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Due to the recent improvements in laser scanning technology, 3D visualization and mod-
elling, there is an increasing need for tools supporting the automatic search for 3D
objects in archives. In this paper we describe a new geometric approach to 3D shape
comparison and retrieval for arbitrary objects described by 3D polyhedral models that
may contain gaps. In contrast with existing approaches, our approach takes the overall
relative spatial location into account by representing the 3D shape as a weighted point
set. To compare two objects geometrically, we generate for each object a weighted point

set, which represents for each non-empty grid cell a salient point. We compare three
methods to obtain in each grid cell a salient point and a weight: (1) choose the vertex
in the cell with the highest Gaussian curvature, and choose as weight a measure for that
curvature, (2) choose the area-weighted mean of the vertices in the cell, and choose as
weight a measure denoting the normal variation of the facets in the cell and (3) choose
the centre of mass of all vertices in the cell, and choose as weight one. Finally, we com-
pute the similarity between two shapes by comparing their weighted point sets using a
new shape similarity measure based on weight transportation that is a variation of the
Earth Mover's Distance. Unlike the Earth Mover's Distance, the new shape similarity
measure satis�es the triangle inequality. This property makes it suitable for use in in-
dexing schemes, which frequently depend on the triangle inequality, such as the one we
introduce, based on so-called vantage objects. The strength of our approach is proven
through experimental results using a database consisting of 133 models such as mugs,
cars and boats, and a database consisting of 512 models, mostly air planes, classi�ed
into conventional air planes, delta-jets, multi-fuselages, biplanes, helicopters and other
models. The results show that the retrieval performance is better than related shape
matching methods.

Keywords: digital libraries; 3D shape matching; 3D shape retrieval; transportation dis-
tance.
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1. Introduction

As a result of the recent improvements in laser scanning technology, the acquisition

of 3D models by 3D digitizing now is commonplace. Applications of emerging

relevance are augmented reality using digitized 3D models, 3D shape retrieval, and

the creation of digital archives for all kind of purposes, e.g. recording cultural

heritage and reverse engineering. The World Wide Web enables access to these

digital archives and desktop computers now have the power to process and display

huge 3D data sets. Hence, there is an increasing need for tools supporting the

automatic search for 3D objects in archives.

The World Wide Web provides access to thousands of 3D objects mostly in

virtual reality modelling language (VRML) format. Most 3D �le formats like VRML

represent 3D models as meshes. To represent a 3D shape properly, the mesh has

to be closed, such that the mesh is a polyhedron. Since the main application of

the VRML models is visualization, they are in practice often not watertight, i.e.

the polyhedra may contain small gaps. Also, they may contain wrongly-oriented

polygons.

In this paper, we describe a new geometric approach to 3D shape comparison and

retrieval for arbitrary objects described by 3D polyhedral models that may contain

gaps. The key idea is to represent the signature of an object as a weighted point

set that represents the salient points of the object. These weighted point sets are

compared using a new shape similarity measure based on weight transportation that

is a variation of the Earth Mover's Distance. Unlike the Earth Mover's Distance, the

new shape similarity measure satis�es the triangle inequality. This property makes

it suitable for use in indexing schemes, which frequently depend on the triangle

inequality.

Also, we have implemented a 3D shape retrieval engine38 that demonstrates the

capabilities of this new approach. The strength of our approach is proven through

experimental results using a database consisting of 133 models such as mugs, cars

and boats, and a database downloaded from the World Wide Web consisting of 512

models, mostly air planes classi�ed into conventional air planes, delta-jets, multi-

fuselages, biplanes, helicopters and other models.

The outline of the paper is as follows. The next section contains a summary of

related work. Section 3 describes how we extract the weighted point sets and how

we compute the distance between two such sets. Experimental results are presented

in Section 4 and discussed in Section 5. Finally, we present our conclusions and

indicate future research topics in Section 6.

2. Comparison to Related Work

An important issue in the context of 3D archives is how to search for 3D objects

in a similar way as we already search for text, images, audio and video. Up to now

there are only few references to the speci�c problem of content based retrieval of

3D models. However, an extensive amount of literature can be found in the related
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�elds of computer vision, object recognition and geometric modelling. For a broad

introduction to this literature, please consult the survey paper by Campbell and

Flynn7. The vast majority of work in shape matching has focused on characterizing

similarity between objects in 2D images. For an overview of 2D shape matching

methods we refer the reader to the paper by Veltkamp33. Unfortunately, most 2D

methods do not generalize directly to 3D model matching. In particular, extending

methods of comparing boundaries in two dimensions to higher dimensions is non-

trivial, both in theory and in practice. In the following, we describe 3D shape

matching research based on comparing shapes in 3D directly.

Feature based similarity: Cicirello and Regli9 present an approach to com-

pare the similarity of solid models of machined artifacts based on the similarity of

their machining features and to query databases of these models. Since machin-

ing features contain manufacturing process knowledge their research is especially

relevant for the CAD/CAM community, but unfortunately it is not applicable for

models of natural shapes like humans and animals.

