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Abstract—We present an approach to synthesize non-verbal
behaviors for virtual characters during group conversations.
We employ a probabilistic model and use Dynamic Bayesian
Networks to find the correlations between the conversational
state and non-verbal behaviors. The parameters of the network
are learned by annotating and analyzing the CMU Panop-
tic dataset. The results are evaluated in comparison to the
ground truth data and with user experiments. The behaviors
can be generated online and have been integrated with the
animation engine of a game company specialized in Virtual
Reality applications for Cognitive Behavioral Therapy. To our
knowledge, this is the first study that takes into account a
data-driven approach to automatically generate non-verbal
behaviors during group interactions.

Keywords-group interactions, character animation, gaze and
gesture behavior

I. INTRODUCTION

Generating believable animations for virtual characters is
essential in virtual environments such as games or virtual
reality applications. These environments simulate real world
situations such as in bars, malls, schools, offices or other
public areas. In the real world, these environments are pop-
ulated with people doing several activities such as walking
or conversing in small groups. In this paper, we focus
on generating believable group conversations. In a group
conversation, people face towards each other and perform
non-verbal behaviors including facial expressions, head and
eye movements, gestures and body movements based on the
content of the speech and the conversational state.

Producing conversational animations for virtual characters
has been a challenging task. While some virtual environment
designers generate animations manually, it requires a lot of
effort. Rule-based approaches to expressive animation gen-
eration [1] [2] have been studied, however these often result
in repetitive and unnatural motions [3]. Recent approaches to
non-verbal behavior generation largely focus on data-driven
approaches [4] [5] [6] [7]. However, these methods focus on
individual modalities and animation of a single character.
Therefore, they are not suitable for generating animations
for a group of virtual characters. Animations during group
conversations are multi-party and multi-modal [8]. In other
words, the dynamics of the group behavior is important to

decide who speaks when with whom and using which non-
verbal behaviors. In Cafaro et al. [9], a rule-based method is
proposed for the generation of non-verbal behaviors during
group interactions. In this paper, we present a data-driven
approach by studying the group dynamics and behaviors
using real-life data from the CMU Panoptic dataset [10].
We learn the correlations between the conversational state
and gaze and gesture behaviors using Dynamic Bayesian
Networks [11]. The results show that our approach is
able to produce animations automatically for small group
conversations of background characters. Figure 1 shows a
sample group interaction and behavior components taken
into account in our framework. In summary, the contribution
of this paper is as follows:

• analysis of gaze and gesture behavior during group
conversations using real-life video recordings;

• a Dynamic Bayesian Network that models the corre-
lations between the conversational state and gaze and
gesture behaviors;

• quantitative and qualitative evaluation of the model and
a novel multi-modal motion synthesis framework for
generating group conversations.

Figure 1. Three-party group interaction and behavior components.

In Section II, we mention the related work with a focus
on theoretical background on group interactions and motion
synthesis for conversational behavior of virtual characters.
Section III presents our approach including the analysis
of group interactions and synthesis of gaze and gesture



behavior using Dynamic Bayesian Networks. Evaluation and
results are shown in Section IV followed by the conclusions
and future work in Section V.

II. RELATED WORK

In this section, we first give a theoretical background on
group interactions. Our work is about modeling background
characters, thus we are interested in modeling behaviors
visible from outside, namely turn-taking, gaze and gesture
behaviors. The movement of the eyes and facial expressions
are out of the scope. Next we mention the previous works
that automatically generate gaze and gesture animation,
including the ones on group interactions.

Group interaction involves several participants organized
in a formation to interact with each other. Participants
position and orient themselves in a way that allows them
to address other participants [12]. They take roles such
as speaker, addressee, side participant and bystander and
coordinate their communicative actions to smoothly interact
with other participants. This coordination happens through
turn-taking mechanisms. A turn refers to which participant
has the right to speak, thus prevents simultaneous speak-
ing. The conversation roles of the participants change over
time by taking turns. The speaker can hold the floor (turn
holding), hand over the floor (turn yielding) or take over
the floor (turn taking) [13]. Gaze is an important tool in
conversations and covers several roles. It is used to show the
conversation participants who is being addressed or it can
indicate someone’s intention of holding the speech role or
receiving feedback about what someone just said [14]. Non-
verbal behaviors during group interactions were analyzed
in video recordings [13] [15] [16] and motion capture data
[17] but not for the purpose of synthesizing multi-modal
behaviors for virtual characters.

