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Abstract

Evaluation routines are essential for any application that uses triangular B-spline surfaces. This
paper describes an algorithm to efficiently evaluate triangular B-spline surfaces with arbitrary many
variables. The novelty of the algorithm is its generality: there is no restriction on the degree of the
B-spline surfaces or on the dimension of the domain. Constructing an evaluation graph allows us
to reuse partial results and hence, to decrease computation time. Computation time gets reduced
even more by making choices in unfolding the recurrence relation of simplex splines such that the
evaluation graph becomes smaller. The complexity of the algorithm is measured by the number of
leaves of the graph.
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1. Introduction

Evaluation routines for splines are important for any application that uses splines. These
applications vary from scattered data approximation to variational surface modeling or 3D-
morphing applications. In the end, the resulting spline is always sampled to compute the
results or for visualization.

Efficient evaluation schemes have been developed and implemented for many classes
of splines, e.g., for Bezier-surfaces (Bézier, 1972) and B-patches (Seidel, 1991). However,
for triangular B-spline surfaces, which are widely used for their many desirable properties,
efficient evaluation routines are restricted to the quadratic bivariate case (Fong and Seidel,
1993; Pfeifle and Seidel, 1994).
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In this paper we present an algorithm for efficient evaluation of triangular B-spline
surfaces as introduced by Dahmen, Michelli and Seidel (1992). The novelty of this
algorithm is that it works for triangular B-spline surfaces of arbitrary degree and with
an arbitrary number of dimensions of the domain. For simplicity, however, the main part of
this paper concentrates on the bivariate case. The generalization towards arbitrary domains
is discussed in Section 7.

Efficiency is obtained by re-using partial results. When Grandine (1987) attempted this
approach, he found that tabulating those partial results for reuse is more costly than simply
re-computing the required value. He attributes this to the need of the entire knot-set to
identify a simplex spline. Pfeifle and Seidel (1994) use a triple of integers to identify
the simplex splines encountered during evaluation of a triangular B-spline surface of
degree 2. Unfortunately, their numbering does not scale up to higher order triangular
B-spline surfaces. In this paper it is shown that the identification problem can be avoided
by constructing a directed graph (an evaluation graph) representing the simplex splines and
B-spline surfaces. In Section 3 we describe how this graph is built and how it is used to
avoid multiple evaluation of simplex splines.

To further reduce computation cost, we cut down on the number of partial results that
are required. This is done by using our degrees of freedom when unfolding the recurrence
relation for simplex splines.

Since our selection scheme is designed to reduce the size of the evaluation graph, it
may produce ill-shaped triangles as domain for constant simples splines. The numerical
problems arising from this can be solved by treating linear simplex splines separately
(see (Franssen, 1995)) or by using a software library to represent numbers accurately
(see (Mehlhorn and Näher, 1999)).

The selection scheme for simplex splines is described in Section 4 and the selection
scheme for triangular B-spline surfaces is described in Section 5. The complexity of the
algorithm is computed in Section 6 and the results are discussed in Section 8.

2. Definitions

The notations used for simplex- and triangular B-spline surfaces differ in some papers.
Therefore, we briefly review the definition of the splines we consider in this paper. This
section assumes that the reader is already familiar with triangular B-spline surfaces.

2.1. General definitions

Definition 1 (Determinant of points). LetV = (v0, v1, v2) be a triple of points inR2. Then
the determinant ofV , denoted as det(V ) is defined as

det(V )= det

( 1 1 1
v0x v1x v2x
v0y v1y v2y

)
. (1)
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Fig. 1. Sketches to illustrate the half-open convex hull.

Definition 2 (Barycentric determinant). Let V be a triple of points inR2 in general
position and letx be a point inR2. Then theith barycentric determinant ofx (06 i 6 2)
is defined as

di(x | V )= det(V [x/vi]), (2)

whereV [x/vi] denotes the setV in whichvi is replaced byx.

Definition 3 (Barycentric coordinates). Let V be a triple of points inR2 and letx be a
point inR2. Then theith barycentric coordinate ofx (06 i 6 2) is defined as

λi(x | V )=
di(x | V )
det(V ) . (3)

Barycentric coordinates have the following important properties:

• ∑2
i=0 λi (x | V )= 1 and

2∑
i=0

λi(x | V )vi = x.

