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Abstract—We model dyadic (two-person) interactions by dis-
criminatively training a spatio-temporal deformable part model
of fine-grained human interactions. All interactions involve at
most two persons. Our models are capable of localizing human
interactions in unsegmented videos, marking the interactions of
interest in space and time. Our contributions are as follows: First,
we create a model that localizes human interactions in space and
time. Second, our models use multiple pose and motion features
per part. Third, we experiment with different ways of training
our models discriminatively. When testing on the target class our
models achieve a mean average precision score of 0.86. Cross
dataset tests show that our models generalize well to different
environments.

I. INTRODUCTION

Fig. 1: Three interactions that only have subtle differences in pose (HOG) and movement (HOF). The red bounding boxes
show the areas of the right hands of which the part descriptions (HOG and HOF) are shown on the right.

We are interested in detecting fine-grained interactions
between people. Detecting such interactions in videos has a
wide range of applications in video search, automated video
captioning and in surveillance. Modeling human interactions
from videos is motivated by these applications and has gained
more research interest in recent years [1]–[4].

Human interaction detection is challenging. It involves
several subtasks. First, we need to localize the people involved
in an interaction. Second, we need to find out who interacts
with whom. Third, for each pair, the start and the end of
the interaction needs to be determined. Finally, the identified
spatio-temporal region is assigned the label of the most likely
interaction class. A large body of work has emerged focusing
on these subtasks. Progress has been made in human tracking
and action classification [5]. However, solving each subtask
independently is unlikely to give the best results. Errors made

early on in, for instance, the person detection impact the
final classification. To overcome these issues, we introduce an
approach that models all parts of the problem simultaneously.

The classification of human interactions benefits signifi-
cantly from precise information of limb positions and move-
ments [6]. The pose or the movement alone is typicially not
sufficient to distinguish between similar interactions [7]. For
instance, Fig. 1 shows two individuals involved in a hand shake
and when passing an object. The poses look similar but their
motion is different. However, the movement of passing an
object and a fist bump can both be characterized by two right
hands moving towards each other. In this case, their poses are
different. Therefore, we need to model both the pose and the
motion of the body parts that are most representative for the
interaction. Pose and motion can be described by Histograms
of Oriented Gradients (HOG) and Histograms of Optical Flow
(HOF), respectively. In this paper, we model body parts with
HOG and HOF descriptors within a deformable parts model
(DPM), which spatially structures the parts.

We focus on human interactions that vary subtly and have a
moment of contact between the two individuals. Our models
can be used to localize specific interactions in both space and
time, in unsegmented videos. The output is a set of spatio-
temporal areas with an assigned interaction label.

When detection models are trained for each interaction class
independently, similarities in feature descriptors will arise
between similar classes (see Fig. 1, right side). This negatively
affects the discriminative power of the models. In this paper
we address this issue through discriminative training of the
models.



Our contributions are as follows. First, we introduce a
framework to localize human interactions in both space and
time. Second, we use multiple pose and motion features per
part, which enables us to detect fine-grained interactions.
Thrid, instead of modeling body parts for each individual, we
model specific the most suitable regions of both individuals
simultaneously, to represent specific interactions.

We experiment with different ways to train such models
discriminatively. We show the efficacy of our work in spatio-
temporal localization experiments both on a single dataset, and
in a cross-dataset scenario.

Next, we will discuss related work, followed by a detailed
explanation of the modeling process in Section III. In Section
IV we detail our experiments and discuss their results. We
conclude in Section V.

II. RELATED WORK

Different strategies can be chosen to solve the problem of
interaction detection. One approach is to first find candidate
regions of people throughout the video using human detection
algorithms [8], [9]. The interactions in these regions can
then be classified based on extracted features [9]. Patron-
Perez et al. [8] use this two-stage approach to classify human
interactions in unsegmented videos. The drawback of this
approach is that classification is suboptimal when the person
localization fails, for example due to partial occlusions when
people are close to each other. The relative distance between
individuals has been further explored by Sener and İkizler [10],
who formulate interaction detection as a multiple-instance
learning problem because not all frames in an interaction
are considered informative. Sefidgar et al. [11] use the same
reasoning to create a model based on discriminative key frames
and consider their relative distance and timing within the
interaction.

