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Preface 
 
 
Research in the fields of representation and processing of the semantics of visual 
media has received a very high push in the last years. Semantic 3D Media is highly 
interdisciplinary and its evolution is conditioned by how experts in Computer 
Graphics will be able to communicate and exchange ideas and solutions with the 
community of the Semantic Web. 
 
The SAMT workshop Semantic 3D Media (S-3D) wishes to establish a scientific 
forum for exchanging and disseminating novel ideas and techniques in the emerging 
research field of Semantic 3D Media. S-3D aims to foster the comprehension, 
adoption and use of knowledge intensive technologies for coding and sharing 3D 
media content in consolidated and emerging application communities. 
 
S-3D targets at the scientific community working in the field of 3D graphics and 
knowledge technologies and encourages a dialogue between researchers and 3D 
content creators/users in a variety of application domains, such as medicine and 
bioinformatics, gaming and simulation, CAD and virtual product modelling, 
archaeology and cultural heritage.  
 
The workshop has broadcasted an open call for papers to attract a representative 
number of papers from leading researchers working on topics related to semantic 3D 
media and applications, including but not limited to semantics-driven 3D shape 
segmentation, formalization and representation of shape semantics, content-based 3D 
retrieval and classification, semantics-driven 3D visualization, 3D media ontologies, 
and semantics-based 3D modelling. The present proceedings contain two invited 
contributions, and seven reviewed papers.  

 
The workshop is partially supported by the project FOCUS K3D funded by the EC 
FP7, and the GATE (Game Research for Training and Entertainment) project, funded 
by the Netherlands Organization for Scientific Research (NWO) and the Netherlands 
ICT Research and Innovation Authority (ICT Regie). 
 
 
Bianca Falcidieno (CNR-IMATI, Italy) 

Nadia Magnenat-Thalmann (MIRALab, Switzerland) 

Remco Veltkamp (Utrecht University, The Netherlands) 
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David Duke 
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Abstract. An understanding of language is usually built on three foundations:  
syntax, semantics, and pragmatics.  If we think in terms of the web, XML 
addressed portable syntax, providing a common framework for structuring 
data.  RDF, OWL, and other semantic-web standards are working towards a 
level of semantic inter-operability, allowing the sharing of meaning.  But what 
about pragmatics, the question of how the components of a language are used 
by practitioners to express ideas or to achieve goals?  I argue that, although 
pragmatics may be less amenable to formalisation, it has no less important a 
role in "semantic media" applications.  I will discuss pragmatics in the context 
of both well developed work in data visualization, and my own more 
speculative work in domain-specific languages within graphics. 
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From geometric to semantic 3D content:  
the FOCUS K3D initiative 

Bianca Falcidieno 
 

Istituto di Matematica Applicata e Tecnologie Informatiche - CNR 
Via De Marini 6, 16149 Genova, Italy 

bianca.falcidieno@ge.imati.cnr.it 

 

Abstract. The paper presents the activities and achievements of the recently 
started project FOCUS K3D on the topic of semantic 3D content. FOCUS K3D 
aims at bringing together researchers and industries in Europe that are capable 
of identifying the needs of the users regarding 3D shape knowledge 
representation and processing. Moreover, through its dissemination activities it 
will create awareness of the benefits deriving from the re-use, and preservation 
of valuable scientific knowledge and resources in terms of 3D models, software 
tools for 3D manipulation and processing, ontologies and metadata. 

1   Introduction 

3D media are digital representations of either physically existing objects or virtual 
objects that can be processed by computer applications. 3D content is widely 
recognized as the upcoming wave of digital media and it is pushing a major 
technological revolution in the way we see and navigate the Internet. Beside the 
impact on entertainment and 3D web, the ease of producing and/or collecting data in 
digital form has caused a gradual shift of paradigm in various applied and scientific 
fields: from physical prototypes and experience to virtual prototypes and simulation. 
This shift has an enormous impact on a number of industrial and scientific sectors, 
where 3D media are essential knowledge carriers and represent a huge economic 
factor in many content sectors. 

Thanks to the technological advances, we have plenty of tools for visualizing, 
streaming and interacting with 3D objects, even in much unspecialized web contexts 
(e.g., SecondLife). Conversely, tools for coding, extracting and sharing the semantic 
content of 3D media are still far from being satisfactory. Automatic classification of 
3D databases, automatic 3D content annotation, content-based retrieval have raised 
many new research lines that represent nowadays some of the key topics in Computer 
Graphics and Vision research. At the same time, knowledge technologies, such as 
structured metadata, ontologies and reasoners, have proven to be extremely useful to 
support a stable and standardized approach to content sharing, and the development of 
these techniques for 3D content and knowledge intensive scenarios is still at its 
infancy . 

FOCUS K3D believes that semantic 3D media, as the evolution of traditional 
graphics media, make it possible to use and share 3D content of multiple forms, 
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endowed with some kind of intelligence, accessible and processable in digital form 
and in distributed or networked environments 1. The success of semantic 3D media 
largely depends on the ability for advanced systems of providing efficient and 
effective search capabilities, analysis mechanisms, and intuitive reuse and creation 
facilities, concerning the content, semantics, and context. 

After the seminal efforts of the AIM@SHAPE project 0, FOCUS K3D aims  at 
reinforcing the exchange of ideas with the application areas and at disseminating to 
those application areas emerging techniques in the research field of semantic 3D 
media. 

The project aims also at the identification of current issues on knowledge intensive 
3D media, which could trace future research and technological directions, and at the 
establishment of new partnerships to promote innovative projects addressing a highly 
multi-disciplinary community, both from academia and industry. To this end, it 
targets scientists not only in CG but in all the disciplines that make strong use of 3D 
modelling and simulation; professional developers of tools for 3D content creation 
and management; publishers/dealers of 3D repositories on line; creators of digital 3D 
content. 

2   FOCUS K3D Scenarios  

In FOCUS-K3D, specific application scenarios have been chosen as targets of 
specific dissemination and take-up actions that will demonstrate how semantic 3D 
content can answer a number of open problems in the content production and 
processing chain in those domains. In particular we will focus on Medicine and 
Bioinformatics, Gaming and Simulation, CAD/CAE and Virtual Product Modelling; 
Archaeology and Cultural Heritage.  

The FOCUS-K3D list of application scenarios is obviously not exhaustive, and 
these example domains have been chosen because they are good representatives of 
fields characterised by a massive use of 3D digital resources and huge amount of 3D 
data. Moreover, in these fields, the use of 3D data is not only related to visual aspects 
and rendering processes but it involves also an adequate representation of domain 
knowledge to exploit and preserve both the expertise used for data creation and the 
information content carried. 

In these application domains FOCUS K3D will address the needs of the different 
categories of 3D content providers and users, ranging from the professional creators 
to the talented amateurs. 

2.1 Medicine and Bioinformatics 

Medicine on the one hand and structural bioinformatics on the other hand are 
multi-disciplinary research fields featuring a subtle mix of geometric and knowledge 
based pieces of information.  

In medicine, geometric representations are directly provided by acquisition systems 
(MRI, CT, etc), and are instrumental in modelling processes.  On the other hand, 
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diagnosis, therapy planning and legal medicine resort to knowledge based 
technologies putting geometric models in  biological  and pathological contexts. In 
structural bioinformatics, a domain concerned with the relationship between the 
structure of bio-molecules (nucleic acids and proteins) and their function, geometric 
information is paramount to understand the way molecules adopt their 3D structure 
(the folding problem) or assemble (the docking problem). Endowing the geometry 
with complementary attributes (precise type or family of molecules, known binders, 
connection to metabolic pathways, etc) in a biological environment also calls for 
knowledge technologies. 

2.2 Gaming and Simulation 

Game research involves the creation of virtual worlds, in which physical and 
human behaviours are properly simulated. Obviously, modelling and processing 3D 
content plays an important role in this application area. Recently it was realised that 
gaming is a mature field with a high societal and economical impact, which requires 
multidisciplinary research. Involved disciplines include computer graphics, modelling 
and animation, (physical) simulation, artificial intelligence and agent technology, 
human-computer interaction, and semantics. Gaming and simulation is also a very 
heterogeneous application domain. For example, digital games are no longer just 
played on PCs or game consoles in living rooms. Instead, there is clear evidence that 
developments like mobile and ubiquitous gaming are more than just temporary trends. 
Similarly, games are no longer just played for fun. Impressive examples exist for the 
gainful application of serious gaming in disaster planning, product development and 
education.  

Members that expressed their interest in FOCUS K3D related activities so far 
include traditional game developers as well as groups working on serious gaming, 
universities and research labs as well as commercial vendors, museums, publishing 
companies, etc. Given the encouraging feedback and positive response we got for our 
initial activities, we are sure that FOCUS K3D will make some significant 
contributions in this context. 

2.3 CAD/CAE and Virtual Product Modelling 

Product Modelling largely contributed to the development of techniques for 
modelling and processing digital 3D models. It can be informally defined as the 
whole workflow that stretches from an idea about a new product (e.g. an appliance or 
a car), to the concept development and shape design, and then to a series of 
engineering-related steps such as testing, manufacturing or machining the physical 
object. More recently, many automotive and aerospace companies have heavily 
invested in Virtual Product Modelling technologies. 

Although the digital mock-up (DMU) offers numerous tools for the digital product 
development process, the workflow of design and redesign is significantly influenced 
by the usage of 3D data. Products are not just mechanical anymore; in fact, the share 
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of electronic components and software controlling the mechanical behaviour of 
products is rising increasingly fast.  

In the scientific literature, several proposals exist to employ ontologies for the 
knowledge-based formalisation of conceptual design know-how and intentions in 
order to improve retrieval and design reuse but still a lot of work has to be done to 
couple the semantic information with the geometric aspects of digital shapes. At 
present the CAD/CAE AWG already comprehends members from automotive, the oil 
and the electronic engineering industry who expressed their interest in the FOCUS 
K3D project. 

2.4 Archeology and Cultural Heritage 

A large part of the European archaeological and cultural heritage exists in digital 
collections (e.g. virtual museums, digital libraries, scientific repositories) which are 
becoming more and more demanding in terms of management, preservation, and 
delivery mechanisms. Images are probably the most common form of non-textual 
digital content stored, but three-dimensional (3D) content is expected to become 
predominant. This trend is, however, still in its infancy. In spite of the remarkable 
scientific and technological advances in areas like digitising 3D artefacts, archiving or 
presenting the 3D digital content, stakeholders are making little use of it. 3D models 
and virtual spaces have huge potential for enhancing the way people interact with 
museum collections..  

3D semantic modelling can be beneficial to provide documentation in case of loss 
or damage, and interactions with precious artefacts without risk of damage. These 
kind of activities require the acquisition and reconstruction of artefacts, providing 
high geometric accuracy in the digital models, photo-realism, full automation, low 
cost, portability andflexibility in applications, while minimising human interaction 
during the modelling process. 

The association with semantics is also crucial to visualise the models properly and 
retrieve them efficiently from large databases. Efficient retrieval implies equipping 
3D content with metadata related to both the whole object and its subparts, 
developing automatic metadata extraction tools and shape similarity mechanisms to 
compare objects, providing best practices assisting the processing phase. Semantic 3D 
media can also be efficiently employed for educational purposes, such as virtual 
tourism, virtual museums and 3D visualisation of city buildings and monuments, as 
well as 3D representation of past landscapes and past habitation environments, 
restoration, reconstruction and visualisation of artefacts. 

