
applied  
sciences

Article

Learning Class-Specific Features with Class
Regularization for Videos

Alexandros Stergiou * , Ronald Poppe and Remco C. Veltkamp

Department of Information and Computing Sciences, Utrecht University, Princetonplein 5,
3584 CC Utrecht, The Netherlands; r.w.poppe@uu.nl (R.P.); r.c.veltkamp@uu.nl (R.C.V.)
* Correspondence: a.g.stergiou@uu.nl

Received: 28 July 2020; Accepted: 4 September 2020; Published: 8 September 2020
����������
�������

Abstract: One of the main principles of Deep Convolutional Neural Networks (CNNs) is the
extraction of useful features through a hierarchy of kernels operations. The kernels are not explicitly
tailored to address specific target classes but are rather optimized as general feature extractors.
Distinction between classes is typically left until the very last fully-connected layers. Consequently,
variances between classes that are relatively similar are treated the same way as variations between
classes that exhibit great dissimilarities. In order to directly address this problem, we introduce Class
Regularization, a novel method that can regularize feature map activations based on the classes of the
examples used. Essentially, we amplify or suppress activations based on an educated guess of the
given class. We can apply this step to each minibatch of activation maps, at different depths in the
network. We demonstrate that this improves feature search during training, leading to systematic
improvement gains on the Kinetics, UCF-101, and HMDB-51 datasets. Moreover, Class Regularization
establishes an explicit correlation between features and class, which makes it a perfect tool to visualize
class-specific features at various network depths.

Keywords: class regularization; 3D-CNN; spatiotemporal activations; class-specific features

1. Introduction

Video-based action recognition has seen tremendous progress since the introduction of
Convolutional Neural Networks (CNNs) [1,2]. The hierarchical application of 3D convolutional
operations has been shown to effectively capture descriptive spatiotemporal features.

CNNs include multiple layers that are stacked in a single, hierarchical architecture. Features are
calculated by successive convolutions. Kernels in early layers focus on simple textures and patterns,
while deeper layers focus on more complex parts of objects or scenes. As these features become
more dependent on the different weighting of neural connections in previous layers, only a portion
of them becomes descriptive for a specific class [3,4]. Yet, all kernels are learned in a class-agnostic
way. Consequently, much of the discriminative nature of CNNs is achieved only in the very last
fully-connected layers. This hinders easy interpretation of the part of the network that is informative
for a specific class.

We aim at forcing the network to propagate class-specific activations throughout the network.
We propose a method named Class Regularization that relates class information to extracted features
of network blocks. This information is added back to the network by amplifying and suppressing
activation values with respect to predicted classes. Class Regularization has a beneficial effect on the
nonlinearities of the network by modulating the effects of the activations. Owing to this, the architecture
can effectively distinguish between the most class-informative kernels in each part of the network
given a selected class. This procedure reduces the dependency on many uncorrelated features
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in the last fully-connected layers that are responsible for the final class predictions, essentially
penalizing overfitting.

Our contributions are the following:

• We propose Class Regularization, a regularization method applied in spatiotemporal CNNs.
The method does not change the overall structure of the architecture, but can be used as an
additional step after each operation or block.

• We demonstrate that the relationships between classes and features can be visualized by
propagating class-based feature information through normalized neural weights for each of
the model’s building blocks.

• We report performance gains for benchmark action recognition datasets Kinetics, UCF-101,
and HMDB-51 by including Class Regularization in convolution blocks.

We discuss advances in vision-based action recognition in Section 2. A detailed overview of Class
Regularization appears in Section 3. Experiments are presented in Section 4. We conclude in Section 5.

2. Related Work

Significant advancements have been made in the recognition of actions in videos with the
introduction of deep neural approaches that are based on the hierarchical discovery of informative
features [5,6]. These architectures provide the basis to further accommodate temporal information.