Another approach is to first generate features without know-
ing the locations of the people. Features are extracted around
keypoints, such as Space-Time Interest Points (STIP) [12].
These features can be encoded using Fisher Vectors (FV) [13]
or a Bag-of-Features (BoF) [1]. This approach has achieved
state-of-the-art results. Wang et al. [14] create a BoF dictionary
based on dense trajectories of keypoints. These trajectories
consist of many tracks of features: Histograms of Oriented
Gradients (HOG), Histograms of Optical Flow (HOF) and
Motion Boundary Histograms (MBH). One drawback of this
method is that it is not possible to localize an interaction
in space and time because one trajectory by itself is not
sufficiently informative to give a definite demarcation of the
interaction subspace. Ni et al. [15] solve this problem by clus-
tering the dense trajectories. When enough dense trajectories
can be clustered, the volume created by the set of trajectories
roughly encompasses the interaction. While this is a promising
direction, these methods do not link motion descriptors to
specific body parts, As such, they cannot be used to distinguish
between interactions that vary subtly.

Poses and movements of specific body parts characterize
the interaction that is taking place [16]. For instance, in a fist

bump, the arms extend towards each other and the knuckles of
the right hands meet as they touch. The clenched fist required
for the knuckles to meet means that the lower arm is in a par-
ticular pose and moves forward. The notion of motion and pose
units has been used by Kong et al. [17], who create models for
attributes such as “outstretched hands” and “leaning forward
torso” and consider their co-occurrences. Deformable part
models (DPM, [18]) also link pose and motion to specific parts
of the body. DPMs model spatial structures at a coarse level
and then put a number of finer-grained parts on top of the most
dominant features. Yao et al. [19] use DPMs to model poses
in human-object interactions. To capture the movement related
to a given pose, they connect the output of a DPM to a set of
motion templates. These templates do not have deformation
parameters, which means that they cannot model the variation
in movements. Tian et al. [20] have extended DPMs for action
detection using HOG3D parts [21] combined with spatio-
temporal deformation parameters. In their formulation, each
HOG3D part is deformable in both space and time, but is not
connected to any specific body parts.

In contrast, Van Gemeren et al. [7] use interaction-specific
part based models with HOG descriptors for specific body
parts. The coordinated movement between the people is mod-
eled as a HOF descriptor, locally related to the detected
persons. As there can be significant variation in how people
pose, this two-stage approach strongly relies on the accuracy
of the pose detection. In this paper, we address these issues
with deformable part models that take into account both pose
and motion features simultaneously.

III. DISCRIMINATIVE INTERACTION MODEL

The starting point for our two-person interaction model is
the model introduced by Yang and Ramanan [22]. We change
three key properties to make it suitable for human interaction
detection. First, parts do not model generic body parts at joint
locations. Instead, in this work parts model those regions of
the body that are most suited to represent specific interactions.
This representation is remniscent of the poselets introduced
by Bourdev et al. [23]. Second, each part in our model
can represent different combinations of image cues. It can
represent either gradient or motion features, or it can represent
a combination of the two. This way we can explicitly decide
per part if it should model pose, motion or both. Finally, we
model the spatial relation between the deformable body parts
of both persons involved in the interaction simultaneously. In
our model variations in the part positions, which implicitly
represents the distance between the two persons during the
interaction, are optimized as latent deformation parameters of
the DPM. These extensions of the model allow us to do spatio-
temporal interaction localization for interactions with subtle
differences.

A. Model formulation

We base our model on the observation that for fine-grained
human interactions there exists a moment where both the pose
and motion are coordinated in a way that is prototypical for



the interaction. To model this prototypical moment we define a
graph G = (V,E), with V a set of K body parts and E the set
of connections between pairs of parts [22]. In the experiments
presented in this paper, the body parts we consider may be
compound parts consisting of multiple body joints, such as a
torso, right upper arm, right lower arm and right hand. Each
body part i is centered on location li = (xi, yi). The scoring
for a part configuration in image I is given by:

S(I, l) =
∑
i∈P

wi · φi(I, li) +
∑
ij∈E

wij · ψ(li − lj) (1)

We note that in Eq. 1, for clarity, we omit that the scores are
defined by the dot product between a part and a subwindow
of a feature pyramid computed from the input image. The
first term models the part appearance with a convolution of
image feature vector φi(I, li) with trained detector wi. The
second term contains the pair-wise deformations between parts
ψ(li − lj) =

[
dx dx2 dy dy2

]
, with dx = rixi − rjxj and

dy = riyi− rjyj the relative location of part i with respect to
part j [22]. The distances dx and dy are defined with respect
to a root factor r. This allows each part to have its own spatial
resolution. In practice we use two resolutions, the second of
which is twice the resolution of the first. This allows us to
quickly find candidate detections at the coarse level, on which
a localization of fine-grained pose and motion cues can be
detected. This structure makes the model suitable for cascade
object detection [24]. wij encodes the rest location and the
rigidity of the connections between parts.

