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a b s t r a c t

Among the many 3D face matching techniques that have been developed, are variants of
3D facial curve matching, which reduce the amount of face data to one or a few 3D curves.
The face’s central profile, for instance, proved to work well. However, the selection of the
optimal set of 3D curves and the best way to match them has not been researched system-
atically. We propose a 3D face matching framework that allows profile and contour based
face matching. Using this framework we evaluate profile and contour types including those
described in the literature, and select subsets of facial curves for effective and efficient face
matching. With a set of eight geodesic contours we achieve a mean average precision
(MAP) of 0.70 and 92.5% recognition rate (RR) on the 3D face retrieval track of the Shape
Retrieval Contest (SHREC’08), and a MAP of 0.96 and 97.6% RR on the University of Notre
Dame (UND) test set. Face matching with these curves is time-efficient and performs better
than other sets of facial curves and depth map comparison.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Before the recent developments in 3D laser scanning,
the difficult task of automated face recognition was based
on the comparison of 2D images. To automatically recog-
nize a person in different images requires a system to se-
lect and match the proper set of corresponding facial
features. For a 2D face recognition system to be generally
applicable, it needs to cope with variances in digitizers
(e.g. color, resolution, and accuracy), subjects (pose, cover-
age, and expression), and settings (lighting, scaling, and
background). The introduction of 3D laser scanning in this
area proved to be very useful, because of its invariance to
setting conditions: illumination has little influence during
the acquisition, the 3D measurements result in actual sized
objects, and the depth information can easily separate
foreground from background. 3D face information has
found its application in face retrieval, face recognition,
and biometrics.
. All rights reserved.
1.1. Related work

The task to recognize 3D faces has been approached
with many different techniques as described in surveys
of Bowyer et al. [7] and Scheenstra et al. [26]. Bowyer
et al. [7] divide the 3D face recognition challenge into 3D
face recognition and multi-modal 3D + 2D face recognition.
Although face recognition may benefit from the 2D texture
information, our work can be categorized as a 3D shape
based method.

An algorithm that is often applied in the context of 3D
face recognition, is the Iterative Closest Point (ICP) [5] algo-
rithm. This algorithm is able to evaluate merely the over-
lapping parts of two surfaces, which makes it robust to
scanning deficiencies, such as missing data and outliers.
However, in case of a facial expression, the acquired 3D
face surface suffers from non-rigid deformations. This
makes the direct application of the ICP algorithm for face
recognition less reliable as shown in [3]. Mian et al. [19]
proposed to extract expression insensitive regions of the
face, and uses a variant of the ICP algorithm for the match-
ing. Cook et al. [11] apply the ICP algorithm to align two 3D
faces and analyze the distribution of closest point dis-
tances using Gaussian mixture models to decide if the

mailto:fhaar@cs.uu.nl
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two faces belong to the same subject. Chang et al. [10] ex-
tract multiple (overlapping) regions around the nose and
match these surfaces using ICP to find similar faces. Re-
cently, Faltemier et al. [13] developed a method that nor-
malizes the pose of each face, extracts a predefined set of
38 surface patches, and matches pairs of patches among
two scans using the ICP algorithm. To deal with facial
expressions, Lu et al. [17] apply expression models to de-
form a neutral scan such that it fits an expression scan.
For the fitting and matching they use the ICP algorithm.
The main problem of the above ICP based methods, is that
the time costly ICP algorithm is applied during the actual
matching of 3D faces, which makes them impractical for
face recognition in large sets of 3D face scans.

To improve on the face matching time, many research-
ers have focussed on the extraction of salient features that
can be matched time-efficiently. Al-Osaimi et al. [1] devel-
oped a method that combines local and global geometric
information of the face in 33 2D field histograms, applies
principal component analysis (PCA) to each histogram for
data reduction, and constructs a single feature vector per
face scan. These feature vectors were used to recognize
faces without expressions, which is still an active field of
research. In methods of Blanz et al. [6] and Amberg et al.
[2], a 3D morphable face model is fitted to the scan data.
In the fitting process, the model’s coefficients are adjusted
such that the face model morphs towards the scan data. In
the end, the coefficients are used in a feature vector for face
recognition.

In this paper, we will focus on 3D face recognition with
the use of 3D curves extracted from the 3D geometry of the
face. Several facial curve based methods have been pro-
posed in the past. The common goal of these methods is
to extract set of 3D curves that can be effectively used
for 3D face recognition. In the work of Li et al. [16], the
authors extract the central profile curve and a depth con-
tour curve from 2D depth images. They show that the rec-
ognition rate for the combination of the two curves is
higher than for each curve individually. Gökberk et al.
[14] published recognition results based on sets of seven
vertical profile curves. Samir et al. [24] proposed a face
matching method that extracts several depth contours.
To match two faces, they compute the minimum energy
to bend the extracted depth contours of one face to their
corresponding depth contours of the other face. In [25],
the same authors propose a framework that describes face
surfaces with the use of geodesic contour curves and im-
pose a Riemannian structure that measures the required
energy to bend one surface to the other. They use their
method to optimally deform one surface to the other,
and intent to use it for face recognition purposes. Similarly,
Bronstein et al. [8] compute surface geodesics for two
faces, deform the surfaces such that the geodesic distances
become Euclidean ones, and compare the new surfaces
using a moments-based distance measure. Instead of geo-
desic contour curves, Berretti et al. [4] use geodesic stripes
and their spatial relationship to identify faces.

All of the above mentioned curve based methods re-
quire one or more reference points, such as the tip of the
nose, to start the extraction of facial curves from. Further-
more, these methods require a normalized pose of the face
scans, except for those methods that use pose invariant
surface geodesics. However, to accurately locate such ref-
erence points, information on the face’s pose is either used
or extracted in the process. Several methods to locate the
tip of the nose and to normalize the face’s pose have been
proposed in the literature. Li et al. [16] assume that the tip
of the nose is the point closest to the scanning device. They
assume an upward pose and facial symmetry to further
optimize the face’s pose. Mian et al. [19], assume an up-
ward pose of the scanned subject and determine for a set
of horizontal slices, what the most protrusive point is for
the intersection curve. The most protrusive point among
the tried slices is selected as the tip of the nose and facial
symmetry is employed to normalize the face’s pose. Gök-
berk et al. [14], use ICP to align a face scan to a face tem-
plate. The assigned landmarks on the template are
transferred to the scan data and facial symmetry is used
to further normalize the pose and improve on the land-
mark locations. Chang et al. [10], subsample frontal depth
images to a point where surface curvature can be effec-
tively used for nose tip localization. Pit, peak, and saddle
regions that correspond to eye corners, nose tip, and nose
bridge are used to normalize the pose of the face. Such cur-
vature information is also applied in [4,8].

