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Abstract— In social settings, people interact in close prox-
imity. When analyzing such encounters from video, we are
typically interested in distinguishing between a large number
of different interactions. Here, we address training deformable
part models (DPMs) for the detection of such interactions from
video, in both space and time. When we consider a large number
of interaction classes, we face two challenges. First, we need to
distinguish between interactions that are visually more similar.
Second, it becomes more difficult to obtain sufficient specific
training examples for each interaction class. In this paper, we
address both challenges and focus on the latter. Specifically,
we introduce a method to train body part detectors from non-
specific images with pose information. Such resources are widely
available. We introduce a training scheme and an adapted
DPM formulation to allow for the inclusion of this auxiliary
data. We perform cross-dataset experiments to evaluate the
generalization performance of our method. We demonstrate
that our method can still achieve decent performance, from as
few as five training examples.

I. INTRODUCTION

The automated analysis of bodily behavior in video has
seen impressive progress. Initial research considered behav-
ior of individuals but the time seems right to proceed to the
analysis of two people in close interaction. The way people
interact with each other informs us of their activity, relation
and the (cultural) context in which the interaction takes place.
For example, when one person pats someone on the back,
we can assume they are friends. Analyzing these interactions
is therefore useful in areas such as social surveillance, video
retrieval and human-robot interaction.

Human pose estimation and action recognition algorithms
are increasingly robust to natural video data, partly due to
the introduction of deep learning. Still, since algorithms rely
strongly on the visual information, partial occlusions degrade
the performance. In this paper, we look at two people in
close interaction. The body parts that define the interaction
are often occluded, which means we cannot rely on general
algorithms for the estimation of human poses (e.g., [1], [2]).

Another challenge in recognizing interactions is dealing
with differences in spatio-temporal coordination. Social in-
teractions contain many semantically different but visually
similar interactions. A handshake and passing an object
are both described as two people facing each other with
stretched arms. However, the coordination of the movement
differs. Modeling spatio-temporal coordination in body pose
and movement is therefore crucial. Despite an increasing
focus on the inclusion of motion into human action detection
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models (e.g., [4]), it is rarely described at the level of body
parts. This hinders modeling the fine-grained coordination of
people’s bodily behavior.

We focus on developing algorithms to detect large num-
bers of slightly different interaction classes in video. While
the movement of an interaction is relatively stable across
variations in environment settings, the pose can vary signifi-
cantly as a result of differences in lighting, background and
video quality. We depart from the trend of using increasing
amounts of specific data to deal with these variations. For
increasing numbers of classes, obtaining labeled data proves
difficult. When the number of training videos is limited, we
run the risk of over-fitting to their visual appearance. In this
paper, we mitigate this risk by using images of unrelated
actions and interactions. We investigate whether we can learn
interaction detectors from a limited number of training videos
per interaction. We learn movement cues from these videos,
and use auxiliary data to ensure that pose cues generalize
across environment settings.

Specifically, we train interaction detectors based on de-
formable part models (DPM, [5], [6]). We learn these models
on the ShakeFive2 dataset [7], and test their generalization
abilities on the UT-Interaction dataset [8]. We focus on three
interactions: hand shake, passing an object and fist bump.
Given their visual similarity, distinguishing between these
interaction classes is challenging. To achieve generalization
to environment settings, we use auxiliary images from the
MPII Human Pose dataset [9]. This set contains images
depicting humans involved in various actions, but none of
the interactions that we consider.

Our contribution is two-fold. First, we introduce a frame-
work to train deformable part models for interactions based
on video data and auxiliary images. Second, we demonstrate
increased generalization performance in cross-dataset exper-
iments on spatio-temporal interaction detection.

We discuss recent advances in the analysis of interactions
in the next section. In Section III, we introduce our interac-
tion detection models, and detail how these can be trained
from a limited number of videos and auxiliary images. We
perform cross-dataset experiments and investigate the influ-
ence of the amount and type of training data in Section IV.
We conclude in Section V.

