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a b s t r a c t 

In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllica- 

tions such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and 

unmanned aerial vehicles. The specific problem, however, is less discussed compared to general tex- 

ture recognition. Here, we analyze several motion properties of water. First, we describe a video pre- 

processing step, to increase invariance against water reflections and water colours. Second, we investigate 

the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors 

are used to locally classify the presence of water and a binary water detection mask is generated through 

spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the 

Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. 

Experimental evaluation on the Video Water Database and the DynTex database indicates the effective- 

ness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and 

material recognition. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

The goal of this work is water detection in both natural and

man-made environments from videos. Spatio-temporal water de-

tection finds applications in unmanned ground and aerial systems

(e.g. self-driving cars, and UAV’s ( van Gemert et al., 2014 )), out-

door surveillance, video search, and wildlife search. These appli-

cations are highlighted in Fig. 1 . To the best of our knowledge, re-

lated work focuses on texture recognition in general, and thus does

not specifically explore the motion properties of water. 

We focus on investigating the spatio-temporal motion proper-

ties of water. In biological studies, the visual properties of water

have been investigated in order to understand the visual attrac-

tiveness of water in human and animal vision. From the work of

Schwind (1991) , it is known that water insects are attracted to the

horizontal polarization caused by the reflections of water surfaces.

This observation has for example been used to explain why certain

insects lay eggs on highways ( Kriska et al., 1998 ). In videos how-

ever, polarization information is not captured. Human observers

are still experts at water detection without polarization informa-

tion, indicating that water contains valuable spatio-temporal mo-
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ion properties that can be exploited. Here, we investigate which

patio-temporal motion properties make water distinctive. 

Current methods for automatic water detection can be divided

nto two categories: in specialized systems or as part of a broader

ecognition framework. In the broader fields of material recogni-

ion ( Hu et al., 2011; Mettes et al., 2014b; Sharan et al., 2013 ) and

ynamic texture recognition ( Chan and Vasconcelos, 2008; Doretto

t al., 2003; Fazekas et al., 2009; Zhao and Pietikäinen, 2007 ) water

s one of the target classes. In these works, the objective is to mini-

ize the miss-classification rate over all classes and as a result, the

istinctive properties of water specifically are not investigated. Fur-

hermore, the focus is generally on classification or segmentation,

ut not on the joint problem as posed here. On the other hand,

ater detection in specialized settings, such as autonomous driving

 Rankin and Matthies, 2006 ) and in maritime settings ( Smith et al.,

003 ), either make non-generalizable restrictions on the move-

ent and orientation of cameras ( Rankin and Matthies, 2006 ) or

se auxiliary data sources in their measurements ( Rathinam et al.,

007; Scherer et al., 2012; Smith et al., 2003 ). To address the limi-

ations of related work with respect to water detection specifically,

his work provides an investigation into the temporal and spatial

ehaviour of water scenes. 

This work reports three contributions. (1) We introduce a

ideo pre-processing step to remove background reflections and

nherent water colours. (2) We introduce a hybrid spatial and

emporal descriptor for local water classification. For the temporal

http://dx.doi.org/10.1016/j.cviu.2016.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
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Fig. 1. Visual examples of practical applications that benefit from water detection. 

d  

p  

t  

i  

(  

e  

T  

w  

a

 

(  

p  

o  

v  

w  

t  

w  

t  

p

 

a  

S  

a  

d  

r  

m  

S

2

 

a  

t  

a  

v

2

 

a  

2  

t  

m  

t  

c  

c  

p  

b  

Z  

2  

r  

t  

s  

f  

h  

a  

t  

o  

b

2

 

s  

a  

t  

i  

(  

2  

g  

a  

a  

o  

i  

m  

T  

w  

m  

p  

i  

i  

o  

w

 

n  

c  

S  

h  

D  

fi  

o  

t  

v  

t  

c  

S  

t  

b  

w  

a  

i  

f  

r  

m  

p  

o  

i  

w  

b

escriptor, we analyze the periodicity and regularity of local water

atches and derive a descriptor that captures these elements. For

he spatial descriptor, we advocate Local Binary Patterns and we

nvestigate what makes them suitable for local water detection.

3) We introduce a new dataset, the Video Water Database, for

xperimental evaluation and to encourage research into this topic.

he Video Water Database, further discussed in Section 5 , along

ith the code used in the experimentation will be made publicly

vailable to encourage further research into this topic. 

This work extends an earlier investigation into this topic

 Mettes et al., 2014a ) in multiple aspects. An improvement is pro-

osed in the pre-processing stage to deal with areas on the border

f multiple objects of reflection, by modeling the density of pixel

alues over time. Also, further analysis is performed to investigate

hether the hybrid descriptor is able to capture the spatial and

emporal behaviour water ripples. In the experiments, we evaluate

hether our method can generalize to water conditions and water

ypes not seen during training. Lastly, another fusion of the tem-

oral and spatial descriptor is evaluated. 

The layout of the rest of this paper is as follows. In Section 2 ,

n overview of water detection in related work is provided.

ection 3 introduces the pre-processing step of the videos and the

nalysis of the local behaviour of water. This is followed by the

iscussion on local probabilistic classification and spatio-temporal

egularization in Section 4 . Finally, Section 5 provides the experi-

ental evaluation of the algorithm and the paper is concluded in

ection 6 . 

. Related work 

Given the lack of specific attention given to water detection,

n overview is provided with respect to two broader recognition

asks: material recognition and dynamic texture recognition. Also,

n overview of water localization in specialized systems is pro-

ided. 

