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Abstract. Visibility partitions play an important role in computer vi-
sion and pattern matching. This paper studies a new type of visibility,
reection-visibility, with applications in aÆne pattern matching: it is used
in the de�nition of the reection metric between two patterns consisting
of line segments. This metric is aÆne invariant, and robust against noise,
deformation, blurring, and cracks. We present algorithms that compute
the reection visibility partition in O((n+k) log(n)+v) randomised time,
where k is the number of visibility edges (at most O(n2)), and v is the
number of vertices in the partition (at most O(n2 + k2)). We use this
partition to compute the reection metric in O(r(nA + nB)) randomised
time, for two line segment unions, with nA and nB line segments, sepa-
rately, where r is the complexity of the overlay of two reection-visibility
partitions (at most O(nA

4 + nB
4)).

1 Introduction

The visibility from a particular viewpoint in a pattern gives a local description
of the pattern. The visibilities from all possible viewpoints give a complete rep-
resentation of the pattern. This insight led to the use of visibility for pattern
matching. Visibility has been used for object-recognition as early as 1982, see
Chakravarty and Freeman [6]. Visibility is de�ned in terms of aÆne geometry,
the concept does not depend on Euclidean distances. Therefore, visibility can be
used as a tool for aÆne invariant shape recognition and aÆne pattern matching.
We use a strong type of visibility to compute an aÆne invariant pattern metric,
called the reection metric. This metric is aÆne invariant, and robust against
noise, deformation, blurring, and cracks, see Section 2.

A well-studied structure related with visibility is the visibility graph. For
a collection of n planar line segments, the visibility graph is the graph having
the endpoints of the line segments as vertices, and edges between vertices for
which the corresponding endpoints can be connected by an open line segment
disjoint with all segments in the collection. A trivial algorithm, consisting of
three nested loops, computes the visibility graph in O(n3) time. Lee [18] was the
�rst to improve this, by giving an O(n2 log(n)) time algorithm. Optimal O(n2)
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time algorithms were found by Welzl [23], and Asano et al. [3]. If the number
of visibility edges is k, an algorithm by Pocchiola and Vegter [22] computes the
visibility graph in O(n log(n) + k) time and O(n) space.

A plausible approach to using visibility for pattern matching would be visi-
bility graph recognition, see Ghosh [9], and Everett [8]. However, visibility graph
recognition is a computationally expensive problem, see Lin and Skiena [19].
Moreover, visibility graphs depend heavily on the topology of the pattern, and
are therefore by themselves not suitable for robust pattern matching.

Our approach uses a special form of visibility, called reection-visibility, for
de�ning a similarity measure on line patterns. This measure, the reection metric,
is aÆne invariant by de�nition. That is, the distance between aÆne transformed
patterns t(A) and t(B) equals the distance between the original A and B. The
reection metric is robust. It responds proportionally when lines are deformed a
little, slightly translated copies of existing lines are added, small cracks are made
in lines, and small new lines are added.

To compute the reection metric we need to know the structure of the visi-
bility partition corresponding to a special type of visibility. Visibility partitions
consists of equivalence classes with constant combinatorial visibility. Plantinga
and Dyer [21] call this structure the viewpoint space partition. The dual of the vis-
ibility partition is called the aspect graph, see Kriegman and Ponce [17], Bowyer
and Dyer [5], and Gigus et al. [11]. The number of possible views, the size of the
visibility partition, was investigated, under varying assumptions, by Agarwal and
Sharir [1], and de Berg et al. [7]. For polygons, results about visibility partitions
were found by Guibas et al. [13], Aronov et al. [2], and Bose et al. [4].

In this paper, we focus on the structure of visibility partitions as two-dimen-
sional arrangements. We will investigate an alternative visibility partition, called
reection-visibility. As a start, we consider the standard visibility partition. We
use an alternative way to de�ne and describe it that is useful for the other types
of visibility. After that, the analysis becomes more interesting as we proceed to
the reection-visibility partition. Let k be the number of visibility edges (at most
quadratic in n) and v be the number of vertices in the partition (at most quadratic
in n + k). We present randomised algorithms that compute the partitions in
O((n + k) log(n) + v) time. We use this to compute the reection distance. We
assume a model of computation in which the absolute value of any rational
function, a quotient of polynomials of degree at most d, can be integrated over
any triangle in �(d) time. Let A and B be unions of nA and nB segments,
respectively. If the overlay of the two corresponding reection-visibility partitions
has complexity r, the reection distance between A and B can be computed in
O(r(nA + nB)) time.

