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Abstract
A significant body of research has investigated potential correlates of deception and bodily 
behavior. The vast majority of these studies consider discrete, subjectively coded bodily 
movements such as specific hand or head gestures. Such studies fail to consider quantita-
tive aspects of body movement such as the precise movement direction, magnitude and 
timing. In this paper, we employ an innovative data mining approach to systematically 
study bodily correlates of deception. We re-analyze motion capture data from a previously 
published deception study, and experiment with different data coding options. We report 
how deception detection rates are affected by variables such as body part, the coding of the 
pose and movement, the length of the observation, and the amount of measurement noise. 
Our results demonstrate the feasibility of a data mining approach, with detection rates 
above 65%, significantly outperforming human judgement (52.80%). Owing to the system-
atic analysis, our analyses allow for an understanding of the importance of various coding 
factor. Moreover, we can reconcile seemingly discrepant findings in previous research. Our 
approach highlights the merits of data-driven research to support the validation and devel-
opment of deception theory.
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Introduction

There is much interest in estimating whether a subject is telling the truth, for example 
in police interviews or in border screening. Over the past decades, a significant body 
of research on deception has emerged (Denault et al., 2022). One prominent topic con-
cerns the verbal and nonverbal cues that can distinguish a truth-teller from a liar (Vrij, 
2008). Most of the research into relevant behavior cues has followed the approach of 
empirically testing hypotheses derived from psychological models of communication 
and personality. Increasingly, there is criticism on this approach, pointing at a lack of 
generalization across settings as a result of inflated statistical reporting (Levine, 2018b). 
Moreover, the manual coding of cues to deception is under scrutiny, as are the reported 
effect sizes of these cues (Luke, 2019). As a result, the practice and merits of deception 
research as a whole is questioned (Brennan & Magnussen, 2020).

At the same time, deception detection has gained interest from the technical sciences, 
with the aim of increasing detection rates. This applied research does not rely on theo-
ries of deception, but rather considers patterns in the data directly. Data mining sys-
tems are built with the philosophy of collecting as much data as possible, extracting 
many signals from it, and then using statistical machine learning techniques to work out 
which combinations of signals have discriminatory power (Baltrušaitis et al., 2019). In 
recent years, significant progress has been made with this approach (Avola et al., 2020; 
Ding et al., 2019; Wu et al., 2018). Yet, data mining research is often being criticized 
for its lack of interpretability, overfitting to specific populations or settings, and the 
potential risk of biased judgements. Overfitting refers to the issue that a model does 
not generalize beyond the data that was used to develop it. In the context of deception 
research using machine learning approaches, similar observations are made (Constâncio 
et al., 2023). Especially when employing deception detection in practice, these factors 
severely limit the acceptance of such systems (Sánchez-Monedero & Dencik, 2022).

Theoretical and applied research have different aims but they commonly focus on 
discovering informative behavioral cues that are linked to either being honest, or being 
deceptive. Owing to this shared focus, a recent view that data analysis research can aid 
in the understanding of behavior (Yarkoni & Westfall, 2017) is gaining traction. This 
paper supports this notion; we take a data mining approach to understand the behavio-
ral factors that influence the detection of deception. The aim of this paper is explicitly 
not to achieve the best deception detection performance, but to assess the viability of 
a data-driven approach to aid in theory development and validation. To this end, we 
systematically vary various measurement options and observe their effect on the overall 
classification rate. We focus on body pose and body movement as possible indicators of 
deception, but our approach could easily extend to other modalities such as facial and 
verbal expressions. In the remainder of this section, we review the current challenges 
in deception detection research and the potential for automated methods to increase our 
understanding of the problem.

Challenges in Deception Detection Research

Being deceptive is generally assumed to be more cognitively demanding (Vrij et al., 2010), 
and might lead to higher levels of arousal (de Turck & Miller, 1985). These factors might 
affect bodily, facial and verbal behavior, thereby “leaking” cues to deception (Ekman & 
Friesen, 1969). In line with other modalities, the literature on bodily cues to deception is 
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characterized by inconsistent and often contradictory findings (Levine, 2018b). Meta-anal-
yses (DePaulo et  al., 2003; Sporer & Schwandt, 2007) have revealed that very few cues 
are correlated consistently across studies. This might be partly caused by the different pro-
cesses associated with lying. These include emotional responses, increased cognitive load 
and attempted behavioral control, each of which can lead to different types of behavior 
(Vrij, 2008). For example, when people are aware that lying-induced arousal can cause an 
increase in movements seen as indicative of lying, the behavioral control theory predicts 
that liars will try to control their movements to appear honest. This might lead to rigid and 
unnatural movement (Buller & Burgoon, 1996). For example, leg movements have been 
found to both decrease (Levine et al., 2005) and increase (Davis et al., 2005; Van der Zee 
et al., 2019) when lying.

The different cognitive and affective processes thus may elicit contradicting cues, poten-
tially simultaneously (Vrij et  al., 2019). Consequently, differences in behavior between 
liars and truth-tellers are expected to be subtle, perhaps too subtle to be reliably perceived 
by human observers. This might be another cause for the inconsistent findings in deception 
detection research (Bond & DePaulo, 2006).

Partly due to their limited perception skills, humans perform poorly at deception detec-
tion, achieving detection rates only a couple of percent better than tossing a coin (Vrij, 
2008). In addition, humans typically have a judgement bias (Meissner & Kassin, 2002). 
For example, police officers suffer from a guilt bias, whereas the general public usually 
tends to hold a truth bias. Recently, advances in interviewing techniques have slightly 
increased human detection rates (Deeb et al., 2022), by asking questions in reverse-order 
(Blandón-Gitlin et  al., 2015; Vrij et  al., 2008) or asking unanticipated questions (Vrij & 
Granhag, 2012) to increase cognitive load. Training also has been shown to moderately 
increase detection rates (Hauch et al., 2016). Still, comparisons between human and auto-
mated detection of deception are in favor of the machines, despite efforts in combining 
their relative strengths (Kleinberg & Verschuere, 2021).