.1. Water in material recognition 

The classification of materials and static textures in images has

 long history of investigation ( Everts et al., 2012; Ojala et al.,

002; Sharan et al., 2013; Varma and Zisserman, 2009 ). Works on

his topic are in line with Biederman (1987) , who conjectured that

aterials are recognized in human vision by their surface charac-

eristics such as texture and colour. Well-known approaches in-

lude filter bank distributions ( Varma and Zisserman, 2005 ), Lo-

al Binary Patterns ( Ojala et al., 2002 ), and image patch exem-

lars ( Varma and Zisserman, 2009 ). In recent works, a shift has

een made from laboratory settings ( Ojala et al., 2002; Varma and

isserman, 20 05; 20 09 ) to real-world image databases ( Hu et al.,

011; Mettes et al., 2014b; Sharan et al., 2013 ). In these works, a

ange of surface characteristics, e.g. texture, colour, and reflectance,

o find out what characteristics are best for classification. The re-

ults of these works indicate that spatial information is informative

or distinguishing different materials. For water detection in videos

owever, there are two limiting aspects. First, only the spatial char-
cteristics are investigated, excluding valuable temporal informa-

ion. Second, research into material recognition has focused mostly

n solving the classification problem or the segmentation problem,

ut not their joint problem. 

.2. Water in dynamic texture recognition 

Dynamic textures are part of a class of motions with either

tructural or statistical similarity in both space and time ( Nelson

nd Polana, 1992 ). Exemplary dynamic textures include fire, wa-

er, flags, and weather patterns. One of the dominant approaches

n dynamic texture recognition is based on optical flow statistics

 Chen et al., 2013; Fazekas et al., 2009; Fazekas and Chetverikov,

0 07; Vidal and Ravichandran, 20 05 ). In these approaches, either a

lobal description is generated using invariant flow statistics such

s characteristic direction and magnitude of flow vectors ( Fazekas

nd Chetverikov, 2007 ), or flow vectors are binned into Histograms

f Optical Flow (HOOF) ( Chen et al., 2013 ). The use of optical flow

s intuitively interesting for water detection, as the spatio-temporal

ovement of water seems statistically different to related textures.

he use of conventional optical flow is however problematic for

ater detection in videos, as water meets none of the require-

ents for a proper flow estimation: Lambertian surface reflectance,

ure translational motion parallel to the image plane, and uniform

llumination ( Beauchemin and Barron, 1995 ). A representation us-

ng optical flow will therefore be heavily influenced by the noise

f the flow estimation, which makes optical flow not desirable for

ater detection. 

Another popular research direction focuses on modeling dy-

amic textures as Linear Dynamical Systems (LDS) ( Chan and Vas-

oncelos, 2008; Doretto et al., 2003; Ravichandran et al., 2013;

aisan et al., 2001 ). In dynamic texture recognition, the use of LDS

as been made popular by Saison et al. ( Saisan et al., 2001 ) and

oretto et al. ( Doretto et al., 2003 ), mostly due to the proposed ef-

cient sub-optimal learning procedure. As the original formulation

f LDS requires a modeling of whole videos, it is unfit for local de-

ection purposes. In order to deal with multiple textures within a

ideo, several extensions have been provided. These include mix-

ures of dynamic textures ( Chan and Vasconcelos, 2008 ), hierarchi-

al EM clustering ( Mumtaz et al., 2013 ), and Bags of Dynamical

ystems ( Ravichandran et al., 2013 ). These algorithms can poten-

ially handle multiple textures in a video, but they have so far not

een applied to detection problems. A noteworthy exception is the

ork of Ravichandran et al. (2011) , where the joint segmentation

nd classification problem of dynamic textures is tackled by divid-

ng a video into parts using Dynamic Appearance Images computed

rom LDS, after which the parts are represented by a bag-of-words

epresentation with SIFT features. The representations are however

ore general and not tailored to water detection. Also, it is ex-

licitly assumed that the texture class of a pixel does not change

ver time, restricting potential applications. Rather than perform-

ng a holistic modeling as with LDS, this work attempts to detect

ater from a local scale. The local scale is essential, as water is not

ound to specific shapes in a scene. 
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Fig. 2. Illustration of the effect of the proposed signal transformations. Left: a frame is shown for 3 water (blue) and 3 non-water (red) videos. Middle: a 2D projection of 

sampled local signals is shown for the water and non-water videos. Right: a 2D projection of the same signals after the transformations. Note that the signals of the water 

and non-water videos become nicely separated after the transformations, even in a 2D projection. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Notable is also the research on spatio-temporal Local Binary

Patterns for dynamic texture classification ( Zhao and Pietikäinen,

2007 ). In the work of ( Zhao and Pietikäinen, 2007 ), both Volume

LBP (VLBP) and LBP-TOP are introduced. VLBP generates longer

histograms by adding binary comparison to temporal neighbours.

Since the length of the histogram increases exponentially with the

number of comparisons, VLBP typically yields histograms the size

of 2 14 or 2 26 . More compact representations, three times the size

of LBP, can be generated with LBP-TOP. Although VLBP and LBP-

OP can be extracted globally for a video, the length of their fea-

ture representation limits the applicability localized extraction. The

lower dimensional spatial LBP remains interesting for water detec-

tion. 

2.3. Water localization in specialized systems 

Water detection has been investigated in specialized systems,

including autoonomous driving systems ( Iqbal et al., 2009; Rankin

et al., 2010; Rankin and Matthies, 2006 ), maritime environments

( Smith et al., 2003 ), and using flying robots ( Rathinam et al., 2007;

Scherer et al., 2012 ). Although these algorithms might provide a

suitable solution in their restricted environment, none of the men-

tioned works are able to generalize to fully automatic water detec-

tion using minimally constrained video material. 