The three key adaptations to this model are defined as
follows:

Class-specific part detectors Instead of having different
part mixtures representing various orientations, we learn class-
specific detectors that encode the articulation of the body parts
directly, such as a bent arm or a side-facing torso. Therefore,
we use only a single detector per class, instead of a mixture
of part detectors like in [22].

Multiple features Our model supports different types of
features per part. For part i with feature representations Di,
we replace the first term in Eq. 1 by:∑

i∈P

∑
j∈Di

bijw
j
i · φ

j
i (I, li) (2)

φji (I, li) denotes a feature vector of type j for part i. Bias
bij denotes the weight for each feature type. wji is the trained
detector for part i and feature type j. Parts can have different
combinations of features Di. In this work Di is either HOG or
HOF, but it is not limited to these types of features. The DPM
inference algorithm is well suited to incorporate a learned
feature extractor such as convolutional neural networks (CNN)
[25]. As such, our formulation is different from Yao et al. [19],
who require one HOG template and a set of HOF templates
per body part. In contrast, our model allows us to focus on
those features that are characteristic for a specific body part
and interaction class. We explicitly also consider features that
are calculated over time such as HOF descriptors.

Two-person interaction As there are two persons involved
in a dyadic interaction, we combine their body parts into
the same graph. Each actor’s body parts form a sub-tree in
this (2K + 1)-node graph. The torso parts of both actors are
connected through a virtual root part of the graph. This part
does not have an associated part detector but it allows us to
model relative distances between people, similar to Patron-
Perez et al. [8] and Sener and İkizler [10].

B. Training

For each interaction class, we learn the model from a set of
training sequences. We describe a sequence of length n as X =
{(Ii, yi, pi)}ni=1 with Ii an image frame, yi the interaction
label of frame i and pi a pose vector containing the 2D joint
positions of the two persons performing the interaction. We
assume the sequences are segmented in time to contain the
interaction of interest.

We train a model in three steps. First, we determine the
epitome frame per training sequence. Second, we learn the
initial body part detectors. Third, we simultaneously update
the epitome frame and the body part detectors.

Fig. 2: Frame subwindow
with superimposed pose data.
Green: right side, red: left
side.

Epitome frame detection
We intend to find the pro-
totypical interaction frame of
each training sequence based
on the pose of the individu-
als. To this end, we pair-wise
compare subsets of joints
(shown as the yellow dots
in Fig. 2) for all interaction
frames of two sequences. We
iterate over all sequences and
select the one with the mini-
mal distance of the joint sets.
We can efficiently identify the
frame in each sequence with
a 2D adaptation of Kabsch
algorithm [26]. Based on the
sequence with minimal dis-
tance, we label each other se-

quence as prime if the distance is below 0.5, and inferior
otherwise.

Initial model learning We learn body part detectors wji
(Eq. 2) from the prime sequences. We determine, for each part,
the type, spatial resolution and temporal extent. The spatial
resolution indicates the cell size. For HOF, the temporal extent
dictates how many frames around the epitome frame are used.

For each interaction, we train body part detectors for both
persons using Dual Coordinate Descent SVM (DCD SVM)
solvers [27]. After the positive optimization round, we perform
a round of negative hard detection [18]. We can use different
sources of negative examples. To train a model discrimi-
natively we use a balanced selection of examples from all
the other classes than the one being learned, as a source of
negative examples. We can also train non-discriminatively by
taking the negative examples from a completely different data



Fig. 3: Top row: HOG pose models for fist bump, hand shake, high five and pass object. Bottom row: HOF features of the
right hands. The red rectangle indicates the enclosing bounding box of the two hands. Note the vertical hand movement for
the hand shake model and the horizontal movement for fist bump.

source, to create realistic motion patches. This is beneficial to
the model because it prevents overfitting to the environment
of the training set. As a thrid option we can alternate between
the discriminative and non-discriminative negative examples
during training. This way we optimize both the subtle dif-
ferences between features of different classes and we prevent
overfitting to the environment.

