysis at the largest temporal scale, and as-

sume that the musical form can be expressed as a sequence

of musically meaningful parts at this level. 1 The musi-

cal form is of great importance for both understanding as

well as processing music and is often characteristic to the

particular genre.

Structure in music signals arises from certain relation-

ships between the elements—notes, chords, and so forth—

that make up the music. The principles used to create such

relationships include temporal order, repetition, contrast,

variation, and homogeneity. Obviously, the temporal order

of events, as also emphasized by Casey and Slaney [11],

is of crucial importance for building up musically and per-

ceptually meaningful entities such as melodies or harmonic

progressions. Also, the principle of repetition is central to

music, as Middleton [51] states: “It has often been ob-

served that repetition plays a particularly important role

in music—in virtually any sort of music one can think of,

actually. [. . .] In most popular music, repetition processes

are especially strong.” Recurrent patterns, which may be

of rhythmic, harmonic, or melodic nature, evoke in the lis-

tener the feeling of familiarity and understanding of the

music. The principle of contrast is introduced by having

two successive musical parts of different character. For ex-

ample, a quiet passage may be contrasted by a loud one,

a slow section by a rapid one, or an orchestral part by a

solo. A further principle is that of variation, where motives

and parts are picked up again in a modified or transformed

1 One of the few methods aiming at a hierarchical description of the
structure at various time scales is the approximate string matching method
by Rhodes and Casey [70].
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form [39]. Finally, a section is often characterized by some

sort of inherent homogeneity, for example, the instrumen-

tation, the tempo, or the harmonic material being similar

within the section.

In view of the various principles that crucially influ-

ence the musical structure, a large number of different

approaches to music structure analysis have been devel-

oped. One can roughly distinguish three different classes

of methods. Firstly, repetition-based methods are em-

ployed to identify recurring patterns. From a technical

point of view, these methods are also often referred to as

sequence approaches, see also Sec. 5. Secondly, novelty-

based methods are used to detect transitions between con-

trasting parts. Thirdly, homogeneity-based methods are

used to determine passages that are consistent with respect

to some musical property. Note that novelty-based and

homogeneity-based approaches are two sides of a coin:

novelty detection is based on observing some surprising

event or change after a more homogenous segment. From

a technical point of view, the homogeneity-based approach

has often been referred to as state approach, see also

Sec. 5. Finally, in all the method categories, one has to

account for different musical dimensions, such as melody,

harmony, rhythm, or timbre. To this end, various feature

representations have been suggested in the literature.

The remainder of this paper is organized as follows. In

Sec. 2, we approach the structure analysis task from differ-

ent angles and give a problem definition used in this paper.

In Sec. 3, we discuss feature representations that account

for different musical dimensions. In Sec. 4, we introduce

the concept of a self-distance matrix often used in music

structure analysis, and show how the various segmentation

principles are reflected in this matrix. Then, in Sec. 5, we

discuss the principles of repetition-based, novelty-based,

and homogeneity-based structure analysis methods. Here,

we also discuss and categorize the most relevant and re-

cent articles in this field. In Sec. 6, we address the issue

of evaluating analysis results, which in itself constitutes a

non-trivial problem. Finally, in Sec. 7, we conclude with a

discussion of open problems.

2. PROBLEM SPECIFICATION

As mentioned before, the task of music structure analy-

sis refers to a range of problems, and different researchers

have pursued slightly different goals in this context. A

common theme, however, is that the temporal scale of the

analysis has been approximately the same in all the cases.

In the rest of the paper, we use the following terminology.

A part is understood to be a musical concept that loosely

refers to either a single instance or all the instances of a

musical section, such as chorus or verse, whereas a seg-

ment is understood to be a technical concept that refers to

the temporal range of a single occurrence of a musical part.

The term group is used to denote one or more segments that

represent all the occurrences of the same musical part.

The methods discussed in the following take an acous-

tic music signal as the input and produce some information

about the structure. The output of the discussed methods

varies from images created for visualization purposes to

representations that specify the time range and musically

meaningful label of each found part. In the simplest form,

no explicit structural analysis is performed, but some trans-

formation of the acoustic features of the piece are used to

yield a visual representation of structural information, e.g.,

the self-similarity matrix visualization by Foote [24].

The next category of methods aim to specify points

within a given audio recording where a human listener

would recognize a change in instrumentation or some other

characteristics. This problem, which is often referred to

as novelty detection, constitutes an important subtask [25].

For example, as we explain later, having computed novelty

points in a preprocessing step may significantly speed up

further structure analysis [62].

Another and yet more complex task level involves

grouping the sections that represent the same underlying

musical part: sections that can be seen as repetitions of

each other [59, 64, 56]. Finding and grouping all repeated

sections provides already a fairly complete description of

the musical form, by considering the non-repeated seg-

ments as separate and mutually unrelated parts.

Some structure analysis methods have been motivated

by finding only one representative section for a piece of

music, a “thumbnail” that provides a compact preview of

the piece [31, 8, 23, 64]. For this purpose, the most often

repeating section is typically suitable.

In this paper, we focus on the structure analysis prob-

lem where the objective is to determine a description that

is close to the musical form of the underlying piece of mu-

sic. Here, the description consists of a segmentation of the

audio recording as well as of a grouping of the segments

that are occurrences of the same musical part. The groups

are often specified by letters A,B,C, . . . in the order of

their first occurrence. Since some of the musical parts have

distinct “roles” in Western music, some methods aim to au-

tomatically assign the groups with labels, such as verse or

chorus [61].

3. FEATURE REPRESENTATION

Since the sampled waveform of an acoustic signal is rela-

tively uninformative by itself, some feature extraction has

to be employed. The first question to be addressed con-

cerns the acoustic and musical features that humans ob-

serve when determining the musical form of a piece. Brud-

erer et al. [10] conducted experiments to find the perceptual

cues that humans use to determine segmentation points in

music. The results suggest that “global structure,” “change

in timbre,” “change in level,” “repetition,” and “change in

rhythm” indicated the presence of a structural boundary to

the test subjects. We now summarize how some of these

aspects can be accounted for by transforming the music

signal into suitable feature representations.

3.1 Frame Blocking for Feature Extraction

The feature extraction in audio content analysis is normally

done in relatively short, 10-100ms frames. In music struc-
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ture analysis each frame of a piece is usually compared

to all other frames, which can be computationally inten-

sive. Many of the proposed methods employ a larger frame

length in the order of 0.1-1 s. Not only does this reduce the

amount of data, but it also allows focusing on a musically

more meaningful time scale [63]. The importance of the

temporal resolution of feature extraction on the final struc-

ture analysis results has been emphasized in [52, 62].

The idea of a musically meaningful time scale has been

taken even further in some methods that propose the use

of event-synchronized feature extraction. In other words,

instead of a fixed frame length and hop size, the division

is defined by the temporal locations of sound events [36]

or the occurrences of a metrical pulse, e.g., tatum or

beat [47, 72, 42, 48, 14, 59]. Using a signal-adaptive frame

division has two benefits compared to the use of a fixed

frame length: tempo-invariance and sharper feature dif-

ferences. Tempo-invariance is achieved by adjusting the

frame rate according to the local tempo of the piece, which

facilitates the comparison of parts performed in different

tempi. Event-synchronized frame blocking also allocates

consecutive sound events to different frames, which pre-

vents them from blurring each others’ acoustic features. In

practice, one often calculates the features in short frames

and then averages the values over the length of the event-

synchronized frames [23, 60, 62, 50].

3.2 Features

The instrumentation and timbral characteristics are of

great importance for the human perception of music struc-

ture [10]. Perceptually, timbre is closely related to the

recognition of sound sources and depends on the relative

levels of the sound at critical bands as well as their tem-

poral evolution. Therefore, a majority of the timbre-based

structure analysis methods use mel-frequency cepstral co-

efficients (MFCCs), which parametrize the rough shape of

the spectral envelope and thus encode timbral properties

of the signal [18]. MFCCs are obtained by discrete co-

sine transforming (DCT) log-power spectrum on the mel-

frequency scale:

MFCC(k) =

N−1∑
b=0

E(b) cos

(
π(2b+ 1)k

2N

)
, (1)

where the subbands b are uniformly distributed on the mel-

frequency scale and E(b) is the energy of band b. A gen-

erally accepted observation is that the lower MFCCs are

closely related to the aspect of timbre [3, 74].

As an alternative to using MFCCs as a timbre

parametrization, Maddage proposed replacing the mel-

spaced filter bank with 4-12 triangular filters in each oc-

tave for the task [46]. Other parametrisations omit the

DCT step and use some non-mel spacing in band defi-

nitions. For example, the MPEG-7 AudioSpectrumEnve-

lope descriptor [35] has been used [78, 41], or very simi-

lar constant-Q spectrograms [2, 11]. Aucouturier and San-

dler [5] compared different parametrisations of timbral in-

formation in music structure analysis and found MFCCs
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Figure 1: Acoustic features extracted from the piece “Tuonelan
koivut” by Kotiteollisuus. The three feature matrices correspond
to MFCCs (first panel), chroma (second panel), and rhythmogram
(third panel). The annotated structure of the piece is given at the
bottom panel, and the parts are indicated with: intro (I), theme
(T), verse (V), chorus (C), solo (S), and outro (O).

to outperform other features such as linear prediction co-

efficients. MFCCs calculated from an example piece are

illustrated in the top panel of Fig. 1.

Another important aspect of music is its pitched con-

tent on which harmonic and melodic sequences are built

upon. In the context of music structure analysis, chroma

features or pitch class profiles have turned out to be a

powerful mid-level representation for describing harmonic

content [8, 29, 52, 13, 48]. Assuming the equal-tempered

scale, the chroma correspond to the set {C,C♯,D, . . . ,B}
that contains the twelve pitch classes used in Western mu-

sic notation. A normalized chroma vector describes how

the signal’s spectral energy is distributed among the 12

pitch classes (ignoring octave information), see Fig. 1 for

an illustration.

Several methods for calculating chroma-based audio

features have been proposed. Most approaches first com-

pute a discrete Fourier transform (DFT) and then suitably

pool the DFT coefficients into chroma bins [8, 29, 31].

Müller et al. [52, 56] propose to use a multirate filter

bank consisting of time-domain band-pass filters that cor-

respond to the semitone bands before the chroma projec-

tion. Ryynänen and Klapuri replace the DFT analysis by

a multipitch estimation front-end [71]. Other chroma-like

features are compared in a music structure analysis appli-

cation by Ong et al. in [58]. Recently, Müller et al. [54]

proposed a method to increase the timbre-robustness of

chroma by removing some information correlating with the

timbre before the octave folding. Some timbre-robustness
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is also achieved by the spectral whitening as described in

[71]. For an overview of other variants of chroma and

pitch-based features, see Müller [52] and Gómez [29].

In contrast to timbral and harmonic content, there has

been comparatively little effort in exploiting beat, tempo,

and rhythmic information for music structure analysis. To

extract such information from audio recordings, most ap-

proaches proceed in two steps. In the first step, a detec-

tion function, here called onset accent curve, is calculated,

where high values correlate with the positions of note on-

sets in the music. The calculation typically relies on the

fact that note onsets tend to cause a sudden change of the

signal energy and spectrum [9, 80]. In the second step,

the accent curves are analyzed with respect to quasiperi-

odic patterns. Important for the analysis is to obtain a

shift-invariant representation that is immune to the exact

temporal position of the pattern. Autocorrelation-based

analysis allows for detecting periodic self-similarities by

comparing an accent curve with time-shifted copies it-

self [19, 22, 65]. Alternatively, one can use a short-

time Fourier transform and then omit the phase in or-

der to derive a shift-invariant representation of the accent

curve [65, 32]. Both methods reveal rhythmic properties,

such as the tempo or beat structure. These properties typ-

ically change over time and are therefore often visualized

by means of spectrogram-like representations referred to

as tempogram [12], rhythmogram [38], or beat spectro-

gram [26].

Rhythmic features have not been used in music struc-

ture analysis very widely. For example, Jehan [36] used

loudness curves, and Jensen [37, 38] included rhythmo-

grams 2 for the structure analysis task. Paulus and Kla-

puri noted in [60] that the use of rhythmic information in

addition to timbral and harmonic features provides useful

information to structure analysis, see also Fig. 1. Finally,

Peeters [63] has introduced dynamic features that aim to

parametrize the rhythmic content by describing the tempo-

ral evolution of features.

Even though different features describe different mu-

sical properties, to date very few methods have utilized

more than one feature at a time (except the methods with a

large number of more simple features combined with fea-

ture vector concatenation [79, 57]). In some approaches

MFCC and chroma features have been used to define a sin-

gle, overlaid self-distance matrix [23, 64], see also Sec. 4.

Levy et al. [40] combined information from timbral and

harmony related features by feature vector concatenation.

A similar approach was adopted by Cheng et al. [14].

Paulus and Klapuri [62] combine the information obtained

from MFCCs, chroma features, and rhythmograms using a

probabilistic framework.

2 Recently, Grosche et al. [33] suggested a cyclic variant of a tem-
pogram, which may be a low-dimensional alternative in the structure
analysis context. Similar to the concept of cyclic chroma features, where
pitches differing by octaves are identified, the cyclic tempogram is ob-
tained by identifying tempi that differ by a power of two.

4. SELF-DISTANCE MATRIX

As the musical structure is strongly implied by repetition,

a useful strategy is to compare each point of a given au-

dio recording with all the other points, in order to de-

tect self-similarities. The general idea is to convert a

given audio recording into a suitable feature sequence,

say (x1, x2, . . . , xN ), and then to compare all elements

of the sequence with each other in a pairwise fashion.

More precisely, given a distance function d that speci-

fies the distance between two feature vectors xi and xj ,

it is possible to compute a square self-distance matrix

(SDM) D(i, j) = d(xi, xj) for i, j ∈ {1, 2, . . . , N}. Fre-

quently used distance measures include the Euclidean dis-

tance dE(xi, xj) = ‖ xi − xj ‖, and the cosine distance

dC(xi, xj) = 0.5

(
1−

〈xi, xj〉

‖ xi ‖‖ xj ‖

)
, (2)

where ‖ · ‖ denotes vector norm and 〈·, ·〉 dot product.

If the distance measure d is symmetric, i.e., d(xi, xj) =
d(xj , xi), the resulting SDM is also symmetric along the

main diagonal.

The origins of an SDM representation stems from recur-

rence plots proposed by Eckmann et al. [21] for the anal-

ysis of chaotic systems. The concept of a self-distance

matrix 3 has been introduced to the music domain by

Foote [24] in order to visualize the time structure of a given

audio recording. Naturally, the properties of an SDM cru-

cially depend on the chosen distance measure and the fea-

ture representation.

The distance measures are usually defined to compare

single frames. Often, it is beneficial to also include the lo-

cal temporal evolution of the features in order to enhance

the structural properties of an SDM. To this end, Foote [24]

proposed to average the distance values from a number of

consecutive frames and to use that as the distance value.

This results in a smoothing effect of the SDM. Müller and

Kurth [55] extended these ideas by suggesting a contextual

distance measure that allows for handling local tempo vari-

ations in the underlying audio recording. Instead of using

sliding windows of several consecutive frames, other ap-

proaches calculate the average distance from the feature

vectors within non-overlapping musically meaningful seg-

ments such as musical measure [72, 59]. Jehan [36] cal-

culated SDMs at multiple levels of a temporal hierarchy,

starting from individual frames to musical patterns. Each

higher level in the hierarchy was calculated based on the

SDM of the finer temporal structure.

Recurring patterns in the feature vector sequence

(x1, x2, . . . , xN ) are visible in the SDM. The two most im-

portant patterns induced by the feature patterns are illus-

trated in an idealized SDM in Fig. 2. If the features capture

musical properties (e.g., instrumentation) that stay some-

what constant over the duration of a musical part, blocks of

low distance are formed. In case the features describe se-

quential properties instead of remaining constant within a

3 The dual of SDMs are self-similarity matrices in which each element
describes the similarity between the frames instead of distance. Most of
the following operations can be done with either representation, although
here we discuss only SDMs.
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Figure 3: Left: Self-distance matrix of a piece with tempo varia-
tions. Right: Path-enhanced version. Darker pixels denote lower
distances. Note that some of the stripes are curved expressing
relative tempo differences in the repeating parts.

part, diagonal stripes of low distance are formed. If such a

part is repeated, one finds stripes in the SDM that run paral-

lel to the main diagonal. This is often the case when using

chroma features, which then reveal repeated harmonic pro-

gressions within a piece. Locating and interpreting these

patterns with various methods is the main approach em-

ployed in many of the structure analysis methods described

in the literature.

As Peeters [63] noted, the features alone do not deter-

mine whether blocks or stripes are formed, but the tem-

poral parameters of the feature extraction process are also

important. In other words, the longer the temporal window

is that the feature vector describes, the more likely it is that

blocks are formed in the SDM. Therefore, working with

low resolutions may not only be beneficial for computa-

tional, but also for structural reasons [56, 60]. The effect

of the time scale parameter used in the feature computation

on the resulting SDMs is also illustrated by Fig. 4.

Often a musical part is repeated in another key. Us-

ing chroma features, Goto [31] simulates transpositions by

cyclically shifting the chroma. Adopting this idea, Müller

and Clausen [53] introduced the concept of transposition-

invariant SDMs, which reveals the repetitive structure even

in the presence of key transpositions.

Another way to present repetitive information is to

transform an SDM into a time-lag format [31]. In an SDM
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Figure 4: Example SDMs from features of Fig. 1 at a coarse
(Left) and fine (Right) time scale. Top: MFCCs. Middle:
Chroma features. Bottom: Rhythmogram. Darker pixels denote
lower distances. The annotated structure of the piece is indicated
by the overlay grid, and the part labels are indicated in the top of
the figure with: intro (I), theme (T), verse (V), chorus (C), solo
(S), and outro (O). The figure shows how different parts share
some of the perceptual aspects, but not all, e.g., chorus and solo
have similar harmonic but differring timbral content.

D both the axes represent absolute time, whereas in the

time-lag matrix R one axis is changed to represent time

difference (lag) instead

R(i, i− j) = D(i, j), for i− j > 0. (3)

The ordinate transformation discards the duplicate infor-

mation of a symmetric SDM, see Fig. 2. The diagonal

stripes formed by repeated sequences appear as horizontal

lines in the time-lag representation, and may be easier to

extract. Even though a time-lag representation transforms

the stripe information into a more easily interpretable form,

the block information is transformed into parallelograms

and may now be more difficult to extract. Furthermore, the

time-lag representation only works when repeating parts

occur in the same tempo, which is, in particular for clas-

sical music, often not the case. Structure analysis in the

presence of temporal variations is discussed in [52, 56],

see also Fig. 3 for an illustration.

5. STRUCTURE ANALYSIS APPROACHES

As mentioned before, there are a variety of different meth-

ods proposed for music structure analysis. An overview of

the operational entities of the proposed methods is shown
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Figure 5: An overview block diagram of various operational en-
tities employed in music structure analysis methods.

in Fig. 5. Furthermore, relevant literature along with a clas-

sification of the involved methods is summarized by Ta-

ble 1. In this section, we describe the main approaches

as well as the interconnections between the operational

entities in more detail. The first categorization of music

structure analysis methods was proposed by Peeters [63]

dividing them into sequence and state approaches. The

sequence approaches assume that there are sequences of

events that are repeated several times in the given musical

signal, thus forming diagonal stripes in the corresponding

SDM. The state approaches in turn consider the piece to be

produced by a finite state machine, where each state pro-

duces some part of the signal. Considering the SDM repre-

sentation, the state approaches can be thought to form the

blocks 4 . As mentioned in Sec. 1, we use the more seman-

tically motivated term repetition-based approach instead

of the more technically motivated term sequence approach.