In autonomous driving, several works have attempted to detect

water hazards such as puddles and canals, to inform autonomous

agents. In the work of Rankin and Matthies (2006) , colour and tex-

ture cues are combined with stereo information to indicate wa-

ter regions. Furthermore, estimated elevations are used to detect

ground regions, decreasing the false positive rate. A similar method

is introduced in Iqbal et al. (2009) . A subsequent evaluation by

Rankin et al. (2010) focuses on the specific scenario where stereo

information is provided. In all works, additional sensors are used

to help the detection. In maritime settings and in works using fly-

ing robots, similar non-generalizable assumptions have been made,

whether it is assuming that water is within a specific part of the

frame ( Smith et al., 2003 ), requires a manual pre-processing step

to identify sky regions ( Scherer et al., 2012 ), or uses auxiliary sen-

sors ( Rathinam et al., 2007; Scherer et al., 2012 ). The works do

therefore not generalize to water detection with minimal camera

assumptions and without additional sensors, rendering them im-

practical for the problem of this work. 

3. Local spatio-temporal water analysis 

Since natural water scenes are dominated by aspects such as

water colours, sky reflection, and object reflections, the videos
re first pre-processed in a single-pass offline process. The pre-

rocessing of a video results in a residual video, where these

spects are removed, to focus solely on water waves and rip-

les. After that, the temporal and spatial behaviour of water

s analyzed, resulting in a novel temporal descriptor and the

se of Local Binary Patterns ( Ojala et al., 2002; Qian et al.,

011 ) as a spatial descriptor. By combining these descriptors

nto a hybrid descriptor, it becomes possible to locally detect

ater. 

.1. Residual videos 

An important part in the process of detecting natural water

cenes is dealing with the inherent variability of water, due to wa-

er colour, reflections, ripples, waves, and weather conditions. In-

tead of exploiting consistencies among these elements of variabil-

ty, the focus of this work is to generate descriptions that are in-

ariant to these variations. 

To accommodate the temporal and spatial descriptor towards a

istinctive water representation that is invariant to elements such

s reflections and water colours, the videos in the database are first

re-processed. The goal of this step is to capture and subtract wa-

er reflections and colours from the video frames, yielding residual

rames. The dominant reflections and colours are obtained for each

ixel by computing the mode value over the frames. The underly-

ng assumption is that water ripples and waves form a temporary

isruption of an otherwise direct reflection. The most often occur-

ing intensity values indicate the dominant water colours and re-

ections. As such, the temporal mode frame M of a video is defined

ixel-wise as follows: 

 direct (x, y ) = arg max 
i 

t ∑ 

j=1 

[[ I j (x, y ) = i ]] , (1)

here t denotes the number of frames in the video, the Iverson

rackets [[ ·]] denote the indicator function, and i ∈ {0, .., 255} de-

otes the set of intensity values. The residual frames can be ob-

ained simply by means of absolute differencing the frames of the

ideo with the temporal mode frame. 

The use of the temporal mode for each pixel is not a sta-

le choice under all circumstances. Most notably, as illustrated in

ig. 3 , on strong edges, e.g. on the border of sky and object re-

ections, this approach yields a noisy result. To create more coher-

nt residuals, Kernel Density Estimation ( Scott, 2009 ) is performed

ver the set of intensity values for each pixel. In other words, for
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Fig. 3. The process of removing reflection highlights and water colours. Left: frame of a video containing water. Top middle and right: the temporal mode computed using 

Eq. 1 over the whole video and the corresponding residual of the frame, both for the selected red region. Bottom middle and right: the temporal mode computed using 

Eq. 2 and the corresponding residual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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 pixel ( x, y ), the mode value is determined as 

 density (x, y ) = arg max 
i 

1 

t 

t ∑ 

j=1 

K h (i − I t (x, y )) , (2)

here K h ( ·) denotes the Gaussian kernel and the bandwidth h

s estimated using Scott’s Rule ( Scott, 2009 ). In Fig. 3 , the mode

rame using KDE is also shown for the example video. Contrary to

he original method, this approach yields proper mode frames even

t boundaries of two or more dominant colours. 

The frames of the videos are downsized to a quarter of their

idth and height, in order to remain computationally practical.

his is since the use of Gaussian KDE over Eq. 2 increases the

ime complexity of computing the mode frame of a video from

 (p(t + i )) to O ( pti ), with p the number of pixels, t the number

f frames, and i the number of intensity values. 

.2. Local temporal water behaviour 

For the temporal descriptor, a Eulerian approach is opted over a

agrangian. In other words, rather than tracking pixels over time as

s done with optical flow (the Lagrangian approach), the dynamics

f water is investigated from static locations. The hypothesis be-

ind this is that transitions of brightness values over time contain

aluable information regarding the characteristics of water. It is hy-

othesized that they include gradual motion (waves enter and exit

 local area smoothly), repetitive motion (waves re-occur in similar

ashion over time), and regular motion (waves re-occur at similar

ntervals). 

As the brightness transitions of individual pixels are sensitive

o noise, the local temporal behaviour of water is analyzed by av-

raging brightness values of a local region around a pixel. For a

patio-temporal video volume, an m -dimensional signal is gener-

ted by computing the mean brightness value of an n × n patch

round a pixel for m consecutive frames. Note that this is similar

o a 3D mean convolution filter of size n × n × m . The resulting

ist of brightness values can be seen as a signal. These signals ex-

ibit more sinusoidal patterns when extracted locally from water

egions than from non-water regions, as is expected from the hy-

othesized motion characteristics of water. 

