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Abstract— The 6D object pose is widely applied in robotic
grasping, virtual reality and visual navigation. However, heavy
occlusion, changing light conditions and cluttered scenes make
this problem challenging. To address these issues, we propose a
novel approach that effectively extracts color and depth features
from RGB-D images considering the local and global geometric
relationships. After that, we apply a graph attention mechanism
to fully exploit representations between these features and then
fuse them together to predict the 6D pose of a given object.
The evaluation results indicate that our method significantly
improves the accuracy of the estimated 6D pose and achieves
the state-of-the-art performance on LineMOD, YCB-Video, and
a new dataset. Ablation studies demonstrate the effect of our
network modules.

I. INTRODUCTION

6D pose estimation is crucial for augmented reality, virtual
reality, robotic grasping and autonomous navigation [1].
However, estimating object poses is challenging due to the
variety of objects in the real world. They have varying 3D
shape and the quality of captured images from them are
affected by sensor noise, changing lighting conditions and
occlusion. With the emergence of cheap RGB-D sensors,
the precision of 6D object pose estimation is improved
for both rich and low textures objects [2]. Nonetheless,
existing methods still have difficulty to meet the requirement
of accurate 6D pose estimation for objects with reflective
property, and heavy occlusion.

Previous methods with RGB-only images as input work
by extracting and matching hand-crafted features, and then
6D pose is estimated by solving a Perspective-n-Point(PnP)
problem. Such methods are often fast and robust to occlusion.
However, they heavily rely on rich features and are unable to
handle texture-less objects. Instead of relying on improving
handcrafted features, we learn more robust features and
semantic cues by applying deep learning models.

Taking the advantage of depth sensors, RGB-D based
methods [3], [4] predict more accurate 6D pose of low-
textured objects than RGB-only methods. Nevertheless, these
algorithms require a time-consuming pose refinement step,
such as iterative closest point (ICP) algorithm to improve
pose accuracy.

Recent approaches [1], [5] introduce end-to-end deep
learning networks to improve 6D pose estimation with the
fused color and geometric feature. In order to extract geo-
metric information from the depth map, they first transform
the depth map to a point cloud and then operate on each
point independently. However, these methods do not consider
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Fig. 1: Visualization of estimated poses by our method. Each
3D model is projected to the image plane with the estimated
6D pose.

relationships between point pairs, which results in the loss of
local features and the decreased accuracy of the estimated 6D
pose. To address this challenge, we apply edge convolution
which considers both local and global point structures to
compute geometric features.

Apart from discriminative geometric features, fusing color
and geometric features is also important for improving the
accuracy of estimated poses. Since these two types of fea-
tures are defined in different spaces, fusing them is challeng-
ing. Existing approaches [1], [5] just concatenate these two
kinds of features, which fail to fully exploit the correlation
between them. Unlike Previous approaches, we introduce a
graph attention based framework to effectively compute the
hidden representations between visual and geometric features
and then fuse them properly. To the best of our knowledge,
this is the first work that uses the graph network to fuse color
and geometric features for 6D pose prediction. In summary,
we present two main contributions:
• Effectively extracting local and global geometric features

from point clouds, which makes it robust to handle heavy
occlusion, low texture and sensor noise for 6D object pose
estimation.
• A new multi-feature fusion network improving 6D

pose prediction performance, that applies a graph attention
network (GAT) to fully exploit the relationship between
visual and geometric features and compute hidden feature
representations between these features.



We show results on a variety of objects (see Fig. 1),
demonstrating that our proposed method provides accurate
6D object pose. Besides, our approach achieves state-of-the-
art performance on popular benchmark datasets, including
LineMOD [6] and YCB-Video [7] datasets.

II. RELATED WORK

6D pose estimation has been an active research area for
a long time and a review of 6D pose estimation approaches
can be found in [8]. Here we only discuss the most related
approaches with our method.

