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Selecting Vantage Objects for Similarity Indexing
REINIER H. VAN LEUKEN and REMCO C. VELTKAMP, Utrecht University

Indexing has become a key element in the pipeline of a multimedia retrieval system, due to continuous increases in database
size, data complexity, and complexity of similarity measures. The primary goal of any indexing algorithm is to overcome high
computational costs involved with comparing the query to every object in the database. This is achieved by efficient pruning in
order to select only a small set of candidate matches. Vantage indexing is an indexing technique that belongs to the category
of embedding or mapping approaches, because it maps a dissimilarity space onto a vector space such that traditional access
methods can be used for querying. Each object is represented by a vector of dissimilarities to a small set of m reference objects,
called vantage objects. Querying takes place within this vector space. The retrieval performance of a system based on this
technique can be improved significantly through a proper choice of vantage objects. We propose a new technique for selecting
vantage objects that addresses the retrieval performance directly, and present extensive experimental results based on three
data sets of different size and modality, including a comparison with other selection strategies. The results clearly demonstrate
both the efficacy and scalability of the proposed approach.
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1. INTRODUCTION

The demand for efficient systems that facilitate querying by example in multimedia databases is vastly
increasing. This demand is raised within a large number of application domains, including criminology
(face and fingerprint recognition), musicology (music information retrieval), trademark registration
(automatic trademark retrieval) medicine (DNA fingerprinting) and content-based image or video re-
trieval on the web. The most common retrieval operations that should be supported by these systems
are range searching (retrieve all objects that display similarity with the query, up to a certain degree)
and k-nearest neighbor searching (retrieve the k objects that are most similar to the query). Note that
the traditional classification problem is of a somewhat different nature; there, determination of the
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query’s class (either chosen from a predefined set or not) is requested, and the answer given by the
system is in most cases either correct or wrong.

The aforementioned application domains, where these searches are of crucial importance, are likely
to deal with very large databases. Therefore, content-based retrieval becomes a necessity, since tagging
the objects with metadata is infeasible in most cases. Yet another consequence of increasing database
sizes is that indexing is indispensable to the system’s pipeline, further motivated by higher data com-
plexity as well as more elaborate, and thus more computationally expensive, similarity measures. The
primary goal of any indexing algorithm is to avoid sequential search, that is, to overcome the high com-
putational costs that are involved with having to compare the query with every object in the database.
Typically, this is achieved by efficient pruning of the database to select a small collection of candidate
matches. In turn, the actual matching process can be applied to this small set of retrieved items before
presenting the user with the final result.

Besides the efficiency of this pruning mechanism, accuracy is an important design aspect. This issue
is twofold: relevant items should not be excluded from the set of candidates, nor should there be too
many irrelevant items retrieved. Such incorrect dismissals and hits are called false negatives and false
positives, respectively. The most well-known corresponding performance measures are called recall
(number of retrieved relevant items with respect to total number of relevant items) and precision
(number of retrieved relevant items with respect to total number of retrieved items).

In this article we focus on a specific indexing strategy, called vantage indexing [Vleugels and
Veltkamp 2002]. With vantage indexing, objects are no longer compared directly, but investigated as to
how similar their resemblance is to a set of reference objects: the vantage objects. In a sense, vantage
indexing provides an embedding of a general metric space into a vector space. It therefore belongs
to a well-studied and popular class of indexing strategies, extensively surveyed in a book by Samet
[2006]. We focus particularly on the selection of vantage objects, since a good choice of vantage objects
increases retrieval performance.

1.1 Our Contributions

First, we propose two criteria to assess the quality of vantage objects that are directly concerned with
the retrieval performance, namely the reduction of the number of false positives in the returned sets.
Second, we show how to select vantage objects according to these criteria in such a way that each object
in the database is a candidate vantage object, no random preselection is made. Another attractive prop-
erty of the approach is that the selection of the vantage objects and the actual construction of the index
are handled at the same time. Third, we performed extensive experimentation using three data sets of
different modality and order of magnitude: the MPEG-7 CE-Shape-1 part B test set, consisting of 1400
shape images, a set of the 50,000 color photographs, and a dataset containing 500,000 fragments of no-
tated music of five notes each. We have compared our method to five other methods: random selection,
the loss-based selection method, the originally proposed MaxMin method, Sparse Spatial Selection,
and Maximum Mean Distance, which are all outperformed by the proposed approach.

Parts of the work described here appeared previously in van Leuken et al. [2006].

2. VANTAGE INDEXING

Vantage indexing [Vleugels and Veltkamp 2002] is an embedding technique that is used to map a
dissimilarity space (preferably metric) to a feature space in which querying takes place. To be more
specific, given a multimedia database A ⊂ U, where U is the universe of objects, and a distance measure
d : A× A → R, a set of m objects A∗ = {A∗

1, . . . , A∗
m} is selected: the vantage objects. The distance from

each database object Ai to each vantage object is computed, thus creating a point pi = (x1, . . . , xm) such
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that xj = d(Ai, A∗
j). Each database object corresponds to a point in the m-dimensional vantage space;

let F(Ai) denote this mapping of an object Ai to a point in vantage space.
A query on the database now translates to a range-search or a nearest-neighbor search in this m-

dimensional vantage space: compute the distance from the query object q to each vantage object (i.e.,
position q in the vantage space) and retrieve all objects within a certain range around q (in the case of
a range query), or retrieve the k nearest-neighbors to q (in case of a nearest-neighbor query). Distances
in vantage space are bounded by each individual distance to a vantage object. Therefore, the distance
measure δ used on the points in vantage space is L∞, so

δ(F(A1), F(A2)) = max
Av∈V

|d(A1, Av) − d(A2, Av)|, (1)

where V is the set of vantage objects.
Each object is now represented as a point in m-dimensional vector space, and all those points together

are stored in a balanced box tree, so that an approximate nearest-neighbor can be found in O(log n)
search time [Arya et al. 1994]. Vantage indexing is an efficient way of indexing. Instead of computing
a (possibly complex) distance measure in object space between a query and all database objects, only a
fixed number m such distances are computed, followed by a cheap O(log n) time search in vector space.