 
Acknowledgments. This work is done in collaboration with all partners of the FOCUS K3D 
Project 1. 
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Semantic-driven Best View of 3D Shapes 

Michela Mortara1, Michela Spagnuolo1 
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Abstract. The problem of automatically selecting the pose of a 3D object that 
corresponds to the most informative and intuitive view of the shape is known as 
the “best view” problem. In this paper we address the selection of the best view 
driven by the meaningful features of the shape, in order to maximize the 
visibility of salient components from the context or from the application point 
of view. Meaningful features can be automatically detected by means of 
semantic-oriented segmentations: we tested several approaches with very 
promising results in the automatic generation of thumbnails for large 3D model 
databases.  

Keywords: viewpoint selection, semantics, segmentation, 3D shapes. 

1   Introduction 

The problem of automatically selecting the pose of a 3D object that corresponds to the 
most informative and intuitive view of the shape is known as the “best view” 
problem. In many applications, like the creation of thumbnails for huge repositories of 
3D models or digital catalogues it is necessary to capture a pleasant and informative 
image of an object; moreover, choosing a specific view represents a mean to apply 
various Computer Vision techniques in the 3D setting, for instance for shape 
recognition and classification [1]. Up to now, such snapshots are still manually 
captured, with extremely high time consumption.  

Lately, some approaches to the best view problem have been proposed; in the 
majority of them, a set of admissible viewpoints are assigned a score with respect to 
certain characteristics that vary from the bare percentage of visible points from that 
viewpoint to more sophisticated functions. In [3] the saliency of the visible portion of 
a shape is used to select the best view, where saliency is strictly related to the mean 
curvature. In [4] saliency is applied after clustering similar views on the base of view 
stability.  

Conversely to other works, [13] takes into account structural information to 
compute the best view: in fact for a given volume topological feature-based 
segmentation is performed to yield a set of feature subvolumes and an entropy-based 
scoring function is evaluated to select the best viewpoint for the volume.  

Finally, [2] describes view scoring functions not only related to the geometric 
complexity of a shape (surface area entropy, visibility ratio or curvature entropy) or  
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to structural properties (silhouette entropy or topological complexity) but also 
envisages the exploitation of semantics or meaning of shape components.  

In this paper we address the selection of the best view based on the meaningful 
components (features) of a 3D shape, that is, the quality of a view is bond to the 
semantics of the displayed features. Such features may be given by a former 
annotation phase or may be obtained from advanced segmentation algorithms.  

Although plenty of segmentation methods have been proposed in the literature [6], 
the vast majority of them take into account only local geometric attributes of the 
shape to build up segments, disregarding the structural aspect and eventually the 
semantics, or meaning, of parts. In this work we just focus on those decompositions 
identifying parts with a well defined morphological connotation; we have 
experimented three approaches: the decomposition derived from the Reeb Graph of 
the shape [9]; the decomposition into a set of Fitting Primitives [8]; and the 
segmentation into tubular and non tubular features given by Plumber [7] (see Fig. 1). 
The first method is a topological approach that decomposes a shape into regions of 
influence of the critical points (maxima, minima and saddles) of a Morse function 
defined over the surface; the decomposition is strongly dependent of the chosen 
function. The second method hierarchically fits a set of pre-defined primitives 
(planes, cylinders, spheres and cones) and annotates the segments accordingly. The 
last approach identifies tubular features and annotates them with additional geometric 
and structural attributes. More details on these techniques can be found in [10]. Being 
these methods developed for triangle mesh representations, we focus on such models; 
nonetheless, the definition of our scoring function is straightforward for other 
representation schemes.  

 

        (a)             (b)            (c) 

Fig. 1. Segmentations obtained by the Reeb Graph (a), the Fitting Primitives (b) and the 
Plumber (c) methods. 

2   Viewpoint Scoring Function  

Let M be a triangle mesh embedded in the 3D space decomposed into a certain 
number of segments, where a segment is a connected cluster of triangles having 
homogeneous properties.  

Like in [2],[4] we determine in advance a finite set of viewpoints uniformly 
sampled over a sphere surrounding the object, the viewing sphere. The sphere is 
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obtained from an initial icosahedron by applying twice the Loop subdivision scheme, 
which gives a uniform distribution of 162 viewpoints surrounding the shape (see Fig. 
2).  

Given a viewpoint w, the visibility problem involves determining the portion of M 
that is visible to an observer positioned at w: a vertex v is visible from a viewpoint w 
if it is not occluded by any other mesh element, that is, the ray from w to v has no 
intersection with the mesh. Starting from that, we define the visibility of a segment s 
from the viewpoint w as the percentage of its vertices that are visible from w: 

Visibility(s,w)= # visible vertices from w in s / # vertices in s . (1) 

We used the algorithm presented in [5] to compute vertex visibility, which runs in 
O(n log n) time being n the number of mesh vertices. 

Being expressed as the percentage of its visible points, the visibility of a segment 
does not reflect its relevance with respect to the whole shape in terms of size; in other 
words, visibility alone may lead to views where small detail features are shown while 
main structural components are hidden. Thus, we introduce the relevance of a 
segment s as its magnitude as a part of the overall object in terms of surface area: 

Relevance(s) = Area (s) / Area(M) . (2) 

Since we are going to use semantic-oriented segmentations, we suppose that each 
segment has a particular annotation or meaning, and some of them may be considered 
more interesting than others with respect to the object kind or the particular 
application. Therefore we give more or less emphasis to segments depending on their 
type (Type(s)); finally, we privilege views that display as many segments as possible, 
taking into account the number of visible segments from that viewpoint (nvs(w)). 
Therefore our scoring function is the following: 

Score(w)= nvs(w) * Σsi ( Type(si) * Visibility(si,w) *Relevance(si)) , (3) 

that is, the score of a viewpoint w depends on the number of features visible from w 
multiplied by the sum of each feature’s contribution, made up by its visibility, its 
relevance, and its type. Obviously the feature type is segmentation specific: for 
Plumber it can be tube or body; for the Fitting Primitives it can be sphere, cylinder, 
cone or plane; for Reeb it can be maximum, minimum or saddle. We can hard-code 
specific weight values for each feature type.  

Fig.3 shows a few examples of the effects of the different factors on the best view 
computation. 
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Fig. 2. The viewing sphere surrounding the shapes. Each image is centred on the selected best 
viewpoint (from left to right the Fitting Primitives, Reeb graph and Plumber segmentations, 
respectively). 

           

(a)  (b)      (c)  (d) 

Fig. 3. Left: best view of a cup computed using specific weights on tubular features (a) and 
without taking into account the feature type (b). Right: best view of a chair with (c) and without 
(d) the number of visible feature factor. 

3   Results and Future Directions 

We tested our algorithm over the database of 400 models generated for the 
“watertight models” track of the Shape Retrieval Contest (SHREC) 2007 [11], 
subdivided into 20 classes of 20 models each. We associated to each class two of the 
three segmentation algorithms taken into account, choosing the more appropriate 
according to the morphology of shapes in each class (some examples are depicted in 
Fig. 4 and Fig. 5). In this way, we were able to assess the performance of the best 
view selection on different segmentations and using different combinations of the 
factors involved in the score determination.  

After the testing we applied the best view computation to automatically capture 
informative thumbnails for the 3D model database used in the SHREC 2008 - 
“classification of watertight models” track [12]. Classes were defined by semantic 
criteria, such as functionality (e.g., "objects for drinking") or presence of 
characteristic shape features (e.g., "parts with sharp features"). Basing on the a priori 
knowledge about each class and on the experience of the prior testing phase, we were 
able to run a shell script which automatically segmented each model according to the 
segmentation algorithm assigned to its class, computed the best view for that 
segmentation according to predefined class-specific factors, and finally grabbed and 
saved a 500X500 pixel image for that model. 

10



 

Fig. 4. Best view of natural shapes based on the Plumber segmentation (SHREC classes: 
human shapes, armadillo and four legged animals, respectively). 

 

               

Fig. 5. Top row: Examples of best views for the SHREC class of abstract shapes using the 
Fitting Primitives segmentation. Bottom: one of the two shapes in this class that required the 
snapshot to be re-captured manually. 

 Thanks to semantic-driven segmentations, the selected views are indeed intuitive 
and informative also compared with previous approaches (see Fig. 6); for instance in 
the “abstract shapes” class, which seemed the most challenging, only 2 of 41 
thumbnails needed to be re-captured manually (the fitting primitives segmentation has 
been applied, see Fig. 5).  

 
   (a)  (b)  (c) 

Fig. 6. Our best view of a hand model using the Reeb Graph segmentation (a) versus the best 
view computed in [4] (b) and [3] (c). Images (b) and (c) from [4]. 

When no a priori knowledge about the shape class is available, we found that the 
fitting primitives method performs best: in fact, being tuned on both planar and 
rounded surfaces, it is suitable for crafted objects as well as for natural forms. On the 
other hand, the fitting primitives gives a hierarchical decomposition, from which a 
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single segmentation must be extracted first (each level corresponds to a specific 
number of segments). On the SHREC databases we tested segmentations composed 
by 8 and 13 segments. The best view stability with respect to the number of segments 
is worth being investigated (Fig. 7 shows an example which suggests a certain 
stability of best view with respect to such scale changes), as well as the 
implementation of a hierarchical best view selection.  

To conclude, results are promising and we are currently  developing a heuristic to 
automatically set the up-vector of the image, which is still an open problem in the best 
view context. 

 
6 segments  8 segments  10 segments 

 
12 segments  14 segments  16 segments  

 
18 segments  30 segments  50 segments 

Fig. 7. Best view of a mechanical object segmented by the Fitting Primitives method, selecting 
different levels in the segmentation hierarchy (different number of segments).  

Acknowledgments. This work has been partially supported by the FOCUS K3D 
Coordination Action (FP7) EU Project. Particular thanks to Dr. Marco Attene and Dr. 
Silvia Biasotti for extracting the FP and Reeb segmentations, and to Dr. Daniela 
Giorgi for providing the SHREC models. 
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 Volumetric Modeling of 3D Human Pose from 
Multiple Video 
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Abstract. This paper describes a framework for modeling of 3D human pose 
from multiple calibrated cameras, which serves as the core part of a player 
pose-driven spatial game system. Firstly, by multi-view volumetric 
reconstruction, voxel-based human model is constructed. Secondly, by applying 
a hierarchical approach with a set of heuristics, fast indirect body model fitting 
algorithms are used to fit a predefined human model to the reconstructed data, 
and based on which human poses are modeled and semantically interpreted as 
certain control inputs to the game. 

Keywords: Volume reconstruction, model fitting, tracking, pose semantics. 

1   Introduction 

We address the modeling of 3D human pose, by fitting a predefined articulated and 
parameterized body model to the volumetric human body that is reconstructed from 
multiple calibrated video cameras. Our prospective application is a player pose-driven 
spatial game, a new type of interactive computer entertainment. Without attaching any 
extra sensors, the players can control the game by attaining body poses in front of a 
set of multiple cameras connected to a gaming system. The core parts of such a 
system are the player pose modeling and semantics interpretation. For our prospective 
spatial game application, real-time algorithms rather than algorithms that find the 
perfect fit are preferred, to avoid unpleasant system response delay. Therefore we use 
an indirect body model fitting method with a hierarchical approach and common 
sense heuristics to increase speed. 