The assumption of the tip of the nose being the vertex
with the highest z-value is rather exceptional, because dif-
ferent poses, hair, clothes, noise and even expressions may
interfere. Assuming an upward pose of the face in which
the nose tip is the most protrusive point, does not hold
in case of full head scans in which an ear or hair could eas-
ily be the most protrusive point. When the ICP algorithm is
used to align a scan to a face template in order to normal-
ize the pose, an initial alignment is required. One could use
the center of mass and the principal axes of data variance,
for the initial alignment, but this only works when the scan
is highly similar to the template. The robustness of surface
curvature heavily depends on the data density and the le-
vel of noise. The way Chang et al. [10] subsample the data
density applies to depth images only.

Xu et al. [34] also pointed out some of these problems,
and proposed a bottom-up approach to select the tip of the
nose in a robust manner. As a first step, they select vertices
among the scan that are most protrusive within a small
sphere (radius 20 mm). Secondly, they use a Support Vec-
tor Machine (SVM) to select vertices that locally resemble
a nose tip. Finally, they select the location with most nose
tip candidates in its neighborhood as the tip of the nose.
Starting from the selected nose tip, they track the nose
ridge to normalize the face’s pose. This method carefully
discards potential nose tip locations based on local surface
properties, but it fails in some simple cases where a more
global notion of a face could easily improve the results.
In this work we propose a method that locates the tip of
the nose and normalizes the face’s pose at the same time
using local nose tip properties (as in [34]) in combination
with a more global shape template (as in [14]).

To compare face recognition techniques, Face Recogni-
tion Grand Challenge sets [22] are publicly available. A
more general Shape Retrieval Contest (SHREC) [33] has
been organized in the past years to evaluate the effective-
ness of 3D-shape retrieval algorithms. This contest consid-
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ers 3D faces as a subset of the generic graphical models
track, but also as a separate 3D face retrieval track. In this
paper, we analyze 3D face models for the interrelated tasks
of both face retrieval and face recognition.

1.2. Contribution

Our contributions to 3D face matching are the follow-
ing. First, we introduce a new face pose normalization
method that is applicable to face, full head and even full
body scans in any given orientation. This method over-
comes the limitations of previous methods, and it only re-
quires a triangulated point cloud containing the tip of the
nose. Second, we propose a 3D face matching framework
to extract and match 3D face curves and optimize its set-
tings. Thirdly, we evaluate sets of profiles and contours
including those described in the literature. Fourthly, we
propose new combinations of curves to perform both effec-
tive and time-efficient face retrieval. One of these combi-
nations with only eight curves of 90 face samples each,
achieved a mean average precision (MAP) of 0.70 and
92.5% recognition rate (RR) on the SHREC’08 face set [33]
and a MAP of 0.96 and 97.6% RR on the UND face set [9].

Our face pose normalization (Section 3.1) fits 3D tem-
plates to the scan data and uses the inverse transformation
of the optimal fit to normalize the face’s pose. The tip of the
nose is extracted from the scan data in the process. Our 3D
face matching framework (Section 4) uses the nose tip as
its origin and extracts a set of profile curves over the face
surface. Then, it extracts samples along the profiles, which
are used to determine the similarity of faces. In Section 4.4,
we combine such samples in profile and contour features
and select sets of features for effective and efficient face
matching.

This work is an extension of the face matching frame-
work we proposed in [29]. In our previous work, we
trained and tested our feature sets on realistic synthetic
data. Now, we train on this synthetic data (Sections 5
and 6), and do the testing on real face scans (Section 7).
Feature sets that perform well on the synthetic face models
are used for face retrieval in two popular datasets of real
face scans. To cope with scanner noise and missing data,
we apply an automatic mesh improvement algorithm. Fur-
thermore, we experimented with two different distance
measures, and a percentage of best matching curve sam-
ples for expression invariance. In Section 8, we compare se-
lected feature sets with an ICP and a depth map method,
and with results described in the literature.

2. Datasets

In this work we compare 3D faces from several datasets.
The training sets were constructed using a morphable face
model. The commonly used test sets are collections of face
scans that were acquired using laser range scanners.

2.1. Training set A

The 3D faces of training set A were generated with a
morphable face model, which is a point distribution model
(PDM) built from 100 face scans of the USF Human ID 3D
Database [31]. To create this model an optic flow algorithm
was employed to establish n ¼ 75;972 correspondences
among the 100 scans. Each face shape Si was described
using the set of correspondences S ¼ ðx1; y1; z1; . . . ; xn; yn;

znÞT 2 R3n and a mean face �S was determined. Principal
component analysis (PCA) was applied to these 100 sets
Si to obtain m eigenvectors of the PDM [30]. Because there
are only 100 faces in the n dimensional face space, there
are at most m ¼ 99 meaningful eigenvectors. The mean
face �S, the eigenvectors si ¼ ðDx1;Dy1;Dz1; . . . ; Dxn;Dyn;

DznÞT , the eigenvalues ki (r2
i ¼ ki) and weights wi are used

to model new faces according to Snew ¼ �Sþ
Pm

i¼1wirisi. In
this paper, we create random instances of the morphable
model by assigning m random weights wi within the
range [�1.5, 1.5]. Since the connectivity of the n corre-
spondences in the PDM is known, each instance is in fact
a triangulated surface mesh with proper topology and
without holes.

To construct training set A, we selected seven instances
of the morphable model as a query (q). Each of the queries
was morphed to two other instances (i1 and i2) of the mor-
phable model to create new relevant faces (r). Five inten-
sity levels of morphing were applied, namely a 90–10,
80–20, 70–30, 60–40, 50–50 weighting scheme for the m
corresponding weights (e.g. wiðrÞ ¼ 0:6wiðqÞ þ 0:4wiði1Þ).
So, for each query we have eleven relevant models includ-
ing the query. The final training set consists of seven que-
ries and 176 face instances, that is, 77 relevant models and
99 random instances. A new random pose was assigned to
each instance.

Training set A is used to investigate the properties of
single curves based on four sampling strategies, to lower
the number of profile and contour samples for effective
and efficient face retrieval, and the selection of features
sets similar to those described in the literature.

2.2. Training set B

The 3D faces of training set B were generated with the
same morphable face model. At first, one thousand face in-
stances were created of which 64 were selected as a query
q, 64 as instance i1, and another 64 as i2. To construct four
highly relevant faces (rh) each query was morphed in four
directions with 60–40 weighting and four marginally rele-
vant faces (rm) using 40–60 weighing. Each query face was
morphed towards i1 and i2, to the mean face �S and away
from �S. These additional 512 (64 � ðrh þ rmÞ) face models
were added to the dataset, resulting in 1512 unique 3D
face models and a query set of 64 faces. A new random
pose was assigned to each instance, to introduce a non-
trivial pose normalization problem. This dataset was also
used in ‘‘SHREC’07 – Shape Retrieval Contest of 3D Face
Models” [32]. The larger embedding and the morphing to-
ward and away from the mean face are the major differ-
ences with training set A.