The implications of using vantage indexing is that the data structure to store all distances in em-
bedding space is kept in main memory. This is different from usual database management systems,
although also for (relational) database management systems there is a trend to keep the complete
index in main memory (for instance the Monet database system). Although the data structure (a bal-
anced box tree) is potentially large, the approximate nearest-neighbor search that we use works best
when the dimension is not more than about 20 a rule-of-thumb that helps to keep memory consumption
reasonable.

2.1 Performance Assessment

A large variety of performance measures based on false and true positives and false and true negatives
can be used to assess the quality of a retrieval system that employs vantage indexing. However, a
ground truth is generally required to classify candidate matches into false and true positives and to
detect whether there are still false negatives residing in the database. Establishing a ground truth for
large databases is a time-consuming and demanding task involving domain expertise, which can often
only be performed for a small number of queries.

In the case of embedding or mapping methods, there are other ways to assess the index quality,
such as distortion [Linial et al. 1995], stress [Kruskal and M.Wish 1978] or the Cluster Preserving
Ratio (CPR) [Histecru and Farach-Colton 1999] when a known clustering exists for the objects. The
key idea behind these methods is the comparison between distances according to the original simi-
larity measure (i.e., the distances in object space) and the distances in the embedding space (e.g., the
vantage space). Distortion measures how much larger or smaller the distances are in the embedding
space than in the object space, whereas stress measures the overall difference in distances. While these
measures provide insight into how well (in terms of distance-preserving properties) the original space
has been embedded in a space more appropriate for querying, they are somewhat distant from the
actual retrieval application. Therefore, we propose to stretch the definition of false and true positives
beyond the borders of a ground truth toward the comparison of distances, in order to allow the use
of performance measures designed for retrieval applications. With the following definitions, perfor-
mance assessment is independent of human judgment (which is often instable and expensive to obtain
for many queries). Moreover, in this way the quality of the matching algorithm or distance measure
definition does not affect the performance evaluation of the indexing algorithms.
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In the case of a range query, given ε > 0 (the range) and query Aq, object Ai is included in the return
set of Aq if and only if δ(Aq, Ai) ≤ ε. A false positive can now be defined as follows:

Definition 2.1. False positive Ap is a false positive for query Aq if
δ(F(Aq), F(Ap)) ≤ ε and d(Aq, Ap) > ε.

Note that this definition is not limited to assessing the quality of range searching, it can be applied to
nearest-neighbor or k-nearest-neighbor searching as well. Although there is no predefined, fixed range
ε in these cases, the distance between the query and the furthest of the nearest-neighbors can be
used as ε. This distance was exactly the required range to retrieve the requested number of nearest-
neighbors, and in that sense a correct (yet strict) threshold for determining whether the objects are
true or false positives.

Along the same lines, we can define a false negative, as follows:

Definition 2.2. False negative An is a false negative for query Aq if
δ(F(An), F(Ap)) > ε and d(Aq, Ap) ≤ ε.

However, under metric conditions, 100 percent recall is guaranteed for a system using vantage index-
ing [Vleugels and Veltkamp 2002].

LEMMA 2.3. No false negatives are possible for a query in a vantage index when the underlying dis-
tance measure d obeys metric properties.

PROOF. Let object Ai be close to query in Aq in object space, that is, d(Ai, Aq) ≤ ε. Ai is returned
for Aq from the vantage space if d(Ai, Av) − d(Aq, Av) ≤ ε for all vantage objects Av. As d obeys metric
properties, by the triangle inequality, it is known that d(Ai, Av) ≤ (Ai, Av)+d(Aq, Av). Since d(Ai, Aq) ≤ ε,
it follows that d(Ai, Av) ≤ d(Aq, Av) + ε. Therefore, d(Ai, Av) − d(Aq, Av) ≤ ε, which is the condition for
retrieval of Ai.

This proof shows that, under metric conditions, an object that is within distance ε to the query in
object space will always be retrieved from the vantage space with a range query of range ε. Therefore,
a query will never yield false negatives as defined in Definition 2.2. When d violates the triangle
inequality constraint, this guarantee is no longer given, and false negatives may occur. In practice,
when the triangle inequality violation is within reasonable bounds, this can be overcome by searching
with a larger ε.

Furthermore, the preceding proof illustrates why the same ε can be used for both δ and d: Ai is
only retrieved from the vantage space if d(Ai, Av) − d(Aq, Av) ≤ ε for all vantage objects Av. On a
conceptual level, this means that the vantage space distance between Aq and Ai is calculated with
respect to individual vantage objects, and the largest of these distances determines the total vantage
space distance. This is a direct consequence of using L∞, sometimes referred to as Lmax for δ. Since the
maximum distance is taken, and not a combination, d and δ are in the same domain, so the same ε can
be used.