Related work. Voxel-based 3D human model reconstruction [1, 2, 3] is recently 
recognized as a promising and robust method to recover human shape and motion 
features, which requires the multiple cameras to be calibrated. For fitting a predefined 
model to 3D reconstructed data, there are two common approaches: direct and indirect 
methods. The former is to fit sample points of the data to sample points of the 
template. To find a correspondence between two sets of points, several closest point 
and optimization algorithms can be used [2, 12]. The latter is to fit the template body 

_____________________________________________ 
* Work done while at the Department of Information and Computing Sciences, 

Utrecht University. 
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parts around the volume or surface by finding feature points like the center of mass or 
the use of skin color voxels [3, 11]. Direct matching is more accurate than indirect 
matching, yet for a spatial game as application where system response speed depends 
significantly on the pose modeling efficiency, indirect matching is the better and 
faster solution. 

Contribution. We have introduced a number of heuristics such as  (i) using a 
mass seeking box in the torso to keep track of the torso and to be used as estimate for 
the spine, (ii) the use of the spine vector for finding the neck and check for consistent 
head direction, (iii) the use of line fitting for the initialization of the shoulders, and the 
use of clustering for tracking the shoulders, (iv) the placing of spheres on the 
shoulders and elbows for locating the upper arms and lower arms. In addition, we 
have systematically evaluated the efficacy of our method. 

2 Volume Reconstruction 

Camera setup. Our multiple video data are acquired by 4 AVT Marlin Firewire 
cameras (640×480, 25fps) mounted on 1.9-meter tripods. Camera synchronization is 
done by software. Because cameras opposite to each other provide the same (mirrored) 
silhouette, the 4 cameras are setup as shown in Fig. 1 (left), so that no camera is 
facing directly to any of the others. 

Calibration. To specify the correlation between 3D lines in the world and 2D 
points in the four camera views, we use the respective Matlab camera calibration 
toolbox [4] and a 6×5 squares checkerboard as calibration object. The square corner 
coordinates are manually marked from the checkerboard images at different 
orientations. With the prior knowledge of the number and size of the squares on the 
checkerboard, the tool box calculates the intrinsic (Fig. 1 middle) and extrinsic 
parameters (Fig. 1 right) of a camera for each view, and align a global (world) 
coordinate system for the 4 cameras in this certain setup. 
   

 
 
 

   

Fig. 1. Camera setup (left) and checkerboard calibration (right). 

 
 
 
 
 

Fig. 2. (a) Video, (b) MoG background model, (c) foreground model,             
(d)  shadow removal and region merging (red circle). 

Background subtraction. For reconstructing the model of a person captured by 
multiple video cameras, first, the person in each video frame needs to be distinguished 
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from the background and extracted as a foreground mask [2]. We use the Mixture of 
Gaussians (MoG) method [5, 6] of OpenCV [9] for background subtraction and a 
simple shadow removal algorithm [7]. Pixel regions are merged according to a set of 
criteria: horizontal overlapping, X-distance of regions, summed area of merged 
regions [8]. See Fig. 2. 

3D voxel reconstruction. The 2D silhouette points obtained by background 
subtraction are the projection of a person from 3D to 2D. This projection can be seen 
as a set of rays or a silhouette cone that contains the 3D points of the subject. The 
logical conjunction of the silhouette cones of all cameras results into a visual hull [2] 
that estimates of the subject’s 3D shape (Fig. 3). We construct this visual hull using 
the voxel-based reconstruction method of Kehl et al. [2], resulting in a 3D voxel cloud 
model of a human subject. First a cube of voxels with a given depth (resolution) in 
millimeters is created. For each pixel of a camera view a lookup table (LUT) is 
initialized. To determine the correspondence between the pixels of each view and the 
voxels in the acquisition space, the center of each voxel is projected onto each view, 
and the voxel is added to the LUT corresponding to the pixel it was projected on. For 
each foreground image, an XOR operation detects changes in pixels. If a pixel has 
become part of the foreground, the corresponding voxels in the LUT are bitwise 
marked as visible for that view. Voxels that are part of the visual hull are visible from 
all views. They are selected by bitwise comparison of the LUT’s entries. 
 

      

Fig. 3. (a) Four camera views, (b) corresponding silhouettes, (c) voxel reconstruction of  
visual hull. 

3   Pose Modeling 

Human body model. Our goal is to extract pose parameters and not model 
appearance. Therefore, we adopted a simplified generic articulated model for basic 
shape estimation of a human body and used a combined state vector [10] to 
parameterize the model. It consists of a 10-joint skeleton (stick figure) representing 
the basic human kinematic structure, based on which the torso, arms, and legs are 
modeled as cylinders and the head as a sphere (simple volumetric primitives). The 
human body parts of the model are defined in relation to body length. See in Fig. 4:  
Skeleton (left), combined skeleton and body parts (middle), and body parts (right).  

Body model fitting approach. We use a fast indirect body model fitting methods 
similar to [3] and [11]. Template body parts are fitted around the voxel data based on 
feature points such as the center of mass, and voxels are then labeled to their 

(a) 

(b) 

(c) 
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corresponding body parts. The fitting order follows a hierarchical approach with 
common sense heuristics: Due to its distinguished shape, first the head is located. 
Then the neck and pelvis points are found that determine the torso. From the torso the 
shoulders can be located, followed by the elbows and hands. In relation to the 
shoulders and pelvis, the hips are located, followed by knees and feet. This 
hierarchical approach requires multiple or reoccurring generic algorithms for each 
body model part. Therefore each fitting module has initialization, estimation, iterative 
refinement and validation steps as described in the following. 

Initialization and global tracking. We use anthropometric measurements [3] to 
initialize the pose of the person in the scene while the subject is standing straight in a 
T-shape pose (Fig. 5). Using L and R to denote the length and radius of subsequent 
body part, and statL for the length of the subject’s stature, which is initialized by the 
height of the bounding box during the initialization pose. Hence all the other body 
parts can be initialized using statL  with the definition from [3]: 16/stathead LR ≈ , 

8/3 stattorso LL ≈ , 4/statcalf LL ≈ , 6/statfarm LL ≈ ,  6/statarm LL ≈ ,   4/statthight LL ≈ . For the global 
tracking of the body model, a cube with dimensions 3)*2( torsoR  is placed at the center 
of the torso sC  that is determined during initialization. For each frame, the mass 
center of sC  is optimized. The cube is large enough to remain within the torso 
somewhere along the spine, giving a global estimate of where the body is moving to. 

 
 
 
 

   
   

Fig. 4. Human body model   Fig. 5. Head initialization and refinement. 

Head fitting and tracking. The head center is initialized by computing the 
centroid hC  of the bounding box between statLz =  and headstat RLz *2−=  and optimized in 
a subsequent refinement step (Fig. 5). To estimatehC , the centroid ulC of the unlabeled 
head voxels within a sphere centered at the head centroid of the previous framehpC is 
computed. From ulC  and hC , a displacement vector ulhpd CCV −= is calculated with 
magnitude: ulhpheadm mmRd ⋅= )/(  ( hpm stands for the previous number of marked head 
voxels, ulm for the current number of unlabeled voxels within the previous head 
sphere). The new position of the head is set as: mdhph dVCC ⋅+=

∧ . For validation, we look at 
the vector sV  between the torso center sC  and hC : shs CCV −= . Since the head cannot 
move significantly into the torso, and the spine can not bend more than 90 degrees at 
the neck, the dot product between the spine vector and the head displacement vector 
between the previous and current head center cannot be negative, otherwise a re-
estimate has to be made for hC  by relocating the head along sV  with a certain 
distance rld . The magnitude sd  of the previous spine vector is ssps VVd

∧
⋅= . The 

displacement correction cd  between sC and spC is: sspsc VVVd
∧

⋅−= )( . Using the relocation 
distance csrl ddd −= , head can be relocated along the spine: rlssh dVCC ⋅+=

∧ . In Fig. 6 (left 
to right): If hC  moves into the torso, compute previous spine magnitude, compute 
displacement magnitude, and relocate head. 
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 Fig. 6. Head validation and relocation. 

Torso fitting and tracking. To initialize the torso cylinder, first the neck centroid 
nC in the cube centered at hC with z-value headstat RL *2−  is computed. Then the pelvis 

centroid pC in the bounding box between thightcalf LL + and 2/torsothightcalf LLL ++ , the spine 
vector sns CCV −= , and pelvis position torsosnp LVCC ⋅−=

∧  are calculated (Fig. 7). The neck 
center is estimated by adding a vector with the reversed direction of the spine vector 
and the head radius headR  as magnitude to the head centroid: headshn RVCC ⋅−=

∧ . The pelvis 
center is estimated by adding a vector in the same direction with the length of the 
torso to the neck position: torsosnp LVCC ⋅−=

∧ . nC  is refined by placing a sphere with radius 
headR  on the estimated position. The center of mass of the non-head voxels is 

computed. pC  is refined by placing the cap of the torso cylinder on the neck and the 
estimated pelvis position. By fixating the cap corresponding to the neck, and 
computing the center of mass tC , the axis of the cylinder can be placed onto tC . The 
process is repeated until tC  has been stabilized. Finally, the voxels within the torso 
cylinder are marked as torso [3, 11]. 
 

 

Fig. 7. Initialization of neck, pelvis, and torso. 

To estimate the torso radius, firstly a 2D binary image is created by projecting the 
voxel slices along the spine vector between head and middle torso onto the z-plane 
while ignoring the head voxels. Least-squares line fitting is applied to the acquired 2D 
point set to determine the orientation of the torso. Secondly the voxels between the 
middle torso and pelvis are projected onto the z-plane. After the projection, the points 
are rotated in line with the orientation of the torso. The maximum x-width and y-
height of the point blob now corresponds to the width and depth of the torso (Fig. 8), 
the average between these two values is then taken as torso diameter. 

 

Fig. 8. Estimation of the torso radius. 
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Arm/leg fitting and tracking. To locate the arms, first the shoulder centroid shC  
must be found. The unit vector oV

∧  (collinear to the fitted line) is determined by 
means of least-squares fitting. The shoulder centroid can be computed as: 

torsoonsh RVCC ⋅+=
∧ , or torsoonsh RVCC ⋅−=

∧  (mirrored to the other shoulder). The shoulder position 
is then found by placing a sphere with radius armR  on the initial estimate of the 
shoulder position. The centroid of the torso-marked voxels and the centroid of the 
unmarked voxels within the sphere are computed. The initial shC  is computed as the 
point in between both centroids. For estimation of the shoulder location, an outer 
cylinder is placed around the torso cylinder from the neck cap to the waist (Fig. 9 
left). Then the unmarked voxels within the outer cylinder are selected. By applying k-
means clustering on the selected voxels, two clusters of arm voxels are found (Fig. 9 
right). For refinement, the two neck-to-cluster-center vectors are projected onto the 
upper cylinder cap (neck). The identification of the shoulders is done based on the 
distance between the current and the previous shoulder locations. As validation, the 
distance between these locations should not be larger than a threshold. Otherwise the 
displacement of the neck is applied on the previous shoulder position to determine the 
current shoulder position. Finally, the distance between the two shoulders should not 
be within a certain range. If so the shoulders are set apart. 

 
 

 
 
 
 

Fig. 9. Estimation of shoulder position.            Fig. 10. Estimation of upper (left) and 
lower (right) arm direction. 