Using the signals obtained from the local 3D convolution, the

rimary concern becomes finding a descriptor that generates a

mall distance between two water signals and a large distance be-

ween a water and non-water signal with respect to the hypothe-

es. An obvious solution is to directly compute the � 2 distance be-

ween two signals, i.e. to directly use the signals as the temporal

ater descriptor. This solution is however erroneous, as the sig-

als lack a number of invariance properties. A descriptor based on

he m -dimensional signals should in effect be invariant to tempo-

al shifts, brightness shifts, and brightness amplitudes. This can be
enerated by computing the minimum distance between two sig-

als S 1 and S 2 under all temporal shifts T , brightness shifts B , and

mplitudes A 

(S 1 , S 2 ) = min 

t∈ T,b∈ B,a ∈ A 

m ∑ 

i =1 

S 1 [ i ] − a · (S 2 [ i + t] + b) . (3)

he above equation is however prohibitively expensive. A more

calable approach is to create temporal and brightness shift in-

ariance by computing the Fast Fourier Transform (FFT). For an

 -dimensional signal S , the m -dimensional Fourier transform F is

omputed as follows: 

 i = | 
m ∑ 

j=1 

S j exp (−2 π i j 
√ 

−1 m ) | . (4)

ote that in Eq. 4 , the variable i does not denote the imaginary

umber, but the index of the Fourier transform; the imaginary

umber is for convenience written explicitly as 
√ −1 . 

Computing distances between two Fourier signals creates (tem-

oral and brightness) shift invariance in O ( m log m ) time. However,

ince the descriptor is not invariant against amplitudes, the final

emporal descriptor is generated by performing � 1 normalization.

n invariance with respect to brightness amplitudes is desirable,

s two descriptors with similar levels of regularity and repetition

ill have a large distance in both the original signal space and

he Fourier transform space if their amplitudes are not similar (e.g.

ough and calm water). Using the � 1 normalization to add the final

ayer of invariance, a temporal water descriptor { F i } m 

i =1 
is computed

rom an original signal { S i } m 

i =1 
as 

 i = 

| ∑ m 

j=1 S j exp (−2 π i j 
√ −1 m ) | ∑ m 

k =1 | ∑ m 

j=1 S j exp (−2 πk j 
√ −1 m ) | . (5) 

 practical justification of adding the layers of invariance is pro-

ided in Fig. 2 . In the example of the Figure, signals are randomly

ampled from 3 water and 3 flag videos. In the 2D projection

 Tenenbaum et al., 20 0 0 ) of the original signals, the water and flag

ignals are completely indistinguishable. After adding the desired

lements of invariance, the signals become nicely separable, even

n a 2D projection of 200D descriptors. 

.3. Local spatial water behaviour 

Although the above introduced water descriptor can capture the

emporal behaviour of water, it explicitly ignores the spatial layout

f water waves and ripples. Due to the deformable nature of water,

 descriptor is desired that can provide spatial information with-

ut explicitly modeling water waves and ripples. To meet this de-

ire, Local Binary Pattern histograms ( Ojala et al., 2002; Qian et al.,

011 ) are investigated. LBP histograms have a number of benefits
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a

b

Fig. 4. Illustration of LBP values that (a) correlate positively to water and (b) cor- 

relate negatively to water. White boxes indicate a value of 1. Note how positively 

correlated LBP values have a more equal ratio between 1 and 0 values and are typ- 

ically uniform (i.e. contain only 2 transitions between 1 and 0 values across the 8 

connected neighbours). 
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particularly desired properties for the purpose of this work. First

and foremost, the spatial arrangement of individual pixels only ex-

tends to a one pixel neighbourhood. This is convenient, because of

the deformations possible within a patch. On the other hand, the

histograms are of sufficient dimensionality to be discriminative. 

The LBP value of a single pixel is computed by comparing the

intensity value of the pixel to nearby pixels. Here, the LBP-variant

using the 8 direct neighbours is explored, i.e. the LBP-value of a

pixel is determined as 

LBP (g c ) = 

7 ∑ 

p=0 

[[ g c p − g c ≥ 0]] · 2 

p , (6)

where g c denotes the pixel to be evaluated and { g c p } 7 p=0 denotes the

8 direct neighbours. In order to compute a descriptor over a local

region, the LBP-value is computed for each pixel in that region and

placed in one of the 2 8 = 256 bins, according to the value yielded

by Eq. 6 . 

The question remains whether the use of LBP histograms is

beneficial for water specifically. To investigate this, a number of lo-

cal patches of water and non-water videos are randomly extracted

and trained using a linear classifier, in this case a linear Support

Vector Machine. In Fig. 4 , we show LBP values for which the corre-

sponding SVM weights show resp. positive and negative correlation

with respect to water. From the Figure, it can readily be observed

that positive LBP values fire on the edges of ripples. Furthermore,

the ratio between 1 and 0 values for positively correlated LBP val-

ues is more equal and for negatively correlated LBP values. A sub-

stantial part of the LBP values with more than two transitions

(similar to the rightmost example of Fig. 4 b) are to some extend

negatively correlated to water, indicating that the spatial layout

of water waves and ripples is not chaotic and is characterized by

smooth spatial transitions. 

Note that the use of Local Binary Patterns results in a descriptor

aimed at extracting gradient information. Throughout this work, it

is however referred to as a spatial descriptor to exemplify the con-

trast to the temporal descriptor; the temporal descriptor tries to

identify patterns in the temporal dimension, the spatial descriptor

does the same in the two spatial dimensions. 