In summary, the metric properties assure that vantage indexing is a contractive embedding of the
object space, that is, ∀A1, A2 ∈ U, δ(F(A1), F(A2)) ≤ d(A1, A2). Contractive embeddings with respect to
U always yield 100 percent recall in similarity searches [Hjaltason and Samet 2003]. However, the
accuracy of a retrieval system is twofold; objects relevant to the query are to be included in the result,
yet objects irrelevant to the query should be excluded from the result as much as possible. In other
words, precision is important as well, and the number or percentage of false positives must be kept
small. By choosing the right vantage objects, the precision can increase significantly.
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3. RELATED WORK

We distinguish between partitioning and mapping indexing approaches. In the early years of content-
based multimedia retrieval, the main paradigm was based on feature extraction. Objects are charac-
terized by vectors that are composed of numerical features, and the similarity between two objects
is usually calculated as a Minkowski metric between their corresponding vectors. In these cases, the
general type of indexing that is applied is a partitioning, whether it is a space-based partitioning or
a data-based partitioning. Examples of these partitioning strategies, which are mostly stored in trees,
are the kd-tree [Bentley 1975], the R-tree [Gutman 1984] or variants such as the R+-tree [Sellis et al.
1987] or R∗-tree [Beckmann et al. 1990]. For a complete overview of these multidimensional access
methods, see the surveys by Gaede and Günther [1998] and Böhm et al. [2001]. In general, these
methods either partition the data space into disjoint cells of possibly varying size (kd-tree and related
work), or associate a region with each object in the data space (the R-tree family).

These multidimensional access methods are basically instances of a more generic paradigm, where a
dataset of object models in whatever representation (feature vectors in the above-mentioned case) are
matched using a model-matching algorithm. In many cases, objects are represented by other types of
models than feature vectors, which don’t allow easy space or data partitioning. Examples are weighted
point sets (possibly matched with the Earth Mover’s Distance [Rubner et al. 1998]) and polygonal
curves (for instance, matched with turning angle functions [Arkin et al. 1991]). All that is given in these
cases is a dataset A containing the object models and a distance measure d that outputs a distance
given two models, A and d together span the object space. Tree-based space-partitioning techniques
can still be used for indexing purposes, but they have to be built on different grounds, since there is
no feature space anymore. When the object space is metric, exemplar or pivot objects can be stored
in the tree nodes to guide the search. One of the first works in this field was by Yianilos [1993]. All
database objects are divided into concentric rings around one or multiple pivots and then stored in a
tree. These example objects are often called vantage objects or vantage points. Other examples based
on this strategy are the VP-tree [Bozkaya and Ozsoyoglu 1997], the M-Tree [Ciaccia et al. 1997], and
the MVP-Tree [Bozkaya and Ozsoyoglu 1999]. These and other techniques for searching in metric
spaces are surveyed by Chavez et al. [2001].

A powerful alternative for storing an object space in a tree is the mapping or embedding approach.
Here, the database objects are again embedded in an embedding space. Instead of dividing the database
objects in concentric rings around pivots and storing them in a tree, the pivots now function as feature
descriptors; each database object is characterized by the distances it has to the pivots. Examples of
these embedding techniques are Vantage indexing [Vleugels and Veltkamp 2002], Fastmap [Faloutsos
and Lin 1995], SparseMap [Hristescu and Farach-Colton 1999], and MetricMap [Wang et al. 2000];
they are surveyed by Hjaltason and Samet [2003]. A big advantage of these methods over tree-based
indexing methods is that the required number of online complex distance calculations is reduced to
the dimensionality of the embedding. Once the query has been positioned in the embedding space,
all that is needed is a geometric range query or a nearest-neighbor query where no more complex
distance calculations are involved. To facilitate these searches, access methods, as surveyed by Gaede
and Günther [1998], can be used again.

In this article, we focus on the last type of indexing strategy, the mapping approach. The retrieval
performance of these embedding techniques is influenced by the choice of the pivots, sometimes called
reference objects, exemplars or vantage objects. Although these methods may resemble dimensional-
ity reduction techniques such as Principle Component Analysis (PCA) or Multi-Dimensional Scaling
(MDS), they have different starting points. PCA and MDS [Kruskal and M.Wish 1978] reduce the
dimensionality of a feature space, and actually make computations on this feature space. However,
mapping approaches such as the ones mentioned before, do not assume such a feature space. The only
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possible feature space in this context is an n-dimensional space, where n is the number of objects in
the dataset. In practice, this means that the distances to all objects in the database are used as feature
descriptors, which is too computationally involved.

Pȩkalska et al. [2005] investigated a related problem. Their aim was to select a proper set of proto-
type objects given a set of objects represented by dissimilarities as well, however the set of prototypes
is used for classifying new objects into predefined classes, rather than retrieving similar objects from
the data set.

A strategy similar to the one proposed in this article was proposed by Venkateswaran et al. [2006].
Not every database element is a candidate vantage object (or reference, as the authors call them), in
contrast to our method, where each element is a candidate. Furthermore, their selection criteria are
based on variance of distance (relevance) and distance between vantage objects (redundancy), whereas
our selection criteria are based on variance of spacing (relevance) and correlation between vantage
objects (redundancy). It is important to note that distance between vantage objects is not necessarily
a good predictor for redundancy. In particular, when the dataset is not uniformly distributed, two
vantage objects might be far apart but still have similar distances to the other objects, and may thus
be redundant. The criterion used for assessing the relevance of a single object (variance of distance)
might not be a good predictor either: it depends too much on the magnitude of the distances instead of
their distribution. We will provide more details and two examples in Section 4. Finally, their criteria
are evaluated over only a sample of the database.