Similarly, we use the term homogeneity-based approach

instead of the term state approach. Furthermore, we add

a third category referred to as novelty-based approach. In

the following, we describe some instantiations of each of

the categories in more detail and then discuss some com-

bined approaches.

5.1 Novelty-based Approaches

An important principle in music is that of change and con-

trast introducing diversity and attracting the attention of a

listener. The goal of novelty-based procedures is to au-

tomatically locate the points where these changes occur.

A standard approach for novelty detection introduced by

Foote [25] tries to identify segment boundaries by detect-

ing 2D corner points in an SDM of size N × N using

4 In principle a state is capable of emitting also a feature sequence
forming stripes in SDM when repeated. However, the name “state ap-
proach” is more often used of methods that utilize principles of homo-
geneity.
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Figure 6: Top: Two instances of the SDM using MFCCs from
Fig. 4. The checkerboard-like kernel that is correlated along the
main diagonal is shown at two different positions on the left and
right. Bottom: Resulting novelty curve.

a kernel matrix of a lower dimension. The kernel con-

sists of an M × M matrix (with M < N ) which has a

2× 2 checkerboard-like structure and is possibly weighted

by a Gaussian radial function. The kernel is illustrated

within the small rectangles on top of the two SDMs in

Fig. 6. The kernel is then correlated along the main diag-

onal of the SDM. This yields a novelty function, the peaks

of which indicate corners of blocks of low distance. Us-

ing MFCCs, these peaks are good indicators for changes

in timbre or instrumentation. For an illustration, we re-

fer to Fig. 6. Similarly, using other feature representation

such as chroma features or rhythmograms, one obtains in-

dicators for changes in harmony, rhythm, or tempo.

Jensen uses a different approach for locating the main

diagonal blocks in an SDM [38] by formulating the seg-

mentation as an optimization problem. The cost function to

be optimized tries to minimize the average distance within

blocks (defined by neighboring segment boundaries) of the

SDM while keeping the number of segments small. Tzane-

takis and Cook [76] propose to segment a signal by first

extracting a set of features from the signal and then calcu-

lating a Mahalanobis distance between successive frames.

Large differences in the distance values indicate possible

segmentation points. For other methods to music segmen-

tation, we refer to the publication by Turnbull et al. [75],

in which several acoustic features and both supervised as

well as unsupervised segmentation methods are evaluated.

5.2 Homogeneity-based Approaches

A direct continuation of the novelty-based procedure is to

analyze the content of the created segments and to classify

them building up homogenous clusters. Such an approach

was introduced by Cooper and Foote in [15], where, after

a novelty-based segmentation, the content of each segment

is modeled by a normal distribution. Then, the similar-

ity between two segments is computed using the Kullback-

Leibler divergence between two multivariate normal dis-

tributions [28]. Having the distances for all segment pairs,
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Author / publication Task Acoustic features Approach Method

Aucouturier et al. [4] full structure spectral envelope homogeneity HMM
Barrington et al. [7] full structure MFCC / chroma homogeneity dynamic texture model
Bartsch & Wakefield [8] thumbnailing chroma repetition stripe detection
Chai [13] full structure chroma repetition stripe detection
Cooper & Foote [15] summarisation magnitude spectrum homogeneity segment clustering
Dannenberg & Hu [17] repetitions chroma repetition dynamic programming
Eronen [23] chorus detection MFCC+chroma repetition stripe detection
Foote [24] visualization MFCC self-similarity matrix
Foote [25] segmentation MFCC novelty novelty vector
Goto [31] repetitions chroma repetition stripe detection (RefraiD)
Jehan [36] pattern learning MFCC+chroma+loudness homogeneity hierarchical SDMs
Jensen [38] segmentation MFCC+chroma+rhythmogram novelty diagonal blocks
Levy & Sandler [41] full structure MPEG-7 timbre descriptor homogeneity temporal clustering
Logan & Chu [43] key phrase MFCC homogeneity HMM / clustering
Lu et al. [44] thumbnailing constant-Q spectrum repetition stripe detection
Maddage [46] full structure chroma homogeneity rule-based reasoning
Marolt [48] thumbnailing chroma repetition RefraiD
Mauch et al. [50] full structure chroma repetition greedy selection
Müller & Kurth [56] multiple repetitions chroma statistics repetition stripe search & clustering
Ong [57] full structure multiple repetition RefraiD
Paulus & Klapuri [59] repeated parts MFCC+chroma repetition cost function
Paulus & Klapuri [62] full description MFCC+chroma+rhythmogram combined fitness function
Peeters [63] full structure dynamic features homogeneity HMM, image filtering
Peeters [64] repeated parts MFCC+chroma+spec. contrast repetition stripe detection
Rhodes & Casey [70] hierarchical structure timbral features repetition string matching
Shiu et al. [72] full structure chroma repetition state model stripe detection
Turnbull et al. [75] segmentation various novelty various
Wellhausen & Höynck [78] thumbnailing MPEG-7 timbre descriptor repetition stripe detection

Table 1: A summary of discussed methods for music structure analysis.

the segments are grouped with spectral clustering [77]. Lo-

gan and Chu [43] used a similar Gaussian parametrization

on segments of fixed length and applied agglomerative hi-

erarchical clustering. The method proposed by Goodwin

and Laroche [30] performs the segmentation and cluster-

ing at the same time. The method itself resembles the opti-

mization procedure described by Jensen [38], with the dif-

ference that the searched path can now return to a state de-

fined earlier if it is globally more efficient for the structure

description.

The concept of state is taken more explicitly in methods

employing hidden Markov models (HMMs) for the anal-

ysis, see, e.g., [5, 27]. Here, the basic assumption is that

each musical part can be represented by a state in an HMM,

and the states produce observations from the underlying

probability distribution. In an HMM, the probability of a

state sequence q = (q1, q2, . . . , qN ) given the observation

sequence X = (x1, x2, . . . , xN ) can be calculated by

P (q|X) ∝ P (x1|q1)
N∏

n=2

P (xn|qn)p(qn|qn−1), (4)

where P (xn|qn) is the likelihood of observing xn if the

state is qn, and p(qn|qn−1) is the transition probability

from state qn−1 to state qn. The analysis operates by train-

ing the HMM with the piece to be analyzed, and then by

decoding (finding the most probable state sequence) the

same signal with the model. Effectively this implements

vector quantization of the feature vectors with some tem-

poral dependency modeling expressed by the state tran-

sition probabilities. Though this model has a certain ap-

peal, it does not work very well in practice because the

result is often temporally fragmented, as noted by Peeters

et al. [68]. The fragmentation is due to the fact that the in-

dividual states tend to model individual sound events rather

than longer musical parts.

To alleviate the problem of temporal fragmentation,

several post-processing methods have been proposed.

Here, the state sequence produced by an HMM is only

used as a mid-level representation for further analysis,

where each state represents a certain context-dependent

short sound event [41]. Fig. 7 shows the resulting state

sequences of an example piece after analyzing it with

fully connected HMMs with 8 and 40 states, respectively.

The state sequence representation is included also for gen-

eral audio parametrization in the MPEG-7 standard as the

SoundModelStatePathType descriptor [35]. Abdallah et

al. [1] proposed to calculate histograms of the states with

a sliding window over the entire sequence and then to use

the resulting histogram vectors as new feature representa-

tion. Based on these state histograms, probabilistic clus-

tering is applied. This method was extended to include

statistical modeling of the cluster durations [2]. Levy et

al. [42] increased the amount of the contextual knowledge

using a variant of a fuzzy clustering approach applied on

the histograms. This approach was formalized by Levy

and Sandler [41] using a probabilistic framework. De-

spite the relatively simple approach, the temporal cluster-

ing method [42] has proven to work quite well.

A slightly different approach to reduce the resulting

fragmentation was proposed by Peeters [68]. He per-

formed initial segmentation based on an SDM and then

used the average feature value over each individual seg-

ment as initial cluster centroids that he further updated

using k-means clustering. The obtained cluster centroids

were then used to initialize the training of an HMM which

produced the final clustering. In a recent publication Bar-

rington et al. [7] propose to use dynamic texture mixture
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Figure 7: State sequences resulting from a fully connected HMM
using 40 (Top) and 8 (Middle) states applied to the MFCC fea-
ture sequence of Fig. 1. The bottom panel shows the annotated
ground truth structure.

models (DTM) for the structure analysis. DTM is basically

a state model, where each (hidden) state produces observa-

tions that have a temporal structure. The main novelty of

the method compared to the HMM-based state methods is

that the observation model itself takes the temporal behav-

ior of the produced observations into account, and there

will be less need for heuristic post-processing.

5.3 Repetition-based Approaches

The repetition of musical entities, as already noted in

Sec. 1, is an important element in imposing structure on

a sequence of musical sounds. Here, the temporal order

in which the sound events occur is crucial to form musi-

cally meaningful entities such as melodies or chord pro-

gressions. Therefore, the task of extracting the repetitive

structure of a given audio recording of a piece of music

amounts to first transform the audio into a suitable feature

sequence and then to find repeating subsequences in it.

As was explained in Sec. 4, one possible approach is to

compute an SDM and to search for diagonal stripes parallel

to the main diagonal. Even though it is often easy for hu-

mans to recognize these stripes, the automated extraction

of such stripes constitutes a difficult problem due to signif-

icant distortions that are caused by variations in parameters

such as dynamics, timbre, execution of note groups (e.g.,

grace notes, trills, arpeggios), modulation, articulation, or

tempo progression [56, 52]. To enhance the stripe struc-

ture, many approaches apply some sort of low-pass filter-

ing to smooth the SDM along the diagonals [78, 8]. A sim-

ilar effect can be achieved by averaging the distance values

from a number of consecutive frames and to use that as the

distance value [24]. Marolt [48] proposed to enhance the

stripes by calculating multiple SDMs with different sliding

window lengths and then by combining them with element-

wise multiplication. Lu et al. [44] employed multiple iter-

ations of erosion and dilation filtering along the diagonals

to enhance the stripes by filling small breaks and removing

too short line segments. Ong [57] extended the erosion and

dilation filtering into two-dimensional filter to enhance the

entire SDM. Goto [31] employed a two-dimensional lo-

cal filter to enhance the stripes; similar enhancement was

later utilized by Eronen [23]. Peeters [64] proposed to low-

pass filter along the diagonal direction, and high-pass filter

along the anti-diagonal direction to enhance the stripes.

Most of the above approaches assume that the repeating

parts are played in the same tempo, resulting in stripes that

run exactly in parallel to the main diagonal. However, this

assumption may not hold in general. For example, in clas-

sical music there are many recordings where certain parts

are repeated in different tempi or where significant tempo

changes (e.g. riterdando, accelerando, rubato) are realized

differently in repeating parts. Here, the stripes may be even

curved paths as indicate by Fig. 3. Müller et al. [55, 52]

introduced smoothing techniques that can handle such sit-

uations by incorporating contextual information at various

tempo levels into a single distance measure.

After enhancing the stripe structure, the stripe segments

can be found, e.g., by thresholding. The RefraiD approach

proposed by Goto [31] has later been employed by several

studies [48, 57]. It uses the time-lag version of SDM to

select the lags that are more likely to contain repeats, and

then detect the line segments along the horizontal direc-

tion of the lags. Each of the found stripes specifies two

occurrences of a sequence: the original one and a repeat.

For chorus detection, or simple one-clip thumbnailing, se-

lecting a sequence that has been repeated most often has

proven to be an effective approach. In the case that a more

comprehensive structural description is wanted, multiple

stripes have to be detected as well as some logical reason-

ing to deduce the underlying structure as proposed by Dan-

nenberg [17].

Similar to the dynamic programming approaches used

for segmentation [30, 38], some of the stripes can be

found by a path search. Shiu et al. [73] interpret the self-

similarity values as probabilities and define a local tran-

sition cost to prefer diagonal movement. Then, Viterbi

search is employed to locate the optimal path through the

lower (or upper) triangle of the SDM. The stripes have

large similarity values, thus the probability values are also

large and the path is likely to go through the stripe loca-

tions. Another method to locate stripe segments by grow-

ing them in a greedy manner was proposed by Müller and

Kurth [56]. These approaches are advantageous in that

they are able to handle tempo differences in the repeats.

Rhodes and Casey [70] employed a string matching

method to the HMM state sequence representation to cre-

ate a hierarchical description of the structure. Though

the algorithm was presented to operate on a finite alpha-

bet formed by the HMM states, the authors suggest that

similar operations could be accomplished with feature vec-

tors after modifying the matching algorithm to accept vec-

tor inputs. Aucouturier and Sandler [6] proposed another

method for inspecting the HMM state sequences with im-

age processing methods. The main idea is to calculate a

binary co-occurrence matrix (resembling an SDM) based

on the state sequence, which elements have the value 1,

if the two frames have the same state assignment, and the

value 0 otherwise. Then a diagonal smoothing kernel is
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applied on the matrix to smooth out small mismatches be-

tween sequences. Finally, stripes are searched from the

resulting matrix with Hough transform, which is claimed

to be relatively robust against bad or missing data points.

5.4 Combined Approaches

Most methods for music structure analysis described so

far rely on a single strategy. For example, homogeneity-

based approaches try to locate blocks of low distance on

the SDM main diagonal and then to classify them. Or,

repetition-based approaches try to extract stripes from the

SDM and then to deduce the repetitive structure. An al-

ternative approach is to focus on modeling the properties

of a good structural description, and in doing so, to com-

bine different segmentation principles. This is the idea of

Paulus and Klapuri [59, 62], who proposed a cost func-

tion for structural descriptions of a piece that considers all

the desired properties, and then, for a given acoustic in-

put, minimized the cost function over all possible struc-

tural descriptions. A similar approach was also suggested

by Peiszer [69]. In [59], the cost function included terms

representing the within-group dissimilarity (repeats should

be similar), the amount unexplained (the structural descrip-

tion would cover as much of the piece as possible), and the

complexity (the structure should not be fragmented). The

effect of the balancing of these three terms is illustrated in

Fig. 8.

The main weakness of the cost function based method

described above—as well as with most of the other meth-

ods relying on locating individual stripes or blocks in the

SDM—is that they operate only on parts of the SDM.

In other words, when locating stripes, each of the stripes

is handled separately without any contextual information.

Considering structure analysis as a data clustering prob-

lem, each of the formed clusters should be compact (hav-

ing small within-group distances), and the clusters should

be well-separated (having large between-group distances).

Paulus and Klapuri [62] formalized these ideas using a

probabilistic framework. Here, replacing the cost function,

a fitness measure is defined for jointly measuring within-

group distance (which should be small) and between-group

distance (which should be large). To this end, for each

segment pair, two distances were calculated: a stripe dis-

tance that measures the distance of the feature sequences

corresponding to the two segments (using dynamic time

warping) and a block distance that measures the average

distance over all frame pairs of the two segments, see also

Fig. 9. Maximizing the fitness measure then resulted in

a reasonable trade-off between these two types of com-

plementary information. Multiple feature representations

(MFCCs, chroma features, rhythmogram) were integrated

into the fitness measure to account for the various musical

dimensions, see Sec. 3.

In [62], the combinatorial optimization task over all

descriptions was approximately solved by limiting the

set of possible segments. To this end, a set of candi-

date segmentation points was created using a novelty-

based method [25], and then a greedy algorithm over the

remaining search space was applied. As a result, the

method combines all the segmentation principles discussed

in Sec. 5: a novelty-based approach was used to reduce the

number segment candidates, and homogeneity-based and

repetition-based approaches were integrated in the fitness

measure. One drawback of the described approach is that

the final structure description crucially depends on the first

novelty detection step, which was found to be a bottle-neck

in some cases.

6. EVALUATION

Music is multi-faceted and complex. Even though it is

structured and obeys some general rules, music also lives

from expanding and even breaking these rules. Therefore it

can be problematic to give a concise and unique structural

description for a piece of music. As a consequence, eval-

uating the performance of an automated structure analysis

method is not as simple as it may initially seem. We now

briefly discuss some of the evaluation metrics proposed in

the literature.

To evaluate the accuracy of segmentation boundaries,

most evaluation procedures involve some sort of recall rate,

precision rate, and F-measure while accepting a small tem-

poral deviation [75]. An alternative is to calculate the mean

(or median) time between a claimed and annotated seg-

mentation point [75]. The evaluation of music thumbnail-

ing requires user studies, since the quality of the output is

usually measured subjectively instead of an objective met-
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ric, as described by Chai [13] and Ong [57].

Evaluating the result of a method producing a descrip-

tion of the full structure of a piece is less straightforward.

Many of the evaluation metrics adopt an approach simi-

lar to evaluating clustering results: pairs of frames are in-

spected, and if they belong to any occurrence of the same

musical part, they are considered to belong to the same

cluster, denoted by the set FA in case of ground truth

and the set FE in the case of analysis result. Based on

these two sets, it is possible to calculate the pairwise pre-

cision rate RP = |FA ∩ FE |/|FE |, the pairwise recall rate

RR = |FA ∩ FE |/|FA|, and the F-measure

F =
2RPRR

RP +RR

. (5)

Using the above evaluation metric was proposed by Levy

and Sandler [41]. Another closely related metric is the

Rand index [34], used by Barrington et al. [7]. Abdallah et

al. [1] proposed to match the segments in the analysis result

and ground truth and to calculate a directional Hamming

distance between frame sequences after the match. A sim-

ilar approach with a differing background was proposed

by Peeters [64]. A second evaluation metric proposed by

Abdallah et al. [1] treats the structure descriptions as sym-

bol sequences and calculates the mutual information be-

tween the analysis result and the ground truth. The mutual

information concept was developed further by Lukashe-

vich [45], who proposed an over- and under-segmentation

measures based on the conditional entropies of the sequen-

tial representations of structures.

A property that can be considered to be a weakness in

the metrics relying on pairs of frames, is that they disre-

gard the order of the frames. In other words, they do not

penalize hierarchical level differences between the com-

puted parts such as splittings of segments into smaller

parts. Chai [13], and Paulus and Klapuri [59] proposed

heuristics finding a common hierarchical level for the com-

puted structure result and the ground truth structure. How-

ever, the evaluation method is rather complicated, and the

results are still subject for discussion.

Finally, it should be noted that most of the suggested

evaluation metrics only consider one type of provided

ground truth annotation. As the experiments by Brud-

erer et al. [10] suggest, the perception of musical struc-

tures is generally ambiguous. Thus the descriptions pro-

vided by two persons on the same piece may differ. A

small-scale comparison of descriptions made by two an-

notators was presented by Paulus and Klapuri [62], and

slight differences in the hierarchical levels as well as in

the grouping were noted (using the F-measure (5) as the

metric, human vs. human result was 89.4% whereas the

employed computational method reached 62.4%). Peeters

and Deruty [67] proposed a more well-defined ground truth

annotation scheme that allows annotating the structure of a

piece from several different aspects and temporal scales at

the same time. The annotation can then be transformed to

focus on the aspect relevant to the current application, e.g.,

by reducing it to be a temporal segmentation and grouping,

as with earlier data sets.

