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ABSTRACT

Inspired by representations used in music cognition studies

and computational musicology, we propose three simple

and interpretable descriptors for use in mid- to high-level

computational analysis of musical audio and applications

in content-based retrieval. We also argue that the task of

scalable cover song retrieval is very suitable for the de-

velopment of descriptors that effectively capture musical

structures at the song level. The performance of the pro-

posed descriptions in a cover song problem is presented.

We further demonstrate that, due to the musically-informed

nature of the proposed descriptors, an independently estab-

lished model of stability and variation in covers songs can

be integrated to improve performance.

1. INTRODUCTION

This paper demonstrates the use of three new cognition-

inspired music descriptors for content-based retrieval.

1.1 Audio Descriptors

There is a growing consensus that some of the most widely

used features in Music Information Research, while very

effective for engineering applications, do not serve the dia-

log with other branches of music research [1]. As a classic

example, MFCC features can be shown to predict human

ratings of various perceptual qualities of a sound. Yet, from

the perspective of neuropsychology, claims that they math-

ematically approximate parts of auditory perception have

become difficult to justify as more parts of the auditory

pathway are understood.

Meanwhile, a recent analysis of evaluation practices by

Sturm [18] suggests that MIR systems designed to clas-

sify songs into high-level attributes like genre, mood or

instrumentation may rely on confounded factors unrelated

to any high-level property of the music, even if their per-

formance numbers approach 100%. Researchers have fo-

cused too much on the same evaluation measures and the
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same datasets and as a result, today, top performing genre

and mood recognition systems rely on the same low-level

features that are used to classify bird sounds. 1

We also observe that, despite the increasing availabil-

ity of truly big audio data and the promising achievements

of MIR over the last decade, studies that turn big audio

data into findings about music itself seem hard to find. No-

table exceptions include studies on scales and intonation,

and [16]. In the latter, pitch, timbre and loudness data were

analyzed for the Million Song Dataset, focusing on the dis-

tribution and transitions of discretized code words. Yet, we

have also observed that this analysis sparks debate among

music researchers outside the MIR field, in part because of

the descriptors used. The study uses the Echo Nest audio

features provided with the dataset, which are computed us-

ing undisclosed, proprietary methods and therefore objec-

tively difficult in interpretation.

1.2 Towards Cognitive Audio Descriptors

On the long term we would like to model cognition-level

qualities of music such as its complexity, expectedness and

repetitiveness from raw audio data. Therefore we aim to

design and evaluate features that describe harmony, melody

and rhythm on a level that has not gained the attention it de-

serves in MIR’s audio community, perhaps due to the ‘suc-

cess’ of low-level features discussed above. In the long

run, we believe, this will provide insights into the building

blocks of music: riffs, motives, choruses, and so on.

1.3 Cover Song Detection

In this section, we argue that the task of scalable cover

song retrieval is very suitable for developing descriptors

that effectively capture mid- to high-level musical struc-

tures, such as chords, riffs and hooks.

Cover detection systems take query song and a database

and aim to find other versions of the query song. Since

many real-world cover versions drastically modulate mul-

tiple aspects of the original: systems must allow for devi-

ations in key, tempo, structure, lyrics, harmonisation and

phrasing, to name just a few. Most successful cover detec-

tion algorithms are built around a two-stage architecture.

In the first stage, the system computes a time series repre-

sentation of the harmony or pitch for each of the songs in a

database. In the second stage, the time series representing

1 largely MFCC and spectral moments, see [6, 18] for examples
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the query is compared to each of these representations, typ-

ically by means of some kind of alignment, i.e. computing

the locations of maximum local correspondence between

the two documents being compared. See [15] for more on

this task and an overview of cover detection strategies.

2. SCALABLE COVER SONG RETRIEVAL

Generally, alignment methods are computationally expen-

sive but effective. Results achieved this way have reached

mean average precision (MAP) figures of around 0.75 at

the MIREX evaluation exchange. 2

When it comes to large-scale cover detection (hundreds

of queries and thousands of songs), however, alignment-

based methods can become impractical. Imagine a musi-

cologist whose aim is not to retrieve matches to a single

query, but to study all the relations in a large, representa-

tive corpus. Alignment-based techniques are no longer an

option: a full pair-wise comparison of 10, 000 documents

would take weeks, if not months. 3 .