We argue that the automated analysis of bodily behavior can lead to improvements in 
terms of deception detection in practice, with increased detection rates and a reduction 
in subjective bias. More importantly, we see opportunities to improve our understanding 
of deceptive behavior by relying on detailed, objective measurements instead of human 
perception.

Automated Analysis of Body Movement

In addition to the use in practical applications such as border screening and interviewing, 
the automated analysis of body movement can be used to discover novel cues, or to empiri-
cally validate or develop deception theories, in line with Yarkoni and Westfall (2017). 
Relying on automated measurement circumvents the issue of perception bias, and allows 
for a more fine-grained analysis: instead of focusing on a limited set of discrete behav-
iors, many cues at various levels can be taken into account, including the precise direction, 
magnitude and timing of movements (Poppe et al., 2014). Thus more subtle cues can be 
evaluated.

Similar to facial expressions, bodily behavior can be measured unobtrusively. The 
automated measurement and analysis of facial and bodily cues from camera footage 
has seen a lot of progress in recent years (Baltrušaitis et al., 2019). This is particularly 
true for facial expression research, which can rely on a commonly used representation 
system: the facial action coding system (FACS, Ekman & Friesen, 1978). Both human 
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coders and machines can be trained to provide the numerical representations in the 
FACS standard. This facilitates the adoption of knowledge of the behavior sciences for 
automated detection. Vice versa, automated analysis can be more easily used for theory 
verification and development. Unfortunately, for the analysis of body movement, there 
is no such commonly agreed on quantitative representation system (Poppe, 2017). Bod-
ily expressions are arguably more complex to represent than facial expressions because 
of the larger number of degrees of freedom which gives a wide range of possible body 
poses. There have been some recent efforts in developing coding schemes (Dael et al., 
2012; Poppe et al., 2014) but these are not commonly used and are not suitable for both 
human and machine coders.

A second complicating factor for the automated measurement of bodily behavior is the 
lack of accurate ways to unobtrusively measure body pose and movement (Chen et  al., 
2020). Impressive advances in video-based analysis have been made in recent years. In 
addition, the availability of novel sensor technology such as depth cameras has resulted in 
a performance increase. Still, the robustness and accuracy is far from the gold standard of 
motion capture technology. This is largely due to partial occlusions of the body that cause 
some body parts to be invisible from the perspective of the camera.

When applied to deception detection, these limitations have forced researchers to focus 
on constrained recording conditions (Elkins et  al., 2014). For example, Lu et  al. (2005) 
detected the hands of a subject using skin color and blob analysis. They subsequently ana-
lyzed the location and the trajectories of the hands, relative to the face and body. With such 
analyses, gross differences in hand movements, including face touches, can be considered. 
This approach has been refined by Jensen et al. (2008) to include various geometric proper-
ties to describe to relative position and movement of the hands and head. Movements of 
children are analyzed by a simple frame-differencing method in Serras Pereira et al. (2016). 
Such methods are prone to issues of robustness because factors such as clothing and dis-
tance to the camera affect the measurements.

To circumvent the limitations of video recordings, both Duran et  al. (2013) and Van 
der Zee et al. (2019) have analyzed motion capture data. Interestingly, they found differ-
ent effects of lying on observed body movement. When observing body movement over 
small time windows, Duran et al. (2013) found no difference in the amount of motion but 
did observe a change in the stability and complexity of the motion patterns. In contrast, 
Van der Zee et al. (2019) observed an increase in body movement, replicated in each limb, 
when lying. In their analysis, aggregate measures of body movement over 2.5 min were 
used, essentially ignoring brief motion patterns.

Such seemingly discrepant results are likely to be caused by the deception setting or the 
measurement of the bodily behavior. To address the second source of variation, this paper 
focuses on understanding the effect of coding variables such as body part, the coding of the 
pose and movement, the length of the observation, and the amount of measurement noise. 
We mine motion capture data for bodily cues to deception. Instead of employing complex 
mechanisms to exploit feature correlations, we explicitly focus on gaining insight in the 
type of signals that can be used in a practical application, but also to verify or develop 
deception theories.

The paper is organized as follows. We first describe our methodology, with data collec-
tion and annotated. We then summarize our main results. Finally, we discuss our findings 
and implications for deception research.
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Methodology

We use the data described in Van der Zee et al. (2019). We briefly outline the setup of 
their experiment, and then proceed with the detailed description of our coding of the 
recorded body movement. Then, we discuss our classification procedure.

Data Collection

Participants

In total, 180 students and employees, divided into 90 pairs, took part in the experiment. 
People with either White British or South Asian cultural background were explicitly 
included in the study. In the present study, we only consider the n = 90 interviewees, of 
which 60 were born in South Asia while the remaining 30 were British, according their 
own reports. The average age was 22.37 years (range 18–39). A total of 54 participants 
(60.0%) self-identified as female. Van der Zee et al. (2019) found no statistically significant 
effect of the subjects’ cultural background on the amount of whole body movement. There-
fore, and to ensure a sufficiently large sample size, we refrain from examining the effect of 
the cultural background and gender. The experiment was approved by the Lancaster Uni-
versity Research Ethics Committee.