• If x lies within the convex hull ofV , then 06 λi(x | V ) for 06 i 6 2.

Definition 4 (Half-open convex hull). Let V be a set of points inR2 and letei denote the
unit vector for dimensioni for i = 0,1. Then the half-open convex hull ofV is defined as

[V )= {x ∈ [V ] | ∃ε0,ε1>0
(∀06α16α061(x + α0ε0e0+ α1ε1e1 ∈ [V ])

)}
, (4)

where[V ] denotes the convex hull ofV . I.e.,x belongs to the half-open convex hull[V ) of
V , if there exists a small triangle as depicted in Fig. 1(a), that lies entirely within the convex
hull [V ] of V . For instance, in Fig. 1(b), edges(A,B) and(A,C) belong to[A,B,C,D);
but edges(B,C) and(C,D) do not.

The half-open convex hull is a generalization of the half-open domain inR. Its purpose
is to ensure that for any subdivision of a domain inR2, the points on the edges of the
subdivision belong to exactly one sub-area.

2.2. Definition of simplex splines

Definition 5 (Simplex splines). A simplex spline is a piecewise polynomial function
defined by a finite setV of points inR2. The points inV are calledknotsand the set
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V itself is called theknot-setof the simplex spline. A simplex spline defined over a set of
n+ 3 knots is a piecewise polynomial of degreen. The definition of a simplex spline is
given by the following recursive equation:

M(x | V )=



0 x /∈ [V ),
1

|det(V )| |V | = 3 andx ∈ [V ),
2∑
i=0

λi(x |W)M(x | V \ {wi}) |V |> 3.

(5)

The elements inW = (w0,w1,w2) can be chosen arbitrarily fromV , henceW ⊂ V .W is
called thesplit setfor V . The only restriction is that det(W) may not be zero.

If all knots are in general position, i.e., the knot-set does not contain a collinear triple of
knots, a simplex spline of degreen defined over these knots isCn−1 continuous. For more
information about simplex splines, we refer to Traas (1990).

2.3. Definition of triangular B-spline surfaces

Definition 6 (Triangular B-spline surfaces). A triangular B-spline surface is a piecewise
polynomial function defined over an arbitrary polygonal domain inR2. For clarity, we
present the construction of a triangular B-spline surface in a number of steps:

(1) One starts by constructing a triangulationI of the polygonal domain. This
triangulation has to be proper, i.e., triangles may not overlap and they can only
share a single edge or a single vertex.

(2) Assign to every vertexvi occurring in the triangulationn + 1 knots, denoted by
vi,0, . . . , vi,n, wheren is the degree of the triangular B-spline surface, such that
vi = vi,0. There are two important restrictions on the placement of these knots:
(a) For every edge(vi, vj ) at the boundary of the polygonal domain, the entire area
[{vi,0, . . . , vi,n, vj,0, . . . , vj,n}) must lie outside the polygonal domain.

(b) For every triangleI = (i0, i1, i2) in I, the determinants det(vi0,k, vi1,l , vi2,m)
with k + l +m6 n must have the same sign.

Often these requirements are not mentioned, even though they are essential to
guarantee the desired B-spline surface properties. More information on these
restrictions can be found in (Franssen, 1995).

(3) Let I = (i0, i1, i2) be a triangle inI. Let β be a triple of indices(β0, β1, β2) such
that | β |= β0+ β1+ β2= n andβj > 0. Then the setV Iβ , containingn+ 3 knots,
is defined as

V Iβ = {v(i0,0), . . . , v(i0,β0), v(i1,0), . . . , v(i1,β1), v(i2,0), . . . , v(i2,β2)}. (6)

Each of theseV Iβ will serve as the knot-set of a simplex spline needed to define a
triangular B-spline surface.

(4) To use the simplex splines defined over the setsV Iβ as a basis for a triangular B-
spline surface, we have to ‘normalize’ them. That is, we have to multiply every
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simplex splineM(x | V Iβ ) with the factordIβ = det(vi0,β0, vi1,β1, vi2,β2). As a result,
for every pointx in the polygonal domain, we get(∑

I∈I

∑
|β|=n

dIβM
(
x | V Iβ

))= 1. (7)

Hence, the normalized simplex splines form a partition of unity, making control
points easy to use.