This is why some researchers have been developing scal-

able techniques for cover song detection. Scalable strate-

gies are often inspired by audio fingerprinting and involve

the computation of an indexable digest of (a set of) po-

tentially stable landmarks in the time series, which can be

stored and matched through a single inexpensive look-up.

Examples include the ‘jumpcodes’ approach by [2], the

first system to be tested using the Million Song Dataset.

This study reports a recall of 9.6% on the top 1 percent

of retrieved candidates. Another relevant example is the

interval-gram approach by Walters [19], which computes

fingerprinting-inspired histograms of local pitch intervals,

designed for hashing using wavelet decomposition.

Reality shows that stable landmarks are relatively easy

to find when looking for exact matches (as in fingerprint-

ing), but hard to find in real-world cover songs. A more

promising approach was presented by Bertin-Mahieux in

[3]], where the 2D Fourier transform of beat-synchronized

chroma features is used as the primary representation. The

accuracy reported is several times better than for the sys-

tem based on jumpcodes. Unfortunately, exactly what the

Fourier transformed features capture is difficult to explain.

The challenges laid out in the above paragraph make

cover song detection an ideal test case to evaluate a special

class of descriptors: harmony, melody and rhythm descrip-

tors, global or local, which have a fixed dimensionality

and some tolerance to deviations in key, tempo and global

structure. If a collection of descriptors can be designed that

accurately describes a song’s melody, harmony and rhythm

in a way that is robust to the song’s precise structure, tempo

and key, we should have a way to determine similarity be-

tween the ‘musical material’ of two songs and assess if the

underlying composition is likely to be the same.

2 http://www.music-ir.org/mirex/wiki/2009:
Audio_Cover_Song_Identification_Results

3 MIRex 2008 (the last to report runtimes) saw times of around 1.4−
3.7× 105 s for a task that involves 115, 000 comparisons. The fastest of
these algorithms would take 1.8 years to compute the 1

2
108 comparisons

required in the above scenario. The best performing algorithm would take
6 years.

3. PITCH AND HARMONY DESCRIPTORS

There is an increasing amount of evidence that the pri-

mary mechanism governing musical expectations is statis-

tical learning [7, 12]. On a general level, this implies that

the conditional probabilities of musical events play a large

role in their cognitive processing. Regarding features and

descripors, it justifies opportunities of analyzing songs and

corpora in terms of probabily distributions. Expectations

resulting from the exposure to statistical patterns have in

turn been shown to affect the perception of melodic com-

plexity and familiarity. See [7] for more on the role of

expectation in preference, familiarity and recall.

We propose three new descriptors: the pitch bihistogram,

the chroma correlation coefficients and the harmonization

feature. The pitch bihistogram describes melody and ap-

proximates a histogram of pitch bigrams. The chroma cor-

relation coefficients relate to harmony. They approximate

the co-occurrence of chord notes in a song. The third rep-

resentation, the harmonization feature, combines harmony

and melody information. These three descriptors will now

be presented in more detail.

3.1 The Pitch Bihistogram

Pitch bigrams are ordered pairs of pitches, similar to word

or letter bigrams used in computational linguistics. Several

authors have proposed music descriptions based on pitch

bigrams, most of them from the domain of cognitive sci-

ence [10, 11, 13]. Distributions of bigrams effectively en-

code first-degree expectations. More precisely: if the dis-

tribution of bigrams in a piece is conditioned on the first

pitch in the bigram, we obtain the conditional frequency of

a pitch given the one preceding it.

The first new feature we introduce will follow the bi-

gram paradigm. Essentially, it captures how often two

pitches p1 and p2 occur less than a distance d apart.

Assume that a melody time series P (t), quantized to

semitones and folded to one octave, can be obtained. If a

pitch histogram is defined as:

h(p) =
∑

P (t)=p

1

n
, (1)

with n the length of the time series and p ∈ {1, 2, . . . 12},
the proposed feature is then defined:

B(p1, p2) =
∑

P (t1)=p1

P (t2)=p2

w(t2 − t1) (2)

where

w(x) =

{
1
d , if 0 < x < d.