To locate the elbows, an estimate of the direction of the upper arm is made by 
placing a sphere next to the shoulder shC  with radius armL  centered at 

)( armtorsosrsr RRVC −⋅=
∧ , where nshsr CCV −= . Then, the centroidedC of unmarked voxels is 

computed (Fig. 10 left). On edC , another sphere of radius armL∗5.0  is place to refine 
edC . By the direction from shC  to edC  and the magnitude of armL , the elbow position 
eC  can be estimated as: armeshe LVCC ⋅+=

∧ , where shede CCV −= . As last refinement step, a 
sphere with the radius of armR  is placed on eC  to re-compute the centroid. If no 
voxels are found within radiusarmR , then the radius will be enlarged until a centroid is 
found. As validation, eC  is compared to the previous elbow position. If their distance 
is larger than a threshold, the previous displacement of the elbow is applied. In the 
last step, the voxels within the upper arm cylinder are marked. 

Similarly, the hand position is found by placing a sphere next to the elbow (in the 
opposite direction of the upper arm) with a radius of farmL∗5.0  centered at 

)( farmarmsrhesrh RLVCC −⋅+=
∧ , where shesrh CCV −=  (Fig 10 right). The centroid of the unmarked 

voxels within the sphere is then computed to find the middle of forearm. By the 
direction from eC  to the found centroid and the magnitude offarmL , the hand position 
is estimated as farmhdehd LVCC ⋅+=

∧ , where ehddhd CCV −= . Similarly to the elbow centroid 
refinement, a sphere with radius farmR  is placed on hdC  and the centroid of unmarked 
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voxels is computed. Finally the voxels within the forearm cylinder are marked as a 
hand. 

To locate the legs, we use a similar approach as locating the arms.  
Pose semantics. Depending on the specific game, the body pose can now be 

represented as a 5-tuple BodyPose = {left leg, right leg, left arm, right arm, torso}, 
where the legs and arms pose can have values {up, side, down}, and the torso pose 
can have values {up, forward}. For example, a Y-pose can be modeled as {down, 
down, up, up, up}, denoting a 'yes' input to the game, and a bowing pose can be 
modeled as {down, down, down, down, forward}, denoting exiting the game. 

4   Evaluation and Conclusion 

In order to evaluate the performance of our approach, we applied the body model 
fitting and pose modeling to three video sequences of different persons moving and 
performing several poses: two Asians (female and male) and one Caucasian (male). 
Assessment is done by subjective observation. From the initialization of the body 
model until the end of the sequence, one out of every twelve frames is evaluated with 
respect to the positions of head, torso, upper and lower arms. The position of the 
skeletal bone is verified in relation to the voxel and video data. If a bone fits onto the 
body part, it is marked as a good fit. If a bone is not exactly in but only up to half off, 
the supposed position is marked as a fair fit. In all other cases, it is marked as a poor 
fit. The evaluation of the first video sequence containing the Caucasian male is 
illustrated in Fig. 11 (left). For these frames, body model fitting works very well with 
almost completely correct matching for everything besides the lower arms. Errors 
there can be explained by: ‘sticky’ arms while the arms are very close to the torso and 
stick to it instead of fitting onto the voxel data corresponding to the lower arms; 
‘float’ upper arm caused by voxels between the head and the arm; holes in voxel 
cloud; subject’s long hair etc. The overall fitting evaluation for all three video 
sequences is illustrated in Fig. 11 (right). 

  
                        

Fig. 11. Example video (left) and overall evaluation (right). 

  In this paper we described a framework for modeling of 3D human pose from 
multiple calibrated cameras (and pose semantics interpretation) as the core part of a 
spatial gaming system. By using more robust multi-view based 3D pose modeling, 
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our work opens the way to a more accurate semantics-level understanding of human 
poses. 

For future work, body part constraints can be applied within the validation part of 
the algorithms to avoid impossible poses or movements of body parts. The evaluation 
can be extended by testing on more subjects. The framework will be extended to the 
multi-person case where mutual body occlusion and proximity must be handled. 
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We have previously proposed a shape-based 3D model retrieval algorithm that 
compares 3D shape based on local visual features. The method first computes a 
set of multi-scale local visual features from a set of depth images rendered from 
multiple view orientations about the 3D model. Thousands of visual features 
per model are integrated into a feature vector for the model by using so-called 
bag-of-features approach. The algorithm performed very well, especially for 
models having articulation and/or global deformation. However, the method 
was computationally expensive; retrieving a model from a 1,000 model 
database took more than 10s. This because the costs of rendering depth images, 
extracting local visual features, quantizing these features, and computing 
distance among the pairs of integrated features can be quite expensive. In this 
paper, we significantly accelerated the algorithm by using a Graphics 
Processing Unit (GPU). 

Keywords: 3D geometric modeling, content-based information retrieval, GP-
GPU algorithms. 

1. Introduction 

We have previously proposed a shape-based 3D model retrieval algorithm that 
handles both articulated and rigid models [7]. The algorithm, called Bag-of-Features 
SIFT, is appearance based, so it accepts a diverse set of 3D shape representations so 
far as it can be rendered as range images. To achieve invariance to articulation and/or 
global deformation, the algorithm employs a set of multi-scale, local, visual features 
to describe a 3D model. We used a saliency-based multi-scale image feature called 
Scale Invariant Feature Transform (SIFT) by David Lowe [5] to extract the visual 
features. To reduce the cost of model-to-model similarity comparison, the set of 
thousands of visual features for the model is combined into single feature vector by 
using so-called bag-of-features approach (e.g., [2, 3, 9, 11]). 

Our empirical evaluation showed that the algorithm performs very well, especially 
for models having articulation and/or global deformation. For rigid models, such as 
those found in the Princeton Shape Benchmark [6], the method performed as well as 
some of the best known 3D model retrieval methods, such as the Light Field 
Descriptor (LFD) [2] and Spherical Harmonics Descriptor (SHD) [4]. For articulated 
models, the BF-SIFT significantly outperformed the LFD and SHD. 
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However, the BF-SIFT algorithm has a high computational cost in computing the 
feature vector. Rendering depth images, extracting thousands of local visual features 
per model, and quantizing these features, can be quite expensive. 

In this paper, we propose a Graphics Processing Unit (GPU) based approach to 
accelerate BF-SIFT algorithm. The proposed algorithm employs GPU-based 
rendering and GPU-based SIFT feature extraction. Along with the use of table lookup 
in the distance computation stage, the method achieved a query processing time of a 
few seconds for a hypothetical database having 100,000 models. 

2. The BF-SIFT Retrieval Algorithm 

We will briefly review the original Bag-of-Features SIFT (BF-SIFT) algorithm [7], 
followed by the method we employed to accelerate the algorithms. 

2.1 Original BF-SIFT algorithm 

The BF-SIFT algorithm compares 3D models by following the steps below;  

1. Pose normalization (position and scale): The BF-SIFT performs pose 
normalization only for position and scale so that the model is rendered with an 
appropriate size in each of the multiple-view images. Pose normalization is not 
performed for rotation. 

2. Multi-view rendering: Render range images of the model from iN  viewpoints 
placed uniformly on the view sphere surrounding the model.  

3. SIFT feature extraction: From the range images, extract local, multi-scale, 
multi-orientation, visual features by using the SIFT [5] algorithm.  

4. Vector quantization: Vector quantize a local feature into a visual word in a 
vocabulary of size vN  by using a visual codebook. Prior to the retrieval, the 
visual codebook is learned, unsupervised, from thousands of features extracted 
from a set of models, e.g., the models in the database to be retrieved. 

5. Histogram generation: Quantized local features or “visual words” are 
accumulated into a histogram having vN  bins. The histogram becomes the 
feature vector of the corresponding 3D model. 

6. Distance computation: Dissimilarity among a pair of feature vectors (the 
histograms) is computed by using Kullback-Leibler Divergence (KLD); 

 ( )
1

( , ) ln
n

i
i i

ii

y
D y x

x=

= −∑x y  (1) 

where ( )ix=x  and ( )iy=y  are the feature vectors and n is the dimension of the 
vectors. The KLD is sometimes referred to as information divergence, or relative 
entropy, and is not a distance metric for it is not symmetric. 
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2.2. GPU-accelerated BF-SIFT algorithm 

The proposed algorithm employs parallelism of a Graphics Processing Unit (GPU) to 
accelerate two steps, the multi-view rendering step and the SIFT feature extraction 
step, of the six steps of the algorithm described above,. We keep the vector 
quantization (VQ) step unchanged. The last step, distance computation step, runs on a 
CPU but it is accelerated by getting rid of costly calls to logarithmic function by 
means of table lookups. 

1. Pose normalization (position and scale): Pose normalization is performed on 
the CPU.  

2. Multi-view rendering: Render range images of the model using the GPU, 
instead of the CPU. 

3. SIFT feature extraction: As evident in Figure 2, the retrieval algorithm spends 
the largest amount of time in computing thousands of SIFT features from 42 
images of a 3D model. To accelerate the computation, we use the SiftGPU, a 
GPU implementation of the SIFT algorithm by Wu [12]. The SiftGPU does all 
the work of the SIFT++, that are, construction of a multiresolution image 
pyramid, detection of interest points, and extraction of features at the interest 
points, on a GPU.  
While the SiftGPU borrows a lot from SIFT++ by Vedaldi [10], they are not the 
same. For example, the SIFT++ uses 64bit double precision floating point, while 
the siftGPU uses 32bit single precision floating point number, for the 
computation. Thus we compared the retrieval performances of the two SIFT 
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Fig. 1. Range-images of the model are rendered from multiple view angles. Local, multi-scale 
visual features are extracted from each one of the images using SIFT [4] algorithm. 
Thousands of SIFT feature per model are vector quantized by using a pre-learned visual 
codebook into visual words. Frequencies of visual words are accumulated into a histogram, 
which becomes an easy to compare and compact feature vector for the model.  
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feature extraction methods. So we experimentally compare the retrieval 
performance as well as computational cost of the retrieval algorithm using the 
implementations of the SIFT algorithm. 

4. Vector quantization: The Vector Quantization (VQ) step is a nearest point 
query in a very high dimensional (e.g., 1,000) space. It is implemented as a linear 
search into a set of values whose size Nv is the size of the vocabulary, and runs on 
the CPU. 

5. Histogram generation: Quantized local features are accumulated into a 
histogram having   bins, which becomes the feature vector of the corresponding 
3D model. This step runs on the CPU.  

6. Distance computation: Computation of the KLD can be expensive for a high 
dimensional feature as the computation involves a logarithmic function  ln( )x  
per element of the feature vector. As the computation is repeated as many times 
as the number of models in the database, reducing the cost of the log function is 
quite important for a large database.  
Fortunately, a feature vector produced by the BF-SIFT is a very sparsely 
populated histogram, in which most of the bins have population zero, and the 
remaining no-zero elements are small (e.g., <512) positive integers. Thus, the 
ln( )x function call can be replaced by a lookup into a small table with no change 
in performance. The KLD computation using table lookup is performed in the 
CPU in our current GPU-accelerated implementation. 

3. Experiments and Results 

We experimentally compared the retrieval performance of our GPU-accelerated 
algorithm with that of our previous CPU-based implementation by using two 
benchmark databases: the McGill Shape Benchmark (MSB) [13] for articulated shapes 
and Princeton Shape Benchmark (PSB) [8] for a set of diverse and rigid shapes. We 
used the same database for learning a visual codebook and for performance 
evaluation. That is, the codebook generated by using the MSB (PSB) is used to query 
the MSB (PSB). For each database, the visual codebook is generated by using a set of  

50,000tN =  SIFT features, which is chosen pseudo-randomly from all the features 
extracted from all the views rendered from all the models in the database.  

