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Abstract. Spatially varying motion blur in video results from the relative motion of a camera and the scene. How
to estimate accurate optical flow in the presence of spatially varying motion blur has received little attention so
far. We extend the classical warping-based variational optical flowmethod to deal with this issue. First, wemodify
the data term by matching the identified nonuniformmotion blur between the input images according to a fast blur
detection and deblurring technique. Importantly, a downsample-interpolation technique is proposed to improve
the blur detection efficiency, which saves 75% or more running time. Second, we improve the edge-preserving
regularization term at blurry motion boundaries to reduce boundary errors that are caused by blur. The proposed
method is evaluated on both synthetic and real sequences, and yields improved overall performance compared
to the state-of-the-art in handling motion blur. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.5.053018]
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1 Introduction
Estimating a dense optical flow field between two consecu-
tive frames is one of the most fundamental problems in com-
puter vision because optical flow is widely used in object
detection, recognition, and tracking, as well as in image
alignment, compression, denoising, and deblurring. Tu et al.1

gave an introduction about the applications of optical flow.
Horn and Schunck2 proposed the variational method, where
a regularization term is incorporated into a data term to
compute optical flow. The basic data term assumes that the
brightness of a moving pixel remains constant over time.
This is called the brightness constancy assumption (BCA).
By quantitatively evaluating various optical flow algorithms,
Barron et al.3 found that the variational methods yield dense
flow fields but are sensitive to outliers, because the BCA-
based quadratic data term of Horn and Schunck is not robust.
Negahdaripour4 proposed a new definition of optical flow to
encourage investigation of problems in dynamic scene analy-
sis. Weber and Malik5 pointed out there are several causes for
a violation of the BCA. Most of these concern out-of-plane
rotations or are due to overlapping regions. Other potential
sources of BCA violations are noise and motion blur,6 where
the motion blur is the result of a relative movement of the
camera and scene that causes neighboring pixel values to
become averaged. It is challenging for traditional optical
flow algorithms to produce accurate results. Motion blur
degrades the image quality. Not only image details are
lost, but also image intensities show more variation,
which leads to a multiple correspondences problem as Li
et al.7 described: a pixel in the current image corresponds
to multiple pixels in the subsequent image.

Motion blur is a common issue in videos, but it has not
received much attention from the research community. One
pioneering work is by Rekleitis,8 who proposed a method to
estimate optical flow from a single motion-blurred image
using the information present in the structure imposed on

the image by the motion blur. The information of the motion
blur in the frequency domain is applied to extract the orien-
tation and the magnitude of the displacement vector—the
flow vector. In this work, we aim to treat this problem by
extending the warping-based blur-robust flow baseline
method of Portz et al.9 with two modifications that explicitly
address the motion blur in estimating optical flow from
image sequences.

This paper is organized as follows. In the next section, we
discuss the relation between optical flow and motion blur,
and discuss methods that target this setting. We introduce
the baseline optical flow algorithm in Sec. 3. Two extensions
of the traditional optical flow formulation are described in
Sec. 4. We experimentally validate our proposed methods
in Sec. 5. A brief conclusion is given in Sec. 6.

2 Related Work on Optical Flow and Motion Blur
Motion blur often leads to a significant deterioration to the
image. Especially in low-light conditions, where less light is
available and longer exposure times are needed, the captured
image often ends up blurry. Additionally, more noise is intro-
duced. Recovering the latent image from a single blurred
image is known as an inherently hard ill-posed problem.
Typically, two steps are implemented to deblur an image.
First, with blind deconvolution, the blurred image is modeled
as a latent image convolved with a blur kernel, and the under-
lying blur kernel is obtained by deconvolution. Second,
using nonblind deconvolution, the deblurred image is further
refined by solving a nonblind deconvolution problem with
the estimated kernel.