The first systematic evaluation of different structure

analysis methods methods took place in the Music Struc-

ture Segmentation task at the Music Information Re-

trieval Evaluation eXchange (MIREX) 2009 5 . MIREX

itself is a framework for evaluating music information re-

trieval algorithms where the evaluation tasks are defined

by the research community under the coordination of In-

ternational Music Information Retrieval Systems Evalu-

ation Laboratory at the University of Illinois at Urbana-

Champaign [20]. The evaluation task was kept relatively

straightforward: providing a temporal segmentation of an

entire piece and grouping of segments to parts. The eval-

uation data was provided from the OMRAS2 metadata

project [49], and it consisted of 297 songs, mostly by The

Beatles (179 songs), and the remaining songs were from

four other performers making the data rather homogenous.

It should also be noted that a large part of the data was

publicly available before the evaluation and may have been

used in the development of some of the methods. The five

submissions from four teams represent slightly different

approaches: one searches diagonal stripes from SDM in

a greedy manner [50] (F = 60.0%), one aims at maxi-

mizing a fitness function from a combined approach [62]

(F = 53.0%), and one uses agglomerative hierarchical

clustering on smaller segments [66] (F = 53.3%). The

details of the two other submissions (F = 57.7% and

F = 58.2%) were not published. Despite the differring

approaches, there were no significant performance differ-

ences between the methods and depending on the evalua-

tion metric the ranking order changed considerably (with

the Rand index metric the ranking is almost reversed).

7. CONCLUSIONS

This paper has given an overview of the music struc-

ture analysis problem, and the methods proposed for solv-

ing it. The methods have been divided into three cate-

gories: novelty-based approaches, homogeneity-based ap-

proaches, and repetition-based approaches. The compar-

ison of different methods has been problematic because

of the differring goals, but an effort at this was made in

MIREX2009. The results of the evaluations suggest that

none of the approaches is clearly superior at this time, and

that there is still room for considerable improvements.

Perhaps one of the largest problems in music structure

analysis is not directly technical, but more conceptual: the

ground truth for this task should be better defined. The

need for this is indicated by the fact that the annotations

made by two persons disagree to a certain degree [62].

Defining the ground truth better requires interdisciplinary

work between engineers and musicologists. The current

results suggest that the structure description should not

only be on a single level, but include also the informa-

tion of hierarchical recurrences—similar to human percep-

tion. Another major task consists in collecting and anno-

tating a representative data set, which is free for use in re-

search projects worldwide. Also, contrary to many earlier

5 http://www.music-ir.org/mirex/2009/index.php/

Structural_Segmentation
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data sets, it would be beneficial to have multiple parties in-

volved to ensure data diversity and agreement on the target

data. Having more accurate ground truth and a represen-

tative data set, the evaluation metrics can be defined more

rigorously too: none of the current metrics corresponds to

the perceived performance very accurately.

To date, the research has mostly been focusing on West-

ern popular music, in which the sectional form is relatively

prominent. It would be both challenging and interesting

to broaden the target data set to include classical and non-

Western music. Some of the principles employed by the

current methods have been applied for these types of music

too, but there is still a large need for research to cope with

the complexity and diversity of general music data. As

has been discussed in this paper, it is not enough to only

use a single musical aspect in the analysis—also humans

typically utilize multiple cues simultaneously. Related to

this, more perceptually (and musically) motivated features

should be investigated, as well as the distance measures

used to compare frame-level features. Methods combin-

ing several musically motivated information sources have

shown promising results, and such trends should be pur-

sued further.

Acknowledgement. The first author was supported by the

Academy of Finland, (application number 129657, Finnish Pro-

gramme for Centres of Excellence in Research 2006–2011). The

second author is supported by the Cluster of Excellence on Mul-

timodal Computing and Interaction at Saarland University.

8. REFERENCES

[1] S. Abdallah, K. Nolad, M. Sandler, M. Casey, and C. Rhodes. The-
ory and evaluation of a Bayesian music structure extractor. In Proc.

of 6th International Conference on Music Information Retrieval,
pages 420–425, London, England, UK, Sept. 2005.

[2] S. Abdallah, M. Sandler, C. Rhodes, and M. Casey. Using dura-
tion models to reduce fragmentation in audio segmentation. Machine

Learning, 65(2–3):485–515, Dec. 2006.
[3] J.-J. Aucouturier and F. Pachet. Improving timbre similarity: How

high’s the sky. Journal of Negative Results in Speech and Audio Sci-

ences, 1, 2004.
[4] J.-J. Aucouturier, F. Pachet, and M. Sandler. “The way it sounds”:

Timbre models for analysis and retrieval of music signals. IEEE

Transactions on Multimedia, 7(6):1028–1035, Dec. 2005.
[5] J.-J. Aucouturier and M. Sandler. Segmentation of musical signals

using hidden Markov models. In Proc. of 110th Audio Engineering

Society Convention, Amsterdam, The Netherlands, May 2001.
[6] J.-J. Aucouturier and M. Sandler. Finding repeating patterns in acous-

tic musical signals: Applications for audio thumbnailing. In Proc.

of Audio Engineering Society 22nd International Conference on Vir-

tual, Synthetic and Entertainment Audio, pages 412–421, Espoo, Fin-
land, 2002.

[7] L. Barrington, A. B. Chan, and G. Lanckriet. Modeling music as a
dynamic texture. IEEE Transactions on Audio, Speech, and Language

Processing, 18(3):602–612, Mar. 2010.
[8] M. A. Bartsch and G. H. Wakefield. Audio thumbnailing of popu-

lar music using chroma-based representations. IEEE Transactions on

Multimedia, 7(1):96–104, Feb. 2005.
[9] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B.

Sandler. A tutorial on onset detection in music signals. IEEE Transac-

tions on Speech and Audio Processing, 13(5):1035–1047, Sept. 2005.
[10] M. J. Bruderer, M. McKinney, and A. Kohlrausch. Structural bound-

ary perception in popular music. In Proc. of 7th International Confer-

ence on Music Information Retrieval, pages 198–201, Victoria, B.C.,
Canada, Oct. 2006.

[11] M. Casey and M. Slaney. The importance of sequences in musical
similarity. In Proc. of IEEE International Conference on Acoustics,

Speech, and Signal Processing, pages 5–8, Toulouse, France, May
2006.

[12] A. T. Cemgil, B. Kappen, P. Desain, and H. Honing. On tempo track-
ing: Tempogram representation and kalman filtering. Journal of New

Music Research, 28(4):259–273, 2001.
[13] W. Chai. Automated Analysis of Musical Structure. PhD thesis, Mas-

sachusetts Institute of Technology, Boston, Mass., USA, Sept. 2005.
[14] H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, and H. H. Chen. Multimodal

structure segmentation and analysis of music using audio and textual
information. In Proc. of IEEE International Symposium on Circuits

and Systems, pages 1677–1680, Taipei, Taiwan, May 2009.
[15] M. Cooper and J. Foote. Summarizing popular music via structural

similarity analysis. In Proc. of 2003 IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics, pages 127–130, New
Platz, N.Y., USA, Oct. 2003.

[16] R. B. Dannenberg and M. Goto. Music structure analysis from acous-
tic signals. In D. Havelock, S. Kuwano, and M. Vorländer, editors,
Handbook of Signal Processing in Acoustics, volume 1, pages 305–
331. Springer, New York, N.Y., USA, 2008.

[17] R. B. Dannenberg and N. Hu. Pattern discovery techniques for music
audio. In Proc. of 3rd International Conference on Music Information

Retrieval, pages 63–70, Paris, France, Oct. 2002.
[18] S. B. Davis and P. Mermelstein. Comparison of parametric repre-

sentations for monosyllabic word recognition in continuously spoken
sentences. Readings in Speech Recognition, pages 65–74, 1990.

[19] S. Dixon, E. Pampalk, and G. Widmer. Classification of dance music
by periodicity patterns. In Proc. of 4th International Conference on

Music Information Retrieval, pages 159–165, Baltimore, Md., USA,
Oct. 2003.

[20] J. S. Downie. The music information retrieval evaluation exchange
(2005–2007): A window into music information retrieval research.
Acoustical Science and Technology, 29(4):247–255, 2008.

[21] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle. Recurrence plots of
dynamical systems. Europhysics Letters, 4(9):973–977, Nov. 1987.

[22] D. P. W. Ellis. Beat tracking by dynamic programming. Journal of

New Music Research, 36(1):51–60, 2007.
[23] A. Eronen. Chorus detection with combined use of MFCC and

chroma features and image processing filters. In Proc. of 10th Inter-

national Conference on Digital Audio Effects, pages 229–236, Bor-
deaux, France, Sept. 2007.

[24] J. Foote. Visualizing music and audio using self-similarity. In Proc.

of ACM Multimedia, pages 77–80, Orlando, Fla., USA, 1999.
[25] J. Foote. Automatic audio segmentation using a measure of audio

novelty. In Proc. of IEEE International Conference on Multimedia

and Expo, pages 452–455, New York, N.Y., USA, Aug. 2000.
[26] J. Foote and S. Uchihashi. The beat spectrum: A new approach to

rhythm analysis. In Proc. of IEEE International Conference on Mul-

timedia and Expo, pages 881–884, Tokyo, Japan, Aug. 2001.
[27] S. Gao, N. C. Maddage, and C.-H. Lee. A hidden Markov model

based approach to music segmentation and identification. In Proc.

of 4th Pacific Rim Conference on Multimedia, pages 1576–1580, Sin-
gapore, Dec. 2003.

[28] J. Goldberger, S. Gordon, and H. Greenspan. An efficient image sim-
ilarity measure based on approximations of KL-divergence between
two Gaussian mixtures. In Proc. of Ninth IEEE International Confer-

ence on Computer Vision, pages 487–493, 2003.
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[78] J. Wellhausen and M. Höynck. Audio thumbnailing using MPEG-7
low-level audio descriptors. In Proc. of The SPIE Internet Multimedia

Management Systems IV, volume 5242, pages 65–73, Nov. 2003.
[79] C. Xu, X. Shao, N. C. Maddage, M. S. Kankanhalli, and T. Qi. Au-

tomatically summarize musical audio using adaptive clustering. In
Proc. of IEEE International Conference on Multimedia and Expo,
pages 2063–2066, Taipei, Taiwan, June 2004.

[80] R. Zhou, M. Mattavelli, and G. Zoia. Music onset detection based
on resonator time frequency image. IEEE Transactions on Audio,

Speech, and Language Processing, 16(8):1685–1695, 2008.

636

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



music21: A Toolkit for Computer-Aided Musicology and  
Symbolic Music Data 

Michael Scott Cuthbert Christopher Ariza 
Music and Theater Arts 

Massachusetts Institute of Technology 
{cuthbert, ariza}@mit.edu

ABSTRACT

Music21 is an object-oriented toolkit for analyzing, 
searching, and transforming music in symbolic (score-
based) forms. The modular approach of the project allows 
musicians and researchers to write simple scripts rapidly 
and reuse them in other projects. The toolkit aims to pro-
vide powerful software tools integrated with sophisticated 
musical knowledge to both musicians with little pro-
gramming experience (especially musicologists) and to 
programmers with only modest music theory skills. 

This paper introduces the music21 system, demon-
strating how to use it and the types of problems it is well-
suited toward advancing. We include numerous examples 
of its power and flexibility, including demonstrations of 
graphing data and generating annotated musical scores. 

1. INTRODUCTION: WHY MUSIC21?

Computers have transformed so many aspects of musi-
cology—from writing and editing papers, to studying 
manuscripts with digital files, to creating databases of 
composers’ letters, to typesetting editions—that it is in-
credible that most analytical tasks that music historians 
perform remain largely untouched by technology. The 
study of the rich troves of musical data in scores, 
sketches, intabulations, lead-sheets, and other sources of 
symbolic music data is still done almost exclusively by 
hand. Even when databases and spreadsheets are em-
ployed, they are usually created for a single purpose. 
Such specialized approaches cannot easily be reused. 

Computer scientists often assume that, compared to 
working with scanned images of scores or sound files, 
manipulating symbolic data should be a cinch. Most of 
the information from a score can easily be converted to 
text-based or numeric formats that general-purpose statis-
tical or information-retrieval tools can manipulate. In 
practice the complexities of music notation and theory 
result in these tools rarely being sufficient. 

For instance, a researcher might want to compare 
how closely the music of two composers adheres to a par-
ticular scale (say, the major scale). What begins as a 
straightforward statistical problem requiring little musical 
knowledge—simply encode which notes are in the scale 
of the piece’s key and which are not—can quickly grow 
beyond the capabilities of general statistics packages. 
Suppose that after some initial work, our researcher de-
cides that notes on stronger beats should be weighed 
more heavily than those on weaker beats. Now she must 
either add the information about beats by hand to each 
note or write a new algorithm that labels the beats. Beat 

labeling is another task that initially seems easy but rapid-
ly becomes extremely troublesome for several reasons.  
Are grace-notes accented or unaccented? Only a musical-
ly-trained ear that also knows the norms of an era can tell. 
Incompletely-filled measures, such as pickup measures 
and mid-bar repeats, present problems for algorithms. As 
the researcher’s corpus expands, the time spent on meta-
research expands with it. What began as a straightforward 
project becomes a set of tedious separate labors: trans-
forming data from multiple formats into one, moving 
transposing instruments into sounding pitch, editorial ac-
cidentals in early music, or finding ways of visualizing 
troublesome moments for debugging. 

Researchers in other fields can call upon general-
purpose toolkits to deal with time-consuming yet largely 
solved problems. For instance, a scientist working with a 
large body of text has easy access to open-source libraries 
for removing punctuation, converting among text-
encoding formats, correcting spelling, identifying parts of 
speech, sentence diagramming, automatic translation, and 
of course rendering text in a variety of media. Libraries 
and programs to help with the musical equivalents of 
each of these tasks do exist, but few exchange data with 
each other in standardized formats. Even fewer are de-
signed in modern, high-level programming languages. As 
a result of these difficulties, computational solutions to 
musicological problems are rarely employed even when 
they would save time, expand the scope of projects, or 
quickly find important exceptions to overly broad pro-
nouncements. 

The music21 project (http://web.mit.edu/music21) 
expands the audience for computational musicology by 
creating a new toolkit built from the ground up with intui-
tive simplicity and object-oriented design throughout. 
(The “21” in the title comes from the designation for 
MIT’s classes in Music, Course 21M.) The advantages of 
object-oriented design have led to its wide adoption in 
many realms of software engineering. These design prin-
ciples have been employed in music synthesis and gener-
ation systems over the past 25 years [2, 9, 10] but have 
not been thoroughly integrated into packages for the 
analysis of music as symbolic data. Humdrum, the most 
widely adopted software package [6], its contemporary 
ports [7, 11], and publications using these packages show 
the great promise of computational approaches to music 
theory and musicology. Yet Humdrum can be difficult to 
use: both programmers and non-programmers alike may 
find its reliance on a chain of shell-scripts, rather than ob-
ject-oriented libraries, limiting and not intuitive.  

Nicholas Cook has called upon programmers to 
create for musicologists “a modular approach involving 
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an unlimited number of individual software tools” [3]. A 
framework built with intuitive, reusable, and expandable 
objects satisfies Cook’s call without sacrificing power for 
more complex tasks. 

As a new, open-source, cross-platform toolkit written 
in Python, music21 provides such a modular approach, 
melding object-oriented music representation and analy-
sis with a concise and simple programming interface. 
Simplicity of use, ease of expansion, and access to exist-
ing data are critical to the design of music21. The toolkit 
imports Humdrum/Kern, MusicXML [4], and user-
defined formats (with MIDI and MuseData forthcoming). 
Because it is written in Python, music21 can tap into 
many other libraries, integrating internet resources (such 
as geomapping with Google Maps), visualization soft-
ware, and sophisticated database searches with musical 
analysis. 

This brief paper gives an overview of the music21
toolkit. Through examples of musicological applications 
that the system enables, the main distinguishing features 
are illustrated: simplicity of use and expansion. 

2. SCRIPTING AND OBJECTS 

Music21 is built in Python, a well-established program-
ming language packaged with Macintosh and Unix com-
puters and freely downloadable for Windows users.  The 
toolkit adds a set of related libraries, providing sophisti-
cated musical knowledge to Python. As shown in Figure 
1, after adding the system with “from music21    
import *”, straightforward tasks such as displaying or 
playing a short melody, getting a twelve-tone matrix, or 
converting from Humdrum’s Kern format to MusicXML 
can each be accomplished with a single line of code. 

Display a simple melody in musical notation:
  tinyNotation.TinyNotationStream( 
        "c4 d8 f g16 a g f#", "3/4").show() 

Print the twelve-tone matrix for a tone row (in this case the 
opening of Schoenberg’s Fourth String Quartet): 
print(serial.rowToMatrix( 

            [2,1,9,10,5,3,4,0,8,7,6,11]) )  
or since most of the 2nd-Viennese school rows are already 
available as objects, you could instead type:   
print(serial.RowSchoenbergOp37().matrix() ) 

Convert a file from Humdrum’s **kern data format to Mu-
sicXML for editing in Finale or Sibelius: 
  parse('/users/documents/composition.krn'). 
      write('xml') 

Figure 1. Three simple examples of one-line mu-
sic21 scripts. 

Though single-line tasks are simpler to accomplish in 
music21 than in existing packages, the full power of the 
new toolkit comes from bringing together and extending 

high-level objects. The framework includes many objects, 
including Pitches, Chords, Durations, TimeSignatures, 
Intervals, Instruments, and standard Ornaments. Through 
method calls, objects can perform their own analyses and 
transformations. For instance, Chords can find their own 
roots, create closed-position versions of themselves, 
compute their Forte prime forms, and so on. Researchers 
can extend objects for their own needs, such as altering 
the pitch of open Violin strings to study scordatura, spe-
cializing (subclassing) the Note class into MensuralNote 
for studying Renaissance Music, or grouping Measures 
into Hypermeters. The object-oriented design of mu-
sic21 simplifies writing these extensions. 

3. STREAMS: POWERFUL, NESTABLE, 
CONTAINERS OF TIMED ELEMENTS 

At the core of music21 is a novel grouping of musical 
information into Streams: nestable containers that allow 
researchers to quickly find simultaneous events, follow a 
voice, or represent instruments playing in different tempi 
and meters. Elements within Streams are accessed with 
methods such as getElementById(), an approach simi-
larly to the Document Object Model (DOM) of retrieving 
elements from within XML and HTML documents. Like 
nearly every music21 object, Streams can immediately 
be visually displayed in Lilypond or with programs that 
import MusicXML (such as Finale and Sibelius).  
Through the Stream model, a program can find notes or 
chords satisfying criteria that change from section to sec-
tion of a piece, such as all notes that are the seventh-
degree of the current key (as identified either manually or 
with an included key-detection algorithm) and then re-
trieve information such as the last-defined clef, dynamic, 
or metrical accent level at that point. 