Due to the indirect relationship between temporal and spatial information, one of the first attempts
on video recognition with neural models was the use of Two-stream networks [7]. These networks
contain two separate models that use still video frames and optical flow as inputs. Class predictions
are made after combining the extracted features of the separate networks. Two-stream networks were
also used as a base method for works such as Temporal Segment Networks (TSN, [8]) which use
scattered snippets from the video and fuse their predictions. This approach sparked research on the
selection of informative frames [9,10]. Other extensions of Two-stream networks include the use of
residual connections [11,12] that share spatiotemporal information across multiple layers.

An alternative approach to capture temporal information in CNNs is through 3D convolutions [13].
3D convolutions include an additional time dimension to the two spatial dimensions. 3D convolutions
have been shown to outperform standard image-based networks [14] in video classification. A fusion of
Two-stream networks and 3D convolutions has been explored with the I3D architecture [15]. The two
spatiotemporal models are trained in parallel on frame and optical flow data, with the benefit of
also processing temporal-only information. Further structures that have been explored with 3D
convolutions include Residual Networks [16].

Inspired by depthwise and pointwise convolutions performed over image channels [17],
researchers have introduced ways of splitting the 3D convolutions in subsequent 2D convolution
operations. This can be achieved through either using spatial filters followed by temporal-only
filters [18,19] or convolutions in groups [20,21]. Alternative implementations include the use of
long-sequence and short-sequence kernels [22] and dimension-based iterations of time-width and
time-height [23,24]. Others have worked on the minimization of the computational requirements by
shifting activations along time [25]. Previous works that have touched upon regularization were aimed
more at the overall temporal consistency of features (e.g., [26]) without the consideration of feature
combinations that are most informative for some classes.

Although these techniques have shown great promise in terms of accuracy and computational
performance, there is still a lack of better spatiotemporal representations for intermediate network
layers. Currently, there is no standardized way of processing the temporal information. Our proposed
method, named Class Regularization, fills this void as it can be added to virtually all network
architectures with minimum additional computational cost in order to enhance the correlation between
specific spatiotemporal features and the action class.
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3. Regularization for Convolutional Blocks

In CNNs, explicitly adding class information through regularization is challenging, given the
increasing level of ambiguity of the model’s inner workings with respect to the network depth.
We make the assumption that, when testing a video in a trained CNN, a speculative guess can be made
on which class is represented by observing the activations produced at a certain layer. The underlying
idea is that different kernels focus on different spatiotemporal patterns that appear in different classes.
These guesses depend on the layer depth. Deeper network layers can distinguish class-specific features
better because of the larger feature complexity. Therefore, guesses at different parts of the model should
have consequently greater or lesser effect. To include the layer feature complexity, we define an affection
rate (A) that specifies how the class predictions affect the network’s activation maps. The values are
chosen given the layer depth and the level of uncertainty of their class estimates. The discovery of
feature correspondence between the layer’s feature space and the class’s feature space is implemented
through pointwise convolutions and by incorporating their kernel updates as part of the training
procedure. A complete workflow of the regularization method appears in Figure 1.
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Figure 1. Class Regularization. An additional pathway between class weights and intermediate
features is added (a) connecting different parts of the network across iterations. In Class Regularization
blocks, activation maps are pooled to vector volumes (pool(ai)) and multiplied by the class weights
in order to select the resulting highest class activation (pool(a∗i )

C). A computational overview of the
in-block operations (b) appears in Algorithm 1.