Single image blind deconvolution techniques have been
largely advanced recently, and perform well on noise-free
images. For example, Xu and Jia10 found that strong
edges are not always beneficial for kernel estimation and
can degrade it under certain conditions. They presented a
new method to measure the usefulness of image edges in
motion deblurring and a gradient selection approach to
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mitigate their possible adverse effects. Goldstein and Fattal11

proposed to recover the blur kernel in motion-blurred images
according to the statistical deviations they exhibit in their
spectrum. This method can identify a set of statistics, and
after appropriately whitening its spectrum, this information
is used to recover the blur. The blur kernel is estimated by
employing a phase retrieval algorithm with improved conver-
gence and disambiguation capabilities. However, they are
sensitive to image noise since even a small amount of
noise can degrade the quality of blur kernel estimation.
Yitzhaky and Kopeika12 identified important blur parameters
from filtered motion blurred images with which to character-
ize the point spread function of the blur. If the identification
can be correctly carried out, the image can be deblurred
quickly with high resolution. A breakthrough work in
image deblurring is the work of Cho and Lee,13 where
both latent image estimation and kernel estimation are effi-
ciently carried out in an iterative deblurring process by intro-
ducing a novel prediction step under a coarse-to-fine
framework. Importantly, they use image filters to suppress
noise at their prediction step. However, due to the side effects
of denoising, a biased blur kernel is obtained. Sun et al.14

applied the observed image gradients to compute the param-
eters of motion blur (i.e., orientation and extension). One ad-
vantage of this method is that the proposed normalized
Radon transform from the blurred image gradients can be
used to estimate the motion blur parameters from noisy
image gradients. Tai and Lin15 applied an existing denoising
package of Neat image team–NeatImage16 to preprocess the
input image. Then they iteratively employed a motion-aware
nonlocal mean filter and a deblurring process to refine the
results. Since both the denoising package and the nonlocal
means filter have the same negative impacts on the kernel
calculation, the estimated kernel is still not accurate.

Recently, Zhong et al.17 handled these problems by apply-
ing a directional low-pass filter to the input image. The
directional filter reduces the noise level, while the frequency
content including essential blur information along the
orthogonal direction is preserved. Their improved frame-
work produces better kernels with a low run-time. Derived
from Zhong et al.,17 Li et al.7 proposed a directional high-
pass filter to refine the pre-estimated blur kernel which is
computed by the fast blind deconvolution method of Cho
and Lee.13 In this work, we employ the directional filter tech-
nique to refine the estimated blur kernel, which is effective
for improving the deblurring performance and the accuracy
of the estimated flow field.

More importantly, instead of using the full blurry image
for deblurring, we adopt the strategy of Shi et al.18 The first
step is to detect blurred pixels and segment the image into
blurred and clean regions. Then deblur only those pixels
inside blur masks using the procedure described in Xu and
Jia.10 Finally, put the original clean region back in the
deblurred image. Hu and Yang19 stated that not all pixels
of the input blurry image are informative. In other words,
if the whole image is used for deblurring, this is likely to
result in degraded results. Consequently, it is preferable to
detect and use effective blur features rather than the whole
image for deblurring. Shi et al.18 presented a blur detection
maps technique to extract blur regions by constructing blur
feature representations. This method can effectively detect
blur pixels but is computationally expensive. To improve the

efficiency, we present a downsampling-interpolation tech-
nique which can significantly reduce the computation time.

The homogeneous regularization term in the Horn and
Schunck2 model does not respect flow discontinuities, and
brings out over-smoothing at motion boundaries. Alvarez
et al.20 proposed an isotropic image-driven regularizer to sup-
press smoothing at image boundaries, while an anisotropic
regularizer was introduced by Alvarez et al.21 to suppress
smoothing across the image boundaries. Schnorr22 designed
an isotropic flow-driven regularizer to reduce smoothing
at motion boundaries while avoiding over-segmentation of
strong textured structures. Weickert and Schnorr23 con-
structed an improved anisotropic flow-driven regularizer,
which achieved smoother effects along flow discontinuities
while at the same time producing fewer fluctuations.