Previous works on generating gaze and gesture behavior
are based on rule-based or data-driven approaches. For an
in-depth view on gaze animation, we refer to the survey
by Ruhland et al. [18] which covers both high-level social
behaviors and low-level gaze kinematics [19]. Earlier work
focused on rule-based approaches [1] [2] [3] by analyzing
the text input according to its linguistic and contextual
features and creating a rule base to convert these features to
appropriate behaviours. The disadvantage of these methods
is their inadequacy to explain the full complexity of the
mappings between the behaviors and the communicative
functions [3]. Data-driven approaches automate this process
by finding regularities and dependencies between these
factors using statistics, i.e. head movements generation [3]
and gesture generation [4]. Levine et. al. [5] used an audio-
driven approach and analyzed the pitch and intensity levels
in audio and mapped them to the arm movements. Marsella
et al. [20] combined text-driven rule-based approaches with
an audio-driven approach. More recent approaches employ
deep learning for generating non-verbal behaviors [6] [7].

However, these models work for a single character and
cannot automatically generate non-verbal behaviors for a
group of virtual characters.

There are few previous works that focus on non-verbal
behavior synthesis during group interactions. Bohus et al.
[21] presented a rule-based gaze model linking turn-taking
states to non-verbal behaviors. For example, during a turn
hold, the virtual human directed its gaze away from the ad-
dressee during the thematic part of the sentence and toward
the addressee during the rhematic part of the sentence. In
case of multiple participants, it first established eye contact
with one addressee and then in turn with each of the other
addressees. Wang et al. [22] proposed a rule-based method
to model the listening behavior for different roles such as
addressee, side participant, overhearer, and eavesdropper.
Mutlu et al. [23] studied conversational gaze mechanisms
with a humanoid robot based on data collected in a wizard-
of-oz setup and developed models of role-signaling, turn-
taking, and topic signaling during multi-party interactions.
Ennis et. al. [24] [25] conducted user experiments to see
how users perceive the non-verbal behaviors of a small
groups of agents and found that users are more sensitive
to the global movement of the characters compared to
specific gesturing behaviors. Thorisson et al. [26] developed
a computational model of turn-taking including gaze and
manually generated gestures. Cafaro et al. [9] developed a
turn-taking state machine and non-verbal behaviors taking
into account interpersonal attitudes among the participants
based on status and affiliation parameters. Yumak et al.
[27] presented an autonomous gaze model to drive the head
movement of a virtual receptionist situated in the real-world.
However, there is no work that automatically generates gaze
and gesture behavior using a data-driven approach for small
groups of virtual characters.

III. OUR APPROACH

Our goal is to develop an automated method for the
prediction of gaze and gesture behaviors given the con-
versational state. With conversational state, we refer to the
knowledge of who is speaking when and with whom. Other
information such as the content of the speech or the audio
is not taken into account. Figure 2 shows the steps in
the training phase. First, conversation recordings from the
data set are converted to annotated conversations. Then, the
training data for the gaze and gesture behavior are used to
estimate the parameters of the Dynamic Bayesian Network.

Figure 2. Training phase: Blue parts in the process are automated while
the white parts require human input.



We have chosen the CMU Panoptic dataset for this study.
There exists other group social interaction data sets such as
AMI meeting corpus [28] where people are recorded using
video cameras while they are sitting around a meeting table.
That was not appropriate for our goals in this paper since
we wanted to have scenarios where people are standing in a
group formation. We also wanted to have a data set that has
Kinect 3D skeletal information for future studies (although
skeletal information is not used in this paper). CMU Panop-
tic data set provides recordings of various conversations such
as social games and negotiation scenarios. We have selected
three and four-party conversations and annotated the speech,
gaze and gesture behavior using the ANVIL annotation tool
[29]. More information about the annotated clips are given in
Section IV. An example screen shot showing the annotations
can be seen in Figure 3. Each participant in the conversation
is assigned a unique number. The participant numbers are
also used for determining the gaze directions. The speech,
gaze and gesture behavior annotation tracks are split for
each conversation participant. The speech track defines for
each participant the speaking state as either speaking or not
speaking. The gaze direction of a participant is defined as
either looking towards the environment or looking towards
participant p. For the labeling of the gestures, the MUMIN
Multi-modal Coding Scheme is used [30] and five types of
gestures are annotated: no gesture (idle movement), beat,
deictic, metaphoric and iconic.