3.1. Layer Fusion with Class Predictions

We first discuss the main process for finding class estimates based on extracted features from
the convolutional block at depth i in the network. We start by creating a vector representation of
the features as distributed between the activation’s channels for a spatiotemporal activation map
input of size (FxHxW). Considering the produced activation map of the ith block (denoted as
ai), a global feature representation of the activations is created through a spatiotemporal sampling
operation: pool(ai) (Equation (1)). The produced volume can be interpreted as a single vector descriptor
containing a combination of the feature intensity values in the form of their average activations in a
significantly lower dimensional space.

pool(ai) =
1

F× H ×W

F

∑
f=1

H

∑
h=1

W

∑
w=1

a( f ,h,w,i). (1)

To include class-based information in intermediate feature layers, we use the weights of the
network’s final prediction layer W f c. This allows to establish a relationship between previous and
current iterations in a recurrent fashion, by taking class-specific features into account. To obtain
feature alignment given the channel sizes for the current activation and the prediction weights,
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a one-dimensional convolutional operation (conv = W f c ∗W) is applied to the class weights with a
kernel (W) size of 1 followed by a relu activation function.

Next, we use a standard matrix-to-matrix multiplication to create an association between the
channel descriptor and each of the classes. The volume Zi is of size {Z[1]

i , ..., Z[CL]
i }, for CL classes,

with each unit Z[j]
i having the same channel dimensionality as ai. This operation allows an early

estimate for the indexes of the most relevant features for each class.
One could use the outputs of the multiplication as a separate loss function but we have two main

reasons for refraining from doing so. First, due to the limited feature complexity, it is significantly
more difficult to make educated class predictions in early layers of the network. This also corresponds
to the notion of hierarchical feature extraction in CNNs. Second, through these multiple output points,
multiple error derivatives are to be calculated which will slow down the training process significantly.

3.2. Fusion of Class Weight Vector and Spatiotemporal Activation Maps

Our aim is to let the produced class-based activations Zi become indicators for the most
informative class features. With this, we aim at obtaining the maximum class probability through
a standard softmax activation function applied on the activations. This converts the weighed sum
logit score to a probabilistic distribution over all classes: S(Zi). Based on (5) in Algorithm 1, the index
of the maximum class activation is selected (C) to define the class weight vector with the highest
correspondence based on the class features of the layer.

Algorithm 1 Class regularization overview

1: Inputs:
Values of activation map ai for ith layer.

2: Outputs:
Class-regularized activations (a∗i )

C

3: Wi ← relu(W f c ∗W)

. Weight dimensionality conversion
4: Zi ←Wi ∗ pool(ai)

. Weighted sum per class neuron
5: C ← argmax

j
{S(Z[1]

i ), ..., S(Z[CL]
i )} ∀ S(Z[j]

i ) = ε
Z[j]i

∑
c∈1,...,CL

ε
Z[c]i

. Largest softmax activation class search
6: Ŵi ← A ∗ (Wi−min{Wi})∗(1−A)

max{Wi}−min{Wi}
. Weight scaling

7: (a∗i )
C ← Ŵ [c]

i ∗ ai

. Final weight regularization.

As we want to amplify activation features, we need to normalize weight vector Wi before fusing
it with the layer’s activation maps. Layer features that are less informative for a specific class should
be scaled down, while informative ones should be scaled up. To this end, we set a value (A) which
will be referred to as the affection rate. It determines the bounds that the weight vector will be
normalized to (Ŵi)—see step (6) in Algorithm 1. We are not using a standardization method as in
batch normalization [27] that guarantees a zero-mean output. This is because we use a multiplication
operation for including the class weight information to the activation maps. Therefore, zero-mean
normalization will remove part of the information because values below one will decrease in the
feature intensity. It also hinders performance as it effectively contributes to the occurrence of vanishing
gradients because the produced activation map values would be reduced at each iteration.

In our final step, we inflate the normalized weight vector Ŵ [c] to match the dimensions of the
spatiotemporal activation maps. We then perform a matrix-to-matrix multiplication between the
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activation maps of the layer ai and the normalized weights with the axis of symmetry being the depth
or channel’s dimension.

3.3. Performing Updates to Regularized Volumes

Class Regularization is performed on activation maps in the network to manipulate the activation
values of the upcoming operations. We underline that the value of the affection rate A used in the
normalization can be trained through a separate objective function. In addition, our method is
independent of the training iteration or layer number that it is applied to, and can process examples
independently for online learning. Therefore, the discovery of class connections can also be performed
in minibatches, to then return regularized volumes over single or multiple class weights.