II. RELATED WORK

Research on interaction detection is inspired by advances
in individual action recognition [10]. Initial work has focused
on local descriptors in a bag-of-visual-word approach. Wang
et al. [11] track local descriptors over time to form dense978-1-5090-4023-0/17/$31.00 c©2017 IEEE



trajectories that encode motion more robustly. Despite state-
of-the-art action and interaction recognition results [11], [12],
motion is not explicitly linked to specific body parts. There-
fore, distinguishing between subtle interactions is difficult,
especially when people interact in close proximity.

Instead of classifying directly from local features, recent
work first estimates poses. Impressive results in 2D human
pose estimation have been achieved using deep architec-
tures such as convolutional neural networks (CNN) [2].
Knowledge of body pose has been shown to improve action
recognition, and vice versa (e.g., [13]). In particular, the
motion of the body improves action recognition performance
[14], also in deep architectures [15].

While deep architectures work well for individuals, the
presence of other people typically introduces occlusions.
Because joints are estimated independently in a feed-foward
manner, joints of different people can easily be confused
when assembling full-body poses. This poses challenges
for the detection of close proximity interactions where the
coordination between people is essential. Several solutions
have been explored to address this issue.

First, joint locations can be estimated conditionally, to
encode pair-wise relations between joints. Gkioxari et al. [3]
estimate joint locations using additional information from
previously estimated joint locations. Insafutdinov et al. [1]
estimate pair-wise joint relations directly from the image.

A second solution is to use stronger image cues. Poselets
encode body parts in a specific articulation, such as a
bent arm [16]. Such representations are less susceptible to
occlusions, but the highly articulated nature of the human
body requires a prohibitively large number of poselets for
full-body pose estimation [17].

Finally, researchers have modeled the spatial relations
between joints in a unified manner, in particular using
deformable part models (DPM, e.g., [5], [6]). These are tree-
like graphical models with body part templates as nodes and
pair-wise spatial joint relations as vertices. Because the space
of likely poses is limited for a given action, Iqbal et al. [18]
condition both part templates and pair-wise relations on the
action. Others have taken advantage of the more descriptive
nature of poselets and have formulated DPMs with poselet
parts [19], [20].

To further increase the modeling power of DPMs, re-
searchers have included motion descriptors in the formula-
tion. Yao et al. [21] describe actions as DPMs with a mixture
of motion templates. Tian et al. [22] extended DPMs with
spatio-temporal HOG3D descriptors. In fact, DPMs can be
considered a specific type of CNN [23], which implies that
handcrafted features in body part templates can be replaced
by a learned representation.

Despite the powerful DPM formulation, occlusions during
interactions remain an issue. To this end, Yang et al. [24]
consider multiple people in a single DPM to model physical
interactions such as a hand on someone’s shoulder. Van
Gemeren et al. [7] take this one step further by also modeling
the characteristic motion for relevant body parts such as a
lower arm in a hand shake.

While DPMs have much potential in the recognition and
detection of interactions, they require sufficient numbers
of positive training examples to determine the body part
templates and pair-wise relations between parts. Especially
when interactions are classified with more granularity, the
amount of training data is typically low. This poses chal-
lenges in ensuring that the trained models generalize to
videos with different visual properties. In this paper, we
investigate whether we can learn the visual parts of DPMs
independently from the motion parts and spatial relations
between parts.

III. METHOD

We introduce the formulation of the interaction detection
models in Section III-A. Based on an initially trained DPM,
we adapt the body part templates using auxiliary data (Sec-
tion III-B). Finally, we discuss how the trained DPMs can be
used to detect interactions in video in both space and time.