2D view based similarity: A number of approaches compare 3D models by the

similarity of their 2D views. L�o�er21 describes a content-based retrieval method

that matches a user provided 2D sketch with views from the 3D model in the

database. Cyr and Kimia13 present a method to obtain representative views using

a shape similarity based aspect graph that clusters views into aspects. Funkhouser

et al.16;37 implemented an experimental 3D search engine supporting retrieval by

shape using a sketch interface providing one, two or three 2D outlines of the shape

to be retrieved.

Histogram based similarity: The following approaches to 3D shape match-

ing compare histograms or distributions encoding shape properties. Shum et al.31

use a spherical coordinate system to map the surface curvature of 3D objects to

the unit sphere. By searching over a spherical rotation space a distance between

two curvature distributions is computed and used as a measure for the similarity

of two objects. Unfortunately, the method is limited to objects which contain no

holes, i.e. have genus zero. Ankerst et al.1 use shape histograms de�ned on shells

and sectors around a model's centroid and compare shapes using a quadratic form

distance measure to compare the histograms. Elad et al.15 use a moments-based

classi�er and a weighted Euclidean distance measure. Their method supports iter-

ative and interactive database searching in which the user can improve the weights

of the distance measure by marking relevant search results. Paquet et al.25 apply

cords-based, moments-based and wavelets-based descriptors for 3D shape matching.

Zhang and Chen36 use features such as volume-surface ratio, moment invariants and

Fourier transform coeÆcients. They improve the retrieval performance by an active

learning phase in which a human annotator assigns attributes such as airplane, car,

body, and so on to a number of sample models. A descriptor based on the 3D Dis-

crete Fourier Transform is introduced by Vrani�c and Saupe35. Kazhdan20 describes

a re
ective symmetry descriptor associating a measure of re
ective symmetry to

every plane through the model's centroid. Osada et al.23;24 introduce and compare
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shape distributions, which measure properties based on distance, angle, area and

volume measurements between random surface points. They evaluate the similarity

between the objects using a metric that measures distances between distributions.

In their experiments the shape distribution measuring distances between random

surface points is most e�ective.

Topology based similarity: Hilaga et. al.18 describe a topological matching

method relevant especially for articulated objects. Their method uses Reeb graphs

based on geodesic distances to encode the topology of 3D objects.

Volume based similarity: Novotni and Klein22 describe a geometric similarity

approach to 3D shape matching based on calculating a volumetric error between

one object and a sequence of o�set hulls of the other object. A drawback of their

method is that their similarity measure is no metric, because it is not symmetric

and does not obey the triangle inequality.

Neighbourhood based similarity: These methods are based on matching

surface points taking into account the surface shape in the neighbourhood of the

points. For this purpose Chua and Jarvis8 compute point signatures that accumu-

late surface information along a 3D curve in the neighbourhood of a point. Johnson

and Herbert19 apply spin images that are 2D histograms of the surface locations

around a point. They apply spin images to recognize models in a cluttered 3D scene.

Due to the complexity of their representation these methods are very diÆcult to

apply to 3D shape matching. Also, it is not clear how to de�ne a similarity function

that is a metric.

Deformation based similarity: A number of methods compare a pair of 2D

shapes by measuring the amount of deformation required to register the shapes

exactly. For example, Cohen et al.11 use a representation based on curvature in

order to encourage matching curvature extrema between counters. Also, Basri et al.3

propose a method to measure the degree of similarity between two image contours

deformations in object shape into account. In contrast with Cohen et al.11, they

use a similarity function that is a metric. The 2D methods described above depend

on the natural arc length parameterization of their contours. Another problem

is that the dimensionality of 3D data is higher, which makes registration, �nding

feature correspondences, and �tting model parameters more expensive. As a result,

methods that apply deformation for shape recovery32 or shape evolution14 are very

diÆcult to apply for 3D shape matching.

Our contribution: Many of the methods mentioned above do not take the

overall relative spatial location into account, but throw away some of this informa-

tion, in order to deal with data of lower complexity, e.g. 2D views or 1D histograms.

What is new in our method, is that we use the overall relative spatial position by

representing the 3D shape as a weighted point set, without taking the connectivity

relations into account however. The weighted point sets, that can be viewed as 3D

probability distributions, are compared using a new transportation distance that is

a variant of the Earth Mover's Distance30. In contrast, histogram based approaches

can be viewed as methods comparing 1D probability distributions. New in our



Polyhedral Model Retrieval

approach is, that in contrast with the Earth Mover's Distance, this transportation

distance satis�es the triangle inequality. Since this transportation distance obeys

the triangle inequality, our method can be used in indexing schemes that employ

this property, of which we will introduce one. Our experiments demonstrate that

the retrieval performance is better than related shape matching methods.