0, otherwise.
(3)

This will be reffered to as the pitch bihistogram, a bi-

gram representation that can be computed from continu-

ous melodic pitch. Note that the use of pitch classes rather

than pitch creates an inherent robustness to octave errors

in the melody estimation step, making the feature insensi-

tive to one of the most common errors encountered in pitch

extraction.
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Alternatively, scale degrees can be used instead of ab-

solute pitch class. In this scenario, the pitch contour P (t)
must first be aligned to an estimate of the piece’s overall

tonal center. As a tonal center, the tonic can be used. How-

ever, for extra robustness to misestimating the tonic, we

suggest to use the tonic for major keys and the minor third

for minor keys.

3.2 Chroma Correlation Coefficients

The second feature representation we propose focuses on

vertical rather than horizontal pitch relation. It encodes

which pitches appear simultaneously in a signal.

C(p1, p2) = corr(c(t, p1), c(t, p2)), (4)

where c(t, p) is a 12-dimensional chroma time series (also

known as pitch class profile) computed from the song au-

dio. From this chroma representation of the song c(t, p) we

compute the correlation coefficients between each pair of

chroma dimensions to obtain a 12× 12 matrix of chroma
correlation coefficients C(p1, p2). Like the pitch bihis-

togram, the chroma features can be transposed to the same

tonal center (tonic or third) based on an estimate of the

overall or local key.

3.3 Harmonisation Feature

Finally, the harmonisation feature is a set of histograms

of the harmonic pitches ph ∈ {1, . . . , 12} as they accom-

pany each melodic pitch pm ∈ {1, . . . , 12}. It is com-

puted from the pitch contour P (t) and a chroma time se-

ries c(t, ph), which should be adjusted to have the same

sampling rate and aligned to a common tonal center.

H(pm, ph) =
∑

P (t)=pm

c(t, ph). (5)

From a memory and statistical learning perspective, the

chroma correlation coeffiencients and harmonisation fea-

ture may be used to approximate expectations that include:

the expected consonant pitches given a chord note, the ex-

pected harmony given a melodic pitch, and the expected

melodic pitch given a chord note. Apart from [8], where

a feature resembling the chroma correlation coefficients is

proposed, information of this kind has yet to be exploited

in a functioning (audio) MIR system. Like the pitch bi-

histogram and the chroma correlation coefficients, the har-

monisation feature has a dimensionality of 12× 12.

4. EXPERIMENTS

To evaluate the performance of the above features for cover

song retrieval, we set up a number of experiments around

the covers80 dataset by Ellis [5]. This dataset is a collec-

tion of 80 cover song pairs, divided into a fixed list of 80

queries and 80 candidates. Though covers80 is not actu-

ally ‘large-scale’, it is often used for benchmarking 4 and

its associated audio data are freely available. In contrast,

the much larger Second Hand Songs dataset is distributed

4 results for this dataset have been reported by at least four authors [15]

only in the form of standard Echo Nest features. These fea-

tures do not include any melody description, which is the

basis for the descriptors proposed in this study.

Regarding scalability, we chose to follow the approach

taken in [19], in which the scalability of the algorithm fol-

lows from the simplicity of the matching step. The pro-

posed procedure is computationally scalable in the sense

that, with the appropriate hashing strategy, matching can

be performed in constant time with respect to the size of

the database. Nevertheless, we acknowledge that the dis-

tinguishing power of the algorithm must be assessed in the

context of much more data. A large scale evaluation of our

algorithm, adapted to an appopriate dataset and extended

to include hashing solutions and indexing, is planned as

future work.

4.1 Experiment 1: Global Fingerprints

In the first experiment, the three descriptors from section

3 were extracted for all 160 complete songs. Pitch con-

tours were computed using Melodia and chroma features

using HPCP, using default settings [14]. 5 For efficiency

in computing the pitch bihistogram, the pitch contour was

median-filtered and downsampled to 1
4 of the default frame

rate. The bihistogram was also slightly compressed by tak-

ing its square root.

The resulting reprentations (B, C and H) were then

scaled to the same range by whitening them for each song

individually (subtracting the mean of their n dimensions,

and dividing by the standard deviation; n = 144). To avoid

relying on key estimation, features in this experiment were

not aligned to any tonal center, but transposed to all 12

possible keys. In a last step of the extraction stage, the

features were scaled with a set of dedicated weights w =
(w1, w2, w3) and concatenated to 12 432-dimensional vec-

tors, one for each key. We refer to these vectors as the

global fingerprints.

