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Most automated behavior recognition systems are trained and tested on a single dataset, which limits their 

application to comparable datasets. While training a new system for a new dataset is possible, it involves 

laborious annotation efforts. We propose to reduce the annotation effort by reusing the knowledge obtained from 

previous datasets and adapting the recognition system to the novel data. To this end, we investigate the use of 

transfer learning in the context of rodent behavior recognition. Specifically, we look at two transfer learning 

methods and examine the implications of their respective assumptions on synthetic data. We further illustrate 

their performance in transferring a rat action classifier to a mouse action classifier. The performance results in 

the transfer task are promising. The classification accuracy improves substantially with only very few labeled 

examples from the novel dataset. 

Introduction 

The automated recognition of rodent behavior plays an important role in studies of neurological disorders such 

as Huntington’s disease. With the introduction of automated recognition systems, the results of such studies have 

become more accurate and better reproducible across laboratories [1]. 

Automated behavior recognition systems typically track the animals in videos and classify their behavior into 

several action categories. This classification involves an action model that is typically learned from annotated 

training sequences. Often these training sequences originate from a single dataset of one specific study [2]–[6]. 

As a consequence, a model that is applied to a dataset that is different from the training dataset may cause 

unwanted bias in the results [7]. 

In practice, every dataset is different. The data are affected by a variety of factors that occur in animal studies. 

For instance, laboratories use different video acquisition setups and cages. The animals behave differently 

depending on their species, age, gender and individual traits, but also on their treatment and potential disease 

progress. Each of these factors has an effect on the data distributions and therefore potentially on the accuracy of 

the recognition system. 

To ensure high recognition accuracy on a novel dataset, we could train a new action model tailored to that 

dataset [8]. However, the training comes at the cost of manual annotation efforts. Furthermore, a new action 

model would not take previous models into account and would therefore neglect valuable knowledge. Instead of 

learning a new action model from scratch, we propose to adapt the existing model to the new dataset by adopting 

a transfer learning approach. 

The key idea of transfer learning is to build upon previously obtained knowledge and combine it with a small 

amount of additional training data to obtain a model that performs optimally with respect to a novel dataset. The 

additional training data may contain annotated but also unannotated instances from the novel dataset depending 

on the method. In order to be able to balance previous and new knowledge, transfer learning methods make 

varying assumptions about which parts of the model do and do not change across datasets. 

In this paper, we take the first steps towards a behavior recognition system that combines previously learned 

knowledge with the ability to adapt to new datasets. We investigate the strengths and limitations of two transfer 

learning methods with fundamentally different assumptions in the context of rodent behavior recognition. We 

examine the implications of their respective assumptions on synthetic data and show their performance in a task 

transferring an action model trained on rats to a new action model for mice. 
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Related Work on Rodent Behavior Recognition 

The automated recognition of rodent behaviors typically involves classifying video frames into behavior 

categories based on features extracted from the video. The features may contain the trajectories of the moving 

animals as well as shape, pose and distance information. The system’s performance is eventually evaluated on a 

test set by comparing the automated classification to the annotations of one or multiple humans. 

A large number of recognition systems for animal behavior are trained and evaluated on subsets of one dataset 

[2]–[6]. Using different strategies, the dataset is split into training and evaluation sets. To increase the statistical 

power of the evaluation, multiple splits can be generated randomly and the accuracy values are then averaged 

[9]. Despite their statistical power, the scope of reported performance is limited to one specific dataset and we 

are uncertain about the validity on other datasets. 

The performance can be considerably lower on other datasets. An automated behavior recognition method for 

rats, for instance, has been reported to show a decrease in average precision by 17% if the system is tested on 

animals it has not encountered during training compared to when it was trained and tested on the same animal 

[10]. Along this line of thought, another study has recently shown that individual animals have distinct modes in 

their velocity and distance values [11]. Such individual traits potentially affect the automatic classification of, for 

example, walking and running. 