3. Overview of Approach

To compare two objects independently of orientation, position and scaling we �rst

apply principal components analysis to bring the objects in a standard pose. Also

in the preprocessing step, we enclose each object by a 3D grid and generate for

each object a signature representing a weighted point set, that contains for each

non-empty grid cell a salient point. We compare three methods to obtain in each

grid cell a salient point and a weight: (1) choose the vertex in the cell with the

highest Gaussian curvature, and choose as weight a measure for that curvature, (2)

choose the area-weighted mean of the vertices in the cell, and choose as weight a

measure denoting the normal variation of the facets in the cell and (3) choose the

centre of mass of all vertices in the cell, and choose as weight one. Finally, we

compute the similarity between two shapes by comparing their signatures using a

shape similarity measure that is a new variation of the Earth Mover's Distance.

We assume that a 3D shape is represented by a polyhedral mesh. We do not

require the polyhedral mesh to be closed. Therefore, our method can also handle

polyhedral models that may contain gaps.

3.1. Preprocessing

3D models have arbitrary scale, orientation and position in the 3D space. Because

the similarity measure we use is not invariant under rotation and translation, it is

necessary to place the 3D models into a canonical coordinate system. This placing

into the canonical coordinate system should be the same if we translate, rotate or

scale the model. Furthermore, if a model is given in multiple levels-of-detail, canon-

ical representations of di�erent levels should be approximately the same. First, the

centre of mass of the surfaces of each polyhedral model is translated to the ori-

gin. Note that we cannot translate the centre of mass of the solid enclosed by the

model to the origin, because for a polyhedral model containing one or more gaps

this solid is not de�ned. We use the Principal Component Analysis (PCA) method

to compute for each polyhedral model the principal axes e1, e2 and e3 and their

eigenvalues �1, �2 and �3, and make the necessary conditions to get right-handed

coordinate systems. These principal axes de�ne an orthogonal coordinate system

(e1; e2; e3), with �1 � �2 � �3. Next, the polyhedral model is rotated around

the origin such that the coordinate system (e1; e2; e3) coincides with the coordinate

system (ex; ey; ez).

Conventionally, the PCA26 is applied only to a set of points (e.g., vertices or

centroids of facets), thus, the di�erent sizes of facets cannot be taken into account.
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Therefore, we applied a \weighted" PCA35 that relates the area of facets to weights

associated to the vertices of the polyhedral model. The PCA algorithm for pose

estimation is fairly simple and eÆcient. However, as noted by Novotni and Klein22

the application of this procedure without further processing does not always result

in a correct estimation. This is due to the following problems:

� The PCA method gives the three principal axis, but it lacks any information

about their direction resulting thus in a two way ambiguity for each axis.

This means that we have a total of 4 con�gurations corresponding to the four

possible right-handed coordinate systems that all represent the same principal

axes. Hence, if we want to obtain a similarity value d(A;B) comparing two

objects A and B, we consider four rotated copies B1, B2, B3 and B4 of B

and compute d(A;B) as the minimum of d(A;B1), d(A;B2), d(A;B3), and

d(A;B4).

� If the eigenvalues are similar, principal axes may switch, without a�ecting the

eigenvalues. Since solving this problem is diÆcult, we accept that in a number

of cases we may obtain bad results.

After the PCA, as a last preprocessing step we divide the unit cube that encloses

the object into a grid consisting of 25*25*25 cells of equal size.

3.2. Extracting Salient Points

Next, we generate for each object a signature S representing a weighted point set,

that contains for each non-empty grid cell a salient point. Below we compare three

methods to obtain in each grid cell a salient point. All three methods use only the

vertices and the facets adjacent to the vertices to obtain a salient point. Therefore,

they can handle models that contain gaps. Models containing polygons that are

wrongly oriented, are only handled correctly by the third method.

3.2.1. Gaussian Curvature Method

For a smooth surface the Gaussian curvature c at a point is the product of the

minimal and maximal principal curvature at that point.

For polyhedral meshes the Gaussian curvature c(v) at a vertex v can be com-

puted by the following rule from Calladine6:

c(v) =
d(v)

a(v)
:

Here, d(v) denotes the angular defect at v, which is de�ned for interior vertices

as 2� minus the sum of the interior angles of the facets meeting at v. For vertices

v at the boundary of a gap the angular defect is de�ned as � minus the sum of

the interior angles of the facets meeting at v. The scalar a(v) denotes the area

associated with vertex v, where each facet contributes to a(v) the area of the facet

divided by the number of its vertices.
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The 
atter the surface, the smaller c will be. If all the facets are coplanar, for

interior vertices c will be zero. If for a boundary vertex the edges of the boundary

do not meet at an angle, d(v) is also zero.