The feature representation that is captured (a∗i )
C depends on the specific example ai, the layer or

block i of the architecture that the regularization was applied to, the chosen class C that was selected,
and the affection rate A. The distribution inside Ŵ [C]

i has an expected value of 1 and a distribution of
2(1− α). Due to the low computational overhead to back-propagate through the proposed method,
the computation times are not significantly affected by including Class Regularization in a network.

3.4. Class Regularization for Visualizations

As Class Regularization is based on the injection of class-based information inside the
feature-extraction process, a direct correlation between classes and features is made at each block
in which the method is applied. Being able to represent the class features given a different feature
space improves the overall explainability capabilities of the model. Through feature correlation,
the method alleviates the curse of dimensionality problem of previous visualization methods that rely
on back-propagating from the predictions to a particular layer [28]. Since the classes are represented
in the same feature space as the activation maps of the block, we can discover regions in space and
time that are informative over multiple network layers. To the best of our knowledge, this is the first
method to visualize spatiotemporal class-specific features at each layer of the network.

By extending the proposed algorithm to include an adaptation of Saliency Tubes [29] in each block,
we can create visual representations of the features with the highest activations per class. We create
two visual examples of the class bowling in Kinetics-400 to demonstrate class activations in different
layers of the network (Figure 2). As observed in the clip segment, in both cases, early layer features are
significantly less deterministic of the class and mostly target the distinction between foreground and
background. In later layers, the focus shifts from the actor to the background in the predictions layer
of the first clip. Ball and bowling pins are present at a wallpaper, which demonstrates that a strong
still-frame visual signal is favored in case the action or objects within the action are occluded. In the
second clip, the main field of focus of the network in the final layers is towards the area between the
actor’s hand and the ball. We note that, by design, all network architectures used fuse all temporal
activations to a single frame at their final convolution block, which only allows the visualization of
spatial extension of the activations.

The amplification of layer features can also be visualized as in Figure 3. The top-3 kernels to be
amplified for a baseball hit example correspond to spatiotemporal features such as the appearance of
the bat, the field, and the movement of the bat during a swing. In addition, these amplifications are also
propagated to deeper layers in the network through the connections of the most informative kernels.
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Figure 2. Layerwise class feature correspondence. Each of the Saliency Tubes [29] represents the class
activations of a Class Regularized Wide-ResNet50 model in layers res3 and predictions (fc). Both clips
correspond to visualizations for class bowling from Kinetics-400 [30] for two different examples with
variations in their spatiotemporal regions.
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Figure 3. Visualization of feature amplification. As class-specific activations are reused by the network,
informative spatiotemporal features for specific classes during an iteration are amplified. The effect of
this amplification is propagated to deeper layers in the network through the connections of the layers
in which Class Regularization is applied.

4. Experiments

We demonstrate the merits of Class Regularization on the action recognition classification
performance on three benchmark datasets, and using a number of widely used CNN architectures.
Results are summarized in Table 1. We further statistically compare the classification performance
between predictions from different architectures and from different blocks within the same architecture.

For our experiments, we consider the widely used Kinetics-400 [30] dataset as a baseline. Then,
each of the selected models is further fine-tuned on both UCF-101 [31] and HMDB-51 [32] by training
the 1D convolutions inside Class Regularization to ensure a dimensionality correspondence between
the new class weight vectors and the activation maps of each layer that the method is applied to.
We further allow updates on the final two convolution blocks of the selected networks.

Training. The models trained on Kinetics are initialized with a standard Kaiming initialization [33]
without inflating the 3D weights. This allows for a direct comparison between architectures with and
without Class Regularization and to compare the respective accuracy rates. For all the experiments, we use
an SGD optimizer with 0.9 momentum. Class Regularization is added at the end of each bottleneck block in
the ResNets and at the end of each mixed block in I3D.
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Table 1. Architectures of 3D convolution models with and without class regularization. We note that in
the Class Regularized networks, only an eighth of the additional parameters are trainable, with the rest
corresponding to nontrainable class weights tensor duplicates.

