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Abstract

AÆne invariant pattern metrics are useful for shape recognition. It
is important that such a metric is robust for various defects. We for-
malise these types of robustness using four axioms. Then, we present
the re
ection metric. This is an aÆne invariant metric de�ned on (n�1)-
dimensional complexes in Rn . We prove that the re
ection metric satis�es
the four robustness axioms.
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1 Introduction

For any collection of patterns, subsets of a Euclidean space, there exist many
fundamentally di�erent metrics. In pattern matching and shape recognition it
is often important that a metric is invariant under a transformation group. In
practical applications it is desirable that a metric is robust for various defects
caused by discretisation and unreliable feature detection.

Many shape recognition algorithms use a metric on simple closed curves.
An important example is the Fr�echet distance, see Alt and Godau [3]. Other
pattern metrics for boundary curves are based on turning angle, see Cohen and
Guibas [5], or normalised aÆne arc-length, see Huttenlocher and Kedem [10].

The Hausdor� metric is de�ned on the collection of all (non-empty) closed,
bounded subsets of a metric space. Some algorithms are based on this metric, see
[4], [11], [1]. However, the Hausdor� metric is not robust with respect to certain
types of noise. For example, outliers, i.e. isolated points lying far away from
the other points, can cause a dramatic increase in the Hausdor� distance. The
Hausdor� metric is invariant for the group of isometries. The partial Hausdor�
distance is a non-metric variant of the Hausdor� metric that is more robust
for noise, see [12], [7]. The partial Hausdor� distance depends on a parameter
estimating the amount of distortion.
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For solid patterns, robust aÆne invariant metrics exist. Examples include the
normalised volume of symmetric di�erence, see Alt et al. [2], and the di�erence
of normalised indicators, see Hagedoorn and Veltkamp [8].

Until now, little attention has been paid to aÆne invariant metrics on �nite
unions of curves in R2 , or surfaces in R3 . In this paper, we present the re
ection
metric. This metric is de�ned on �nite unions of (n � 1)-dimensional hyper-
surfaces in Rn . The re
ection metric is invariant under aÆne transformations.
We show that the re
ection metric is robust in many respects.

Section 2 discusses metrics and their invariance under transformation groups.
If a metric is invariant for a transformation group, it induces a natural metric
on the orbit space. We are interested in metrics on patterns, subsets of a
Euclidean space. The orbit space of the pattern space under a transformation
group corresponds to a collection of shapes. Section 3 presents axioms expressing
four types of robustness of pattern metrics. Section 4 shows how invariant
metrics can be constructed by mapping patterns to functions. Section 5 applies
this technique in constructing the re
ection metric. The re
ection metric is
de�ned on �nite unions of (n � 1)-dimensional surfaces and is invariant under
aÆne transformations. We show that the re
ection metric satis�es the four
robustness axioms presented in Section 3.

2 Invariant metrics on patterns

Many pattern matching and recognition techniques are based on a similarity
measure between patterns. A similarity measure is a function de�ned on pairs
of patterns indicating the degree of resemblance of the patterns. It is desirable
that such a similarity measure is a metric. Furthermore, a similarity measure
should be invariant for the geometrical transformation group that corresponds
to the matching problem. Below, we discuss metrics, and their invariance for
transformation groups. After that, we show how an invariant metric on a col-
lection of patterns leads naturally to a metric on shapes.

Let S be any set of objects. A metric on S is a function d : S � S ! R

satisfying the following two conditions for all x; y; z 2 S:

(i) d(x; y) = 0 if and only if x = y;

(ii) d(y; z) � d(x; y) + d(x; z).

A set S with a �xed metric d is called a metric space. Given two elements x
and y of S, the value d(x; y) is called the distance between x and y. Consider a
weaker version of property (i):

(i)' d(x; x) = 0.

A function satisfying (i)' and (ii) is called a semimetric. Non-negativity and
symmetry follow from (i)' and (ii). By identifying elements of S with zero
distance, any semimetric induces a metric on the resulting partition.
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A set of bijections G in S is a transformation group if g�1h 2 G for all g; h 2
G. A (semi)metric d on a set S is said to be invariant for the transformation
group G acting on S if d(g(x); g(y)) = d(x; y) for all g 2 G and x; y 2 S.

The orbit of G passing through x 2 S is the set of images of x under G:

G(x) = f g(x) j g 2 G g:

The orbits form a partition of S. The collection of all orbits is called the orbit

set, denoted by S=G.
The following theorem shows that a semimetric invariant under a transfor-

mation group results in a natural semimetric on the orbit set. Rucklidge [13]
used this principle to de�ne a shape distance based on the Hausdor� distance.