In the matching stage of the experiment, the distances

between all queries and candidates were computed using a

cosine distance. For each query, all candidates were ranked

by distance. Two evaluation metrics were computed: recall
at 1 (the proportion of covers retrieved among the top 1

result for each query; R1) and recall at 5 (proportion of

cover retrieved ‘top 5’; R5).

4.2 Experiment 2: Thumbnail Fingerprints

In a second experiment, the songs in the database were

first segmented into structural sections using structure fea-

tures as described by Serra [17]. This algorithm performed

best at the 2012 MIREX evaluation exchange in the task of

‘music structure segmentation’, both for boundary recov-

ery and for frame pair clustering. (A slight simplification

was made in the stage where sections are compared: no

dynamic time warping was applied in our model.) From

this segmentation, two non-overlapping thumbnails are se-

lected as follows:

5 mtg.upf.edu/technologies
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1. Simplify the sequence of section labels (e.g. abab-

CabCC): merge groups of section labels that consis-

tently appear together (e.g. AACACC for the exam-

ple above).

2. Compute the total number of seconds covered by

each of the labels A, B, C... and find the two sec-

tion labels covering most of the song.

3. Return the boundaries of the first appearance of the

selected labels.

The fingerprint as described above was computed for

the full song as well as for the resulting thumbnails, yield-

ing three different fingerprints: one global and two thumb-
nail fingerprints, stored separately. As in experiment 1, we

transposed these thumbnails to all keys, resulting in a total

of 36 fingerprints extracted per song: 12 for the full song,

12 for the first thumbnail and 12 for the second thumbnail.

4.3 Experiment 3: Stability Model

In the last experiment, we introduced a model of stability

in cover song melodies. This model was derived indepen-

dently, through analysis of a dataset of annotated melodies

of cover songs variations. Given the melody contour for

a song section, the model estimates the stability at each

point in the melody. Here, stability is defined as the prob-

ability of the same pitch appearing in the same place in a

performed variation of that melody.

The stability estimates produced by the model are based

on three components that are found to correlate with sta-

bility: the duration of notes, the position of a note inside a

section, and the pitch interval. The details of the model and

its implementation are described in the following section.

5. STABILITY MODEL

The model we apply is a quantitative model of melody sta-

bility in cover songs. As it has been established for applica-

tions broader than the current study, it is based on a unique,

manually assembled collection of annotated cover songs

melodies. The dataset contains four transcribed melodic

variations for 45 so-called ‘cliques’ of cover songs, a sub-

set of the Second Hand Songs dataset. 6 . Some songs have

one section transcribed, some have more, resulting in a to-

tal of 240 transcriptions.

For the case study presented here, transcriptions were

analysed using multiple sequence alignment (MSA) and a

probabilistic definition of stability.

5.1 Multiple Sequence Alignment

Multiple sequence alignment is a bioinformatics method

that extends pairwise alignment of symbolic arrays to a

higher number of sequences [4]. Many approaches to MSA

exist, some employing hidden markov models or genetic

algorithms. The most popular is progressive alignment.

6 http://labrosa.ee.columbia.edu/millionsong/
secondhand

L AAAL AA AL AAAJ HHHHHHF ECAL AL A AAL AL AA AL AAAJ J J HHHHH HF HHJ

L AAL AL A AL AL AA AAJ HHHH HCEECAL AL AAAL A AAAL AAJ J J HHHH HHHEHEJ

L AAL AL A AAL AAA HHJ HHJ J J HL AAL A L AAAL EA AL EAEAJ J HJ HHE J

5 10 15 20 25 30 35 40 45 50

1

2

3

L AAL AL AAL AL AAAAJ HHHHHCEECAL AL AAAL A_ AAAL AAJ J J HHHHHHHEHEJ

L AA_ AL AA_ AL AAA_ J HHHHHHF ECAL AL AAAL AL AAAL AAAJ J J HHHHHHF HHJ

L AAL AL AA_ AL AAAHHJ HHJ J J HL AAL AL AAAL _ EAAL EAEAJ J _ _ _ HJ HHE_ _ J

5 10 15 20 25 30 35 40 45 50 55

1

2

3

Figure 1. A clique of melodies before (top) and after (bot-

tom) multiple sequence alignment.