BoostMap, as proposed by Athitsos et al. [2004], is a fundamentally different approach. Using a popu-
lar machine-learning technique, the AdaBoost framework, the combine many 1-dimensional classifiers
into a high-dimensional classifier. In this case, a 1-dimensional classifier corresponds to a vantage ob-
ject that, for a particular triplet (q, p1, p2), decides whether p1 is closer to q than p2 or not. The goal is to
provide a combined high-dimensional classifier that outputs a similarity ranking for q that reflects the
true ordering of the database with respect to q. The nature of the algorithms (machine-learning with
intensive training rounds) and the fact that the embedding is designed to produce a ranking that is
order-preserving rather than distance-preserving, make it fundamentally different from the proposed
method.

The following methods have been implemented and compared to the proposed method; for experi-
mental results see Section 5.

Bustos et al. [2003] propose to maximize the mean of distances dμ between all objects in the em-
bedded space or vantage space in order to disperse the objects evenly. They provide three algorithms
implementing this criterion. As the best performing algorithm, they chose a greedy approach, which
iteratively selects as the next vantage object the one that produces the largest dμ, given the vantage
objects that were already selected. In this article, we refer to this method as the Maximum Mean
Distance, (MMD). A large drawback of MMD is the underlying assumption that the distribution of
distances is uniform. When this distribution is not uniform (e.g., when there are strong clusters), max-
imizing dμ does not necessarily produce an even spread of the objects in vantage space. Moreover, only
a small set of objects is a candidate to be selected as a vantage object, and the selection criterion is
evaluated only over a sample of distances.

Brisaboa et al. [2006] assume the distribution of distances to be uniform as well. They propose
the following heuristic, called Sparse Spatial Selection (SSS): when a certain database object has a
large enough distance to all the currently selected vantage objects, it is added to the set of vantage
objects. A large advantage of this approach is that it does not require a predefined vantage space
dimensionality. In their experiments, they show that the selected number of vantage objects reflects the
intrinsic dimensionality of the dataset. However, a drawback of this method is that it is only concerned
with the combined performance of vantage objects and not with their individual quality. Moreover,
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database objects that are inspected first have a larger chance of becoming a vantage object. Finally,
their selection criterion is based on the assumption that the distribution of distances is uniform.

Hennig and Latecki [2003] propose a loss-based strategy for selecting vantage objects. The loss of
a database object is defined as the real (object-space) distance between this object and its nearest
neighbor in vantage space. To compute the loss of a complete vantage space, this distance is averaged
over all database objects. The loss measure is minimized during the selection of vantage objects by
choosing a new vantage object such that the loss combined with other vantage objects is minimal. Due
to the computationally expensive nature of the algorithm, the loss measure is evaluated over random
subsamples of the database.

When vantage indexing was introduced, a MaxMin approach was proposed for the selection of van-
tage objects [Vleugels and Veltkamp 2002]. The first vantage object is chosen at random, all further
vantage objects are chosen such that the minimum distance to the other vantage objects is maximized.

4. SELECTING VANTAGE OBJECTS

In this section we present Spacing-Correlation Based Selection, a novel technique for selecting van-
tage objects that is based on two criteria that directly address the number of false positives (see
Definition 2.1) in the retrieval results. The first criterion, spacing, concerns the relevance of a sin-
gle vantage object. The second criterion, correlation, concerns the redundancy of a vantage object with
respect to the other vantage objects. We propose a randomized incremental construction algorithm that
selects the vantage objects according to these criteria, and builds the corresponding vantage space at
the same time.

The main idea of the proposed approach is to keep the number of candidates that are returned
for a query Aq and range ε as small as possible. Of course, a priori the query object Aq is unknown,
so its location in vantage space is unknown as well. Furthermore, no prior knowledge is available
on the size of the range query (ε), or the number of nearest neighbors that will be requested. Good
performance should therefore be scored over all possible queries and over all possible query sizes. As
good performance is achieved by aiming for small return sets, this notion gives rise to our definition of
the vantage object quality criteria. To obtain small return sets for all queries and all query sizes, the
database objects need to be dispersed, spread out over the vantage space as much as possible.

This dispersion can only be achieved to a certain extent, since for example, real object clusters cannot
be taken apart, assuming d is metric (see Section 2.1). Given the 100 percent recall guarantee, only
the number of false positives within a range around the query is reduced, since by spreading out the
database over the vantage space as much as possible, these are pushed outside the borders of the
range ε.

Another way of looking at this dispersion of the database over the vantage space is through the dis-
criminative power of a set of vantage objects. In a vantage space, similarity between database objects
is interpreted as similarity in distance to the vantage objects. In case many database objects have sim-
ilar distances to the vantage objects, the vantage space is limited in its discriminative power over the
database. The discriminative power of the vantage space is maximized by spreading out the database
as much as possible (i.e., within the boundaries as posed by the specific dataset that is to be embedded).

4.1 Spacing

Suppose for one given vantage object, the distances to all items are marked on a vantage axis. The
discriminative power can then be measured by calculating how evenly spaced the marks on this axis
are. Our first criterion therefore concerns the spacing between objects on a single vantage axis, which
is defined as follows:
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V1 = A1

V2 = A6

A2 A3A4 A6 A5

A3 A1 A4 A5 A2

S1

S1 S2 S3 S4 S5

S2 S3 S4 S5

(a)

(b)

V3

V4

(c)

(d)

Fig. 1. On the left: schematic representation of a vantage axis with object clusters (a) and a vantage axis with dispersed objects
(b). On the right: two vantage axes with a similar variance of spacing (equally uniform), but with different variance of distance.