Pose estimation based on RGB images. Traditional
RGB-based methods establish the 2D-3D correspondences
between 2D key points and 3D models either by extracting
and matching local features or predicting 2D projections of
predefined 3D key points. Based on these correspondences,
6D poses are estimated by solving PnP problems [9], [10].
Although these algorithms are effective and fast for rich
texture objects, they have difficulty in handling low-textured
or no-textured objects. Other methods [6], [11] use learning-
based methods to directly estimate 6D object poses from
color images. For example, PoseNet [11] and PoseCNN
[6] directly regress to the 6D object pose by convolutional
neural network based architectures from single RGB images.
However, their predictions are sensitive to small errors due to
the large search space and they require careful tuning hyper-
parameters for the associated loss functions.

Pose estimation based on RGB-D images. A different
class of approaches takes the advantage of depth sensors
that provide rich information for texture-less objects. These
methods [12], [13] extract 3D features from color-and-depth
image pairs and then perform correspondence matching
to predict 6D poses. Ipose [12] uses an encoder-decoder
architecture to extract features from color image and then
obtains the 2D-3D correspondences between the color image
and the 3D model. Instead of predicting pose directly, the
6D pose is estimated by solving the PnP problem with the
obtained correspondences and depth information.

On the other hand, recent methods [14], [1] use the fused
RGB-D data to directly estimate the 6D pose. Michel et
al. [14] fuse the RGB-D information in the early stage,
where the depth information is treated as a fourth channel
and concatenated with RGB channels. Alternative solutions
including Densefusion [1] fuse the color and depth infor-
mation in the later stage, which generate dense pixel-wise
features to estimate poses. However, these methods fail
to effectively exploit the fuse strategy between color and
geometric information.

Graph-based features. Graph neural network(GNN) is a
deep learning-based method to aggregate feature information
from input data, especially suitable for data lying on irregular
or non-Euclidean domains, such as point clouds. It has
been successfully applied in many areas, such as semantic
segmentation [15] and physics systems [16]. To effectively
extract geometric information, we use graph based edge
convolution to process the point cloud. Edge convolution
(EdgeConv) [20] generates edge features that describe the

relationships between a point and its neighbors. It avoids the
fundamental limitation that leads to loss of local features
produced by previous approaches.

Attention mechanisms have been used together with many
neural network architectures that operate on regular and
graph-structured data. Self-attention which is used to com-
pute representations of sequence-based data attracts many
attentions. It has been applied successfully in tasks such
as machine translation [21] and object detection [15] on
Euclidean domains. Veličković et al. [22] propose graph
attention networks that operate on graph-structured data.
They have achieved state-of-the-art results on transductive
and inductive graph benchmarks. Inspired by this work, we
propose a graph attention based architecture to fuse RGB-D
data for 6D pose estimation.

III. METHODOLOGY

A. Overview

Our goal is to achieve accurate 6D pose estimation for
objects with a wide range of sizes, shapes and textures
using RGB-D images as input. Unlike previous algorithms
designing new characteristics to improve the robustness
of handcrafted features, we apply a CNN-based encoder-
decoder architecture to learn features from color images.

Rather than directly extracting features from the depth
map, we first convert it to a point cloud which contains rich
geometric information using the camera intrinsic matrix. To
process point cloud data, previous methods first convert it
into regular grids by projecting 3D data into 2D images or
splitting 3D data into 3D voxel grids. Then they process the
transformed data using approaches designed for regular data.
However, these approaches either introduce quantization ar-
tifacts or result in missing local features. To overcome these
limitations, we use edge convolution [20] which can cap-
ture local geometric structure while maintaining permutation
invariance.

Fusing features is crucial for high-precision pose esti-
mation. To effectively fuse visual and geometric features,
we introduce a graph attention based framework to exploit
relationships between them, as opposed to prior works which
just concatenates these features.