At present, the advanced motion and structure-adaptive
regularization term is widely used for preserving edges (i.e.,
Wedel et al.24 and Xu et al.25), and it favors motion disconti-
nuities to coincide with discontinuities of the image structures.
Normally, motion discontinuities arise at object boundaries
where the BCA is likely to change. If the input image contains
motion blur, the BCA is violated. The pixel values are com-
bined frommultiple surfaces, especially at motion boundaries.
Even worse, the changes of the brightness of the edge pixels
no longer correspond to the changes of the motion at boun-
daries. Hence, the brightness gradient-based weight is not
valid at the blurry boundaries. To overcome this problem, in
this work, we first extract the blurry boundaries with the fast
Canny detector, and then reset the weights at these positions.
With this contribution, motion errors at blurry boundaries are
reduced while edges are well-preserved.

Our work is related to the methods of Portz et al.9 and
Li et al.7 The blur-robust flow energy formulation and the
directional high-pass filter are used to compute optical flow
in terms of interleaving an iterative blind deconvolution and
a warping-based minimization. In particular, we make three
improvements to Portz et al.9

• Instead of deblurring the whole image, we segment the
image into blur and clean regions with the discrimina-
tive blur maps technique, and solely deblur the
extracted blurry regions.

• To improve the efficiency, we propose a downsample-
interpolation technique during the blur detection. As
the flow is computed in a coarse-to-fine manner, we
select the downsampled second level image for blur
detection. Then we upsample the labeled image (i.e.,
detected blur features are set to 1 and clean regions pix-
els are set to 0) to the initial size by bilinear interpo-
lation. Since the coarser levels images contain reduced
amounts of blur, we only implement the local deblur-
ring on the first level (i.e., the initial image size).

• To better preserve edges of the estimated flow field,
we use the edge-preserving regularization method. We
extend this method by detecting the blurry edges of the
input image and assign more accurate weights to them
to reduce biases at the blurry motion boundaries.

3 Blur-Robust Optical Flow Algorithm
If one or both of the input images contain motion blur, the
BCA-based data term will be violated. Moreover, because
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minimizing the classical warping-based optical flow method
depends on warping the source image to match the appear-
ance of the target image under the constraint of the data term,
unpredictable flow errors will be produced across different
motion blur regions. To handle this problem, Portz et al.9

presented an improved brightness constancy data term to
obtain a more accurate flow by matching the nonuniform
motion blur between the image pair. We discuss the original
warping-based optical method of Horn and Schunck2 and the
improved version of Portz et al.9 subsequently.

3.1 Baseline Warping-Based Optical Flow Method
Optical flow refers to the apparent motion pattern between
input frames I1 and I2, and describes how corresponding pix-
els in consecutive frames match. Normally, it is computed
by minimizing an energy function which is formulated as
a weighted sum of a data term and a regularization term

EQ-TARGET;temp:intralink-;e001;63;543Eðu; vÞ ¼ EDðu; vÞ þ λESðu; vÞ; (1)

where w ¼ ðu; vÞ is the flow field, and the direction and
magnitude of its each flow component indicates where and
how a pixel moved between I1 and I2.

EDðu; vÞ is the data term, which assumes the brightness of
a pixel remains the same under its displacement

EQ-TARGET;temp:intralink-;e002;63;457EDðu; vÞ ¼
Z
Ω
ΨDðfI2½xþ wðxÞ� − I1ðxÞg2Þdxdy; (2)

where ΨD is a penalty function, and x ¼ ðx; yÞ denotes a
point in the image domain Ω. As Sun et al.26 stated: the
less-robust Charbonnier is preferable to the highly noncon-
vex Lorentzian and a slightly nonconvex penalty function
(α ¼ 0.45) is better still, therefore, we select the generalized
Charbonnier penalty function of Sun et al. for our model,
where ΨD ¼ Ψðs2Þ ¼ ðs2 þ ξ2Þα, ξ ¼ 0.001, and α ¼ 0.45.

ESðu; vÞ is the regularization term, which quantifies the
smoothness of the flow field

EQ-TARGET;temp:intralink-;e003;63;315ESðu; vÞ ¼
Z
Ω
ΨSðj∇uj2 þ j∇vj2Þdxdy; (3)

where ΨS is same as ΨD. The robust regularization term is
used to solve the aperture problem and also allows us to deal
with outliers. λ is the regularization parameter, which deter-
mines the balance between the data term and the regulariza-
tion term (Tu et al.27).