A. Model Formulation

Within an interaction, we define the epitome as the
moment where the pose and motion of two people are
coordinated in a way that is characteristic for the interaction.
We model both cues using a two-person DPM, as introduced
by Van Gemeren et al. [7]. This interaction-specific DPM
models both the pose and movement of two people in a
single model. Each body part template describes the pose
(histograms of oriented gradients; HOG), motion (histograms
of flow; HOF) or both. Our templates resemble poselets
as they encode body parts in specific orientations [16]. By
including motion in the templates, we can also accurately
describe the motion coordination between two people.

We formulate a DPM as graph G = (V,E), with V a
set of K body parts and E a set of connections between
pairs of parts [6]. In this paper, we have K = 5 parts per
person (torso, head, upper arm, lower arm and hand). Each
part i (1 ≤ i ≤ K) is centered on location li = (xi, yi). The
scoring for a part configuration in image I is given by:

S(I, l) =
∑
i∈V

∑
j∈Di

wj
i ·φ

j
i (I, li)+

∑
ij∈E

wij ·ψ(li− lj) (1)

The first term models the part appearance with a convo-
lution of image feature vector φi(I, li) with trained detector
wj
i . Di is the set of feature representations for part i. In

this paper, we consider HOG, HOF or a combination of
both. However, our formulation is sufficiently flexible to
incorporate a learned feature extractor such as CNNs [23].
The second term contains the pair-wise deformations be-
tween parts i and j, with wij the deformation cost of the
connection.

We model interactions with a unified 2K + 1-node graph
with a virtual root node that branches to two sub-trees each
representing the body parts of an actor. This part allows us
to model relative distances between people as in [12], [25].



B. Training

We first learn a model for each interaction from a training
set of positive examples and a generic source of hard negative
data, in our case from [26]. Based on this initial model, we
train the pose (HOG) parts of the detectors on auxiliary data
and replace these parts in the detection model.

1) Learning an initial model: We start with a set of
training videos for an interaction, each with estimated pose
data. From these sequences, we select the most similar poses
using a 2D version of the Kabsch algorithm [7]. We term
the frames in which we find these poses the epitome frames.
Based on the locations of selected joints (e.g., shoulder and
elbow for the upper-arm), we train all body part templates
individually using coordinate descent lSVM. For the HOF
descriptors, we consider the movement in the 15 frames
around the epitome.

We then assemble all body part templates into a single
model. Each body part template’s relative position is based
on the average ground truth position of the body part over the
epitome frames of all training videos. Deformation param-
eters, locations, biases and template features are optimized
in a latent fashion by using the assembled initial model as
a detector on the training examples. We harvest new latent
positives as the best scoring detections. After this round of
positive data optimization, we have a fully trained model that
can be used for spatio-temporal interaction detection. Since a
training set typically contains only a few positive examples,
it is likely that our models overfit on these examples. To
this end, we propose learning a more general model using
auxiliary data.

2) Use of auxiliary data: In the auxiliary images, we
intend to find right arms in a similar pose as the epitome
frame in the interaction videos, both for the left and the right
person. We select the images from the MPII Human Pose
dataset that have a Kabsch distance for the right arm below
a specified threshold κ. This results in two sets of images for
the right arm: one for the left and one for the right person
in the interaction. We train part templates for the upper-arm
and lower-arm, for both the right and left person. We use the
same feature representation and optimization method as for
the original parts (see Section III-B).

We replace part templates wj
i with the templates trained

on auxiliary data ŵj
i . Because the response of the body

part templates might be different, the scoring of a part
configuration (Equation 1) is also affected. Retraining the
model on the initial training data to determine proper biases
would undo the features of the replaced body part templates.
Therefore, we transform the part scores in such a way that
they fit the 0− 1 range.