(5) For every triangleI and every triple of indicesβ with |β| = n, we define a control
pointcIβ in R3. The triangular B-spline surface is then defined as

F(x)=
∑
I∈I

∑
|β|=n

dIβM
(
x | V Iβ

)
cIβ. (8)

Since the normalization factors and the control points do not depend on the
evaluation pointx, they need not to be considered in the evaluation algorithm.
The normalization factors are pre-computed once and the control coefficients are
typically set (indirectly) by the user of the application.

3. Reusing partial results

If we naively evaluate a simplex spline of degreen recursively, the amount of constant
simplex splines we encounter will be 3n. For every unfolding of Eq. (5) for a simplex spline
of degreei we have to evaluate 3 simplex splines of degreei− 1. Since a constant simplex
spline is obtained aftern unfoldings, we obtain 3n simplex splines of degree zero.

Not all of the simplex splines of degreei with 06 i < n that we evaluate during the
recursion are different. The knot-setV of a simplex spline of degreen containsn + 3
knots. Any simplex spline of degreei we encounter by recursively unfolding Eq. (5), has
a knot-setV ′ of i + 3 knots that is a subset ofV . Therefore there exist no more than

(
n+3
i+3

)
different simplex splines of degreei.

Evaluation will be accelerated if every simplex spline of degreei is computed only once.
The problem when re-using partial results is the identification of simplex splines, because
this requires comparing the entire knot-sets. In this section we will present a data structure
that makes identifying simplex splines during evaluation superfluous.

We construct a directed graph, in which every node represents a simplex spline. This
graph is built only once (during preprocessing) and then used for all future evaluations.
Every simplex spline with degreei greater than 0 has three outgoing edges that connect
it with three (different) simplex splines of degreei − 1. These three simplex splines are
determined by choosing a split setW and unfolding the recurrence relation 5 for simplex
splines. In our implementation, we treat barycentric determinants as simplex splines of
degree−1, such that they too will be computed at most once. Note that we do not need to
choose a split set for every pointx in which we evaluate the simplex spline: once the graph
is built, it can be used to evaluate the simplex spline in arbitrary points.

The graph is used as follows: We number all the evaluation points. Whenever we
computed the value of a simplex spline in a point, we store this value, along with the
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number of the point, in the node of the simplex spline in the graph. When, during evaluation
of the same point, we encounter the same simplex spline through another incoming edge,
we do not re-compute the value, but use the stored value instead. To limit memory
consumption, we only store the value of the last computed point in each node.

4. Choosing split sets for simplex splines

We can use the number of nodes in the graph as a measure for the efficiency, since the
data-structure from the previous section avoids multiple evaluation of simplex splines in
this graph. To increase the efficiency, we have to decrease the number of nodes in our
graph. Which simplex splines occur in the graph depends on our choice of split sets when
unfolding Eq. (5). In this section, we present a selection scheme for split sets that strongly
decreases the number of nodes in the graph of a single simplex spline.

Throughout this section we will useV = {v0, . . . , vn+2} to denote the knot-set of the
simplex spline of degreen that we want to evaluate. Furthermore,i will always denote
a degree between 0 andn − 1 of some simplex spline in the graph. For simplicity, we
assume that every choice for the split set is legal, i.e.,V does not contain a triple of linearly
dependent knots. In Section 7, we discuss how this restriction is eliminated.

To minimize the number of simplex splines in the graph, we want to use as few different
simplex splines of degreei as possible. Therefore, we want to keep the intersections of
different knot-sets as large as possible. By choosing the correct split sets we will then
create less different simplex splines, since more simplex splines of lower degree become
shared.

This is established as follows: for 06 i < j < k 6 n + 2 we defineMi,j,k to be the
set {vi, vj , vk, vk+1, . . . , vn+2}. Then we choose{vi, vj , vk} as split-set for eachMi,j,k ,
yielding the knot-setsMj,k,k+1,Mi,k,k+1,Mi,j,k+1. Hence, to evaluate a degreen simplex
spline, we start withM0,1,2 and afterm recursive steps we need to evaluate all simplex
splines of degreen − m having knot-setsMi,j,m+2 with 06 i < j < m + 2. Hence, the
number of simplex splines of degreen−m in the evaluation graph will be

(
m+2

2

)
.