Layer Name 3D ResNet101 (w/o CN) 3D Wide ResNet 50 (w/o CN) I3D (w/o CN)

con3d1 7× 7× 7, 64 conv

con3d2

1× 1× 1
3× 3× 3
1× 1× 1

 (×64)× 3

1× 1× 1
3× 3× 3
1× 1× 1

 (×128)× 3
[

1× 1× 1 1× 1× 1 1× 1× 1 3× 3× 3, (pool)
3× 3× 3 3× 3× 3 1× 1× 1

]
(×480)× 2

ClassReg1 - / α = 0.9 - / α = 0.9 - / α = 0.8

con3d2

1× 1× 1
3× 3× 3
1× 1× 1

 (×128)× 4

1× 1× 1
3× 3× 3
1× 1× 1

 (×256)× 4
[

1× 1× 1 1× 1× 1 1× 1× 1 3× 3× 3, (pool)
3× 3× 3 3× 3× 3 1× 1× 1

]
(×832)× 5

ClassReg2 - / α = 0.8 - / α = 0.8 - / α = 0.7

con3d2

1× 1× 1
3× 3× 3
1× 1× 1

 (×256)× 23

1× 1× 1
3× 3× 3
1× 1× 1

 (×512)× 6
[

1× 1× 1 1× 1× 1 1× 1× 1 3× 3× 3, (pool)
3× 3× 3 3× 3× 3 1× 1× 1

]
(×1024)× 2

ClassReg3 - / α = 0.7 - / α = 0.7 - / α = 0.6

con3d2

1× 1× 1
3× 3× 3
1× 1× 1

 (×512)× 3

1× 1× 1
3× 3× 3
1× 1× 1

 (×1024)× 3 -

ClassReg4 (-) / α = 0.6 - / α = 0.6 -

predictions global average pool, softmax unit group

We use transformations for both spatial and temporal dimensions. In the temporal dimension,
we use clips of 16 frames that are randomly extracted from different subsequences of the video. For the
validation sets, we only use the center 16 frames. Spatially, we use a cropping size of 112× 112 and
256× 256 for fine-tuning. All models are trained for 170 epochs, as no further improvements were
observed afterwards in our initial experiments with all three networks on Kinetics. We also used a
step-based learning rate reduction of 10% every 50 epochs.

Datasets. Kinetics-400 consists of roughly 240 K training videos and 20 k validation videos of
400 different human actions. We report the top-1 accuracy alongside the computational cost (FLOPs)
for each of the networks using spatiotemporally cropped clips. UCF-101 and HMDB-51 have 13 k
and 9 k videos, respectively. They are used to demonstrate the transfer abilities of the proposed Class
Regularization as well as the usability of our method in smaller datasets.

4.1. Main Results

A comparison between results of models trained from scratch on Kinectics-400 appears in Table 2.
Existing networks consider a complete change in the overall architecture or convolution operations in
models, which is computationally challenging given the large memory requirements of spatiotemporal
models. New models need to be trained for a significant number of iterations in order to achieve mild
improvements, while additionally using large datasets [34,35] for pretraining. In contrast, the proposed
Class Regularization method is used on top of existing architectures and only requires fine-tuning the
dimensionality correspondence between the number of features in a specific layer and the features
that are used for class predictions. Overall, the largest improvements were observed on networks with
larger number of layers, such as ResNet101-3D, in comparison to networks with lower number of
layers, with the best performing architectures being I3D and ResNet101-3D with Class Regularization
with 67.8% top-1 accuracy and 67.7% top-1 accuracy, respectively.
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Table 2. Accuracy rates of different spatiotemporal convolutional architectures on the Kinetics-400 dataset.