Fig. 2 shows the overall framework. We first perform
semantic segmentation to extract the target object from color-
and-depth image pairs ( Fig. 2(b), section III-B). Next, we
extract color and geometric features, separately, retaining
the native structure of each data ( Fig. 2(c), section III-B).
We apply a CNN-based network to aggregate appearance
information in the color image. To extract local and global
geometric features from the depth map, we first convert the
depth map to a point cloud and then build the local graph
map for each point with the k-nearest neighbors algorithm
(kNN). After that, the geometric features are computed by
edge convolution on each local graph map. Furthermore, we
fuse visual and geometric features with a graph attention
based network ( Fig. 2(d), section III-C). Finally, we train
the network to predict the 6D pose for chosen pixels and
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Fig. 2: Overview of our architecture: (a) The input are captured color-and-depth image pairs. (b) A semantic segmentation
architecture is used to segment the target object. (c) The visual features are extracted by a CNN-based network from the
color image and geometric representations are computed from the point cloud converted by its corresponding depth map.
(d) A graph attention network is introduced to perform the fusion between color and geometric features. (e) The 6D object
pose and its corresponding confidence score are predicted by the fused features, one pose per fused feature. (f) The pose
with the highest confidence is chosen as the final pose.

then apply an iterative refinement method to obtain the final
pose ( Fig. 2(e), section III-D).

B. Semantic segmentation and feature extraction
Semantic segmentation. We detect objects in the input

image using semantic segmentation from [6]. It generates a
per-pixel segmentation map which classifies each pixel into
a known object class. From the segmentation map, we get
a 2D bounding box for the target object. Then we use the
bounding box to crop the input color-and-depth image pairs.

Feature extraction. In order to effectively extract infor-
mation from color and depth images, we process the cropped
color-and-depth image pairs separately. This is because the
color data can be represented in a grid-like structure, while
the geometric information residing in the depth map is
defined in a continuous vector space. The cropped color
image is fed into a CNN-based encoder-decoder architecture
to extract visual information. Specially, given a color image
of size H ×W × 3, the network generates a feature map of
size H ×W × drgb which contains the drgb—dimensional
hidden representation of each pixel in the color image.

To extract geometric features, we first project the cropped
depth map to a point cloud based on the camera intrinsic
matrix. Even though features learned from each point in the
point cloud are able to encode the neighboring geometric
structure of each point, such features suffer from sensor
noises. In contrast, point-pair features extracted from multi-
ple points, are robust to occlusion and noises. To effectively
extract point-pair features between points, we build a graph
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Fig. 3: Geometric feature extraction: (a) The input is a point
cloud with N points. (b) Each point of the point cloud is
clustered by kNN to produce graph maps. (c) Geometric
information is extracted by edge convolution. (d) A new set
of features are produced as the output.

map for each point using kNN ( Fig. 3(b)). Then we use edge
convolution [20] which applies convolution-like operations
on the local graph to extract features. These features describe
the relationships between a point and its neighbors ( Fig.
3(c)).

The input to the edge convolution layer is a local graph
with M points, denoted by pi = {pi0, pi1, ..., piM}, pi ∈
RN×F , N is the number of points in the point cloud, F is the
dimension of each point. The edge feature is defined as ei,j =
f(pi, pj−pi), where f : RF×RF → RF ′

is parametric non-
linear function parameterized by a learnable weight matrix.
F ′ is the new dimension of each point. We compute the edge
feature by applying a multi-layer perceptron (MLP) and the
output , p′i ∈ RN×F ′

is shown in Fig. 3(d).



C. Multi-feature fusion

A simple fusion of color and geometric features is to
directly concatenate them. However, that is not able to
effectively exploit the relationships between these features
for more accurate 6D pose estimation. The key idea of
our multi-feature fusion is to apply GAT to compute the
hidden representations of each feature by attending over its
neighbors.
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Fig. 4: Multiple feature fusion: (a) Color and geometric
features are input. (b) We combine these two types of features
to generate pixel-wise features. (c) The GAT is applied to
compute attentional features. (d) The global features are
generated by attentional features. (e) Features generated from
(b), (c) and (d) are concatenated to produce multiple features.

Our multiple feature fusion procedure first concatenates
color and geometric features as node features (4(b)) and
then feed them to the graph attention network. The graph
attention layer updates the node features. Concretely, the
input nodes are first transformed by a linear transformation,
parameterized by a weight matrix, H ∈ RF ′×F , where F ′

is the number of new features in the node, to achieve a
higher representation. Then a shared attention mechanism
GA : RF ′×RF ′ → R2F ′

is applied to the transformed node
to compute attention coefficients ei,j = GA(Hxi, Hxj). The
coefficient represents the importance of node j’s features to
node i.