For both SIFT++ (on CPU) and GPU-SIFT, we used parameters of; 42 equally 
spaced (in solid angle) viewpoints per model, image size of 256 256×  pixels per 
view, scale space having octaves=6, and DOG levels=3. Other parameters for the 
SIFT++ and the GPU-SIFT are set to their defaults.  

We wrote and run the range-image rendering part and SiftGPU feature extraction 
part using C++, OpenGL 2.1.2., and Cg 2.0. The vector quantizer and the KLD 
distance computation parts are implemented by using C++ and run on the CPU. We 
run the experiment under the Fedora Core Linux on a PC having an Intel Xeon 5440 
quad-core CPU (Clock 2.83GHz). The code was single threaded. As for the GPU, we 
used a mid-range GPU, the Nvidia GeForce 9600GT with 512 MByte of memory, 
whose core clock is 650 MHz and memory clock is 1.8 GHz.  
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3.1 SIFT implementations and retrieval performance 

We first compare the retrieval performances of the two SIFT feature extractors, the 
siftGPU [12] that runs on a GPU and the SIFT++ [10] that runs on a CPU. The 
comparison is done to see the impact of implementation differences, for example, the 
difference in the precisions of their floating number representations.  

As the performance measure, we used R-precision [Baeza-Yates99], which is a 
ratio, in percentile, of the models retrieved from the desired class kC  (i.e., the same 
class as the query) in the top R retrievals, in which R is the size of the class  kC .  

Table 1 compares among the two SIFT implementation the average numbers of 
interest point (i.e., the number of features) per model. For both the PSB and MSB, the 
number of interest points is essentially the same. The models in the PSB produced 
more interest points than the MSB, since the PSB models has more detailed shape 
features than those in the MSB.  

Each curve in Figure 2 shows the retrieval performance measured in R-precision as 
a function of vocabulary size Nv. For both of the PSB (Figure 2(a)) and the MSB 
(Figure 2(b)), retrieval performances are virtually the same for the two 
implementations; the differences are less than a percentage point. 

 
Table 1. Number of interest points, that are, features, per model for the two SIFT 

implementations. 

  PSB MSB 

SiftGPU 1,989 1,529
SIFT++ 1,967 1,570
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(a) Result using the PSB. (b) Result using the MSB. 
Figure 2. Vocabulary size versus retrieval performances for both CPU-based and GPU-based 
implementation of SIFT feature extraction. (Note that the vertical scales are different among 
the two graphs.) 
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3.2 Computational costs 

Figure 3 shows the comparison of computational costs for the three variations of the 
BF-SIFT algorithm. In the figure, the notation X/X/X/X means that whether the CPU 
(“C”) or the GPU (“G”) is used at each of the four stages, that are, (1) depth image 
rendering, (2) SIFT feature extraction, (3) vector quantization, and (4) distance 
computation. For the distance computation step, “Cf” denotes the implementation 
using ln() function, while “Ct” denotes the implementation using table lookup. For 
example, G/C/C/Cf indicates that the rendering is done on the GPU, while the other 
stages, that are, the SIFT feature extraction, the vector quantization, and the distance 
computation using calls to ln() function, are performed on the CPU. 

Note that, in this figure, the size of databases is artificially inflated to 100,000 in 
computing the cost of distance computation. The database size mostly impacts the 
cost of distance computation. The cost of rendering, feature extraction, and vector 
quantization are fixed, as they are averages computated from all the models of the 
database (PSB or MSB). It should be noted that, in reality, the 100,000 model version 
(if existed) of the PSB (or MSB) will probably have slightly different values of 
rendering, feature extracton, or vector quantization. But the impact on these values 
will be small. 

For the all-CPU case using the costly ln() function call, (the case C/C/C/Cf), the 
distance computation step is dominant, followed closely by the SIFT computation 
step, and then by the rendering step. Calling ln() function 1,000 times for the 1,000 
dimensional feature vector turns out to be qute expensive.  

After “modernizing” the implementation so it uses GPU-accelerated rendering, and 
employing a table lookup to approximate ln() function in the distance computation 
step running on a CPU (that is, the case G/C/C/Ct), the computational cost of the 
SIFT feature extraction step becomes dominant. (It is somewhat embarrassing that we 
did not use GPU-rendering from the start.) Note that the MSB models have higher 
rendering cost than those in the PSB, since the MSB models have higher polygon 
counts. The average polygon count of the MSB models is 13,613, compared to 4,373 
for the PSB. This is because the models in the MSB are generated as iso-surface 
meshes from voxel-based models. 

If rendering and SIFT feature extraction steps are run on the GPU, and the distance 
computation on the CPU employs table lookup (that is, the case G/G/C/Ct), the total 
computation time shrinks to 3.9s for the PSB and 2.9s for the MSB. Compared to the 
all-CPU implementation that uses table lookup for distance computation (the case 
C/C/C/Ct), the proposed GPU-based implementation (G/G/C/Ct) is about 3 to 4 times 
faster.  

In the GPU-based implementation (G/G/C/Ct), the cost of VQ has now became the 
dominant factor. The VQ step for the PSB takes more time than that of the MSB. This 
is because, on average, a PSB model produces more features than a MSB model (see 
Table 1.) 

Our original algorithm would have taken 25s to query a 100,000 model database 
statistically identical to the PSB. The proposed accelerated implementation would 
have performed the query in about 3.9s for the same 100,000 model database. 

28

remcov
Rechthoek




Accelerating Bag-of-Features SIFT Algorithm  
for 3D Model Retrieval      7 

0 10 20 30

G/G/C/Ct

G/C/C/Ct

C/C/C/Ct

G/G/C/Cf

G/C/C/Cf

C/C/C/Cf

Rendering SIFT VQ Distance
0 10 20 30

G/G/C/Ct

G/C/C/Ct

C/C/C/Ct

G/G/C/Cf

G/C/C/Cf

C/C/C/Cf

Rendering SIFT VQ Distance
 

(a) Cost breakdown for the PSB database 
queries. 

(b) Cost breakdown for the MSB database 
queries. 

Figure 3. Breakdown of computational cost for querying PSB and MSB database. Note that the 
size of database is artificially inflated to 100,000 in computing the cost of distance computation. 

4. Conclusion and Future Work 

We have previously published a 3D model retrieval method called Bag-of-Features 
SIFT (BF-SIFT) that employs a set of thousands of SIFT features [5] to describe a 3D 
shape. The SIFT is 2D image based, local, multi-scale, and rotation invariant. Our 
previous experimental evaluation showed that the method is adept at retrieving both 
articulated and rigid models [7]. However, the method required significant amount of 
computation, especially for feature extraction.  

In this paper, we proposed a GPU-based algorithm that performs multi-view range 
image rendering and SIFT feature extraction of the BF-SIFT algorithm on the GPU. 
We also replaced logarithmic functions in the distance computation step with table 
lookups. Due to these improvements, the method achieved 3 to 4 times speedup with 
virtually no impact on the retrieval performance. On a hypothetical database similar to 
the PSB [8] but having 100,000 models, the proposed algorithm would achieve the 
query processing time of a few seconds.  

An analysis of the accelerated implementation indicated a new target for 
acceleration, the vector quantization and distance computation steps. In the future, we 
intend to investigate better algorithms for both CPU-based and GPU-based 
approaches to accelerate these two steps. For example, to vector quantize more 
efficiently, we we intend to investigate various approximate nearest neighbor 
algorithms for higher dimensions, e.g., ANN [6]. 
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Abstract. The SALERO project observed a lack of ontologies for the
description and annotation of characters in media production. In this
field ontologies could be used to support media asset management, in-
formation retrieval, automated production or reuse.
This paper presents the SALERO Virtual Character Ontology which
can be used to describe and annotate characters in media production
and game design to support aforementioned scenarios.

1 Introduction

One goal of the SALERO3 [1] project is to create ontologies which support the
annotation and semantic search of media assets. The main motivation for using
ontologies in the project is to overcome the known drawbacks related to the
limited reusability capabilities of tools used in the video games and audiovisual
entertainment industries which are due to the lack of metadata and formal de-
scriptions of media assets. This paper presents the SALERO Virtual Character

Fig. 1. SALERO Virtual Character Ontology Framework

Core - ontology (SVCC) which has been built following the guidelines in [2]
3 http://www.salero.eu
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and reflecting requirements from the end user partners in the SALERO project
which intend to use the ontologies to support annotation, semantic search or
communication of information about characters.

The SVCC ontology is based on the AIM@SHAPE4 ontology for virtual hu-
mans (VH) [3] and is itself extended by the SALERO Annotations - ontology
(SA) as depicted in Figure 1: (1) The SVCC ontology extends the VH ontology
with concepts to describe the personality of characters, genre- and production-
related information. (2) Additionally, the SA ontology further abstracts the mod-
eled domain. The SA ontology is supposed to be used for annotation by end
users.

2 Representational Requirements

In this section we summarize requirements on the SVCC ontology.

2.1 Motivating Scenarios

The following scenarios of our user partners were identified.

Partner 1 is a games development company whose intention is to support dig-
ital asset management and search & retrieval of game assets for reuse in
different stages of the games development pipeline.

Partner 2 is creating 3D animations based on a story plot and variable in-
put data automatically. A vital functionality of their tool is to be able to
automatically select the right content in terms of fitting to a characters’
personality, mood, emotions, context and situation.

Partner 3 is a university of art. One research group of this university is a stu-
dio that has the goal to achieve deeper emotional experiences in interactive
media and to create production methods to develop content and technol-
ogy simultaneously in the multitalented teams involving artists, designers,
scientists and technology experts. The motivation of using ontologies in 3D
content production for this partner is given in the research phase and during
character animation.

Partner 4 is a vertically integrated animation production company, focusing
on childrens television, with the capabilities of producing cross-media ex-
ploitation of properties through website design and development, publishing,
or DVD and interactive development. The ontology shall support efficient
search and retrieval for fast and easy asset retrieval and use.

2.2 Competency Questions

In order to determine the scope of the ontology we asked the partners to provide
a set of competency questions the ontology-based system shall provide answers
for. Some examples from the total amount of around 100 competency questions
are given below:
4 http://www.aimatshape.net/
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1. Find the head of a caucasian man with a surprised emotion.
2. Find a fictional figure female hero character with supernatural powers.
3. What are the general qualities (status, values etc.) of a specific character?
4. Is this asset derived from another existing asset?
5. Are there any characters with a sad female voice?
6. Which movements are available for a specific character?
7. For which character is a specific property suitable?
8. What assets are visually similar to a specific asset?

3 Conceptual Model

The SVCC ontology extends the AIM@SHAPE VH ontology at several points.
Most notably it adds a set of individual descriptors which can be used in the
VH ontology to define the behavior of a character. Figure 2 gives an overview of
the model and it’s central concepts5:

Fig. 2. SALERO Virtual Character Core Ontology

SALERO Character: This is the core concept in our ontology. The SALERO
Character – concept is modeled as a subclass of the AIM@SHAPE Virtual

5 A bigger picture of the ontology is available in Figure 3 in Appendix A
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Human – concept and extends it in several dimensions. A character may
most notably have a structural description, a set of animation clips, and
a individuality description including personality – and emotional state –
descriptions.

Animation Clip: This concepts extends the definition of the Animation Se-
quence concept from the AIM@SHAPE VH ontology. It defines suitable an-
imation sequences that can be applied to the virtual human using body part
movements which are either facial animations or body animations accompa-
nied with an emotional descriptor. An Animation Clip may have an object
representation in the form of a 3D Animation which might be structurally
described as well as physically manifested in a specific animation format (cf.
[3]).