2 The reection metric

The reection metric, introduced in [16, 14], de�nes a distance between �nite
unions of algebraic curve segments in the plane. If A and B are such unions,
the reection distance is denoted as dR(A;B). The reection metric turns the
patterns A and B into functions �A; �B : R2 ! R, after which the integrated
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absolute di�erence of these functions is normalised. The functions are de�ned
using a strong form of visibility, called reection-visibility. We defer the exact
de�nition of the reection metric until Section 5.

Figure 1 shows a two-dimensional pattern A consisting of a �nite number of
straight line segments. Figure 2 shows the corresponding function evaluated on a
discrete lattice, represented as a grey-scale image in which black corresponds with
value 0. The example pattern is hieroglyphic `A1' obtained from the hieroglyphics
sign list, see [12].

Fig. 1. A straight line pattern.
Fig. 2. The function �A evaluated on a
discrete lattice.

Let T be the group of aÆne transformations on R2 . The reection metric is
invariant for T , meaning that dR(t(A); t(B)) = dR(A;B) for any aÆne transfor-
mation t 2 T . As a result, dR can be used to construct a metric on aÆne shapes,
patterns modulo aÆne transformation:

DR(T (A); T (B)) = inf
t2T

dR(t(A); B):

Fig. 3. Deformation,
blur, cracks and noise.

The reection metric is robust for various types of
e�ects caused by discretisation and unreliable feature
extraction. Slight deformations of patterns only in-
crease or decrease distances slightly. Introducing blur,
by adding new lines near existing lines in a pattern,
only causes a proportional change in the reection dis-
tance. Making cracks in the interior of lines, splitting
them up into multiple smaller ones, only changes the
distance proportional to the length of these cracks.
Adding noise in the form of new lines, far away from other lines, only increases
the distance proportionally to the length of the added line. Figure 3 illustrates the
e�ects of deformation, blur, cracks, and noise. The left pattern is the \original",
the right pattern is \a�ected" by the four types of distortion.

In Section 5, we show that the reection metric can be computed by construct-
ing and traversing an arrangement, which is the overlay of two reection-visibility
partitions. In the following sections, we characterise the visibility and reection
visibility partitions. We will give a randomised algorithm that is optimal in the
number of segments n.
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3 Visibility partitions

Let S = fS1; : : : ; Sn g be a collection of closed line segments and let P =
f p1; : : : ; pm g be the corresponding set of endpoints. In all that follows, we as-
sume that the endpoints are in general position. For convenience, set A =

S
S.

We say a point y 2 R
2 is visible from x 2 R

2 , if the open line segment xy is
disjoint with A. For any viewpoint x 2 R

2 , de�ne the visible part of A as the
subset VpA(x) � A given by:

VpA(x) = f a 2 A j A \ xa = ? g:

This set is sometimes called the visibility polygon of x in A, see [3]. The visibility

star VstA(x) is the union of all open line segments connecting the viewpoint x
with the visible part of A:

VstA(x) =
[

a2VpA(x)

xa:

Visibility stars are similar to view zones, see [20] pp. 383{391. A view zone is
a visibility star extended with all in�nite rays from x disjoint with A. Figure 4
shows a visibility star for an example consisting of eight line segments with
thirteen distinct endpoints. The visible part VpA(x) is drawn thick. The visibility
star VstA(x) is the light grey region, including the dotted lines.

Consider the endpoints and segments bounding the visibility star VstA(x)
ordered by slope with respect to x. This describes the structure of the visibility
star. The visibility star is a �nite union of triangles. Each triangle is an intersec-
tion of three half-planes. Two of the half-planes are bounded by lines through x
and a point in P . The third half-plane is bounded by the line through a segment
of S. If a segment Si 2 S has a visible endpoint pj , and x is collinear with Si,
then the triangle \degenerates" to the open line segment xpj . We are interested
in the regions in the plane in which the structure of the visibility star is constant.

We simplify the presentation by introducing an additional \line segment".
Let D be an open rectangle containing the union of segments A, and let S0 be
its boundary. We will simply call S0 a segment. This gives an extended collection
of segments S 0 = fS0 g [ S: Let A

0 = S0 [ A. Each ray starting from any point
in D, intersects A0.