Epitome and model refinement Once an initial model is
constructed, we apply it to both prime and inferior training
sequences of the particular class to detect new latent positive
interaction examples. We search for the highest scoring frame
in each sequence to add to the positive example set. Given
that the initial epitome frames are selected solely based on
pose, this step allows us to better represent the motion of the
body. The resulting positive example set is used to optimize
the model features and to determine all part biases and
deformation parameters using the DCD SVM solvers. Example
models are shown in Fig. 3.

C. Spatio-Temporal Localization

With a trained model, we can detect interactions in both
space and time. We first detect interactions in individual
frames, and then link these in time to form interaction tubes.

We generate a feature pyramid for each of the feature
types to detect interactions at various scales. We extend the
formulation to deal with feature types with a temporal extent,
such as HOF. Based on Eq. 1, we generate a set of detection
candidates spanning the entire video. In practice, we evaluate
non-overlapping video segments. For a temporal HOF size
of nine frames, we evaluate every ninth frame. Overlapping
detections are removed with non-maximum suppression.

Interaction tubes We link frame detections into interaction
tubes (see Fig. 4). To this end, we first sort candidate detections
on detection score. Each tube starts with the best scoring
detection. We consider the frame of this detection to be
the epitome of the interaction. Then we greedily assign the
detections of adjacent frames to the current tube. A detection is

only added if it satisfies a minimum spatial overlap constraint
ρ of 50% and a maximum area deviation of 50% with respect
to the detection at the epitome. We iterate until all candidate
detections have been assigned to a tube. Finally we remove
all tubes with only a single detection.

IV. EXPERIMENTS AND RESULTS

Given that we can use different sources of negative exam-
ples to train our models, we want to evaluate the accuracy
of our model when localizing interactions that differ slightly.
To address this scenario, we make use of a novel dataset:
ShakeFive2. We train interaction detection models on this
dataset and present the performance of different settings.
Additionally, we test these models on the publicly available
UT-Interaction [3] dataset.

ShakeFive2 consists of 94 videos with five close proximity
interaction classes: fist bump, hand shake, high five, hug and
pass object. Each video contains one two-person interaction,
recorded under controlled settings but with small variations in

Fig. 4: Detected spatio-temporal interaction tube (red) for a
hand shake. The green rectangle shows the best detection.



Fig. 5: Example frames from the datasets used in this paper:
ShakeFive2 and UT-Interaction. Top row: hand shake, bottom
row: hug.

viewpoint (Fig. 5). For each person in each frame, 2D joint
position data obtained using Kinect2 is available.

UT-Interaction consists of two sets of 10 videos each. The
first set features two persons in interaction per video, while
the second set contains multiple pairs per video. The following
interactions are performed: hand shake, hug, kick, point, punch
and push. No pose data is available but bounding boxes are
provided. To have a more tight estimate of the interaction per
frame, we use the bounding box data from [10].

We have created three different experiments to test the
effect of: (i) non-discriminative training (ND), where we
harvest negative examples in random frames of the Hannah
dataset [28]; (ii) discriminative training (D), where we use
the examples of the other classes than the one we are training
as the negative data source; (iii) mixed training (M), where we
alternate between negative examples from Hannah and from
training examples of the other classes. Data from Hannah
helps extracting suitable motion patches because its visual
environtment differs from the training data.

A. Performance Measurements

As we detect interactions in both space and time, we use
the average intersection over union of the ground truth G and
detected tube P as in [29]. G and P are two sets of bounding
boxes and θ is the set of frames in which either P or G is not
empty. The overlap is calculated as:

IoU(G,P ) =
1

‖θ‖
∑
f∈θ

Gf ∩ Pf
Gf ∪ Pf

(3)

We evaluate different minimal overlap thresholds σ for
which IoU(G,P ) ≥ σ. For cross-validation tests, we report
the mean average precision (mAP) scores as the mean of the
areas under the curves of each fold.

We consider two testing scenarios: single-class (SC) and
multi-class (MC). For single-class detection, we apply a de-
tector for a given interaction class to test videos of that class
only. This scenario measures the spatio-temporal localization
accuracy. In the multi-class scenario, we use the detector on
all available test sequences in the dataset. This allows us to

test for confusions with other interactions. In the multi-class
scenario, the same interaction can be detected with models
of different classes. This common situation will lead to false
positives as we do not compare or filter these detections, but
it gives a good indication of the mAP performance difference
with and without discriminative training.