Note that the ordering used for the knot-sets is not important as long as it remains fixed.

5. Choosing split sets for triangular B-spline surfaces

The computation of a triangular B-spline surface requires the evaluation of an entire
set of simplex splines instead of just one. Since many knots occur in several of these
simplex splines, there is hope that evaluating this set of simplex splines can be done more
efficiently than simply evaluating all the simplex splines separately. In this section we
will exploit similarities between the knot-sets of the simplex splines to get an efficient
evaluation scheme.

Since the triangulation of the domain of the B-spline surface, is arbitrary, we will restrict
our attention to the computation of the contribution of a single triangle. For the remainder
of this section we will denote this triangle asI = (i0, i1, i2). The same evaluation scheme
can then be used for all triangles in the domain. By using a single look-up table of simplex
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splines for the entire domain of the B-spline surface, the evaluation time is reduced even
further, but we will not discuss this effect in this paper.

We start by introducing the concept of fingerprints. Fingerprints are special subsets of
the knot-sets of the simplex splines in the graph of the triangular B-spline surface. They
will be used to distinguish two groups of simplex splines in the graph of this B-spline
surface: those that contain a fingerprint and those that do not.

Definition 7 (Fingerprints). For every triangleI = (i0, i1, i2) ∈ I and indexβ with |β| =
n we define a fingerprintFIβ as

FIβ = {vij ,βj | 06 j 6 2∧ 16 βj }. (9)

Hence, the fingerprintFIβ contains from every knot cloud the knot with the highest second

index occurring inV Iβ , provided that this index is at least 1. For example:FI(2,0,1) ={vi0,2, vi2,1} (and not{vi0,1, vi0,2, vi2,1}). In the graph of a triangular B-spline surface of
degreen, only theFIβ with |β| = n are called fingerprints.

The name ‘fingerprint’ is not chosen arbitrarily. A fingerprintFIβ is the smallest set

uniquely identifying the degreen simplex splineM(. | V Iβ ). Hence, if a fingerprintF ⊆ V
of some simplex splineM(. | V ), thenF , in conjunction withV Iβ regarded as a triple of
knot sequences, uniquely defines a degreen simplex spline, which is the only one whose
evaluation requires the evaluation ofM(. | V ).

Lemma 8. Letx ∈ V Iβ such thatx ∈ FIβ . Then there exists aγ with |γ | = |β|−1 such that

V Iγ = V Iβ \ {x}.

Lemma 9. LetV be the knot-set of a simplex spline in the graph of a triangular B-spline
surface of degreen− 1. Letβ be an index with|β| = n. ThenFIβ 6⊆ V .

Using the concept of fingerprints and the corresponding lemmas, we will define our
selection scheme for the evaluation of triangular B-spline surfaces. The evaluation scheme
will be based on Lemma 8 and the evaluation scheme for a single simplex spline.

To compute the value of a B-spline surface of degreen, we have to computeM(x | V Iβ )
for all β with |β| = n. For this computation we will construct a single evaluation graphGn.
Our idea is to use a graphGn−1 that efficiently computes allM(x | V Iγ ) with |γ | = n− 1
and add as few new simplex splines to it as possible to obtainGn. Initially, we use the
evaluation graph for a B-spline surface of degree 0, which consists of a single simplex
spline of degree 0. Clearly, this graph is optimal.

UsingGn−1 as a subgraph ofGn is accomplished by the following choice: If a simplex
spline contains a fingerprint then this fingerprint must be a subset of the split set. From
this decision and Lemma 8 it follows that evaluating all required simplex splines of degree
n (i.e., all simplex splines with a knot-setV Iβ with |β| = n) requires the evaluation of all

simplex splines with a knot-setV Iγ with |γ | = n − 1. This is done efficiently by a graph
Gn−1 of a B-spline surface of degreen − 1 defined over the same knot-set, which we
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Fig. 2. A B-spline surface of degree 4 with 6 patches.

already have. However, not every fingerprint contains 3 knots, so we still have to select a
few elements for the split sets.