Training set B is used to reassess the features sets that
were selected using training set A, and to select specific
sets of features that perform well. With these feature sets
we perform face retrieval in our two test sets.
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2.3. Test set C

As test set C, we have used the database from
‘‘SHREC’08 – Shape Retrieval Contest of 3D Face Scans”
[33], which is a subset of the GavabDB [20]. This set differs
from the training sets by having real laser range scans that
suffer from noise and holes, and that each subject was
scanned for different poses and expressions. The SHREC’08
set consists of Minolta Vi-700 laser range scans from 61
different subjects. The subjects, of which 45 are male and
16 are female, are all Caucasian. Each subject was scanned
for different poses and expressions. The neutral scans in-
clude two different frontal scans, one scan while looking
up (� þ35�), and one scan while looking down (� �35�).
The expression scans include one with a smile, one with
a pronounced laugh, and an ‘‘arbitrary expression” freely
chosen by the subject.

2.4. Test set D

The fourth dataset we use is the University of Notre
Dame (UND) Biometrics Database [9]. This set consists of
953 2D depth images and corresponding 2D color textures
from 277 different subjects acquired using the Minolta Vi-
900 laser range scanner. All except ten scans were used in
the Face Recognition Grand Challenge (FRGC v. 1). In gen-
eral, the set contains frontal scans of the face with a neutral
expression. However, as shown in [18] the scans show
small variations in pose and expression and capture both
the face and shoulders areas. To obtain 3D triangulated
surface meshes, the 2D depth images were projected to
3D with the adjacent depth samples connected with trian-
gles. The color information was neglected.

3. Preprocessing

Like many face matching algorithms, our feature extrac-
tion algorithm is pose sensitive and requires the tip of the
nose as a reference point. What we need to do is to normal-
ize the pose of each 3D face and to detect the tip of the
nose. The face scans in the different datasets vary in reso-
Fig. 1. Face pose normalization. From left to right, the selection of potential nose
t1, optimal (dark blue) locations for t1, template t2 (nose or face features), best t2 fi
this figure legend, the reader is referred to the web version of this article.)
lution and accuracy, pose and expression, and coverage of
the face. We developed a method that normalizes the face’s
pose in a robust manner and a mesh improvement algo-
rithm to improve on the mesh deficiencies in face data.

3.1. Face pose normalization

Pose normalization is equivalent to correcting the view-
ing coordinate system that requires a view reference point,
a view plane normal, and a view up vector [27]. In 3D face
templates we specify the nose tip as view reference point,
the gaze direction as view plane normal, and the face’s
pose as view up vector. By fitting these templates to poten-
tial nose tip locations in the scan data, we eventually ob-
tain a new coordinate system in which the face’s pose is
normalized. In theory each point on a face scan can be con-
sidered as a potential nose tip location. The normal direc-
tion at a point can be estimated using the mesh’
triangles. For the training sets we considered high (posi-
tive) curvature areas as potential nose tip locations, be-
cause the tip of the nose is generally a location with high
curvature. For these sets a large number of potential place-
ments could be excluded using a curvature threshold heu-
ristic. However, depending on the resolution and mesh
quality, the curvature information can be less reliable. This
is the case for the two test sets. For these scans we ran-
domly sampled the triangular surface mesh such that
every �2.0 mm2 of the surface is approximately sampled
once. After the selection of potential nose tip locations,
3D template matching is applied using a nose tip template
t1 to determine which potential locations locally resemble
a nose tip. To the locations where t1 fits well, a larger tem-
plate t2 is fitted to select the actual nose tip and to normal-
ize the pose. How this bottom-up scheme solves the
unknown viewing coordinate system is described below
and shown in Fig. 1.

3.1.1. First template
For each of the potential nose tip locations, we have its

position p and normal direction n. The first 3D template t1

is a nose tip template with the known view reference point
tip locations (curvature or random sampling), the small nose tip template
t, and the normalized pose. (For interpretation of the references to color in
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pt1
and view plane normal nt1 . This template is highly sym-

metric around its normal nt1 , which allows us to find the
view plane normal while ignoring the view up vector. To
fit the nose tip template to the scan data, we place the nose
tip template with pt1

on p and with nt1 aligned to n. The
alignment is refined using the Iterative Closest Point
(ICP) algorithm [5], which minimizes the Root Mean
Square (RMS) distance of the template’s vertices to their
closest points in the scan data. As a result we have for each
potential nose tip a measure of how good t1 fits that loca-
tion, but also the view reference point and view plane nor-
mal defined in t1.

3.1.2. Second template
We reduce the number of potential nose tip locations to

only a few locations around the face, where t1 fits well. To
these locations we fit a second template t2 that has a
known view reference point pt2

, view plane normal nt2

and view up vector ut2 . Clearly, the optimal fit of this tem-
plate solves the pose normalization problem. This template
is placed on the remaining locations with pt2

on pt1
, nt2

aligned to nt1 and a limited number of different view up
vectors ut2 . Since the angle between ut2 and nt2 is known,
a view up vector can be instantiated using a rotation ht2

around nt2 . Because the ICP algorithm is able to correct
for small rotations we experimented with a new ht2 (i.e.
view up vector) every thirty degrees. Each placement of
t2 is refined using ICP and the alignment with the lowest
RMS distance is selected. The inverse transformation ma-
trix for this optimal fit is used to normalize the face’s pose.
The point in the scan data closest to pt2

is defined as the tip
of the nose and used as the new origin.

Different templates based on the mean face �S were used
as t2. For training set A, we search for the optimal place-
ment of a nose as template t2, which we refer to as nose
detection. For training set B, we search for the optimal
placement of either a nose (nose detection) or face template
(face detection) to normalize the pose. This is to link our
pose normalization method to the face matching method.
For the test sets, we used only the upper half of the face
template t2 to make the pose normalization more robust
to facial changes caused by expressions (as shown in
[21]). For accurate face matching it is important to acquire
Fig. 2. Mesh improvement. Scans are pose normalized and the (incorrect) nose ti
tip (b), noise is removed (c), holes are filled (d), and the final depth map is conv
the same pose for all face scans of one individual. With our
template matching approach we assume that for each indi-
vidual, these templates have a unique placement around
the nose irrespectively to the face’s proportion. This is a
reasonable assumption, since the ICP algorithm minimizes
the RMS distance, which enforces the alignment of typical
protrusions such as the nose.

3.2. Mesh improvement

The test sets consist of triangle meshes acquired from
laser range data and suffer from noise and missing data.
Because our current implementation of the feature extrac-
tion requires a triangle surface mesh without holes and a
proper topology, the noise needs to be removed and the
holes interpolated. Furthermore, laser acquisition may
even cause spikes around the tip of the nose, which in
exceptional cases result in the incorrect selection of the
nose tip after our pose normalization. During the mesh
improvement in this section we select a new location as
the tip of the nose.