Malisiewicz et al. [27] predict the overlap with the ground
truth, given the response score of the model. Given a
detection with HOG feature type of part i at location li,
the unary part response score US is:

US(I, l, i, j) =
1

1 + e−αi(w
j
i ·φ

j
i (I,li)−βi)

(2)

For HOF, the calculation remains the same and the original

Fig. 1: MPII Human Pose images with similar arm pose.
Matches are from different action categories. Note the vari-
ation in full body poses and visual appearance.

bias is used:

US(I, l, i, j) = wj
i · φ

j
i (I, li) (3)

We can now replace the first term of Equation 1. The
scoring function Ŝ using the replaced body part templates
becomes:

Ŝ(I, l) =
∑
i∈V

∑
j∈Di

US(I, l, i, j)+
∑
ij∈E

wij ·ψ(li− lj) (4)

We estimate parameters (αi and βi) as in [27], by mea-
suring the ground truth overlap score of a detection with
four randomly selected validation examples. This yields a
sufficient number of detections to fit the sigmoid based on
the part response score and the ground truth overlap.

C. Spatio-Temporal Localization

Trained models are used to perform spatio-temporal inter-
action detection. On a test video, we use a Gaussian pyramid
to evaluate the models at different scales, for which the input
resolution is halved every 10 layers. By applying the model,
we obtain a series of detection scores (Equation 4).

We are looking at tubes of high-scoring detections but
we only evaluate every 8th frame. To obtain a continuous
estimation of likely space-time locations, we map each
detection to a 3D Gaussian [7]. In this 3D response space,
we then find continuous tubes that cover an interaction from
start to end in space and time. We start by localizing the
highest score in the response space, and find the size of
the closest detection. We then expand the tube forwards and
backwards in time, centered on the response space and with
the size of the closest detection. The expansion stops when
neighboring frames do not sufficiently overlap, or when the
score is below a threshold that is found during training.

IV. EXPERIMENTS

We evaluate the performance of our interaction models
trained both with and without auxiliary data. We consider
the task of interaction detection: localizing interactions of
a specific class in video in both time and space. This task
is arguably harder than interaction recognition as we cannot
rely on pre-segmented image sequences for classification. We
focus on the recognition of hand shakes. To analyze how well



Fig. 2: Full model trained on ShakeFive2 (right) and
arm parts trained from MPII (right). In red the respective
positions (red) in the ShakeFive2 model.

we can distinguish between visually similar interactions, we
also measure confusions with fist bump and object passing.

Because we are interested in generalization, we perform
cross-dataset experiments. The datasets used for our experi-
ments are described in Section IV-A. We describe detection
metrics in Section IV-B. In Section IV-C, we discuss the
setup of our evaluation. Results of these experiments are
presented and discussed in Section IV-D.

A. Datasets

We use three publicly available datasets in our experi-
ments. We train interaction models on the recently introduced
ShakeFive2 dataset1 [7]. The MPII Human Pose dataset2 [9]
is used as a source of auxiliary data. We test on the UT-
Interaction dataset3 [8]. We briefly discuss these datasets.

Fig. 3: Example frames from ShakeFive2 and UT-Interaction.

ShakeFive2 consists of 94 videos of two people per-
forming one of five close proximity interactions: fist bump,
hand shake, high five, hug and pass object. In this paper,
we only consider hand shake, fist bump and pass object as
these are visually most similar. The interactions are recorded
indoors under controlled settings but contain some variations
in viewpoint (see Fig. 3(left)). For each person in each frame,
2D joint position data obtained using Kinect2 is available.
Interactions are labeled per frame. For the spatial extent of
an interaction, we use the minimum enclosing bounding box
of both interactants.

1http://www.projects.science.uu.nl/shakefive/
2http://human-pose.mpi-inf.mpg.de/
3http://cvrc.ece.utexas.edu/SDHA2010/

UT-Interaction consists of videos of people performing
close proximity interactions in two outdoor settings. The data
is divided into two sets. The first set features at most two
interacting persons at each moment, while the second set
contains multiple pairs of people interacting simultaneously.
Interactions hand shake, hug, kick, point, punch and push
are performed. Pose data for these videos is not available
but interactions are annotated per frame. As ground truth
bounding boxes contain large margins and do not move with
the people, we instead use the bounding box data from [25]
as ground truth. Example frames appear in Figure 3(right).