3.2 Blur-Robust Optical Flow Method
A natural motion blurred image I can be generally modeled
as

EQ-TARGET;temp:intralink-;e004;63;169I ¼ k � Lþ n; (4)

where k represents a motion blur kernel, L is the latent image
of I, n represents the unknown noise introduced during
image acquisition, and *; denotes the convolution operation.
Both k and L can be efficiently estimated from I by the fast
blind deconvolution deblurring method of Cho and Lee.13

In optical flow estimation, the observed input images I1
and I2 can be expressed as I1 ¼ k1 � L1 and I2 ¼ k2 � L2,
where k1 and k2 are spatially varying or spatially invarying

blur kernels. To address the motion blur issue, Portz et al.9

and Li et al.7 modify the data term by matching the non-
uniform motion blur between I1 and I2. The estimated blur
kernels k1 and k2 are applied to the other, respectively, to
construct a newly motion blur uniform image pair (B1, B2)

EQ-TARGET;temp:intralink-;e005;326;679B1 ¼ k2 � I1 ≈ k2 � k1 � L1; (5)

EQ-TARGET;temp:intralink-;e006;326;649B2 ¼ k1 � I2 ≈ k1 � k2 � L2: (6)

To better preserve edges, the advanced edge-preserving
regularization term is applied, which is defined as

EQ-TARGET;temp:intralink-;e007;326;601ESðu; vÞ ¼
Z
Ω
ωðxÞΨSðj∇uj2 þ j∇vj2Þdxdy: (7)

ωðxÞ is a simple structure-adaptive map that maintains
motion discontinuity:

EQ-TARGET;temp:intralink-;e008;326;536ωðxÞ ¼ expð−��∇IC��γÞ; (8)

where IC is the color vector in the CIELab space of I1, and
we set γ ¼ 0.8 according to Xu et al.25

The improved edge-preserving blur-robust optical flow
energy function can be expressed as

EQ-TARGET;temp:intralink-;e009;326;459Eðu; vÞ ¼
Z
Ω
ΨDðfB2½xþ wðxÞ� − B1ðxÞg2Þdxdy

þ λ

Z
Ω
ωðxÞΨSðj∇uj2 þ j∇vj2Þdxdy: (9)

The well-known numeric optimization method of Brox
et al.28 which implements a two nested fixed point iteration
scheme in the coarse-to-fine framework, is used for comput-
ing the optical flow.

A directional filter is effective to reduce noise while pre-
serving the blur information in the orthogonal direction to
the filter. Li et al.7 designed a directional high-pass filter
to refine the pre-estimated blur kernels k1 and k2 before min-
imizing the blur-robust optical flow energy function. We
introduce the directional filter technique in this work to
improve the deblurring performance to obtain a more accu-
rate flow field.

4 Improved Edge-Preserving Blur-Robust Optical
Flow Algorithm

The state-of-the-art optical flow method of Portz et al.9 based
on the classical coarse-to-fine warping manner has achieved
accurate flow in the presence of spatially varying motion
blur, but it still has two severe drawbacks. In this section,
two effective approaches are described to handle these two
problems, respectively.

4.1 Downsample Interpolation–Based Efficient
Learned Blur Maps Method

Commonly, the input images I1 and I2 contain motion blur,
but not all pixels are useful for deblurring. In addition, some
useful information belonging to clean regions’ pixels is
removed due to the complete deblurring. To avoid these
side effects, segmenting the image into blurred and clean
parts and deblurring only the identified blur regions should
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yield better results. How to effectively and efficiently detect
blur pixels is an important task.

Shi et al.18 addressed this problem by finding and con-
structing a few local blur feature representations that con-
sider image gradient, Fourier domain descriptor, and data-
driven local filters. Each of the blur feature representations
is potent enough to differentiate between the clean and
blurred regions. More importantly, these features perform
independently but are complementary to each other. To com-
bine these features, a naive Bayesian classifier is used to nat-
urally integrate them in a discriminative way and to form
a blur maps method.