The remaining knots of the split sets are chosen in the same way as split sets for single
simplex splines are chosen: we use the first 3− |FIβ | knots fromV \ FIβ . To define ‘first’
we may use an arbitrary ordering on the knots, e.g., alpha-lexicographical ordering on the
two indexes. However, once an ordering is chosen, it must be used for all simplex splines
used in the evaluation graph. Fig. 2 shows a triangular B-spline surface of degree 4 with 6
patches.

6. Complexity

The simple selection scheme of split sets presented above yields a surprisingly efficient
evaluation graph. In order to compute the number of nodes in the graph, we prove the
following lemma and theorem:

Lemma 10. LetV be the knot-set of a simplex spline in the graphGn of a B-spline surface
of degreen, such thatFIβ ⊆ V . Letv be an element in the split set ofV . Then

• if v /∈ FIβ thenFIβ ⊆ V \ {v};
• if v ∈ FIβ thenM(. | V \{v}) exists in the graphGn−1 of the B-spline surface of degree
n− 1, whereGn−1 is defined over the obvious subset of the knot-set ofGn.

Proof. The first case is trivial. The second case is proved by induction oni, wheren− i is
the degree of the simplex spline corresponding toV .

casei = 0: Given by Lemma 8.
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Fig. 3. Sketch of the proof of Lemma 10.

casei > 0: We need to prove thatM(. | V \ {v}) exists in theGn−1. Let M(. | V ′)
be an ancestor ofM(. | V ), say V ′ = V ∪ {x} (see Fig. 3). ThenV ′ containsFIβ
and hence, by the induction hypothesisM(. | V ′ \ {v}) exists inGn−1. V ′ \ {v} will
contain some fingerprintFIγ of a B-spline surface of degreej with j < n. Clearly

|FIγ | 6 |FIβ | and sincex is one of the first 3− |FIβ | elements ofV ′, it will be one of

the first 3− |FIγ | elements ofV ′ \ {v} or it will be an element ofFIγ . Therefore,x
is an element of the split set ofV ′ \ {v}. Now, sinceM(. | V ′ \ {v}) exists inGn−1,
M(. | V ′ \ {v, x})=M(. | V \ {v}) will also exist inGn−1 as was to be proved.2

Theorem 11. Using the split set selection scheme above, we will now prove that every
simplex splineM(. | V ) in the graph of a degreen B-spline surface
• is either a simplex spline in the graphGn−1 of a B-spline surface of degreen− 1;
• or its knot-setV contains a fingerprintFIβ for certainβ with |β| = n.

Proof. By induction oni, wheren− i is the degree of the simplex splineV :

casei = 0: n− i = n and henceV contains a fingerprint by definition.

casei > 0: Let M(. | V ′) be an ancestor ofM(. | V ); i.e., V = V ′ \ {x}. If M(. | V ′) is
in Gn−1 thenM(. | V ) certainly is. IfM(. | V ′) is notGn−1 we get from the induction
hypothesis thatV ′ contains a fingerprintFIβ for certainβ . If x ∈ FIβ then by Lemma 10

M(. | V ′ \ {x})=M(. | V ) exists inGn−1. If x /∈ FIβ , then clearlyV containsFIβ . 2
As an example, see Fig. 4: The graphG1 is a subgraph ofG2. The thicker lines indicate

irregularities in the structure. The graphG3 contains many more of these irregularities and
does not clarify matters.

The complexity discussed in this section refers to the complexity of the evaluation and
does not include the time required to construct the graph. Constructing the graph is done
once during preprocessing using a lookup table. Consulting this lookup table costs time,
but once the graph is constructed, the B-spline surface can be evaluated in an arbitrary
number of points without ever using the lookup table again.



872 M. Franssen et al. / Computer Aided Geometric Design 17 (2000) 863–877

Fig. 4. The graphG2 of a B-spline surface of degree 2. The dashed lines indicate edges from
graphG1.

We compute the numberAn of constant simplex splines in the evaluation graphGn. Let
Bn denote the number of constant simplex splines inGn that do not exist inGn−1. Then
we find the equation

An =An−1+Bn, (10)

or written differently

An =A0+
n∑
i=1

Bi. (11)

In a B-spline surface of degree 0 the only simplex spline is already a constant simplex
spline, henceA0= 1. It remains to computeBn.