The Gaussian curvature method computes for each non-empty grid cell the ver-

tex v with the highest absolute value of the Gaussian curvature. We take the

absolute value of the Gaussian curvature, because our similarity measure cannot

handle point sets with negative weights. Hence, at an individual point we cannot

distinguish between elliptic and hyperbolic shapes. But, because in general the

weighted point sets of elliptic and hyperbolic shapes will di�er, these shapes will

be found dissimilar using our similarity measure. Since the absolute value jcj of the

Gaussian curvature c may have values between zero and in�nity, we normalize to

the range [0; 1], and de�ne a measure M , such that for all x M(x) = 1� 1=(1+ x).

This normalization avoids that vertices with very high curvatures disturb the com-

putation of our similarity measure and makes it less sensitive to noise. For each

non-empty grid cell the weighted point (v;M(jcj)) is added to the signature S.

3.2.2. Normal Variation Method

Another approach to obtain a measure related to the curvature is the normal vari-

ation method. In this approach we estimate the curvature in a grid cell by the

normal variation in the grid cell. We choose the area-weighted mean of the vertices

p(c) in the grid cell as a salient point and we choose as weight a measure for the

normal variation.

We compute the area-weighted mean p(c) of the vertices in the grid cell by

p(c) =

0
@

MX
j=1

wjvj

1
A =

MX
j=1

wj ;

where M is the number of vertices in the cell, vj is the j
th vertex in the cell. The

weight wj denotes the area associated with vertex vj , where each facet contributes

to wj the area of the facet divided by the number of its vertices.

To compute the normal variation we use the following method from Brodsky

and Watson5. For each grid cell we compute the mean normal ~mn, that is the

area-weighted mean of all the normals of facets adjacent to a vertex in the grid cell

as given by the equation

~mn =

NX
i=1

ai ~ni;

where N is the number of facets in the cell, ~ni is the normal of facet i, and ai is the

area of facet i.

The 
atter the surface, the larger the magnitude of ~mn will be. If all the facets

are coplanar, the magnitude of ~mn will equal the area of surface of the surface in the

cell. Hence, cp de�ned as k ~mnk=
PN

i=1 ai equals one. Otherwise cp will be smaller
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than one. Therefore, we choose 1� cp as weight and add for each non-empty grid

cell the weighted point (p(c); 1� cp) to the signature S.

In the normal variation method gaps will result in a number of missing facets,

that are not taken into account in the procedure described above. If the area of

these facets is small, then the error caused by the gaps will also be small.

3.2.3. Midpoint Method

The two methods described above may fail if the 3D models contain wrongly oriented

polygons. This is the case for models that are represented by \polygonal soups", i.e.

unorganized and degenerate sets of polygons. To handle such degenerate models,

we also implemented a simple approach called midpoint method, that is similar

to Rosignac's polygon simpli�cation algorithm29. The midpoint method obtains a

signature S by adding for each grid cell the centre of mass of all vertices in the cell

with unit weight to the signature S.

3.3. Matching

Now that we have the signatures of our polyhedral models represented as sets of

weighted points, we need a way to match two such sets. So we need a de�nition of

a distance function, and an algorithm to compute the distance.

A distance measure is a function de�ned on pairs of patterns indicating the

degree of their resemblance. Formally speaking, a distance measure d on a set S is

a nonnegative valued function d : S � S ! R
+ [ f0g. For many pattern matching

applications, it is desirable that d has some of the following properties:

i. Self-identity : For all x 2 S; d(x; x) = 0.

ii. Positivity : For all x 6= y in S; d(x; y) > 0.

iii. Symmetry : For all x; y 2 S; d(x; y) = d(y; x).

iv. Triangle inequality :

For all x; y; z 2 S, d(x; z) � d(x; y) + d(y; z).

v. Transformation invariance: For a chosen transformation group G, for all

x; y 2 S, g 2 G, d(g(x); g(y)) = d(x; y). This also implies d(g(A); B) =

d(A; g�1(B)).

A function d having properties (i){(iv) is called a metric. Other combinations

are possible: a pseudo-metric is a function that has properties (i), (iii) and (iv),

while a semi-metric is a function that obeys only (i), (ii) and (iii).

The triangle inequality is very useful for making searching more eÆcient as

shown by Barros2. This is based on the following observation. Consider a shape

or weighted point set A1 that closely matches a query Aq : d(A1; Aq) is small.

Let Ar be some reference shape. If the triangle inequality holds, d(Ar; Aq) �

d(Ar; A1) + d(A1; Aq), then we know that d(Ar ; Aq) � d(Ar ; A1) is small as well.
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We can approximate the distance between a database shape A1 and a query Aq

by comparing their distances to a reference shape Ar. This observation can be

applied to implement eÆcient indexing and searching of the shape database us-

ing the vantage method34, as follows. Calculate o�-line the distance between all

database objects and a reference shape called vantage object. The set of objects

that have about the same distance to the vantage as a query object, contains also

those objects that have about the same distance to the query object (if the triangle

inequality holds). This can be extended to more vantage objects. In this way, on-

line comparisons of complex shapes can be done with only a few vantage objects,

at the cost of false positives, but no false negatives. After computing the distances

of all database objects to a �xed number of vantage objects, for querying only a

few expensive shape comparisons are needed. Hence, the actual range query is done

eÆciently in higher dimensional Euclidean space.