The blur maps method can accurately detect blur pixels,
but it is not efficient. The computational cost is exponentially
increased, especially for high-resolution images. In particu-
lar, when using it in the optical flow estimation, the blur
detection process costs more than 80% of the total run
time. To improve the efficiency of Shi et al.,18 we introduce
a downsample-interpolation approach. As shown in Fig. 1,
we use the down-sampled butterfly images I1L2 and I2L2
(L2 denotes the second pyramid level) for blur detection.
Since the downsampled image, e.g., I1L2, is much smaller
than the initial input image I1, the computation time of
the blur detection is significantly decreased. After that, we
interpolate the downsampled labeled binary image to the ini-
tial size by using the bilinear method. Table 1 reveals that our
downsample interpolation–based blur detection approach is
approximately 15 times faster than the baseline method. The
blur detection is a little bit different between our downsam-
ple-interpolation method and that of Shi et al.,18 but the accu-
racy of the flow estimation is not affected because the miss

detected blurred pixels in the coarse scale are labeled again
after the interpolation process in the original resolution.
Furthermore, Cho and Le13 stated that motion blur was
reduced in coarser levels of the downsampled pyramid in
the coarse-to-fine framework. This is because the extent
of blur is narrowed in coarser scale images. According to
this statement, we only perform blur detection and deblurring
for the original input images and do not implement this oper-
ation for its down-sampled variations in the coarser levels
during optical flow estimation. By taking this implementa-
tion, the computational time is further saved while the flow
accuracy is not affected as the flow is refined in the original
input images.

4.2 Improved Edge-Preserving Regularization
The regularization term, which is the basic component of
variational optical flow algorithms, quantifies the smooth-
ness of the flow field and prefers motion discontinuities
coincide with brightness discontinuities. Constructing an
image structure-adaptive regularization term is suitable to
preserve flow edges and to improve the performance of opti-
cal flow estimation. However, for the motion blur image,
especially at motion boundaries, the brightness derivative
weights of the regularization term [Eq. (7)] are violated.
Since each of the pixel values at blur boundaries is a combi-
nation of information from multiple surfaces, the gradient
cannot correctly reflect the correspondence between the
pixel brightness change and its motion change. In other
words, the blurred boundary pixel is not the truth of itself,
and this results in its gradient based weight not being accu-
rate. On the other hand, for nonboundary blurred pixels, due

Fig. 1 Demonstration of the downsample–interpolation based blur detection technique: (a) input initial
image I1, (b) blur detection with method Shi et al.18 on I1, (c) downsampled image I1L2, (d) blur detection
on I1L2, and (e) interpolation.
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to the uniform distribution of the brightness, their derivatives
are very small which means that their gradient weights are
close to 1. Consequently, we only need to label the blurry
boundary pixels LB and reset their gradient weights to 1.
Based on this characteristic, an improved edge-preserving
regularization (IEPR) term can be formed, and the modified
structure-adaptive map is defined as

EQ-TARGET;temp:intralink-;e010;63;556

ω 0ðxÞ ¼ LB þ ð1 − LBÞ
· exp½−��ð1 − βÞ∇IC þ β∇I2ðxþ wÞ��γ�; (10)

where LB is the label of the detected blur boundary pixels. IC
is the color vector in the CIELab space. γ is same as in
Eq. (8). β ¼ 0.05 is used to construct a blended version
of the derivative. The classical structure-adaptive map favors
discontinuities of the motion field to arise at locations of
strong image gradient. However, the intermediate motion
field relies on both the reference image I1 and the warped
interpolation image I2ðxþ wÞ, which means that, in theory,
our blended method should outperform those of Wedel
et al.24 and Xu et al.25 A similar approach has been proposed
in Wedel et al.29 As both images contribute to the gradient,
larger flow vectors can be matched and better results are
obtained. Figure 2 shows the process to improve the edge-
preserving regularization by weighting the detected blur
boundary pixels and nonboundary pixels, respectively. The
improvement from the blended derivative is demonstrated
in Table 2.