We need a compact description of the structure of the visibility star VstA(x),
for any viewpoint x 2 D. For this purpose, we de�ne a collection of identi�ers,
referring either to segments or endpoints. An identi�er is an (integer) index
subscripted with a p or an s, indicating an endpoint or a segment, respectively.
We order the identi�ers linearly as follows: 0s < 1s < � � � < ns < 1p < � � � < mp:
Each point a 2 A0 is assigned an identi�er id(a) as follows. If a = pi, then set
id(a) = ip. If a 2 Si � P , then set id(a) = is.

We represent the structure of the visibility star by a tuple identi�ers. Choose
any closed disc centred at x disjoint with A. The boundary of such a disc is
called the view circle, denoted by Cx. We give each point c 2 Cx a label l(c),
an identi�er, as follows. For each point a 2 A0 visible from x, compute the
intersection c 2 Cx \ xa and set l(c) = id(a).
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Fig. 4. A visibility star.
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Fig. 5. A view map.

The view circle Cx is a disjoint union of inverse images l�1(d), for each iden-
ti�er d. Each non-empty inverse image l�1(d), the subset of points in Cx with
label d, can be decomposed into its connected components. These components
are either single points or open arcs. The view map of x, denoted with VmpS(x),
is a labeled circuit graph whose vertices are the components with their constant
labels. We call vertices labeled with endpoint identi�ers (ip) p-vertices. We call
vertices labeled with segment identi�ers (is) s-vertices. Edges of VmpS(x) are de-
�ned by pairs of vertices, constant-label components, with intersecting closures.
Figure 5 shows the labeled view circle, inducing the view map, for a collection
of four closed line segments having nine distinct endpoints. Labels of p-vertices
are indicated on the dotted lines on the outside of Cx. Labels of s-vertices are
indicated inside the view circle between successive dotted lines.

The view map VmpS(x) can be represented using a tuple of labels encountered
when traversing all edges, starting with some initial vertex and some incident
edge. Of all possible tuples, the lexicographically smallest one represents the view
map. This representation does not depend on the direction (clockwise or counter-
clockwise) in which the labels occur on the view circle. We identify the view
map with this unique tuple. In the situation of Figure 5 this gives VmpS(x) =
(0s; 1p; 1s; 3p; 2s; 4p; 3s; 5p; 0s; 6p; 4s; 8p; 5s; 9p; 4s; 7p; 0s; 10p):

The view map VmpS(x) is a function of points x 2 D. De�ne points x; y 2 D
to be equivalent if their view maps (labeled graphs) are isomorphic, that is,
VmpS(x) = VmpS(y): This equivalence relation results in a partition of D into
equivalence classes. This visibility partition is denoted by Qv(S). If x and y lie
in the same class Q 2 Qv(S) of the partition, the visibility stars VstA(x) and
VstA(y) have the same structure.

The visibility partition is aÆne invariant: the partition for the aÆne trans-
formed set S equals the aÆne transformed partition (including the labels). The
reection-visibility partition also has this property. A single class in the visibility
partition can have more than one connected component. In the example of a
single segment S = fS1 g with endpoints P = f p1; p2 g; the open half-planes left
and right of S1 are the connected components of the equivalence class in Qv(S)
having view map (0s; 1p; 1s; 2p):
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The visibility partition has the structure of an arrangement induced by a
�nite union of closed line segments. Each cell in this arrangement is a connected
component of an equivalence class in the partition. As the viewpoint x moves
continuously within D, changes occur in VmpS(x). Each time such a change
occurs, the set of vertices visible from x changes. The sets of viewpoints x on
which changes in the viewmap occur form one-dimensional boundaries in the
arrangement describing the visibility partition.

We construct a collection of \event segments" for the view map. Let ES be
the collection of (directed) edges in the visibility graph. That is, ES consist of all
pairs of endpoint-indices (i; j) such that pj is visible from pi. We extend ES to
a collection E0

S by also including the endpoint-index pairs of each segment in S.
Given an endpoint pi, sort all endpoints pjk , with (i; jk) 2 E0

S , on clockwise angle.
This results in a list of endpoint identi�ers j1; : : : ; jc: Let sk be the segment-
identi�er of the segment visible from pi inbetween the angles of pjk and pjk+1
relative to pi (where k + 1 is modulo c). We construct event segments bounding
the set of points in D from which pi is visible.

First, we de�ne the collection of event segments Pi. For each k = 1; : : : ; c,
we include in Pi the closure of the visible part of segment Ssk (visible from pi).
This includes parts of the special segment with index 0s.

