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Abstract. We investigate how video-based recognition of rat social be-
havior is affected by the quality of the tracking data and the derived
feature set. We look at the impact of two common tracking errors – ani-
mal misidentification and inaccurate localization of body parts. We fur-
ther examine how the complexity of representing the articulated body in
the features influences the recognition accuracy. Our analyses show that
correct identification of the rats is required to accurately recognize their
interactions. Precise localization of multiple body points is beneficial for
recognizing interactions that are described by a distinct pose. Including
pose features only leads to improvement if the tracking algorithm can
provide that data reliably.
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1 Introduction

We investigate the automated recognition of social interactions between rats. Rat
social behavior is of interest for biologists who look for indicators for neurological
and psychiatric disorders such as Huntington’s disease. Such indicators can be
abnormalities in how often and how long the animals engage in specific social
interactions. Currently, these studies involve laborious and error-prone manual
coding of interactions and thus automating the coding is desired.

Video-based recognition of rat interactions typically requires three problems
to be solved, namely: tracking and identifying the animals in the presence of
occlusions, deriving meaningful features from these tracks, and classifying the
features into interaction categories. Previous work on recognizing interactions
has mainly focused on these steps in isolation, in particular by assuming perfect
tracking when computing features. The effects of mistaken identities and noisy
tracking on the classification have received less attention. As a consequence,
we yet lack the ability to trace back recognition errors to either tracking or
classification.

With this paper we aim at unraveling the links between feature quality and
recognition accuracy. We derive trajectory features from tracking data with vary-
ing degrees of common errors, and compare the performance using off-the-shelf
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classifiers. This work can be seen as a thorough investigation of the factors in-
volved in automated rat social behavior analysis.

The remainder of this work is structured as follows. In Section 2 we discuss
related work. Sections 3 and 4 introduce our data set and the analysis pipeline.
The results are presented in Section 5 and discussed in Section 6. We conclude
in Section 7.

2 Rodent Action Recognition

Action recognition has been applied not only to rodents [4] but also to humans.
In contrast to human action recognition, the recognition of rodent actions is
characterized by confined spaces, less articulated, similar looking animals, and
a combination of need-driven and playful behavior. The common procedure in
rodent action recognition is to split the recognition into three tasks: tracking the
position of the animals, deriving features from those tracks, and classifying the
actions using the features.

Different tracking solutions have been presented. Some require that the an-
imals are uniquely marked [9] or have an implanted RFID tag [12]. Others at-
tempt to identify the animals based on their thermal [6] or visual appearance [10].
Recently, the use of depth cameras has been proposed to enhance the visual seg-
mentation in contact situations [8]. A pronounced difference of the solutions is
whether only one [1,2],[12] or more body parts [3],[6] are tracked. Tracking mul-
tiple body parts has been shown to improve solitary behavior recognition [5].

The location data obtained by the tracking algorithm is used to derive a
feature set. This set often comprises individual features such as velocities and
accelerations [7], and pairwise features such as the distance between animals and
their relative orientation [2]. In addition, one may add features derived directly
from the image data. Exploiting spatio-temporal interest points in a bag-of-words
setup has been shown to yield only minor improvements over a trajectory-only
feature set [2].

At the classification level, differences can be found in the way temporal in-
formation is considered. If the video frames are considered samples that have to
be assigned a class label, then temporal information may be included by collect-
ing statistical values across neighboring frames using a sliding window [4],[7].
To model temporal information in a more structural way, for example, to in-
corporate transition probabilities between interactions, one can deploy hidden
Markov models [1]. The classification problem is then formulated so as to find
the optimal temporal segmentation of the video into labeled action segments.

Most recognition systems are trained using a subset of the data. Exceptions
are rule-based classifiers [3],[12], and the Janelia Automatic Animal Behavior
Annotator (JAABA) [7]. The latter pursues an active learning approach in which
the user trains a classifier by iteratively annotating a number of action events.