In our experiments, we use a single-layer feedforward neu-
tral network as the attention mechanism GA, parameterized
by a set of learn-able parameters, ga = {ga1, ga2, ..., gaN},
gai ∈ R2F ′

, where N is the number of nodes. The
LeakyReLU is used as the activation function and the soft-
max function is used to normalize the attention coefficients.
The attention mechanism is expressed as:

gaij = softmaxj(LeakyReLU(gaT [Hxi||Hxj ])), (1)

where T is the transposition and || is the concatenation
operation.

After obtaining the learnable parameter for each node,
it is multiplied with the node features by a nonlinearity,
Θ, to produce the output node features. To obtain stable
features, K attention mechanisms are implemented. Next,
all the output features are concatenated:

x′j = ||Kk=0Θ(
∑
j∈N

gakijH
kxj ])), (2)

where the attention parameter, gakij , is computed by the k-
th attention mechanism (gak), and Hk is the corresponding
transformation matrix applied for the input node. In our
experiment, K is set to be two, as shown in Fig. 4(c).

The resulting attentional features are fed into a CNN-based
network to generate a global feature vector using maxing-
pooling reduction function ( Fig. 4(d)). Finally, we concate-
nate pixel-wise, attentional and global features together as
our multi-fusion features(4(e)).

D. Pose estimation and refinement

Pose estimation. We predict the pixel-wise 6D object
pose with our fusion features by MLP. We also predict a
confidence score for the corresponding pose. It indicates the
possibility of the corresponding pose to be the final one.
During inference, we choose the pose with the highest score
as the final predicted pose. The loss function is defined based
on the Euclidean distance between points transformed by
ground truth pose and those transformed by predicted pose:

li =
1

N

∑
j∈N
||(Rxj + t)− (R′ixj + t′i||), (3)

where [R′i|t′i], i ∈ N , and [R|t] are the estimated and ground
truth 6D pose respectively, xj is the selected point from the
3D model and N is the number of selected points.

Pose refinement. The performance of 6D pose estimation
can be further improved by iterative refinement. We adopt the
refinement module from [1] to improve the pose accuracy.
Concretely, the input of this step are color features com-
puted from the cropped color image and geometric features
computed from the new point cloud transformed by the
predicted 6D pose. The idea behind this transformation is that
the transformed point cloud implicitly encodes the predicted
pose. Then the two kinds of features are fused and fed into
the refinement network to predict a residual pose. The final
pose is obtained by M iterations:

RT = [RM |tM ].[RM−1|tM−1]...[R0|t0] (4)

We can train the pose refinement network and the main
network together. In order to reduce the training time, we
start the refinement network after the main network has
converged.

IV. EXPERIMENTS

A. Settings

Datasets. In our 3D object dataset [23], there are eight
objects covering a variety of shapes, sizes and textures. We
also evaluate our method on the LineMOD and YCB-Video
datasets. LineMOD dataset contains of 13 texture-less objects
and YCB-Video dataset have 21 objects of varying shapes
and textures. We follow the same training and testing settings
as prior learning based approaches [2], [1].

Evaluation metrics. The pose estimation performance is
evaluated by ADD(-S) including the average distance metric
(ADD) and the average closest point distance (ADD-S) [6].



TABLE I: Quantitative evaluation of the 6D pose (ADD(-S)) on the LineMOD dataset (objects with bold name are symmetric).

ape ben. cam can cat driller duck eggbox glue hole. iron lamp phone MEAN
DenseFusion 92.3 93.2 94.4 93.1 96.5 87.7 92.3 99.8 100.0 92.1 97.0 95.3 92.8 94.3
SSD-6D 65.0 80.0 78.0 86.0 70.0 73.0 66.0 100.0 100.0 49.0 78.0 73.0 79.0 77.0
Implicit+ICP 20.6 64.3 63.2 76.1 72.0 41.6 32.4 98.6 96.4 49.9 63.1 91.7 71.0 64.7
C/G-AF 96.3 97.4 97.8 97.6 98.5 96.8 97.4 99.8 100.0 95.3 97.3 98.8 98.6 97.8

TABLE II: Quantitative evaluation of the 6D pose (ADD(-S)) on the YCB-Video dataset (objects with bold name are
symmetric).