Procedure

Interviewees were randomly assigned to a truth or lie condition. In both cases, interviewees 
performed two tasks prior to the interview. In the truth condition, they played a computer 
game Never End and delivered a wallet to the lost-and-found. Never End is a 2D platform 
game in which the player must escape from a maze. They were told that the wallet was 
from a previous participant and that the experimenter would send an email while the par-
ticipant would deliver it. In the lie condition, they only looked at a description of the game, 
and were instructed to take a 5 pound note from the wallet and hide the note on their body. 
The interviewer had to be convinced that the wallet was handed in at the lost-and-found, 
and the game was actually played.

After being instructed, giving consent and providing demographic information, pairs of 
two subjects (the interviewer and interviewee) were seated facing each other. The interviewer 
asked the interviewee a number of questions in a fixed order, by reading them out loud from 
paper. For the Game session, these questions were in reversed chronological order, adding to 
the difficulty of the task (Vrij et al., 2008). In the Wallet session, questions were asked in nor-
mal order but the stakes were arguably higher because the lie involved taking money.

During the interview, the vast majority of the time the interviewee was answering the 
questions. In both the truth and lie conditions, interviewees were tasked with convincing 
the interviewer that they were telling the truth. In the lie condition, all answers had to be 
deceptive. Sessions lasted about 2.5 min, and were then stopped.

Data Coding

In this study, we only use the recorded body movement for analysis. The body movements 
of interviewers and interviewees were recorded with Xsens MVN motion capture systems. 
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These employ inertial sensors placed in straps around the body to measure the 3D position 
of 23 joints in the body at a rate of 60 measurements per second. No post-processing has 
been applied.

Figure 1a shows the locations of these joints. We use only the data of the interviewee. 
There might be meaningful patterns in the coordination of the behavior of both interactants 
(Dunbar et al., 2014; Duran & Fusaroli, 2017; Van der Zee et al., 2021), but we leave this 
for future work. Body movements were continuously recorded over the 2.5 min interview. 
No distinction was made who spoke.

Space Dimension

In line with Poppe et al. (2014), we normalized body posture data for global position by 
expressing joint positions relative to the root (i.e., pelvis). We also scaled all body parts 
to average lengths, to overcome differences in body dimensions between subjects. These 
transformations can be made without any knowledge of the subject. The resulting represen-
tation is a 66-dimensional coordinate system (22 3D joint positions). From this representa-
tion, we calculated a number of features grouped in four different feature types. There is a 
large body of research (e.g., Castellano et al. (2007); Kleinsmith and Bianchi-Berthouze 
(2013)) that has focused on the relation between body motion and affective or cognitive 
states. Our approach aligns with these works but our selection of features is by no means 
novel (see, e.g., Jensen et al., 2008), nor complete. Our aim is to use a representative set 
that covers different pose and motion qualities, across the body. A schematic overview of 
the features employed in this paper appears in Fig. 1b–e. We summarize the four feature 
types:

•	 Movement: We focus on the movement of individual joints by calculating the Euclidian 
distance between the joint position in two subsequent measurements. Additionally, we 
calculate the total amount of movement for the body parts left/right leg, left/right arm, 
torso and head, and for the upper and full body. The body parts are visualized with dif-
ferent colors in Fig. 1a. The upper body contains both arms, the torso and the head. Full 
body contains all body parts. The total number of features of the movement type is 30.

•	 Joint angle: Body movement occurs at the joints. Each joint has between one and three 
degrees of freedom, determined by the number of axes around which the joint can 
revolve. We do not regard these physical degrees of freedom, but rather calculate the 

Fig. 1   From left to right: a Location of the 23 joints. Root joint in red. Body parts are indicated with differ-
ent colors. b–e Schematic visualization of the four feature types: movement, joint angle, joint distance, and 
symmetry
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smallest angle directly by only considering the plane in which the two neighboring seg-
ments of a joint reside. We then calculate the angle between the vectors of the two 
neighboring segments. For example, for the left elbow we consider the vector shoulder-
elbow and the vector elbow-wrist. The joint angles that we consider are those of the 
neck, shoulders, elbows, hips, and knees. We also include the mean of these 9 angles, 
which brings the number of joint angle features to 10.

•	 Joint distance: The relative position of two body parts might be informative. For exam-
ple, face touches have been attributed to deception (Ekman & Friesen, 1969). Addition-
ally, these features can be used to distinguish between compact and more elongated 
postures. We calculate the Euclidian distance between pairs of joints: head-left/right 
elbow, left hand-right hand, left hand-right elbow, right hand-left elbow, left hand-left 
knee, right hand-right knee, left knee-right knee, left ankle-right ankle, and pelvis-
right/left ankle. Including the average of these distances, we obtain 12 features.

•	 Symmetry: We left–right mirrored the joint positions in the plane through the root, per-
pendicular to the hips. We then compared the mirrored positions of all joints to the 
unmirrored positions of their left/right counterpart. We use the distance between each 
pair as a feature. Given that these are equal for left–right counterparts, we only calcu-
lated the features for the left limbs. We finally also calculated the average of these dis-
tances. This mean it is a measure for the symmetry of the whole body pose. In sum, this 
amounts to 15 symmetry features.

The total number of features that we extract is 67. Although these features are arbitrarily 
chosen, they cover the whole body, include both local and global descriptions, and carry a 
broad range of information.

Time Dimension

Xsens motion capture suits record data at a rate of 60 measurements per second. When 
using vision-based motion analysis, such high frequencies are not common (Chen et  al., 
2020). To ensure that the findings of our study can be more conveniently replicated with 
recent technology to record body pose from video material, we re-sampled our data down 
to 5 frames per second. Given that we aggregate the measurements over windows, the 
effect on the performance is minimal.