5 Experiments
We evaluate the accuracy of our optical flow algorithm on
both synthetic and real sequences with spatially varying
motion blur. In particular, quantitative and visual compari-
sons are conducted between the proposed algorithm and
three existing state-of-the-art optical flow methods: Brox
et al.,28 Xu et al.,25 and Portz et al.9 The method of Brox
et al.28 is the basis of many popular variational optical flow
algorithms, and its optimization framework and numerical
scheme are employed in our method. The motion detail
preserving (MDP) method of Xu et al.25 is one of the best
performing optical flow methods without considering the
motion blur. Recently, Portz et al.9 extended the classical
warping-based optical flow method of Brox et al.28 to
achieve accurate flow in the presence of spatially varying
motion blur, which represents the state-of-the-art technique
that can handle motion blur in the flow estimation.
Importantly, the three implementations are publicly avail-
able. In all cases, we used the original parameters. The
experiments are performed on a laptop with an Intel Core
i5-2410M 2.30 GHz processor and 4-GB memory.

To quantitatively evaluate the motion estimation accuracy,
we use two kinds of error measures for comparison. First,

Table 1 Execution time of the blur detection on butterfly sequence for
the blur maps method of Shi et al.18 and our downsample-interpolation
technique (both are reported on CPU).

Blur maps Downsample-interpolation

Time(s) 1658.4 113.8

Fig. 2 Improving the edge-preserving regularization: (a) frame 5 of the desert sequence and (b) detecting
blur boundary pixels and labelling them as LB , then weighting the labeled pixels LB with 1, and weighting
the nonboundary pixels in terms of the blended version of the derivative.

Table 2 Average endpoint error (AEE) for the spatially varying
motion blur sequences ambush2 andmarket5 from MPI Sintel bench-
mark with four different implementations.

Final pass ambush2 market5

FD + EPR 37.373 21.313

FD + IEPR (No blend) 37.236 21.288

FD + IEPR 37.145 21.195

DD + IEPR (ours) 36.690 20.565
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the common average endpoint error (AEE) of Baker et al.30 is
applied to compare the computed dense flow fields of each
method. Second, in the presence of motion blur, the intensity
value of the original image is violated, which results in a
multiple-correspondence problem: a point in I1 corresponds
to multiple points in I2. To reduce the effect of this, we intro-
duce the sampled average endpoint error (SAEE) of Li et al.7

for evaluation, which is defined as

EQ-TARGET;temp:intralink-;e011;63;646SAEE ¼ mean½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðūT − ūÞ2 þ ðv̄T − v̄Þ2

q
�; (11)

where w̄T ¼ ðūT; v̄TÞ is the sampled ground truth and w̄ ¼
ðū; v̄Þ is the sampled estimated flow. The sample process is
executed according to

EQ-TARGET;temp:intralink-;e012;63;574jI2ðxþ w̄Þ − I1ðxÞj < ε; (12)

where w̄ ⊂ w, ε is a threshold.

5.1 Synthetic Sequence Evaluation
Sequences ambush2 and market5 from the final pass of the
challenging MPI Sintel benchmark of Butler et al.31 are
selected to evaluate the effectiveness of our discriminative
blur detection and deblurring technique as well as the
IEPR. These two sequences contain severe spatially varying
motion blur and defocus blur. Table 2 shows the average
AEE of all frames of each sequence under four different
implementations: (1) fully deblurring (FD) together with the
general edge-preserving regularization (FD + EPR), (2) fully
deblurring together with the proposed IEPR under two addi-
tional conditions: without blend derivative [FD + IEPR
(NoBlend)], (3) with blend derivative (FD + IEPR) and,
(4) our advanced method—discriminative blur detection and
deblurring together with the IEPR (DD + IEPR). Table 2

shows that the flow accuracy is improved with our DD
technique and our IEPR technique. More importantly, comb-
ing these two techniques further modifies the flow accuracy
in the presence of motion blur.

Next, we choose two kinds of typical motion blur
synthetic sequences to test the overall performance of our
improved edge-preserving blur-robust flow method.

