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ABSTRACT

Most researchers in the automatic music emotion recogni-
tion field focus on the two-dimensional valence and arousal
model. This model though does not account for the whole
diversity of emotions expressible through music. More-
over, in many cases it might be important to model in-
duced (felt) emotion, rather than perceived emotion. In
this paper we explore a multidimensional emotional space,
the Geneva Emotional Music Scales (GEMS), which ad-
dresses these two issues. We collected the data for our
study using a game with a purpose. We exploit a compre-
hensive set of features from several state-of-the-art tool-
boxes and propose a new set of harmonically motivated
features. The performance of these feature sets is com-
pared. Additionally, we use expert human annotations to
explore the dependency between musicologically mean-
ingful characteristics of music and emotional categories of
GEMS, demonstrating the need for algorithms that can bet-
ter approximate human perception.

1. INTRODUCTION

Most of the effort in automatic music emotion recognition
(MER) is invested into modeling two dimensions of mu-
sical emotion: valence (positive vs. negative) and arousal
(quiet vs. energetic) (V-A) [16]. Regardless of the popular-
ity of V-A, the question of which model of musical emo-
tion is best has not yet been solved. The difficulty is, on
one hand, in creating a model that reflects the complex-
ity and subtlety of the emotions that music can demon-
strate, while on the other hand providing a linguistically
unambiguous framework that is convenient to use to re-
fer to such a complex non-verbal concept as musical emo-
tion. Categorical models, possessing few (usually 4–6, but
sometimes as many as 18) [16] classes are oversimplifying
the problem, while V-A has been criticized for a lack of
discerning capability, for instance in the case of fear and
anger. Other pitfalls of V-A model are that it was not cre-
ated specifically for music, and is especially unsuited to
describe induced (felt) emotion, which might be important
for some MER tasks, e.g. composing a playlist using emo-
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tional query and in any other cases when the music should
create a certain emotion in listener. The relationship be-
tween induced and perceived emotion is not yet fully un-
derstood, but they are surely not equivalent — one may lis-
ten to angry music without feeling angry, but instead feel
energetic and happy. It was demonstrated that some types
of emotions (especially negative ones) are less likely to be
induced by music, though music can express them [17].

In this paper we address the problem of modeling in-
duced emotion by using GEMS. GEMS is a domain-spe-
cific categorical emotional model, developed by Zentner
et al. [17] specifically for music. The model was derived
via a three-stage collection and filtering of terms which are
relevant to musical emotion, after which the model was
verified in a music listening-context. Being based on emo-
tional ontology which comes from listeners, it must be a
more convenient tool to retrieve music than, for instance,
points on a V-A plane. The full GEMS scale consists of 45
terms, with shorter versions of 25 and 9 terms. We used
the 9-term version of GEMS (see Table 1) to collect data
using a game with a purpose.

Emotion induced by music depends on many factors,
some of which are external to music itself, such as cul-
tural and personal associations, social listening context, the
mood of the listener. Naturally, induced emotion is also
highly subjective and varies a lot across listeners, depend-
ing on their musical taste and personality. In this paper we
do not consider all these factors and will only deal with
the question to which extent induced emotion can be mod-
eled using acoustic features only. Such a scenario, when no
input from the end-user (except for, maybe, genre prefer-
ences) is available, is plausible for a real-world application
of a MER task. We employ four different feature sets: low-
level features related to timbre and energy, extracted using
OpenSmile, 1 and a more musically motivated feature set,
containing high-level features, related to mode, rhythm,
and harmony, from the MIRToolbox, 2 PsySound 3 and
SonicAnnotator. 4 We also enhance the performance of the
latter by designing new features that describe the harmonic
content of music. As induced emotion is a highly subjec-
tive phenomenon, the performance of the model will be
confounded by the amount of agreement between listen-
ers which provide the ground-truth. As far as audio-based
features are not perfect yet, we try to estimate this upper
bound for our data by employing human experts, who an-

1 opensmile.sourceforge.net
2 jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
3 psysound.wikidot.com
4 isophonics.net/SonicAnnotator
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notate a subset of the data with ten musicological features.
Contribution. This paper explores computational ap-

proaches to modeling induced musical emotion and esti-
mates the upper boundary for such a task, in case when no
personal or contextual factors can be taken into account. It
is also suggested that more than two dimensions are nec-
essary to represent musical emotion adequately. New fea-
tures for harmonic description of music are proposed.