 Many tools to visualize, process, and annotate 
Streams come with the music21 framework. These tools 
include graphing modules, analytical tools, and conveni-
ence routines for metrical analysis [8], phrase extraction, 
and identification of non-harmonic tones. Figure 2 de-
monstrates the use of metrical analysis, derived from 
nested hierarchical subdivisions of the time signature [1], 
to annotate two Bach chorales in different meters. 

from music21.analysis import metrical 
# load a Bach Chorale from the music21 corpus of supplied pieces 
bwv30_6 = corpus.parseWork('bach/bwv30.6.xml') 

# get just the bass part using DOM-like method calls
bass = bwv30_6.getElementById('Bass') 

# get measures 1 through 10
excerpt = bass.getMeasureRange(1,10) 

# apply a Lerdahl/Jackendoff-style metrical analysis to the piece.
metrical.labelBeatDepth(excerpt) 

# display measure 0 (pickup) to measure 6 in the default viewer  
# (here Finale Reader 2009)
excerpt.show() 
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the composition that is difficult to observe in the score 
but easy to see in this graph is the cubic shape (-x3) made 
through the choice of pitches and rhythms. This shape is 
not at all explained by the serial method of the piece.  Al-
so easily seen is that, although Messiaen uses lower notes 
less often, there is not a perfect correlation between pitch 
and frequency of use (e.g., 21 B-flats vs. 22 A-flats). 

messiaen = converter.parse( 
               'd:/valeurs_part2.xml') 
notes = messiaen.flat.stripTies() 
g = graph.PlotScatterWeightedPitch\ 
    SpaceQuarterLength(notes, xLog = False, 
    title='Messiaen, Mode de Valeurs, 
    middle voice') 
g.process() 

Figure 5. A graph of pitch to duration relationships in 
Messiaen, “Mode de valeurs,” showing the correlation 
between the two note attributes. 

5.3 Pitch Class Density Over Time 
In Figure 6, pitch class usage, over the duration of 

the composition in the cello part of a MusicXML score of 
Beethoven’s Große Fuge, is graphed. Even though the 
temporal resolution of this graph is coarse, it is clear that 
the part gets less chromatic towards the end of the work.  
(We have manually highlighted the tonic and dominant in 
this example.) 

beethovenScore = corpus.parseWork('opus133.xml') 
celloPart = \ 
      beethovenScore.getElementById('Cello') 

# given a “flat” view of the stream, with nested information  
# removed and all information at the same hierarchical level, 
# combine tied notes into single notes with summed durations 
notes = celloPart.flat.stripTies() 

g = graph.PlotScatterPitchClassOffset(notes, 
    title='Beethoven Opus 133, Cello') 
g.process() 

Figure 6. A graph of pitch class usage over time in 
Beethoven’s Große Fuge.

5.4 Testing Nicolaus de Capua’s Regulae of Musica 
Ficta

This example shows a sophisticated, musicological 
application of music21. Among his other writings, the 
early-fifteenth century music theorist Nicolaus of Capua 
gave a set of regulae, or rules, for creating musica ficta
[5]. Musica ficta, simply put, was a way of avoiding tri-
tones and other undesirable intervals and create more 
conclusive cadences through the use of unwritten acci-
dentals that performers would know to sing. Unlike the 
rules of most other theorists of his time, Nicolaus’s four 
rules rely solely on the melodic intervals of one voice. 
Herlinger’s study of Nicolaus’s rules suggested that they 
could be extremely successful at eliminating harmonic 
problems while at the same time being easy enough for 
any musician to master. However, as is conventional in 
musicology, this study was performed by hand on a few 
excerpts of music by a single composer, Antonio Zachara 
da Teramo. Using music21 we have been able to auto-
matically apply Nicolaus’s rules to a much wider set of 
encoded music, the complete incipits and cadences of all 
Trecento ballate (about 10,000 measures worth of music) 
and then automatically evaluate the quality of harmonic 
changes implied by these rules. Figure 7 shows an ex-
cerpt of the code for a single rule, that a descending ma-
jor second (“M-2”) immediately followed by an ascend-
ing major second (“M2”) should be transformed into two 
half-steps by raising the middle note: 

# n1, n2, and n3 are three consecutive notes 
# i1 is the interval between n1 and n2
# i2 is the interval between n2 and n3

i1 = generateInterval(n1,n2) 
i2 = generateInterval(n2,n3) 

# we test if the two intervals are the ones fitting the rule
if i1.directedName == "M-2" and \ 
   i2.directedName == "M2":

  # since the intervals match , we add an editorial accidental
  n2.editorial.ficta = \  
         Accidental("sharp")
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# we also color the affected notes so that if we display the music 
  # the notes stick out.  Different colors indicate different rules 
  n1.editorial.color = "blue"
  n2.editorial.color = "forestGreen"
  n3.editorial.color = "blue"

Figure 7. Applying ficta accidentals with music21.

The results of applying one or all the rules to an in-
dividual cadence or piece can be seen immediately. Fig-
ure 8 shows the rules applied to one piece where they 
create two “closest-approaches” to perfect consonances 
(major sixth to octave and minor third to unison). These 
are the outcomes one expects from a good set of regulae
for musica ficta.

    # get a particular worksheet of an Excel spreadsheet
ballataObj = cadencebook.BallataSheet() 
    # create an object for row 267
pieceObj = ballataObj.makeWork(267)  
    # run the four rules (as described above)
applyCapua(pieceObj) 
    # display the first cadence of the piece (second snippet) by 
    # running it through Lilypond and generating a PNG file
pieceObj.snippets[1].lily.showPNG() 

Figure 8. Music21 code for automatically adding musica 
ficta to Francesco (Landini), De[h], pon’ quest’amor, 
first cadence. 

In other pieces, Nicolaus’s rules have an injurious effect, 
as Figure 9 shows. With the toolkit, we were able to run 
the rules on the entire database of Trecento ballatas and 
determine that Nicolaus’s rules cannot be used indiscri-
minately. Far too many cases appeared where the pro-
posed ficta hurt the harmony. One of the main advantages 
of the music21 framework is making such observations 
on large collections of musical data possible. 

Figure 9. Francesco, D’amor mi biasmo, incipit after au-
tomatically applying ficta accidentals. 

6. FUTURE WORK 

The first alpha releases of music21 introduce fun-
damental objects and containers and, as shown above, 
offer powerful tools for symbolic music processing. 

The next stage of development will add native sup-
port for additional input and output formats, including 
MIDI. Further, libraries of additional processing, analy-
sis, visualization routines, as well as new and expanded 
object models (such as non-Western scales), will be add-
ed to the system. We are presently focusing on creating 
simple solutions for common-practice music theory tasks 
via short music21 scripts, and within a year hope to be 
able to solve almost every common music theory problem 
encountered by first-year conservatory students. 
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ABSTRACT

In recent years, the Adobe Flash platform has risen as a
credible and universal platform for rapid development and
deployment of interactive web-based applications. It is
also the accepted standard for delivery of streaming me-
dia, and many web applications related to music informa-
tion retrieval, such as Pandora, Last.fm and Musicovery,
are built using Flash. The limitations of Flash, however,
have made it difficult for music-IR researchers and de-
velopers to utilize complex sound and music signal pro-
cessing within their web applications. Furthermore, the
real-time audio processing and synchronization required
for some music-IR-related activities demands significant
computational power and specialized audio algorithms, far
beyond what is possible to implement using Flash script-
ing. By taking advantage of features recently added to the
platform, including dynamic audio control and C cross-
compilation for near-native performance, we have devel-
oped the Audio-processing Library for Flash (ALF), pro-
viding developers with a library of common audio pro-
cessing routines and affording Flash developers a degree
of sound interaction previously unavailable through web-
based platforms. We present several music-IR-driven ap-
plications that incorporate ALF to demonstrate its utility.

1. INTRODUCTION

The use of web applications is now commonplace due to
the widespread availability of broadband connections, im-
proved client processing power, and the capabilities af-
forded by Adobe Flash. Flash has become the dominant
platform for the development of web-based interactive me-
dia applications by providing tools for easily implementing
rich graphics, animation and user interface controls as well
as cross-platform deployment. Despite its popularity, how-
ever, Flash’s support for sound and music processing has
historically been limited. ActionScript, Flash’s native de-
velopment language, was never intended to accommodate
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computationally intensive algorithms, such as the signal
processing required for real-time audio feature extraction
and analysis.

Recognizing the potential for developing audio- and
music-centric applications on the web, we have developed
the Audio processing Library for Flash (ALF), which ad-
dresses the audio limitations of the Flash platform. ALF
is based on Flash version 10 and capitalizes on the the re-
cently introduced Adobe Alchemy framework, which al-
lows existing algorithms written in C/C++ to be compiled
into byte code optimized for the ActionScript Virtual Ma-
chine for significantly improved performance [1, 2]. By
utilizing the dynamic audio capabilities recently added to
Flash 10 and the computational benefits of Alchemy, ALF
provides Flash developers with a library of common au-
dio processing routines that can be incorporated into ap-
plications, such as spectral feature extraction and analysis,
filtering and reverberation.

By including real-time audio processing capabilities to
Flash, ALF provides web applications with an additional
degree of sound interaction that has previously only been
available on native PC platforms. For example, ALF is
capable of supporting music-based games in Flash requir-
ing responses from the player precisely timed to music.
Although ALF can be used to enhance the audio of any
Flash application, our goal is to enable a new form of web
apps that can be driven by user-supplied audio. This poten-
tially allows a user to choose a wide range of customized
musical inputs, such as selections from their personal col-
lection or completely user-generated music content (song
remixes and mashups, which are becoming increasingly
commonplace). As we will demonstrate, ALF facilitates
the development of games that are dynamically driven by
the acoustic features of songs from a user’s music library,
thus creating unique game play experiences depending on
the provided audio content.

2. RELATED WORK

There are many software packages available that provide
libraries for feature extraction and audio synthesis that
exist as open source projects for research and develop-
ment. While many provide similar functionality, each li-
brary was developed to address particular implementation
issues, such as cross-platform support, computational ef-
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ficiency and ease of implementation. In this section, we
provide a brief description of some existing libraries.

Marsyas (Music Analysis, Retrieval and Synthesis for
Audio Signals) is an audio processing and MIR framework
built in C++ with a GUI based on Qt4 [3]. The project in-
cludes a wide variety of functions for analysis and synthe-
sis as well as audio features and classification algorithms.
Being one of the first such projects, the scope of Marsyas is
significant and it has been used in many research projects
as well as commercial endeavors.

jAudio was developed to be an easy to use Java-based
system for feature extraction. The cross-platform nature
of Java and GUI tools were the motivating factors for the
choice of development language. The creators attempted to
make the system as easily extensible as possible, avoid re-
dundant computation, and ensure the algorithms were sep-
arate from other functionality to increase ease of portabil-
ity [4].

M2K is a project under the International Music Infor-
mation Retrieval System Evaluation Laboratory which is
based off of the Data to Knowledge (D2K) machine learn-
ing and data mining environment [5]. D2K is employs
a visual programming environment in which users con-
nect modules together to prototype algorithms. The M2K
project has taken this framework and built in an array of
MIR tools for rapid development and testing of MIR sys-
tems.

The MIRToolbox is an audio feature extraction library
built in MATLAB that emphasizes a modular, parameter-
izable framework [6]. The project offers a wide range of
low-level and high-level features as well as tools for statis-
tical analysis, segmentation and clustering.

CLAM is an analysis/synthesis system written in C++
designed to be entirely object-oriented to allow for signif-
icant re-usability of code and functionality [7]. It provides
audio and MIDI input/output, supports XML and provides
tools for data visualization.

FEAPI is a platform-independent programming appli-
cation interface for low-level feature extraction written in
C [8]. In contrast to the previously described systems,
FEAPI allows developers to create their own applications
using C/C++ without being required to use the interfaces
designed to work with the above libraries.

3. IMPLEMENTATION

The driving force behind the development of ALF was to
provide developers with an efficient, cross-platform and
open source MIR and audio synthesis library. By choosing
Flash as the development platform, we target developers
seeking to rapidly develop and deploy web-based and/or
cross-platform desktop applications. As we will discuss,
the multi-layered and open source architecture of ALF also
permits ease of development for programmers with various
expertise and does not require prior knowledge or experi-
ence in audio programming.
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Perform 
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Figure 1. Frame-based computation and processing flow
in ALF.

3.1 Architecture

The dynamic audio functionality in the current version of
Flash is somewhat asynchronous, allowing sound to be
processed outside of the main application thread. Thus the
DSP routines can execute independently of the Flash script
rather than having to wait for C/C++ functions to finish
executing, allowing front-end UI and other operations to
continue if they are not dependent on data computed using
ALF functions.

There are several layers of abstraction in ALF provid-
ing a flexible framework with various levels of control de-
pending on the needs of the developer. The heavy compu-
tation is executed by the C/C++ functions which are com-
piled using the Adobe supplied Alchemy compiler for use
with ActionScript (AS). We provide a basic AS wrapper to
properly handle the shared memory management between
C/C++ and ActionScript for those wishing to have basic
access to the C functionality. The top layer streamlines
audio input/output and provides simple calls to perform
feature extraction and analysis-synthesis tasks. The entire
project is open source so that a developer may customize
the architecture to meet application-specific needs. ALF is
fully documented and is currently available via a subver-
sion repository online 1 .

To ensure tight synchrony between the video and au-
dio output in Flash, the processing flow was developed ac-
cording to the diagram shown in Figure 1. The frame size
is set by the the video frame rate since ALF is designed
with graphical oriented applications in mind, thus the time-
frequency resolution of the system is also determined by
this parameter. Whenever possible, a single FFT is used in
computing the features returned to the user, however, cer-
tain algorithms require transforms of sizes other than the

1 http://music.ece.drexel.edu/ALF
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Table 1. ALF Functions

Function Name Description
Spectrum Computes the magnitude spectrum using the FFT algorithm

Harmonics Finds the harmonics of the frequency spectrum
MFCC Calculates the Mel-Frequency Cepstral Coefficients
LPC Performs Linear Prediction and returns the coefficients and gain

Bandwidth The frequency range present in the signal
Centroid The center of gravity of the frequency spectrum

Analysis Flux The change in energy from the previous frame
Intensity Calculates the energy of the spectrum
Rolloff The frequency below which %85 of the spectral energy lies

Autocorrelation Computes the autocorrelation via the FFT
Chroma An representation of the spectral energy present in the 12 individual semitones

Beat Tracking Returns whether a beat occurs on each frame (based on bandwise autocorrelation)
Filter Filters the audio signal - FIR and IIR implementation

Synthesis Reverb Applies reverb by using a room impulse response (RIR) as an FIR filter
Phase Vocoder Alters the tempo and/or pitch of the audio

default size. A shared buffer system is also used so that we
can perform operations at variable frame rates and over-
lap lengths without having to read in the data again using
different frame sizes.

3.2 Performance

As previously mentioned, the computationally inten-
sive routines in ALF are implemented in the Alchemy-
optimized C code to avoid the limitations of ActionScript.
While slightly slower than native C code, the Alchemy-
optimized code provides significant performance gains
over identical algorithms implemented with ActionScript.
In a related paper, we performed a benchmark analysis
of the FFT algorithm using the ActionScript as3mathlib
implementation versus our Alchemy-compiled C imple-
mentation as well as Java’s JTransforms. Averaging the
computation speed over 10,000 iterations, we showed our
implementation to be nearly 30 times faster than the Ac-
tionScript version [1]. The results of this performance
comparison are outlined in Table 2. These computational
gains open up myriad possibilities for developing interac-
tive music-IR driven applications in the Flash framework.

Table 2. Comparison of FFT Computation Time for Ac-
tionScript and Alchemy-compiled C code in milliseconds.

Target FFT Size
Platform 8192 4096 2048 1024 512 256

ActionScript 45.157 20.818 9.276 4.460 2.041 0.925
Java 20.703 9.393 4.345 1.956 0.901 0.385

Alchemy-C 1.371 0.628 0.297 0.139 0.067 0.034

3.3 ALF Functions

The functions available in ALF are categorized as either
“analysis” or “synthesis” and are outlined in Table 1. The
analysis functions include several spectral processing rou-
tines and features, such as partial extraction and MFCCs,
that are useful in many MIR tasks [9]. Synthesis functions

are also available so that the developer can dynamically
modify the audio output stream to achieve a desired effect.
In a related paper, we discuss the implementation and al-
gorithms used for the reverb and filter functions [2]. The
remainder of this section will briefly discuss the implemen-
tation of two additional synthesis functions added to ALF:
phase vocoding and beat tracking.

The most important consideration in developing the
beat tracking algorithm was the stipulation that it run in
real-time. Our beat tracking algorithm is based off of
that proposed by Klapuri but uses an autocorrelation as
opposed to a bank of comb filters for computational ef-
ficiency [10]. We first compute the power spectrum and
separate it into six octave-based sub-bands. The energy
envelope in each sub-band is calculated and the bandwise
autocorrelation of these vectors is computed. Summing the
resulting six autocorrelations and finding the highest peak
after the zeroth lag yields an estimate of the tempo.

The phase vocoder is based on a popular, FFT-based
implementation in which overlapping frames (specified by
ALF’s frame rate) are analyzed and re-synthesized using
overlap-add in order to perform pitch and/or time-scale
modification in real-time [11]. Each frame is processed
by a FFT, which is used to determine the phase offset for
each frequency bin and thus the estimated, true bin fre-
quency. Pitch modification is achieved by multiplying the
bin frequencies by a pitch shift factor, which shifts the
audio’s pitch in the desired manner after performing the
IFFT. Time stretching is achieved by first applying the ap-
propriate pitch-shift factor, performing an IFFT and and
re-sampling the audio frame in the time domain to achieve
the desired speed.

4. DEVELOPING WITH ALF

Many of the applications developed with ALF thus far have
followed the same basic program structure, which is de-
tailed in Figure 3. Input audio is analyzed on a per frame
basis and feature values are returned in real-time for the
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developer to incorporate into their application. Any addi-
tional processing required for synthesis functions is exe-
cuted in a separate processing chain, which eliminates any
computational overhead when synthesis functions are not
required.

Figure 2. Application demonstrating ALF functionality.

The flexible nature of the architecture shown in Figure
3 combined with the low learning curve of Flash allows
developers to rapidly create audio and music-based appli-
cations to serve a variety of target audiences and purposes.
Possible applications include:

• Music-centric games requiring real-time feature ex-
traction to drive the game environment

• Music exploration interfaces that group user li-
braries into categories (emotional, genre, etc.) based
on extraction and comparison of audio features

• Educational activities for enhancing K-12 curricula
in natural science and/or mathematics [12]

Currently, we have several applications developed using
ALF for the purpose of audio-based experimentation, anal-
ysis/synthesis and music-driven games for entertainment,
which we will discuss in the subsequent sections.

4.1 ALF Workbench

Figure 2 demonstrates the ALF Workbench, which allows
developers to interactively experiment with different au-
dio files and some of the functions available in ALF. The
left panel of the interface showcases the spectral features,
which are updated during audio playback and can be ex-
ported in a CSV file when the file completes. A pitch wheel
is also shown, which allows the user to determine the chro-
matic notes present in the spectrum of tonal audio. The
right panel of the work bench features the room reverb and
phase vocoding functions. The reverb interface allows the
user to manipulate the positions of the source and listener
in a virtual room to simulate immersive environments.

Figure 4. Sound analysis-synthesis app showing linear
predictive analysis and magnitude spectrum of speech.

4.2 Beat-Sync-Mash-Coder

Recently, so-called artist “mashups”, blending two or
more songs in a creative way, have emerged as a popular
form of expression for musicians and hobbyists. To this
end, the Beat-Sync-Mash-Coder is a tool developed for
semi-automated, real-time creation of beat-synchronous
mashups [13]. This application utilizes the beat-tracking
and phase vocoding functions available in ALF along with
an intuitive, Flash-based GUI to help automate the task
of synchronizing various clips without the complexities
incurred with traditional digital audio workstations. The
Beat-Sync-Mash-Coder is capable of sustaining real-time
phase vocoding on 5-9 audio tracks, depending on the
available hardware, thus allowing the user to create dy-
namic, intricate and musically coherent soundscapes.