Model Backbone Depth # Params (M) GFLOPS Top-1 (%)

ResNet50-3D [16] ResNet 50 36.72 80.32 0.636

ResNet101-3D [16] ResNet 101 69.06 110.98 0.652

ResNeXt101-3D [16] ResNet 101 69.06 148.91 0.667

Wide ResNet50-3D [16] ResNet 50 140.94 72.32 0.640

I3D [15] Inception 48 12.07 55.79 0.664

R(2+1)D-ResNet50 [19] Resnet 50 34.86 89.14 0.645

R(2+1)D-ResNet101 [19] ResNet 101 67.22 159.21 0.668

MF-Net [36] ResNet 50 8.03 22.7 0.653

ResNet101-3D w/Class Regularization ResNet 101 + 4 37.10 126.13 0.677

Wide ResNet50-3D w/Class Regularization ResNet 50 + 4 141.32 82.67 0.653

I3D w/Class Regularization Inception 48 + 3 69.44 62.96 0.678

4.2. Direct Comparisons with and without Class Regularization

In Table 3, we pairwise compare three architectures after training directly on Kinetics, and after
adding Class Regularization blocks and fine-tuning. For each architecture and dataset, networks with
Class Regularization outperform those without. The largest gain is observed in the 101-layer 3D Resnet
(+2.45%), while we obtained improvements of +1.37% and +1.43% on the Wide-ResNet50 and I3D,
respectively. Our approach appears to be especially useful for deeper networks. Since the effective
description of classes is achieved through large feature spaces, Class Regularization significantly benefits
models that include complex and large class weight spaces. The set of influential class features can be
better distinguished with minimal computational costs, as shown in Figure 4.

Table 3. Direct comparison of architectures with (in orange) and without (in black) Class Regularization
blocks. Latency in msec.

Model Added Latency Kinetics UCF101 HMDB51

ResNet101 - 65.29% 88.23% 62.47%

ResNet101 + 98.786 67.74% 88.84% 63.31%

Wide ResNet50 - 63.96% 87.52% 61.62%

Wide ResNet50 +102.995 65.33% 89.11% 63.24%

I3D - 66.42% 91.80% 64.27%

I3D +68.34 67.85% 93.17% 65.83%

When transferring weights, the retraining process does not change for the Class Regularization
networks as the additional training phase is only performed in order for the model to learn the
feature correspondence.
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Figure 4. Class Regularization accuracy/computation trade-off.

Advancements can also be achieved in transfer learning, as shown by the rates for UCF-101 (split 1)
and HMDB-51 (split 1) in Table 3. Accuracy for non-Class-Regularized networks are recalculated in
order to ensure the same training setting. The largest gain from the original implementation in UCF-101
is on the Wide ResNet50 with +1.59% followed by I3D with +1.26% and ResNet101 +0.61%. For the
HMDB-51 dataset, the model pair that exhibits the largest gap in performance is Wide ResNet50 with a
+1.62% improvement, I3D with +1.56%, and ResNet101 with +0.84%. Overall, the minor deterioration
of the accuracy gains in transfer learning could be contributed to the fact that kernels have been already
trained in conjunction with class information from a different dataset.

As shown in Figure 5, Class Regularization demonstrates improvements for most classes in
Kinetics. The greatest improvements are observed for classes that can be better defined based on
their execution instead of their appearance. Examples are “bench pressing” (9.1% improvement),
“high jump” (8.9% improvement), and “jogging” (15.6% improvement). Amplifying features that
are characteristic of those classes improves the model’s recognition capabilities. In contrast, classes
that are more likely to contain significant variation in feature values are more prone to be classified
wrongly. This is particularly true for classes that exhibit large intraclass variation, such as “parkour”,
where there are no standard actions performed. Other examples are “garbage collection” in Figure 5
which could be performed either mechanically (top), by a single person (mid), or by multiple people
(bottom). Other examples include either oscillations as in “pumping gas”, or require contextual
information as in “sniffing”.
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bench
pressing high jump jogging lunge

garbage
collecting parkour

pumping
gas sniffing

Figure 5. Per-class performance for ResNet-101 w/o Class Regularization with illustrative examples of
classes with large performance gains or losses in Kinetics-400 [30].