Fig. 2. Real-life example of distance distributions for vantage objects with a high and low variance of spacing (music dataset).

Definition 4.1. Spacing Si between two consecutive objects Ai and Ai+1 on the vantage axis of Vj

is d(Ai+1, Vj) − d(Ai, Vj).

Let μ be the average spacing. The variance of spacing σ 2
sp is

σ 2
sp = 1

n − 1

n−1∑

i=1

((d(Ai+1, Vj) − d(Ai, Vj)) − μ)2

To ensure that the database objects are evenly spread in vantage space, the variance of spacing has to
be as small as possible. A vantage object with a small variance of spacing has a high discriminative
power over the database, and is considered relevant.

The spacing criterion is illustrated by Figure 1, where axes of two vantage objects are displayed
schematically. Figure 1(a) displays a vantage axis with clustered objects, resulting in a large variance
of spacing compared to Figure 1(b), where a vantage axis with dispersed objects is displayed. Further-
more, Figure 1(c) and (d) illustrate the drawback of the variance of distance criterion for redundancy,
used for instance in Venkateswaran et al. [2006]. The variance of distance in Figure 1(c) is larger than
in Figure 1(d), so V3 would be favored over V4. However, the distribution of the objects along the axis is
equally uniform in both cases, so they are equally suited to serve as a vantage object. This is reflected
in the variance of spacing criterion; in both cases this value is close to zero.

The spacing criterion is further illustrated by a real-world example in Figure 2, where distance
distributions for two vantage objects are visualized in a histogram, one with a low and one with a
high variance in spacing. The dataset used here consists of 500,000 fragments of notated music; in
this case, pairwise distance reflects musical similarity. It can be seen that the database objects have
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Av1 Av2

Fig. 3. Situation in which vantage objects Av1 and Av2 are far apart, but have similar distances to the other objects. These two
vantage objects would not have been selected together based on the correlation criterion.

a wider variety of distances to the vantage object with a low variance in spacing than to the vantage
object with a high variance in spacing.

In these histograms, the distances are binned; in practice, most of the distances are unique. A large
bin (e.g., around 27.5 histogram of high variance) therefore means that there are a lot of distances
within a certain range around this value. As a consequence, the spacings of the distances within this
bin must be small. Distances in a smaller bin are “less packed,” and thus have larger spacings in
between. If the bin heights vary a lot, there exist a lot of different spacing values, resulting in a higher
variance in spacing values.

4.2 Correlation

It is not sufficient to just select relevant vantage objects, they should also be non-redundant. A low
variance in spacing for all vantage objects does not guarantee that the database is well spread-out in
vantage space, since all the vantage objects may provide a similar view on the database. Two redundant
vantage objects produce the same reduction in the return set, and there is no point in using one in
combination with the other. This redundancy of a vantage object V1 with respect to another vantage
object V2 can be estimated by computing the linear correlation coefficient C between the distribution
of database objects along their axes:

C(V1, V2) =
∑

i(d1i − d2i) − ∑
i d1i

∑
i d2i√

n
∑

i(d1i)2 − (
∑

i d1i)2
√

n
∑

i(d2i)2 − (
∑

i d2i)2

where d1i and d2i are short for, respectively, d(V1, Ai) and d(V2, Ai), that is, the distances between object
Ai and vantage objects V1 and V2.

Note that two vantage objects that have a large distance to each other can still be redundant, since
the distribution of distances that all objects have to these vantage objects may be similar. The distance
criterion, used for instance in Venkateswaran et al. [2006], relies heavily on the assumption that the
object space is uniform. For instance, see Figure 3: the two vantage objects lying on the left and the
right of the mass of objects have a large distance to each other, but their discriminative power over the
dataset is similar. The distribution of distances that all objects have to the vantage objects are almost
equal.

On the other hand, we may argue that there may exist other correlations between the distribution
of objects than a linear correlation. In practice, however, this is very unlikely, and we have never seen
such correlations in our experiments.

To ensure that no redundant vantage objects are selected, we compute linear correlation coefficients
for all pairs of vantage objects and make sure these coefficients do not exceed a certain threshold.
Figure 4 illustrates the correlation criterion in a real-world example, using the dataset of 500,000
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Fig. 4. Scatterplot matrices for two sets of five selected vantage objects (music dataset). Vantage objects were selected randomly
in (a), and by using the proposed method in (b). The latter shows weaker correlation, which is preferable.

fragments of music notation. These scatterplots show how the distances of all objects in the database
to two vantage objects are correlated. The maximum correlation results in a simple diagonal line,
as can be seen on the diagonal of the matrices, where each vantage object is correlated with itself.
The scatterplot matrix on the left displays pairwise correlations for five vantage objects that were
selected randomly, whereas the five vantage objects in the scatterplot on the right were selected by
the proposed method. Clearly, random selection of vantage objects results in stronger correlated van-
tage objects than the proposed method, since the objects in the right matrix are dispersed over the
space much better.