There are two main approaches to compare weighted point sets. One approach

is to interpret the point sets as fuzzy sets. However, a distance measure for fuzzy

sets that is a metric, which is invariant under rigid motion and respects scaling of

the underlying ground distance, does not exist as shown by Bra�4. In addition, a

Hausdor�-like pseudo-metric fails to di�erentiate between fuzzy sets with arbitrary

di�erent maximum membership values. The other approach is the Earth Mover's

Distance (EMD). However, for sets of unequal total weights, it gives zero distance

for arbitrary di�erent sets, and it does not obey the triangle inequality. Therefore,

we describe below a new shape similarity measure based on weight transportation

that is a variation of the EMD and satis�es the triangle inequality. We refer the

reader to the paper by Giannopoulus and Veltkamp17 for an exhaustive description

of the EMD and the new shape similarity measure.

3.3.1. Earth Mover's Distance

The distance that we will use for matching is a variation of the EMD30. The EMD

between two weighted point sets measures the minimum amount of work needed to

transport from a supplier set of weights to a demander set of weights. Stated in a

di�erent way, the EMD is the average ground distance that weights travels during

an optimal 
ow12. Let N denote the space of weighted point sets, in which any two

sets can have unequal total weights. Giannopolous and Veltkamp17 demonstrate

that the EMD has the following drawbacks when applied on N :

1. It does not obey the positivity property. The EMD does not take into ac-

count the surplus of weight, if any, between two sets. As a result, there are

cases where it does not distinguish between two non-identical sets. Even for

arbitrary di�erent sets, the distance can be zero.

2. It does not obey the triangle inequality. As a result, the EMD prevents the

triangle inequality from being used in speeding up database retrieval.

Consequently, the EMD on N is not a metric.
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3.3.2. Proportional Transportation Distance

An interesting question, that naturally arises, is the following: is there a similarity

measure based on weight transportation such that the surplus of weight between

two point sets is taken into account and the triangle inequality still holds? In the

sequel we present a new distance for weighted point sets in N . Let A;B 2 N . When

measuring the distance from A to B, rather than taking A as the supplier and B as

the demander moving only as much weight as needed to �ll the `holes' with `earth',

we move the total weight of A to the positions of the points in B. What we measure

then, is the minimum amount of work needed to transform A to a new set A0 that

resembles B. In particular, we redistribute A's total weight from the position of its

points, to the position of B's points leaving the old percentages of weights in B the

same.

We call this distance the Proportional Transportation Distance (PTD); it is

de�ned as follows. Let A = fa1; a2; : : : ; amg be a weighted point set such that

ai = (xi; wi), i = 1; : : : ;m where xi 2 IRk denotes the spatial position of a salient

point with wi 2 IR[ f0g being its corresponding weight. Let also W =
Pm

i=1 wi be

the total weight of set A. Let B = fb1; b2; : : : ; bng be a weighted point set such that

bi = (yi; ui), i = 1; : : : ; n where yi 2 IRk denotes the spatial position of a salient

point with ui 2 IR [ f0g being its corresponding weight. Let also U =
Pn

i=1 ui be

the total weight of set B. Let d be a ground distance between two single points,

typically the Euclidean distance. Formally, the PTD can be expressed as a linear

programming problem. We denote as fij the elementary 
ow of weight from xi to

yj , over the elementary distance dij . The set of all feasible 
ows F = [fij ] from A

to B, is now de�ned by the following constraints:

1. fij � 0; i = 1; :::;m; j = 1; :::; n

2.
Pn

j=1 fij = wi; i = 1; :::;m

3.
Pm

i=1 fij =
ujW

U
; j = 1; :::; n

4.
Pm

i=1

Pn

j=1 fij =W

The PTD(A, B) is given by the following objective function:

PTD(A;B) =
minF2F

Pm

i=1

Pn

j=1 fijdij

W
(1)

Constraints 2 and 4 force all of A's weight to move to the positions of the

points in B. Constraint 3 ensures that this is done in a way that preserves the old

percentages of weight in B. Next we examine the properties of the PTD.

3.3.3. Properties of the PTD

Let us take a closer look at the de�nition of the PTD. While measuring the PTD(A,

B) for any sets A and B, if we substitute the variables fij with f 0ijW , i = 1::m,
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j = 1::n in its linear programming (LP) formulation, call it LP1 we get the following

LP problem:

min
F2F

mX
i=1

nX
j=1

f 0ijdij

where F is de�ned by:

1. f 0ij � 0

2.
Pn

j=1 f
0
ij = wi=W

3.
Pm

i=1 f
0
ij = uj=U

4.
Pm

i=1

Pn

j=1 f
0
ij = 1

It is clear that this new formulation, call it LP2, gives us the distance between

the two sets of percentages of weight in A and B. Note that the total weights of the

new sets are both equal to one. Since the substitution function fij = f 0ijW;W 6= 0

is bijective, LP1 is equivalent to LP2. This means that we are working on the space

of equal total weight sets.