Second, we construct a segment collection Bi connecting pairs of segments
in Pi. For each k = 1; : : : ; c, we construct a closed segment between the two
intersections of ray(pi; pjk ) with segments in S 0. If these two intersection coincide,
we include no segment in Bi, for that particular k.

The third and last types of segments Xi are extensions of segments in S.
Consider each segment S in S having endpoint pi, and having another endpoint
pj . Include in Xi, the closed segment having endpoints pi, and the intersection
of ray(pi; pj) with

S
Pi that is closest to pi.

The three types of segments result in the arrangement describing the visibility
partition. Let P , B, and X , denote the unions of Pi, Bi, and Xi, over all i =
1; : : : ;m, respectively.

Theorem 1. The boundaries in the visibility partition are formed by the event

segments:
S
Q2Qv(S)

@Q =
S
P [

S
B [

S
X :

Figure 6 shows the visibility partition for four line segments having seven dis-
tinct endpoints. The union of P coincides with A. The segments of B are drawn
dashed. The segments of X are drawn coarse dashed. The points where event
segments meet are indicated as dots. The rectangle containing the segments is
the \segment" S0.

For a derivation of the worst-case complexity of the visibility partition, see
[15]. The visibility partition Qv(S) corresponding to S can be computed as fol-
lows. First, we compute the visibility graph for S, in O(n log(n) + k) time using
algorithms by Ghosh and Mount [10] or Pocchiola and Vegter [22]. Using the
visibility graph, the view map can be computed for each endpoint. A simple
algorithm discovers the segment visible between successive visibility edges inci-
dent to each endpoint by performing log(n) iterations over the visibility edges.
Include the segments of S as visibility edges. For each (directed) visibility edge
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e = (p; q), such that no segment adjacent to q is visible to the left of q relative
to p, store a pointer r(e) to the visibility edge incident to q that turns right
relative to e. If a segment adjacent to q is visible to the left of q (relative to
p), we store a pointer to this segment in r(e). In each iteration we consider all
edges e in the visibility graph. If r(e) is not a segment blocking the view to
the left we replace r(e) by r(r(e)). Analogous, we maintain pointers l(e), where
the roles of left and right exchange. After O(log(k)) = O(log(n)) iterations, we
have found the segments that block the view directly to the left and the right
of each directed visibility edge. This takes a total of O((n+ k) log(n)) time. Us-
ing this information, we can generate the total collection of event segments in
O(n+k) time. Let v be the number of intersections in the collection of event seg-
ments thus generated. Using randomised incremental construction we construct
a trapezoidal decomposition of this collection, see Mulmuley [20] pp. 84-94, in
O((n+k) log(n)+v) time. The arrangement de�ned by the event segments can be
obtained by merging together trapezoids into polygonal cells. Thus, the visibility
partition, represented as an arrangement, can be computed using randomised
techniques in O((n+ k) log(n) + v). This results in the following theorem.

Theorem 2. The visibility partition of n segments has worst-case complexity

�(n4). Using randomisation, it can be computed in O((n + k) log(n) + v) time,

where k = �(n2) is the number of visibility edges, and v = O(n2 + k2) is the

number of vertices in the arrangement.

4 Reection partitions

In this section, we consider a stronger notion of visibility, resulting in di�erent
stars and partitions. We say that a point y 2 R

2 is trans-visible from a point
x 2 R2 if y is visible from x and both ray(x; y) and ray(y; x) intersect A. The
trans-visible part of A is given by:

TpA(x) = f a 2 VpA(x) j A \ ray(a; x) 6= ? g:

The trans-visibility star TstA(x) is the union of all open line segments between
x and the trans-visible part of A:

TstA(x) =
[

a2TpA(x)

xa:

Based on trans-visibility, we can de�ne a trans-view map, and a trans-visibility
partition, see [15].

We say a point y 2 R2 is reection-visible from a point x, if y is trans-visible
from x and the open segment between y and the reection of y in x is disjoint with
A. Observe that in contrast with visibility and trans-visibility, reection-visibility
is not symmetric. De�ne the reection-visible part of A as follows:

RpA(x) = fx+ v 2 TpA(x) j (x+ v)(x � v) = ? g:
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Fig. 6. A visibility partition.
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Fig. 7. A reection star.