Theorem 1 Let G be a transformation group for a set S; let d be a semimetric

on S invariant for G. Then ~d : S=G� S=G! R de�ned by

~d(G(x); G(y)) = inff d(g(x); y) j g 2 G g:

is a semimetric.

proof. Property (i)': Trivial. Property (ii): For any h; k 2 G:

d(kh�1(y); z) = d(h�1(y); k�1(z))

� d(x; h�1(y)) + d(x; k�1(z))

= d(h(x); y) + d(k(x); z):

Using the previously derived inequality, we �nd for all x; y; z 2 S:

~d(G(y); G(z)) = inff d(g(y); z) j g 2 G g

� inff d(h(x); y) + d(k(x); z) j h; k 2 G g

= inff d(h(x); y) j h 2 G g+ inff d(k(x); z) j k 2 G g

= ~d(G(x); G(y)) + ~d(G(x); G(z)):

This �nishes the proof. �

Let P be a �xed collection of subsets of Rn . Any element of P is called a
pattern. We call the collection P with a �xed metric d a metric pattern space.
A collection of patterns P and a transformation group G determine a family of
shapes P=G. For a pattern A 2 P, the corresponding shape equals the orbit

G(A) = f g(A) j g 2 G g:

The collection of all these orbits forms a shape space. If d is invariant for G,
then Theorem 1 gives a semimetric ~d on the shape space P=G.

Shape recognition involves computing the similarity between two patterns
independent of transformation. This exactly what the shape metric ~d is good for.
It determines the greatest lower bound of all d(g(A); B) under transformations
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Figure 2: Blur robust.

g 2 G, given two patterns A and B, resulting in a transformation-independent
distance between the two corresponding shapes G(A) and G(B). If we have a
robust, invariant metric on patterns, then we can perform shape recognition in
a robust manner by using the shape metric. Next, we formalise four types of
robustness.

3 Robustness axioms

In this section, we focus on \boundary patterns", i.e. boundaries of relatively
compact subsets of Rn . We introduce four axioms expressing robustness for what
we call \deformation", \blur", \cracks" and \noise". Deformation robustness
says that each point in a pattern may be moved a little bit without seriously
a�ecting the value of the metric. Blur robustness says that new points may
be added close to the original pattern. Crack robustness says that components
of patterns may be broken up as long as the cracks are relatively thin. Noise
robustness says that new small parts may be added to a pattern.

Let C1(Rn ) be the group of C1 di�eomorphisms acting on Rn . Let P be a
collection of compact sets equal to the boundary of a subset of Rn .

A metric d on P is called deformation robust if it satis�es the following axiom:

Axiom 1 For each A 2 P and � > 0, there is a Æ > 0 s.t. kx � g(x)k < Æ for

all x 2 A implies d(A; t(A)) < � for all t 2 C1(Rn ).

Deformation robustness is equivalent to saying that for each pattern A 2 P,
the map t 7! t(A) with domain C1(Rn ) and range P is continuous. Figure 1
shows the image of A under a transformation with a \small" Æ, in the sense of
Axiom 1.

We call a metric pattern space blur robust if the following holds:

Axiom 2 For each A 2 P and � > 0, an open neighbourhood U of A exists,

such that d(A;B) < � for all B 2 P satisfying B � U = A� U and A � B.

The axiom says that additions close to A do not cause discontinuities. Figure 2
shows a neighbourhood U of A in which parts of B occur that are not in A.
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Figure 4: Noise robust.

A crack of A is a closed subset R � A consisting entirely of limit points of
A � R. This means that all open neighbourhoods of a point x 2 R intersect
A�R. Cracks can be seen as parts of a pattern that can be \restored" after they
have been removed from the pattern, by forming the closure of the remaining
pattern. Changing a pattern in neighbourhoods of a crack may cause the pattern
(or its complement) to become separated or connected. Figure 3 shows a pretzel,
consisting of two topological 1-spheres glued together at a point x. The singleton
set R = fx g is a crack of A.

We say (X;P; d) is crack robust if the next axiom holds:

Axiom 3 For each A 2 P, each crack R of A, and � > 0, an open neighbourhood

U of R exists such that A� U = B � U implies d(A;B) < � for all B 2 P.

The axiom says that applying changes to A within a small enough neighbour-
hood of a crack of A results in a pattern B close to A in pattern space. Whether
the connectedness is preserved does not matter.