Not much is known about the time scale over which deception should be observed. Ide-
ally, we would like to consider smaller windows as they would reduce the time needed to 
make a decision regarding the truthfulness of a subject’s account. This would have great 
practical value. We therefore include the length of our observation window as a parameter 
of investigation in our experiments. Smaller windows allow for good representation and 
identification of brief, salient movements such as a face touch or a posture shift. But they 
might often be devoid of discriminative movement and thus uninformative. They may also 
fail to capture significant longer-term behavior. For larger windows, the opposite is true. 
To be able to compare our findings to those reported in the literature, one window setting 
considers the entire session duration of approximately 2.5 min; we also use increasingly 
smaller window lengths of 1 min, 30 s, 10 s, 5 s, and 1 s. For each window, we calculate 
the mean, minimum, maximum, range, and standard deviation of the feature values, which 
we will call window types. The windows are non-overlapping and the total dimensionality 
of the feature vector for each window, independent on the window size, is therefore 335 
(67 × 5).
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Classification Procedure

Our aim is to discover individual cues that discriminate between truthful and deceptive 
accounts. To this end, we train classifiers for each feature individually on a training set, 
and subsequently evaluate the classifiers on test data. The data in the training and test sets 
are disjoint, which allows for the analysis of the generalization of the learned classifiers 
to unseen data, typically from other subjects. We use a leave-one-out cross-validation 
(LOOCV) approach, with the data of one pair (i.e., two sessions) in each fold. Specifically, 
we train on the data of n = 89 pairs and test on the remaining pair. We do this for all pairs 
and present results as the average detection rate over all 90 test folds.

Our classifier is the Gaussian Naive Bayes Classifier (Duda et al., 2000). It models the 
values of each class as a normal distribution. For each class c (truth or lie) and each feature 
i (1 ≤ i ≤ 335), we determine the mean value ( �

c
i

 ) and standard deviation ( �
c
i

 ) of the feature 
on all training samples. Given a feature value xi in the test set, we can determine the most 
likely class ĉ

i
:

We assume equal prior probabilities for the two classes. This is common in lab settings, 
to which we compare our work. We discuss the consequence of this choice later.

With per-feature classification, we can classify our test data based on a single feature. 
This allows us to look at the predictive quality of an individual feature. Features with 
higher correct classification rates can be considered more promising features for decep-
tion detection. Additionally, we consider all features together using two different measures. 
First, we take the majority vote over the binary class estimates: the class which has been 
estimated by the majority of the per-feature classifiers is the guessed class. Second, we take 
the majority vote but only over the features whose distributions are statistically dissimilar 
with a probability of at least 95 and 99%, respectively. We will refer to these feature sets 
as all, stat-95 and stat-99, respectively. While we consider multiple features jointly, we do 
not consider correlations between them as one would do with a typical machine learning 
approach.

Results

In this section, we describe our main results and those of various computational experi-
ments regarding the influence of window length, feature and window type, and noise.

We consider three sets of training and test data: (1) from both tasks together, (2) only 
from the Game sessions, and (3) only from the Wallet sessions. We evaluate all combina-
tions of training and test sets to gain insight in the potentially different nature of the three 
sets. We use one feature vector per session, corresponding to a window length of approxi-
mately 2.5 min. As such, we use all available data. Classification results for all, stat-95, 
and stat-99 appear in Table 1. Overall classification performance is 60.00% when training 
and testing on both sets on all features, and improves with another 5.00–5.56 percent point 
to 65.00–65.56% when only statistically significant features at the 5 and 1% are consid-
ered, respectively. The all set always contains all 335 features, while the average number 

ĉ
i
= argmax

c

1

𝜎
c
i

√

2𝜋
e

−
(xi−𝜇ci )

2
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of features over all tests with one subject left out in stat-95 and stat-99 is 136.96 (range 
127–153) and 94.58 (range 85–110), respectively. In the remainder of this paper, we will 
focus on the stat-95 features obtained when training on both deception tasks.

Feature Type

Our feature sets consists of four feature types: movement, joint angle, joint distance, and 
symmetry features. In Table 2, we summarize the number of selected features in the stat-95 
set, as well as the average classification rates when only features of the selected type are 
used. We report the performance when testing on both sessions, as well as for each of the 
two sessions individually.

Window Length

We evaluate six window lengths: 2.5 min, 1 min, 30 s, 10 s, 5 s, and 1 s. Classification rates 
for all, stat-95, and stat-99 are summarized in Fig. 2.

Window Type

Each feature was evaluated per window, for which we used five window types: mean, max-
imum, minimum, range, and standard deviation. Results are summarized in Table 3, for 
both session types together and each individually.

Table 1   Classification rates (in %) of different training and test sets, obtained using all/stat-95/stat-99 fea-
tures, using windows of 2.5 min

Trained on

Tested on Both Game Wallet

Both 60.00%/65.00%/65.56% 58.89%/61.67%/65.56% 62.22%/66.11%/64.44%
Game 64.44%/67.78%/68.89% 62.22%/64.44%/70.00% 64.44%/68.89%/64.44%
Wallet 55.56%/62.22%/62.22% 55.56%/58.89%/61.11% 60.00%/63.33%/64.44%

Table 2   Percentage of selected 
stat-95 features when training on 
both session types and average 
classification rate per feature 
type on both session types, Game 
session only and Wallet session 
only, using windows of 2.5 min

Feature type Classification rate

Selected (%) Both (%) Game (%) Wallet (%)

Movement 35.50 58.39 60.71 56.06
Joint angle 22.78 57.12 58.73 55.51
Joint distance 47.52 58.16 59.74 56.59
Symmetry 58.40 56.41 56.27 56.54
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Amount of Noise

To test the classification performance in the presence of measurement noise, for exam-
ple due to inaccurate measurements, we add noise on the motion captured test data. To 
each feature, we add Gaussian noise with a zero mean and a standard deviation r times the 
standard deviation of the feature in the training data ( �

c
i

 ). Adding Gaussian noise is some-
what artificial as noise is typically correlated in space and time, but it shows the robustness 
of the classification to inaccurate measurements. Results appear in Fig. 3.