De�ne the reection-visibility star as:

RstA(x) =
[
f (x+ v)(x� v) j x+ v 2 RpA(x) g:

The reection-visibility star equals the intersection of a trans-visibility star
TstA(x) with its reection around x. Figure 7 shows a reection-visibility star
for six disjoint segments. The grey area, including the dotted segments, forms
the reection-visiblity star.

Consider a view circle Cx centred at x. We label the view circle to describe
the structure of the reection-visibility star at x. We de�ne a labeling l of a view
circle Cx, that represents the structure of the reection visibility star. We use
polar coordinates, such that each point c 2 Cx, is represented as c = (�; r), where
r is the radius of Cx. Let L(x; �) be the line through x and (�; r). Let � > 0 be
smaller than the angle between any two endpoints. There are three cases:

1. If L(x; �) intersects a visible point of S0, then l(c) = 0s.
2. If L(x; �) intersects a visible endpoint p 2 P and L(x; � � �) or L(x; � + �)

intersects a visible point of S0, then l(c) = id(p).
3. In all other cases, set l(c) = id(a), where a is the visible point in A\L(x; �)

closest to x.

Overlaps in the rules are resolved by choosing the minimum-index identi�er.
The labeling l de�nes a labeled circuit graph called the reection view map,

denoted by RmpS(x). Figure 8 shows the view circle along with the labels of the
reection-view map. The reection-visible part is shown thick. The dashed lines
are reections of segments in the view point.

The reection-view map RmpS(x) at a point x contains the structure of the
reection-visibility star RstA(x) at a given point. Starting at some vertex and
some initial edge, we obtain a tuple of labels representing the reection-view
map. Since this tuple repeats itself, we only take the �rst half. We choose the
lexicographically smallest half-tuple as a unique representation of RmpS(x). In
the situation of Figure 8 this gives RmpS(x) = (0s; 1p; 1s; 2p; 0s; 3p; 4s; 2s):
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Fig. 8. A reection-view map.
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Fig. 9. A reection-visibility partition.

We obtain a reection-visibility partition by identifying points x; y 2 D if
their reection-view maps RmpS(x) and RmpS(y) are equal. When moving x,
if the reection-view map changes, then the set of reection-visible endpoints
(relative to x) changes: if we move x, either an endpoint identi�er, a segment
identi�er, or an intersection identi�er, appears or disappears. In case of an end-
point identi�er, the result is immediate. In case of a segment identi�er, a change
occurs only if one endpoint starts to occlude another one. If an intersection iden-
ti�er disappears it is replaced by an endpoint identi�er. Since a change in the set
of endpoints also implies a change in the reection view map, we can conclude the
following. Each class in the reection-visibility partition is a maximal connected
subset of D in which a �xed set of endpoints is reection-visible.

We construct a collection of event segments for the reection-view map. Con-
sider an endpoint pi. Consider Pi as for visibility. Replace each segment in Pi
that lies in S0 by a \degenerate" segment consisting of the point pi. Now build
Bi and Xi using Pi just as in the visibility case.

Consider a scaling transformation f that leaves pi �xed and which has a
scaling factor of 1=2. That is, all coordinates relative to pi are multiplied by
1=2. To obtain the desired reection-view map, replace all segments in Pi, Bi
and Xi by their images under f . Like before, we construct unions of the segment
collections over i = 1; : : : ;m.

Theorem 3. The boundaries in the reection-visibility partition are formed by

the event segments:
S
Q2Qr(S)

@Q =
S
P [

S
B [

S
X :

Figure 9 shows a reection-visibility partition. The complexity of the
reection-visibility partition is at most O(n4). For the 
(n4) worst-case lower
bound, see [15]. To compute the reection-visibility, we can use the same basic
techniques to compute the normal visibility partition.

Theorem 4. The reection-visibility partition of n segments has worst-case

complexity �(n4). Using randomisation, it can be computed in O((n+k) log(n)+
v) time, where k = �(n2) is the number of visibility edges, and v = O(n2 + k2)
is the number of vertices in the arrangement.
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5 Computing the reection metric

As an application of the previously de�ned structures, we use them in computing
the reection metric. Let �A(x) be the area of the reection star RstA(x) for each
x 2 R2 , see Figure 2 for an example. Observe that for points x outside the convex
hull of A, this area is always zero. If we have two �nite unions of line segments
A and B, the reection metric dR is de�ned as:

dR(A;B) =

R
R2
j�A(x)� �B(x)j dxR

R2
max(�A(x); �B(x)) dx

:

The reection metric can be generalised to �nite complexes of d� 1 dimensional
algebraic hyper-surface patches in d dimensions. For this, we refer to [16]. Here,
we focus at the computation of the reection metric for �nite unions of segments
in the plane.