From Theorem 11 it follows that every simplex spline inGn \ Gn−1 contains a
fingerprint. Since a simplex spline with fingerprintFIβ can only be used to computeV Iβ , the
graphGn\Gn−1 contains one connected component for eachβ . All simplex splines in such
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a subgraph contain the same fingerprint. We will now count for each indexβ the number
Bβ of constant simplex splines in the subgraph of splines containingFIβ . To computeBn,
we then use

Bn =
∑
|β|=n

Bβ. (12)

Bβ is computed similar to the number of constant simplex splines in the graph of
a single simplex spline: write the elements ofV Iβ as the elements ofFIβ , followed by

the elements ofV Iβ \ FIβ in the order used by the selection algorithm. Suppose that the
elements in the mentioned order are denoted by{u0, . . . , un+2}, then the selection scheme
essentially is the same as the one in Section 4 for simplex splines. Hence, we can now
defineM ′i,j,k for 06 i < j < k 6 n + 2 to be the set{ui, uj , uk, uk+1, . . . , un+2}, such

thatFIβ = {u0, . . . , uf }, wheref = |FIβ |. V Iβ is then equal toM ′0,1,2. After m recursive
steps we get all knot-setsM ′i,j,m+2 with 06 i < j < m+ 2. Since we are only interested
in constant simplex splines fromGn \Gn−1, we can use Theorem 11 and only to count the
M ′i,j,n+2 that containFIβ . To computeBn we now sum over allβ , distinguishing between

|FIβ |:
case|FIβ | = 3: FIβ ⊆M ′i,j,n+2 means thati, j andn+ 2 must be 0,1 and 2 respectively.

Even after only one recursive step this will never be the case, henceBβ = 0.

case|FIβ | = 2: One out of three indices is 0; the other two vary between 1 andn − 1,
summing up ton. Hence, there are 3(n−1) of these cases. In each case, the two elements
of FIβ areu0 andu1, hence we only need to countM ′0,1,n+2, yieldingBβ = 1.

case|FIβ | = 1: There are 3 of these cases:(n,0,0); (0, n,0); and(0,0, n). In each case,
we need to count allM ′0,i,n+2 with 0< i < n+ 2, henceBβ = n+ 1.

Hence,Bn = 3(n− 1)+ 3(n+ 1)= 6n.
We can now finally compute the numberAn of constant simplex splines in the evaluation

graphGn of a B-spline surface of degreen:

An = 1+
n∑
i=1

6i = 1+ 3n+ 3n2. (13)

Hence, to compute the contribution of one triangleI ∈ I to the value of the B-spline
surface of degreen in a pointx, we only have to evaluate 1+ 3n+ 3n2 constant simplex
splines. Since for everyk, there will be more simplex splines of degreek − 1 in the graph
than simplex spline of degreek, the number of simplex splines in the graph will beO(n3).
However, since barycentric determinants are tabulated also, and their number is no bigger
than

(3n+3
2

)
, the number of barycentric determinants computed will beO(n2).

In Table 1, some experimental results are listed of evaluations of triangular B-spline
surfaces. Note that more time is used for each point for surfaces with a domain consisting
of 2 triangles (both triangles may contribute to any point), but not twice as much. Every
simplex spline is computed once for each point, even if this simplex spline occurs in the
graph for another domain-triangle.
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Table 1
Time measurements of the implementation, using 10302 points per triangle

Degree 2 3 4 5

Dom.triangles 1 2 1 2 1 2 1 2

Total time(s) 0.989 3.673 2.314 8.682 4.627 17.182 8.345 30.541

t /point(µs) 96.0 178.3 224.6 421.4 449.1 833.9 810.0 1482.3

7. Generalizations

Although our algorithm can deal with B-spline surfaces of arbitrary degree, there are still
some restrictions on its use. In this section we discuss how these restrictions are eliminated.

7.1. Arbitrary knot-sets

One annoying restriction is that all knot-setsV must be in general position, i.e., every
triple of knots inV is linearly independent. Sometimes one deliberately introduces a few
linearly dependent knot-sets to model splines with continuity less thanCn−1.