Discussion

We first discuss the effect of data coding choices on the deception detection performance. 
Then, we reflect on the merits and limitations of our data mining approach for deception 
detection.

Effect of Data Coding

The classification performance of 65.00% for stat-95 is statistically significantly higher 
than a naive baseline of 50% (z = 8.05, p < 0.001, 95% CI [0.46–0.54]). This performance 

Fig. 2   Classification scores in 
percentages for different window 
sizes (in seconds), obtained using 
all, stat-95 and stat-99 features

Table 3   Percentage of selected 
stat-95 features when training on 
both session types and average 
classification rate per window 
type on both session types, Game 
sessions only and Wallet sessions 
only, using windows of 2.5 min

Window type Classification rate

Selected (%) Both (%) Game (%) Wallet (%)

Mean 53.17 57.80 61.04 54.55
Maximum 43.90 58.42 57.73 59.12
Minimum 26.78 52.69 53.68 51.70
Range 37.94 59.38 59.53 59.22
Standard deviation 42.62 58.02 60.26 55.76
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demonstrates that predictive features can be mined from data. In Van der Zee et al. (2019), 
the interviewers also estimated the veracity of the interviewees. Their judgements were 
correct in 52.80% of the sessions. With 65.00%, the classification performance is signifi-
cantly better than that of humans (z = 6.56, p < 0.001, 95% CI [0.49–0.56]). The superior 
performance of our automated approach seems to suggest that data can inform us of the 
presence or absence of cues that are related to deception.

The scores for the Game task are generally higher than those of the Wallet sessions (for 
stat-95 67.78 and 62.22%, respectively). This can be due to the more difficult nature of 
having to deceptively answer questions in reverse order (Vrij et al., 2008). This difficulty 
may have magnified the changes in behavior.

Overall, the best results are obtained when training on the Wallet sessions. When more 
training data is available, better classification rates are usually obtained. However, the addi-
tional availability of the Game sessions does not improve the results. Rather, the Game 
sessions appear to somewhat negatively affect the learning of the classifiers. This might 
be due to the more pronounced nature of the behavior in these sessions. The differences 
between truthful and deceptive accounts apparently do not generalize to other settings, spe-
cifically the Wallet sessions. When using fewer, statistically more significantly different 
features, classification rates typically increase. A notable exception is when the models are 
trained on the Wallet sessions. For stat-99, the classification rate is 64.44%, irrespective on 
the test sessions. This, again, seems to suggest that the patterns observed during the Wallet 
sessions generalize better, especially if these patterns already differ strongly significantly 
between truthful and deceptive accounts.

Table 4 and 5 show the confusion matrices of the classifier when trained on both tasks 
and tested on the Game and Wallet data separately. In both sessions, there is a truth bias. 
In the Game and Wallet sessions, respectively, 62.22 and 67.78% of the classifications are 
truthful. This leads to high recall rates for truthful accounts (80.00%), but markedly lower 
recall for deceptive ones, at 55.56 and 44.44% for the Game and Wallet sessions, respec-
tively. We expect that this truth bias is due to the more varied nature of deceptive accounts. 
A systematic bias towards truthful accounts reduces the risk of false accusations, but at the 
cost of lower deception detection ability.

Fig. 3   Classification scores in 
percentages for added noise with 
different factors r, obtained using 
all, stat-95, and stat-99 features. 
Scores are averaged over 100 
repetitions
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Influence of Window Length

Classification scores increase with window length: the additional information that is accu-
mulated over time is beneficial for decision performance. Decisions about a subject’s 
veracity become more reliable when the subject’s behavior is observed over longer periods 
of time. For windows of a single second, the performance is barely above chance level. 
Performance increases with windows size, although with diminishing returns; an upper 
bound to the performance is to be expected.

The fact that there is more training data available for smaller windows does not help 
in the classification. Between the smallest (1 s) and the largest (2.5 min) windows, there 
is a factor 150 more training samples available. We hypothesize that many of these win-
dows are uninformative which would reduce the efficacy of the classifier. This is especially 
true for generative classifiers such as our employed Gaussian Naive Bayes Classifier (Zhou 
et al., 2004). The situation is worsened because smaller differences between truthful and 
deceptive accounts will be statistically significant due to the larger number of available 
windows.

These results demonstrate the challenge in mining specific body cues. Clearly, aggre-
gate information such as the average amount of body movement (Van der Zee et al., 2019) 
can be easily identified as a discriminative cue, while the discovery of briefer body motions 
such as those reviewed in DePaulo et al. (2003) is complicated by the variance in observed 
behavior over time.

Compared to stat-95 scores, approximately twice the window size is needed to achieve 
similar results using all features. For smaller windows, a similar trend can be observed 
between stat-99 and stat-95. As the number of features decreases from all to stat-95 to 
stat-99, it appears that fewer features is beneficial to the classification. To test this hypoth-
esis, we systematically varied the number of selected features from 1 to 200. Features 
were sorted on the significance level of the difference between the truth and lie feature 
distributions.

Figure  4 shows the classification rate as a function of the number of features used. 
Judging from Fig. 4, the optimal number seems to be around 25, or 7.5% of all features. 