PoseCNN DenseFusion C/G-AF
AUC ADD(-S) <2 cm AUC ADD(-S) <2 cm AUC ADD(-S) <2 cm

002 master chef can 68.1 51.1 73.3 72.3 88.2 88.9
003 cracker box 83.4 73.3 94.2 98.2 93.5 94.2
004 sugar box 97.5 99.5 96.5 100.0 96.7 100.0
005 tomato soup can 81.8 76.6 85.5 83.0 93.0 95.8
006 mustard bottle 98.0 98.6 94.7 96.1 95.1 98.9
007 tuna fish can 83.9 72.1 81.9 62.2 89.2 85.7
008 pudding box 96.6 100.0 93.2 98.6 95.6 99.3
009 gelatin box 98.1 100.0 96.7 100.0 98.1 100.0
010 potted meat can 83.5 77.9 83.6 79.9 87.5 84.6
011 banana 91.9 88.1 83.7 88.4 92.1 97.9
019 pitcher base 96.9 97.7 96.9 100.0 95.9 100.0
021 bleach cleanser 92.5 92.7 89.7 90.8 90.0 89.5
024 bowl 81.0 54.9 89.5 95.1 89.9 96.7
025 mug 81.1 55.2 88.9 88.8 93.5 97.1
035 power drill 97.7 92.2 92.7 96.5 89.9 91.1
036 wood block 87.6 80.2 92.8 100.0 93.4 98.2
037 scissors 78.4 49.2 77.5 48.6 91.9 89.3
040 large marker 85.3 87.2 93.0 100.0 94.7 99.8
051 large clamp 75.2 74.9 72.5 78.7 75.0 78.2
052 extra large clamp 64.4 48.8 69.9 74.9 73.9 76.8
061 foam brick 97.2 100.0 91.9 100.0 94.1 100.0
Mean 86.6 79.9 87.6 88.2 91.0 93.4

Given the ground truth rotation R and translation T and
estimated rotation R̂ and translation T̂ , the ADD computes
the mean distances between all 3D model points x trans-
formed by [R̂|T̂ ] and [R|T ] :

ADD =
1

N

∑
x∈S
||(Rx+ T )− (R̂x+ T̂ )||, (5)

where S is the set of 3D model points and N is the number
of points.

The ADD-S is an ambiguity-invariant pose error metric
which takes care of both symmetric and non-symmetric
objects into an overall evaluation.

ADD-S =
1

N

∑
x1∈S

min
x2∈S

||(Rx1 + T )− (R̂x2 + T̂ )|| (6)

If the ADD(-S) is smaller than a threshold, we consider
the estimated pose is correct. From that, we define a variable
range of thresholds between 0.0cm to 10.cm following
previous work and then compute the ADD(-S). Based on
the two sets of values, we can plot the accuracy-threshold
curve (AUC). Then we compute the area under the AUC as
our another performance metric.

Implementation Details. We use the CNN-based network
Resnet-18 [24] encoder followed by 4 up-sampling layers
as decoder to extract color features. The edge convolution
is a MLP with the number of layer neurons defined as

{3, 64, 64, 64}. The graph is constructed using k = 10
nearest neighbors. A single-layer GAT model with 2 attention
heads is used for the feature fusion. We implement the
networks within the PyTorch framework and train our model
using Adam optimizer and set the learning rate to 0.0001.
Furthermore, we refine the pose predicted from the main
work with 2 iterations.

B. Overall performance

The overall performance compared with other state-of-the-
art approaches is shown in Table I and Table II. We use
ADD(-S), including ADD for non-symmetric objects and
ADD-S for symmetric objects, to measure the prediction on
the LineMOD dataset. If ADD-S is smaller than 2cm which
is the minimum tolerance for robot grippers, the predicted
pose is considered to be correct. In Table I, we compare
the percentage of ADD-(s) (< 2cm) with those of SSD-6D
[4], Implicit+ICP [25] and DenseFusion [1]. The evaluation
results compared with PoseCNN and Densefusion in terms
of ADD-(S) and AUC on the YCB-Video dataset are shown
in Table II. We can see that our proposed approach applying
color/geometry attention fusion (C/G-AF) achieves the best
performance on both datasets, which demonstrates that our
fusion strategy is superior to those that do not exploit the
relationship between color and geometric features. For the
LineMOD dataset, our method outperforms Implicit+ICP and
DenseFusion 33.1% and 3.5%, respectively.
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Fig. 5: Examples of accuracy differences between DenseFusion and our approach on our dataset. The first image is the result
of DenseFusion and the second image is the result of our approach.