Figure 3. Example annotation in ANVIL.

Inter-coder agreement analysis is performed to validate
the annotated labels. A second coder is given the task
to annotate a portion of the conversation data set. The
similarity of their annotations is measured using Cohen’s
kappa coefficient. A kappa coefficient between 0.4 and 0.6 is
considered fair, a value between 0.6 and 0.75 is considered

good and above 0.75 is excellent [31]. Table I shows the
kappa coefficients for each participant in the speech, gaze
and gesture category. The annotation agreement is rated fair
to excellent, with most annotation tracks rated as excellent.

behavior P1 P2 P3
speech 0.779 0.845 0.861
gaze 0.825 0.860 0.614

gesture 1.0 0.597 0.592

Table I
KAPPA COEFFICIENTS FOR INTER-CODE RELIABILITY ANALYSIS.

The differences in labeling between the coders are dis-
cussed after the annotation process. Slight differences in
speech behavior annotations are found in the exact timing of
starting or ending speech, which is acceptable since this has
minimal impact on the model. Some of the short pauses in
speech are considered as not-speaking by one coder, while
the other coder considers these cases as part of the speech.
It is agreed that short pauses are considered as continuing
speech. Similar to speech, there are slight differences in
the starting times of gaze shifts. Gestures are found to
be harder to annotate as it was not very easy to identify
the gesture types, especially with ambiguous short and fast
gestures. Notice that the kappa coefficient for the gestures
of participant 1 is equal to 1.0. That is because participant
1 was using barely any gestures in that annotated sequence.

The turn-taking states in our model is based on the
turn-taking state machine defined in Ravenet et al. [32]
Instead of their rule-based system, our model learns gaze
behaviors from the Panoptic dataset. The turn-taking states
are categorized into speaking states (owning-the-speech
and competing-for-the-speech), listening states (addressed-
listener and unaddressed-listener) and transition states
(start-speaking and stop-speaking). The turn-taking states of
the participants are induced from the observable behavior
in the data set combining the gaze directions and speaking
states of the participants. For example, when a participant is
an addressed-listener, the gaze target is the speaker, whereas
in the unaddressed-listener state the gaze target might be one
of the other participants present in the conversation. Table II
shows the logic propositions for determining the turn-taking
states. P defines the list of conversation participants, p is
the participant the turn-taking state is computed for, q is the
other participants and δ is the annotation time interval. To
keep the model simple, we didn’t define a separate state for
interruptions but included these cases as part of the stop-
speaking state.

A. Analysis of Gaze Behavior

We analyzed the gaze behaviors in three and four-party
conversations according to the turn-taking states. The analy-
sis of three-party conversations are explained in this section
as an example. Figure 4 shows the probabilities of gaze



turn. state logic proposition
unaddres.-list. ¬pspeaking(t) ∧ ∀q∈P,q 6=p,qspeaking(t)

(qgaze(t) 6= p)

addres.-list. ¬pspeaking(t) ∧ ∃q∈P,q 6=p,qspeaking(t)
(qgaze(t) = p)

own-speech pspeaking(t) ∧ ∀q∈P,q 6=p(¬qspeaking(t))
comp.-speech pspeaking(t) ∧ ∃q∈P,q 6=p(qspeaking(t))

start-speak. pspeaking(t) ∧ pspeaking(t− δ)
stop-speak. pspeaking(t− δ) ∧ ¬pspeaking(t)

Table II
LOGIC PROPOSITIONS FOR DETERMINING THE TURN-TAKING STATES.

behavior during the speaking turn-taking states (owning-
the-speech and competing-for-the-speech). The participant
owning the speech has a gaze target probability of 45.7%
towards each listener and 8.6% towards the environment.
If the participant is competing for the speech, he/she has a
lower probability of 34.3% looking at the listening person
because he/she is focused on the other speaker with a
probability of 56.9%. When competing for speech against
two speakers, the speaker has an equal probability of looking
at the speakers (44.1%). The prevalence of mutual gaze
interactions between speaking participants and listeners is
also analyzed. During 69.89% of the speaking time, the gaze
attention is mutual between the speaker and the addressee.
This indicates that mutual gaze is a common occurrence and
important for the gaze attention of speaking participants.