Tracking, feature extraction, and classification clearly depend on each other.
Despite advances in all three areas, it has not been analyzed systematically how
errors in one task affect the final classification.
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3 Rat Social Behavior Data Set

The Rat Social Behavior Data Set (RSBD), which we use throughout our anal-
yses, was obtained in a study on play behavior of young rats [11]. In 40 sessions,
two male Sprague Dawley rats, 5-6 weeks old, were placed together in a Noldus
PhenoTyper 9000 cage (90 cm× 90 cm) and were recorded by an infrared camera
at 25 fps from a top-view perspective for about 30 min. The actions of one focal
animal were labeled using Noldus Observer XT 10. From the 14 original labels,
we removed actions that are too subtle to be captured by trajectory features
(e.g., biting and kicking). The remaining classes capture seven interactions and
one class that covers all solitary actions. Short descriptions of the classes are
given in Table 1.

For our analyses we chose five videos from which we randomly selected ten
events of each interaction per video (400 segments in total). Every segment in-
cludes a 0.6 s margin before and after the interaction. In total this yields 12.6 min
of footage. We further chose four of the five videos at random to be used for
training our system. The remaining video was considered a validation set and
has never been used other than for the results presented in this paper.

Rat interactions have different temporal properties. Their durations have dif-
ferent means and often large inner-class variances as we can see in Table 1. This
difference leads to a highly unbalanced data set. Note that our data is unbal-
anced regarding the number of frames but balanced in the number of interaction
events.

Table 1. Left: mean, standard deviation, minimum, and maximum of the durations
(in s) of the selected interactions in the training set. Right: the distribution of classes
in both training and validation set.

µ σ min max

Allogrooming (alo): grooming fur of other rat 6.21 7.12 0.32 30.48

Approaching (app): moving towards other rat 0.40 0.26 0.08 1.40

Moving away (awy): moving away from other rat 0.68 0.59 0.08 5.00

Following (fol): following other rat 0.89 0.95 0.08 6.32

Nape attacking (nap): attacking other rat’s neck area 0.45 0.49 0.04 3.80

Pinning (pin): keeping other rat lying on its back 1.57 1.28 0.28 6.00

Social nose contact (snc): inspecting other body 0.82 1.05 0.04 7.72

Solitary actions (sol): all non-social behaviors 4.48 8.97 0.08 49.24

0.0 0.1 0.2 0.3 0.4
Fraction of frames

Distribution of classes

Training set, N = 22824
Validation set, N = 4025

4 Feature Quality in Social Behavior Recognition

Our goal is to highlight how the feature quality influences the recognition per-
formance. We vary the quality in two ways. First, we incrementally correct two
types of tracking errors. Second, we derive three feature sets from those tracks
capturing the rat’s articulated body at varying degrees of detail.
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4.1 Eliminating Systematic Tracking Errors in RSBD

The video tracking system used in this experiment (Noldus EthoVision XT 11)
tracks three points on the animal bodies: the nose point, the center of grav-
ity, and the tail-base. We incrementally eliminate two types of tracking errors
and thus introduce three data set versions. We denote the initial, uncorrected
version as RSBD. In the first step (denoted as RSBD-ID), we corrected identity
swaps. Identities were not changed during fast, close-contact situations. In those
situations, the positions provided by the tracker are occasionally wrong and thus
identity assignment becomes arbitrary. In the second step (RSBD-ID+Loc), we ad-
ditionally corrected all body point locations. This decreases the amount of noise
in the positions, eliminates body part confusions (swaps of nose and tail-base
points), and yields reliable orientation values.

4.2 Extracting Features from the Data Set Versions

individual]&
pairwise]features

-]length,]bending]angle
-]velocity,]acceleration
-]relative]pose
-]body]point]distances
-]spine]overlap
-]path]correlation

sliding]window

mean,]min,]max

[]N]x]162]] (per]animal)
N

1
...