5.1.1 Sequence with static background

In this experiment, the Astronaut sequence, which is gener-
ated by varying the exposure time between frames and
moving the foreground objects, is used for comparison. The
Astronaut not only contains heavy noise, but different frames
have different motion blur. Figure 3 shows the estimated
flow fields of the four methods from a blurry frame to a rel-
atively sharp frame. It is clear that the typical warping-based
methods of Brox et al.28 and Xu et al.25 without nonuniform
motion blur processing fail to recover the motion. Especially
for Brox et al.28 [see Fig. 4(a)], the flow is too blurred to
identify any object. The state-of-the-art baseline method
Portz et al.9 is also not accurate. For example, the motion
boundaries are distorted. In contrast, our estimated flow
[Fig. 3(d)] is much more accurate. The motion boundaries
are better preserved, and the legs of the astronaut which
cannot be discerned in Portz et al.,9 are well recovered.
Furthermore, noise is effectively removed.

5.1.2 Sequence with moving foreground and
background

In the third experiment, shown in Figs. 4 and 5, we choose
the sequences elephant and desert for testing from Wul and
Black.32 For each sequence, all frames have significant
motion blur, and both the foreground and background are
moving. It is easy to find that without debluring, the flow

Fig. 3 Visual comparison on the synthetic sequence astronaut. Results of: (a) Brox et al.,28 (b) Xu et al.,25

(c) Portz et al.,9 (d) ours, and (e) ground truth.

Fig. 4 Visual comparison on the synthetic sequence elephant. Results of: (a) Brox et al.,28 (b) Xu et al.,25

(c) Portz et al.,9 (d) ours, and (e) ground truth.
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results of Brox et al.28 contain a large number of errors. The
estimation accuracy of the MDP method is much better than
that of Brox et al.28 However, due to the lack of deblurring,
the biases caused by the blur are distributed around
its flow field [see Fig. 4(b)]. Additionally, some structures
are inaccurately recovered. In Fig. 5(b), the estimated wing
is inconsistent with the real object. Moreover, the spindly
plumage is imprecisely captured and the head is lost.
Surprisingly, the state-of-the-art optical flow algorithm of
Portz et al.,9 which includes the spatially varying motion
blur handling mechanism, fails to estimate the motion of the
foreground eagle. In particular, the motion boundaries are
too blurry and the recovered shapes are far from the ground
truth. Our method outperforms all other algorithms. The flow
shapes are correctly recovered and the motion boundaries are
sharp enough to distinguish the moving object [see Figs. 4(d)
and 5(d)]. However, one problem of our method is that
the deblurring process also removes some useful detailed
information, leading to some small structures that are not
well estimated. Table 3 shows the quantitative comparison
in terms of AEE and SAEE, which demonstrates that our
method yields significant improvements over the other
techniques. In particular, comparing to the state-of-the-art
baseline method of Portz et al.,9 the accuracy of our method
is more than 10% enhanced. In addition, our method is
much more efficient than Portz et al.,9 generally, four or
more times faster. The higher the resolution of the input
frames, the faster our method is than that of Portz et al.9

5.2 Real Sequence Evaluation
Two kinds of real sequences are used to evaluate the ability
of our method.

5.2.1 Sequence with static background

In this experiment, we use the sequences magazine and hand
for evaluation. The backgrounds in these sequences are
static. The flow results of Portz et al.9 and Brox et al.28 con-
tain many errors. For example, the motion blur causes biases
[see Figs. 6(b), 6(d), 7(b), 7(d)]. Not only can some motion
blur pixels not be correctly matched, but also some non-
blurred pixels are mismatched. The MDP method produces
a more accurate flow than the methods of Portz et al.9 and
Brox et al.28 However, it fails at motion boundaries and some
blurry texture-less regions. In contrast, as shown in Figs. 6(e)
and 7(e), due to our segmented deblurring technique and the
IEPR, motion boundaries are precisely recovered. Moreover,
biases caused by the motion blur in the detected blur regions
are greatly reduced. In addition, since we do not implement
deblurring at clean regions, some useful information is well-
preserved and precise motion estimation is obtained.