Figure 4. Gaze probabilities for the speaking states.

In the listening state, the participant can be an addressed
or an unaddressed listener. Figure 5 shows the probabilities
for the listening turn-taking states. If the participant is an
addressed listener, he/she gazes towards the speaker 82.6%
of the time. The probability drops to 72.1% in the unad-
dressed state. In both the speaking and listening turn-taking
states the participants pay less attention to the environment
as their attention is mostly on the speaking person.

Figure 6 shows the gaze behavior during transition states.
A participant willing to switch from a listening state to
a speaking state (start-speaking) has a gaze probability of
62.5% towards the current speaker, 25% towards the listener
and the 12.5% towards the environment. When in the stop-
speaking state, gaze probability towards the speaker is 64.9%
and towards the listener is 35.1%. This indicates that the
participant gazes most of the time towards the speaking

Figure 5. Gaze probabilities for the listening states.

person when switching speaking states. Interesting to note is
that the probability for gazing towards the environment when
starting speaking is high in comparison to the other states.
This is supported by research indicating that participants
gaze away when starting speech to avoid feedback from the
other participants and focus on the remarks they are about
to make [14].

Figure 6. Gaze probabilities for the transition states.

B. Analysis of Gesture Behavior

Table III shows the distribution of gesture behavior ac-
cording to the turn-taking states. Time spent without per-
forming any gesture is also measured and is defined as
being idle. As expected, participants use barely any gestures
when listening, with addressed listeners spending 94.16% of
the time and unaddressed listeners spending 97.7% of the
time being in an idle pose. An interesting observation is
that an addressed listener is more likely to use a gesture in
comparison to an unaddressed listener. Addressed listeners
might be more tempted to give feedback to the speaker and
therefore use slightly more gestures, but it is still a rare
occurrence. A significant difference in behavior between
speaking turn-taking states is that both when starting and
ending speech, less gestures are observed in comparison
to the other turn-taking states. Start-speaking and stop-
speaking states have an idle gesture percentage of 73.02%
and 69.82% respectively. Own-the-speech and compete-for-
the-speech states have a much lower idle gesture percentage
being 41.78% and 50.00% respectively. We opted out of
delving deeper into the gesture types since they are highly
dependent on the style of the conversation. In the data set,
for example, a lot of deictic gestures were being used since



the participants were negotiating which resulted in a lot of
pointing gestures towards each other. In conclusion, turn-
taking states do indeed show differences in gesture frequency
and might therefore be used for gesture prediction.

C. Synthesis of Gaze and Gesture Behavior

In this section, we present the gaze and gesture behavior
prediction model based on the analysis in the previous
section. Humans display a variety of behavior in the same
conversation setting. To display this behavior variety, a prob-
abilistic model was chosen. Probabilistic graphical models
are suitable for the purpose of modeling behavior given a set
of conditions. They provide an intuitive way of defining the
parameters of the model and they are able to handle multiple
observations of discrete states. Dynamic Bayesian Networks
(DBN) [11] were used in this study. DBNs are suitable for
online prediction and are efficient since they only require a
look-up table representing conditional probabilities between
the conversational state and non-verbal behaviors. Another
advantage is that the dependencies can be interpreted by a
human, which helps to understand how the behaviors are
generated and allows for changes if desired. When it is
time to predict new gaze or gesture behavior, the relevant
variables for the prediction of either gaze or gesture behavior
are extracted from the last known conversation state. The
behavior prediction is performed on a participant level,
meaning that the prediction models are responsible for pre-
dicting relevant behavior individually for each participant.
For the implementation, the R statistical package bnlearn
[33] is used.

For the prediction of believable gaze behavior, we devel-
oped two different models: 1) a prediction model without
taking into account the conversational state and 2) a pre-
diction model taking into account the conversational state.
The prediction model without conversational state is chosen
as the base model and simulates gaze behavior without
knowing the behavior of the other participants. It predicts
gaze behavior using only the current gaze target of the
participant. For the prediction of the gestures, the DBN
model takes the turn-taking states as the sole input. The
gesture predictor either selects a new gesture type, or no
gesture (based on the analysis in Table III).

