
Detecting City Furniture and Vegetation from Mobile

Mapping Point Clouds

Martin Kodde Marc van Kreveld Remco Veltkamp

1 Introduction

Governmental organisations such as municipalities and road authorities, have the task to pro-
vide a clean and safe public environment to its citizens. As managing the public space becomes
increasingly complex, there is a great need for asset management tools that provide up-to-date
information about the status of objects, as well as future maintenance cost estimations. These
asset management systems rely on up-to-date and detailed topographic information. Such topo-
graphic databases should for instance include the location of all traffic signs, lamp posts, trees,
etc. Unfortunately, topographic information is not generally available in this level of detail, or the
data is not stored in a compatible format.

There are two notable developments in the field of geo-information that will improve the topo-
graphic information needed for efficient public asset management. First, there is the development
of new information standards for geo-information. With CityGML, a new worldwide standard was
set that does not only provide a means to model cities in three dimensions, it also provides classes
and attributes for objects commonly found in urban environments [4]. Within the Netherlands, a
new data model IMBGT, was derived from CityGML and adopted as a standard [12]. Secondly,
the ongoing developments in data acquisition technology provide the opportunity to collect de-
tailed information. The development of Mobile Mapping systems in particular, has resulted in
new datasets with huge potential. These datasets are usually stored as point clouds.

However, constructing CityGML city models from point clouds still requires a considerable
manual effort. Therefore, we face a need to automate the generation of CityGML models for the
use in public asset management. In this work, we focus specifically on detecting city furniture
from point clouds.

2 Prior work

Populating CityGML databases with building models has received much research interest over the
last years, for example in [14], [10], [8] and [13]. More recently, we have seen research dedicated to
city furniture. In [3], [5], [15] and [9] methods are developed to detect city furniture objects from
mobile mapping point clouds. There are some clear differences in the approach taken in this prior
work. In [5] the detection is performed on the scan lines, while all other methods work on the
entire point cloud. Some methods, such as [3] rely on additional data, while others work without
any additional input at all. The success rate of the methods as reported by the respective authors
varies between 65% and 90%.

3 Objectives

Most city furniture in urban environments includes a part that can be abstracted as a cylindrical
object, like traffic signs, street lamps, flag posts, trees, and road bollards. We therefore aim for a
method to detect cylindrical parts from mobile mapping point clouds. Given such a point cloud
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P cylindrical objects, we aim to select subsets of points such that all points in a subset lie on the
perimeter of the same cylindrical part.

However, objects in the point cloud P may be occluded, inclined, tapered, or otherwise not be a
perfect, vertical cylinder. Similarly, objects such as trees are not perfectly cylindrical. Finally, all
points in the point cloud suffer from noise, due to the precision of the scanner and the positioning
equipment. To make the detection algorithm robust against these effects, we have postulated the
following requirements:

• The algorithm should be able to detect slightly inclined or tapered poles and approximately
cylindrical objects

• The algorithm should be robust against shadow resulting from occlusion

• The algorithm should be robust against objects partly surrounded by vegetation

• The algorithm should be robust against objects embedded in larger structures

• The algorithm should be able to detect both small and tall objects

4 Method

4.1 Data pre-processing

As input data we assume a geo-referenced point cloud P from a mobile mapping system. Often,
multiple passes of the mobile mapping system, also called drive-lines in analogy with flight-lines
for airborne sensors, are merged into one point cloud. The position of a point p ∈ P is known
with the precision σ, where σ is defined as the single standard deviation. In most data acquisition
systems, we have to differentiate between relative precision σrel and absolute precision σabs. The
relative precision is the local noise in the point cloud which is predominantly the result of the range
accuracy of the laser scanner. The absolute precision describes the precision of the point cloud
relative to the coordinate reference system. This error is the result of the platform positioning
precision, that is, the precision of the GNSS and inertial positioning. Within a small time span δt
this error is systematic. Most high-end Mobile Mapping systems operate with σrel = 0.01m and
0.03m ≤ σabs ≤ 0.1m.

These time-dependent systematic effects result in slight offsets of the points between multiple
passes of the mobile mapping system. These offsets are typically only a few centimetres large, but
this does negatively affect the detection of small objects. We therefore process one pass at a time
and merge the results back after the detection process.

As part of the data pre-processing we compute point normals using approximate point indexing
by [7] and the method described by [6]. Then we classify all planar surfaces in the point cloud using
Efficient Ransac [11]. Since planar surfaces cannot represent cylindrical objects, these surfaces
can be removed from the dataset. This does not fundamentally improve the detection rate of the
algorithm, but the reduced point cloud size improves the efficiency of the Ransac detection that
will be run later.

Finally, if additional data is available, this can be used to our advantage. Building footprints
in particular can be used to remove points belonging to buildings from the dataset, as we assume
that no city furniture is located very close to a building.

4.2 Detecting cylindrical objects

Several methods exist to detect cylinders from point clouds. Both the Hough Transform [1] and
Ransac [2], in particular Efficient Ransac [11], are known to provide detection of cylinders from
point clouds. The objects we are looking for are locally cylindrical. We therefore subdivide the
point cloud in multiple horizontal slices. Using these slices allows us to detect objects with a
locally cylindrical shape. This helps in particular for objects that are inclined or tapered. The

2



slice width is a function of point density and the objects to detect. Slices are processed bottom-up.
When processing a slice we look if we have prior information about cylindrical objects. This prior
information may result from previous slices below the current slice, or alternatively from additional
data. If such prior information is available, we test if the cylindrical object is also present in the
current slice. The next step is to detect new cylinders in the current slice. City furniture objects
obviously cannot start in the air without a connection to the ground, but it may be that the object
was occluded at lower height. To detect new cylinders, we run an adapted version of Ransac over
the point cloud slice.

Ransac is a method to detect a parametrised model from a set of points, by randomly selecting
a minimal subset S ∈ P and testing if the model defined by this subset has sufficient support from
the other points in the set. This is done multiple times, and the model with the largest support
is accepted. Then the points supporting the model are removed. This method is repeated to find
more models. A cylinder requires a subset of three points in a minimal subset, because three points
uniquely determine a vertical cylinder but two points do not. We apply a type of guided sampling
to increase the probability that a triple of randomly selected points will create cylinder with high
enough support. Contrary to typical Ransac applications, the number of points that support a
model is small, typically only 10 to 20 for a traffic sign pole in a single slice. In addition, most
cylinders are only visible in the data from one side, and might suffer from additional occlusion by
other objects. When Ransac is applied with such a low candidate count threshold, a large number
of false positives will be detected. During the Ransac detection we therefore enforce the following
constraints:

• When two cylinders intersect, the candidate sets of both cylinders should also create a valid
cylinder

• No points are allowed in the interior of the cylinder

• The number of points surrounding the cylinder should be below a given threshold

4.3 Results and conclusions

We have tested this algorithm on a mobile mapping point cloud in the city of Leiden. We found
that most of the cylindrical city furniture objects can be detected correctly, but additional work
is needed to reduce the false positives.

We aim to further improve the approach and to add classification of the detected cylindrical
objects into CityGML classes. This will result in a method to populate the CityGML city furniture
classes automatically from mobile mapping point clouds.
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