B. Results

For the three experiments we have conducted on the Shake-
Five2 dataset, we refer to the five interactions we evaluate as:
FB (fist bump), HS (hand shake), HF (high five), HU (hug)
and PO (pass object). In Table I we show the results. We
note that on average the mixed training model performs best,
though for some interaction classes, such as hand shake, the
non-discriminative training model gives the best results.

When we compare the results of the non-discriminative
training model to the discriminative and the mixed models,
we can see in Fig. 6 that the mAP score decreases slowest
with the mixed model, for increasing σ. This is the case in
both the single class and multi-class scenarios.

As the mixed training model performs best in the first
experiments we have tested the models that overlap with
interactions from UT-Interaction on this data. The results of
this experiment are shown in Table II. We can see that the
performance differences between the hand shake model and
the hug model are quite significant. We also note that Set #2
performs better than Set #1 one in our tests.

TABLE I: Non-discriminative (ND), Discriminative (D) and
Mixed (M) mAP scores on ShakeFive2 in a single-class (SC)
and multi-class (MC) scenario.

ND/D/M SC/MC FB HS HF HU PO Avg.
ND SC 0.79 1.00 0.87 0.63 0.91 0.84
D SC 0.97 0.85 0.80 0.47 0.75 0.77
M SC 0.93 0.87 0.88 0.76 0.84 0.86

ND MC 0.42 0.90 0.48 0.32 0.59 0.54
D MC 0.71 0.80 0.76 0.45 0.53 0.65
M MC 0.65 0.77 0.84 0.72 0.55 0.71

TABLE II: Single-class (SC) and multi-class (MC) mAP
scores for UT-Interaction.

Set HS HU Avg.

SC #1 0.60 0.21 0.51
#2 0.82 0.44

MC #1 0.49 0.21 0.48
#2 0.79 0.43

V. CONCLUSION

We introduced a discriminatively trained interaction local-
ization model. We have shown how to train it using multiple
pose and motion features per part. The model’s efficacy at lo-
calizing fine-grained interactions is shown on two challenging
datasets containing human interactions with subtle differences.

We achieve a maximum mAP score of 0.86 for the mixed
training model in the single class scenario for the experiments



(a) Non-discriminative training (b) Discriminative training (c) Mixed training

Fig. 6: 3-fold cross-validation mAP scores over all interaction classes in the single-class (solid line) and multi-class (dashed)
scenarios of ShakeFive2 for increasing values of σ.

on ShakeFive2. The multi-class scenario achieves a maximum
mAP score of 0.71 for the same model. On the UT-Interaction
dataset we achieve an average performance of 0.51 and 0.48
in the single class and multi-class scenarios, respectively.

At this moment pose data is required to train our models.
We would like drop this requirement by extending our model
in future work. Another improvement would be modeling
multiple perspectives to improve viewpoint independence.
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[21] A. Kläser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor
based on 3d-gradients,” in British Machine Vision Conference, 2008, pp.
995–1004.

[22] Y. Yang and D. Ramanan, “Articulated human detection with flexible
mixtures of parts,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 35, no. 12, pp. 2878–2890, 2013.

[23] L. Bourdev, S. Maji, T. Brox, and J. Malik, “Detecting people using
mutually consistent poselet activations,” in Proceedings European Con-
ference on Computer Vision (ECCV) - Part V, 2010, pp. 168–181.

[24] P. F. Felzenszwalb, R. B. Girshick, and D. A. McAllester, “Cascade
object detection with deformable part models,” in Proceedings IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010,
pp. 2241–2248.

[25] R. Girshick, F. Iandola, T. Darrell, and J. Malik, “Deformable part
models are convolutional neural networks,” in Proceedings Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 437–
446.

[26] W. Kabsch, “A discussion of the solution for the best rotation to relate
two sets of vectors,” Acta Crystallographica Section A, vol. 34, no. 5,
pp. 827–828, 1978.

[27] J. S. Supancic III and D. Ramanan, “Self-paced learning for long-term
tracking.” in Proceedings Conference on Computer Vision and Pattern
Recognition (CVPR), 2013, pp. 2379–2386.

[28] A. Ozerov, J. Vigouroux, L. Chevallier, and P. Pérez, “On evaluating face
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