This technique creates an MSA by combining several pair-

wise alignments (PWA) starting from the most similar se-

quences, constructing a tree usually denoted as the ‘guide

tree’. Unlike MSA, pairwise alignment has been researched

extensively in the (symbolic) MIR community, see [9] for

an overview.

Whenever two sequences are aligned, a consensus can

be computed, which can be used for the alignment connect-

ing the two sequences to the rest of the three. The consen-

sus is a new compromise sequence formed using heuristics

to resolve the ambiguity at non-matching elements. These

heuristics govern how gaps propagate through the tree, or

whether ‘leaf’ or ‘branch’ elements are favored. The cur-

rent model favors gaps and branch elements.

When the root consensus of the tree is reached, a last

iteration of PWA’s aligns each sequence to the root con-

sensus to obtain the final MSA. Figure 1 shows two sets

of melodic sequences (mapped to a one-octave alphabet

{A . . . L}) before and after MSA. Note that the MSA is

based on a PWA strategy which maximizes an optimality

criterion based on not just pitch but also duration and onset

times.

5.2 Stability

The stability of a note in a melody is now defined as the

probability of the same note being found in the same posi-

tion in an optimally aligned variation of that melody.

Empirically, given a set of N aligned sequences

{sk(i)} i = 1 . . . n, k = 1 . . . N (6)

we compute the stability of event sk(i) as:

stab(sk(i)) =
1

N − 1

j=N∑
j �=k
j=1

sj(i) == sk(i) (7)

As an example, in a position i with events s1(i) = A,

s2(i) = A, s3(i) = A and s4(i) = B, the stability of A is

0.66. The stability of B is 0.

5.3 Findings

As described in the previous section, we drew a random

sample of notes from the dataset in order to observe how

stability behaves as a function of the event’s pitch, duration

and position inside the song section.

The first relationship has ‘position’ as the independent

variable and describes the stability as it evolves throughout
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Figure 2. Stability of an event vs. position in the melody.

Figure 3. Stability of an event vs. duration.

the section. Figure 2 shows how stability changes with

position. The mean and 95% CI for the mean are shown

for two different binnings of the position variable. The 4-

bin curve illustrates how stability generally decreases with

position. The more detailed 64-bin curve shows how the

first two thirds of a melody are more stable than the last,

though an increased stability can be seen at the end of the

section.

Figure 3 shows the stability of notes as a function of

their duration. The distribution of note durations is cen-

tered around 1% of the segment length. Below and above

this value, the stability goes slightly up. This suggests that

notes with less common durations are more stable. How-

ever, the trend is weak compared with the effect of posi-

tion. Note duration information will therefore not be used

in the experiments in this study.

Figure 4 shows the stability (mean and 95% CI for the

mean) of a note given the pitch interval that follows. Note

how the relative stability of one-semitone jumps stands

out compared to repetitions and two-semitone jumps, even

though two-semitone jumps are far more frequent. This

suggests again that less-frequent events are more stable.

More analysis as to this hypothesis will be performed in a

later study.

6. DISCUSSION

Table 1 summarizes the results of the experiments.

In the experiments where each descriptor was tested

individually, the harmony descriptors (chroma correlation

coefficients) performed best: we obtained an accuracy of

over 30%. When looking at the top 5, there was a re-

call of 53.8%. The recall at 5 evaluation measure is in-

cluded to give an impression of the performance that could

Figure 4. Stability of an event vs. the interval that follows.

be gained if the current system were complemented with

an alignment-based approach to sort the top-ranking can-

didates, as proposed by [19].

The next results show that, for the three features to-

gether, the global fingerprints outperform the thumbnail

fingerprints (42.5% vs. 37.5%), and combining both types

does not increase performance further. In other configura-

tions, thumbnail fingerprints were observed to outperform

the global fingerprints. This is possibly the result of seg-

mentation choices: short segments produce sparse finger-

prints, which are in turn farther apart in the feature space

than ‘dense’ fingerprints.