Emotional State: As the application partners want to annotate and find a
character according to his emotion, Emotional State is another central point.
The VH ontology characterizes an Emotional State using values from Whissel’s
activation-evaluation space which captures emotions in the dimensions acti-
vation and evaluation [4]. Animation gestures can be associated to emotions
(cf. [5]).

Personality: Personality is an individual descriptor of a SALERO character
which extends the Personality–concept from the VH ontology. The person-
ality of a SALERO Character captures humanoid dimensions of a character
like his social role, special abilities, species, or demographics. This extension
will be detailed below.

Modeling Personality of a Character: The SVCC ontology adds a set of de-
scriptors to specify the personality of a character such as his demographics, his
abilities, his social behaviour or his role in a media production.

The individual descriptors to express the personality of a character are based
on the General User Model Ontology (GUMO) [6] which we extended to cover
properties of fictive, non-human characters. Based on GUMO the following de-
scriptors have been added to the SVCC ontology:

Personal History captures historical information about a character (cities where
he lived in, jobs he had, stories about the character, etc.)

Demographics models demographical information like birth place, origin, race,
marriage status, etc.

Characteristics models social aspects of the character like if he is artistic,
dominant, shy, etc.

Abilities captures abilities of the character like if he is able to walk, to drive a
car, to dance, etc.

Special Abilities include characteristic abilities of a character like if he is artis-
tic, shy, dominant, etc.

Social Role models the role of a character in the society like his job position,
etc.

Personality models aspect characterizing the personality of a character like if
he is introvert, intelligent, romantic, stupid, etc.
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Contact Information represent the contact information of a character.

Further extensions have been added to the morphological descriptors of a char-
acter in order to express typical gestures which are characteristic for a character
and to define the species of a character (e.g. human, robot, animal).

Besides that, the SVCC ontology models the role of a character in a plot and
the relation of a character to other characters or the target audience. The core
concepts which were added to specify the role of a character in a story are:

Relationship A character can have typed relationships with other characters
(e.g. a character is in love with another character) which is based on his role
as part of a story.

Role The role of a character is characterized through his plot function, a nar-
rative stance, a dramatic need, and the text available for the role.

Implementation: On the basis of the conceptual model that was done in UML
and text, the ontology was built in OWL, reusing the AIM@SHAPE ontology
schema and altering or extending it as explained above.

4 Ongoing and Future Work

The ontologies built in SALERO are supported by an ontology workbench which
provides ontology management-, semantic search- and annotation-support as
briefly described in [7]. We are currently building the SALERO annotations
ontology which abstracts from the high complexity of the virtual character core
ontology and which will be used for concept-based annotation by the end users
in SALERO.

Acknowledgements: The research leading to this paper was partially supported
by the European Commission under contract IST-FP6-027122 “SALERO”.
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Appendix A: The SALERO Virtual Character Core
Ontology

Fig. 3. SALERO Virtual Character Core Ontology
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Abstract. In this paper we illustrate an approach for managing 3d ob-
jects based on the semantics attached to the objects. Built over a fast
indexing mechanism for storing 3d data, a semantic framework for adding
and sharing conceptual knowledge about spatial objects is presented.

1 Introduction

The amount of three–dimensional data has drastically increased over the last
couple of years. The reasons for this increase are manifold: the availability and
the easy use of laser scanners, the improved quality of software for creating 3d
data from 2d images, etc. Meanwhile, the development of web technologies led
to new possibilities in sharing information. In addition to the traditional type
of data these technologies can also be applied to 3d data. Although the need
for semantic management of 3d data has been acknowledged for quite a while,
there is still a huge deficit of adequate tools. In this paper we will give a short
description of an approach and the corresponding tools helping a user to manage,
analyse and share information and knowledge about a spatial environment.

From a technical point of view, our system is based on two major components:
an efficient storage module for multi–dimensional data and a concept–based rep-
resentation module for the objects identified in the data. These two components
are linked through a query modeling and transformation processing layer. At
the basis of the storage module we built a fast indexing structure for storing
3d points. Here we limited ourselves to 3d data, however it can be extended
to multidimensional data. The overall system allows 3d queries based on con-
cepts defined in a spatial ontology. Even if some basic concepts are defined in
a static reference ontology, the system’s knowledge base can be extended by
adding the user’s own concepts. The points returned by the queries are related
to the concepts defined by the user and therefore extended by the new semantics
defined in the ontology. Our illustration is build on architectural data. Archi-
tectural structures are often based on very complicated models as they have to
take into consideration technical as well as aesthetic aspects and therefore ask
for semantic integration. To test our approach we propose an ontological model
combined with a real set of 3d data of the Pantheon in Rome made available by
the Karman Project1.

⋆ This work was support by the Swiss National Science Foundation,
Grant no. 200021–109476

1 http://www.karmancenter.unibe.ch/
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As a first step, we selected an appropriate indexing method to guarantee a
very good performance. From the multitude of possible techniques (kd–trees [1],
grid files [2], buddy–trees [3], etc. ), we finally opted for an adapted version of
the X–Tree approach [4], as it satisfies best the needs of the semantic part of our
system (see [5]). Based on B–Trees, both the X–Tree and R–Tree [6] structures
use the same indexing methods, but the major problem with R–tree–based in-
dexes is that the overlap in the directory is increasing very rapidly with growing
dimensionality of the data. In the X–Tree approach, the supernodes are created
during insertion only if there is no other possibility to avoid overlap, which will
increase the speed of the queries made in the spatial database system. After
the storage, we defined the base ontology, the main criteria being clarity and
coherence. The basis of the system is a simple geometric ontology. We consider
this geometric ontology as a reference system and therefore it should not be
modified by the user. In our universe of discourse this is the minimal ontological
commitment. It is of course possible to extend the definitions from this ontology.
Different user–ontologies could be developed due to the different perceptions of
the domain based on cultural background, education, ideology. Finally, we de-
veloped the system in such a way that it becomes possible to extend the queries,
allowing the user to interact with our system and to introduce the kind of con-
cepts he needs to analyse the spatial data. These different steps are presented
in the reminder of the paper.

2 The Reference Ontologies

The system’s knowledge base is mainly comprised of two groups of ontologies: the
upper (reference) group and the lower (user) group. This difference between the
used ontologies has been shown already in [7]. Without losing in generalisation,
the user can describe a spatial object in a specific environment by actually
constructing the 3d object from elementary shapes. Each elementary shape is
described mainly by a transformation (scaling, translation, rotation), one or
more positions and one or more dimensions. Since each transformation can be
expressed in different ways or is shape–dependent, the upper ontologies comprise
the description of different systems and mathematical models that might be used.

2.1 The Coordinate Systems Ontology

The coordinate systems ontology defines a few systems for describing a posi-
tion in space: cartesian, spherical and cylindrical — the ontology being eas-
ily extensible with other systems. Each coordinate system has properties that
maps its specific characteristics (the coordinates and/or the angles necessary to
uniquely identify a point in the space). Thus, in the example shown in Fig. 1 ,
the CartesianSystem has three length–based properties (corresponding to the
x– , y– and z– coordinates), while the CylindricalSystem has two metric–like
properties and a degree–like property that correspond to the radial, vertical and
azimuth values, respectively.
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Fig. 1. Excerpt from the Coordinate Systems and Transformation Systems Ontologies

2.2 The Transformation Systems Ontology

The same approach has been used for the transformations ontology. As an il-
lustration, each instantiable rotation system has predefined attributes (e.g. roll
angle, vector, etc. ) that match their corresponding mathematical elements. For
example, the EulerAxisRotation defines properties for rotation vector and angle,
while the TaitBryanRotation has a degree–like property for each dimension, as
can be seen in Fig. 1 .

Both coordinate systems and transformation systems ontologies have been
designed bottom–up [8], the superclasses being constructed as the union of their
subclasses. By this approach, we force the notion of abstract classes (we can not
have instances of CoordinateSystem , it has to be an instance of CartesianSystem

or SphericSystem ) without losing the typeof relation and the inheritance mech-
anism between concepts. Furthermore, the cardinality constraints defined on the
properties (such as radial, coordinates, etc.) make those properties mandatory.

2.3 The Geometrical Shapes Ontology

Inspired by [9], the shapes ontology is the most complex one and it formalises
the fundamental geometrical shapes such as cuboids, sphere, etc. The central
concept of this ontology is the SpatialObjet , all basic shapes as well as any user–
defined spatial object being subclasses or instances of the SpatialObjet concept.
In the spatial ontology, each shape is described mainly by a transformation
(e.g. rotatedBy ), a position (hasPosition ) which actually is seen as the central
position of the geometrical form and by its dimensions (hasDimensions ) or it
can be identified by one or more points of reference (definedBy ). As can be seen
in Fig. 2 , the geometrical shapes are described as Basic3DShape which are of
type SpatialObject , meaning we could easily extend the ontology to other multi–
dimensional objects. Its dependency with the previously described ontologies
gives it more flexibility in the positioning and transformation of the spatial
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shapes. The topological and compositional properties defined on SpatialObjet s
let the user to construct iteratively more complex SpatialObjet s, as described in
the next section.

Fig. 2. Excerpt from the Geometrical Shapes Ontology

For all of the upper ontologies, the system considers that two parameters are
implicit: the distance unit expressed in meters and the degree unit in radians.
For more flexibility, the system could easily be extended by other ontologies that
describe the distance and the degree systems.

3 Evolving the User Ontology

When the user starts working with the initial system he will find all con-
cepts described in the reference ontologies. This means he can essentially use
Basic3dShape and its associated basic operations to define his queries, that cor-
respond to his basic objects. By composing these simple Basic3dShape objects,
the user can describe new, more complicated shapes.

These new spatial objects have to be defined in the ontology, more precisely
in the part reserved for user definitions. To do this he can use the Ontology Web
Language2 (OWL) or the tools provided by the system. A user can define new
3d objects or redefine existing objects (e.g. by changing the coordinate system).
We will illustrate now an example of how a user might proceed to define his own
objects and make them available as an ontological definition.

Let’s imagine for this example that we would like to find Corinthian columns
in the Pantheon data. More precisely we want to analyse those present in the
entrance of the Pantheon that we can see in Fig. 3 .

By looking at the image of the entrance a user may try to retrieve the points
defining a column using the basic definition of a box, another user may prefer to

2 OWLReference –W3CRecommendation (http://www.w3.org/TR/owl–ref/)
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Fig. 3. The entrance of the Pantheon in Rome

retrieve the same points using a cylinder, whereas a third user may realise that a
combination of the two previous approaches might be more appropriate. Let’s say
he would use a box for the base element, then a cylinder for the middle part of the
column, and another box for the top of the column, all of them being combined
to define a Corinthian column. For these types of complex shapes, a new concept
can be added to the ontology, named CorinthianColumn . Furthermore, another
concept CorinthianEntrance can be defined as composed of CorinthianColumn s.
The Basic3dShape s used to define the new concepts have precise coordinates and
ontological descriptions (see Fig. 4 ).

Fig. 4. A user–defined ontological description of a complex spatial object representing
a Corinthian column

Based on the extended ontology another user could add his own concepts and
make them dependent on the newly introduced concepts of the CorinthianColumn .
As known from the history of architecture, Corinthian columns might consist of
identical base and middle element, but they could differ in their top element. The
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ontological definitions should also allow this refinement of the basic definitions
of a CorinthianColumn .