Davis et al. [12] pointed out that straightforward tech-
niques to interpolate holes in triangle meshes using curva-
ture information or flat triangles often fail in case of
complex holes. To guarantee the interpolation of all holes,
we operate on 2D depth images instead of triangle meshes
(see Fig. 2 for illustrations). To do so, we converted the
pose normalized triangles meshes (Fig. 2a) to 1 mm�
1 mm depth images using ray casting and then we applied
the following image processing techniques. First, we crop
the face in the 2D depth image (dðx; yÞ ¼ z) using a ellipse
of x2 þ 0:6y2 ¼ 702 mm, a sphere of x2þ y2 þ z2 ¼ 100 mm
and a minimal depth of 3 mm before the tip of the nose.
To improve on the nose tip location, we select a small re-
gion around the initial nose tip and take its center of mass
in 2D (Fig. 2b). Secondly, to remove noise and spikes in
particular, we applied a 7 mm� 7 mm median filter and
a binary erosion. Thirdly, facial symmetry left and right
of the nose tip was used to remove non-face data, such
as hair and noisy patches, by removing pixels that are at
least 10 mm closer to the viewing point than its corre-
sponding pixel on the other side of the face. Fourthly, com-
ponents with less than 200 pixels are removed (Fig. 2c).
ps are detected (a). Each scan is converted to a depth map with a new nose
erted to a new 3D mesh (e).
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Finally, holes are filled effectively by linearly interpolating
data around the missing data. In more detail, for each miss-
ing depth value we trace its left and right boundary and
linearly interpolate these depth values in a horizontal
manner. Likewise, we interpolate missing data vertically
and along the two diagonals. In the end, we average the
(at most) four potential depth values to fill the holes
(Fig. 2d). Extrapolation of depth values is avoided, because
this interpolation requires, per direction, two valid depth
values of a boundary. The final 2D depth image converted
to a 3D mesh with its new nose tip centered in the origin
(Fig. 2e).

4. Face matching framework

Starting from the tip of the nose in a pose normalized
face, our framework extracts profile curves over the face
surface in different directions. These sets of profile curves
are used to determine the similarity of two faces. To match
two profile curves, we match a set of samples along the
curves. When combined, the samples in all profiles with
the same constraints build up a face contour. The facial
‘‘Z-contour” [16,24], for instance, is the curve that contains
the samples from all profiles that have the same Z-value.
The definition of a contour type determines which samples
are extracted along the profiles (see Section 4.2).

To compute the similarity of two faces A and B, we ex-
tract Nc samples for each of the Np profiles. Such a sample
Aij is defined as the intersection(s) of profile i and contour j.
Because the profiles and their contour samples are ex-
tracted in a structured way, we can assume that these
Np � Nc samples correspond for faces A and B. The distances
between these corresponding samples introduce a dissim-
ilarity. We use this information in a 3D face matching
framework that consists of the generic formula

dðA;BÞ ¼ 1
N

XNp

i¼1

XNc

j¼1

dsðAij;BijÞ; ð1Þ

which must be instantiated with the following parameters:

� The number of profiles Np.
� The number of contours Nc .
� The distance measure for two corresponding samples

dsðAij;BijÞ.

If a corresponding sample does not exist due to missing
data, then we exclude that sample from the distance com-
putation and lower the normalization factor N 6 Np � Nc.
The complexity of our face matching framework depends
on the values Np and Nc . In case both parameters are large,
then a lot of face data is used in the comparison, which is
highly inefficient. With many profiles Np and a few sam-
ples Nc , the 3D face comparison follows a contour match-
ing approach. With a few profiles Np and many samples
Nc , the comparison follows a profile matching approach.
The function dsðAij;BijÞ measures the distance between
samples that correspond according to the specified contour
type. The extraction and matching of feature data is de-
scribed in the following paragraphs. In Section 4.4, we
use our framework to evaluate different face curves and
select the most relevant profiles and contours for effective
and efficient face matching.

4.1. Profile extraction

To obtain corresponding samples our framework first
extracts a set of Np profiles. A profile is defined as a 3D
curve that starts from the tip of the nose and follows a path
over the surface mesh with a predefined angle in the XY-
plane. Such a path is defined by the intersection points of
the mesh’s triangles encountered along the way. Basically,
we extract a profile for every 360=Np degrees in the XY-
plane with the tip of the nose as origin. We end a path
whenever the Euclidean distance between the current
location on the path and the nose tip becomes larger than
90 mm. Beyond this distance, data is less reliable because
of missing data and hair. Before profile extraction, the pose
normalized face is centered with its nose tip at the origin,
so that the extracted sets of profiles of two different faces
are aligned. We assume a proper topology of the face sur-
face, but to be less restrictive a profile can be defined as the
intersection curve of the 3D face with a plane perpendicu-
lar to the XY-plane.

4.2. Feature data

After the applied pose normalization from Section 3.1,
we can assume that profiles extracted in the same direc-
tion correspond. Given two corresponding profile curves
Ai and Bi, we extract Nc corresponding samples (Aij and
Bij). Note that all samples are locations on the triangular
surface of the face. In this work we specify four different
contour samples:

� G-samples – samples with a shortest geodesic path of
r mm over the surface to the origin.

� C-samples – samples with a curve distance of r mm over
the profile curve to the origin.

� XY-samples – samples with a circular distance of
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
mm to the origin.

� Z-samples – samples with a depth distance of r ¼ z to the
origin.

To extract G-samples, we first computed for each vertex
its geodesic distance to the origin using the fast marching
method [15] and interpolated these measures for the
profile paths. When a profile path is sampled using Nc

G-samples (with increasing r), we refer to it as a G-profile.
A G-contour is the set of Np G-samples at the same distance
r. In Fig. 3, the four different contour curves are shown.

4.3. Feature matching

The extracted Np � Nc samples from one face have an as-
sumed one-to-one correspondence to those of an other
face. To match those samples we apply a symmetric dis-
tance measure that can be used for all four contour types
and is rotation invariant. Therefore, we compare samples
using their relative distances to the origin (i.e. tip of the
nose) instead of their actual coordinates. We define the
point-to-point distance (dp) between a point p from sample



Fig. 3. From each face we extract Np profile curves (a). A G-contour (c) is formed by selecting a sample on each profile (a) that has the same geodesic
distance to the tip of the nose (colored in b). Form a G-contour (c). Other contour curves are the C-contour (d), XY-contour (e), and Z-contour (f). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Aij and a point q from sample Bij, using the nose tip
(pnt = origin) and the Euclidean distance eðp; qÞ as:

dpðp; qÞ ¼ ðeðp;pntÞ � eðq;pntÞÞ
2
:

This distance function satisfies the symmetry and non-
negativity rules, but it is not a metric. Other distance mea-
sures for two 3D coordinates can be used instead. For a fair
comparison of contour types, it is important that the sam-
ples are matched similarly. This is rather difficult, because
a sample Aij can be more than one point depending on the
selected contour type. The Z-contour for instance, can have
multiple points p on profile Ai with a similar Z-distance to
the origin. Thus a Z-sample can have multiple points, while
a C-sample and a XY-sample have at most one point. To
deal with multiple points per sample we define the dis-
tance ds between two corresponding samples Aij and Bij

as the smallest distance between possible point pairs

dsðAij;BijÞ ¼ min8p2Aij ;8q2Bij
dpðp; qÞ:

In case either sample Aij or Bij is empty due to missing data,
ds is zero.