2. RELATED WORK

Music emotion recognition is a young, but fast-developing
field. Reviewing it in its entirety is out of scope of this pa-
per. For such a review we are referring to [16]. In this sec-
tion we will briefly summarize the commonly used meth-
ods and approaches that are relevant to this paper.

Automatic MER can be formulated both as a regression
and classification problem, depending on the underlying
emotional model. As such, the whole entirety of machine
learning algorithms can be used for MER. In this paper
we are employing Support Vector Regression (SVR), as it
demonstrated good performance [7,15] and can learn com-
plex non-linear dependencies from the feature space. Be-
low we describe several MER systems.

In [15], V-A is modeled with acoustic features (spec-
tral contrast, DWCH and other low-level features from
Marsyas and PsySound) using SVR, achieving perfor-
mance of 0.76 for arousal and 0.53 for valence (in terms of
Pearson’s r here and further). In [7], five dimensions (basic
emotions) were modeled with a set of timbral, rhythmic
and tonal features, using SVR. The performance varied
from 0.59 to 0.69. In [5], pleasure, arousal and dominance
were modeled with AdaBoost.RM using features extracted
from audio, MIDI and lyrics. An approach based on audio
features only performed worse than multimodal features
approach (0.4 for valence, 0.72 for arousal and 0.62 for
dominance).

Various chord-based statistical measures have already
been employed for different MIR tasks, such as music
similarity or genre detection. In [3], chordal features
(longest common chord sequence and histogram statistics
on chords) were used to find similar songs and to estimate
their emotion (in terms of valence) based on chord simi-
larity. In [9], chordal statistics is used for MER, but the
duration of chords is not taken into account, which we ac-
count for in this paper. Interval-based features, described
here, to our knowledge have not been used before.

A computational approach to modeling musical emo-
tion using GEMS has not been adopted before. In [11],
GEMS was used to collect data dynamically on 36 mu-
sical excerpts. Listener agreement was very good (Cron-
bach’s alpha ranging from 0.84 to 0.98). In [12], GEMS is
compared to a three-dimensional (valence-arousal-tension)
and categorical (anger, fear, happiness, sadness, tender-
ness) models. The consistency of responses is compared,
and it is found that GEMS categories have both some of
the highest (joyful activation, tension) and some of the
lowest (wonder, transcendence) agreement. It was also
found that GEMS categories are redundant, and valence

and arousal dimensions account for 89% of variance. That
experiment, though, was performed on 16 musical excerpts
only, and the excerpts were selected using criteria based on
V-A model, which might have resulted in bias.

3. DATA DESCRIPTION

The dataset that we analyze consists of 400 musical ex-
cerpts (44100 Hz, 128 kbps). Each excerpt is 1 minute
long (except for 4 classical pieces which were shorter than
1 minute). It is evenly split (100 pieces per genre) by four
genres (classical, rock, pop and electronic music). In many
studies, musical excerpts are specially selected for their
strong emotional content that best fits the chosen emotional
model, and only the excerpts that all the annotators agree
upon, are left. In our dataset we maintain a good ecolog-
ical validity by selecting music randomly from a Creative
Commons recording label Magnatune, only making sure
that the recordings are of good quality.

Based on conclusions from [11, 12], we renamed two
GEMS categories by replacing them with one of their sub-
categories (wonder was replaced with amazement, and
transcendence with solemnity). Participants were asked
to select no more than three emotional terms from a list of
nine. They were instructed to describe how music made
them feel, and not what it expressed, and were encour-
aged to do so in a game context [1]. All the songs were
annotated by at least 10 players (mean = 20.8, SD = 14).

