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ABSTRACT

Multiple people tracking from multiple cameras can suffer
from various problems, particularly from inter-person occlu-
sions. This paper attempts to solve the problems by analyz-
ing the view visibility and ranking the reliability of the cues
from 2D views. It combines the visibility with the smooth-
ness constraints into a probability framework, which offers a
more flexible and robust estimation. Moreover, it introduces
3D reference lines to estimate the 2D position of every in-
dividual in the input images. These lines can estimate more
accurate and robust 2D positions. The experimental results
and quantitative evaluations on the standard data set show the
effectiveness of the method.

Index Terms— Principal axis, vertical reference line,
view visibility, multi-person tracking

1. INTRODUCTION

We address the problem of tracking a group of people in in-
door environments, by locating their position in a 3D space
using multiple views. Compared with monocular approaches,
multiple cameras of overlapping Field of View (FOV) pro-
vide more cues for tracking multiple people. Most meth-
ods in the literature rely on cues like color, edge and motion
[1, 2, 3, 4, 5, 6] to infer the positions of the target persons.

The common problem of tracking multiple persons using
multiple views is that different cameras provide different in-
formation about the location of the same person. This can
happen because cues in one or more cameras are affected by
occlusions, outliers,etc., causing the tracking to be erroneous.
Therefore, integrating all cues from all views (e.g. [1]) can, in
some cases, lead to inaccurate and less robust estimations. To
overcome this problem, we propose a solution that evaluates
and ranks the visibility of the views of a target person. We
only fuse two views that have higher visibility than the other
views, and disregard the information from other views. Pre-
vious experiments [7] also showed that it is sufficient to infer
3D position using a small number of cues. In addition, we
add a smoothness constraint to the motion of the position of
each target person, to reject problematic cues.
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Fig. 1. Overview of the components.

The previous methods [2, 3, 4, 5] employ lines parallel
to the vertical image columns as the principal axes. How-
ever, such lines are not equivalent to lines perpendicular to
the ground plane in the 3D world. We introduce the Vertical
Reference Line (VRL) set, which consists of the 2D corre-
spondences of selected 3D lines perpendicular to the ground
floor projected on the image planes. We acquire foreground
pixels based on the VRL set and combine both the appearance
and geometric consistencies to infer principal axes of persons.

We combine the visibility cues and smoothness constraint
into a probability framework to decide every person’s position
from a set of position candidates. See Fig.1 for the pipeline
of our approach.

The paper is organized as follows. Section 2 shows the
general probability framework. Section 3 describes the esti-
mation of persons’ principal axes in 2D views. Section 4 dis-
cusses the evaluation of view visibility and smoothness con-
straint. Experimental results are reported in Section 5. Fi-
nally, in Section 6, we conclude our paper.

2. FORMULATION

This section discusses the MAP (Maximum a Posteriori)
probability framework of the proposed method in validating
the position candidates from two views by using visibility
and motion smoothness as the main criteria.

Given the estimated positions of N persons in the previ-
ous time step t− 1, stated by {xt−1

k }Nk=1, including the posi-
tion xt−1

k of target person k, and the positions {xt−1
s }N−1

s of
the other person s, the basic algorithm is as follows. Note
that, we define the foreground pixels as dti of each view i
(i ∈ 1...L) in the current time step t.
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1. Estimate the principal axes {ytk,i}Li=1(VRL set, Sec-
tion 3.1) of person k in all views according to the function
{ytk,i} = h(dti) (i ∈ 1...L), where h is based on the appear-
ance model, VRL set and the foreground pixels.

2. Generate position candidates {xt
k,j}mj=1 = f({ytk,i}Li=1),

which are the intersection points of VRL from all m stereo
view pairs.

3. Obtain the estimated position (xt
k)

∗ ∈ {xt
k,j}mj=1, that

maximizes the posterior probability P (xt
k|{xt−1

s }N−1
s , xt−1

k )
which is proportional to P ({xt−1

s }N−1
s |xt

k)P (xt
k|x

t−1
k ).

(xt
k)

∗ = arg max
{xt

k,j}
m
j=1

P ({xt−1
s }N−1

s |xt
k,j)P (xt

k,j |xt−1
k )

∝ arg max
{xt

k,j}
m
j=1

λ logP ({xt−1
s }N−1

s |xt
k,j)

+(1− λ) logP (xt
k,j |xt−1

k ) (1)

where the likelihood P ({xt−1
s }N−1

s |xt
k,j) denotes the prob-

ability of person k is well visible in the view pair indexed
by j, while the candidate position and previous location of
the other persons are known. We define this likelihood to be
proportional to the joint visibility of each view pair (Section
4.1). The prior P (xt

k,j |x
t−1
k ) denotes the smoothness con-

straint, that gives a higher probability to the candidates close
to the previously estimated position, and a lower probability
to non-smooth motions (Section 4.2). The parameter λ is the
weighting coefficient between the visibility and smoothness
constraints. The final estimated position of each person in the
current time will be the one that has a high visibility value and
is relatively close to the previous position.