In addition, the experiment environment can influence the performance. For instance, illumination and viewpoint 

variations may affect the animal tracking whereas the dimensions of the cage scales distance and velocity 

features. Although some features such as distances can be normalized [12], factors such as individual traits of the 

animals do not correspond to single features and are therefore difficult to compensate for manually. A possible 

countermeasure is to include the expected variations of the environment and the animals in the dataset [9], [12]. 

Although such variations can improve the generalization properties of a classifier, they are limited to the 

included variations. Clearly, it is infeasible to create an annotated dataset that includes the infinite number of 

real-world variations and then test on it efficiently. Moreover, data with high variance pose classification 

challenges that can only be countered by complex classifiers and even more data. 

In this work we investigate the task of adapting a classifier that has been trained on one dataset to a novel 

dataset. In the field of machine learning such a task is considered a transfer learning problem. 

Transfer Learning 

Transfer learning addresses classification and regression scenarios in which the training and the test data are 

sampled from different data distributions [13]. Such scenarios occur frequently in real-world applications. For 

instance, for medical diagnosis a disease model may be learned from a group of affected patients and an equally 

sized group of healthy volunteers. If such a model is later applied to predict the disease in a much larger and 

more general population, it is likely to cause biased results. In this particular case, the model suffers from a 

sample selection bias. 

Sample Selection Bias 

Sample selection bias can degrade the accuracy of a model considerably [14]. We distinguish between two main 

sources of how a sample may become biased. First, as in the example of the disease model, the training set 

contains relatively more positive examples than the true population. The model is biased towards the positive 

diagnosis. In this case, the sample selection is dependent on the label (positive or negative). 

Second, the sample selection can also depend on the feature values. Consider the task of classifying fish species 

based on their length. If we take the training examples from a pool of mainly juvenile fish, we obtain a distorted 

image of the true distribution of length values. Again, classifications we make on basis of that model are biased. 
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Once we are aware of a sample selection bias in our training data, we can attempt to correct for it using a transfer 

learning approach. In transfer learning we consider data coming from different domains. While labeled training 

data is obtained from the source domain, the test data comes from the target domain. The transfer learning 

problem is then formulated as the task of finding a classifier that performs optimally in the target domain. 

Several methods address sample selection bias. The majority assumes that we do not have any labeled instances 

from the target domain to guide the knowledge transfer across the domains. Although we rely on training the 

model on source data, we can influence the training using the unlabeled target data. For instance, we can 

concentrate our learning effort on source samples that are surrounded by many target samples in the feature 

space and neglect the deviating samples. Assuming that the labels between the selected samples are the same, we 

yield a suitable model of the target domain. We need to ensure, however, that all target samples are close to at 

least some source samples so that all target samples are eventually reflected in the model.  

The concept of identifying the most important source samples is the key idea behind Kernel Mean Matching 

(KMM) [15], [16]. KMM distributes weights to the source samples according to their importance by minimizing 

the difference between the means of the target data and the weighted source data. Since the weighted source data 

match the target data better, a classifier trained on the weighted data performs better in the target domain.  

A similar approach is taken by Transfer Component Analysis (TCA) [17]. Instead of weighting source samples, 

TCA finds a feature mapping that minimizes the difference between source and target distributions in the 

mapped feature space. 

Regardless of the source of the bias, a sample selection bias influences the marginal probability distributions. As 

a consequence the distribution over samples 𝑋 differ between domains, i.e., 𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑋) ≠ 𝑃𝑇𝑎𝑟𝑔𝑒𝑡(𝑋). The key 

assumption that enables us to compensate for these differences is that the conditional probability distributions are 

not affected by the bias. That is, the probability of the occurrence of a label 𝑦 given a sample 𝑥 is the same 

irrespective of the domain: 𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑦|𝑥) =  𝑃𝑇𝑎𝑟𝑔𝑒𝑡(𝑦|𝑥). 

General Dataset Shift 

In the case that the assumption about the conditional distribution does not hold, we are facing a more general 

dataset shift problem. To solve it, we typically need to make other assumptions about the domain differences 

[18] or introduce information about the target domain, for example, by providing labeled target instances [19].  