The game with a purpose was launched and advertised
through social networks. The game, 5 as well as annota-
tions and audio, 6 are accessible online. More than 1700
players have contributed. The game was streaming music
for 138 hours in total. A detailed description and analysis
of the data can be found in [1] or in a technical report. [2]

We are not interested in modeling irritation from non-
preferred music, but rather differences in emotional per-
ception across listeners that come from other factors. We
introduce a question to report disliking the music and dis-
card such answers. We also clean the data by computing
Fleiss’s kappa on all the annotations for every musical ex-
cerpt, and discarding the songs with negative kappa (this
indicates that the answers are extremely inconsistent (33
songs)). Fleiss’s kappa is designed to estimate agreement,
when the answers are binary or categorical. We use this
very loose criteria, as it is expected to find a lot of disagree-
ment. We retain the remaining 367 songs for analysis.

The game participants were asked to choose several cat-
egories from a list, but for the purposes of modeling we
translate the annotations into a continuous space by using
the following equation:

score1
i j =

1
n

n∑
k=1

ak , (1)

where score1
i j is an estimated value of emotion i for song

j, ak is the answer of the k-th participant on a question
whether emotion i is present in song j or not (answer is

5 www.emotify.org
6 www.projects.science.uu.nl/memotion/emotifydata/
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C1 C2 C3

Amazement 0.01 −0.73 −0.07
Solemnity −0.07 0.12 0.89
Tenderness 0.75 0.19 −0.22
Nostalgia 0.57 0.46 −0.41
Calmness 0.80 0.22 0.28
Power −0.80 −0.17 −0.06
Joyful activation −0.37 −0.74 −0.32
Tension −0.72 0.20 0.30
Sadness 0.13 0.80 −0.05

Table 1. PCA on the GEMS categories.

Figure 1. Intervals and their inversions.

either 0 or 1), and n is the total number of participants,
who listened to song j.

The dimensions that we obtain are not orthogonal: most
of them are somewhat correlated. To determine the under-
lying structure, we perform Principal Components Anal-
ysis. According to a Scree test, three underlying dimen-
sions were found in the data, which together explain 69%
of variance. Table 1 shows the three-component solution
rotated with varimax. The first component, which accounts
for 32% of variance, is mostly correlated with calmness vs.
power, the second (accounts for 23% of variance) with joy-
ful activation vs. sadness, and the third (accounts for 14%
of variance) with solemnity vs. nostalgia. This suggests
that the underlying dimensional space of GEMS is three-
dimensional. We might suggest that it resembles valence-
arousal-triviality model [13].

4. HARMONIC FEATURES

It has been repeatedly shown that valence is more diffi-
cult to model than arousal. In this section we describe fea-
tures, that we added to our dataset to improve prediction of
modality in music.

Musical chords, as well as intervals are known to be
important for affective perception of music [10], as well as
other MIR tasks. Chord and melody based features have
been successfully applied to genre recognition of symbol-
ically represented music [8]. We compute statistics on the
intervals and chords occurring in the piece.

4.1 Interval Features

We segment audio, using local peaks in the harmonic
change detection function (HCDF) [6]. HCDF describes
tonal centroid fluctuations. The segments that we obtain
are mostly smaller than 1 second and reflect single notes,
chords or intervals. Based on the wrapped chromagrams

Figure 2. Distribution of chords (Chordino and HPA).

computed from the spectrum of this segments, we select
two highest (energy-wise) peaks and compute the interval
between them. For each interval, we compute its combined
duration, weighted by its loudness (expressed by energy of
the bins). Then, we sum up this statistics for intervals
and their inversions. Figure 1 illustrates the concept (each
bar corresponds to the musical representation of a feature
that we obtain). As there are 6 distinct intervals with in-
versions, we obtain 6 features. We expect that augmented
fourths and fifths (tritone) could reflect tension, contrary to
perfect fourths and fifths. The proportion of minor thirds
and major sixths, as opposed to proportion of major thirds
and minor sixths, could reflect the modality. The interval-
inversion pairs containing seconds are rather unrestful.