3. PERSON DETECTION IN 2D

Having the foreground regions (silhouettes), the aim of this
section is to discuss how to estimate the 2D principal axes in
2D images. We propose several basic steps: (1) computing
the appearance model of each person; (2) labeling foreground
pixels from both the appearance model and VRL set; (3) es-
timating the 2D principal axes from the labeled foreground
pixels and VRL set. The details of each step are as follows.

3.1. Vertical Reference Line Set

For each view, the VRL set is setup by the following steps:
1. Select a common reference point (e.g. the world origin)

on the ground plane that is visible from all cameras. See Fig.2
(a), the black dot in the center of the ground plane.

2. Create a line that passes through the common reference
point and is parallel to the projection line of the camera’s im-
age plane (Section 4.1) to the ground plane. See Fig.2 (a), the
magenta line on the ground plane.

3. Generate 3D vertical lines on top of the line created in
step 2, with uniform distance to each other. See Fig.2 (a), the
colored 3D vertical lines.

Cam 1 Cam 2Cam 3

Cam 4

(a)

(b)

(c)

Fig. 2. VRL set and principal axis example (best view in
color). (a) 3D vertical lines and VRL sets for a 4 views setup.
(b) Viewing 3D reference lines (green lines) from the projec-
tion center of camera 2 (VRLs on the image plane are gray
lines). (c) VRL histogram, evaluation window and refined
principal axis are superimposed on the foreground regions.
The white lines represent image columns.

4. Compute the VRL set by projecting the 3D vertical
lines from step 3 onto the image planes of all the views. See
Fig.2 (b), the gray lines on the image plane. The number
of VRL lines determines the resolution of the principal axes
candidates.

3.2. Principal Axis Estimation

Having obtained the foreground blobs and the VRL set in the
previous steps, we then first label pixels that lie on the VRL.
Compared with [4, 2] which require proper segmentation of
foreground, sampling the foreground pixels using VRL set
is robust against poor quality foregrounds. Because the VRL
set ensures the geometric consistency of the sampled pixels in
the approximated 3D vertical direction, even if the pixels are
from separate foreground regions of the same person, shown
in Fig.2 (c). The Gaussian kernel based KDE as in [2, 3] is
used to model each person’s whole-body appearance in HSV
color space. After the sampling, we assign each sampled
pixel a person label that gives the highest probability based
on KDE.

Along each VRL, the number of pixels labeled as the same
person is summed up to obtain the VRL histograms of the
pixels for the same person, shown in the bottom of Fig.2 (c).
Aside from the histograms, we also incorporate the positions
of the 2D principal axes of the previous time frame.

p = p′ +
1

b(p′)

( ∑
r∈right(p′)

b(r)−
∑

l∈left(p′)

b(l)
)

(2)

The position of the principal axis p is further refined via
Eq. 2, where p′ is the initial position placed at the highest bin
in the VRL histogram. b(p′), b(r) and b(l) are the counts at
the p′th, rth and lth bins. Function left and right provide
the set of bins that belong to the same person and located at
the left and right side of p′. See Fig.2 (c).
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Fig. 3. Computation of view visibility. (a) Map camera image
plane to ground plane. (b) Compute the occlusion threshold
distance Wk,s = Wk+Ws

2 . (c) Camera FOV on the ground
plane (gray lines), and measure the inter-person occlusion de-
gree by the geometric analysis.

4. TRACKING

As illustrated in our pipeline (Fig.1), to setup the criteria for
ranking the cue reliability by the MAP framework (Eq.1), we
compute the visibility of the views (Section 4.1) to each per-
son and measure the smoothness of the motion (Section 4.2).

4.1. Computation of View Visibility

First, each camera’s projection center and four image plane
corners are mapped onto the ground plane. Among the 4 map-
ping corners, we select a point pair with maximum distance to
each other. As one can see in Fig.3 (a), points I∗c,1, I

∗
c,2 define

a line that approximates the projection of the camera image
plane on the ground plane. Lines connecting these two points
and the camera projection center approximate the camera’s
FOV on the ground plane (Fig.3 (c)).

A person inside the camera’s FOV can be either partially
or completely occluded by other persons. We propose to
quantitatively measure every camera’s visibility to a certain
person. The computation of the view visibility is based on
all persons’ positions in the previous time step. Given the
camera positions {ci}Li=1 and camera FOVs as constant, the
quantitative measurement of the visibility of person k from
the camera ci in an N person group can be expressed as:

V t
k,i(x

t
k,j , {xt−1

s }Qs ) = α||
DE(cf , x

t
k,j)

DE(ci, xt
k,j)

||

+(1− α)||N −Q− 1 +

q1∑
s=1

DP (x
t−1
s , xt

k,j)

DP (I
t−1
s,i , xt

k,j)

−T

q2∑
s=1

Wk,s −DP (x
t−1
s , xt

k,j)

Wk,s
|| (3)

The visibility equation implies that there are two normal-
ized factors determining the degree of visibility (V t

k,i): (1) the
person’s distance to the camera; (2) the occlusion degree from
the other persons. The weight α (where 0 < α < 1) balances
the two factors.