Fig. 1. From nose, center, and tail-base points we derive individual and pairwise fea-
tures that describe the pose, motion, and distances of the animals in each of the
N frames. In a window centered at the current frame various statistics are computed.

From the tracked body points, we compute, per animal, a number of pose, mo-
tion, and distance variables as well as their derivatives. The values are aggregated
over time computing mean, minimum, and maximum values in a sliding window
of 0.52 s. Figure 1 illustrates the extraction pipeline. The variants of the feature
set are created by varying how detailed the articulated body is captured by the
features.

Feature Set Variants We compare three sets with ascending number of fea-
tures. In the first set (CP), we only exploit the position (x, y) of the animals’
center-of-gravity. This corresponds to the approach taken by a number of previ-
ous works, e.g., [2],[12]. Features include velocity and acceleration, the distance
between the animals, and the correlation between the animals’ paths. In the
second set (CP+Ori), we add orientation information (x, y, ϕ) which allows us
to compute the velocity vector with respect to the animal’s orientation and
the relative orientation between the animals. The third set (Full) exploits all
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three tracked body points ((x0, y0), (x1, y1), (x2, y2)) and additionally incorpo-
rates pose features such as body length and bending, several body point distances
and the degree of body overlap.

To facilitate the generalization of the features to other setups and rats, we
standardize the features of all sets with respect to size of the specific rat. That
is, distances, velocities, and accelerations are scaled to animal length units.

4.3 Experiment Setup

To analyze the links between feature quality and recognition accuracy, we exam-
ine the effects of tracking errors on the accuracy alone (using the Full feature
set) as well as in combination with the different feature sets. We assess the
recognition accuracy in terms of the overall and the per-class classification per-
formance. We mainly look at the F1 score and, if appropriate, at precision, recall
and confusions between specific classes. When averaging the F1 score, we aver-
age across classes. Compared to averaging across frames, the class average puts
higher weight on short or rare events and thus represents unbalanced data sets
like ours better.

For overall performance measures, we apply a 5-fold cross-validation scheme
where each fold corresponds to one of the five videos in the data set. If we look
at per-class performance, we train on the four training videos and test on the
validation video. When we compare different tracking errors, we train and test
using data of the same error level.

To find a suitable classifier for the analyses, we compare six off-the-shelf clas-
sifiers and then stick to one classifier for the remaining experiments. We compare
the following classifiers: Linear Discriminant Classifier (LDC); Linear Discrim-
inant Analysis with subsequent One-vs-All Quadratic Discriminant Classifier
(LDA+QDC); Support Vector Machines with Gaussian (SVM-RBF) and linear
(SVM-Lin) kernels; LDA with k-Nearest-Neighbors (LDA+kNN); and Random
Forest (RF). Where applicable, classifier parameters are found empirically by
optimizing the F1 score in the same cross-validation scheme as described above.

5 Results

5.1 Tracking errors

The comparison of the classifiers (Tab. 2) shows that all six classifiers perform
comparably on all three data set versions. Given the range of classifiers tested,
this emphasizes that feature quality, rather than the classifier, largely determines
the performance. The remaining experiments are conducted with the simplest
of the classifiers: LDC. We further see in Table 2 that fewer tracking errors lead
to higher average accuracy. With each additional error eliminated, the average
per-class F1 score increases by approximately 0.12.

Looking at the F1 scores per interaction (Tables 3, 4, and 5) and confusions
(Figures 2, 3, and 4), we notice that not all interactions are affected by tracking
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Table 2. The average per-class F1 scores achieved by the six classifiers on the three
data set versions with increasing degree of tracking quality

RSBD RSBD-ID RSBD-ID+Loc

Classifier Parameters µF1 σ µF1 σ µF1 σ

LDC – 0.51 0.05 0.63 0.05 0.75 0.03
LDA+QDC – 0.50 0.04 0.62 0.05 0.74 0.03
SVM-RBF C = 1, γ = .00625 0.51 0.04 0.65 0.03 0.74 0.02
SVM-Lin C = 0.001 0.50 0.04 0.63 0.04 0.74 0.03
LDA+kNN k = 10 0.48 0.04 0.61 0.04 0.73 0.02
RF n = 100, dmax = 16 0.52 0.05 0.68 0.04 0.76 0.02

errors in the same way. The accuracies are generally high for solitary actions
and approaches (in which the animals are separated by definition). Contact
interactions are not recognized well in the RSBD version but improve gradually
as errors are corrected. Let us look at each correction step separately.