5.2.2 Sequence with moving foreground and
background

Two real sequences sign and bike, with both foreground
objects and background moving, are selected for testing.
As shown in Figs. 8 and 9, flow fields of Brox et al.28 contain
large errors in both blurry and clean regions. Although Portz
et al.9 applies the blur-robust flow technique, many errors are
still produced. Not only due to its inaccurate linear motion
approximation, but also due to its deblurring approach.
Without the directional filter processing and the segmented
local deblurring operation, its motion blur violates some
useful information. The method of MDP25 preforms much
better than methods Portz et al.9 and Brox et al.,28 but fails
at blurred regions. Like the sign sequence [Fig. 8(c)], due to

Fig. 5 Visual comparison on the synthetic sequence desert. Results of: (a) Brox et al.,28 (b) Xu et al.,25

(c) Portz et al.,9 (d) ours, and (e) ground truth.

Table 3 Performance on the typical spatially varying motion blur testing sequences from Wul and Black.32 For the elephant sequence, AEE
measures the errors of frame 3 and frame 4. For the desert sequence, AEE measures the errors of frame 5 and frame 6. Ave.AEE measures
the average error of all the frames. SAEE and Ave. SAEE measure the sampled error and the sampled average error, respectively.

Method

Elephant Desert

AEE SAEE Ave. AEE Ave. SAEE AEE SAEE Ave. AEE Ave. SAEE

Brox et al.28 5.324 4.331 4.946 3.314 2.139 0.543 2.283 0.752

MDP25 4.800 4.190 4.127 3.205 1.034 0.305 1.208 0.445

Portz et al.9 6.287 4.662 5.885 3.866 1.899 0.890 1.950 0.945

Ours 4.747 4.103 4.118 3.146 0.833 0.254 1.033 0.407
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lack of discriminative deblurring, the blurry information in
the sky above the sign is mixed with the sign. This problem
can also be observed in Fig. 9(c), where the bike tire is mixed
with the rider. In contrast, our method improves these draw-
backs [see Figs. 8(e) and 9(e)]. Clean and blurred regions are
clearly distinguished, shapes are more precisely recovered,
and motion boundaries at both clean and spatially varying
motion blur regions are well-preserved.

6 Conclusions
In this paper, we have proposed an effective optical flow
method that can handle spatially varying motion blur. We
extend the baseline method of Portz et al.9 in two aspects:
the first aspect that we improve is to modify the data term
by matching the detected nonuniform motion blur, which
is implemented according to three steps. First, we introduce
the directional filter to refine the pre-estimated blur kernel to

Fig. 6 Visual comparison on the real sequence magazine. (a) Frame 2. Results of: (b) Brox et al.,28

(c) Xu et al.,25 (d) Portz et al.,9 and (e) ours.

Fig. 7 Visual comparison on the real sequence hand. (a) Frame 2. Results of: (b) Brox et al.,28 (c) Xu
et al.,25 (d) Portz et al.,9 and (e) ours.

Fig. 8 Visual comparison on the real sequence sign. (a) Frame 2. Results of: (b) Brox et al.,28 (c) Xu
et al.,25 (d) Portz et al.,9 and (e) ours.

Fig. 9 Visual comparison on the real sequence bike. (a) Frame 2. Results of: (b) Brox et al.,28 (c) Xu
et al.,25 (d) Portz et al.,9 and (e) ours.
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improve the deblurring performance. Second, we apply the
learned blur maps method to segment the image into blur and
clean regions, and only deblur the detected blur regions
instead of the whole image to reduce deblurring caused
errors. Finally, we present a downsample-interpolation tech-
nique to improve the blur detection efficiency. Experimental
results show that 75% or more computational time can be
saved. The second aspect in which improve the blurring is
by improving the regularization term by proposing an IEPR
technique. This technique reduces edge violations caused by
motion blur and preserves motion boundaries. With these
improvements, our algorithm produces more accurate results
and significantly improves the efficiency compared to
common baseline methods. There are several avenues for
future work. One important challenge is to improve the blur
detection and deblurring efficiency, as it still costs about
50% of the run-time of the whole optimization. Another
challenge is to set the weights of the detected blurred boun-
dary pixels more appropriately. The manner employed in this
work to simply set them to one leaves room for improve-
ment. Setting these weights automatically based on the input
image is the topic of future work.
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