4. Classification and regularization 

Given the pre-processed videos and a local temporal and spatial

descriptor, the final goal becomes generating a detection mask for

each frame of a video. This is performed in two steps; direct proba-
ilistic classification and spatio-temporal regularization. In the first

tep, a model is created from positively and negatively sampled

escriptors. This model can then be applied to a test video, result-

ng in a large number of independent classifications. These classi-

cations can already be served as detections by binarizing all the

robabilities. As the learned model does not perfectly classify each

ocal video volume, the output of the individual classifications is

oisy and a form of regularization is required to generate coherent

ater detection masks. 

The derived temporal and spatial descriptors are not used as

ocal features for a more global encoding; rather, a model is gen-

rated directly from individual descriptors. In this work, both the

arly and late fusion variant are experimentally evaluated ( Snoek

t al., 2005 ). In early fusion, the temporal and spatial descriptors

omputed from a local video volume are first concatenated, after

hich a model is trained on these hybrid descriptors. Contrarily,

n late fusion, a model is trained separately for the temporal and

patial descriptors, and the probability of a local video volume of

eing water is determined by averaging the scores from the two

odels. 

.1. Local probabilistic classification 

Classification is performed by sampling local descriptors from

raining videos. These descriptors are then used as feature vec-

ors for the training of the classifier, where the labels are inherited

rom the video from which they were sampled. As the total num-

er of local video patches and volumes over all training videos is

umbersomely large, a random sampling approach is adopted here.

o maximize coverage, each frame of each training video is evalu-

ted, and a low number of descriptors are extracted from randomly

ampled locations. 

The yielded set of feature vectors are then fed to a Random De-

ision Forest ( Criminisi et al., 2012 ). The use of a Decision Forest is

articularly interesting, since it provides probabilistic outputs and

t inherently generates non-linear decision boundaries. Probabilis-

ic outputs will prove to be useful, as the uncertainty can be used

or regularizing the detection. Local descriptors are extracted and

ndependently classified for each frame of a test video. 

.2. Spatio-temporal regularization 

The procedure of Section 4.1 generates hundreds of individual

ocal water probabilities per frame of a test video. As the classifi-

ation procedure is not expected to be fully accurate, a number of

iss-classifications are bound to occur, even within a single frame.

he additional information gained by computing probabilities over

inary labels opens up the possibility to handle classification out-

iers. Under the intuitive assumption that water regions have a

igh spatial support (i.e. there are a limited number of bound-

ries between water and non-water regions), a final detection map

er frame of a video can be computed by means of regularization.

ere, the regularization takes of form of a binary Markov Random

ield ( Boykov and Kolmogorov, 2004 ), that attempts to solve the

ollowing minimization objective: 

f (x, y ) = 

∑ 

p∈ V 
V p (x p ) + λ

∑ 

(p,q ) ∈ C 
V pq (x p , x q ) , (7)

here the unitary term V p denotes the match between the label of

ode p and its corresponding probability 

 p (x p ) = 

{
1 − P p if x p is water 
P p otherwise, 

(8)

here P p denotes the probability of node p of being water. The

airwise term V pq of Eq. 7 follows the well-known 0/1 Potts model

hat enforces similarity between the labels of nodes from the same
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Fig. 5. An example frame of each of the subcategories present in the Video Water Database. See text for details on the subcategories. 

c  

r  

w

 

t  

T  

e  

b  

w  

a  

v

5

 

g  

t

 

fi  

b  

a

D  

w

f

d  

w  

p  

w

 

a  

s  

t  

c  

w  

t  

m

5

 

d  

q  

W  

s  

w  

d

 

c  

o  

d  

r  

a  

w  

fi  

e  

w  

c  

r  

l  

o  

m  

w  

a  

s

 

c  

s  

r  

i  

i

 

v  

f  

s  

S  

n  

m  

o  

i  

p  

t

5

 

a  

f  

i  

t  

t  

c

 

c  

7  

p  
lique ( Boykov and Kolmogorov, 2004 ). The term λ is a hyperpa-

ameter weighting the importance between the unitary and pair-

ise terms. 

An obvious choice of cliques in the Markov Random Field are

he pairwise spatial neighbours within a single frame of a video.

his would involve generating a single Markov Random Field for

ach frame. As it is furthermore desired to penalize different la-

ellings at the same location between consecutive frames, the pair-

ise temporal neighbours are also used as cliques. This results in

 single spatio-temporal Markov Random Field for each evaluated

ideo. 

. Experimentation 

To validate the proposed algorithm for water detection, the al-

orithm is evaluated on two different but related tasks; water de-

ection and water classification-by-selection. 

The detection quality of a video is defined as the average of the

t of the detection fit per frame. Formally, the detection fit D of a

inarized video V compared to a ground truth mask M is defined

s 

 (V, M) = 

∑ | V | 
i =1 

d(V i , M) 

| V | , (9)

here | V | denotes the number of frames in V, V i denotes the i th 

rame, and d ( V i , M ) is defined as 

(V i , M) = 1 −
∑ W 

x =1 

∑ H 
y =1 | V i [ x, y ] − m [ x, y ] | 

W · H 

, (10)

here W and H denote the width and height of the frame and the

ixel values of the computed detection and the mask m are 1 for

ater and 0 otherwise. 

The classification-by-selection task is a more lenient task; given

 selected area in a video, determine whether that area is a water

urface or not. Although not as informative as the detection task,

his task does offer several insights; it serves its own set of appli-

ations, such as human-aided water detection (i.e. water detection

here the user specifies an interesting region). Also, it opens up

he possibility for comparison against works from fields such as

aterial and dynamic texture recognition. 