TABLE III: Accuracy comparison with and without attention in terms of ADD(-S) on the LineMOD dataset (objects with
bold name are symmetric).

ape ben. cam can cat driller duck eggbox glue hole. iron lamp phone MEAN
DenseFusion 80.5 83.2 78.5 88.1 89.3 79.9 77.9 99.6 99.1 79.5 93.2 93.5 89.2 87.1
C/G-AF(w/o attention) 85.3 88.5 88.7 88.9 90.1 87.5 89.3 98.2 98.9 84.9 88.6 90.4 89.9 89.9
C/G-AF 93.8 95.4 95.6 95.8 96.5 92.7 95.7 99.7 100.0 91.3 95.9 96.6 96.8 95.8

Furthermore, we also visualize the comparison results
between DenseFusion and our method on our own dataset,
as shown in Fig. 5. We can see that our approach provides
accurate 6D pose, which indicates our method is more robust
against occlusion and low texture objects.

C. Ablation study

To verify the effectiveness of each module of our proposed
network, we perform the ablation study on the LineMOD and
our 3D object datasets.

Effectiveness of geometric feature extraction. By vary-
ing the reprojection error threshold for four objects on our
dataset, we plot the accuracy-threshold curves, as shown
in Fig. 6. It can be seen that the method using geometric
features extracted from point pairs outperforms the approach
which processes each point separately by a large margin,
especially for low texture objects, such as the milk box.

Effectiveness of multi-feature fusion. Table III sum-
marizes the comparison results with and without graph
attention mechanism in terms of ADD(-S). As can be seen
in Table III, compared with DenseFusion, the graph attention
mechanism increases the accuracy significantly by 8.7%, and
our approach predicts more accurate poses for symmetric
objects, like glue. Compared with our method without multi-
feature fusion module, the performance is also increased by
a large margin (5.9%).

Robustness against occlusion. In Fig. 7 we compare our
approach with DenseFusion, PointFusion and poseCNN +
ICP in terms of the robustness against occlusion. We first
calculate the visible surface ratio of each sampled object
when projected to the image plane. Then we calculate the
number of successful predictions among all the test frames. If
the ADD(-S) is smaller than 2cm, we consider the prediction
is correct. In detail, we sample a set of points from the 3D
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Fig. 6: The accuracy-threshold curves (AUC) generated by
reprojection error on our dataset.

object model and project these points to the image plane
to synthesize a depth image using the ground truth 6D
pose and camera intrinsic matrix. Next, we compare the
pixel value in the synthesized depth image with the ground
truth depth image. If the calculated pixel value is smaller
than ground truth value, we consider its corresponding 3D
point is invisible. This is because only the front-most pixels
are shown in the depth image. After that, we calculate the
number of invisible points from our sampled points and then
obtain the invisible ratio. As shown in Fig. 7, our approach
performs best among these methods. The increasing invisible
ratio does not reduce our method’s performance significantly,
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while PoseCNN degrades greatly.

V. CONCLUSION

In this paper, we propose a novel 6D object pose esti-
mation framework that first extracts discriminative color and
geometric features from RGB-D images. We then fuse these
features based on a graph attention mechanism to predict
the object pose. Experimental results have demonstrated that
the feature extraction and fusion modules can increase the
overall accuracy of estimated 6D poses, and the proposed
approach can be used for robot grasping tasks. However,
some limitations are worth noting. Although our method is
robust to varying shape objects, when the object is under
changing light conditions, our method still fails to predict
the accurate pose. It would be interesting to explore more
efficient approaches to estimate the 6D poses of objects that
are under more challenging conditions in the future.
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