The DBN model with conversational state is more com-
plex and it will be explained in the next paragraphs. Figure
7 shows the overall process for the prediction of gaze
behavior of one participant. For each turn-taking state, a
different DBN is defined. Once the appropriate DBN is
found (based on the rules defined in Table II), variables
from the conversational state are used as input for the
selected DBN and gaze target probabilities are generated.
The probabilities are used to select a gaze target and then
the conversational state is updated with new variables to be
used in the next prediction.

Figure 7. DBN process overview for gaze prediction.

Each turn-taking state has a dedicated Bayesian network
determining the variables to be taken into account for that
case. When the participant is in the owning-the-speech state,
the latest known gaze direction is relevant for predicting the
next gaze behavior. In other words, it is likely that a person
looking at a particular target is likely to look at the same
target to have a continuity in the gaze behavior. Another
aspect is the mutual gaze based on our analysis in Section
IIIA. A participant that owns the speech might have mutual
gaze with the other participants who are addressing the
speaker. Therefore, the participants addressing the speaker
are also taken into account in the DBN model of the
owning-the-speech state. When in the competing-for-the-
speech state, the participant should be able to identify the
other speakers to act upon accordingly. The speaking states
of the other participants is therefore included in the Bayesian
network of the competing-for-the-speech turn-taking state, in
addition to the current gaze target. The listening turn-taking
states addressed-listener and unaddressed-listener require
the speaking states of the other participants since listening
participants preferably gaze towards a speaker rather than to
another listening participant. When in the addressed-listener
state, the listener also needs to know who is addressing
him or her. Between the speaking and listening turn-taking
states are the switching turn-taking states: start-speech and
end-speech. When starting speech, the currently speaking
participants are of importance. Gaze is directed towards the
speakers to indicate intention and request attention. The last
speaker should also be taken into account. It may naturally
occur that there is a small moment of silence between the



turn-taking states

gesture own
speech

compete
for speech

addres.
listener

unaddres.
listener

start
speaking

stop
speaking

Idle 41.78% 50.00% 94.16% 97.70% 73.02% 69.84%
Beat 31.11% 22.22% 1.95% 0.57% 15.87% 12.70%
Deictic 15.78% 19.84% 0.43% 0.29% 4.76% 6.35%
Iconic 4.89% 3.17% 2.38% 1.15% 3.17% 7.94%
Metap. 6.44% 4.76% 1.08% 0.29% 3.17% 3.17%

Table III
GESTURE BEHAVIOR DURING THE TURN-TAKING STATES.

ending of the speech and the speech reaction of another
participant. With only the currently speaking participants
as information when starting speech, the participant will
not able to respond to the latest speaker. When ending the
speech, the most important factors determining the gaze
direction are whether the other participants are speaking at
that moment or the current gaze direction of the participant,
which is often the addressee of the participant recently ended
his/her speech.

Figure 8 shows the simulation phase. The behavior pre-
dictors use an annotated speech sequence as input, extracts
the turn-taking states and predicts the complimentary gaze
and gesture movements. The gaze prediction is done every
250 msecs while the gesture prediction is dynamic based on
the duration of the current gesture. The predicted states are
added to the timeline and the conversation behavior realizer
displays the current speech, gaze and gesture behavior. For
the realization of actual animations, we use the 3D models
and animations generated by a game company specialized
in Virtual Reality applications for Cognitive Behavioral
Therapy. For the simulation of new conversations, the only
manual input required by our pipeline is the annotation of
the speech starting and end times. Automatic annotation of
speech segments is an interesting option and would result
in a fully automated pipeline, however it is out of the scope
of this work. Alternative to manual annotation, annotations
from example conversation clips may be used as input testing
data.

Figure 8. Simulation phase: Blue parts in the process are automated.
Yellow parts are generated in the training phase. White parts require human
input.

IV. EVALUATION AND RESULTS

The performance of the proposed gaze and gesture pre-
diction models is measured quantitatively and qualitatively.
Prediction accuracy of the DBN is used as a quantitative
measure. We also conducted a user study to measure the
believability of the generated gaze and gesture behaviors in
three and four-party conversations.