.1. The video water database 

Due to the lack of attention given to the specific task of water

etection in videos, no database is available with a large enough

uantity and variety for desirable evaluation. Therefore, the Video

ater Database (VWD) is introduced here. This database contains

everal hours of video material of a wide range of water and non-

ater scenes. To the best of our knowledge, this is the largest

atabase with video material on water. 
In total, the database consists of 260 videos, where each video

ontains between 750 and 1500 frames, all with a frame size

f 800 × 600. The water class consists of 160 videos of pre-

ominantly 7 subcategories; canals, fountains, lakes, oceans, ponds,

ivers, and streams. The non-water class can be represented by

ny other scene. Here, the non-water class contains subcategories

ith similar spatial and temporal characteristics; clouds/steam,

re, flags, trees, and vegetation. An example of each of the subcat-

gories in the database is shown in Fig. 5 . All the videos are taken

ith a static camera, i.e. there are no large camera motions. Static

ameras are employed here to be able to investigate the tempo-

al and spatial properties of water in isolation. It furthermore al-

ows us to quantify the performance of our hybrid descriptor. In

rder to compute the quality of the computed detections, a binary

ask is created for each video stating which pixels are water and

hich pixels are not. Care has furthermore been taken to maintain

 large variety in scale and orientation of the water and non-water

urfaces. 

We note that our algorithm does not explicitly assume a static

amera. Both the pre-processing and the temporal descriptor as-

ume a temporal window at a specific spatial location. The tempo-

al window in turn forms a trade-off; a smaller temporal window

ncreases the robustness to camera motion, at the cost of discrim-

native power. 

Besides evaluating on the Video Water Database, a subset of 75

ideos from the DynTex database ( Péteri et al., 2010 ) is also used

or evaluation. The motive for this evaluation is two-fold. First, it

hows that the algorithm is not tailored to the created database.

econd, it provides a comparison for water detection against other

on-water textures and objects. The selected subset contains hu-

ans, animals, traffic, windmills, flowers, and cloths. Since most

f the named textures and objects will not be seen during train-

ng, the effectiveness of the algorithm on the DynTex database will

rovide insight into the generalization properties to unseen nega-

ives. 

.2. Implementation details 

For the temporal descriptor, the length of the signal constitutes

 trade-off between discriminative prowess and practicality. As the

ocus here is on detection and accuracy, a signal length of m = 200

s used, with a resulting 200D feature vector. When combining

he temporal and spatial descriptors before classification, the 200D

emporal descriptor and 256D spatial descriptor are simply con-

atenated. 

During training, 10 samples are retrieved from random lo-

ations for each frame of each training video, yielding roughly

50.0 0 0 samples to be trained by the Decision Forest. The main

arameters of the Forest – the randomness and the number of



188 P. Mettes et al. / Computer Vision and Image Understanding 154 (2017) 182–191 

Table 1 

Overview of the detection results of the descriptors and their fu- 

sions, resp. without and with regularization. 

No regularization 

Temporal Spatial Late fusion Early fusion 

Water 90 .4 85 .5 90 .7 90 .8 

Non-water 67 .3 86 .7 85 .9 92 .1 

Average 78 .9 86 .1 88 .3 91 .5 

Spatio-temporal regularization 

Temporal Spatial Late fusion Early fusion 

Water 92 .0 87 .1 91 .4 92 .3 

Non-water 68 .6 89 .8 90 .7 95 .0 

Average 80 .3 88 .4 91 .1 93 .7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Two frames indicating the complementary nature of the temporal and spa- 

tial information. The first column shows a frame of the video. The second column 

shows the probability map of the temporal descriptor, the third column shows the 

map for the spatial descriptor, and the fourth column shows the map for the hybrid 

descriptor. 

Table 2 

Overview of the detection results on the DynTex database 

subset. The numbers within parentheses represent the de- 

tection results without regularization. 

Temporal Spatial Hybrid 

Water 89 .7 (87.5) 70 .0 (68.4) 87 .9 (83.0) 

Non-water 63 .7 (64.3) 85 .7 (79.6) 94 .7 (89.5) 

Average 76 .7 (75.9) 77 .9 (74.0) 91 .3 (86.2) 

 

d  

a  

d  

d  

t  

m  

p  

n  

T  

t  

n

5

 

r  

t  

t  

t  

t  

e

 

w  

w  

e  

a  

m  

t  

a  

i

 

r  

T  

p  

r  

o  

h  
trees – are set through validation ( Van Gemert et al., 2009 ). For

a test video, samples are extracted every 11 th pixel in width and

height for each frame, followed by individual classification. For the

regularization, an equal contribution of the unary and pairwise

terms (i.e. λ = 1 ) has empirically shown to be most effective. 

To evaluate the effectiveness of the algorithm for water detec-

tion, the primary components – temporal and spatial features ex-

traction, fusion, regularization – are evaluated on the newly intro-

duced Video Water Database. For this, the database is split ran-

domly with equal ratio into a train and test split; equally among

all subcategories. 

5.3. Water detection in the video water database 

In Table 1 , an overview is provided of the detection results for

the algorithm without and with regularization. Individually and

without regularization, the temporal and spatial descriptors yield

78.9% and 86.1% detection accuracy. It is interesting to observe

that the water descriptor yields good performance for water, while

the spatial descriptor yields good performance for non-water. The

complementary nature also comes back in the performance of the

fusions of the descriptors. The best performance is achieved by

performing early fusion, with an increase to 91.5% average detec-

tion rate. Early fusion is preferred here because of the large dif-

ference in true and false rates of the individual descriptors. In late

fusion, the mistakes of an individual descriptor greatly influences

the final detection result (due to the equal weighting of the proba-

bilities). Early fusion however makes it possible to compensate for

each other’s mistakes during training. 

Next to fusing temporal and spatial information for local water

classification, Table 1 also indicates the effectiveness of applying

regularization. Enforcing label consistency among spatio-temporal

cliques removes classifier outliers and results in a smooth final de-

tection result. The combination of the hybrid descriptor and spatio-

temporal regularization yields a final detection accuracy of 93.7%.