4.3 The Number of Vantage Objects

The dimensionality of the vantage space (defined by the number of vantage objects) and the retrieval
performance are closely related. In general, the more vantage objects, the smaller the number of false
positives. A vantage object cannot degrade precision scores, at worst it cannot influence the precision at
all, and thus is completely redundant. However, query times in a vantage space of higher dimensional-
ity are longer. Therefore, the number of vantage objects should be set to an appropriate value given the
needs of the application. In an interactive environment, the allowed dimensionality is limited, whereas
in offline applications where precision is crucial, more vantage objects can be used. In our experimental
work we evaluated the influence of the vantage space dimensionality on the retrieval results.

Although performance increases with a larger number of vantage objects, this increase is not neces-
sarily gradual or unlimited; adding one vantage object does not make a great difference if the set is still
too small to obtain good results. On the other hand, at some point it will be hard to find more vantage
objects that are nonredundant and the increase in performance with extra vantage objects will slow
down. The best strategy for finding an appropriate number of vantage objects, given a specific dataset
and considering the needs of the application, is to perform some pilot selection runs to estimate the
optimal vantage space dimensionality under these constraints. Experiments with different numbers of
vantage objects are presented in Section 5.

Another aspect influencing to the proper number of vantage objects is the intrinsic dimensionality
ρ of the dataset. Given an object Ai from a dataset A consisting of n objects and a metric defined on
these objects, we can say that n features are known for Ai, that is, its distances to all other objects.
Hence this specific dataset spans an n-dimensional space. However, without loss of information, that
is, while preserving the pairwise distances, this database can probably be embedded in a space of a
lower dimensionality d. This value of d is closely related to the intrinsic dimensionality rho of the
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dataset, which can be estimated with ρ = μ2/2σ 2 [Chavez and Navarro 2001], where μ denotes the
mean and σ 2 the variance of the distances. It is a promising idea to translate a definition of intrinsic
dimensionality to a function with which an appropriate number of vantage objects can be estimated. A
possible drawback of the definition given above would be its dependency on a normal distribution: the
definition is based on the behavior of uniformly distributed vector spaces under Minkowski metrics. In
many practical cases, however, the vantage space is not uniformly distributed. It is interesting to see
how much the estimation would suffer from this discrepancy, or how the approach could be relieved
from the strong assumption of normality.

4.4 Algorithm

Spacing-Correlation-Based Selection selects a set of vantage objects according to the criteria defined
above with a randomized incremental algorithm. The key idea is to add the database objects one by
one to the index while inspecting the variance of spacing and correlation properties of the vantage
objects after each object has been added. As soon as either the variance of spacing of one object or the
correlation of a pair of objects exceeds a certain threshold, a vantage object is replaced by a randomly
chosen new vantage object. Typically these repair steps are, necessary only at the early stages in
the execution of the algorithm. Since the database objects are added to the index in random order,
intermediate spacing and the correlation properties of vantage objects form a good estimator of the
final properties once a sufficient number of database objects has been added to the index. Redundancy
or the small discriminative power of a vantage object can therefore be detected early on, keeping the
amount of work that has to be redone small (repositioning all the objects already added with respect
to the new vantage object); see Algorithm 1.

ALGORITHM 1: Spacing-Correlation Based Selection
Input: Database A with objects A1, . . . , An, d(A, A) → R, thresholds εcorr and εsp

Output: Vantage Index with vantage objects V1, V2, ..., Vm

1: select initial V1, V2, . . . , Vm randomly
2: for All objects Ai in random order do
3: for All vantage objects Vj do
4: compute d(Ai, Vj)
5: add Ai to index
6: if σ 2

sp(Vj) > εsp then
7: remove Vj

8: select new vantage object Vnew randomly
9: reposition already added objects w.r.t Vnew

10: if ∃{Vk, Vl| Corr(Vk, Vl)> εcorr} then
11: if σ 2

sp(Vk) > σ 2
sp(Vl) then

12: remove Vk

13: else
14: remove Vl

15: select new vantage object randomly

4.5 Complexity

The complexity of our algorithm is expressed in terms of distance calculations, since these are by
far the most expensive part of the process. The distance calculation itself is considered a black box
operation, and is not included in this complexity analysis; it depends totally on the application at
hand (object type and corresponding distance function). Furthermore, note that index construction
and vantage object selection are performed simultaneously. This means that at each iteration, a new
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database object is added to the index and the criteria are evaluated over the extended index. When
all objects have been added to the index, the final set of vantage objects satisfies the criteria and the
complete index is obtained.

For a dataset containing n objects, the running time complexity is therefore O(
∑n

i=0 Pi×i+(1−Pi)×k)
where k is the (in our case constant) number of vantage objects and Pi is the chance that at iteration i
a vantage object has to be replaced by a new one. This chance depends on the choice of εspac and εcorr.
There is a clear tradeoff here: the stricter these threshold values are, the better the selected vantage
objects will perform, but also the higher the chance a vantage object has to be replaced, resulting in a
longer running time. If we only look at spacing and set εsp such that, for instance, Pi is (log n)/i, the
running time would be O(nlog n) since k is a small constant.

5. EXPERIMENTAL RESULTS

We implemented our algorithm and tested it on three data sets of different modality and size: one
data set of 1,400 shape contour images, one collection of 50,000 color photographs, and a set of 500,000
fragments of music notation. The index structures reduce the query time from an order of hours for a
linear scan in object space, to an order of a second when using vantage indexing. This section gives the
results of the evaluation of the quality of the vantage object selection.