4.4. Feature selection

Our face matching framework is a useful tool to investi-
gate the performance of profile curves and contour curves
for face recognition purposes. In previous work, limited
experiments were performed using either one or a few pro-
files and contours. With our framework we can easily se-
lect any set of profile and contour features to perform
face matching with. To train and evaluate selected sets of
features, we use them to query a training set. For each
query, we compute its similarity to all other models in
the training set, generating a ranked list of face models
sorted on decreasing similarity values in the process. For
each ranked list we compute the average precision, which
is the average of precisions computed at those ranks where
a relevant face is found. The precision (P) and average pre-
cision (AP) within the scope of retrieved items are defined
as,

PðscopeÞ ¼
Pscope

s¼1 rel sð Þ
scope

APðscopeÞ ¼
Pscope

s¼1 rel sð Þ � PðsÞPscope
s¼1 rel sð Þ

;

where relðrankÞ ¼ 1 if the face on the specified rank is rel-
evant and zero otherwise. The scope we use, equals the
size of the dataset. The average precision emphasizes the
early retrieval of relevant faces, which is a desired property
for our feature based face retrieval. The mean average pre-
cision (MAP) over all queries is used to assess a selected
feature set.
5. Training on set A

In this section, training set A is used to investigate the
properties of single curves based on different feature data.
Furthermore, we experiment with the number of extracted
profiles Np and contours Nc , to find subsets of curves for
both effective and efficient face retrieval.

5.1. Single curve matching

For efficient face matching, previous work aims at
reducing face information to a single distinctive curve.
With our framework we can extract a single contour or
profile curve, and assess its performance on our training
set. We tested the robustness of single contours under
varying conditions that are common in practice, such as
small errors in nose tip localization and pose normaliza-
tion, and different levels of noise. This was done by evalu-
ating the MAP of each contour within the range
r ¼ ½1; 140� mm. Fig. 4 shows the following results for
each of the contour curves:

� Basic – matching original query and database faces with
known pose and nose tip location.

� Tip – the queries were disrupted with a nose tip dis-
placement, tip1 ¼ 2 mm and tip2 ¼ 4 mm from the
actual nose tip.

� Rot – the queries were disrupted with an Euler rotation
(q;q;q), rot1 with q ¼ 1 and rot2 with q ¼ 2 degrees.

� Noise – the queries were disrupted with additional noise
relative to the average edge length g in the mesh, noise1

with 0:1g and noise2 with 0:2g.
� ndo – matching original query and database faces after

automatic nose detection to normalize the pose and to
localize the nose tip (Section 3.1).

� ndr – matching randomly rotated query and original
database faces after automatic nose detection.

From these results we learn the following:

(1) Small changes in r can cause a large decrease in
performance.

(2) C-contours are more robust to errors in nose tip
localization and pose normalization, and XY-, and
Z-contours are more robust to noise.



Fig. 4. Training set A. The mean average precision graphs of single G-, C-, XY-, and Z-contours for sample values 1 to 140 mm under varying conditions.
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(3) G-contours on the outer regions of the face are
robust under all these conditions.

(4) Each contour type has an active region of r ¼ 1 mm
to the r just before the MAP drops to a minimum,
beyond that point a contour lacks sample data
because of the face cropping.

The basic results can be used as a reference for the opti-
mal results. The ndo results are comparable to methods
that assume scans to be faced forward. For 3D or 2.5D face
retrieval the ndr results are important, because this in-
volves pose normalization of faces (or head models) under
all possible orientations.

To investigate how well a single profile can be used for
the purpose of 3D face retrieval we plot the MAP of each
sampling strategy per angle within the range a ¼ ½0; 359�.
Each profile is actively sampled with a large number of con-
tour samples, that is 60 to 105 depending on the active re-
gion of a contour type. Profile matching suffers from
disrupted queries in a similar manner as contour matching.
Therefore, we show only the basic results and the results
after automatic nose detection (ndo;ndr). Fig. 5 shows that
the maximal performance for a single contour is higher than
for a single profile, which means that a single contour can be
more descriptive than a single profile.

5.2. Multiple curve matching

Single curve matching has regions for which curves are
able to obtain high performances, but a small change in
range r or angle a can cause a large decrease in perfor-
mance. In other words, effective face retrieval based on a
single curve has a small chance of success. In this section,
we assess face matching using multiple curves, based on
the basic, ndo, and ndr results from querying training set A.

To achieve effective face retrieval, using data from mul-
tiple curves is essential. However, there is a trade off be-
tween the effectiveness and efficiency. Parameters Np and
Nc of our framework determine the amount of samples
used to describe a face. A first step is to decrease these
numbers to a point were face matching is still effective,
but more efficient. To do so, we extracted Np ¼ 360 profile
curves and sampled each profile with Nc ¼ 360 contour
samples equally spaced over the active region (see previous
section). From these 360 profiles and contours we selected
subsets with a decreasing amount of samples Np � Nc ¼
nf � nf with nf ¼ f360;180;90;45;24;20;16;12;8;4g. Note
that a set of 360 � 360 surface samples exceeds the number
of vertices in our face models.

From the results in Fig. 6 we learn that the number of
samples can be reduced from 360 � 360 to 45 � 45 without
loosing discriminative power. Compared to the number
of vertices of a face model, 45 � 45 samples is already a
large reduction of face data. With a number of profiles
Np ¼ 45 we can investigate the performance of multiple
contours by varying Nc ¼ f360;180;90;45;24;20;16;12;
8;4g and the other way around for the retrieval perfor-
mance using multiple profiles. Fig. 6 shows, in general, high-
er performances for the use of multiple curves compared to
the use of a single curve. For a small number of curves the
use of multiple contours outperforms the use of multiple
profiles.



Fig. 5. Training set A. The mean average precision graphs of single G-, C-, XY-, and Z-profiles for angles 0 to 359 degrees after automatic nose detections.

Fig. 6. The performance while varying the number of samples, contours, or profiles.
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5.3. Central profile and optimal contour

In the work of Li et al. [16] face recognition is performed
on 2D depth images using the combination of a single
Z-contour at distance z ¼ 30 mm with the central profile
curve from forehead to chin. With our framework we can
perform face matching similarly by selecting the same Z-
contour, the XY-profile from nose to forehead, and the



Fig. 7. Features used in hybrid matching. From left to right, four G-, C-,
XY-, and Z-contours.
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XY-profile from nose to chin. Furthermore, we can manu-
ally select the best G-, C-, XY-, and Z-contour and the cen-
tral G-, C-, XY-, and Z-profiles for training set A. We can
combine these manually selected contours and profiles
among different sampling strategies, which we refer to as
hybrid matching. We selected the following contour curves
with the highest MAP for the basic results (see Fig. 4): the
G-contour at 77 mm, the C-contour at 68 mm, the XY-con-
tour at 36 mm, and the Z-contour at 35 mm. These contour
curves are shown in Fig. 3c–f.