In Fig. 7 , the final detection result is shown for a number of test

videos. 

Interestingly, the strong increase in performance for the hybrid

descriptor is not because of a strong increase in true detection rate.

Contrarily, it is the false detection rate that achieves a strong de-

crease; from 32.7% (temporal) and 13.3% (spatial) to 5%. This indi-

cates that non-water elements might resemble water temporally or

spatially, but not always spatio-temporally. The reasoning behind

this observation is for a substantial part captured in Fig. 6 . In this

Figure, two frames of test videos are shown, as well as the proba-

bility maps. In the probability maps, a blue colour indicates water,

while a red colour indicates non-water. In Fig. 6 a, it is shown that

the temporal descriptor can aid the spatial descriptor, while Fig. 6 b

shows that the spatial descriptor can aid the temporal descriptor. 
To iterate the effectiveness of the temporal descriptor for water

etection, we evaluate the effectiveness of the temporal descriptor

s a function of the length of its descriptor. In Fig. 8 , we show the

etection accuracy for water and non-water as a function of the

escriptor length. Interestingly, the Figure shows that the detec-

ion of water is hardly affected by the length of the signal, which

eans that our temporal descriptor can capture characteristic tem-

oral patterns of water with a short exposure. On the other hand,

on-water accurary is highly affected by the length of the signal.

his result indicates that our temporal descriptor is highly tailored

o water detection, rather than focused on the general case of (dy-

amic) texture recognition. 

.4. Water detection in the DynTex database 

To further emphasize the effectiveness of the introduced algo-

ithm and in order to investigate the generalization properties of

he algorithm, the water detection is also performed on a subset of

he DynTex database ( Péteri et al., 2010 ). In total, 75 videos of wa-

er and non-water scenes are selected. For training the model, the

rain split of the Video Water Database is used, while the model is

valuated on all the selected videos from the DynTex database. 

Since the videos form the DynTex database have been captured

ith a different intent than the Video Water Database, different

ater and non-water types are present in this subset. For water,

lements such as drinking water and water surfaces during rainfall

re present. For non-water, new elements include windmills, ani-

als, humans, and traffic. As these elements are not present in the

raining videos of the Video Water Database, a proper detection

nd classification of these videos greatly depends on the general-

zing properties of the algorithm. 

In Table 2 , an overview is provided of the detection accu-

acies yielded on the DynTex subset. Although the numbers of

able 1 and 2 are not directly comparable, the comparison does

rovide an indication of the generalization properties of the algo-

ithm. Individually, the descriptors yield a lower detection accuracy

n the DynTex database subset. However, the early fusion into the

ybrid water descriptor results in a substantial boost from 76.7%
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Fig. 7. Examples of detection results shown for both databases. Blue indicates water, red indicates non-water. 
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Fig. 8. Detection accuracy as a function of the length of the temporal descriptor. 

Note that a only short exposure is required for high water detection accuracy. 
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1 http://cis.jhu.edu/ ∼avinash/projects/DTBox/ 
temporal) and 77.9% (spatial) to 91.3% detection accuracy on aver-

ge. 

Fig. 7 b shows exemplary detections on the DynTex subset. For

ultiple examples, no similar video is present in the training set,

.g. the drinking water in the sink, the windmill, and the traffic.

his Figure paints a similar picture to the results of Table 2 ; the al-

orithm can generalize to previously unseen water and non-water

ubcategories. This result highlights the goal of the algorithm to

apture the inherent properties of water. 

.5. Water classification-by-selection 

As a proof of concept and in order to compare the algorithm

o a number of related papers, binary water classification is also

onsidered. Here, the goal is to determine whether a video sup-

lemented with a binary mask is water or not. The same training

nd testing splits are used as the detection task, while the manu-

lly created binary masks serve as binary masks to determine the

oreground region. 

For the introduced algorithm, the classification of a video is a

unction of the ratio of water and non-water pixels in the fore-

round region. Agnostic to any prior on the ratio of water and

on-water pixels, a video is classified as water if the ratio of water

ixels is at least 1 
2 , otherwise it is classified as non-water. 

The classification accuracy of the algorithm is compared to mul-

iple generic baselines from material and dynamic texture classifi-

ation. In total, 6 algorithms are used as baseline methods. These

aselines serve as general indicators of the complexity of the prob-

em. The baseline algorithms include Transferred ConvNet Feature

 Qi et al., 2016 ), Volume Local Binary Patterns ( Zhao and Pietikäi-

en, 2007 ), LBP-TOP ( Zhao and Pietikäinen, 2007 ), Linear Dynam-

cal Systems ( Doretto et al., 2003 ), Gabor filter bank distributions

 Varma and Zisserman, 2005 ), and optical flow statistics ( Fazekas

nd Chetverikov, 2007 ). 

For Volume LBP ( Zhao and Pietikäinen, 2007 ), a 2 14 -

imensional feature vector is generated for a video by means
f histogram binning using the 14 direct temporal and spatial

eighbours of sampled foreground pixels. For LBP-TOP ( Zhao and

ietikäinen, 2007 ), a (3 ·2 8 )-dimensional feature vector is genera-

ion by histogram binning the 8 neighbours of the 3 orthogonal

lanes of sampled foreground pixels. Both VLBP and LBP-TOP are

rained and tested using nearest neighbour classification in Eu-

lidean space ( Zhao and Pietikäinen, 2007 ). 