We can allow arbitrary knot-sets if we consider a special case in our selection scheme
for split sets: if a selected split setW is linearly dependent(det(W) = 0), we arbitrarily
choose a different split set. If no suitable split set can be found then obviouslyV is linearly
dependent. But then the half-open convex hull ofV is empty and henceM(x | V )= 0 by
definition of Eq. (5).

These alternative choices yield a less efficient evaluation graph. Since all determinants
are tabulated already, their number will not increase. However, the overload of computing
the values of simplex splines from these determinantswill increase.

7.2. Domains inRs

Another important restriction is that the algorithm is still limited to domains inR2.
Lifting this restriction to higher dimensional spaces is straightforward, although it requires
more work than the previous generalization.

The generalizations of determinants, barycentric determinants, barycentric coordinates
and the half-open convex hull are straightforward. Therefore, we only explicitly give those
generalizations that affect our algorithm.

Definition 12 (s-variate simplex splines). For domains inRs , simplex splines are defined
over sets of at leasts + 1 points inRs . The recursive equation then becomes:

M(x | V )=


0 x /∈ [V ),

1|det(V )| |V | = s + 1 andx ∈ [V ),
s∑
i=0

λi(x |W)M(x | V \ {wi}) |V |> s + 1.
(14)

But nowW is a tuple ofs + 1 knots and hence, the selection algorithm must be extended.
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When evaluating a single simplex spline it is sufficient to choose the firsts+1 elements
of each knot-set, like we selected the first 3 knots in the case wheres = 2 (see Section 4).
The number of constant simplex splines in the graph then becomes

(
n+s
s

)
.

Definition 13 (s-variate simplicial B-spline spaces). To define simplicial B-spline spaces
we need a subspaceI of Rs that is properly divided into simploids (subspaces bounded by
s + 1 vertices). “Properly” means that the simploids do not intersect and that if they share
an edge, a hyperplane, etc, they share theentireedge, hyperplane, etc.

To form a basis for the B-spline space we assignn+1 knotsvi,0, . . . , vi,n to every vertex
vi in the domain, such thatvi = vi,0. Furthermore, letI ∈ I be a simploid in the domain
and letβ = (β0, . . . , βs) be a tuple with|β| =∑s

i=0βi = n, thenV Iβ is defined as

V Iβ = {vi0,0, . . . , vi0,β0, . . . , vis ,0, . . . , vis ,βs }
= {vij ,k | 06 j 6 s ∧ 06 k 6 βj }. (15)

After generalizing the normalization factors and defining the control coefficients, the
formula for a B-spline space remains exactly the same:

F(x)=
∑
I∈I

∑
|β|=n

dIβM
(
x | V Iβ

)
cIβ. (16)

Hence we have to compute the simplex splinesV Iβ for all β with |β| = n andI ∈ I.

Definition 14 (s-variate fingerprints). To computes-variate B-spline spaces we generalize
the definition of fingerprints to

FIβ = {vij ,βj | 06 j 6 s ∧ 16 βj }. (17)

Computing the number of constant simplex splines in the graph is done in the same way
as fors = 2. The number of constant simplex splines in the graph of ans-variate B-spline
space of degreen is

Asn = 1+
n∑
i=1

s+1∑
k=1

(
i − 1

k − 1

)(
s + 1

k

)(
i + s − k
s − k

)
, (18)

which is a generalization of Eq. (13). The number ofs-variate barycentric determinants
is limited by

(
(s+1)(n+1)

s

)
, which isO((sn)s). Since the number of simplex splines in the

graph increases as the degree decreases, the total amount of nodes in the graph will be
O(n(sn)s).

Note that the algorithm described in the previous sections is exactly the special case of
the general algorithm fors = 2.

Pfeifle and Seidel (1995) also introduced a class of spherical triangular B-splines. Since
this class of splines uses the same recursive pattern, it is also straightforward to use our
algorithm for these splines.



876 M. Franssen et al. / Computer Aided Geometric Design 17 (2000) 863–877

8. Discussion

In this paper we introduced selection schemes for the efficient evaluation of simplex-
and triangular B-spline surfaces. In contrast with previous approaches these evaluation
schemes are able to deal with splines of arbitrary degree, any number of dimensions in
the domain, arbitrary (non-general) knot-placements, and different variants of the B-spline
surface scheme. We derived that the complexity of algorithm for the bivariate case isO(n3)

wheren is the degree of the spline.
To a large extent the efficiency of the algorithm is the result of our look-up table.