4.3 Sound Analysis and Synthesis Application

The application depicted in Figure 4 uses ALF’s analy-
sis and synthesis capabilities to perform linear-predictive
analysis on speech signals in order to re-synthesize it using
different excitation signals. Linear prediction coefficients
are extracted at each frame using the Levinson-Durbin re-
cursion to obtain a time-varying model of the vocal tract
[14]. The user can then simulate the effect of various exci-
tation sources by using ALF’s filtering function to sample
the vocal tract with impulsive, noisy or mixed-spectra sig-
nals.

4.4 Applications For Music-Driven Gameplay

We present two novel music-driven games which resulted
from a collaboration between departments at our univer-
sity. Both games harness MIR functionality in ALF to cre-
ate unique and immersive gameplay experiences.

4.4.1 Pulse

Pulse is a musically reactive, side-scrolling platform game
that utilizes a player’s personal music collection to drive
the gameplay. Unlike other music games, which rely on
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Figure 3. Typical implementation of an application using ALF.

off-line audio analysis to determine the gaming environ-
ment, Pulse utilizes ALF functionality to update the game
environment in real-time, mapping the quantitative fea-
tures extracted from the audio to changes in the game’s
environment variables. This concept increases the replay
value of Pulse, since the gamer’s experience is limited only
by the number of tracks in their music library.

By employing ALF’s frame-based processing structure,
ALF maps features extracted from the user-selected au-
dio to environment parameters so they are updated in sync
with the user-specified frame rate. To permit ample render-
ing time for the graphics, a “frame-look-ahead” parame-
ter is specified which delays audio playback while features
are accumulated from ALF functions. Game environment
variables that react to changes in the game’s audio include
the background scenery, enemies and obstacles of the Pulse
character as well as the slope of platform supporting the
character. The effect of the audio on the gameplay is ev-
ident in Figure 5 where (a) shows the game screen when
there is no audio playing and (b) is typical realization of
the parameter mapping to game output.

4.4.2 Surge

The concept behind Surge is to facilitate exploration of
one’s own music library though an interactive, DJ-style
beat matching game. This expands the concept of audio
feature-based gaming environments to include tempo anal-
ysis and modification of the game’s music. Whereas game-
play in Pulse depends on audio features to dictate the envi-
ronment, Surge uses game environment parameters to alter
the audio in real-time.

The Surge game environment, shown in Figure 6, con-
sists of planets that represent songs the player has provided
from their music library. Each song is analyzed with ALF’s
beat tracker function so that the planet is associated with a
song tempo. The game audio depends on which planet the
player is on and their proximity to nearby planets. As the
player nears a new planet, they will hear the music asso-
ciated with the new planet. In order to move from planet-

(a)

(b)

Figure 5. Pulse game environment during static (a) and
dynamic (b) moments in the game’s music.

to-planet, the player (by moving their character) must ad-
just the rotation of their current planet (altering tempo and
beats of the song) to match that of the target planet. That
is, the music tempo is adjusted using ALF’s phase vocoder
according to the planet’s rotation, which is dependent upon
the player’s actions in the game environment.

5. FUTURE WORK

There are several features we would still like to add to ALF
including spectral contrast features and other less com-
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Figure 6. Surge game environment.

monly used statistical spectrum descriptors. The most sig-
nificant component that would augment the usefulness of
ALF for the music-IR community would be classification.
There are many open source classification libraries avail-
able to perform common classification methods such as
GMM, SVM, and naive Bayes classification that can be
integrated into the current framework.

We will continue to emphasize the real-time capabili-
ties of ALF and optimize the algorithms and architecture
to ensure additional algorithms operate in real-time. The
newest version of the Flash Player (10.1) will allow byte
level access to the audio input creating potential for even
further user interaction via real-time analysis and process-
ing of voice/music input to a microphone or other audio
device connected to a computer.

6. CONCLUSIONS

The Audio processing Library for Flash affords music-IR
researchers the opportunity to generate rich, interactive,
real-time music-IR driven applications. The various lev-
els of complexity and control as well as the capability to
execute analysis and synthesis simultaneously provide a
means to generate unique programs that integrate content
based retrieval of audio features. We have demonstrated
the versatility and usefulness of ALF through the variety
of applications described in this paper. As interest in mu-
sic driven applications intensifies, it is our goal to enable
the community of developers and researchers in music-IR
and related fields to generate interactive web-based media.
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ABSTRACT

The automated extraction of tempo and beat information

from music recordings is a challenging task. Especially

in the case of expressive performances, current beat track-

ing approaches still have significant problems to accurately

capture local tempo deviations and beat positions. In this

paper, we introduce a novel evaluation framework for de-

tecting critical passages in a piece of music that are prone

to tracking errors. Our idea is to look for consistencies

in the beat tracking results over multiple performances of

the same underlying piece. As another contribution, we

further classify the critical passages by specifying musi-

cal properties of certain beats that frequently evoke track-

ing errors. Finally, considering three conceptually different

beat tracking procedures, we conduct a case study on the

basis of a challenging test set that consists of a variety of

piano performances of Chopin Mazurkas. Our experimen-

tal results not only make the limitations of state-of-the-art

beat trackers explicit but also deepens the understanding of

the underlying music material.

1. INTRODUCTION

When listening to a piece of music, most humans are able

to tap to the musical beat without difficulty. In recent years,

various different algorithmic solutions for automatically

extracting beat position from audio recordings have been

proposed. However, transferring this cognitive process into

an automated system that reliably works for the large va-

riety of musical styles is still not possible. Modern pop

and rock music with a strong beat and steady tempo can

be handled by many methods well, but extracting the beat

locations from highly expressive performances of, e.g., ro-

mantic piano music, is a challenging task.

To better understand the shortcomings of recent beat

tracking methods, significant efforts have been made to

compare and investigate the performance of different

strategies on common datasets [6, 10, 13]. However, most

approaches were limited to comparing the different meth-

ods by specifying evaluation measures that refer to an en-
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tire recording or even an entire collection of recordings.

Such globally oriented evaluations do not provide any in-

formation on the critical passages within a piece where

the tracking errors occur. Thus, no conclusions can be

drawn from these experiments about possible musical rea-

sons that lie behind the beat tracking errors. A first analysis

of musical properties influencing the beat tracking quality

was conducted by Dixon [6], who proposed quantitative

measures for the rhythmic complexity and for variations in

tempo and timings. However, no larger evaluations were

carried out to show a correlation between these theoretical

measures and the actual beat tracking quality.

In this paper, we continue this strand of research by

analyzing the tracking results obtained by different beat

tracking procedures. As one main idea of this paper, we

introduce a novel evaluation framework that exploits the

existence of different performances available for a given

piece of music. For example, in our case study we revert

to a collection of recordings for the Chopin Mazurkas con-

taining in average over 50 performances for each piece.

Based on a local, beat-wise histogram, we simultaneously

determine consistencies of beat tracking errors over many

performances. The underlying assumption is, that tracking

errors consistently occurring in many performances of a

piece are likely caused by musical properties of the piece,

rather than physical properties of a specific performance.

As a further contribution, we classify the beats of the crit-

ical passages by introducing various types of beats such

as non-event beats, ornamented beats, weak bass beats, or

constant harmony beats. Each such beat class stands for a

musical performance-independent property that frequently

evokes beat tracking errors. In our experiments, we evalu-

ated three conceptually different beat tracking procedures

on a corpus consisting of 300 audio recordings correspond-

ing to five different Mazurkas. For each recording, the

tracking results were compared with manually annotated

ground-truth beat positions. Our local evaluation frame-

work and detailed analysis explicitly indicates various lim-

itations of current state-of-the-art beat trackers, thus laying

the basis for future improvements and research directions.

This paper is organized as follows: In Sect. 2, we for-

malize and discuss the beat tracking problem. In Sect. 3,

we describe the underlying music material and specify var-

ious beat classes. After summarizing the three beat track-

ing strategies (Sect. 4) and introducing the evaluation mea-

sure (Sect. 5) used in our case study, we report on the

experimental results in Sect. 6. Finally, we conclude in
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ID Composer Piece #(Meas.) #(Beats) #(Perf.)

M17-4 Chopin Op. 17, No. 4 132 396 62
M24-2 Chopin Op. 24, No. 2 120 360 64
M30-2 Chopin Op. 30, No. 2 65 193 34
M63-3 Chopin Op. 63, No. 3 77 229 88
M68-3 Chopin Op. 68, No. 3 61 181 50

Table 1: The five Chopin Mazurkas and their identifiers used in
our study. The last three columns indicate the number of mea-
sures, beats, and performances available for the respective piece.

Sect. 7 with a discussion of future research directions. Fur-

ther related work is discussed in the respective sections.

2. PROBLEM SPECIFICATION

For a given piece of music, let N denote the number of mu-

sical beats. Enumerating all beats, we identify the set of

musical beats with the set B = [1 : N ] := {1, 2, . . . , N}.

Given a performance of the piece in the form of an audio

recording, the musical beats correspond to specific physi-

cal time positions within the audio file. Let π : B → R be

the mapping that assigns each musical beat b ∈ B to the

time position π(b) of its occurrence in the performance. In

the following, a time position π(b) is referred to as phys-

ical beat or simply as beat of the performance. Then, the

task of beat tracking is to recover the set {π(b) | b ∈ B} of

all beats from a given audio recording.

Note that this specification of the beat tracking problem

is somewhat simplistic, as we only consider physical beats

that are defined by onset events. More generally, a beat is

a perceptual phenomenon and perceptual beat times do not

necessarily coincide with physical beat times [7]. Further-

more, the perception of beats varies between listeners.

For determining physical beat times, we now discuss

some of the problems, one has to deal with in practice.

Typically, a beat goes along with a note onset revealed by

an increase of the signal’s energy or a change in the spec-

tral content. However, in particular for non-percussive mu-

sic, one often has soft note onsets, which lead to blurred

note transitions rather than sharp note onset positions. In

such cases, there are no precise timings of note events

within the audio recording, and the assignment of exact

physical beat positions becomes problematic. This issue is

aggravated in the presence of tempo changes and expres-

sive tempo nuances (e.g., ritardando and accelerando).

Besides such physical reasons, there may also be a num-

ber of musical reasons for beat tracking becoming a chal-

lenging task. For example, there may be beats with no

note event going along with them. Here, a human may still

perceive a steady beat, but the automatic specification of

physical beat positions is quite problematic, in particular

in passages of varying tempo where interpolation is not

straightforward. Furthermore, auxiliary note onsets can

cause difficulty or ambiguity in defining a specific physical

beat time. In music such as the Chopin Mazurkas, the main

melody is often embellished by ornamented notes such as

trills, grace notes, or arpeggios. Also, for the sake of ex-

pressiveness, the notes of a chord need not be played at the

same time, but slightly displaced in time. This renders a

precise definition of a physical beat position impossible.

(a)

(b)

(c)

(d)

(e)

Figure 1: Scores of example passages for the different beat
classes introduced in Sect. 3. (a) Non-event beats (B1) in M24-2,
(b) Ornamented beats (B3) in M30-2, (c) Constant harmony beats
(B5) in M24-2, (d) Constant harmony beats (B5) in M68-3, and
(e) Weak bass beats (B4) in M63-3.

3. DATA AND ANNOTATIONS

The Mazurka Project [1] has collected over 2700 recorded

performances for 49 Mazurkas by Frédéric Chopin, rang-

ing from the early stages of music recording (Grünfeld

1902) until today [15]. In our case study, we use 298
recordings corresponding to five of the 49 Mazurkas, see

Table 1. For each of theses recordings the beat positions

were annotated manually [15]. These annotations are used

as ground truth in our experiments. Furthermore, Hum-

drum and MIDI files of the underlying musical scores for

each performance are provided, representing the pieces in

an uninterpreted symbolic format.

In addition to the physical beat annotations of the per-

formances, we created musical annotations by grouping

the musical beats B in five different beat classes B1 to B5.

Each of these classes represents a musical property that

typically constitutes a problem for determining the beat po-

sitions. The colors refer to Fig. 4 and Fig. 5.

• Non-event beats B1 (black): Beats that do not co-

incide with any note events, see Fig. 1(a).

• Boundary beats B2 (blue): Beats of the first mea-

sure and last measure of the piece.

• Ornamented beats B3 (red): Beats that coincide

with ornaments such as trills, grace notes, or arpeg-

gios, see Fig. 1(b).

• Weak bass beats B4 (cyan): Beats where only the

left hand is played, see Fig. 1(e).

• Constant harmony beats B5 (green): Beats that

correspond to consecutive repetitions of the same

chord, see Fig. 1(c-d).

Furthermore, let B∗ := ∪5
k=1

Bk denote the union of the

five beat classes. Table 2 details for each Mazurka the

number of beats assigned to the respective beat classes.
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ID |B| |B1| |B2| |B3| |B4| |B5| |B∗|
M17-4 396 9 8 51 88 0 154
M24-2 360 10 8 22 4 12 55
M30-2 193 2 8 13 65 0 82
M63-3 229 1 7 9 36 0 47
M68-3 181 17 7 0 14 12 37

Table 2: The number of musical beats in each of the different
beat classes defined in Sect. 3. Each beat may be a member of
more than one class.

Note that the beat classes need not be disjoint, i.e., each

beat may be assigned to more than one class. In Sect. 6,

we discuss the beat classes and their implications on the

beat tracking results in more detail.

4. BEAT TRACKING STRATEGIES

Beat tracking algorithms working on audio recordings typ-

ically proceed in three steps: In the first step, note onset

candidates are extracted from the signal. More precisely,

a novelty curve is computed that captures changes of the

signal’s energy, pitch or spectral content [3, 5, 8, 12]. The

peaks of this curve indicate likely note onset candidates.

Fig. 2(c) shows a novelty curve for an excerpt of M17-

4 (identifier explained in Table 1). Using a peak picking

strategy [3] note onsets can be extracted from this curve. In

the second step, the local tempo of the piece is estimated.

Therefore, the onset candidates are analyzed with respect

to locally periodic or reoccurring patterns [5, 12, 14]. The

underlying assumption is that the tempo of the piece does

not change within the analysis window. The choice of the

window size constitutes a trade-off between the robustness

of the tempo estimates and the capability to capture tempo

changes. In the third step, the sequence of beat positions

is determined that best explains the locally periodic struc-

ture of the piece, in terms of frequency (tempo) and phase

(timing) [5, 12], see Fig. 2(d).

In our experiments we use three different beat track-

ers. First, we directly use the onset candidates extracted

from a novelty curve capturing spectral differences [11]

as indicated by Fig. 2(c). In this method, referred to as

ONSET in the following sections, each detected note on-

set is considered as a beat position. Second, as a repre-

sentative of the beat tracking algorithms that transform the

novelty curve into the frequency (tempo) or periodicity do-

main [5, 12, 14], we employ the predominant local period-

icity estimation [11], referred to as PLP in the following.

We use a window size of three seconds and initialize the

tempo estimation with the mean of the annotated tempo.

More precisely, we define the global tempo range for each

performance covering one octave around the mean tempo,

e.g., for a mean tempo of 120 BPM, tempo estimates in

the range [90 : 180] are valid. This prevents tempo dou-

bling or halving errors and robustly allows for investigating

beat tracking errors, rather than tempo estimation errors.

The third beat tracking method (SYNC) we use in our ex-

periments employs the MIDI file available for each piece.

This MIDI file can be regarded as additional knowledge,

including the pitch, onset time and duration of each note.

Using suitable synchronization techniques [9] on the ba-

sis of coarse harmonic and very precise onset information,
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0

0.5

1

1.5

35 36 37 38 39 40 41 42 43

35 36 37 38 39 40 41 42 43
0
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1

(a)

(b)

(c)

(d)

Time (sec)

Figure 2: Representations for an excerpt of M17-4. (a) Score
representation of beats 60 to 74. (b) Annotated ground truth beats
for the performance pid50534-05 by Horowitz (1985), see [1]. (c)
Novelty curve (note onset candidates indicated by circles). (d)
PLP curve (beat candidates indicated by circles).

we identify for each musical event of the piece (given by

the MIDI file) the corresponding physical position within

a performance. This coordination of MIDI events to the

audio is then used to determine the beat positions in a per-

formance and simplifies the beat tracking task to an align-

ment problem, where the number of beats and the sequence

of note events is given as prior knowledge.

5. EVALUATION MEASURES

Many evaluation measures have been proposed to quantify

the performance of beat tracking systems [4] by comparing

the beat positions determined by a beat tracking algorithm

and annotated ground truth beats. These measures can be

divided into two groups. Firstly, measures that analyze

each beat position separately and secondly, measures that

take the tempo and metrical levels into account [5, 12, 13].

While the latter gives a better estimate of how well a se-

quence of retrieved beats correlates with the manual anno-

tation, it does not give any insight into the beat tracking

performance at a specific beat of the piece.

In this paper, we evaluate the beat tracking quality on

the beat-level of a piece and combine the results of all per-

formances available for this piece. This allows for detect-

ing beats that are prone to errors in many performances.

For a given performance, let Π := {π(b) | b ∈ B} be

the set of manually determined physical beats, which are

used as ground truth. Furthermore, let Φ ⊂ R be the

set of beat candidates obtained from a beat tracking pro-

cedure. Given a tolerance parameter τ > 0, we define

the τ -neighborhood Iτ (p) ⊂ R of a beat p ∈ Π to be

the interval of length 2τ centered at p, see Fig. 3. We say

that a beat p has been identified if there is a beat candidate

q ∈ Φ in the τ -neighborhood of p, i.e., q ∈ Φ ∩ Iτ (p). Let

Πid ⊂ Π be the set of all identified beats. Furthermore, we

say that a beat candidate q ∈ Φ is correct if q lies in the

τ -neighborhood Iτ (p) of some beat p ∈ Π and there is no

other beat candidate lying in Iτ (p) that is closer to p than

q. Let Φco ⊂ Φ be the set of all correct beat candidates.

We then define the precision P = Pτ , the recall R = Rτ ,

and F-measure F = Fτ as [4]

P =
|Φco|

|Φ|
, R =

|Πid|

|Π|
, F =

2 · P · R

P + R
. (1)
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Iτ (p)

π(b − 1) p = π(b) π(b + 1) Time

H(p)

Figure 3: Illustration of the τ -neighborhood Iτ (p) and the half-
beat neighborhood H(p) of a beat p = π(b), b ∈ B.

Table 3 shows the results of various beat tracking proce-

dures on the Mazurka data. As it turns out, the F-measure

is a relatively soft evaluation measure that only moderately

punishes additional, non-correct beat candidates. As a con-

sequence, the simple onset-based beat tracker seems to out-

perform most other beat trackers. As for the Mazurka data,

many note onsets coincide with beats, the onset detection

leads to a high recall, while having only a moderate deduc-

tion in the precision.

We now introduce a novel evaluation measure that pun-

ishes non-correct beat candidates, which are often musi-

cally meaningless, more heavily. To this end, we define

a half-beat neighborhood H(p) of a beat p = π(b) ∈ Π

to be the interval ranging from
π(b−1)−π(b)

2
(or π(b) for

b = 1) to
π(b+1)−π(b)

2
(or π(b) for b = N ), see Fig. 3.