4 Conclusion

In this paper we have presented an overview of a system combining the latest
technologies in 3d data management with the newest developments in semantic
data management. The main contribution consists in adding a dynamically cre-
ated semantic layer to a cloud of points, starting from a reference ontology that
describes the basics of the spatial aspects. Each ontology concept is linked with
the spatial database system (SDS) through a set of standard queries. The result
of the queries are groups of 3d objects delimited in spatial environnement which
describe simple or complex ontology concepts. Driven by human interpretation
we are able to create a representation of some parts of the pantheon architec-
tural concepts. This idea offers a new way to add dynamic knowledge to a spatial
database system and opens the door to semantic–based spatial data mining.
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Abstract. In this paper we propose to define spatialized tags based
on 3d hierarchical graphs in order to develop specialized taxonomies and
folksonomies for 3D shapes. We aim at providing a framework that keeps
the simplicity of use of tags and folksonomy for basic users and at the
same capture the specific and intrinsic structure of 3D shapes. A pro-
totype navigation system is proposed to demonstrate how the resulting
folksonomy can be used to browse a 3D shape repository.

1 Introduction

In [1], Attene et al. propose a system to perform complex segmentations of
3D surface meshes and to annotate the detected parts through concepts ex-
pressed by an ontology. With the expansion of online 3D shapes repositories
[2–6], we share the same analysis, regarding the needs and requirements for se-
mantically characterizing 3D shapes for indexation [7–9]. The authors compare
the two main strategies for annotation: keyword and ontology-based annotation.
Keyword based annotations are currently widely used in Web 2.0 services for
annotating online contents with folksonomies [10]. Attene et al. favor the sec-
ond approach, which supports the viewpoint of domain experts. We do not aim
at discussing and comparing both approaches. Their respective advantages and
drawbacks are well-known and have been extensively discussed and compared.
Tags and folksonomy based approaches have been particularly analyzed such as
summarized in [11]. Our motivation here is simply to note the success gained by
folksonomies and to propose a specialized approach for building and managing
folksonomies for 3D shapes. Following Flickr[12], Del.icio.us[13] or Technorati[14]
many Web 2.0 user-centered services are now providing folksonomy facilities in
order to index and classify content. Content Management Systems (CMS), such
as blogs (Wordpress[15], Dotclear[16]) or collaborative platforms (Drupal[17],
Elgg[18]) provide features for annotating and browsing contents with tags and
folksonomies. This situation demonstrates that although folksonomies provide
a limited level of semantic, they have been widely adopted as a way to anno-
tate, browse and navigate online contents. However, keyword and ontology based
annotation systems are not antagonist. There are many existing and ongoing re-
search efforts to connect and integrate both approaches such as proposed in [19,
20]. Therefore it seems natural that both approaches will finally collaborate and
that they will benefit from each other.
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Still recently, producing 3D content was limited to expert users because 3D
authoring tools were requiring too many extra skills in 3D surface and shape
geometry. With the advent of 3D authoring tools for large amateur audiences
such as Sketchup [21], or users-created 3D online virtual environments such as
Second Life [22], users are nowadays able and encouraged to produce directly
their own 3D contents and publish them on the Web. We can reasonably expect
that the number of available 3D shapes will soon explode. In parallel, we need to
propose non-expert tools for appropriately annotating 3D contents directly by
their creators. These tools should also take into consideration that the contents
are produced by amateurs. Basic content creators usually produce 3D shapes that
are pretty good for immediate display but that are of low to average geometric
quality. The segmentation and shape analysis tools required for 3D annotation
still require extra processing (for cleaning-up the shapes) and extra skills that are
not immediately accessible to basic users and may prevent them from annotating
their results when uploading.

Our approach is driven by two assumptions: the first one is that the success
of folksonomies is coming from their simplicity for the users: no over efforts are
required to understand how the annotation system works, no excessive extra
efforts are required to annotate the contents, no extra efforts are required to
understand a predefined classification or taxonomy Basic users are selectively
lazy: they are ready to spend time to produce the content, but not to annotate
it once they publish it. This may restrict ontology based systems to experts due
to the resulting complexity of the annotation task. Moreover, semantic search-
ing (such as the semantic search engine of the AIM@SHAPE shape repository )
requires specific skills in ontologies. Basic 3D content producers create imperfect
3D shapes (close to polygon soup) whereas shape analysis tools for annotation
expect specific geometric properties to process correctly. Our second assumption
is that the 3D shape folksonomy model must be able to capture and express the
intrinsic structure of 3D shapes such as raised in [1]: to achieve shape character-
ization, ”the structural subdivision of an object into subparts, or segments, has
proven to be a key issue. At a cognitive level, in fact, the comprehension of an
object is often achieved by understanding its subparts”. From our point of view,
any framework for 3D shapes folksonomies must address these two aspects in
order to be adopted by standard users and to achieve an accurate representation
of 3D shapes semantic.

2 Spatialized Tags

Our purpose is to provide a simple way to express the main spatial relationships
between the whole surface and its subparts. We therefore consider two usual
relationships: hierarchy and connexion. The hierarchy association expresses the
decomposition of parts into subparts: a part tagged with ”body” label can be
divided into subparts that will be tagged as ”trunk”, ”legs”, ”arms” and so
on. The connection association expresses the spatial connectivity between the
features: a feature tagged ”legs” will be spatially connected to another feature
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Fig. 1. tags graph associated to the Ramses statue (from the AIM@SHAPE shape
repository [2])

tagged ”feet” or ”trunk”. Such a representation can easily be conveyed with a
hierarchical graph. As we want to semantically map the graph to the associ-
ated 3D shape, we adopt a 3D graph representation. WilmaScope [23] is a three
dimensional interactive graph visualisation and viewing system. The Wilma de-
sign is quite versatile and makes it able to map out relationships between con-
cepts, data, records, software entities, network nodes and many other contexts.
A WilmaScope graph defines an object oriented model for a clustered graph with
a recursive class definition [24]. WilmaScope also provides XML Graph (XWG)
files that can be exported from or imported into the graph visualization system.
Therefore we can interactively build the 3D graph with the visualization system,
and export it as an XML file in order to process it for indexing and searching
the 3D contents. For our purpose, each node of the graph corresponds to a se-
mantically meaningful feature of the 3D shape to which one or more tags can
be associated. Each edge of the graph represents a spatial link between the con-
nected features. Finally, nodes can be grouped into clusters in order to reflect the
hierarchical organization of complex 3D shapes and scenes (Fig. 1). The Ramses
statue is tagged with 3 first level tags: Egypt, Ramses (both displayed as a red
sphere) and Statue (displayed as a grey translucid sphere). Statue is associated
to a cluster. This cluster is composed of three tags at the second level: scepter,
socle and body. Body is itself defined as a cluster. In this cluster, the tag ”head”
is connected by an edge (displayed as a blue cylinder) with ”trunk” as the two
corresponding shape features are spatially connected. It is obvious by looking at
the shape that it would be very difficult to segment the shape of the statue into
arms, legs such as in [1]. Although the graph looks similar to a scenegraph [25],
it has some major differences: scenegraphs are direct acyclic graphs whereas 3D

47



Fig. 2. Visualisation of the global vocabulary based on the 3D tags graphs of a few 3D
shapes

tags graphs do not have such a restriction and scenegraphs are usually used to
define compound objects by grouping multiple shapes whereas 3D tags graphs
are used to annotate shape features. Our 3D tags graph can embed a semantic
representation of scenegraphs.

We do not expect the 3D tags graph to be explicitly associated to specific
parts of the annotated 3D shapes, although it could be extended for this purpose.
In our framework, the 3D graph main goal is to provide an abstract representa-
tion of the 3D shape topology and structure. The main reasons are:

1. the annotation system must be kept as simple as possible in order to be
adopted by users, which requires avoiding complex shape processing such as
3D segmentation;

2. it allows defining annotations that are not uniquely driven by geometric
segmentation of the shape (some features may not be identified with shape
segmentation) and that are not restricted to express spatial relationships.

3. it improves the reusability of existing 3D tags graphs, so that when a user
is annotating a new shape, he/she can reuse a previously annotation for a
similar shape by simply selecting it without having to explicitly recreate
the spatial association between the new shape and the existing association.
Giving the ability to reuse existing annotations is also an important issue to
avoid over tagging.

There is however no doubt that providing explicit spatial links between tags and
shape subparts would definitely improve the quality of the indexation. However,
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from our point of view, it seems important that this should not be a requirement
so that any user should be able to simply edit the 3D graph without having to
explicitely segment and connect a 3D shape to the tags.

Fig. 3. Example of selection of 3D shapes labeled with ”trunk” and ”legs” related
terms

For the user, the process is quite simple: when uploading a 3D shape, he/she
just needs to freely describe the structure of the shape by creating the 3D hi-
erarchical graph corresponding to the shape he/she is currently uploading. The
resulting graph file is associated to the 3D shape as a metadata descriptor. Once
the 3D graph is completed, it is added to the existing taxonomy by merging it
to the global repository vocabulary. As we do not enforce tags to be explicitely
attached to shape subparts, no extra processing of the 3D shape is required.
Therefore, we maintain an appropriate extended approach of the taxonomy an-
notation process by keeping at the same the extra annotation work as direct as
possible and by retaining the main aspects of the semantic of the shape structure.

3 Browsing 3D Shapes

We have implemented a prototype repository blog site for browsing 3D shapes
using the proposed folksonomy model. It has been developed with the Drupal
platform. The main reason is that this platform proposes the ”Taxonomy” mod-
ule, which defines vocabularies that can be organized and structured in such a
way that it reproduces the structure of the 3D tags graph. According to [26],
the Taxonomy module organizes taxonomies into vocabularies which consist of
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one or more terms. The following principles apply to defining a vocabulary with
the Taxonomy module:

– A vocabulary consists of a set of terms.
– Terms of a vocabulary can be ordered into hierarchies.
– A vocabulary may be free or controlled.
– A vocabulary allows defining synonyms and also related terms, similar to

the ”see also” in dictionaries.

In our implementation, graph nodes and clusters are represented by terms
organized in a similar hierarchy and edges are represented by associating terms
as ”related terms” (Fig. 2). Following these simples translation rules, the XML
graph description is converted and integrated into the vocabulary that is asso-
ciated to the shape repository. To illustrate the principle, we have processed a
few shapes from the AIM@SHAPE digital shape repository and inserted them
into our prototype Drupal platform. In Fig. 2, we see how the 3D tag ”trunk”
is inserted in the vocabulary. It is hierarchically included inside a cluster tagged
with ”body”, which is converted into a parent relationship in the vocabulary. It
is spatially connected to various tags such as ”legs” or ”head”, which is converted
into a related relationship in the vocabulary.

Once the 3D graphs have been converted and merged into a hierarchical vo-
cabulary, each blog entry corresponding to a 3D shape is tagged with all the
associated terms. In addition to the traditional selection of contents with tags,
it is then possible to provide various browsing strategies based on the terms hi-
erarchy and terms relations. Logical expressions can be constructed by applying
the AND and OR operators to the ”hierarchy” and ”related” relationships: we
can select shapes that are tagged with ”statue” and ”trunk” and ”head” with
”trunk” related to ”head”. Such an expression will select statues with busts.
Fig. 3 shows a simple example where the user can browse the terms hierarchy
in conjunction with related terms. Whenever a term is selected, it is aggregated
to previously selected ones with the AND operator. The top right panel displays
the current vocabulary hierarchy and the top right one displays the terms that
are related to the terms that have already been selected. In the center of the
web browser window, the shapes matching the terms selection are displayed. The
selection corresponds to shapes that are tagged with related terms ”trunk” and
”legs”. The user can reach this selection by first selecting a first tag by browsing
the tags hierarchy (and select ”trunk”), then add a related term (”legs”) from
the ”refine with related terms”.