A. Accuracy of Predictions

The same annotated data set that was used for behav-
ior analysis was used to evaluate the effectiveness of the
prediction models. The entire data set contains three three-
party conversation clips of 57, 49 and 41 seconds and two
four-party conversations of 37 seconds and 54 seconds. By
combining the behavior of each participant in a conversation,
this data set provides a total of 441 seconds of data for
three-party conversations and 364 seconds for the four-party
conversations.

For measuring the prediction accuracy, we compared the
similarity between predicted non-verbal behaviors and real
human behavior in the ground-truth data. The positioning
and orientation of the participants were kept same with the
original data set. Since the gesture behavior predictor is not
using the content of the speech as information, the generated
gestures are expected to be far from the original gestures.
Therefore the performance of the gesture predictor is only
assessed with the user study.

For the gaze behavior, we compared two cases: gaze
behavior generated based on the conversational state, and
without the conversational state. As described in the previous
section, the first one is the full gaze prediction model while
the second one is a simplified baseline model that only
takes into account the current gaze target to predict the
next target. Thus it does not take into account the states
of the other participants in the conversation. The initial
gaze directions of the participants were set to the initial
behavior found in the actual conversations. The prediction
models predict the gaze behavior of each participant over the
entire duration of the conversation given the speech sequence
from the original data set. The prediction accuracy was
measured using cross-validation, meaning each conversation
is predicted with the remaining conversations being used as



the training data. To avoid a fortunate or unlucky random
prediction, the simulations were performed 1000 times for
each conversation resulting in a mean prediction accuracy.

The resulting prediction accuracies are displayed in Table
IV. Our goal in this study was to find out whether the
conversational state has an effect on the generated behaviors
in comparison to the base model or randomly generating
the behaviors. We found that both gaze prediction model
types have an higher accuracy in comparison to random
chance which is 33.3% for the three-party conversations
and 25% for the four-party conversations (based on the
number of possible gaze directions in the conversation). As
expected, the prediction model with conversational state has
a higher prediction accuracy in comparison to the model
without conversational state. This indicates that turn-taking
indeed does play a role in determining the gaze direction.
However, the low accuracies indicate that the DBN model
is not adequate enough to obtain very high accuracy levels
with respect to the ground truth data.

accuracy
three-party without conversat. state with conversat. state

1 45.5 50.03
2 43.92 48.86
3 45.76 52.18

four-party without conversat. state with conversat. state
1 32.13 39.41
2 31.4 35.85

Table IV
GAZE BEHAVIOR PREDICTION ACCURACY - 3 CLIPS FOR THE

THREE-PARTY CONVERSATIONS AND 2 CLIPS FOR THE FOUR-PARTY
CONVERSATIONS.

B. User Evaluation

A user study was conducted to measure the believability
of the predicted gaze and gesture behavior using an online
survey. Our hypothesis was that the gaze behavior with
conversational state will have higher believability ratings in
comparison to the gaze behavior generated without conver-
sational state. We also expected the gaze and gesture believ-
ability ratings to be close to the ground truth believability
ratings. The survey was split into two sections which focus
on the gaze and gesture prediction separately. A total of 13
participants joined the experiment. Six of them were female
and seven were male and they were between the ages of 19
and 27.

For the gaze behavior, 14 clips were generated in total,
half of them being three-party and the other half being
the four-party conversations. Among the seven three-party
conversations, one clip was the ground truth animation. The
other six clips were produced based on the gaze prediction
model taking the same speech input as the ground truth clip
and were generated in two conditions: with or without con-
versational state. Per condition, three different simulations

were generated. The same set-up applies for the seven four-
party conversation clips. For the gesture evaluation, four
clips were generated for four-party conversations, one of
them being the ground-truth animation and the remaining
three were predicted using the gesture predictor (three-party
conversations were skipped to keep the survey not too long).
Each clip were generated focusing on one-modality: For the
clips used for the evaluation of the gaze, gestures were taken
from the ground-truth data, while for the clips used for the
evaluation of the gestures, gaze behaviors from the ground-
truth were used. Facial expressions were not included in
the simulations but simple mouth movements were added to
give an indication of speaking (closing/opening the mouth).
Additionally, a red marker is put on top of the head of the
speaking participants. The duration of the observed clips
were set to 30 seconds to give the participants enough time to
make their judgment but also keep the experiment moderate
in length. After each conversation clip the participants were
asked to rate the believability of the gaze behavior on a scale
of 1 to 10 with 1 being unbelievable and 10 being believable.
Videos from the user study are submitted as supplementary
files.