If the following axiom is satis�ed, we call a metric pattern space noise robust:

Axiom 4 For each A 2 P, x 2 X, and � > 0, an open neighbourhood U of x
exists such that B � U = A� U implies d(A;B) < � for all B 2 P.

This axiom says that changes in patterns do not cause discontinuities in pattern
distance, provided the changes happen within small regions. By means of the
triangle inequality, we obtain an equivalent axiom when neighbourhoods of �nite
point sets instead of singletons are considered.

Figure 4 shows a pattern A and a point x. Addition of noise B � A within
a neighbourhood U of x results in a new pattern B. Axiom 4 says that the
distance between A and B can be made smaller by making U smaller.

4 Constructing invariant pattern metrics

In this section we show how aÆne invariant pattern metrics can be formed
by mapping patterns to real-valued functions and computing a normalised dif-
ference between these functions. AÆne invariance is essential many pattern
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matching and shape recognition tasks. Figure 5 shows two patterns superim-
posed on eachother on the left. On the right the images of the two patterns
under an aÆne transformation are shown.

Let I(Rn ) be the vector space of real-valued Lebesgue-integrable functions
on Rn , with scalar multiplication and vector addition de�ned pointwise. De�ne
the L1 seminorm on I(Rn ):

jaj =

Z
Rn

ja(x)j dx:

For a di�eomorphism g 2 C1(Rn ), let Dx
g : Rn ! R

n be the derivative of
g in x, a linear function. The Jacobi-determinant is the determinant of the
derivative at a given point. We use jg(x) =

��det(Dx
g )
��, to denote the absolute

value of the Jacobi-determinant of g in x.
For real-valued functions a;b : Rn ! R; let a u b and a t b denote the

pointwise minimum and maximum, respectively. This notation is analogous to
set intersection and union. De�ne the normalised di�erence of two functions
with non-zero integrals by

�n(a;b) =
ja� bj

ja t bj
:

Lemma 1 The normalised di�erence �n is a semimetric on the set of non-

negative functions with non-zero integrals.

proof. Property (i)': Trivial. Property (ii): Let a, b, and c be non-negative
functions with non-zero integrals. We need to prove:

jb� cj

jb t cj
�
ja� bj

ja t bj
+
ja� cj

ja t cj
:

Since j�j is a seminorm the inequality jb� cj � ju� bj+ ju� cj holds, implying:

jb� cj

jb t cj
�
ju� bj

jc t bj
+
ju� cj

jb t cj
:

Choosing u = au (bt c), both terms on the right side of this inequality can be
bounded, obtaining the triangle inequality. We show it only for the �rst term,
since the procedure for the second one is analogous.

ju� bj

jc t bj
�
ju� bj

ju t bj

�
ja� uj+ ju� bj

ja� uj+ ju t bj

=
j(a � u) + (u� b)j

j(a� u) + (u t b)j

=
ja� bj

ja t bj
:
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Let CJ(Rn ) be the subgroup of C1(Rn ) consisting of those g for which the
Jacobi-determinant jg(x) is constant in x 2 Rn . The next lemma shows that a
large class of mappings from patterns to integrable functions result in invariant
semimetrics based on the normalised di�erence �n.

Lemma 2 Let P be a collection of subsets of Rn . Let each A 2 P de�ne a

unique function nA : Rn ! R in I(Rn ). If g 2 CJ(R) determines a number

Æ > 0 such that

ng(A)(g(x)) = ÆnA(x)

for all A 2 P and x 2 Rn , then

�n(ng(A);ng(B)) = �n(nA;nB)

for all A;B 2 P.

proof. Apply substitution of variables using the constant j = jg(x):

�n(ng(A);ng(B))

=

��ng(A) � ng(B)

����ng(A) t ng(B)

��
=

j
��ng(A) Æ g � ng(B) Æ g

��
j
��ng(A) Æ g t ng(B) Æ g

��
= �n(ng(A) Æ g;ng(B) Æ g)

= �n(ÆnA; ÆnB)

= �n(nA;nB):

�

5 The re
ection metric

In this section we de�ne the re
ection metric. First, we de�ne the class of
patterns on which this metric is de�ned. After that, we discuss the notion
of visibility which is fundamental to the re
ection metric. Using visibility, we
construct functions from patterns, which lead to the de�nition of the re
ection
metric. The results from Section 4 ensure aÆne invariance of the metric. Finally,
we show that the re
ection metric satis�es the four robustness axioms from
Section 3.