Grandine’s conclusion, that searching for previously computed results is more expensive
than simply re-computing the required value, does not hold, since the graph we construct
does not depend on the point in which we evaluate the spline. Hence, we only have to look-
up simplex splines during the construction of the evaluation graph and can then evaluate
the spline in any point without ever searching the table again.

The selection schemes to obtain efficient evaluation graphs are surprisingly simple. For
simplex splines we only need to fix the order of the knots and repeatedly select the first
three knots in the knot-set. For triangular B-spline surfaces we preferably select elements
from the fingerprint and complete the split set with the first knots remaining from the knot-
set using a fixed order.

The properties proved in Lemma 10 and Theorem 11 are not straightforward. If the
ordering of the knots would not be fixed, but for instance, would depend on the simplex
spline under consideration, the algorithm would not work as it turned out during our
experiments. Also, if we use a slightly different definition for fingerprints, e.g.,FIβ ={vij ,βj | 06 j 6 2}, the required properties do no longer hold.

Since simplex splines are uniquely defined by their knot-sets, enumerating simplex
splines is a non-trivial matter. In contrast to (Pfeifle and Seidel, 1994), we avoid explicitly
enumerating every simplex spline. The enumeration scheme used by Pfeifle and Seidel
could never have been sufficient, since the number of possible names in their enumeration
is less than the number of simplex splines that occur during the evaluation of splines of
higher degree. Because of this our algorithm scales up to arbitrary degrees and arbitrary
domains, and their algorithm does not.

For B-spline surfaces of degree 2 our algorithm yields a slightly different, but equally
efficient graph as Pfeifle and Seidel (see Fig. 4). In (Pfeifle and Seidel, 1994) 78
pairs of barycentric coordinates are computed for each triangle. This corresponds to
156 barycentric determinants, provided that the 3rd coordinate is computed as 1 minus the
other two coordinates. However, by using our look-up table for barycentric determinants
we avoid multiple evaluation. Therefore the number of determinants actually computed by
our algorithm is the number of pairs of knots that can be chosen from the 3n+ 3 knots of
a B-spline surface, i.e.,

(3n+3
2

)
. Forn= 2 this yields only 36 determinants.

References

Bézier, P. (1972), Numerical Control, Mathematics and Applications, Series in Computing, Wiley.
Dahmen, W., Micchelli, C.A. and Seidel, H.-P. (1992), Blossoming begets B-splines built better by

B-patches, Math. Comput. 59 (199), 97–115.



M. Franssen et al. / Computer Aided Geometric Design 17 (2000) 863–877 877

Fong, P. and Seidel, H.-P. (1993), An implementation of triangular b-spline surfaces over arbitrary
triangulations, Comput. Aided Geom. Design 10, 267–275.

Franssen, M. (1995), Evaluation of DMS-splines, Master’s Thesis, Eindhoven University of
Technology.

Grandine, T.A. (1987), The computational cost of simplex spline evaluation, SIAM J. Numer. Anal.
24 (4), 887–890.

Mehlhorn, H. and Näher, S. (1999), LEDA, A Platform for Combinatorial and Geometric Computing,
Cambridge University Press.

Pfeifle, R. and Seidel, H.-P. (1995), Spherical triangular B-splines with application to data fitting,
in: Post, F. and Göbel, M., eds., Computer Graphics Forum, Vol. 14, Maastricht, the Netherlands,
August 28–September 1 1995, Blackwell Publishers, C89–C96.

Pfeifle, R. and Seidel, H.-P. (1994), Faster evaluation of quadratic bivariate DMS spline surfaces,
Graphics Interface, 182–189.

Seidel, H.-P. (1991), Symmetric recursive algorithms for surfaces: B-patches and the de boor
algorithm for polynomials over triangles, Constructive Approx. 7, 257–279.

Traas, C.R. (1990), Computation of Curves and Surfaces, Chapter: Practice of Bivariate Quadratic
Simplicial Splines, Kluwer Academic Publishers, Dordrecht, 383–422.