MPII Human Pose contains close to 25k images with a
total of over 40k people. The images are taken from Youtube
and cover a broad range of daily human activities. There
are 20 top-level action categories including dancing, music
playing and water activities. None of the categories contains
close proximity interactions. In particular, the data does not
contain any frames with hand shakes. We ignore the action
annotations and only use the pose data. Each person’s 2D full
body pose is annotated manually. Due to occlusions, there
are missing joint locations. There is a significant amount of
variation in viewpoint, lighting, clothing and image quality
(see Figure 1 for an impression).

B. Performance Measurements

Our detection metrics reflect both the temporal and spatial
accuracy as well as the label assigned to a detected interac-
tion. We use the intersection over union (IoU) of the ground
truth G and detected tube P as in [28]. G and P are sets of
bounding boxes and θ is the set of frames in which either P
or G is not empty. IoU of these two sets is calculated as:

IoU(G,P ) =
1

‖θ‖
∑
f∈θ

Gf ∩ Pf
Gf ∪ Pf

(5)

To arrive at a single measure that considers recall and pre-
cision, we apply overlap threshold σ such that IoU(G,P ) ≥
σ and report the Area under the Curve (AuC) averaged over
all interactions in a test fold.

We are furthermore interested in the confusions between
related classes. Therefore, we use the difference mean aver-
age precision (d-mAP) confusion matrix [7]. Each score in
this matrix indicates how much of the AuC for a given class
is lost to another class.

C. Experimental Setup

To test the performance of a model on an unsegmented test
video, we find all candidate detections as described in Sec-
tion III-C. The models have a temporal extent of 15 frames,
and we process only every 8th frame. Consequently, there
is a temporal overlap of seven frames between subsequent
candidates.

We consider two testing scenarios: single class (SC) and
multi-class (MC). In the SC scenario, we test the spatio-
temporal localization accuracy by applying the hand shake
model on videos with hand shakes only. In the MC scenario,
we additionally evaluate it on sequences with distractor
classes fist bump and pass object. In this scenario, we test

http://www.projects.science.uu.nl/shakefive/
http://human-pose.mpi-inf.mpg.de/
http://cvrc.ece.utexas.edu/SDHA2010/


how specific the detection model is. Confusions with the
distractor classes will lead to lower AuC scores.

D. Results and Discussion

We first evaluate the interaction detection performance
trained with and without auxiliary data. To highlight the
generalization capabilities of our approach, we train on
ShakeFive2 and test on UT-Interaction. To investigate how
much training data is needed, we evaluate the impact of
different amounts of auxiliary data and interaction videos
on the detection performance.

We first train and test on the same dataset. By compar-
ing the different models, we gain insight in the maximum
performance on the same input data. HOGHOF is the model
trained on ShakeFive2, and evaluated with Equation 1. Each
body part template contains both HOG and HOF descriptors,
except for the torso which only contains pose information.
HOGHOF-SIG contains the same body part templates as
HOGHOF (ŵj

i = w
j
i ), but is evaluated using sigmoid scores

(Equation 4). HOGHOF-AUX is the model trained with
auxiliary data, evaluated using Equations 4. We search for
similar poses with a Kabsch distance of κ ≤ 0.1. For the left
and right person respectively, we obtain 124 and 452 training
images. In all tests, we use IoU overlap threshold σ = 0.1.

TABLE I: AuC for hand shake on ShakeFive2.

SC MC
HOGHOF 0.93 0.67
HOGHOF-SIG 0.82 0.55
HOGHOF-AUX 0.78 0.63

Table I summarizes the results on the detection of hand
shakes on ShakeFive2. We use 4-fold cross-validation, with 5
training videos per fold. In the MC scenario, we additionally
test on videos with fist bump and object passing interactions.
Confusions with these classes results in a lower AuC. In both
scenarios, there is a performance drop when using sigmoids.
We attribute this to a lack of a bias that can give more weight
to the detection score of specific body parts. With auxiliary
data, the drop is partly compensated. We expect that this is
due to the large number of positive examples, even though
these originate from other data sources.