In experiment 3, two components of the stability model

were integrated in the cover detection system. The 4-bin

stability vs. position curve (scaled to the [0, 1] range) was

used as a weighting to emphasize parts of the melody be-

fore computing the thumbnails’ pitch bihistogram. The

stability per interval (compressed by taking its square root)

was used to weigh the pitch bihistogram directly.

With the stability information added to the model, the

top 1 precision reaches 45.0%. The top 5 recall is 56.3%.

This result is situated between the accuracy of the first

alignment-based strategies (42.5%), and the accuracy of a

recent scalable system (53.8%; [19]). We conclude that the

descriptors capture enough information to discriminate be-

tween individual compositions, which we set out to show.

7. CONCLUSIONS

In this study, three new audio descriptors are presented.

Their interpretation is discussed, and results are presented

for an application in cover song retrieval. To illustrate the

benefit of feature interpretability, an independent model of

cover song stability is integrated into the system.

We conclude that current performance figures, though

not state-of-the-art, are a strong indication that scalable

cover detection can indeed be achieved using interpretable,

cognition-inspired features. Second, we observe that the

pitch bihistogram feature, the chroma correlation coeffi-

cients and the harmonisation feature capture enough infor-

mation to discriminate between individual compositions,

proving that they are at the same time meaningful and in-

formative, a scarse resource in the MIR feature toolkit. Fi-

nally, we have demonstrated that cognition-level audio de-

scription and scalable cover detection can be succesfully

addressed together.
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Descriptor R1 R5

Global fingerprints B 0.288 0.438

C 0.313 0.538

H 0.200 0.375

w = (2, 3, 1) 0.425 0.575

Thumbnail fingerprints w = (2, 3, 1) 0.388 0.513

Global + thumbnail fingerprints w = (2, 3, 1) 0.425 0.538

Both fingerprints + stability model w = (2, 3, 1) 0.450 0.563

Table 1. Summary of experiment results. w are the feature weights. Performance measures are recall at 1 (proportion of

covers retrieved ‘top 1’; R1) and recall at 5 (proportion of cover retrieved among ‘top 5’; R5).

As future work, tests will be carried out to assess the

discriminatory power of the features when applied to a

larger cover song problem.

8. ACKNOWLEDGEMENTS

This research is supported by the NWO CATCH project

COGITCH (640.005.004), and the FES project COMMIT/.

9. REFERENCES

[1] Jean-Julien Aucouturier and Emmanuel Bigand. Seven

problems that keep MIR from attracting the interest of

cognition and neuroscience. Journal of Intelligent In-
formation Systems, 41(3):483–497, July 2013.

[2] T Bertin-Mahieux and Daniel P W Ellis. Large-scale

cover song recognition using hashed chroma land-

marks. IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics, pages 10–13, 2011.

[3] T Bertin-Mahieux and Daniel P W Ellis. Large-Scale

Cover Song Recognition Using The 2d Fourier Trans-

form Magnitude. In Proc Int Soc for Music Information
Retrieval Conference, pages 2–7, 2012.

[4] H Carrillo and D Lipman. The Multiple Sequence

Alignment Problem in Biology. SIAM Journal on Ap-
plied Mathematics, 1988.

[5] Daniel P. W. Ellis and C.V. Cotton. The ”covers80”

cover song data set, 2007.

[6] M. Graciarena, M. Delplanche, E. Shriberg, A Stol-

cke, and L. Ferrer. Acoustic front-end optimization for

bird species recognition. In IEEE int conf on Acoustics
Speech and Signal Processing (ICASSP), pages 293–

296, March 2010.

[7] David Huron. Musical Expectation. In The 1999 Ernest
Bloch Lectures. 1999.

[8] Samuel Kim and Shrikanth Narayanan. Dynamic

chroma feature vectors with applications to cover song

identification. 2008 IEEE 10th Workshop on Multime-
dia Signal Processing, pages 984–987, October 2008.

[9] Peter van Kranenburg. A Computational Approach to
Content-Based Retrieval of Folk Song Melodies. PhD

thesis, Utrecht University, 2010.

[10] Y. Li and D. Huron. Melodic modeling: A comparison

of scale degree and interval. In Proc. of the Int. Com-
puter Music Congerence, 2006.
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