Then, we say that a beat b ∈ B has been strongly identified

if there is a beat candidate q ∈ Φ with q ∈ Φ ∩ Iτ (p) and

if H(p) ∩ Φ = {q} for p = π(b). In other words, q is the

only beat candidate in the half-beat neighborhood of p. Let

Πstid ⊂ Π be the set of all strongly identified beats, then

we define the beat accuracy A = Aτ to be

A =
|Πstid|

|Π|
. (2)

6. EXPERIMENTS

We now discuss the experimental results obtained using

our evaluation framework and explain the relations be-

tween the beat tracking results and the beat classes intro-

duced in Sect. 3.

We start with discussing Table 3. Here, the results of

the different beat tracking approaches for all performances

of the five Mazurkas are summarized, together with some

results from the MIREX 2009 beat tracking task [2]. All

beat trackers used in our evaluation yield better results

for the Mazurkas than all trackers used in the MIREX

evaluation. As noted before, the F-measure only moder-

ately punishes additional beats. In consequence, ONSET

(F = 0.754) seems to outperform all other methods, except

SYNC (F = 0.890). In contrast, the introduced beat ac-

curacy A punishes false positives more heavily, leading to

A = 0.535 for ONSET, which is significantly lower than for

PLP (A = 0.729) and SYNC (A = 0.890). For SYNC, the

evaluation metrics P, R, F, and A are equivalent because

the number of detected beats is always correct. Further-

more, SYNC is able to considerably outperform the other

strategies. This is not surprising, as it is equipped with

additional knowledge in the form of the MIDI file.

There are some obvious differences in the beat tracking

results of the individual Mazurkas caused by the musical

reasons explained in [6]. First of all, all methods deliver

SYNC ONSET PLP

ID P/R/F/A P R F A P R F A

M17-4 0.837 0.552 0.958 0.697 0.479 0.615 0.743 0.672 0.639
M24-2 0.931 0.758 0.956 0.845 0.703 0.798 0.940 0.862 0.854
M30-2 0.900 0.692 0.975 0.809 0.623 0.726 0.900 0.803 0.788
M63-3 0.890 0.560 0.975 0.706 0.414 0.597 0.744 0.661 0.631
M68-3 0.875 0.671 0.885 0.758 0.507 0.634 0.755 0.689 0.674

Mean: 0.890 0.634 0.952 0.754 0.535 0.665 0.806 0.728 0.729

MIREX Our Methods

Method DRP3 GP2 OGM2 TL SYNC ONSET PLP

F 0.678 0.547 0.321 0.449 0.890 0.754 0.728

Table 3: Comparison of the beat tracking performance of the
three strategies used in this paper and the MIREX 2009 results
(see [2] for an explanation) based on the evaluation metrics Pre-
cision P, Recall R, F-measure F and the beat accuracy A.

the best result for M24-2. This piece is rather simple, with

many quarter notes in the dominant melody line. M17-

4 is the most challenging for all three trackers because

of a frequent use of ornaments and trills and many beat

positions that are not reflected in the dominating melody

line. For the ONSET tracker, M63-3 constitutes a challenge

(A = 0.414), although this piece can be handled well by

the SYNC tracker. Here, a large number of notes that do not

fall on beat positions provoke many false positives. This

also leads to a low accuracy of PLP (A = 0.631).

Going beyond this evaluation on a piece-level, Fig. 4

and Fig. 5 illustrate the beat-level beat tracking results of

our evaluation framework for the SYNC and PLP strategy,

respectively. Here, for each beat b ∈ B of a piece, the bar

encodes for how many of the performances of this piece

the beat was not strongly identified (see Sect. 5). High bars

indicate beats that are incorrectly identified in many perfor-

mances, low bars indicate beats that are identified in most

performances without problems. As a consequence, this

representation allows for investigating the musical proper-

ties leading to beat errors. More precisely, beats that are

consistently wrong over a large number of performances

of the same piece are likely to be caused by musical prop-

erties of the piece, rather than physical properties of a spe-

cific performance. For example, for both tracking strate-

gies (SYNC and PLP) and all five pieces, the first and last

beats are incorrectly identified in almost all performances,

as shown by the blue bars (B2). This is caused by boundary

problems and adaption times of the algorithms.

Furthermore, there is a number of significant high bars

within all pieces. The SYNC strategy for M68-3 (see Fig. 4)

exhibits a number of isolated black bars. These non-event

beats do not fall on any note-event (B1). As stated in

Sect. 2, especially when dealing with expressive music,

simple interpolation techniques do not work to infer these

beat positions automatically. The same beat positions are

problematic in the PLP strategy, see Fig. 5. For M30-2

(Fig. 4) most of the high bars within the piece are assigned

to B3 (red). These beats, which coincide with ornaments

such as trills, grace notes, or arpeggios are physically not

well defined and hard to determine. For the Mazurkas,

chords are often played on-beat by the left hand. However,

for notes of lower pitch, onset detection is problematic, es-

pecially when played softly. As a consequence, beats that

only coincide with a bass note or chord, but without any

note being played in the main melody, are a frequent source
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Figure 4: The beat error histogram for the synchronization based beat tracking (SYNC) shows for how many performances of each of
the five Mazurkas a beat b is not identified. The different colors of the bars encode the beat class B a beat is assigned to, see Sect. 3.

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298 307 316 325 334 343 352 360
0

20

40

60

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181
0

10

20

30

40

50

M24-2

M68-3

b

Figure 5: The beat error histogram for the PLP tracker shows for how many performances of M24-2 and M68-3 a beat b is not identified.
The different colors of the bars encode the beat class B a beat is assigned to, see Sect. 3.

for errors. This is reflected by the cyan bars (B3) frequently

occurring in M17-4 (Fig. 4). Finally, B5 (green) contains

beats falling on consecutive repetitions of the same chord.

This constitutes a challenge for the onset detection, espe-

cially when played softly. Both M24-2 and M68-3 exhibit

a region of green bars that are incorrectly tracked by the

SYNC (Fig. 4) and PLP (Fig. 5) trackers.

As mentioned in Sect. 4, PLP can not handle tempo

changes well. As a consequence, many of the beat errors

for PLP that are not assigned to any beat class (e.g., M24-2

in Fig. 5, b = [260 : 264] ) are caused by sudden tempo

changes appearing in many of the performances. How-

ever, these are considered a performance-dependent prop-

erty, rather than a piece-dependent musical property and

are not classified in a beat class.

Table 4 summarizes the effect of each beat class on

the piece-level results. Here, the mean beat accuracy is

reported for each of the five Mazurkas, when excluding

the beats of a certain class. For example, M30-2 contains

many beats of B3. Excluding these ornamented beats from

the evaluation, the overall beat accuracy increases from

A = 0.900 to A = 0.931 for SYNC (Table 4 (left)) and

from 0.788 to 0.814 for PLP (Table 4 (right)). The chal-

lenge of M68-3 however, are non-event beats (B1). Leav-

ing out these beats, the accuracy increases from 0.875 to

0.910 for SYNC and from 0.674 to 0.705 for PLP.

Aside from musical properties of a piece causing beat

errors, physical properties of certain performances make

beat tracking difficult. In the following, we exemplarily

compare the beat tracking results of the performances of

M63-3. Fig. 6 shows the beat accuracy A for all 88 per-

formances available for this piece. In case of the SYNC

tracker, the beat accuracy for most of the performances is

in the range of 0.8− 0.9, with only few exceptions that de-

viate significantly (Fig. 6(a)). In particular, Michalowski’s

1933 performance with index 39 (pid9083-16, see [1])

shows a low accuracy of only A = 0.589 due to a poor

condition of the original recording which contains a low

signal-to-noise ratio and many clicks. The low accuracy

(A = 0.716) of performance 1 (Csalog 1996, pid1263b-

12) is caused by a high amount of reverberation, which

makes a precise determination of the beat positions hard.

The poor result of performance 81 (Zak 1951, pid918713-

20) is caused by a detuning of the piano. Compensating
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ID B B\B1 B\B2 B\B3 B\B4 B\B5 B\B∗

M17-4 0.837 0.852 0.842 0.843 0.854 0.837 0.898
M24-2 0.931 0.940 0.936 0.941 0.933 0.939 0.968
M30-2 0.900 0.900 0.903 0.931 0.905 0.900 0.959
M63-3 0.890 0.890 0.898 0.895 0.895 0.890 0.911
M68-3 0.875 0.910 0.889 0.875 0.875 0.887 0.948

Mean: 0.890 0.898 0.894 0.897 0.894 0.892 0.925

ID B B\B1 B\B2 B\B3 B\B4 B\B5 B\B∗

M17-4 0.639 0.650 0.641 0.671 0.593 0.639 0.649
M24-2 0.854 0.857 0.862 0.857 0.856 0.854 0.873
M30-2 0.788 0.788 0.794 0.814 0.772 0.788 0.822
M63-3 0.631 0.631 0.638 0.639 0.647 0.631 0.668
M68-3 0.674 0.705 0.689 0.674 0.678 0.674 0.733

Mean: 0.729 0.735 0.734 0.739 0.723 0.729 0.751

Table 4: Beat accuracy A results comparing the different beat classes for SYNC (left) and PLP (right): For all beats B, excluding
non-event beats B1, boundary beats B2, ornamented beats B3, weak bass beats B4, constant harmony beats B5, and the union B∗.
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Figure 6: Beat accuracy A for the beat tracker SYNC (a), ONSET

(b), and PLP (c) of all 88 performances of M63-3.

for this tuning effect, the synchronization results and thus,

the beat accuracy improves from A = 0.767 to A = 0.906.

As it turns out, ONSET tends to be even more sensitive to

bad recording conditions. Again, performance 39 shows

an extremely low accuracy (A = 0.087), however, there

are more recordings with a very low accuracy (70, 71, 79,

80, 57, and 58). Further inspection shows that all of these

recordings contain noise, especially clicks and crackling,

which proves devastating for onset detectors and leads to

a high number of false positives. Although onset detec-

tion is problematic for low quality recordings, the PLP ap-

proach shows a different behavior. Here, the periodicity

enhancement of the novelty curve [11] provides a cleaning

effect and is able to eliminate many spurious peaks caused

by recording artifacts and leads to a higher beat accuracy.

However, other performances suffer from a low accuracy

(performances 29, 30, and 77). As it turns out, these ex-

amples exhibit extreme local tempo changes that can not

be captured well by the PLP approach, which relies on a

constant tempo within the analysis window. On the other

hand, some performances show a noticeably higher accu-

racy (2, 5, 11, 31, 74, and 87). All oft these recordings are

played in a rather constant tempo.

7. FUTURE DIRECTIONS

Our experiments indicate that our approach of considering

multiple performances simultaneously for a given piece of

music for the beat tracking task yields a better understand-

ing not only of the algorithms’ behavior but also of the un-

derlying music material. The understanding and consider-

ation of the physical and musical properties that make beat

tracking difficult is of essential importance for improving

the performance of beat tracking approaches. Exploiting

the knowledge of the musical properties leading to beat er-

rors one can design suited audio features. For example, in

the case of the Mazurkas, a separation of bass and melody

line can enhance the quality of the novelty curve and alle-

viate the negative effect of the ornamented beats or weak

bass beats.
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ABSTRACT 

Pre-existing commercial music is widely used to accom-

pany moving images in films, TV commercials and com-

puter games. This process is known as music synchronisa-

tion. Professionals are employed by rights holders and  

film makers to perform creative music searches on large 

catalogues to find appropriate pieces of music for syn-

chronisation. This paper discusses a Discourse Analysis 

of thirty interview texts related to the process. Coded ex-

amples are presented and discussed. Four interpretive re-

pertoires are identified: the Musical Repertoire, the 

Soundtrack Repertoire, the Business Repertoire and the 

Cultural Repertoire. These ways of talking about music 

are adopted by all of the community regardless of their 

interest as Music Owner or Music User. 

Music is shown to have multi-variate and sometimes 

conflicting meanings within this community which are 

dynamic and negotiated. This is related to a theoretical 

feedback model of communication and meaning making 

which proposes that Owners and Users employ their own 

and shared ways of talking and thinking about music and 

its context to determine musical meaning. The value to 

the music information retrieval community is to inform 

system design from a user information needs perspective. 

1. INTRODUCTION 

The record and music publishing industries and artists and 

writers benefit financially from secondary exploitation of 

their copyrights when they are used in films, TV shows, 

advertising and computer games. This process is known 

as music synchronisation, or „sync‟. The professional mu-

sic Users employ specialists to search large catalogues for 

pre-existing commercial music in conjunction with the 

Owners‟ in-house specialists. Often these creative music 

searches are based on an ever-changing written query, or 

„brief‟, which is sometimes accompanied by a moving 

visual clip or still images. [1] 

The major Owners have attempted to disintermediate 

this process somewhat by developing and maintaining 

web-based applications which search their catalogues. 

These mainly use controlled vocabularies to explore data-

bases of textual metadata linked to the relevant audio 

files. As would be expected, the metadata fields used in 

these applications include bibliographic information such 

as Artist, Title, Year and Chart position. Additionally 

they recognize the need for the Users to search for un-

known items, and include more descriptive domain-based 

fields such as Mood, Genre, Tempo and Subject. Catalo-

guing is done by hand [2]. 

This paper presents a Discourse Analysis of thirty face-

to-face interviews with professionals involved in sync in 

the UK. These semi-structured interviews have taken 

place over a period of two years as part of a wider inves-

tigation into the communication processes and informa-

tion needs of this group of under-researched creative mu-

sic searchers. The aim of the paper is to present an analy-

sis of these texts which identifies the various interpretive 

repertoires used by this community of specialist users. A 

range of ways of talking about music is discussed, derived 

from a Discourse Analytic approach. The repertoires are 

adopted throughout the community and no repertoire is 

exclusive to one type of stakeholder. The varying dis-

courses represent different ways of constructing reality 

and reveal important factors which may contribute to the 

design of music information retrieval systems for the pur-

pose of music synchronisation. 

Publications discussing qualitative research of user in-

formation needs traditionally bemoan the fact that there is 

little work in this area. However awareness of user needs 

and behaviour keeps users on the ISMIR radar, even 

though they are not usually the focus of reported research. 

Generally focus is on tagging and certain aspects of eval-

uation, such as ground truth and playlist evaluation. How-

ever in [3] the word „user‟ does not appear in any top ten 

lists for ISMIR paper titles over the ten years of the con-

ference, nor, indeed, in the top 20 bi-grams from titles 

and abstracts. Nevertheless, applying „music information 

need‟ or „user behaviour‟ as a query to the ISMIR Cloud 

Browser [4] does generate a range of relevant work focus-

ing on user information needs such as [5,6,7]. This paper 

is situated within the user information needs paradigm 

and reflects the call at ISMIR 2009 [8] for the community 

to meet a number of challenges, the first identified being 

“ISMIR needs to more actively encourage the participa-

tion of potential users of music-IR systems.” [8] 

The next section introduces and describes the metho-

dology. This is followed by a summary of the findings 

and some examples of the coding and analytic process. In 

the final section the implications of the use of these reper-

toires are discussed, applying them to a theoretical model, 
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and suggestions are made as to how this work may be re-

levant to the music information retrieval community. 

2. METHODOLOGY 

In Discourse Analysis (DA), language is seen to construct 

reality, rather than simply reflect and describe it [9]. 

There are numerous methodologies under the DA umbrel-

la, which vary widely in the amount of detail in which 

they look at the texts being considered [10]. Texts may be 

any written or spoken form of interaction, including inter-

views and other documents which are related to the sub-

ject in question. The linguistic approach identifies pauses 

and hesitations and detailed lexicographic units, while the 

social psychology approach, used here, seeks to identify 

attitudes, beliefs and attributions [9].  Interpretive reper-

toires are described as “a lexicon or register of terms and 

metaphors drawn upon to characterize and evaluate ac-

tions and events” [9:138]. Although there is no „recipe‟ 

[11] for identifying interpretive repertoires [12] there is a 

developing DA literature in the library and information 

studies and human computer interaction domains [13-18].  

Since October 2007, 23 professionals directly involved 

in searching for music to accompany moving images have 

taken part in semi-structured interviews. Seven people 

were observed while making relevance judgments, three 

of whom had previously been interviewed [19]. The sam-

ple was derived using snowball sampling [20], where 

each participant in the research recommended a small 

number of people to approach for the next interview. This 

method allows access to previously hidden communities 

and distances the sample from the researcher‟s precon-

ceived ideas of who may be relevant. All participants 

were provided with an explanatory statement detailing 

and contextualizing the research project and gave in-

formed consent. Interviews and observations lasted up to 

one hour, were recorded digitally and transcribed using 

MS Word. The transcriptions were then imported into 

NVivo software [21] and coded manually by the corres-

ponding author, ensuring consistency. 

The objective of the analysis was to identify interpre-

tive repertoires within the interview and observation texts, 

highlighting the ways in which this community of varied-

interest stakeholders talk about music. Interpretive reper-

toires are drawn from and used by a wide community of 

interest. One viewpoint of DA is that no one participant 

will be consistent in their talk, and the researcher is likely 

to find consistencies and variability not only between 

texts, which may be expected, but also within them. These 

consistencies and contradictions are drawn from a variety 

of repertoires which represent different ways of thinking 

about something [11,12], in this case, music. All of the 

participants are talking about searching for music in large 

collections and using music with moving images. Howev-

er some of them are rights holders and their intermedia-

ries (Owners) while others are music supervisors and film 

makers (Users). Each group draws from the other‟s reper-

toires in their music talk. Analyzing these repertoires in 

detail should identify more than one way of talking about 

music, informing work on meaning making in creative 

music search. 

For the purposes of analysis there were two iterations 

of coding. On the first pass examples of „talk about mu-

sic‟ were identified. These were marked up using the cod-

ing facility in NVivo. This enables the researcher to tag 

highlighted text elements with bespoke codes and then 

extract, sort and analyse data tagged under specific codes 

in order to spot patterns, word and tag frequencies etc.. 

All the sections of text coded as „talk about music‟ were 

then examined to determine how music was being de-

scribed. Previous work had identified two broad groups of 

facets used in sync search engines [2] and user sync que-

ries [22]: Bibliographic (content-based) and Descriptive 

(contextual). These facets were used as a starting point for 

the coding. There seemed to be more of a focus on Bibli-

ographic data (eg Artist, Title) in the Owners‟ search en-

gines while the Users‟ queries were more based on De-

scriptive language (eg Mood, Novelty).  

3. IDENTIFIED REPERTOIRES 

The language within each „talk about music‟ section was 

carefully considered. This close reading of the transcrip-

tions brought to light ways of talking about music that did 

not fit into either Bibliographic or Descriptive talk. It was 

found that a total of four types of language were consis-

tently employed. These were identified by contradictions 

within or between texts or signalled by regularly-arising 

metaphors or phrases. Contradictions can be resolved by 

acknowledging a participant is switching repertoire and 

acknowledging the existence of more than one point of 

view. It is widely agreed in DA that this is a strong indi-

cation of interpretive repertoires. The words and phrases 

were divided into categories based on their themes, and 

coded within the interview texts (Table 1). Each theme, or 

repertoire, positions music differently in a users‟ world 

view. These are presented below as four interpretive re-

pertoires, which have been named the Musical Repertoire, 

the Business Repertoire, the Soundtrack Repertoire and 

the Culture Repertoire. 