The correction of identity swaps (RSBD → RSBD-ID) leads to two major im-
provements. Firstly, the confusion of following with moving away is largely re-
solved although some confusion persists. The F1 score for following increases
from 0.27 to 0.56 and for moving away from 0.47 to 0.72. Secondly, virtually
all nape attacks that had been mistaken as following are now corrected. Conse-
quently, the recall of nape attacking improves from 0.39 to 0.56. Notably, preci-
sion stays at a low level of 0.29.

Correcting the body point locations (RSBD-ID → RSBD-ID+Loc) increases
the precision of nape attacking from 0.29 to 0.46, and the recall of pinning
from 0.3 to 0.72. Confusions remain between these two classes and also between
following and approaching. A number of small improvements across all classes
eventually leads to higher average F1 scores at both frame level (+0.07) and
class level (+0.11).

5.2 Feature Set Variants

Figure 5 shows the F1 scores of the combinations of data set versions and fea-
ture sets. There is an upwards trend across the data set versions irrespective of
which feature set is used. In RSBD, the F1 score remains at approximately 0.5
for all feature sets. In both RSBD-ID and RSBD-ID+Loc, the F1 score increases
with richer feature sets. The standard deviation of the accuracy decreases by
approximately 50% using Full on RSBD-ID+Loc compared to RSBD-ID.

6 Discussion

On the overall performance level, we have seen that eliminating tracking errors
leads to better classification. This pattern occurred for all tested classifiers, which
suggests that the effect is indeed inherent to the underlying data and not to the
classifier. We further showed that orientation and pose features are important
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Table 3. Per-class results: RSBD

Prec. Recall F1 #

alo 0.86 0.71 0.78 1038
app 0.55 0.80 0.65 184
awy 0.48 0.46 0.47 398
fol 0.33 0.24 0.27 288
nap 0.29 0.39 0.33 139
pin 0.24 0.35 0.28 200
snc 0.40 0.61 0.48 399
sol 0.98 0.87 0.92 1379

µframes 0.72 0.67 0.69 4025
µclasses 0.52 0.55 0.52 8
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Fig. 2. Confusion matrix: RSBD

Table 4. Per-class results: RSBD-ID

Prec. Recall F1 #

alo 0.85 0.83 0.84 1038
app 0.62 0.87 0.72 184
awy 0.75 0.70 0.72 398
fol 0.65 0.50 0.56 288
nap 0.29 0.56 0.39 139
pin 0.65 0.30 0.41 200
snc 0.50 0.70 0.58 399
sol 0.98 0.88 0.93 1379

µframes 0.80 0.76 0.77 4025
µclasses 0.66 0.67 0.65 8
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Fig. 3. Confusion matrix: RSBD-ID

Table 5. Per-class results: RSBD-ID+Loc

Prec. Recall F1 #

alo 0.92 0.92 0.92 1038
app 0.67 0.83 0.74 184
awy 0.73 0.87 0.79 398
fol 0.89 0.59 0.71 288
nap 0.46 0.69 0.55 139
pin 0.74 0.72 0.73 200
snc 0.63 0.67 0.65 399
sol 0.97 0.90 0.93 1379