Table 4   Confusion matrix for Game sessions, trained on stat-95 features using windows of 2.5 min

Actual

Guessed Truth (%) Lie (%) Total (%)

Truth 40.00 22.22 62.22
Lie 10.00 27.78 37.78
Total 50.00 50.00 100.00

Table 5   Confusion matrix for Wallet sessions, trained on stat-95 features using windows of 2.5 min

Actual

Guessed Truth (%) Lie (%) Total (%)

Truth 40.00 40.00 67.78
Lie 10.00 10.00 32.22
Total 50.00 50.00 100.00
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Including more features decreases the classification performance as these features are less 
discriminating, and might cause the classifiers to overfit on the training data. A stricter 
selection on the level of significance of the difference between the distributions of truthful 
and deceptive samples is therefore recommended.

Influence of Feature Type

When looking at the different feature types, joint angle features have the lowest probability 
of being selected, whereas the majority of the symmetry features are selected in stat-95, 
see Table 2. Yet, differences in classification rate between these feature types are small and 
we found no large differences between the two session types. All types appear to contrib-
ute to the classification. Given that individual types all score below the combined score of 
65.00%, they provide partly complementary information.

The pool of features we evaluated covers all parts of the body. We analyze whether some 
body parts are more informative than others in the detection of deception. To this end, we 
indicate for each feature which body parts it considers. For example, the distance between 
the left hand and the right knee considers both the left arm and the right leg. Averages over 
all joints or distances take into account all body parts. Given that we thus link features to 
body parts, we can analyze how often these features contribute to the classification. We 
calculate, for each body part, the percentage of features linked to it that occur in stat-95 
and stat-99. Results are summarized in Table 6 and are visually represented in Fig. 5.

There are large differences between body parts in the percentage of features that are 
selected. For stat-95, approximately 70% of the features in the left arm are selected, 
whereas a mere 30% of the leg features is found statistically different between the truth and 
lie conditions. The upper body plays a more prominent role in distinguishing truthful and 
deceptive accounts. This pattern is more visible in stat-99, with lower ratios of selected 
features. However, the selection of a feature is not indicative of its contribution to the clas-
sification performance. To understand this relation, we present the classification rates for 
each body part in Table 6. Differences between body parts in terms of classification rates 
are negligible, for both stat-95 and stat-99. Also, there is no clear difference between the 
two session types, considering that the overall classification performance for the Wallet 
sessions is somewhat lower. When using features from all body parts, the classification rate 

Fig. 4   Classification scores in percentages for different numbers of features in decreasing order of statistical 
difference, obtained with a window size of 2.5 min
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is 65.00%. None of the body parts alone achieves comparable rates so different body parts 
are partly complementary in terms of the contribution to the classification.

Some features take into account a single body part whereas others use the positions 
of joints in two or more parts. We analyzed whether the extent of the feature, expressed 
in the number of body parts it takes into account, is of influence to the classification per-
formance. See Table  7 for a breakdown of the results. The probability that a feature is 
selected increases with the number of body parts involved. This can be explained as the 
variance of a single feature is probably larger than the average of a number of features, 
possibly in different body parts. Consequently, differences between truthful and deceptive 
accounts are more often statistically significant when considering multiple body parts. The 
most discriminating features seem to be those that average over all body parts, such as the 
average movement or the average symmetry. This seems to suggest that global information 

Table 6   Percentage of selected 
stat-95 features when training on 
both session types and average 
classification rate per body part 
on both session types, Game 
sessions only and Wallet sessions 
only, using windows of 2.5 min

Body part Classification rate

Selected (%) Both (%) Game (%) Wallet (%)

Left arm 70.02 60.18 61.19 59.17
Right arm 62.83 58.56 60.54 56.59
Left leg 29.32 56.96 58.00 55.92
Right leg 28.64 56.84 58.35 55.33
Head 51.36 58.21 59.53 56.88
Torso 44.79 58.59 58.79 58.40

Fig. 5   Visual representation 
of the percentage of features 
selected in stat-95 and stat-99. 
Darker colors correspond to 
higher percentages
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is more reliable than local information, at least when measured over the entire duration of 
the interaction.

Influence of Window Type

We also used different ways of aggregating feature values over windows. From Table 3, 
it becomes clear that the minimum value of a feature is often not significantly different 
between truthful and deceptive accounts. This applies to both the Game and Wallet ses-
sions. Especially for longer windows, the probability that values of movement are close to 
zero is rather high. As such, it is difficult to distinguish between truth and lie conditions. 
The classification rate of minimum features is also lower compared to the other window 
types. In contrast, more mean, maximum, and standard deviation features are selected, and 
they also appear more promising in the classification of truths and lies. Still, the features 
are complementary in terms of performance. Different window types might become rel-
evant for different window sizes. For smaller windows, the maximum or standard deviation 
might be more meaningful as these reflect sudden movement better.

Top‑Performing Individual Features

Aggregated results provide insight in the feature and window type and the body parts that 
are most informative. Additionally, we can investigate the performance of individual fea-
tures. To this end, we remove the majority voting over features and ran our analyses for 
each feature individually. The top-20 best performing features with their classification rates 
are summarized in Table 8. The left arm is directly involved in 14 of these top 20 features, 
with different feature and window types. Additionally, six of the top-performing features 
consider the full or upper body, including the left arm. Apparently, the upper body and in 
particular the left arm provide cues to distinguish truthful from deceptive behavior. Given 
that the majority of the people is right-handed, we expect that, also in the data we ana-
lyzed, most of the gesturing is performed with the right hand. This could lead to a larger 
variance in features of the right hand. At the same time, differences in left arm use might 
be more stable, allowing for identification of more erratic or, conversely, more controlled, 
movement.