3.1 The Musical Repertoire 

In this repertoire, music is an asset which is created and 

has identifiable characteristics. The repertoire is identi-

fied by the appearance of bibliographic musical keywords 

(Table 1) , such as „artist‟, „title‟, „instrumental‟, „lyrics‟. 

These familiar facets are commonly used to identify a 

piece of music. However, they relate more to how the 

Owners identify the music in their catalogues than how 

the musical elements are matched to a visual. Referring to 

an analysis of the Owners‟ bespoke search engines [2] 

these facets identify a recording or a composition and 
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help to isolate it within a large catalogue of recordings or 

compositions. The record companies and music publish-

ers responsible for curating commercial music catalogues 

and exploiting recordings and compositions use these 

„traditional‟ musical library facets when organizing their 

materials.  

3.2 The Business Repertoire 

In the Business Repertoire, music is a large collection of 

recordings which are marketable, contractual and nego-

tiable and have monetary value to the Owner. There are a 

number of facets relating to music talk that are not imme-

diately obviously musical, but they are important in ex-

ploitation terms nonetheless. These criteria are more con-

cerned with business issues relating to signing, exploiting, 

and licensing music and include such keywords as “li-

cense” and “clearance”‟. They also employ the words 

used to sell the music to consumers, such as “brand new”, 

and “cool”. The size of a catalogue is very important in 

this repertoire.  

There are frequent co-locations of physical metaphors 

when the Business Repertoire is used: “work with it”, “at 

the coalface”, “splattering”, “wall-to-wall”, “throw mu-

sic up against it”, “dig it out”, “churn up a ton of 

songs”, “trawl through a catalogue”. These physical me-

taphors indicate the way of thinking that music is a physi-

cal capital resource for the Owners and Users alike, and 

using it as such adds value to their commercial activities. 

3.3 The Soundtrack Repertoire 

Here, music is a mood enhancing ingredient inextricably 

linked to User‟s message being conveyed by moving im-

age to viewer / listener. This repertoire differs significant-

ly from the Musical Repertoire. In the Soundtrack Reper-

toire, music is „upbeat and quirky, with a bit of a build‟ 

as opposed to „uptempo and leftfield, with a crescendo‟. 

It is „recessive and background‟ rather than „acoustic 

with sparse instrumentation‟. This repertoire reflects the 

way in which the music functions when it is synchronized 

with the music, and the goal of the film maker in this 

process. It predominates in user queries [22] but also ap-

pears in interviews across the stakeholder spectrum. 

3.4 The Cultural Repertoire 

Finally, music is represented as being a subjective ap-

pealing distraction which is personal and emotive. The 

piece of film has a final audience, which also includes the 

participants in this process in their recreational lives con-

suming the media they are involved in creating. As recr-

eational consumers themselves they often bring less „pro-

fessional‟ music talk to these discussions, indicating they 

are enthusiastic fans of the cultures of music and film: 

These purely subjective evaluations of media content ap-

pear throughout the texts and are an important way of 

communicating the meaning and value of a piece of mu-

sic, film, or the combination of the two. It is marked by a 

frequent trope: „when it works, it works‟, „you just know‟, 

or „it‟s gut instinct‟. This phrase arises throughout the in-

terviews in response to the question „what makes a great 

sync?‟  

These repertoires are summarised in Table 1 (below) 

alongside examples of nouns, phrases and adjectives 

which help to identify the repertoire in the data: 

Repertoire Keywords 

Musical Repertoire:  

Music is an asset which is 

created, and has identifiable 

characteristics. 

Artist, song title, writer, 

year, album title, chart 

position, genre, key-

word, tempo, lyrics, 

mood, subject, vocal 

mix / instrumental 

Business Repertoire: 

Music is a large collection 

of recordings which are 

marketable, contractual and 

negotiable and have mone-

tary value to the Owner. 

Brand new, cool, big 

catalogue, comprehen-

sive, demographic, one 

stop, originating terri-

tory, physical 

Soundtrack Repertoire: 

Music is a mood enhancing 

ingredient inextricably 

linked to User‟s message 

being conveyed by moving 

image to viewer / listener. 

Effervescent, uplifting, 

recessive, theme, build, 

quirky, unexpected, fa-

miliar, theme, back-

ground, match the mu-

sic to the picture 

Cultural Repertoire: Mu-

sic is a subjective appealing 

distraction which is person-

al and emotive 

Like it, opinion, bril-

liant, great, hate it, it 

just works, gut feeling, 

instinct 

Table 1 Talk about music - interpretive repertoires 

4. REPERTOIRE ANALYSIS 

4.1 Extract 1 

An example of coded text can be seen in Appendix 8.1. It 

can be seen from this extract that the participant is using a 

range of approaches in her music talk. She is a synchroni-

sation manager in a music publishing company (Owner) 

and her role is to secure syncs for the music in the cata-

logue she represents. Her answer to the question: 

“How do you then match those to the briefs that you 

are sent and how do you promote them to to your po-

tential clients?” 

incorporates all four repertoires, which in the extract are 

tagged as <MR> (Musical Repertoire), <BR> (Business 

Repertoire, <SR> (Soundtrack Repertoire) and <CR> 

(Cultural Repertoire). (The colour coding used in NVivo 

has been translated in this paper into XML-type codes for 

ease of explanation and reproduction). In the BR firstly 

she identifies her business resource, the physical “dedi-

cated music server”, which contains a database of her col-

lection, which is “quick” and efficient (“the most opti-

mum way”) and refers to the physical acts of making cds 

and putting mp3s on an ftp site.  

She switches to SR, using the film makers‟ special lan-

guage of “briefs”, “visuals”, “matching the music to pic-

ture” and “marry it up”. Although it is not specifically her 

role to match the music to the moving image it is fre-

quently described by participants as their preferred way of 

determining relevance. Incorporating this SR act in her 

discourse indicates an understanding of “the other side”, 

657

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  

 

their way of thinking and working. Indeed she has work 

experience in the film world and is therefore in a position 

to adopt repertoires representing different interests.  

The CR is clearly identifiable through the use of the 

subjective opinion-oriented comments of “I think…” 

(“…are going to work / fit / appropriate”). This repertoire 

presents the idea that the „fit‟ between music and film is 

very subjective, and allows the User to make the final de-

cision. Forcing a piece of music on a User (“this is the 

one for you”) arises throughout the interviews as a bad 

approach, whereas a subtle negotiation approach or “let-

ting the user decide / discover” is preferred. The CR al-

lows this deference without devaluing the knowledge and 

expertise of speaker and puts them in a safe position if the 

final choice is not successful or popular, distancing them 

from unpopular decisions. 

The participant‟s use of MR in this section discusses 

the key elements of the musical content of specific 

“songs”, including lyrics (“words”), genres (“rock”, 

“pop”) and instrumentation (“acoustic instrumentals”). 

Unsurprisingly these facets appear throughout the texts 

and are used widely by the participants. Technical musi-

cal terms, however, such as melody, harmony, key, or 

rhythm are rarely mentioned. The MR is more focused on 

higher level bibliographic metadata than technical musi-

cal content. This widespread use of layman‟s musical lan-

guage enables easy communication between all parties 

and stakeholders regardless of their musical expertise. It 

consists of easily identified facets which are used to or-

ganize rights holders‟ collections rather than more tech-

nical film or musical terms used in the SR, or the market-

ing-based language of the BR. 

4.2 Extract 2 

Here (Appendix 8.2) a different participant (019SYN) 

discusses ”What makes a great sync”. He draws from the 

CR and BR in his answer, switching quickly from one to 

the other. Although he appears to believe that a “great 

sync” is one that “works perfectly with that film” he fully 

acknowledges that there are other factors which come into 

play from the BR, including “cost”, “politics”, “the PR 

and the story”. Again, combining these repertoires justi-

fies and explains self-contradiction and acknowledges the 

wide variety of factors that impact on the choice of music 

in this process. Although he initially aligns himself with 

the CR, presenting the BR as an unpleasant but necessary 

fact of life, he reinforces his professional standing by ac-

knowledging the importance of market-based factors to 

successful synchronisation. 

5. DISCUSSION 

5.1 Meaning-making 

These repertoires combine dynamically to determine mus-

ical meaning within this community. Music for synchroni-

sation is not purely an abstract art form. It has commercial 

value, and can be bought and sold, negotiated and 

cleared; it has physicality, weight and volume; it is an 

identifiable unique item in a large collection or an 

amorphous mass of a collection itself; it is defined by the 

factors around its creation, the artist, the date, or it is de-

fined by its effect on the mood or even purchasing activity 

of the listener / viewer; it is personal and subjective or it 

is a perfect match.  

Although there is often some emphasis on one or 

another of the repertoires, each of the participants ac-

knowledges this range of meanings in their music talk. 

These repertoires can be used to identify their Codes 

(ways of looking at music) and Competences (ways of 

looking at the world) [23]. Indeed, Owner Codes mainly 

draw from MR, User Codes from SR while Owner Com-

petences relate more closely to BR and User Compe-

tences to CR (see Fig 1, below). 
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Figure 1 Repertoires as Codes and Competences 

(adapted from [23]) 

The model in Figure 1 is adapted from [24], suggesting 

that the meaning making process in music synchronisation 

is a dynamic feedback loop between the Owner and the 

User. The Owners and Users draw from their own and 

shared Codes and Competences in determining and com-

municating musical meaning. The results of the DA re-

ported here reinforce the Codes and Competences aspect 

of the model. The intention is to investigate the Encoding 

/ Decoding process in future analyses. 

5.2 Music Information Retrieval  

The value of this work to the wider discipline of Music 

Information Retrieval is twofold. Firstly, the rich and de-

tailed insights into the Repertoires employed within this 

community of users offered by the analysis indicate a 

wide variety of ways of thinking about music. In terms of 

tool and, ultimately, system design, recognizing that mu-

sic is a multi-variate concept with conflicting features (it 

is abstract and concrete, it is objective and subjective and 

it can be used as part of a multi-media construct while 

standing alone) is key to successfully meeting user infor-

mation needs. For example, if these ideas were incorpo-

rated in the design of a system to find music for sync then 

the music would not only be described using bibliograph-

ic metadata (MR) but would incorporate facets from all of 

the repertoires. It would allow a user to search databases 

for a selection of thirty second sections of tracks which 

are popular with a specific target audience (BR), which 

have not been used in advertising (SR), have a build (SR), 

no vocal (or a vocal with a specific lyric which is relevant 

to the commercial‟s message) (MR), specific instruments 
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and feels (MR), price ranges and ease of approval (BR), 

and is of a style which is preferred by the stakeholders 

(CR). Much of the BR information can be found in the 

royalties and business affairs services in Owners systems 

and attempts are being made by some corporations to in-

corporate this into their search applications. Automated 

content-based tools such as „crescendo detectors‟ or „tim-

bre identifiers‟ would be of use for SR and MR, while au-

totagging and playlist-building reflect CR. A holistic ap-

proach can only benefit industry and the research com-

munity.  

Secondly, the dynamic element of this process reminds 

us that meaning is not static but relates both to content 

and to ever-changing context. This constant flux means 

that any research is purely a snapshot of ways of thinking 

and talking about music. As the digital information socie-

ty develops and music becomes all-pervasive, users and 

systems become more sophisticated. As the music indus-

try‟s relationship with music is forced by this develop-

ment to change then the Codes and Competences made 

apparent by this analysis are equally likely to develop and 

change. 

6. CONCLUSION 

There are appearances through the texts of four reper-

toires. Music appears to have many forms, which are all 

considered by all of the participants. Although at first 

glance it may appear that one group of people (the Own-

ers) thinks one way while another (the Users) think anoth-

er, this is not the case. Indeed their views are often simi-

lar. The ways of thinking about music in this community 

are more complex. There is certainly some value in ana-

lyzing the texts for their surface content - indeed this is an 

useful way to determine key themes and for the researcher 

to get an initial understanding of the dynamics of a multi-

stakeholder information communications process [1]. 

However, although it is time-consuming, applying DA to 

these texts has revealed patterns that were not already 

clear, given this analysis deeper insight into meaning 

making within this community and allowed some testing 

of the theoretical model [24]. 
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8. APPENDICES 

8.1 Extract 1 

In this interview extract (001SYN) it can be seen how the 

participant, who works for a rights holder, uses a range of 

repertoires to make a decision on the relevant piece of 

music. Each repertoire example is marked in <>: 

Question: How do you then match those to the briefs that 

you are sent and how do you promote them to to your po-

tential clients? 

Answer: <BR>I have all our music on a dedicated music 

server</BR><SR> so I will get a brief in and quite often 

I‟ll actually get the visual in as well so if I have the visual 

up on screen</SR><BR> I‟ll bring up my music data-

base </BR><SR>[the visual?]. The visual of the ad, for 

instance, they‟ll send me the visual of the ad, so I‟ve got 

the 60 second or the 30 second ad in front of me which 

really helps, because it‟s very different reading a brief 

and actually seeing how they shoot it. So I‟ll see it 

</SR><BR>then I‟ll bring up my music database and 

the</BR><MR> songs</MR> that <CR>I think 

work</CR> <BR>I‟ll pick up</BR> and <MR>I‟ll play 

the sections of the song</MR> that <CR>I think are 

going to fit</CR>. <SR>I‟ll match the music to the pic-

ture. I‟ll marry it up and see if it works or 

not.</SR><BR> That‟s the most optimum way of doing 

it </BR><SR>if you get the actual visual in. if I get the 

script then I‟ll look at the script, </SR><MR>I‟ll see if 

sometimes they‟ll have a keyword search sometimes they 

want words say sunshine in it, so I‟ll look at <BR>all our 

songs</BR> you know which songs have the word sun-

shine in </MR>and then <SR>match see </SR><BR>if 

pitch those </BR><CR>see if those work</CR>. 

<MR>Or there‟ll be a genre, what kind of style, you 

know they‟ll say „no rock, no pop, we just want purely 

acoustic instrumentals‟ anything like that, so I‟ll go 

through the all the instrumentals that I have in that genre 

and listen to those</MR><BR> and pitch 

</BR><CR>what I think‟s appropriate.</CR> 

<BR>Nowadays I have to say, I used to make up cds and 

send them out but because of the fast turnaround I email 

mp3s, or I put them onto an ftp site and I say „here [indis-

tinct] here‟s [indistinct] package you know download 

these,</BR><CR> these are the songs that I think are 

going to work for you</CR>.<BR> And that‟s how I get 

them out there. Because it‟s much quicker now to do that, 

much.</BR> 

8.2 Extract 2 

This example, features a freelance creative music searcher 

employed by ad agencies: 

Question: ok. Last one. What makes a great sync? 

Answer: Good question, what makes a great sync? 

<BR>I think the most important thing for me is not to 

compromise.<BR><CR> It has to be the best piece of 

music for that film.</CR><BR>.And away from all the 

other factors around it, ie cost, politics, all those things 

that come into it,<CR> it has to have that feeling</CR> 

that no matter where this piece of music has come from, 

no matter how much it costs, no matter who owns it, and 

who‟s getting the money,</BR> <CR>it is the right piece 

for this film. That‟s the essence, I 

feel.</CR><BR>Beyond that, I think, other things on top 

of the sync, beyond the sync, can make it a great thing, I 

mean the PR and the story. If it‟s a band that have been 

launched off the back of an amazing spot I think that can 
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also be really exciting, but that‟s just an added extra. 

</BR><CR>I think it‟s just how that piece of music 

works perfectly with that film. ..  yes.</CR> 
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Stanisław A. Raczyński, Nobutaka Ono, Shigeki Sagayama

The University of Tokyo

ABSTRACT

Most MIR systems are specifically designed for one appli-

cation and one cultural context and suffer from the seman-

tic gap between the data and the application. Advances in

the theory of Bayesian language and information process-

ing enable the vision of a versatile, meaningful and accu-

rate MIR system integrating all levels of information. We

propose a roadmap to collectively achieve this vision.

1. INTRODUCTION

MIR has the vocation of covering all music and all music-

related applications, e.g. transcription, structuration, align-

ment, tagging, personalization, composition and interac-

tion. Yet, most systems to date are designed for one class of

applications and one cultural context, namelyWestern pop-

ular music, which limits their reusability and their mean-

ingfulness in the sense of [12]. In addition, most systems

rely on general pattern recognition techniques applied onto

a bag of low-level features, which bounds their accuracy to

some glass ceiling. A system integrating all levels of in-

formation would make it possible to address virtually any

application on any data in a versatile, meaningful and ac-

curate fashion. For instance, it would enable much higher-

level interaction, e.g. changing the music genre of a record-

ing without affecting some of its other features. While

many share the vision of this complete system [1], no fully

satisfying approach has yet been proposed to achieve it.

One integration approach adopted e.g. by the NEMA 1

project or by [5] is to queue several audio and symbolic

feature extraction modules, so as to compute higher-level

“features of features”. This bottom-up approach greatly

improves accuracy but will eventually reach a glass ceil-

ing too due to the propagation of errors from one process-

ing stage to the next. Also, it is not fully versatile since

each application requires the implementation of a specific

workflow and the inputs and outputs of a module cannot be

swapped otherwise than by developing a newmodule. Top-

down approaches based on probabilistic graphical models

address these issues by estimating the hidden features best

accounting for the observed features [10]. All applications

1 http://nema.lis.uiuc.edu/
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then amount to inferring and possibly manipulating some

of the hidden features, without changing the model nor the

general decoding algorithm. For instance, small graphical

models such as Hidden Markov Models (HMMs) integrat-

ing harmony and pitch are routinely used to infer the most

probable chord sequence given a set of MIDI notes [8] or

conversely to generate the most probable melody given a

chord sequence [2] using the general Viterbi algorithm.

It is common belief that the formalism of graphical mod-

els has the potential to yield a versatile and accurate MIR

system by integrating more and more features into a hierar-

chical model. Yet, this formalism alone does not suffice to

achieve this vision, as challenging issues pertaining to the

definition of the model structure, the parameterization of

conditional distributions, the design of unsupervised learn-

ing algorithms and the collection of development data have

often been overlooked. In this paper, we explicitly state

and clarify these issues and derive a feasible roadmap.

2. COMPLETE MODEL STRUCTURE

The first task is to collectively define a taxonomy of mu-

sic features and their statistical dependencies that virtually

covers all existing and future music. This involves the fol-

lowing steps: building an exhaustive list of music features

and their definition, identifying features amenable to the

same theoretical treatment, e.g. genre and mood, and orga-

nizing these features into a dependency network. This is

not straightforward, since the current MPEG-7 standard 2

mostly addresses low-level or application-specific features

and agreed-upon definitions of features such as musical

structure or rhythm remain to found. Also, the dependency

network is not unique and a sparse network is preferred.

We propose a draft model of a music piece as a dynamic

Bayesian network in Figure 1. While it may be incomplete,

we believe that it provides a useful basis for community

discussion. In this graph, each node represents a sequence

of uni- or multidimensional features considered as a vector

random variable. Statistical dependencies are indicated by

arrows such that the conditional distribution of a variable

given its ancestors depends on its parents only. “Vertical”

hierarchical dependencies are explicitly displayed, while

“horizontal” temporal dependencies within and between

nodes are implicitly accounted for. We adopt a generative

modeling point of view [10] where lower-level features de-

pend on higher-level features. The joint distribution of all

variables then factors as the product of the distribution of

each variable given its parents [10].