In this section we explore the 16 hybrid combinations of
the G-, C-, XY-, and Z-contour (Np ¼ 45) and central G-, C-,
XY-, and Z-profiles (Nc ¼ 45). Results on training set A
(Fig. 8) show a high performance for the combinations of
the G-, C-, and XY-contour with G-, C-, and XY-profiles.
The marked areas show common factors of the results.
For the training set the G and C-curves perform best fol-
lowed by XY-curves and then Z-curves. Li’s combination
of the two vertical XY-profiles and one Z-contour performs
reasonably well, but not as good as our manually selected
contours and profiles. Of course the set of three optimal
curves may differ per training set.

5.4. Optimal contours

From Section 5.2, we have learned that for a small num-
ber of curves the contours are more distinctive than pro-
files. Instead of combining one contour with two profiles,
it makes sense to combine the optimally selected contours.
Fig. 8 shows the combined performance of the optimally
selected contour curves. Results show that the Z-contour
has a negative influence on the overall performance of se-
lected features. Nevertheless, the basic results for the Z-
contour are high, so its lower performance is probably
caused by its lack of robustness to even small changes in
the face’s pose.

5.5. Eight contours

From the results in Section 5.2 we have learned that
eight uniformly selected curves having 45 equally spaced
samples has a reasonable performance. Thus, with only
360 samples per face we are already able to perform effec-
tive face matching. The single curve properties from Sec-
tion 5.1 showed that each sampling type (G, C, XY, and Z)
has its strengths and weaknesses. So, it makes sense to
investigate the performance of hybrid matching using two
profiles and one contour based on different sampling types
as we did in Section 5.3. In the following experiment we
have used hybrid combinations of eight contour curves in
an attempt to improve the performance.

With the use of our framework we generated for each
contour type, four equally spaced contours with Np ¼ 45
samples (see Fig. 7). These G-, C-, XY-, and Z-contours were
then combined into ten unique feature sets. Because the
combination of four G-contours with the same four G-con-
tours (and the three other exact matches) is useless, we use
eight equally spaced contours instead. Fig. 8 shows the
results of the ten unique combinations of G-, C-, XY-, and
Z-contours. The results from this experiment show a high
performance for sets of eight G-contours, eight C-contours,
and the combination of four G-contours and four C-con-
tours. Reasonable results are obtained for combinations
of XY-contours with either G- or C-contours.

6. Training on set B

In the previous sections we used training set A to inves-
tigate the performance of single curves under varying con-
ditions. Training set A was also used show the effect of
lowering the number of profiles Np and contours Nc , such
that face matching became more efficient with the same
high performance. In this section we evaluate the selected
feature sets from Sections 5.3–5.5 on training set B, which
has a larger embedding and a larger variety of relevant
faces per query. For each set of features we show its basic
and ndr results in Fig. 8. To obtain the basic results, we used
the ground truth information of this dataset to undo the
applied rotations and to select the nose tip locations. These
results indicate the optimal performance that can be
reached when the correct pose and nose tip are found.
The ndr results were obtained by applying nose detection
to faces of the dataset directly. Observations that count
for all basic and ndr results are: (1) The larger embedding
and the greater dissimilarity of relevant faces decreases
the overall mean average precision from around 0.9 for
training set A to around 0.7 for training set B. (2) The per-
formance gap between results after the applied nose detec-
tion (ndr) and the predefined pose and nose tip (basic)
shows that our 3D face retrieval can be further improved
with optimized pose normalization and nose tip
localization.

To confirm the latter observation we performed an
additional experiment using the face template instead of
the nose template and more view up vectors (every ten de-
grees) as described in Section 3.1. To evaluate the pose nor-
malization and nose tip localization results, we used the
ground truth data to determine the difference of the face’s
pose and the located nose tip. For local nose detection ndr

the mean and standard deviation of this evaluation are
respectively 3.0 ± 1.9 degrees, and 1.4 ± 0.95 mm. For glo-
bal face detection fdr these results are respectively
2.1 ± 1.4 degrees, and 1.2 ± 0.83 mm. Global face detection
results in a better face pose normalization and a more
accurate nose tip localization, which has a positive effect
on the retrieval performance.

6.1. Central profile and optimal contour

The combination of the optimally selected G-, C-, and
XY-contour with the central XY-profile performs well on



Fig. 8. Retrieval results on training set A (left) and training set B (right). The framework was applied using combinations of manually selected curves (top,
middle), and eight uniformly selected curves (bottom).

F.B. ter Haar, R.C. Veltkamp / Graphical Models 71 (2009) 77–91 87
training set B, as it did on training set A. Remarkable is that
the G- and C-profiles show a relatively large decrease in
performance compared to the results from training set A.
The C-profile performed very well on that training set be-
cause all models had a similar level of noise. Training set
B on the other hand, contains relevantly classified faces
which were morphed towards and away from the mean
face introducing different levels of noise. This and the fact
that C-profiles are less robust to noise explains this drop in
performance. The decrease of the G-profile’s performance
can be explained as follows. G-contours close to the tip
of the nose, range r ¼ 0 mm to r ¼ 40 mm, are not effective
to retrieve relevant faces (see Fig. 4). However, a G-profile
contains samples within this range, which makes it less
reliable. For the rather small training set A the central G-
profiles were discriminative enough, but the larger embed-
ding of training set B caused a lower performance of these
curves. The XY-profile, with its constant performance and
high robustness to noise, is therefore the best type of pro-
file curve. The combination of the two central XY-profiles
and optimal C-contour obtained a MAP of 0.69 for ndr

and even 0.78 for fdr .

6.2. Optimal contours

The results for optimally selected contours on the train-
ing set B are similar to those on training set A. Again the
highest results are obtained for the combined G-, C-, and
XY-contour. The MAP in this case are 0.68 for ndr and
0.78 for fdr .

6.3. Eight contours

For feature sets of eight uniformly selected contour
curves, results shows again a drop in performance for the
combinations of C-contours and G-contours. For the eight
G-contours, the ones closest to the nose tip have a negative
influence on the performance. For the eight C-contours, the
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noise is again the cause. Nevertheless, the highest results
(fdr ¼ 0:78) are obtained for the hybrid combinations of
four XY-contours with either four G-contours or four C-
contours. Since C-contours and G-contours are very much
alike, their combination does not improve the perfor-
mance. The most important observation is that for each
set of eight single type contours, there is a hybrid combina-
tion of eight contours with a higher performance. This
means that hybrid combinations can improve on the effec-
tiveness of face retrieval, without losing efficiency.

Based on the results of training set B, we selected sev-
eral feature sets to test on our two test sets with real face
scans. For their high efficiency, we selected the combina-
tions of the central XY-profile and our optimal C-contour
(2XYp + Cc), the central XY-profile and Li’s optimal Z-con-
tour (Li), and our optimal G-, C-, and XY-contour
(Gc + Cc + XYc). For their high performance, we selected
hybrid combinations of four XY-contours with either four
G-contours (4Gc + 4XYc) or four C-contours (4Cc + 4XYc).
For comparison, we selected the sets of eight uniformly se-
lected G-contours (8Gc), G-contours (8Cc), G-contours
(8XYc), and Z-contours (8Zc). These results on training
set B are also listed in Table 1. The basic results shown in
this table indicate that the retrieval performance can be
further increased, when an even more accurate pose nor-
malization and nose tip localization method is applied.