4.3. Resulting Statistical Significance

To analyze whether the classification performance with the addition of Class Regularization to a
network is statistically relevant, we perform a McNemar’s test on UCF-101 and HMDB-51. We study if
the difference in accuracy between a network with and without Class Regularization is to be attributed
to marginal homogeneity (i.e., the result of sampling distribution) or if the variance is significant enough
to conclude that the two models indeed perform differently. (Table 4a–c) summarize the McNemar
tests, defined in Equation (2), where b are the cases in which the nonregularized model (¬Reg) is correct
(+) and the regularized (Reg) is wrong (-), and c are the cases in which the nonregularized model is
correct while the regularized is wrong.

x2 =
(b− c)2

b + c

{
H0 : Pb = Pc

H1 : Pb 6= Pc
(2)

We notice that in each of the tested architectures, the c values were significantly larger than
those of b. In particular, a standard 3D ResNet-101 model with class regularization is different than
that of a model without, with x2 values of 2.48 and 2.84 for UCF-101 and HMDB-51, respectively.
For both datasets, the average probability that the difference between the model with and without
is attributed to statistical error is approximately 10%. The difference is also evident in architectures
that include a larger number of extracted features per layer. This can be seen from the results of
the Wide-ResNet-50 model, in which the x2 values are 3.40 and 3.08 for UCF-101 and HMDB-51,
respectively. The difference is statistically significant at the p = 0.05 level. The final comparison
considers I3D as the base network to also account for cases of convolution operations being split
to multiple and differently sized cross-channeled convolutions. The probability that the measured
difference is not due to a systematic difference in performance is approximately 10%. The sum of (b, c)
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values in every case is reasonably large in order to sufficiently approximate x2 and to conclude that
marginal probabilities for models with and without Class Regularization are not homogeneous.

Table 4. McNemar’s statistical significance test on the first split of UCF-101 and HMDB-51. Results
with and without regularization for (a) ResNet101, (b) Wide-ResNet, and (c) I3D models. (d–f) present
results for class-regularized ResNet101 across different blocks in the architecture.
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with and without regularization for (a) ResNet101, (b) Wide-ResNet, and (c) I3D models. (d–f) present
results for class-regularized ResNet101 across different blocks in the architecture.

a ResNet101-3D

Reg (+) Reg (-)

¬Reg (+) 773 / 924 23 / 35

¬Reg (-) 36 / 47 83 / 527

b Wide-ResNet50-3D

Reg (+) Reg (-)

¬Reg (+) 764 / 895 34 / 49

¬Reg (-) 51 / 68 65 / 518

c I3D

Reg (+) Reg (-)

¬Reg (+) 824 / 887 15 / 96

¬Reg (-) 27 / 118 51 / 429

d ResNet101-3D (over
different depths)

Reg2 (+) Reg2 (-)

Reg1 (+) 18 / 30 0 / 2

Reg1 (-) 35 / 89 861 / 1411

e ResNet101-3D (over
different depths)

Reg3 (+) Reg3 (-)

Reg2 (+) 52 / 104 1 / 5

Reg2 (-) 730 / 829 131 / 592

f ResNet101-3D (over
different depths)

Reg4 (+) Reg4 (-)

Reg3 (+) 772 / 930 10 / 3

Reg3 (-) 37 / 38 95 / 559

Finally, we compare the class predictions found by the Class Regularization method in different
blocks within the architecture in Table 4d–f. These panels provide an overview of how different depths
of the network perform for the given task by gradually ablating blocks of convolutions. As observed for
both datasets, the largest change in performance is in the third convolution block (Table 4e), with the
transition of information from the third to the fourth block of convolutions (Table 4f) only accounting
for a small change in performance based on c. We use this to further demonstrate the merits of Class
Regularization as a quantitative way of understanding the informative parts of the overall network,
complementing the class-specific feature visualizations.