The availability of labeled target instances enables us to estimate and optimize the performance of a classifier in 

the target domain. The transfer AdaBoost (trAdaBoost) [20] method repeatedly trains a classifier from the source 

data and predicts the labels of the known target instances. In each iteration it removes source instances that did 

not contain valuable information for classifying the target samples. After a number of repetitions the classifier is 

left with only the most important source samples and hence performs optimally in the target domain. 

As opposed to manipulating training instances and feature representations to change the data model, we are also 

able to directly manipulate the classifier and its parameters. The practical advantage is that the original source 

data does not need to be available for the transfer [21]. The disadvantage is that introducing new labeled 

examples involves new challenges such as finding the right balance between the established source model and 

the new target model [22]. 

An example of a method that manipulates an existing classifier is the adaptive Support Vector Machine (aSVM) 

[23]. The prerequisite for aSVM is a classifier that has been trained on the source data. aSVM then changes the 

decision function of that classifier such that the classification error regarding the target instances is minimized. 

At the same time, the modification of the decision function is kept as small as possible. The balance between 

classification error and degree of modification is controlled via a parameter that is determined manually. 
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For the purpose of investigating transfer learning in the context of rodent behavior recognition, we concentrate 

our analysis on two methods that take two fundamentally different approaches: KMM and aSVM. First, we 

examine their performance on synthetic data with a particular focus on violating their key assumptions. Second, 

we apply them to a simplified rat to mouse behavior transfer problem and discuss their performance. 

Experiments on Synthetic Data 

We apply the two transfer learning methods, KMM and aSVM, to two synthetic datasets. The datasets are 

illustrated in Figure 1. Dataset 1 contains two classes each represented by a bivariate Normal distribution (class 

1: 𝜇 = [1 2], 𝜎 = [
1.7 −1.2

−1.7 1.7
], class 2: 𝜇 = [0.5 0.6], 𝜎 = [

1.7 −1.2
−1.7 1.7

]). The source dataset is sampled 

from the true distribution under a sampling bias as proposed in related work [14]. Samples of class 1 are selected 

with a probability of 0.85 (𝑁1 = 850) while samples of class 2 with a probability of 0.15 (𝑁2 = 150). The target 

dataset consists of  𝑁1 = 300 and 𝑁2 = 700 samples and the class means are shifted by Δ𝜇 = [−0.3 −0.2]. 

Dataset 1 therefore includes a sample selection bias and a small shift of the conditional probability distribution. 

Dataset 2 has been used in related work to illustrate the aSVM method [23] and consists of a positive and a 

negative class. The positive class is represented by a mixture of three bivariate Normal distributions while the 

negative class is distributed uniformly outside the positive class. In the source domain, the positive class is 

determined by the parameters 𝜇1 = [−0.4 0.5], 𝜇2 = [0.5 0.7], 𝜇3 = [−0.1 −0.6], 𝜎 = 0.02; in the target 

domain by 𝜇1 = [−0.4 0.3], 𝜇2 = [0.5 0.3], 𝜇3 = [0 −0.65], 𝜎 = 0.02. Both source and target sets 

comprise 166 positive samples and 834 negative samples. Dataset 2 does not suffer from a sample selection bias 

but has a considerable shift in the conditional probability distributions. 

Before training the datasets are scaled to zero-mean and unit-variance based on the source data only. KMM is 

applied to the source and the entire, unlabeled target data to obtain the sample weights for the source samples. A 

SVM is then trained on the weighted source samples with parameters for dataset 1: linear kernel, C=1; and for 

dataset 2: radial basis function (RBF) kernel, C=1, 𝛾 = 5. 

For aSVM, we first train an SVM on the source data with the same parameters as before. Then, aSVM is applied 

to adapt the trained classifier given a varying amount of labeled target instances. We provide 1%, 2%, 3%, 4% 

Figure 1: Left: Two synthetic datasets with two classes each are split into a source and a target set. Right: the correct (green 

dots) and incorrect (red crosses) predictions of KMM and aSVM (5% labeled target instances) on the target data. 
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and 5% of the target set as labeled instances and subsequently test on the remaining samples. We perform 30 

repetitions using randomized samples and average the results among the repetitions. 