7. Test results

In the previous section, we selected features with a high
retrieval performance in a training set with a large embed-
ding. In this section, these selected features are used for
the retrieval of relevant faces in test set C and D. The scans
in these test sets were all pose normalized and cleaned as
described in Section 3. Test set C contains for each of the 61
subjects seven different scans. In this data set of 427 scans,
each scan is used as a query once. Test set D contains 953
scans, which are all used to query set D. The MAP over all
queries is used as a measure to evaluate the retrieval of rel-
evant faces in a certain test set. Relevant faces are scans ac-
quired from the same subject as the query scan.

So far, we have used only a single distance measure dp

to compute the distance between corresponding samples.
Namely, the squared relative Euclidean distance to the
tip of the nose dp1,

dsðAij;BijÞ ¼ min8p2Aij ;8q2Bij
dpðp; qÞ;

dp1ðp; qÞ ¼ ðeðp;pntÞ � eðq;pntÞÞ
2
:

Table 1
Retrieval results of selected features on training set B.

Features Samples ndr fdr Basic

2XYp + Zc(Li) 135 0.40 0.58 0.65
2XYp + Cc 135 0.69 0.78 0.82
Gc + Cc + XYc 135 0.68 0.78 0.82
8Gc 360 0.63 0.72 0.79
8Cc 360 0.58 0.66 0.71
8XYc 360 0.58 0.71 0.79
8Zc 360 0.52 0.66 0.73
4Gc + 4XYc 360 0.69 0.78 0.85
4Cc + 4XYc 360 0.69 0.78 0.85
Now, we also use the more commonly used squared
Euclidean distance dp2,

dp2ðp; qÞ ¼ ðeðp; qÞÞ2:

Table 2 shows that especially the eight uniformly selected
G- and C-contour benefit from distance measure dp2. The
performance slightly decreases for our optimally selected
contours, which were selected based on the initial distance
measure dp1. This is clearly a disadvantage of manually
selecting curves.

The retrieval results on test set C are not very high. Up
till now, we used our framework to select subsets of con-
tours that can be used for effective and efficient face
matching under facial morphing. However, the triangle
meshes in test set C are distorted by changes in facial
expression. For expression invariant face retrieval, our
framework needs to cope with these changes. Samir et al.
[24] specifically selected a subset of Z-contours that are
reasonably robust for a dataset of six different expressions
per person. Mian et al. [19] applied a variant of the ICP
algorithm to match only a masked face region (nose, eyes
and forehead) which is assumed to be static under facial
expressions. Instead of restricting our framework to a spec-
ified subset of facial curves, we can select a percentage of
profiles that matches best for two input faces. This way,
a person might even be recognized using profiles that go
through the mouth, in case that region remains unchanged
from one expression to another. To do so, we introduce
function fw in our generic formula (Eq. (1)), so that a weight
can be assigned to specific profile curves:

dðA;BÞ ¼ 1
N

XNp

i¼1

fw

XNc

j¼1

dsðAij;BijÞ: ð2Þ

Here, we simply use fw to assign a weight of 1 to a percent-
age of best matching profiles and a weight of 0 to the other
profiles. Percentages of 25%, 50%, 75%, and 100% were
used. With this function, profiles in facial areas that chan-
ged because of an expression can be neglected for the ac-
tual face comparison. We intentionally use a percentage of
profiles and not a percentage of samples, because samples
close to the nose have a smaller distance than those far
from the nose but are often less distinctive for face retrie-
val. As a result, it is not possible to use this face matching
scheme for single profile curves such as the central profile
(2XYp + Cc and 2XYp+ Zc(Li)). Matching two single con-
Table 2
The MAP results on test sets C and D using two different distance measures.

Features Test set C Test set D

dp1 dp2 dp1 dp2

2XYp + Zc(Li) 0.52 0.55 0.83 0.87
2XYp + Cc 0.59 0.58 0.93 0.93
Gc + Cc + XYc 0.60 0.57 0.94 0.94
8Gc 0.59 0.64 0.94 0.96
8Cc 0.57 0.65 0.89 0.95
8XYc 0.65 0.65 0.95 0.95
8Zc 0.56 0.57 0.89 0.91
4Gc + 4XYc 0.66 0.66 0.94 0.94
4Cc + 4XYc 0.66 0.66 0.94 0.94



Fig. 9. Expression invariance. A face scan with expression (a) that has a
relevant scan on top of the ranked list (b) for the set of eight G-contours,
because only 50% of its best profiles (in black) were matched (c, d).
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tours of faces A and B using 50% of its best matching ‘pro-
files’, means that only half of the contour’s corresponding
samples are used to compute the similarity. The number of
profiles Np is increased to Np ¼ 90, to compensate for the
reduction of matched data. The retrieval results based on
measure dp2 and various percentages are shown in Table 3.

Results show that the use of a smaller percentage of
best matching profiles is an easy way to improve on
expression invariant face retrieval. For test set C, the aver-
age performance of contour features improves from 0.64 at
100% to 0.67 at 50%. For test set D that has fewer expres-
sion scans, the effect is less significant with 0.94 at 100%
and 0.95 at 50%. Fig. 9 shows an example of expression
invariant face retrieval.

8. Method comparison

The results achieved on test set C can be compared with
the results from SHREC’08 [33]. Test set D (UND) is used
under various conditions in previous work. For a direct
comparison of our facial curves method, we implemented
two comparable methods.

After the mesh improvement of Section 3.2, a cleaned
depth map is acquired, which is also represented by a tri-
angle mesh (see Fig. 2). The first method directly compares
the distances of the depth maps (after aligning the nose
tips) and computes the RMS distance for a percentage of
the best matching samples. Only foreground pixel-pairs
are considered. Note that this depth map matching is very
similar to the comparison of a large set of XY-features.
The second method is an ICP matching method. This meth-
od uses in each iteration a percentage of the closest point
pairs to minimize the RMS distance between two triangu-
lar meshes, refining their alignment in the process. To
have a symmetric distance measure, closest point pairs
(p, p0) are selected for face A to B and vice versa. Closest
point pairs for which p0 belongs to the surface boundary
of a face scan are not used in the distance measure. To
have a time-efficient measure, the RMS distance after just
four iterations was used to match two faces, only vertex–
vertex pairs were considered, and kD-trees were used for
fast closest point operations. These are all common
variations of the ICP algorithm [23]. Note that, the accu-
rate pose normalization allows for the small number of
iterations.
Table 3
The MAP results on test sets C and D using contour (Np ¼ 90), ICP, and depth map