4 Discussion and Conclusion

The proposed framework still needs to be fully implemented and tested in an
global interactive system for publishing, annotating and browsing 3D shapes
online. However according to this preliminary prototype, we can expect it to
provide an efficient framework for annotating 3D shapes that keeps the annota-
tion process simple enough for easy adoption for standard user and that catches
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the intrinsic structures of 3D shapes. In the future, we are expecting to pro-
pose a taxonomy query language that will integrate the hierarchy and related
relationships for searching 3D shapes for more complex queries. The main issue
is to evaluate how the folksonomy would evolve according to the scale of the
repository. The introduction of the 3D tags graph naturally increases the risk of
over tagging. However, when browsing a 3D shape repository it is obvious that
they are organized into ”families” that share the same global structures which
is not the case with texts or photos. Therefore it should be possible to attenuate
the over tagging effect by providing pre-defined 3D tags graphs for each shape
family and let users select them for annotating new shapes.
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Abstract. This paper deals with the enrichment of 3D media with semantic in-
formation. Currently one of the main goals is to provide clear, persistent and 
meaningful information for a user interacting with objects in different contexts. 
Tagging is a simple mechanism to attach explicit semantic information to digi-
tal objects, but there is no warranty that the attached information is still mean-
ingful across different contexts. The state of the art presents several descriptor 
schemes that preserve some characteristics and discard other characteristics of 
the objects, depending on the viewpoints they cast. We show the setup of a sys-
tem which will enable the analysis of different descriptor schemes and the ex-
traction of their characteristics, ready to be matched with the contexts chosen 
by the user. An explicit conceptualization of the contexts on one hand can ease 
a searching mechanism in which the context is part of the query, and on the 
other hand can enable an a priori evaluation of the most suitable descriptor 
schemes to be used. Moreover, given a precise context, some quantitative (sub-
semantic) measurements on the objects can be properly translated into explicit 
semantics. 

Keywords: 3D, annotation, description, semantics, context, Computer Graphics 

1   Semantics and 3D Media 

Enriching 3D media with semantics is a recently pursued aim in Computer Graph-
ics. Semantics is intended as the association of a resource to a meaning, but as new 
research goals are set, the targeted meaning evolves accordingly. At an early stage, 
since the late seventies, the focus hinged on the representation schemes, and the se-
mantics was intended as the connection between a syntactically valid representation to 
a semantically sound mathematical model of a solid. The addressed semantics did not 
go beyond geometry [ 1]. Now, in Computer Graphics the geometric representation 
schemes are quite well-established, and so this looks like a solved problem. Later, 
since the late eighties, especially in the CAD domain, the necessity of detecting geo-
metric patterns and reusing them for flexible design tasks was felt. Another semantic 
layer was addressed, where the aim was to provide fixed taxonomies of features (fea-
ture definition), based on specific meanings and purposes (e.g. machining), and to 
match geometric patterns in the digital models with them (feature extraction) [ 2]. 
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These are still open research issues, but are limited to a precise set of applications 
(e.g. CAD, CAM). Recently, since more and more 3D repositories are available (e.g. 
[ 3,  4,  5]) and the actual interaction of users with 3D media is increasing, it is impor-
tant to characterise objects by properties perceivable by humans. To represent literally 
means “to present again”, and therefore if the aim is to refer to objects as they were 
perceived by the human users, their representation should be enriched with high-level 
information, such as the linguistic category of the considered object, along with some 
of its main perceptual features (e.g. “ball, large”, “table, elongated, low, with four 
legs”). This effort would ease a lot the tasks of search, retrieval and classification in 
large 3D repositories, and would also put the bases for a conceptual characterization 
of objects. An important step towards semantics has been performed by the Network 
of Excellence AIM@SHAPE [ 6], which in the span of time from 2003 to 2007 inves-
tigated the relationships between geometry, structure and semantics in 3D shapes, 
identifying different levels of expressiveness and conceptualizing some of the seman-
tic characterisations typical of 3D digital models. 

When the devised target is enriching 3D objects with language-based attributes, a 
simple tagging mechanism (e.g. stitching the tags “little” and “dog” to a digital model 
of a little dog) could look as the best choice, and often it is adopted, also for other 
widespread multimedia resources such as images [ 7], but it is neither simple to auto-
mate nor necessarily powerful. The aim is to equip 3D objects with conceptual infor-
mation, either directly (explicit semantic) or indirectly (implicit semantic), and re-
quirements at this stage are clarity and persistence. Clarity, because users are in-
volved, and the added information must be clear, usable and shareable among them. 
Persistence, because the information has to be carried along with the digital model of 
the object, and so it must be suitable for any application involving the object itself. 
Tagging, as previously stated, is a very straightforward way to enrich a resource with 
semantics. It could be possible to explicitly tag the virtual little dog as “light”, and this 
would fit the clarity requirement, as it would be immediately perceived as semantic 
information. But what about persistency? In a context in which we are considering 
objects to be put inside a shopping bag, we would tag any dog as “heavy”, and so the 
semantic would simply not be persistent, i.e. not preserved across different contexts. 
Thus, it is important to integrate any direct, explicit semantic characterisation with 
implicit attributes that we will call “sub-semantic”, because they do no have a precise 
meaning per se, but can be translated into explicit semantic when the context is ready 
to catch the carried meaning. For instance suppose that we have a measure of the 
roundness of a 3D object. The measure itself is persistent, even if the semantic charac-
terisation that can be pulled out of it can be different in different contexts. The meas-
ure “0.9” could be interpreted as “round object” if the target is sorting different fruits 
and we know that “round” is something that can distinguish an orange from a banana, 
but can be interpreted as “not round” if the target is to understand if some ping-pong 
balls in a given set are irregular. These sub-semantic characterisations are persistent, 
but need to be interpreted through an elaboration layer in order to be meaningful and 
reduced to a proper semantic characterisation. 

An example of this kind of characterisations is given by the so-called geometric 
segmentmeters [ 8], i.e. measurements that can be extracted from the geometric repre-
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sentation of the objects (e.g. volume, area, volume of bounding box, length, height, 
width). 

2   Contexts and Description Schemes 

It is possible to assume that any user approaching a 3D object, both in real life and in 
digital applications, is intrinsically bound to the context in which he lives. If he has to 
fight monsters he would examine an object to decide if it can be thrown or used as a 
weapon, if he has to hold liquids he will care much about the presence of holes in the 
object, and if the important will be the resemblance of the object with a given model, 
the overall shape would be relevant. Even when the objects and the users are the same, 
the context may change, and the semantics that we would like to use for enriching the 
representation of the 3D media would change accordingly. 

Therefore it is almost immediate to understand that no single way of encoding se-
mantics is appropriate, unless we are bound to a unique and fixed context. It is possi-
ble, though, to exploit the expressive power of several descriptions on top of the same 
object. 

Describing literally means “writing about”, i.e. representing something just with 
the help of words, or in a wider sense, with the help of a different language. A shift of 
language is intended, therefore we are no more bound to presenting the target of the 
description exactly as it was originally (as in the re-presentation) but a layer of elabo-
ration is allowed. In synthesis, a description is a looser form of representation in 
which a shift of language and an elaboration layer are allowed. Different layers of 
elaboration give the freedom of dealing with the object in different contexts.  

In Computer Graphics several kinds of tools concur in providing descriptions of 
3D objects, in the sense expressed above. Segmentation tools subdivide the object 
(usually its surface) into smaller parts, producing a structural characterization and a 
collection of subparts, each of which can be described in further details. Annotation 
tools are used to tag the objects, or their subparts [ 8], through conceptual tags, and 
possibly properties and relations with other resources. A particular kind of annotation 
is classification. Classification tools are meant to fit objects in one and only one con-
ceptual class, which is useful when the aim is to discriminate among a fixed, well-
defined and exhaustive set of categories. Very often, these processes are based not 
directly on the objects’ representations but on signatures built on top of them. The 
signature can take into account global or local measurements, statistics for these 
measurements throughout the whole object (feature distribution), graphs representing 
their structure, 2D projections recording the view of the objects from different direc-
tions, and so on. For a complete survey on the object descriptors, and their implication 
in the retrieval task, refer to [ 9]. Each signature follows a precise description scheme, 
designed to capture specific characteristics from a 3D object. Different description 
schemes cast different viewpoints on the objects, being sensitive to some characteris-
tics and invariant to others, therefore it is impossible to state that one descriptor 
scheme is better than another, unless a context is provided. Thus, far from considering 
the different techniques as competitors in a race, it could be possible to exploit the 
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distinctive feature of each of them to use only the one(s) which are most suitable in a 
given situation. The target is to match contexts with the proper description schemes, 
and there are two main approaches to achieve this goal.  

The first is a sort of “black box” approach: several description schemes are ap-
plied, their effectiveness for retrieval is evaluated in any interesting context. From the 
outcome of the evaluation some conclusions can be drawn about the suitability, so that 
the matching between descriptors and contexts can be performed a posteriori. Never-
theless, in this case the knowledge about how the description schemes work is over-
looked. The second approach can be regarded to as a “white box” approach, because 
the characteristics of the descriptors are used a priori to be matched against the char-
acteristics of the contexts. 

3   The Proposed System 

The following is a preliminary description of the setup of a system that will support 
the exploitation of multiple descriptions and the selection of the most suitable in a 
given context. This system will serve also as the basis of the query formulation and the 
matching phases in a search engine for 3D objects. Our system will follow the second 
approach proposed above. In more details, the goals of the system are to characterise 
the descriptors, to characterise the contexts, and to provide the information necessary 
to match them. A framework allowing to run different description methods on several 
datasets is under construction. Experiments and analyses on the descriptions methods 
and their outcomes will be performed in order to have a clear characterisation of them. 
These characterisations have to be encoded in formalized conceptualizations, in such a 
way that they can be matched against the contexts. The conceptualizations of the de-
scriptor schemes have to keep information about which characteristics are preserved 
and which are discarded in the proposed approach. Accordingly, the conceptualiza-
tions of the contexts will encode their desiderata about the characteristics that are 
important in a context and the ones that are not. Some examples of these characteris-
tics are: overall shape, structure, pose, orientation, volume, presence of holes.  
 

 Characteristics Length Overall shape Structure Pose Orientation 
Contexts      

Short and long pencils relevant not relevant not relevant not relevant not relevant 
Detection of humans not relevant not relevant relevant not relevant relevant 
Resemblance of generic objects not relevant relevant not relevant relevant not relevant 
Descriptors      
Length of 1st Principal Component preserved discarded discarded discarded discarded 
Reeb Graph – Geodesic function discarded discarded preserved discarded discarded 
Shape Distribution discarded preserved discarded preserved discarded 

Table 1: An example of matching between contexts and descriptors, considering some 
relevant high-level characteristics. Descriptors that match very well some contexts may be 
highly inadequate in other contexts. 
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When descriptors and contexts are expressed in the same way, as shown in Table 
1, it will be simpler to match them and select most suitable description scheme, or 
even to combine a number of them to fulfil the requirements of a single context. 
Clearly, our approach can be fruitfully combined with the a posteriori approach, as 
the actual performance of the description methods has to be tested and evaluated over 
shared benchmarks[ 10]. 
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