4.2 Chord Features

To extract chord statistics, we used 2 chord extraction
tools, HPA 7 (Harmonic Progression Analyzer) and Chor-
dino 8 plugins for Sonic Annotator. The first plugin pro-
vides 8 types of chords: major, minor, seventh, major and
minor seventh, diminished, sixth and augmented. The sec-
ond plugin, in addition to these eight types, also provides
minor sixth and slash chords (chords for which bass note
is different from the tonic, and might as well not belong
to the chord). The chords are annotated with their onsets
and offsets. After experimentation, only the chords from
Chordino were left, because those demonstrated more cor-
relation with the data. We computed the proportion of each
type of chord in the dataset, obtaining nine new features.
The slash chords were discarded by merging them with
their base chord (e.g., Am/F chord is counted as a minor
chord). The distribution of chords was uneven, with major
chords being in majority (for details see Figure 2). Exam-
ining the accuracy of these chord extraction tools was not
our goal, but the amount of disagreement between the two
tools could give an idea about that (see Figure 2). From
our experiments we concluded that weighting the chords
by their duration is an important step, which improves the
performance of chord histograms.

7 patterns.enm.bris.ac.uk/hpa-software-package
8 isophonics.net/nnls-chroma
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Tempo
Articu-
lation

Rhythmic
complexity Mode Intensity Tonalness Pitch Melody

Rhythmic
clarity

Amazement 0.50 −0.37 *0.27 **0.24 *0.27
Solemnity −0.44 0.39 −0.45 −0.34
Tenderness −0.48 0.56 0.30 −0.48 *0.29 0.44 0.54
Nostalgia −0.47 −0.57 −0.30 *0.28 *0.27 0.50
Calmness −0.64 0.48 −0.50 0.36
Power 0.39 −0.35 *−0.27 0.51 −0.47 −0.43
Joyful
activation 0.76 −0.70 *0.27 **0.24 0.41 0.31

Tension −0.36 −0.36 −0.47 −0.44 −0.66
Sadness −0.45 0.51 −0.38 **−0.23 **−0.24 *0.27

Table 2. Correlations between manually assessed factors and emotional categories.

5. MANUALLY ASSESSED FEATURES

In this section we describe an additional feature set that
we composed using human experts, and explain the prop-
erties of GEMS categories through perceptual musically
motivated factors. Because of huge time load that manual
annotation creates we only could annotate part of the data
(60 pieces out of 367).

5.1 Procedure

Three musicians (26–61 years, over 10 years of formal
musical training) annotated 60 pieces (15 pieces from each
genre) from the dataset with 10 factors, on a scale from 1
to 10. The meaning of points on the scale was different for
each factor (for instance, for tempo 1 would mean ‘very
slow’ and 10 would mean ‘very fast’). The list of factors
was taken from the study of Wedin [13]: tempo (slow—
fast), articulation (staccato—legato), mode (minor—ma-
jor), intensity (pp—ff), tonalness (atonal—tonal), pitch
(bass—treble), melody (unmelodious—melodious), rhyth-
mic clarity (vague—firm). We added rhythmic complexity
(simple—complex) to this list, and eliminated style (date
of composition) and type (serious—popular) from it.

5.2 Analysis

After examining correlations with the data, one of the fac-
tors was discarded as non-informative (simple or complex
harmony). This factor lacked consistency between annota-
tors as well. Table 2 shows the correlations (Spearman’s
ρ) between manually assessed factors and emotional cat-
egories. We used a non-parametric test, because distribu-
tion of emotional categories is not normal, skewed towards
smaller values (emotion was more often not present than
present). All the correlations are significant with p-value <
0.01, except for the ones marked with asterisk, which are
significant with p-value < 0.05. The values that are absent
or marked with double asterisks failed to reach statistical
significance, but some of them are still listed, because they
illustrate important trends which are very probable to reach
significance should we have more data.