In Section 2, we emphasised the fact that the reection metric is robust
for deformation, blur, cracks, and noise. This property can be derived from the
de�nition without much diÆculty. Given a �xed viewpoint, the change in the
area of the visibility star caused by each of the above e�ects is proportional.
The area of the reection-visibility star, �A(x), changes at most twice as much
as the area of the visibility star. This pointwise behaviour of the �A-function is
preserved as we integrate it, showing robustness of the reection metric.

Now, we apply the results from the previous sections to compute the reection
metric. We assume A and B are unions of nA and nB line segments, respectively.
having at most k edges in their visibility graphs. The reection metric can be
rewritten as follows:

dR(A;B) =
2
R
R2
jr(x)j dxR

R2
jp(x)j dx+

R
R2
jq(x)j dx+

R
R2
jr(x)j dx

;

where p(x) = �A(x); q(x) = �B(x); and r(x) = p(x)�q(x): The functions p, q and
r are piecewise rational functions in two variables. With piecewise we mean that
there is a �nite number of triangles covering the support of the function, such
that the restriction of the function to each such triangle is a rational function
in two variables. The functions p and q are quotients of polynomials of degrees
O(nA) and O(nB), respectively. The function r is a quotient of polynomials
having degree O(nA + nB). We adopt a model of computation in which the
absolute value of a rational function in two variables, can be integrated over a
triangular domain in �(d) time, where d is the maximum degree of the polynomial
numerator and denominator.

The computation of the integrals of the rational functions p, q and r proceeds
as follows. Let kA and kB denote the number of visibility edges corresponding
to A and B respectively. First, we compute the visibility graphs of A and B,
taking times O(nA log(nA) + kA) and O(nB log(nB) + kB), respectively. Using
the algorithm sketched in Section 3, the event segments that correspond to the
reection visibility partition, can be found in O(sA log(nA)) and O(sB log(nB))
time, where sA = 
(kA) and sB = 
(kB) are the number of event segments for
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A and B, respectively. Then, we compute a trapezoidal decomposition for the
union of both event segment collections in time O((sA + sB) log(nA + nB) + v);
where v is the number of intersections. We integrate the absolute values of p,
q, and r by summing the partial integrals over all trapezoids (each trapezoid is
a union of two triangles). In our model of computation, this takes �(nA + nB)
time for each trapezoid. Since the summation of partial integrals dominates the
overall complexity, we arrive at the following result.

Theorem 5. Let A and B each be unions of nA and nB segments, respec-

tively. Using randomisation, the reection distance dR(A;B) can be computed

in O(r(nA+nB)) time, where r is the complexity of the overlay of the reection-

visibility partitions of A and B.

6 Conclusion

We presented a new metric for pattern matching, the reection metric. This
metric is invariant under the group aÆne transformations and can therefore be
used for aÆne shape recognition. The reection metric is robust for pattern-
defects such as deformation, blur, cracks, and noise. It can be generalised to
�nite unions of algebraic hyper-surface patches in any dimension.

The reection metric is de�ned in terms of reection visibility. Trans-visibility
and reection-visibility are stronger than visibility. Reection-visible points are
always trans-visible, and trans-visible points are always visible. We analysed
the partitions corresponding to the visibilities, starting at normal visibility, and
proceeding with reection-visibility. New types of events emerged, making the
resulting partitions more complex.

Constructions show that the worst-case combinatorial complexity for each
of the types of partitions is 
(n4). Using randomised incremental construction,
each of the corresponding arrangements can be built in O((n + k) log(n) + v)
time, where k is the number of visibility edges, and v is the number of in-
tersections in the arrangement. The structure of reection-visibility partitions
can be used to compute the reection metric for two collections of segments in
O(r(nA +nB)) randomised time, where r is the complexity of the overlay of two
reection-visibility partitions. Limiting the endpoints of segments to Z2 would
not change the complexity of the partitions, since any �nite arrangement in R2

can be transformed into an arrangement in Z2. Limiting the segment slopes to set
of allowed slopes does not a�ect the worst-case complexity of the visibility parti-
tion, but does a�ect the complexity of computing the metric, since the maximal
polynomial degree of the piecewise function � is linear in the number of di�erent
segment slopes.
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