µframes 0.85 0.84 0.84 4025
µclasses 0.75 0.77 0.76 8
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Fig. 4. Confusion matrix: RSBD-ID+Loc
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Fig. 5. The average per-class F1 score using three different feature sets, tested on all
three data set versions

for the recognition. If those features are correct, they lead to better classifica-
tion. If they are not, that is, if the tracking algorithm fails to provide stable pose
information, we induce the risk of overfitting to the noise in the features. As a
consequence, the classification accuracy stagnates or even decreases. A poten-
tial way to overcome this limitation is to include more training data, which are
particularly expensive to obtain. Moreover, when we trained the classifier with
corrected data but used uncorrected data to test it, we failed to achieve com-
petitive performance (µclasses = 0.42, σ = 0.05, 5-fold cross-validation). For that
reason, we do not benefit from corrected, clean features as long as we cannot
guarantee that we can generate them without expensive, manual intervention.

6.1 Difference between Interactions

On the class level, we observed that the classes are affected differently by tracking
errors and the choice of features. By which type of tracking error an interaction is
most affected is determined by its characteristics. Interactions such as following
and pinning rely more on the identity assignment than, for example, solitary
actions. Because most of our interactions are indeed sensitive to the correct role
assignment, we see large gains in F1 score after correcting identity swaps. Clearly,
maintaining the correct identities is a necessity for social behavior recognition.

Another characteristic of the interactions is how important the relative pose
is for the recognition. Nape attacking, pinning, and following events have a very
distinct relative pose while it is less relevant for other interactions. For exam-
ple, for social nose contact the pose can be different in every event because the
class includes the inspection of all body parts. Therefore, we expect that the
more an interaction is defined by the pose, the better it should be recognized if
correct pose features are provided. We find supporting evidence in the results.
Nape attacking (+0.16), pinning (+0.32), and following (+0.15) benefit most
from the correction of body part locations and thus pose. Accordingly, adding
uncorrected orientation and pose features results in only a small improvement
(RSBD-ID: CP → Full = +0.08). We conclude that the accuracy of social behav-
ior recognition can be improved by incorporating reliable orientation and pose
features.
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6.2 Unresolved Confusions

There are some confusions that persist even with perfect tracking. The predom-
inant confusions occur between following and appoaching, and among the four
classes allogrooming, nape attacking, pinning, and social nose contact.

There are two reasons for the confusions. First, approaching often evolves into
following but the transition is not clearly defined. As a result, the predictions
around the transition point become arbitrary. We see the same effect to a lesser
degree for awy → sol and sol → app. Second, the four confused interactions
can be very ambiguous in their appearance. The classifier cannot separate the
classes properly and hence makes mistakes.

As for solving the transition ambiguity, we need to find more clues to when
one behavior changes into another. A potential direction is to explicitly learn the
temporal structure of the transitions and to incorporate the other rat’s reaction.

To improve the separability of ambiguous interactions, we may want to in-
crease the diversity of the features. The four confused interactions are ambiguous
because they are close-contact situations for which the animal’s trajectories and
poses appear similar. However, differences may arise if we incorporate which
animal is on top or below (e.g., by exploiting 3D trajectories) and capture fine-
grained motion with image features (e.g., optical flow or histogram of gradients).

7 Conclusion

In this paper we investigated the effects of feature quality on video-based recog-
nition of rat social behavior. We looked at the impact of two types of tracking
errors – misidentification and inaccurate localization – as well as the type of
features that are derived from the tracking data.

From the analysis of the classification accuracy across interaction classes,
we observed that although correcting tracking errors improves the classification,
each class is affected differently. Correctly identifying the animals is required to
recognize virtually all interactions, whereas correctly tracking body parts has
a larger impact on classes that are defined by a distinct relative pose. Hence,
including orientation and pose features is advantageous under the condition that
the tracking algorithm can provide them reliably.

We have further found that perfect tracking alone is insufficient for recog-
nizing ambiguous behavior. Exploiting temporal context and reaction patterns
alongside with features that go beyond 2D trajectories are directions that seem
worth pursuing in the future.
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