Regarding the first factor, function DE() measures the
Euclidean distance between the candidate position xt

k,j of
person k and the camera ci, and the camera cf that is the
furthest from the person. Since the closer the person to the
camera, the more cues (i.e. larger foreground blob) will be
available, and the more robust the estimation will be.

Regarding the second factor, the function DP () denotes
the distance measured by the line that is parallel to the project
line of the image plane of camera ci on the ground plane, see
Fig.3 (c). Wk,s is a constant which defines the sum of the
estimated half width of the two persons, used as the occlu-
sion threshold, see Fig.3 (b). Based on Wk,s, the occluder
candidates are divided into two groups: (i) q1 close neigh-
bor while DP (x

t
k,j , x

t−1
s ) > Wk,s; (ii) q2 occluders while

DP (x
t−1
s , xt

k,j) < Wk,s; Q = q1 + q2 denotes the total
number of occluder candidates that are in the front of the
target. See Fig.3 (c), DP (I

t−1
s,i , xt

k,j) denotes the distance
between the intersection point of the parallel line (defined
by the close neighbor) to the FOV and the intersection point
of the the parallel line to the camera-target reference line.
For evaluation the visibility with inter-person occlusion: (i)
all the non-occluders contribute N − Q − 1; (ii) all the q1

close neighbors contribute
∑q1

s=1

DP (xt−1
s ,xt

k,j)

DP (It−1
s,i ,xt

k,j)
; (iii) cru-

cially, all the q2 occluders reduce the overall visibility T by

T
∑q2

s=1

Wk,s−DP (xt−1
s ,xt

k,j)

Wk,s
, and T numerically equals to N .

See Fig.3 (c), we define the occulders’ area Ok,i as the
triangular area formed by camera FOV (the gray lines) and
the target person (dotted blue lines). To have one candidate
intersection point we need lines from at least two views. The
visibility of the person on two views is set to be the joint visi-
bility as Vk,j,1∗Vk,j,2, which is proportional to the likelihood:

P ({xt−1
s }N−1

s |xt
k,j) ∝ Vk,j1 ∗ Vk,j2 (4)

where j1,j2 are the index of the views of view pair j.

4.2. Smoothness Constraint

The smoothness of the motion is simply measured by cal-
culating the Euclidean distance from the candidate to the
previous estimated position in the exponential function
exp(−|DE(x

t
k,j , x

t−1
k )|), and proportional to the prior:

P (xt
k,j |xt−1

k ) ∝ exp(−|DE(x
t
k,j , x

t−1
k )|) (5)

which gives low probability for non-smooth motions.
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Fig. 4. Tracking 4PWALK sequences. Left: principal axes
estimation in 2D view. Right: the estimate 3D positions, the
colored lines indicate the selected view pairs.

5. EXPERIMENTS AND EVALUATIONS

Our approach has been tested on a number of calibrated multi-
view sequences, here are two challenging examples:

4PWALK: This sequence records four freely walking
persons with severe inter-person occlusions. The tracking
often fails if the positions are estimated by fusing the prin-
cipal axes from all the views. By applying our framework
approach with the trivial cost of visibility and motion smooth-
ness calculation, for each time step, 2 best views (out of 4) are
selected for each person, all 4 persons are properly tracked in
the whole sequences. See Fig.4.

UMD LAB: The fifteen-view LAB dataset [7] records
four moving persons with manually marked ground truth. Un-
like [3] that uses eight cameras or more, we selected four cam-
eras (index 00,03,06,12). Given the initial positions, our ap-
proach can properly track the 4 persons of severe inter-person
occlusions, see Fig.5 (a). Moreover, due to the advantage of
employing VRL set, built by actual 3D vertical lines as princi-
pal axes, the ground positions estimated by our approach are
generally closer to the ground truth. Using only 2 best views,
we achieved better tracking accuracies than [7] and [3]. See
Fig.5 (b)(c) for the comparison of mean error in position esti-
mation, and mean error standard deviation.

6. CONCLUSIONS

We have introduced a geometric analysis-based multi-person
tracking framework. Using symmetric body principal axis as
the key feature, the persons’ positions on views are approxi-
mated by the VRL set. A novel view-person visibility eval-
uation algorithm is proposed to obtain the reliable cues from
different views. Persons’ 3D ground plane position are esti-
mated within a probability framework that ensures the choice
of the position candidate is the one generated from the views
of higher visibility and smooth motion. In particular, the VRL
set fundamentally improves the accuracy of principal axis-
based person position estimation. Testing on the benchmark
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Fig. 5. Tracking LAB sequences. (a) Top: the estimated 2D
principal axis (thinner line) and 3D position projection lines
(thicker lines) in time step 61. Bottom: the colored solid
squares are ground truth, the bounding boxes are estimated
3D positions. (b) Compare our approach with [7] and [3]:
mean error plot. (c) Mean error standard deviation.

sets, our approach achieved better accuracies than the previ-
ous method. For more details see [8]. In the future, we will
further extend the proposed method to a more flexible frame-
work, to handle e.g. people of similar appearances, and peo-
ple enter or go out of the scene.
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