We evaluate the performance of the two methods in terms of the F1 score averaged across classes. For 

comparison, we include the performance of two baseline classifiers that do perform any knowledge transfer. 

First, an SVM is trained only on source data (SVMsource) and second, an SVM is trained only on the available 

target data (SVMtarget). All transfer learning methods should outperform both baseline classifiers. 

Results 

The averaged accuracies of the methods are shown in Figure 2. On dataset 1, KMM outperforms the other 

methods slightly. The accuracy of aSVM is comparable to SVMsource with only 1% of labeled target instances. 

With more data, aSVM converges to a similar decision boundary as KMM with comparable classification errors 

(Figure 1). If the SVM is trained on the labeled target data alone, we need at least 2% of the data to reach a 

performance comparable to the other methods. 

On dataset 2, KMM does not improve the prediction accuracy over the SVM that is trained on the source 

samples. The SVMtarget outperforms SVMsource if it has access to more than approximately 3.5% of the target 

data. aSVM achieves the highest accuracy of the compared methods. The accuracy of aSVM increases as more 

target instances become available. The increase is particularly strong on this dataset. The source model can be 

improved even with very few target instances. 

Discussion 

KMM is able to compensate for the sample selection bias and the small shift in the features in dataset 1. Due to 

the weighing of source samples, the resulting classification model is a good fit for the target data. In contrast, on 

dataset 2, the assumption that the conditional distributions remain the same across domains is violated and 

consequently KMM misclassifies more samples. Eventually, the lack of labeled target instances prevents KMM 

from improving the original source model. 

aSVM is able to use the available target labels to improve the source model. Moreover, aSVM outperforms 

SVMtarget which shows that the combination of knowledge from a previously trained model and knowledge 

from new instances is superior to learning a new model from scratch. 

The experiments on synthetic data show that the KMM is too sensitive to violating its key assumptions. aSVM 

appears more robust to changes in the conditional distributions and may therefore be better suited for a real-

world application such as rodent behavior recognition. 

Figure 2: Accuracy on synthetic datasets with varying amount of labeled target instances. Error bars show the standard error 

of the mean. Number of target samples (100%): N=1000. 
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Experiments on Rodent Behavior Data 

We now apply the two transfer learning methods to a simplified dataset of rodent behaviors. The learning task 

consists of transferring an action model for rats (source domain) to mice (target domain). Rats and mice perform 

similar actions but differ for example in their size and velocity. These differences affect the marginal as well as 

the conditional probability distributions. 

The simplified dataset comprises a subset of a larger rodent behavior dataset. Every sample in the dataset 

corresponds to a video frame from which a number of features are extracted. For the purpose of this article we 

select two actions sniff and walk, and two features Velocity and Optical Flow Energy. The chosen subset reflects 

a scenario in which the shift in the conditional distribution causes misclassifications in practice. The source set 

contains 𝑁𝑠𝑛𝑖𝑓𝑓 = 1261 (91%) and 𝑁𝑤𝑎𝑙𝑘 = 127 (9%) samples of sniffing and walking actions of one rat, 

respectively. The target set contains 𝑁𝑠𝑛𝑖𝑓𝑓 = 820 (81%) and 𝑁𝑤𝑎𝑙𝑘 = 194 (19%) samples of one mouse.  

The rodent dataset poses several classification challenges. The occurrence of the classes is highly unbalanced 

with a small selection bias towards sniff in the source domain. Furthermore, the conditional distributions differ 

between the domains as visualized in Figure 3. 

We apply both KMM and aSVM analogous to the synthetic datasets. Source and target SVMs are parameterized 

with a linear kernel (C=1). The training is performed with a varying amount of labeled target instances and is 

repeated 30 times with randomized samples. The performance is evaluated in terms of the F1 score averaged 

over classes. 