The axioms in Section 3 were de�ned in terms of a pattern collection P

consisting of compact boundaries in Rn . Let Rn be the patterns in P (not
contained in any (n � 1)-dimensional hyperplane) that are C1-di�eomorphic

7



A B

g(A)

g(B)

Figure 5: AÆne invariance.

x

Rx
A

A

Figure 6: Re
ected visibility.

to a properly joined union of closed (n � 1)-simplices. Formally, we write each

pattern A 2 Rn as A = �(
Sk
i=1 Ri); where R1; : : : ; Rk are properly joined closed

(n� 1)-simplices and � 2 C1(Rn ).
We use the notation xy for the open line segment connecting two distinct

points x; y 2 R
n . We say that a point y 2 R

n is visible (in A) from a point
x 2 Rn if A \ xy = ?. For A 2 Rn and x 2 Rn , the visibility star V x

A is de�ned
as the set of open line segments connecting points of A that are visible from x:

V x
A =

[
fxa j a 2 A and A \ xa = ? g:

We de�ne the re
ection star Rx
A by intersecting V x

A with its re
ection in x:

Rx
A = fx+ v 2 Rn j x� v 2 V x

A and x+ v 2 V x
A g:

Figure 6 shows the visibility star V x
A and the corresponding re
ection star Rx

A

for a pattern A 2 R2, and a point x 2 R2 .
Each pattern A 2 Rn determines a function �A : Rn ! R given by �A(x) =

vol(Rx
A): Note that �A is zero outside the convex hull of A. The de�nition of

the re
ection metric is based on the normalised di�erence, see Lemma 1.

De�nition 1 The re
ection metric dR for Rn is given by

dR(A;B) = �n(�A; �B):

Lemma 2 tells us that the metric dR is invariant under the group of aÆne trans-
formations Af(Rn ).

Next, we prove the four robustness axioms from Section 3. Observe that for
any two patterns A;B 2 Rn and any point x 2 Rn :

vol(Rx
A �Rx

B) � 2 vol(V x
A � V x

B ):

From this, we �nd that

j�A(x) � �B(x)j � 2 vol((V x
A � V x

B ) [ (V x
B � V x

A )): (1)

8



Thus, we can prove the �rst four axioms by bounding the change in the visibility
star for deformation, blur, crack and noise.

The metric dR is deformation robust. Let A 2 Rn and � > 0 Using Eq 1,
choose Æ > 0 small enough such that

���A � �t(A)
�� < � j�Aj for all t 2 C1(Rn )

satisfying kx� t(x)k < Æ for all x 2 A. It follows that

dR(A; t(A)) �

���A � �t(A)
��

j�Aj

for the same transformations t.
The re
ection metric is blur robust. Let A 2 Rn and � > 0 be given. Choose

an open neighbourhood U of A with vol(U) < Æ for some given Æ > 0. Using
Eq. 1, choose Æ > 0 small enough so that for all B 2 Rn satisfying B�U = A�U
and A � B, the distance dR(A;B) is smaller than �.

The re
ection metric is crack robust. Let A 2 Rn, R be a crack of A, and
� > 0. By means of Eq. 1, we can choose a suÆciently small open neighbourhood
U of the crack R such that dR(A;B) < � for patterns B 2 Rn satisfying B�U =
A� U .

The re
ection metric is noise robust. Let A 2 Rn and x 2 R
n be given.

Using Eq. 1, we can choose an open neighbourhood U of x small enough such
that dR(A;B) < Æ for all B 2 Rn satisfying B � U = A� U .

6 Conclusion

This paper has two contributions. First, our axioms describe four types of
robustness, that are desirable in practical pattern recognition. Although the
importance of robust similarity measures is recognised in literature, until now
little serious attempts have been made to formalise them. Second, we provide
an aÆne invariant metric, called the re
ection metric, de�ned on \boundary
patterns". This metric satis�es the four robustness axioms. AÆne invariance is
very useful since it allows patterns to be recognised even under scaling.

The next logical step in this research is the eÆcient computation of the
re
ection metric. This can be done using techniques from computational geom-
etry. The re
ection metric between two �nite segment unions can be computed
in O((s+k) log(s+k)+v) time, where s is the total number of segments, k is the
total number of edges in both \visibility graphs", and v is the total number of
vertices in both \re
ection-visibility arrangements". For details see Hagedoorn
and Veltkamp [9]. Another question is whether less complicated pattern metrics
satisfy our axioms, perhaps invariant only for similarity transformations.
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