However, it's obvious that more than one LP1 problem can be equivalent to

the same LP2 problem i.e. any two weighted point sets of the same cardinality

and positionally coincident, can have the same percentages of weight at the same

positions although their corresponding individual weights are di�erent.

We can now state the properties of PTD.

1. It obviously has the identity property.

2. It obeys the triangle inequality.

3. It does not follow the positivity property since the distance between position-

ally coinciding sets with the same percentages of weights at the same positions

is 0. However this is the only case in which the distance between two non-

identical point sets is zero. The PTD will even distinguish two sets B and B0

where one emerged from the other by adding even only one point.

It follows that the PTD is a pseudo-metric. Of course, by identifying sets with zero

distance we can produce a metric on the resulting partition of the set N of generally

unequal total weight sets.

The PTD can be computed eÆciently by solving the corresponding linear pro-

gramming problem, using for example a streamlined version of the simplex algorithm

for the transportation problem. In practice simplex performs well, but in theory it

can perform an exponential number of steps before giving a solution. Theoretically

better (polynomial time) algorithms for general linear programming, like an inte-

rior point algorithm, could be used; however it is likely to perform better than the
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simplex method only for very large problem sizes. Since the transportation problem

is a special case of the minimum cost 
ow problem in networks, a polynomial time

algorithm that solves the latter can be used as well.

4. Experimental Results

We have tested our geometric approach to 3D shape comparison on two di�erent

databases, one consisting of 133 models classi�ed into functional categories such as

mugs, cars and boats, and one consisting of 512 models including 376 models of air

planes classi�ed into shape categories. Our primary objective is to show that our

simple approach can actually be used in 3D shape comparison. This together with

its properties, namely the triangle inequality, would make it a good candidate for

shape retrieval applications as explained in the previous section.

In order to calculate the PTD between two weighted point sets, each weighted

point set is �rst normalized by dividing each individual point weight by the total

weight of the points in the set, as the LP2 formulation suggests. The distance

computation is based on the EMD publicly available code10.

The computation of the PTD between two sets is possible in a reasonable amount

of time. In our experiments computing the PTD takes on average about 2 seconds

on a typical Pentium 4, 2.5 GHz. In our experiments the worst case is computing

the PTD between two sets of around 300 points each, which takes about 15 seconds.

A linear search through a database of 512 models would take, on the aver-

age, over 17 minutes, which would make this similarity measure unsuitable for

retrieval purposes. However, when employing the triangle inequality with the van-

tage method, a query would take on the average 15 seconds using for example 8

vantage objects.

4.1. Robustness to Level of Detail

We test the robustness of our similarity measure to level of detail by testing it with

di�erent polyhedral approximations of two 3D shapes using 4 approximative models

of the Utah teapot and 4 approximative models of an ellipsoid. The polyhedral ap-

proximations of the Utah teapot have been obtained by exporting the B-spline rep-

resentation to VRML using di�erent levels of detail using the Rhinoceros software28.

The polyhedral approximations of the ellipsoid have been obtained by �rst approx-

imating the sphere for k = 2; 3; 4; 5 with k-frequency icosahedra27 containing 20k2

triangular facets. To approximate an ellipsoid, the x, y and z coordinates of the

k-frequency icosahedra have been scaled with a factor 4, 2, and 1 respectively.

From table 1 we see that there is some di�erence in the similarity measure for

the �rst level of detail and the other levels of detail. For increasing numbers of

vertices the similarity is higher, as denoted by the smaller distance value. This

can be explained as follows. For a low number of vertices in the model, also the

number of points in the model's signature, which is equal to the number of grid

cells containing at least one vertex, is low. Hence, the weighted point set does
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Gauss Norm Midp

ptd(e1,t1) 0.145 0.183 0.143
ptd(e2,t2) 0.137 0.163 0.122
ptd(e3,t3) 0.121 0.162 0.115
ptd(e4,t4) 0.115 0.148 0.103
ptd(e1,e2) 0.070 0.085 0.072
ptd(e2,e3) 0.057 0.074 0.055
ptd(e3,e4) 0.043 0.067 0.043
ptd(t1,t2) 0.131 0.153 0.130
ptd(t2,t3) 0.043 0.040 0.041
ptd(t3,t4) 0.031 0.025 0.021

Table 1. Overview of robustness to level of detail results. e1, e2, e3, and e4 denote approximations
of an ellipsoid containing 42, 92, 162 and 252 vertices, respectively. t1, t2, t3, and t4 denote
approximations of the Utah teapot containing 262, 3743, 9795 and 17233 facets, respectively.
ptd denotes the Proportional Transportation Distance for signatures generated with the Gaussian
curvature (Gauss), the normal variation (Norm) and the midpoint method (Midp).