2 http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm
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O

T1 T2 T3

S1 S2 S3 S4 S5 S6 S7

E1 E2 E3 E4 E5

A1 A2 A3

Overall features
O Tags: set of tags in Vtags covering all or part of the piece, e.g.

genre, mood, composer, performer, place and user preference

Temporal organization features
T1 Structure: set of possibly overlapping/nested sections, each

defined by its quantized duration in bars and by a section
symbol in Vsect

T2 Meter: sequence of bars, each defined by its reference beat
and time signature in Vmeter and by the associated metrical
accentuation level of each beat and beat subdivision

T3 Rhythm: sequence of events associated to one or more simul-
taneous note onsets, each defined by its quantized duration in
beats and by the associated number of onsets [11]

Symbolic features
S1 Notated tempo: beat-synchronous sequence of tempo and

tempo variation symbols in Vtempo

S2 Notated loudness: beat-synchronous sequence of loudness
and loudness variation symbols in Vloud

S3 Key/mode: beat-synchronous sequence of key/mode symbols
in Vkey

S4 Harmony: beat-synchronous sequence of chord symbols in
Vchord

S5 Instrumentation: beat-synchronous sequence of sets of active
voices, each defined by a voice symbol in Vinst (including
instruments, orchestra sections, singer identities, and sample
IDs, with various playing or singing styles)

S6 Lyrics: event-synchronous sequence(s) of syllables in Vsyll

S7 Quantized notes: set of notes (including pitched/drum notes,
voices or samples), each defined by quantized onset and du-
ration in beats, its articulation symbol in Vartic, its loudness
and loudness variation symbol in Vloud, its quantized pitch
and pitch variation symbol in Vpitch, its voice symbol in Vinst

and its syllable in Vsyll

Expressive performance features
E1 Expressive tempo: beat-synchronous sequence of actual

tempo values in bpm
E2 Expressive loudness: beat-synchronous sequence of actual

global loudness values in sones
E3 Instrumental timbre: beat-synchronous sequence of vectors

of parameters modeling the timbre space of each voice
E4 Expressive notes: set of notes, each defined by its actual

onset time and duration in s, its loudness curve in sones, its
pitch curve in Hz, and its trajectory in the timbre space

E5 Rendering: time-synchronous sequence of vectors of param-
eters characterizing the recording setup (e.g. reverberation
time, mic spacing) or the software mixing effects and the spa-
tial position and spatial width of each voice

Acoustic features
A1 Tracks: rendered acoustic signal of each voice
A2 Mix: overall acoustic signal
A3 Classical low-level features: MFCCs, chroma, etc

Figure 1. Draft model of a music piece. Dependencies

upon overall features are shown in light gray for legibility.

A wide application range is ensured by allowing the fea-

ture value sets Vsect, Vmeter, Vtempo, Vloud, Vchord, Vinst,

Vartic, Vpitch to be either fixed or adaptive and to contain a

∅ symbol denoting the lack of structure, meter and so on.

The variables T1, T3, S4 and S7 also implicitly depend on

a set of structural, rhythmic, harmonic, melodic and bass

patterns denoted Psect, Prhythm, Pchord, Pmelo and Pbass.

More generally, all model parameters can themselves be

regarded as variables [10].

Any variable may be either fully observed, partially ob-

served or hidden, leading to a huge range of scenarios. For

instance, automatic accompaniment consists of inferring

A2 given part of A1, while symbolic genre classification

consists of inferring part of O given S7. Playlist generation

or cover detection may also be addressed by comparing all

features O, T∗, S∗ and E∗ inferred from A2 in each piece

of a database according to some criterion.

3. SCALABLE CONDITIONAL DISTRIBUTIONS

Once the variables have been defined, the next step con-

sists of designing conditional distributions between these

variables. While recent studies in the field of audio source

separation have already led to complete family of acoustic

models P (A1|E4,E5) [9], many other dependencies have

either been studied in a deterministic setting or not inves-

tigated yet. More crucially, current probabilistic symbolic

models, e.g. [4, 8, 11], only account for short-term depen-

dencies between two or three variables taking few possi-

ble values and rely on hand tying of probabilities based on

Western musicology. This design method does not scale

with the long-term high-dimensional dependencies found

in Figure 1. For instance, the virtually infinite set of overall

features O affects most other features and the probability

of quantized notes P (S7|O,T1,T2,T3,S2,S3,S4,S5,S6)
depends on as many as 9 other features. Scalable meth-

ods must hence be found to parameterize each conditional

distribution so as to avoid overfitting.

A promising approach consists of modeling the condi-

tional distribution of a variable given its parents by inter-

polation of its conditional distributions given each parent

individually. This approach is widely used in the language

processing community [3] but does not account for possi-

ble interactions between parents. This issue may be tackled

by reparameterizing the space of parent variables in terms

of a smaller number of factors using e.g. Latent Semantic

Indexing (LSI) techniques [7] developed for text retrieval

and collaborative filtering. We believe that the extension

of these approaches to all symbolic music data will lead to

a similar breakthrough as in the above domains.

4. UNSUPERVISED LEARNING ALGORITHMS

The design of conditional distributions is closely related to

that of learning and decoding algorithms. Indeed, due to

the above dimensionality issues and to the variety of music

and individual music experiences, most distributions can-

not be fixed a priori but must be learned from possibly user-

specific training data or from the test data. Similarly, the
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feature value sets V∗ and the patterns P∗ must be learned

to identify e.g. the most relevant set of chord symbols and

patterns for a given song, in line with human listening that

picks up regularities based on prior exposure without ac-

tually naming them [12]. These learning tasks are always

unsupervised since training data annotated with all features

of Figure 1 will most probably never exist.

The estimation of some hidden variables consists of mar-

ginalizing i.e. integrating the likelihood over the values of

the other hidden variables [10]. This can be achieved using

the modular sum-product and max-product junction tree

algorithms [10] that generalize the classical Baum-Welch

and Viterbi algorithms for HMMs. The considered objec-

tive is often the maximization of the posterior distribution

of the inferred variables given the data. Although this Max-

imum A Posteriori (MAP) objective may be used for unsu-

pervised learning of the model parameters (i.e. conditional

probabilities) [8], it cannot infer the model order (i.e. the

dimension, the value set and the parents of each feature).

Unsupervised pruning of feature dependencies would also

considerably accelerate the speed of the junction tree algo-

rithm, that is exponential in the number of dependencies,

and make it possible to match the available computational

power in an optimal fashion. Suitable model selection cri-

teria and algorithms are hence of utmost importance.

Automatic Relevance Determination (ARD) and several

other popular model selection techniques employ prior dis-

tributions over the model parameters favoring small model

orders [7]. The alternative variational Bayesian inference

technique [10] selects the model with highest marginal prob-

ability by integrating the posterior distribution of all hid-

den variables. This technique also provides an approxima-

tion of the posterior distribution of all hidden variables as

a by-product. This increases the meaningfulness and in-

terpretability of the results compared to the estimation of

the MAP variable values only, at the cost of higher compu-

tational complexity. Again, we believe that advances will

eventually be achieved by combining these approaches.

The choice of algorithms will guide that of feature for-

mats. Efficient graph formats exist for the representation

of posterior distributions of symbolic feature sequences

[6], but they must yet be extended to e.g. polyphonic note

sequences. More generally, the high dimensionality of all

features will necessitate compressed feature formats.

5. MULTI-FEATURE ANNOTATED DATABASE

Finally, although the development of a database annotated

with all features of Figure 1 appears infeasible, somemulti-

feature annotated data will nevertheless be needed to ini-

tialize and evaluate the unsupervised learning process. This

implies strong community coordination to push current an-

notation efforts towards the same data and bridge the cul-

tural gap between experts of different music styles. Also,

this advocates for the evaluation of conditional feature es-

timation tasks within MIREX, where some other features

would be known, as opposed to the current full-fledged es-

timation tasks, where only audio or MIDI are given.

6. SUMMARY AND IMPLICATIONS

We provided a feasible roadmap towards a complete MIR

system, emphasizing challenges such as scalable parame-

terization and unsupervised model selection. As recom-

mended in [1], this implies that most efforts in the MIR

community now focus on symbolic data. Yet, other strong

implications also arise regarding the need for a coordinated

effort and the definition of MIREX tasks and data.
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ABSTRACT

The hypothesis of the paper is that the domain of Nat-
ural Languages Processing (NLP) resembles current re-
search in music so one could benefit from this by employ-
ing NLP techniques to music. In this paper the similarity
between both domains is described. The levels of NLP are
listed with pointers to respective tasks within the research
of computational music. A brief introduction to history of
NLP enables locating music research in this history. Pos-
sible directions of research in music, assuming its affinity
to NLP, are introduced. Current research in generational
and statistical music modeling is compared to similar NLP
theories. The paper is concluded with guidelines for music
research and information retrieval.

1. INTRODUCTION

Along with the information revolution triggered by the in-
troduction of computers, new opportunities have emerged
for music artists and researchers. When some began exe-
cuting computational problems on large mainframe com-
puters others used them to generate early computer music.
At this point of time one started to think how computers
might be used to process and analyze music matter. Mu-
sic, similarly to human speech, accompanied human evo-
lution from its beginning, so deep understanding of mu-
sic can allow better understanding of better human cog-
nition. However, music data is in most cases still treated
as unstructured binary data left on the same shelf with im-
ages, movies, computer programs; opposite to textual data,
which are easy to process, search, index, driven by a large
number of available computer aided techniques provided
by natural language processing, information retrieval or
text data mining like classification, analysis, generation,
summarization, indexing, searching, translation and much
more. However, music can be treated as a natural lan-
guage and could be processed in the similar way as text.
Although there are substantial differences between written
text and music, they have many features in common.
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NLP level Music research areas
phonetics Waveform analysis, audio signals
phonology Sound events identification
morphology Score symbols, symbolization
syntax N-grams, shallow reduction and parsing
semantics Harmonics, phrase level, parsing
pragmatics Phrases, voice leading
discourse Interpretations, context of a piece

Table 1. NLP Levels with respective music research tasks.

2. MUSIC AS A NATURAL LANGUAGE

By definition, a natural language is any language which
arises in an unpremeditated fashion as the result of the in-
nate facility for language possessed by the human intel-
lect. Not everybody agrees that music fits this definition,
but music researchers, who know the rules of music, are
usually more prone to agree with it. Music, as well as text,
has the symbolic representation that has its origins dated
back in ancient times. Music and language are the only old
human creative activities where symbolic representation is
commonly used. Others, like painting, sculpture, dance did
not have such common symbolic notation. Music notation
cannot be directly ported into computers like text is, but
this is only a representation issue that could be easily over-
come. For instance, the argument that text can easily be
split into words - the basic features for Natural Language
Processing (NLP) and Information Retrieval (IR), which is
not the case for music, can be countered if one mentions
that there are natural languages that do not use anything to
separate words, like Thai.

3. MUSIC RESEARCH PARALLEL TO NLP

In order to treat music as a natural language, one has to
show that music processing works on the same classes of
problems as NLP does. One distinguishes certain levels of
a text processing, listed in the Table 1. NLP tries to con-
vey the research through all those levels, from recording (a
voice, speech) to understanding (the meaning of a speech).

These levels also exist for music. Similarly to a natural
language, music can be recorded and presented primarily
as a waveform. On the ‘phonetics’ level one tries to in-
vestigate the structure of a sound, separate and distinguish
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between notes or instruments. However, music is much
more complex in this area and sound recognition tasks are
still facing basic problems.

The second very important similarity results from the
fact both domains use symbolic notations. Music score
also consists of characters which are called notes. Simi-
larly to NLP’s morphology and syntax — music has hid-
den, grammar-like structure, hidden rules. Part of it is the
harmony. It determines how to put words (notes) together,
how to build well-formed phrases using them. It also man-
ages the musical meaning of a piece of which the basic ex-
emplification is a progression of chords and notes. In the
case of notes and their dependencies — we may talk about
the syntax of the music while in the case of chords or har-
monic progressions — about the semantics of the certain
phrase or given the phrasing — the pragmatics of the ex-
cerpt. This is very similar in its form to one of the main
areas of NLP, which is grammatical analysis. The highest
level of NLP (discourse) is also common in music in a form
of ideas, desires or aspirations (romantic music) of a com-
poser as well as pictures and actions behind it (program
music). Dukas’s “The Sorcerer’s Apprentice” or Smetana’s
“die Moldau” are the very good example of such music.

4. HISTORY OF NLP AND MUSIC RESEARCH

The history of NLP reaches beginnings of the history of
computation since it is believed that the ability of com-
puters to process natural language as easily as we do will
signal creation of real intelligent machines. It comes from
the assumption that the use of language is an inherent part
of human cognitive abilities. Based on that a test, known
as the Turing test, has been proposed to determine if a ma-
chine is intelligent. The main objective of this test is that a
truly intelligent machine could carry on a discussion with a
human so that the latter could not recognize if he is talking
to a human or to a machine. This definition of intelligence
triggered the research in NLP with the ultimate goal to cre-
ate such a conversational program. If it is a feasible goal
one has to actually and physically implement the way peo-
ple think, reason and formulate thoughts.

At this point we can see a resemblance between human
speech and music. Assuming music is a natural language,
the Turing test would consist in generating musical pieces
so that an expert could not recognize if an author is a ma-
chine or not. Why not a layman? Because it would be
equivalent to a Turing test where an interlocutor does not
know the language of the talk. We would call it a Soft Tur-
ing Test which, unlike for regular human natural languages,
makes more sense for music.

4.1 Introduction of Grammars

There has been some pioneering work in both areas, NLP
and Music Research. Some natural language analysis in
a form of linguistics theories were made before the intro-
duction of computing machines. As an early, pre-computer
music research one can point work of Heinrich Schenker

with his Reduction theory in the beginnings of 20th cen-
tury.

These things changed rapidly for NLP just after com-
puters were invented. Interface to computers is textual and
this is a natural format of computer files. Moreover, there
was a very strong need for developing automatic machine
translation. The beginning of this - the Noam Chomsky’s
theory of context free grammars for natural texts - dates
back to 1956. Representing and processing music was not
the top priority of that times. As a similar work in the
field of music one can point the book ”A Generative The-
ory of Tonal Music” by Lerdahl and Jackendoff published
in 1983. Both of this approaches deal with the respective
areas in the same way - by introducing a formal grammar
that may generate instances in the given areas.

4.2 The period of ‘Look ma, no hands’

The early NLP researchers were very optimistic. The re-
search was driven by the goal of developing automatic ma-
chine translation. Various systems were created but, al-
though they worked perfectly on several, very limited ex-
amples, they were failing in the real-world applications.
The research came to the point where nothing more could
be achieved, and yet they haven’t created any robust sys-
tem that will work on real data. This created a crisis in
the whole field. It looked that despite their complicated
system, it is not possible to mimic human cognition in the
area of natural languages.

It is likely the time where the music research has just
come. It is not that crucial as for natural languages, since
one can still try to trick unexperienced listeners and thus
pass the Soft Turing Test with the system that does not
demonstrate the full understanding of the matter it deals
with. Another sign that the field of music research might
be in this kind of situation is the introduction of this kind
of tracks, where one asks about the future of the field(e.g.
fMIR).

4.3 Present NLP

The old approach - to create a model that will solve all
our problems in the area of cognition of human speech
— seemed to be wrong. Current research of NLP lies on
one hand on creating more precise generative models that
includes probability or other aspects of other features of
languages (for example using attribute value matrices —
AVMs). On the other hand, stochastic NLP has gone to-
wards classical Data Mining (DM) where with the use of
shallow parsing with mining on textual data gives much
better results than simple DM. NLP techniques are also
being injected to Information Retrieval increasing perfor-
mance of this systems. Finally, the great improvement has
been done in machine translation, the first goal of NLP re-
searchers, where Google Translate or Wave’s Rosy are the
examples. This is the direction which current music re-
search may follow.
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5. RELATED WORK

Current research in music concentrates around Music In-
formation Retrieval, both for the signal and symbolic mu-
sic representations. In most cases it deals on basic issues
how computers should deal with music data in general.
The level of music interpretation does not go into seman-
tics, probably because it is vague what the meaning in mu-
sic is. However, one should notice that current text Infor-
mation Retrieval benefits from the semantic layer of text
(text classification, ontologies and relations between terms,
dependencies between documents, linguistic layer of text).

We would like to emphasize the work of Lerdahl and
Jackendoff [5], who first describe a generative approach
that one can use toward the music. They describe it in a
computational linguistics manner, using preference rules
approach, mentioning that it could be possible to imple-
ment their rules in a working system. For the implementa-
tion of their system we had to wait for a long time, since
they did several elisions of some tough to define, impor-
tant basic notions, understandable by humans, but hard to
implement on a machine. A recent try, ATTA [3], deals
with all the implementation issues by introducing several
important limitations to the system, which does not go be-
yond syntactic level, leaving behind harmony issues.

Another preference rules generative approach, that in-
troduces very important component of modern NLP - prob-
ability, is described by Temperley [7]. Probabilities and
corpus based statistics is an inherent part of all modern
NLP theories hence probabilities can model the meaning
of text by inferring dependencies within it [6]. This work
reminds of the idea of probabilistic grammars introduced
earlier for text and proposed for music by Bod [1].

Statistical analysis is a very important component of
NLP models and it has played (Cope [2]) and will play
a major role in music research. In many cases, solutions
to many problems that gave good results for texts, could
give comparable results in music area. As an example,
the n-gram method of authorship attribution developed for
natural language texts [4] gave good results for composer
recognition of musical pieces [8].

6. FUTURE OF MUSIC RESEARCH

If the hypothesis that NLP and current computational mu-
sic research are in a sense the same but operate in two sim-
ilar but not identical fields, both fields could benefit from
this legacy. For instance, applications that span large num-
ber of levels of NLP (e.g. try to draw some high level con-
clusions based on low level music representations) would
work better, if they focus on a few levels only. As we have
pointed out the layers of NLP, some of them are not that
well covered for the music matter. Lots have been done in
the areas of music ‘phonetics’, ‘phonology’ and ‘morphol-
ogy’. We notice some recent work in the area of ‘seman-
tics’ but there is no models in higher, much more interest-
ing but complicated levels: ‘semantics’ ‘pragmatics’ and
‘discourse’. Those areas define the meaning of the data we
deal with, the understanding of undergoing structure and

the flow of composers ideas within a piece. In general, one
can stack different applications given the structure of NLP
i.e. the output of a model that operates on syntactic level
could be an input of a model operating on semantic level.

A few tasks that are relevant for music research and are
well developed within NLP are sentiment analysis, genre
classification, automatic summarization or idiom extrac-
tion. Other approach would be to enhance MIR with some
semantic aspects of music matter - music ontologies with
an application of shallow parsing (or alternatively, local
reductions) to reach the level of current state-of-the-art of
textual Information Retrieval. However, it is still not clear
how to represent meaning of music in computational tasks
but in this case statistical approach and data mining tech-
niques may be relevant tool to describe this phenomenon.

7. CONCLUSIONS

The domain of music research resembles research in NLP.
Both fields operate on the similar types of data that share
common features. Both domains deal with data that are
easily perceivable by humans but pose a lot of problems to
make them fully understandable by computers. Research
in both areas uses similar techniques and should be able
to take from each other in the areas that are more devel-
oped in one of them. Music researchers could share their
insight in tasks like voices separation or boundaries de-
tection while benefit from NLP’s statistical methods, au-
tomatic approaches to semantics or aiding information re-
trieval and data mining with natural language understand-
ing. It is not necessary that all those inherited techniques
and approaches will work but definitely, it is worth trying.
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