Features Test set C Tes

25% 50% 75% 100% 25%

2XYp + Zc(Li) 0.55
2XYp + Cc 0.60
Gc + Cc + XYc 0.60 0.62 0.61 0.60 0.94
8Gc 0.70 0.70 0.70 0.67 0.95
8Cc 0.69 0.69 0.68 0.67 0.95
8XYc 0.67 0.68 0.67 0.65 0.94
8Zc 0.67 0.64 0.61 0.57 0.92
4Gc + 4XYc 0.67 0.69 0.68 0.67 0.93
4Cc + 4XYc 0.68 0.69 0.69 0.68 0.94
ICP 0.75 0.78 0.73 0.71 0.96
Depth map 0.49 0.53 0.56 0.61 0.80
Despite all efforts to make the depth map matching and
ICP matching time-efficient, they were to slow for practical
use. Therefore, we subsampled the 1 mm� 1 mm depth
maps of Fig. 2 to 3 mm� 3 mm depth maps, and corre-
sponding surface meshes with approximately 1800 valid
data points. For a fair comparison, our curve matching
was based on these lower resolution surface meshes as
well, which even turned out to result in higher MAPs. For
all methods we use the squared distance between samples,
which means we again use dp2 for our curve matching. We
report the MAP results based on percentages 25%, 50%,
75%, and 100% for test sets C and D, in Table 3. Results in
this table show that from all selected sets of profiles and
contours, the set of eight uniformly selected G-contours
(50%) performs best, closely followed by the other sets of
eight contours except the eight Z-contours. This set of con-
tours outperforms the depth map matching in both effi-
ciency as effectiveness. ICP matching has a higher
performance, but already requires 16.8 s to query a dataset
of 1000 faces once.

The test sets C and D are usually used in the context of
3D face recognition. To compare the performance of se-
lected feature set with the performance of other methods
described in the literature, we determine recognition rates.
The recognition rate (RR) is the ratio of relevant faces (other
than the query face) retrieved on top of the ranked lists.
When a face matching system retrieves for each query
one of its relevant database models on top of the list, the
RR is 100%. To increase the flexibility of a face recognition
system, a relevant face within a small scope could be al-
lowed for a successful recognition instead. The cumulative
match characteristic (CMC) curves in Fig. 10, show the rec-
ognition rates for these larger scopes. The faster a CMC
matching. Timings are reported in seconds per 1000 matches.

t set D Samples Time

50% 75% 100%

0.86 270 1.3
0.93 270 1.3

0.95 0.95 0.95 270 1.3
0.96 0.96 0.96 520 3.1
0.96 0.96 0.95 520 3.1
0.95 0.95 0.95 520 3.1
0.94 0.94 0.90 520 3.1
0.95 0.95 0.94 520 3.1
0.95 0.96 0.95 520 3.1
0.97 0.98 0.97 1800 16.8
0.84 0.87 0.89 1800 7.8



Fig. 10. The CMC curves for test sets C and D using facial curves, ICP, and depth map matching.
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curve approaches one, the better that matching algorithm
is.

The results we achieved on test set C, can be compared
to the results reported in SHREC’08. With a MAP of 0.70
and 92.5% RR, our set of eight G-contours (50%) performs
reasonably well. These results are higher than the facial
curves of Li (2XYp + Zc) with a MAP of 0.55 and 74% RR,
higher than our depth map method (100%) with a MAP of
0.61 and 85.2% RR, but lower than our ICP based method
(50%) with a MAP of 0.78 and 96.3% RR. These differences
in performance are also shown in Fig. 10 using CMC curves.
In these graphs, the first point of each curve shows the re-
ported rank-first recognition rates. Compared to the results
reported in [28], we notice that Morphable model based
face matching by Amberg and the use of iso-geodesic
stripes by Berretti have a higher performance with MAPs
varying from 0.65 up to 0.94. Moment invariants by Xu,
and region based matching by Nair have a lower perfor-
mance with MAPs varying from 0.46 up to 0.66.

For test set D we achieved a MAP of 0.96 and 97.6% RR
using eight G-contours (50%), Li’s curves 0.86 and 87.7%,
our depth map method (100%) 0.89 and 91.8%, and our
ICP based method (75%) 0.98 and 98.2%, respectively. The
recognition rates were computed over 876 queries, be-
cause 77 subjects have only one scan in this data set. The
CMC curves of these methods are also shown in Fig. 10.
For comparison, Blanz et al. [6] achieved a 96% RR for
150 queries in a subset of 150 faces using 1000 morphable
model coefficients. Samir et al. [24] reported a 90.4% RR for
270 queries in a subset of 470 scans using a facial depth
curves. Mian et al. [18] reported a 86.4% RR for 277 queries
in a subset of 277 scans using tensor matching.

9. Concluding remarks

In this work we proposed a new pose normalization
method and a 3D face matching framework. Pose normal-
ization is performed by fitting 3D templates to the scan
data and using the inverse transformation of the best fit
to normalize the pose. The fitted template is used to ex-
tract the tip of the nose. Starting from the tip of the nose
we extracted a set of profile curves, which were sampled
using G-, C-, XY-, and Z-samples. The number of profiles,
the number of contours samples, and the distance measure
are the parameters to instantiate our framework. Accord-
ing to the selected settings, our framework extracts corre-
sponding samples from faces and matches them using the
defined distance measure.

Throughout this work we have optimized our frame-
work’s settings for efficient and effective face matching.
Furthermore, we examined the properties and the face re-
trieval performance of single facial curves, uniform se-
lected curves, manually selected curves, and hybrid
combinations, using different types of curve samples. This
evaluation was done for training set A and to a certain ex-
tend for training set B as well. Based on these results we
were able to select a few feature sets with a high retrieval
performance. These feature sets were used in two different
test sets with real face scans, namely the SHREC’08 and
UND face sets. After pose normalization and face scan
improvement, we applied our feature sets for the retrieval
of relevant face scans. Besides that, we also applied a depth
map and an ICP based method. To cope with the expres-
sions in the face scans, we used a percentage of face data
that matched best.

The combination of the central profile with a our opti-
mally selected G-contour performed better than the same
central profile with Li’s optimally selected Z-contour. With
the same amount of feature points, we achieved a higher
performance using an optimally selected G-, C-, and XY-
contour. In the end, the eight uniformly selected G-con-
tours using 50% of the Np ¼ 90 best matching profiles per-
formed slightly better than other combinations of profiles
and contours. With a MAP of 0.70 and 92.5% RR on test
set C (SHREC’08), and a MAP of 0.96 and 97.6% RR on test
set D (UND), our eight G-contours were more effective
and more efficient than our depth map method. Our effi-
cient implementation of an ICP based comparison method
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achieved a higher performance, but is still less time-effi-
cient than our selected set of contours. This is caused by
the iterative selection of corresponding samples during
face matching, whereas curve matching allows for the
off-line selection of corresponding samples and thus effi-
cient face matching. In SHREC’08, MAPs were achieved
ranging from 0.46 up to 0.94 and RRs of 63.5% up to
99.5%. Compared to these results our efficient facial curve
based method performs well. For the UND dataset, which
contains face scans of higher quality and less facial expres-
sions, our facial curve based method outperforms other
methods.
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