Many GEMS categories were quite correlated (tender-
ness and nostalgia: r = 0.5, tenderness and calmness:

r = 0.52, power and joyful activation: r = 0.4). All of
these have, however, musical characteristics that allow lis-
teners to differentiate them, as we will see below.

Both nostalgia and tenderness correlate with slow tempo
and legato articulation, but tenderness is also correlated
with higher pitch, major mode, and legato articulation (as
opposed to staccato for nostalgia). Calmness is charac-
terized by slow tempo, legato articulation and smaller in-
tensity, similarly to tenderness. But tenderness features a
correlation with melodiousness and major mode as well.
Both power and joyful activation are correlated with fast
tempo, and intensity, but power is correlated with minor
mode and joyful activation with major mode.

As we would expect, tension is strongly correlated with
non-melodiousness and atonality, lower pitch and minor
mode. Sadness, strangely, is much less correlated with
mode, but it more characterized by legato articulation, slow
tempo and smaller rhythmic complexity.

6. EVALUATION

6.1 Features

We use four toolboxes for MIR to extract features from au-
dio: MIRToolbox, OpenSmile, PsySound and two VAMP
plugins for SonicAnnotator. We also extract harmonic fea-
tures, described in Section 4. These particular tools are
chosen because the features they provide were specially
designed for MER. MIRToolbox was conceived as a tool
for investigating a relationship between emotion and fea-
tures in music. OpenSmile combines features from Speech
Processing and MIR and demonstrated good performance
on cross-domain emotion recognition [14]. We evaluate
three following computational and one human-assessed
feature sets:

1. MIRToolbox + PsySound: 40 features from MIR-
Toolbox (spectral features, HCDF, mode, inharmonicity
etc.) and 4 features related to loudness from PsySound
(using the loudness model of Chalupper and Fastl).

2. OpenSmile: 6552 low-level supra-segmental features
(chroma features, MFCCs or energy, and statistical
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Feature set MIRToolbox + PsySound OpenSmile MP + Harm Musicological

r RMSE r RMSE r RMSE r RMSE

Amazement .07 ± .18 .99 ± .16 .19 ± .15 .95 ± .13 .16 ± .15 1.05 ± .11 .35 ± .30 .85 ± .24
Solemnity .35 ± .14 .80 ± .09 .42 ± .16 .95 ± .13 .43 ± .08 .89 ± .15 .60 ± .24 .84 ± .22
Tenderness .50 ± .10 .84 ± .10 .52 ± .12 .95 ± .07 .57 ± .12 .85 ± .18 .87 ± .09 .50 ± .19
Nostalgia .53 ± .16 .82 ± .12 .53 ± .18 .89 ± .07 .45 ± .12 .88 ± .10 .69 ± .24 .69 ± .16
Calmness .55 ± .14 .83 ± .09 .55 ± .16 .89 ± .07 .60 ± .11 .78 ± .09 .71 ± .17 .70 ± .16
Power .48 ± .18 .82 ± .13 .56 ± .09 .84 ± .09 .56 ± .11 .80 ± .16 .65 ± .13 .78 ± .26
Joyful
activation .63 ± .08 .77 ± .11 .68 ± .08 .80 ± .08 .66 ± .12 .75 ± .11 .74 ± .28 .58 ± .15

Tension .38 ± .14 .87 ± .20 .41 ± .19 .94 ± .19 .46 ± .11 .85 ± .13 .58 ± .35 .71 ± .36
Sadness .41 ± .13 .87 ± .11 .40 ± .18 .96 ± .18 .42 ± .13 .88 ± .12 .39 ± .28 .93 ± .20

Table 3. Evaluation of 4 feature sets on the data. Pearson’s r and RMSE with their standard deviations (across cross-
validation rounds) are shown.

functionals applied to them (such as mean, standard
deviation, inter-quartile range, skewness, kurtosis etc.).