5. Conclusions

We have introduced Class Regularization, a method that focuses on class-specific features rather
than treating each convolution kernel as class-agnostic. Class Regularization allows the network to
strengthen or weaken layer activations based on the batch data. The method can be added to any
layer or block of convolutions in pretrained models. It is lightweight, as the class weights from the
prediction layer are shared throughout Class Regularization blocks. To avoid the vanishing gradient
problem and the possibility of negatively influencing activations, the weights are normalized between
a range given an affection rate value.

We evaluated the proposed method on three benchmark datasets: Kinetics-400, UCF-101, and
HMDB-51; and three models: ResNet101, Wide ResNet50, and I3D. We consistently show improvement
when using Class Regularization, with a performance gain of up to 2.45%. The achieved improvements
were done with minimal additional computational cost over the original architectures. We also perform
a statistical significance test to demonstrate that the outcomes of the different models are indeed based
on the additional regularization, rather than being the result of incidental sampling.

Class Regularization can also aid in improving the explainability of 3D-CNNs.
Qualitative visualizations reveal which spatiotemporal features are strongly correlated with specific
classes. Such analyses can be made for specific layers and, as such, provide insight into the discriminative
patterns that specific features represent.

Future works based on Class Regularization should aim towards addressing the feature variations
of actions within the same classes, with a greater focus towards the temporal domain. The inclusion
of global information and the calibration of local spatiotemporal patterns based on such information,
as with Squeeze and Recursion blocks [26], shows a promising direction towards creating spatiotemporal
features that can better treat the variations of human actions and interactions.

Finally, we compare the class predictions found by the Class Regularization method in different
blocks within the architecture in (Table 4d–f). These panels provide an overview of how different depths
of the network perform for the given task by gradually ablating blocks of convolutions. As observed for
both datasets, the largest change in performance is in the third convolution block (Table 4e), with the
transition of information from the third to the fourth block of convolutions (Table 4f) only accounting
for a small change in performance based on c. We use this to further demonstrate the merits of Class
Regularization as a quantitative way of understanding the informative parts of the overall network,
complementing the class-specific feature visualizations.

5. Conclusions

We have introduced Class Regularization, a method that focuses on class-specific features rather
than treating each convolution kernel as class-agnostic. Class Regularization allows the network to
strengthen or weaken layer activations based on the batch data. The method can be added to any
layer or block of convolutions in pretrained models. It is lightweight, as the class weights from the
prediction layer are shared throughout Class Regularization blocks. To avoid the vanishing gradient
problem and the possibility of negatively influencing activations, the weights are normalized between
a range given an affection rate value.

We evaluated the proposed method on three benchmark datasets: Kinetics-400, UCF-101,
and HMDB-51; and three models: ResNet101, Wide ResNet50, and I3D. We consistently show
improvement when using Class Regularization, with a performance gain of up to 2.45%. The achieved
improvements were done with minimal additional computational cost over the original architectures.
We also perform a statistical significance test to demonstrate that the outcomes of the different models
are indeed based on the additional regularization, rather than being the result of incidental sampling.

Class Regularization can also aid in improving the explainability of 3D-CNNs. Qualitative
visualizations reveal which spatiotemporal features are strongly correlated with specific classes.
Such analyses can be made for specific layers and, as such, provide insight into the discriminative
patterns that specific features represent.

Future works based on Class Regularization should aim towards addressing the feature variations
of actions within the same classes, with a greater focus towards the temporal domain. The inclusion
of global information and the calibration of local spatiotemporal patterns based on such information,
as with Squeeze and Recursion blocks [26], shows a promising direction towards creating spatiotemporal
features that can better treat the variations of human actions and interactions.
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