Table V shows the results of the user study for the gaze
prediction. On average the believability of gaze behavior
predicted without conversation state is rated the lowest with
a rating of 5.31 in three-party conversations and 5.04 in a
four-party conversations. As expected, the ground-truth gaze
behavior scores the highest with a rating of 6.54 in three-
party conversations and 6.42 in four-party conversations. The
predicted gaze behavior with conversational state scores in
between the ground-truth gaze behavior and gaze behavior
predicted without conversational state, with a rating of 5.73
in three-party conversations and 5.9 in four-party conversa-
tions. Overall, the scores of the gaze behavior aligns with
our initial goals. Table VI shows the believability ratings
for gesture prediction. The ratings of the predicted gesture
behavior is found to be closer to the ground-truth data,
with the original gesture behavior having a rating of 6.96
and the predicted gesture behavior having a rating of 6.41.
This shows that it is possible to predict convincing gesture
behavior without knowing the content of the speech.

believability rating
gaze behavior three-party four-party

predicted without conversational state 5.31 (sd. 1.84) 5.04 (sd. 1.81)
predicted with conversational state 5.73 (sd. 1.62) 5.90 (sd. 1.76)

original gaze behavior 6.54 (sd. 1.63) 6.42 (sd. 1.58)

Table V
BELIEVABILITY RATINGS FOR THE GAZE BEHAVIOR.

V. CONCLUSIONS AND FUTURE WORK

We presented a data-driven method for the generation
of non-verbal behaviors during group conversations using



gesture behavior believability rating
predicted gesture behavior 6.41 (sd. 1.29)

original gesture behavior 6.96 (sd. 1.23)

Table VI
BELIEVABILITY RATINGS FOR THE GESTURE BEHAVIOR.

Dynamic Bayesian Networks. The parameters of the network
are learned from a group interaction data set. Our results
show that it is possible to generate convincing behaviors
for the animation of background characters in group con-
versations using a data-driven approach. The proposed gaze
prediction model taking conversational state into account
performs better than the predictor without conversational
state. We also found that without knowing the content of the
speech, it is possible to predict gestures using the turn-taking
states as an indicator. However, there are also limitations to
our work and directions of improvement.

First, improvements are required on the model side. Our
model does not take into account the initial position and
orientation of the participants. That might be one of the
causes of low prediction accuracy, since for each conversa-
tion to be predicted, the other conversations with a different
formation are used as the training data set. Similarly, further
characteristics should be taken into account for selecting the
training and test sets such as the topic of the conversations
(i.e. negotiation, collaboration) or the individual characteris-
tics of the people (i.e. dominant, extrovert). Without taking
these variations into account, the model learns an average
behavior which might be far from the style of the predicted
sequence. Interruptions can also be added as an additional
turn-taking state which might improve the believability of
the generated behaviors. In our current work, we simplified
the model and did not take into account interruption behavior
explicitly.

In addition, our work focuses on the high-level modeling
of the non-verbal behaviors and the selection of appropriate
gaze and gesture actions and do not produce the actual
motion trajectories of the joints. Improvements in the an-
imations might lead to better believability. For example,
it will be interesting to investigate whether it is possible
to automatically generate motion trajectories using speech
features and motion capture data. In this work, DBNs were
used as a first step to show the feasibility of generating
group interactions automatically. However, more complex
machine learning models such as deep neural networks and
more fine-grained data can be used to achieve better results.

Second, the evaluation of the model and experiment
set-up requires improvements. The believability ratings of
the ground truth behavior indicates that there is room for
improvement in terms of motion quality and rendering.
Although the experiment shows promising results, further
statistical significance analysis is needed with larger number
of participants. The ground-truth simulations also does not

take into account the other aspects such as facial expressions.
Furthermore, other quantitative evaluation metrics should be
defined that represents what a convincing behavior is in
that context, e.g. frequency of gaze and gestures, amount
of mutual gaze etc.

In conclusion, more complex machine learning models
may increase the accuracy of the model and better evaluation
metrics should be introduced. Our study is the first one to
show the feasibility of generating group conversational ani-
mations automatically with a data-driven approach. Finally,
we also want to compare our approach with the existing
rule-based group interaction models such as [26] and [32].
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