3. MP+Harm: to evaluate performance of harmonic fea-
tures, we add them to the first feature set. It doesn’t
make sense to evaluate them alone, because they only
cover one aspect of music.

4. Musicological feature set: these are 9 factors of music
described in section 5.

6.2 Learning Algorithm

After trying SVR, Gaussian Processes Regression and lin-
ear regression, we chose SVR (the LIBSVM implementa-
tion 9 ) as a learning algorithm. The best performance was
achieved using the RBF kernel, which is defined as fol-
lows:

k(xi, x j) = exp
(
−γ ‖xi − x j‖

2
)
, (2)

where γ is a parameter given to SVR. All the parame-
ters, C (error cost), epsilon (slack of the loss function) and
γ, are optimized with grid-search for each feature set (but
not for each emotion). To select an optimal set of features,
we use recursive feature elimination (RFE). RFE assigns
weights to features based on output from a model, and re-
moves attributes until performance is no longer improved.

6.3 Evaluation

We evaluate the performances of the four systems us-
ing 10-fold cross-validation, splitting the dataset by artist
(there are 140 distinct artists per 400 songs). If a song
from artist A appears in the training set, there will be no
songs from this artist in the test set. Table 3 shows evalua-
tion results. The accuracy of the models differs greatly per
category, while all the feature sets demonstrate the same
pattern of success and failure (for instance, perform badly
on amazement and well on joyful activation). This reflects
the fact that these two categories are very different in their
subjectiveness. Figure 3 illustrates the performance of the

9 www.csie.ntu.edu.tw/ cjlin/libsvm/

systems (r) for each of the categories and Cronbach’s al-
pha (which measures agreement) computed on listener’s
answers (see [1] for more details), and shows that they are
highly correlated. The low agreement between listeners re-
sults in conflicting cues, which limit model performance.

In general, the accuracy is comparable to accuracy
achieved for perceived emotion by others [5,7,15], though
it is somewhat lower. This might be explained by the fact
that all the categories contain both arousal and valence
components, and induced emotion annotations are less
consistent. In [7], tenderness was predicted with R = 0.67,
as compared to R = 0.57 for MP+Harm system in our
case. For power and joyful activation, the predictions from
the best systems (MP+Harm and OpenSmile) demon-
strated 0.56 and 0.68 correlation with the ground truth,
while in [5, 15] it was 0.72 and 0.76 for arousal.

The performance of all the three computational mod-
els is comparable, though MP+Harm model performs
slightly better in general. Adding harmonic features im-
proves average performance from 0.43 to 0.47, and perfor-
mance of the best system (MP+Harm) decreases to 0.35
when answers from people who disliked the music are not
discarded. As we were interested in evaluating the new
features, we checked which features were considered im-
portant by RFE. For power, the tritone proportion was im-
portant (positively correlated with power), for sadness, the
proportion of minor chords, for tenderness, the proportion
of seventh chords (negatively correlates), for tension, the
proportion of tritones, for joyful activation, the proportion
of seconds and inversions (positive correlation).

The musicological feature set demonstrates the best
performance as compared to all the features derived from
signal-processing, demonstrating that our ability to model
human perception is not yet perfect.

7. CONCLUSION

We analyze the performance of audio features on predic-
tion of induced musical emotion. The performance of the
best system is somewhat lower than can be achieved for
perceived emotion recognition. We conduct PCA and find
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Figure 3. Comparison of systems’ performance with
Cronbach’s alpha per category.

three dimensions in the GEMS model, which are best ex-
plained by axes spanning calmness—power, joyful activa-
tion—sadness and solemnity—nostalgia). This finding is
supported by other studies in the field [4, 13].

We conclude that it is possible to predict induced musi-
cal emotion for some emotional categories, such as tender-
ness and joyful activation, but for many others it might not
be possible without contextual information. We also show
that despite this limitation, there is still room for improve-
ment by developing features that can better approximate
human perception of music, which can be pursued in fu-
ture work on emotion recognition. 10
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