Some of the individual features have classification rates higher than when all or stat-95 
features are used. The additional availability of lower-scoring features negatively affects 
the overall classification rate. This might be a sign of overfitting, the phenomenon that a 

Table 7   Percentage of selected stat-95 features when training on both session types and average classifica-
tion rate for different numbers of involved body parts on both session types, Game sessions only and Wallet 
sessions only, using windows of 2.5 min

Body parts involved in feature Selected 
(%)

Classification rate

Both (%) Game (%) Wallet (%)

Single body part 27.89 57.57 59.90 55.24
Two body parts 49.76 56.98 57.80 56.17
All body parts 70.56 61.18 62.28 60.08
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predictive model does not generalize to out-of-sample data. Alternatively, this might just 
be the result of comparing a large number of features. We discuss this issue in the next 
section.

In particular, the maximum symmetry of the whole body is the best performing feature. 
This feature takes into account all body parts, and reveals some information about seating 
posture, potentially as a result of posture shifts. This information is also partly revealed in 
the maximum and range of the full body joint distance features. Joint distances typically 
change when the interviewee is more expressive, for example during gesturing or when 
moving the legs. A final full body feature in the top-20 is the standard deviation of the 
movement. Expressive motion of the whole body is, again, the main driver for this feature.

Influence of Amount of Noise

Figure 3 shows an approximately linearly decreasing classification rate for increasing noise 
factor r. The stat-95 and stat-99 classification continues to outperform a full set of features 
also with noise added. It is likely that a smaller set of features would be even more robust, 
in line with the findings discussed for the influence of window length. The robustness to 
noise is reasonable. Even with added noise with two times the standard deviation, the stat-
95 and stat-99 features outperform humans. Especially for larger windows, the mean fea-
tures are not affected much as the added noise has a mean of zero. This, again, points at the 
value of long-term stable differences between truthful and deceptive behavior.

Data Mining for Deception Detection

This paper reports an experiment in mining bodily cues to deception. Based on a large 
set of features, obtained using motion capture equipment, we have derived simple statisti-
cal classifiers to distinguish between truthful and deceptive accounts. Overall classification 
with all features yielded a classification performance of 60.00%, compared to a baseline 
of 50.00% and human performance of 52.80%. The selection of features based on their 
statistical difference between the two conditions resulted in a smaller set with an improved 
classification rate of 65.00–65.56%. We found a higher classification performance for 
the Game sessions, most likely due a higher experienced cognitive load as a result of the 
reverse-order questioning. In line with Blandón-Gitlin et al. (2015) and Vrij et al. (2008), 
this suggests that this type of interviewing indeed is a good way of eliciting cues.

Our results have been obtained without modeling the correlations between features, 
to better understand how and where pose and motion differences between liars and truth-
tellers occur. As such, the obtained classification performance is likely not to be optimal. 
Combining weak classifiers, such as in bagging (Breiman, 1996) is likely to exploit com-
plementary information, while suppressing the effect of significant yet uninformative 
features.

From a series of analyses, we found that features in the upper body, especially the arms, 
were more often significantly different between the truth and lie conditions. The majority 
of the individually top performing features related to the left arm. However, features from 
other body parts proved to be almost as informative in terms of classification performance. 
Features of a single body part scored 5–8% lower compared to the combination of fea-
tures of all body parts. We therefore believe that different body parts contain complemen-
tary information. A similar observation can be made for the different feature types (e.g., 
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movement or joint distance) and window types (e.g., mean and maximum). Despite differ-
ent ratios of selected features for each type, the classification performances are comparable 
but consistently lower than when using all features. We also evaluated the effect of noise 
and found that classification rates decrease linearly with an increase in the standard devia-
tion of the noise.

The latter finding is important when moving from motion captured data to body meas-
urements from vision-based processing. While the estimation of body joint positions in 
image space has reached a reasonable level of accuracy (e.g., Cao et al., 2019; Xu et al., 
2023), significant challenges are to be overcome to record joint positions accurately in 3D 
(Pavllo et al., 2019). Still, we anticipate that the increasing sophistication of motion analy-
sis algorithms will reduce the performance gap between motion capture and video-based 
measurement in the near future (Chen et al., 2020). Our observation that a modest amount 
of noise does not strongly deteriorate the detection rate is important for the practical devel-
opment of vision-based deception systems. Moreover, by relying on vision-based pose 

Table 8   Classification rates of the top-20 best performing individual stat-95 features using windows of 
2.5 min. For body parts, H = head, B = body, LA = left arm, RA = right arm, LL = left leg, RL = right leg

Feature Rate (%) Type Window Body part

Full body symmetry 69.44 Symmetry Maximum

Left shoulder movement 67.22 Movement Mean

Right hand–left hand distance 66.67 Distance Range

Left elbow movement 66.11 Movement Mean

Left arm movement 66.11 Movement Mean

Left shoulder 66.11 Movement Standard deviation

Upper body movement 66.11 Movement Standard deviation

Full body joint distance 65.56 Distance Maximum

Right elbow–left hand distance 65.56 Distance Range

Full body movement 65.56 Movement Standard deviation

Left shoulder symmetry 65.56 Symmetry Standard deviation

Full body joint distance 65.00 Distance Range

Left elbow movement 65.00 Movement Standard deviation

Upper body movement 64.44 Movement Mean

Left shoulder symmetry 64.44 Symmetry Maximum

Right hand–left elbow distance 63.89 Distance Range

Left shoulder movement 63.89 Movement Maximum

Right hand–left elbow distance 63.89 Distance Maximum

Left shoulder movement 63.89 Movement Range

Left arm movement 63.89 Movement Standard deviation
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estimation, we are able to analyze more recordings. This will eventually help to relate the 
findings of this paper to other interaction contexts.