An advantage for defining a false positive, as in Definition 2.1, is that evaluating the performance
on these datasets does not require a ground truth. To measure performance, the matching process is
applied to the candidate matches as returned by the range query on the index. After the exact distances
between the query and all candidate matches have been computed, the percentage of false positives
within the returned set can be calculated. In fact, evaluation with respect to a ground truth would
assess the similarity measure. Here, however, we want to evaluate the quality of the vantage selection
algorithm, regardless the similarity measure.

Please recall that with the vantage indexing scheme, or any contractive embedding in general, false
negatives (see Definition 2 in Section 2.1) are avoided. Hence all query operations in these experiments
yield a recall of 100%; the goal is to reduce the number of false positives in the returned sets.

For some applications, however, a shortcoming of just counting false positives is that it does not take
into account the ranking of the true positives in the return sets. For this purpose, we have evaluated
our results by means of a second performance measure as well: that is, average precision. This measure
is defined as the mean of the precision scores obtained after each true positive is retrieved [Buckley
and Voorhees 2000]. A maximum average precision score of 1.0 is obtained when all true positives are
at the top of the retrieval ranking.

During the music retrieval experiment we evaluated the results with another performance measure,
which we call the Average Distance Error (ADE). Recall that a false positive Afp is an object that lies
within a range of ε to the query Aq in vantage space, but has a real distance d(Afp, Aq) to the query
that is larger than ε. We may argue that a false positive with a real distance to the query slightly
larger than ε is not as bad as a false positive with a real distance far exceeding ε. Therefore, instead
of just calculating the precision scores using this definition of a false positive, we may obtain more
information by addressing a weight to each false positive. This weight is defined as d(Afp, Aq) − ε, that
is, the extent to which a false positive is actually a false positive. The Average Distance Error is the
average of all these false positive weights, taken over a large set of queries.

5.1 Shape Retrieval

Our first dataset is the MPEG-7 test set CE-Shape-1 part B, consisting of 1,400 shape images (contours
only), contained in 70 classes (e.g., apple, car, bat) of 20 images each [Latecki et al. 2000]. The number
of vertices per contour is up to a few hundred. We have calculated the distances between two of these
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Table I. False Positive Ratios and Average
Precision for the MPEG-7 Set

Method False Positive Average
(100 NN) Ratio Precision
SSS (m = 2) 0.81 0.27
Loss based 0.48 0.47
MMD 0.46 0.49
SSS (m = 8) 0.41 0.52
MaxMin 0.39 0.53
Spacing-Correlation based 0.21 0.65

contour images using Curvature Scale Space (CSS) [Mokhtarian et al. 1996]. The CSS is built by an
iterative procedure to convolve the contour until all reflex vertices are eliminated.

In this experiment, we compare Spacing-Correlation-based selection to four existing methods which
were all described in Section 3. These methods are called Sparse Spatial Selection (SSS) [Brisaboa et al.
2006], Maximum Mean Distance (MMD) [Bustos et al. 2003], Loss-based [Henning and Latecki 2003],
and MaxMin [Vleugels and Veltkamp 2002]. All the methods were set to select eight vantage objects,
except for SSS, which chooses its own number of vantage objects. Using the parameters reported in
Brisaboa et al. [2006], the method selected for this dataset selects only two vantage objects. Because
this leads to bad results, we reparametrized the method manually by trial and error such that it selects
eight vantage objects as well.

The performance of these selection methods was evaluated by querying in their vantage spaces with
all 1400 objects. The number of nearest neighbors that was retrieved for each query object ranges from
20 to 100. The distance of the furthest nearest neighbor functioned as ε, which was used to calculate
the number of false positives among these nearest neighbors; see Definition 2.1. For each vantage
index, and all k-NN queries, k = 20, . . . , 100, an average ratio of false positives was calculated over all
1400 queries. The results are displayed in Figure 5.

Although it may seem counterintuitive that the ratio of false positives declines when more nearest
neighbors are retrieved, it is a natural consequence of the definition of a false positive. This defini-
tion is dependent on ε, so the definition of a false positive may change when more nearest neighbors
are retrieved. Specifically, since the distance between the query and the furthest nearest neighbor
that is retrieved defines ε, the definition will become more tolerant when more nearest neighbors
are retrieved. As stated before, the advantage of this definition of a false positive precludes the need
of a ground truth and makes performance comparison independent of the quality of the matching
algorithm.

This experiment clearly shows that Spacing-Correlation-based selection outperforms the other se-
lection techniques. This is mainly because the method achieves a better spread of the database objects
in vantage space, since the selection criteria do not assume that the distances in object space are uni-
formly distributed. For example, MMD may select the vantage objects such that there exist clusters in
vantage space. In this case, the spread is not even, but the mean distance between objects in vantage
space may still be high. Furthermore, Spacing-Correlation-based selection selects both relevant and
nonredundant vantage objects, whereas SSS is only concerned with nonredundancy.

Table I shows similar results, concentrated on 100-nearest-neighbor queries: on the left, false posi-
tive ratios averaged over 1400 queries; on the right, average precision.

5.2 Color-Based Photo Retrieval

The second dataset we used is an order of magnitude larger; it consists of 50,000 color photographs of
512 × 512 pixels. Color histograms of 64 bins were constructed for these photographs, and normalized
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Fig. 5. Performance comparison of the proposed method with four existing methods: Sparse Spatial Selection (SSS), Loss-based,
Maxmimum Mean Distance (MMD), and MaxMin. The figure shows false positive ratios, averaged over all 1400 queries from
the MPEG-7 set (y-axis) with respect to the number of retrieved nearest neighbors (x-axis). In all cases the number of vantage
objects was eight, except for one automatic run of SSS (m = 2). A lower false positive ratio indicates a better retrieval result.