TABLE II: AuC for hand shake on UT-Interaction.

Set 1 Set 2
SC MC SC MC

HOGHOF 0.70 0.55 0.62 0.44
HOGHOF-AUX 0.74 0.52 0.50 0.39

In Table II the performance is shown for the detection of
hand shakes on UT-Interaction. We train on all hand shake
videos in ShakeFive2. Figure 4 shows the IoU graphs for
both datasets. The drop in performance in ShakeFive2 when
using auxiliary data (HOGHOF-AUX) instead of the original
HOFHOF does not occur for UT-Interaction. Therefore, we
believe the drop is due to overfitting on ShakeFive2.

(a) ShakeFive2 (b) UT-Interaction

Fig. 4: AuC scores for the hand shake in both MC and SC
scenarios, on ShakeFive2 (left) and UT-Interaction (right).

For the MC setting, we investigate confusions between
interactions. In Table III we show d-mAP scores for Shake-
Five2, without (left) and with (right) auxiliary data. Most
confusions in HOGHOF occur for pass object, while hand
shake is hardly confused with the other interactions. In
general, slightly fewer confusions occur for HOGHOF-AUX
than for HOGHOF.

TABLE III: D-mAP scores for HOGHOF (left) and
HOGHOF-AUX (right) on ShakeFive2.

FB HS PO
FB 0.30 0.34
HS 0.02 0.17
PO 0.20 0.30

FB HS PO
FB 0.21 0.26
HS 0.20 0.24
PO 0.08 0.16

1) Varying Auxiliary Data: When selecting auxiliary data,
there is a trade-off between the similarity of the pose and
the number of training images. In Figure 5 we vary the
Kabsch threshold κ. The performance on ShakeFive2 is
hardly influenced by the degradation of the arm parts but
more similar, but fewer, examples seems more suitable. On
UT-Interaction, the effect is somewhat more pronounced.
When κ increases from 0.1 to 0.5, the mean number of
examples increases from 288 to 6886.

(a) ShakeFive2 (b) UT-Interaction

Fig. 5: AuC scores for the hand shake on ShakeFive2 (left)
and UT-Interaction (right) for increasing κ.

2) Varying Training Data: We expect that using auxiliary
data is more beneficial when fewer specific training examples
are available. Previously, we have trained on 15 positive
examples. In Figure 6, we show that this is indeed the case.
When training on only five positive examples, the perfor-
mance is largely retained while the lack of auxiliary data
leads to a significant performance drop. This is promising as



auxiliary data is easily available.

(a) Single class (b) Multi-class

Fig. 6: AuC scores for the hand shake on ShakeFive2 with
5 vs. 15 training videos in both MC and SC scenarios.

V. CONCLUSIONS
We have introduced a novel method to train deformable

part models for interactions using auxiliary data. By using
body part templates learned from non-specific training data,
we overcome overfitting due to the often limited number
of available specific training examples. Our approach is
especially useful in a cross-dataset setting.

Our deformable part models are trained on hand shake
video examples from the ShakeFive2 dataset, with auxiliary
images coming from MPII Human Pose. We apply these
trained models on the UT-Interaction dataset. While perfor-
mance is somewhat lower when the full number of training
examples is used, we demonstrate that our novel approach
performs better when the amount of specific training data
is limited. We demonstrate decent hand shake interaction
results with few confusions despite training on only five
example sequences.

One limitation of our approach is that we rely on images
with annotated poses. When we find relevant images based
solely on the visual content, we could use even larger
resources of auxiliary data. Similarly, we would like to
explore whether auxiliary video examples could be used to
better deal with variations in the movement in an interaction.

Such improvements should lead to a general framework
to train detectors for large numbers of visually similar
interactions. This will open up avenues to start addressing the
understanding, rather than detection, of human interactions.
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