Limitations

In this work, as in many deception studies (Levine, 2018a), we have used and assumed 
an equal chance of truth and deception in our sessions. When moving from a lab setting 
to the real world, the prior probability of encountering a deceptive account is typically 
much lower. As a consequence, the number of false positives, or type 1 errors, typically 
increases. Specifically, it means that relatively more honest people will be classified as 
being deceptive. Moreover, being to separate unbalanced class distributions of high-dimen-
sional features require more training data (Duda et al., 2000). Currently, we are not aware 
of any data mining deception work that has been applied to real world data with a realistic 
class distribution.

In a practical application, an interaction is typically not entirely truthful or entirely 
deceptive. When analyzing the veracity of entire interactions, we cannot make distinctions 
at a finer timescale. While it is technically possible to provide veracity predictions at the 
level of a statement, it is likely that the performance is low, given that using smaller win-
dows reduces the classification performance. Moreover, it remains an open problem how to 
train a classifier when veracity information is only available at the interaction level.

The main limitation of the current work in terms of the detection rate is the classifi-
cation using majority voting of individually classified features. We have thus ignored 
potential correlations between these features. Moreover, we have not looked specifically 
at features with complementary information. We have found that feature type, place on 
the body, window length, and window type each carry partly complementary information 
that improves the classification. Exploiting combinations of features could yield increased 
and more stable classification rates. Also, we have considered features at a single temporal 
scale: we have not combined features across window sizes. It is likely that some discrimi-
native movements are more salient in one temporal scale while other movements are more 
prominent in another. For shorter time windows, we will then face the issue that many win-
dow will not contain discriminative body movement. A more sophisticated way of training 
a classifier that decides for each training sample whether it is informative could alleviate 
this problem. In this case, only a small subset of the windows should contain discrimina-
tive information. Such an approach could be used to discover informative body movement 
patterns that happen irregularly. There is a risk that the flexibility of such a classification 
approach, in combination with a modest amount of training data, introduces overfitting: the 
increased probability of discovering incidental patterns. We stress the importance of a suit-
able mechanism to combat overfitting.

There might also be patterns of behaviors over time. These patterns can be mined auto-
matically as well, and have been shown to be promising in distinguishing truthful from 
deceptive accounts (Burgoon et  al., 2015; Duran et  al., 2013). A combination of our 
work with the mining of patterns seems a fruitful way to discover discriminative patterns 
of behavior. In addition, the interviewer could be taken into account (Van der Zee et al., 
2021). Especially when we take into account who is speaking when, the dynamics regard-
ing turn-taking and the specific behaviors during listening and speaking could be analyzed. 
Moreover, we can analyze, and potentially account for, differences in interviewer behavior 
that might affect the interviewees’ behavior.
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Combining Data‑Driven and Theory‑Driven Research

While we have not correlated our findings to deception theories, there is clear merit for the-
ory validation and developed using a data mining approach. In this paper, we have gained 
some insight into potential factors that explain discrepant findings between Duran et  al. 
(2013) and Van der Zee et al. (2019). The length of the window—the amount of time that 
is considered—plays a crucial role in explaining detection rates. In Duran et al. (2013), the 
bodily behavior in short time windows has been explored and no differences were found 
between truth tellers and liars in the amount of movement. In this paper, we have observed 
that discrimination becomes more difficult when the time window decreases. Since Van 
der Zee et al. (2019) used windows of 2.5 min, more general patterns of aggregate move-
ment have been taken into account. Moreover, we see that top informative features include 
full body features including the maximum and range of joint distance and the standard 
deviation of the movement. These suggest that both the amount of full body movement 
as well as the variation, seem to be relevant predictors for veracity. To fully understand 
how differences in data coding and experiment setup might have affected the detection 
rates, we would have to perform cross-dataset evaluation. This point has been raised as 
well by Levine (2018a), and is a more common research practice in data mining research. 
The major obstacle for cross-dataset evaluation is the lack of public data repositories for 
deception research; the availability of the data of Van der Zee et al. (2019) is an exception. 
While privacy of the recorded participants in the experiment is key, automatically recorded 
body pose data as used in this paper does not carry identifiable information. We therefore 
encourage researchers to make their coded behavior data available.

Correlating automatically—objectively—coded behavior to manually—subjectively—
annotated data would further the analysis of discrepant findings. It could highlight whether 
differences between studies in terms of the coding scheme and coding conventions partly 
explain contrasting findings. Such insights help to improve manual coding practice. Con-
versely, when we understand how mined features relate to relevant discrete behaviors, we 
could make the mining process more context dependent. For example, we could take into 
account whether a person is talking, or seated.

Conclusion

In this paper, we have presented a data mining approach to cues extracted from body move-
ment data, with the aim of distinguishing truthful from deceptive behavior. In a system-
atic experimental study, we have investigated how detection rates are affected by consider-
ing different body parts, coding of the pose and movement, observation window lengths, 
and the amount of measurement noise. Using the simple classification of individual fea-
tures, we have obtained detection rates above 65%, well outperforming human judgements 
(52.80%). Moreover, our systematic analyzes provide insight into the influence of various 
coding options on the deception detection rate. These results highlight the feasibility and 
merits of data-driven innovations in deception research. At the same time, there is ample 
room for improvements in terms of the classification performance.

Our study has further demonstrated that we can pinpoint and reconcile seemingly dis-
crepant results across studies. Advances in the automated coding of 3D bodily behavior 
from camera footage will further facilitate the analysis and understanding of the bodily 
manifestations of deception. An increased availability of publicly available behavior data 
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would finally allow cross-dataset evaluation, to ensure that findings generalize to across 
studies. We expect that such measures will allow researchers to quicker identify and 
resolve seemingly discrepant findings, to direct research to novel challenges, and to spark a 
renewed confidence in deception research.
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