Fig. 6. Performance comparison of the proposed method with the MaxMin and random selection. The figure shows boxplots of
false positive ratios on 1000 random queries from the set of photographs. A lower false positive ratio corresponds to a better
retrieval result. Vantage space dimensionality: 16.

histogram matching was used as a distance measure. In this experiment, we compared our strategy
for selecting vantage objects to randomly selecting the vantage objects and the MaxMin approach.
Because the Loss-based method is computationally expensive to evaluate, this method has not been
tested on a dataset of this size. The methods in this experiment were applied multiple times (several
runs), since randomness in the methods may influence the performance from one run to another. The
performance for each run was measured over the same set of 1000 randomly chosen query objects, and
is expressed in terms of the average false positive ratio, given a fixed range and dimensionality of the
vantage space, see Figure 6 for results.
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Fig. 7. Performance comparison of the proposed method with the MaxMin approach and random selection. The figure shows
false positive ratios, averaged over 1000 random queries from the set of photographs (y-axis) with respect to vantage space
dimensionality m (x-axis).

These results show that Spacing-Correlation-based selected vantage objects yield a lower false posi-
tive ratio (notice that both the median, represented by the line in the box, and the mean, represented
by the diamond), are lower. Furthermore, it shows that the variability over a large number of runs
for Spacing-Correlation-based selection is lower. There is more reason to believe that a specific set of
Spacing-Correlation-based selected vantage objects performs well than there is for the other selection
methods, where random effects wildly influence the performance.

We also investigated the influence of the dimensionality of the vantage space on this dataset. Again,
the range for all queries in this experiment was fixed, however, the number of vantage objects that
was used varied. For this experiment, we selected a typical run for each of the selection strategy and
queried with 1000 random queries on each index; see Figure 7 for results. These results show once
again that false positive ratios are smaller for Spacing-Correlation-based selection. In particular, they
show that with well-chosen objects, a vantage space of smaller dimensionality can yield the same per-
formance as a vantage space of higher dimensionality with, for example, randomly selected vantage
objects. Furthermore, the higher the dimensionality of the vantage space, the larger the improvement
in performance. This means that with Spacing-Correlation-based selection, more relevant and nonre-
dundant objects can be found even though there are already a number of objects–selected, whereas at
this point the other methods select more redundant vantage objects.

5.3 Music Retrieval

This third experiment is designed to illustrate intrinsic properties of our algorithm. First, we demon-
strate scalability of our own algorithm on a dataset that is an order of magnitude larger than ex-
periment 2, and two orders of magnitude larger than experiment 1. Second, we demonstrate that our
algorithm not only reduces the number of false positives, but also the extent to which the false positives
are false.
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Fig. 8. Performance comparison of the proposed method with random selection. The figure shows false positive ratios, averaged
over 1000 random queries from the set of musical segments (y-axis) with respect to vantage space dimensionality m (x-axis).

We have compared Spacing-Correlation-based selection to random selection on a data set of yet an-
other order of magnitude; it consists of 500,000 segments of 5 notes each, from a collection of notated
music. The notes in these segments are represented as weighted points in a space in which the pitch
and onset time are the axes [Typke et al. 2003] and the duration denotes the weight. The distance be-
tween two fragments is computed using the Proportional Transportation Distance [Giannopoulos and
Veltkamp 2002], which is a pseudo-metric version of the Earth Mover’s Distance [Rubner et al. 1998],
and which can be computed by a linear programming algorithm, for example, the simplex method
between two sets of five nodes.

The results for this experiment are shown in Figure 8. In vantage spaces of different dimensionality
m (multiple selection runs per dimensionality), false positive ratios were computed over 1000 ran-
domly chosen queries. Again, Spacing-Correlation-based selected vantage objects produce fewer false
positives for all values of m than randomly selected vantage objects.

Figure 9 shows Average Distance Error (ADE) values for our music dataset. This experiment con-
siders m = 5 and higher only, since smaller sets of vantage objects produce almost only false positives.
These results show that Spacing-Correlation-based selection not only reduces the number of false pos-
itives; but the extent to which the false positives are false is also reduced. We may therefore say that
pairwise distances are better preserved using Spacing-Correlation-based selection.

6. CONCLUDING REMARKS

Given a large set of object models and a corresponding distance measure, an indexing method is needed
to perform efficient querying. Otherwise the query will have to be compared to every object in the
dataset. Vantage indexing is a technique that belongs to the mapping approaches, where the features
of the mapped object models correspond to distances they have to reference objects, called vantage
objects. In this article we have presented Spacing-Correlation-based selection, which is a new approach
for selecting good vantage objects. Two quality criteria were defined for vantage objects: variance of
spacing (individual performance) and correlation (combined performance). Vantage objects that satisfy
these criteria possess high discriminative power over the dataset and allow high-precision querying.
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Fig. 9. Performance comparison of the proposed method with random selection. The figure shows the Average Distance
Error (ADE), averaged over 1000 random queries from the set of musical segments (y-axis) with respect to the vantage space
dimensionality m (y-axis).

The approach was tested on three real-life datasets of different size and modality: 1,400 silhou-
ettes, 50,000 photographs, and 500,000 musical segments. On all datasets, Spacing-Correlation-based
selected vantage objects produce significantly fewer false positives than other known selection tech-
niques. In addition, we have shown that the variability in performance is smaller with Spacing-
Correlation-based selection, and that the pairwise distances are better preserved.
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