Nearest First Second
Method Neighbour Tier Tier
Gauss 82% 53% 70%
Norm 75% 50% 68%
Midp 78% 53% 71%
D2 66% 49% 66%

Table 2. Comparison of the Gaussian curvature (Gauss), the normal variation (Norm), the mid-
point method (Midp), and the D2 shape distribution based method23;24, all using the Princeton
database.

not represent the shape very well. For instance ptd(t1; t2) is almost the same as

ptd(e1; t1). In our case the signatures of e1, e2, e3, and e4 contain 42, 78, 110 and

152 points respectively, and the signatures of t1, t2, t3, and t4 contain 47, 157, 208,

and 225 points, respectively. We conclude that for the higher level of details (>

100 points) our signatures and similarity measure together are reasonably robust

against change in level of detail.

4.2. Shape Retrieval Results

Also, we compare the ability of the Gaussian curvature, normal variation and mid-

point shape matching method to �nd shapes similar to a query image. We tested

our results using a database from Princeton, that has also been used by Osada et

al.23;24, and a test database consisting of 512 models.

The database from Princeton consists of 133 models retrieved from the World

Wide Web and grouped qualitatively (by function rather than by shape) into 25

classes: 5 animals, 4 balls, 2 belts, 3 blimps, 3 boats, 6 cars, 8 chairs, 3 claws, 4

helicopters, 11 humans, 3 lamps, 3 lightnings, 6 missiles, 4 mugs, 4 open books, 4

pens, 4 phones, 27 planes, 4 ri
es, 3 skate boards, 4 sofas, 6 spaceships, 3 subs,

4 tables, and 5 tanks. Some classes (such as ball, mug, open book, pen and sub)

contained 3D models with shapes greatly resembling each other, while others (such

as animal, boat, car and plane) contained models with a wide variety of shapes.

To investigate the ability of our shape matching methods to discriminate between
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Fig. 1. Precision versus number of models returned for the Princeton database.

classes of objects, for each method we computed for each object in the database the

distances to all other objects in the database. In our tests we used each object as

query object. Table 2 presents the results of these tests. We compare the results

with the best of the shape distribution based methods described by Osada et al.23;24.

This is the so-called D2 method, that represents a shape by the distribution of

Euclidean distances between pairs of randomly selected points on the surface of a

3D model. The �rst column indicates the shape matching method. The second

column lists the percentage of retrieved objects in which the nearest neighbour was

from the query's class. Let k denote the number of objects in the query's class. The

third column (\First Tier") lists the percentage of retrieved objects from the query's

class within the �rst k � 1 hits excluding the query. The fourth column (\Second

Tier") lists the percentage of retrieved objects from the query's class within the

�rst 2(k � 1) hits excluding the query.

For the Princeton database, �gure 1 shows for each weighting scheme the preci-

sion, i.e. the proportion of returned models that are in the same class as the query

object, as a function of the number of models returned.

Figure 2 illustrates for the Princeton database shape retrieval using the Gaussian

curvature method. Each column shows a query result. We also examined query
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Fig. 2. Query results using the Gaussian curvature method for the Princeton database. Each
column illustrates a query. The top row shows the query objects, the second row the
nearest neighbour, the third and fourth row show the second and third nearest neighbour,
respectively.

results on this database using our experimental shape retrieval engine that can also

be found at our web site38. The search engine allows the user to choose a method

and generate random queries or speci�c queries by a number identifying a model.

The reader can verify the query results from �gure 2 selecting for the Princeton

database the Gaussian curvature method and query the models in the �rst row of

�gure 2 from left to right using the numbers 130, 110, 5 and 12.

To avoid the drawbacks of a classi�cation by functionality as in the Princeton

database, we made a test database with a shape-based classi�cation. First we col-

lected 684 VRML models, mostly airplanes, from the World Wide Web. From this

collection we classi�ed 512 models into six categories: 242 conventional air planes,

60 delta-jets, 45 multi-fuselages, 19 biplanes, 10 helicopters and 136 other models.

This classi�cation was purely on the basis of shape, not on the type of object. We

did not classify the remaining 172 models, because it was not clear to which class

these models should belong, looking at their shape. For veri�cation, on our web site

the reader can query the complete database containing all 684 models, download

the complete database, and a database containing the 512 classi�ed models only.

For our test database (the Utrecht database), �gure 3 shows the precision as a
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Fig. 3. Precision versus number of models returned for the Utrecht database.

function of the number of returned models n, i.e. the proportion of returned models

that are in the same class as the query object.

Figure 4 illustrates for the Utrecht database shape retrieval using the midpoint

method. The reader can verify the query results from �gure 4 selecting for the

Utrecht database the midpoint method and query the models in the top row of

�gure 4 from left to right using the numbers 532, 389, and 129. The last column of

�gure 4 shows the signatures of the models in the third column.