Results 

The accuracy of aSVM increases with the 

number of available labeled target instances 

(Figure 4). Similar to the synthetic dataset 2, 

only five labeled samples are sufficient to reach 

a substantial increase in performance over both 

SVMsource and SVMtarget. With 

approximately 3.5% of the target instances 

being labeled, SVMtarget has sufficient 

information to perform almost as well as aSVM. 

KMM improves the accuracy of the original 

source model by approximately 0.14 but is 

outperformed by aSVM with only 0.5% labeled 

target instances. 

Figure 4: Performance on real rodent behavior data with varying 

amount of labeled target instances. Error bars show the standard 

error of the mean. Number of target samples (100%): N=1014. 

Figure 3: Left: Rodent behavior dataset with two classes sniff (blue circles) and walk (orange triangles). Right: the correct 

(green dots) and incorrect (red crosses) predictions of KMM and aSVM (1% labeled target instances) on the target data. 
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In Figure 3 we count more misclassifications by KMM compared to aSVM. aSVM manages to find a decision 

boundary that matches the classes in the target domain well. A few classification errors remain along the 

decision boundary. 

Discussion 

The main challenge of the rodent dataset is similar to the challenge in synthetic dataset 2, namely the shifted 

conditional distribution. Consequently, aSVM is, as in the synthetic case, able to deal with that challenge better 

than KMM. aSVM therefore presents a viable option for transferring classifiers to another domain even if only 

very few labeled target instances are available. 

In all analyzed datasets, the transfer of knowledge from the source to the target domain is achieved best by 

aSVM. Although it cannot quite match the accuracy of KMM on the synthetic dataset 1, aSVM is more efficient 

to compute. While KMM evaluates the pairwise distances between all source and target samples, the calculations 

for aSVM are limited to minimizing the expected loss over the small amount of labeled target samples. The 

efficiency of aSVM will be an advantage if knowledge is to be transferred among larger datasets. 

In the performed experiments, we posed relatively simple classification problems. The classifiers’ performances 

saturate with very few examples so that the differences between the models vanish quickly. Moreover, we have 

only looked at binary classification tasks in a two-dimensional feature space. In rodent behavior recognition we 

need to distinguish between 8 or more classes in much higher dimensions. Further investigations are needed in 

order to determine the limits of aSVM. 

A practical aspect that requires our attention is a suitable strategy for sampling labeled target instances. In this 

work, we sampled uniformly from the available target data. For rodent behavior recognition, annotating single, 

random video frames may not be the best strategy as it is important to capture the variance within the 

performance of an action as well as across such performances. Therefore, annotating multiple, continuous 

segments of different behaviors may be a better approach. 

A related question is whether we can make the learning more efficient by avoiding random sampling and rather 

focusing on the most informative segments first. If this selection process could be automated then the user could 

be queried to provide annotations for the informative segments. The adaptation of the recognition system to a 

new dataset could then be carried out interactively with the user. 

Conclusion 

We have investigated transfer learning in the context of rodent behavior recognition. With transfer learning we 

aim at exploiting previously obtained knowledge from other datasets in order to improve the recognition in a 

novel dataset while reducing the annotation effort. In this article, we have evaluated two transfer learning 

methods and examined the implications of their respective assumptions on synthetic data. We have further 

illustrated their performance in transferring a rat action classifier to a mouse action classifier. 

The results of aSVM on the rodent behavior transfer task are promising. The fact that very few labeled examples 

from the novel dataset are sufficient to substantially improve the classification accuracy, encourage further 

investigations using aSVM. In the future, we will evaluate its performance on more complex data with more 

classes and in higher dimensional feature spaces. 

In its current implementation, aSVM can only handle binary classification problems. For its application to a 

wider range of rodent behavior recognition problems, the method has to be extended to multi-class problems. We 

will concentrate our efforts on extending the approach to more realistic classification tasks. 
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With our investigations, we have made the first step in the development of a rodent behavior recognition system 

that is adaptive to novel datasets under reduced annotation efforts. Further steps will be taken to enhance the 

applicability to more complex problems and to include the interaction with the user for higher efficiency. 
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