For LDS ( Doretto et al., 2003 ), the whole video has to be used,

s the number of pixels needs to match between a pair of videos.

ere, we follow the setup of Saisan et al. (2001) and model each

ideo in the space of dynamical systems. A distance measure is

efined by the Martin distance ( Saisan et al., 2001 ). We have

mployed the Dynamic Texture Toolbox for this baseline. 1 For

he MR8 filter bank ( Varma and Zisserman, 2005 ), we comute

http://cis.jhu.edu/~avinash/projects/DTBox/
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Table 3 

Classification accuracy results yielded for both the Video Water Database (second column) and the Dyntex 

database (third column). The fourth column states the absolute difference in achieved accuracy between the 

Video Water Database and the Dyntex database. 

Methods VWD Dyntex Abs. diff. 

Ours, hybrid 98 .4 95 .8 -2 .6 

Ours, spatial 93 .1 84 .6 -8 .5 

Ours, temporal 83 .0 81 .0 -2 .0 

st-TCoF ( Qi et al., 2016 ) 97 .2 90 .0 -7 .2 

LBP-TOP ( Zhao and Pietikäinen, 2007 ) 93 .3 87 .5 -5 .8 

Volume LBP ( Zhao and Pietikäinen, 2007 ) 93 .8 79 .1 -14 .7 

MR8 filter bank ( Varma and Zisserman, 2005 ) 84 .3 67 .2 -17 .1 

Flow stats (HS) ( Fazekas and Chetverikov, 2007; Horn and Schunck, 1981 ) 75 .0 55 .4 -19 .6 

LDS ( Doretto et al., 2003 ) 67 .4 56 .3 -11 .1 

Flow stats (LK) ( Fazekas and Chetverikov, 2007; Lucas and Kanade, 1981 ) 62 .8 49 .7 -13 .1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Visual example indicating the complexity of water detection purely from 

local information. 
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local 8-dimensional features from 38 filter responses by taking

the maximum response over the rotations of different anisotropic

filters ( Varma and Zisserman, 2005 ). We construct a codebook

of 250 clusters using k-means and represent each video using

a 250-dimensional bag-of-words representation. Classification is

performed using nearest neighbours with the χ2 distance. For the

optical flow, 4 flow statistics are computed on estimated flows and

averaged over the video. These statistics include characteristic di-

rection, characteristic magnitude, divergence, and curl ( Fazekas and

Chetverikov, 2007 ). The optical flow baseline is performed both

using the flow algorithm of Lucas and Kanade (1981) and using the

flow algorithm of Horn and Schunck (1981) . Similar to VLBP and

LBP-TOP, nearest neighbours in Euclidean space is employed here. 

Besides comparing against hand-crafted features, we also com-

pare against the deep convolutional video representation of Qi

et al. (2016) . For a video, we extract a 4096-dimensional repre-

sentation using a pre-trained AlexNet ( Krizhevsky et al., 2012 ). We

compute the spatial and temporal TCoF (Transferred ConvNet Fea-

ture) of a video using the first and second order statistics. We � 2 
normalize the spatial and temporal TCoF, after which they are con-

catenated. This results in a 16,384-dimensional representation for

each video, which is trained and tested using a Linear SVM (with

C = 40 ( Qi et al., 2016 )). 

An overview of the classification accuracies is highlighted in

Table 3 . On the Video Water Database, the hybrid descriptor out-

performs both the individual descriptors (similar to water detec-

tion) and the baseline methods. In fact, the only baseline method

that comes near the results of the hybrid descriptor is TCoF

( Qi et al., 2016 ). This result is not entirely surprising, given the

strength of the deep representations from convolutional neural

networks. However, our hybrid approach still outperforms TCoF for

water detection specifically, highlighting its effectiveness. 

As indicated in the third column of Table 3 , all methods yield

a lower classification accuracy on the Dyntex database. Although

the numbers can not directly be compared to the numbers of the

Video Water Database, the decline in performance of each of the

methods provides a clear indication of the performance of the wa-

ter algorithm. For the water algorithm, the hybrid and temporal

descriptor indicate the best generalization capabilities, while the

spatial descriptor reports a 8.5% decline (absolute difference). For

the baseline methods, an overview higher decline is reported (be-

tween 6.5% and 19.6%). This result indicates that the introduced

water algorithm not only outperforms the baseline methods, it is

also able to generalize better to unseen water and non-water sub-

categories. 

Both for the detection and classification tasks, it can be noted

that the scores of respectively Table 2 and 3 are rather high. This

is first and foremost due to the nature of the task; it is cast as a

strictly binary problem. This means that if a local video volume or
ven a whole video of a tree is classified as fire, there will be no

oss. As long as the water/non-water boundary line is not crossed,

o loss occurs. Note however that this hardly makes the prob-

em easy, especially from a purely local perspective. When treat-

ng each local video volume independently for classification, any

orm of contextual information is discarded. This is highlighted in

ig. 9 . When looking at the whole frames, it is not hard to make

ut which one is water and which one is a cloud. However, purely

ased on the local squares, it becomes exceedingly harder to state

hich one is part of a water surface and which one is not. This in-

icates the complexity of a non-holistic approach to the detection

roblem. 

. Conclusions 

In this work, the problem of detecting water in videos is tack-

ed. As the specific problem of water detection has hardly been

ddressed in related work, this work investigates the temporal and

patial dynamics of water. First, a pre-processing stage is intro-

uced that is aimed at removing reflections and water colours. Af-

er that, a hybrid descriptor and local detection algorithm are in-

roduced for discovering water regions in a video. To evaluate the

lgorithm, the Video Water Database is furthermore introduced.

uantitative and qualitative evaluation show that the algorithm is

ble to robustly detect region of water in videos, with a high de-

ection accuracy and a classification accuracy that outperforms al-

orithms from directly related fields. 
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