5. Discussion

Figures 1 and 3 demonstrate that our methods are fairly e�ective in retrieving

similar 3D models. In the �rst case the Gaussian curvature method was the best

and in the second case the midpoint method. In both cases the normal variation

method is less e�ective than the Gaussian and midpoint method.

From the results in table 2 we observe that all our methods perform better

than the best shape distribution based method described by Osada et al.23;24 when

performing the same queries on the same database. Most notable is the nearest
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Fig. 4. Query results using the midpoint method for the Utrecht database. Each of the �rst
three columns illustrates a query in the same way as in Figure 2. The last column shows
the signatures of the model in the third column. The blue spheres denote weighted points
of the query object and the red spheres denote weighted points of the retrieved object.

neighbour result of the Gauss method, which gives an increase of performance of

14%.

The di�erence in precision between �gures 1 and 3 is caused by the di�erence of

the class sizes and by the di�erence in classi�cation of both databases. Figure 3 cor-

responds to the Utrecht database. Figure 1 corresponds to the Princeton database,

were the classi�cation is based on the function of models rather than their shape.

This causes a number of ambiguous classi�cations in terms of shape. This is illus-

trated in Figure 2. The �rst query object is a tank, only the nearest neighbour is

also a tank. The other three tanks are not found among the 3-nearest neighbours.

This is not surprising as these cars and tanks have similar shape. However, because

tanks and cars are in di�erent classes, this result will cause a decrease of the preci-

sion in �gure 1. Also, the smaller class sizes in the Princeton database will cause a

decrease of the precision in �gure 1.

The second query object is a skate board. The other two skate boards in the

Princeton database are found as nearest neighbour and second nearest neighbour.

The third query object is a wolf of the class animals. Also, the three nearest

neighbours are animals. The class animals consists of 5 models. The �fth animal,
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a dinosaur, is found on rank 5 instead of rank 4. These results are satisfactory.

Our method is designed only for single polyhedral objects, it is not robust against

outliers in the VRML scene. So, if the scene contains more than a single object, the

results are distorted. This is illustrated in �gure 5, showing a blimp. The bottom

of the �gure shows some text modelled as VRML, which severely in
uences the

matching. Indeed, Figure 2 shows a query with a blimp. The blimp class contains

two other blimps, but only one of them is found as nearest neighbour. The other

blimp of �gure 5 is found on rank 92, due to the outliers.

Figure 4 shows three queries on the Utrecht database obtained with the midpoint

method. The �rst query object is classi�ed as a multi-fuselage. The query returns

three models, that are also classi�ed as multi-fuselages. The second and third

query items are classi�ed as conventional air planes and the returned models are

also classi�ed as conventional air planes. If we take a closer look at the third query,

we expect that the air plane ranked third would be �rst, because of the orientation

of the wings. This result is explained as follows. If we look at the signatures of the

models in the last column, the signatures contain only weighted points at the tips

of the wings and near the fuselage. This is so, because the VRML models contain

only vertices at these places. Hence, the shapes of the wings contribute only a few

weighted points to the signature. Overall, the query results on the Utrecht database

are satisfactory.

The experiments show that our approach can actually be used in 3D shape com-

parison, for example as an e�ective �lter, after which more detailed comparisons

can be made. Our experimental results demonstrate that our geometric approach

to shape matching is fairly e�ective in �nding objects similar to a query object.

Since the similarity between two shapes is computed using the Proportional Trans-

portation Distance, which satis�es the triangle inequality, our method is suitable

for use in indexing very large collections of models.

6. Conclusions

In this paper we have presented the �rst ideas in trying to incorporate spatial

distribution of shape information for comparisons, in much the same way as the

shape distribution based methods described by Osada et al.23;24 implement the �rst

ideas you would think of for making shape distributions without spatial relations. In

this sense the results provide a lower bound of any following attempt to do retrieval

of polyhedral models using spatial distribution. Compared to the best of the shape

distribution based methods described by Osada et al.23;24 the experimental results

presented in table 2 show that the performance of our approach is better, up to as

much as 14%. Of course, there are many improvements that can be made to our

method. E.g., for grid cells that intersect facets of the VRML model but contain

no vertices of it, also a salient point should be added to the signature of the model.

Instead of using the vertices of the mesh directly, it may be better to resample

the mesh to generate evenly spaced samples on the surfaces of the model, and use
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Fig. 5. Blimp ranked far away from the blimp used as query in �gure 2.

those to generate the signature. Also, it would be interesting to investigate the

method for grids consisting of smaller cells. We expect that the results will be

more precise, but for small cells we cannot generate a salient point for each cell,

because the running time for computing the PTD between signatures containing

many weighted points would be very high. In the preprocessing stage, the pose

estimation can be improved in cases for which the PCA method obtains similar

eigenvalues. Another important issue for further research is the development of

publicly available benchmark databases so that di�erent shape matching methods

can be compared.
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