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Using  video  analysis  to measure
rodent social  behavior  receives  grow-
ing  attention.
Developing  and  validating  auto-
mated measuring  methods  requires
annotated  datasets.
We  introduce  the first,  publicly  avail-
able rat social  interaction  dataset,
RatSI.
Cross-dataset  validation  of  auto-
mated methods  ensures  validity  in
practice.
Validity  may  be expanded  by  devel-
oping novel  dataset  adaptation  tech-
niques.
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a  b  s  t r  a  c  t

Background:  Social  behavior  is  an  important  aspect  of  rodent  models.  Automated  measuring  tools  that
make  use  of video  analysis  and  machine  learning  are  an  increasingly  attractive  alternative  to manual
annotation.  Because  machine  learning-based  methods  need to be trained,  it  is important  that  they  are
validated  using  data  from  different  experiment  settings.
New  method:  To  develop  and  validate  automated  measuring  tools,  there  is  a  need  for  annotated  rodent
interaction  datasets.  Currently,  the availability  of such  datasets  is limited  to two  mouse  datasets.  We
introduce  the  first,  publicly  available  rat social  interaction  dataset,  RatSI.
Results:  We demonstrate  the  practical  value  of the  novel  dataset  by  using  it as  the  training  set  for  a  rat
interaction  recognition  method.  We  show  that  behavior  variations  induced  by  the  experiment  setting  can
ataset lead to  reduced  performance,  which  illustrates  the  importance  of  cross-dataset  validation.  Consequently,
we  add  a simple  adaptation  step  to  our method  and  improve  the  recognition  performance.
Comparison  with  existing  methods:  Most  existing  methods  are  trained  and  evaluated  in one  experimental
setting,  which  limits  the  predictive  power  of the  evaluation  to  that particular  setting.  We  demonstrate
Please cite this article in press as: Lorbach, M.,  et al., Learning to recognize rat social behavior: Novel dataset and cross-dataset application.
J Neurosci Methods (2017), http://dx.doi.org/10.1016/j.jneumeth.2017.05.006

that  cross-dataset  experiments  provide  more  insight  in  the  performance  of  classifiers.
Conclusions:  With  our  novel,  public  dataset  we  encourage  the  development  and  validation  of  automated
recognition  methods.  We  are  convinced  that  cross-dataset  validation  enhances  our  understanding  of
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rodent  interactions  and  facilitates  the  development  of  more  sophisticated  recognition  methods.  Combin-
ing them  with  adaptation  techniques  may  enable  us  to apply  automated  recognition  methods  to a variety
of  animals  and  experiment  settings.
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of annotated video recordings of two  interacting rats in an open-
field arena, including accurate 3-point tracking of the animals. The
. Introduction

Social interaction is an important component of psychiatric
esearch as well as neurological testing of animal models in behav-
oral neuroscience (Urbach et al., 2010). As part of the emotional
creening of a model it relates to aspects such as anxiety, stress,
lay and sexual behavior (File and Seth, 2003). Moreover, abnormal
ocial behavior can be indicative of a psychopathology (Peters et al.,
015) and can therefore inform us of the onset or progression of
onditions such as schizophrenia (Wilson and Koenig, 2014), Hunt-
ngton’s (Urbach et al., 2014) and Alzheimer’s disease (Lewejohann
t al., 2009) as well as Rett syndrome (Veeraragavan et al., 2016).
ncluding social behavior in rodent models therefore increases their
redictive power and value for the transition to clinical trials and
reatments for humans (Peters et al., 2015; Richardson, 2015).

Whether we seek to enhance our understanding of social behav-
or or include it in a rodent model, we need to objectively measure
nd quantify it. Traditionally, this involves annotating the interac-
ions among rodents in hours of either live observations or video
ecordings of social interaction tests. While this can be done man-
ally, it is time-consuming and subjective. Subjectivity may  be
educed by a meticulously defined ethogram and thorough training
f the human annotators at the cost of additional work.

An attractive alternative to manual scoring are automated mea-
uring tools (Schaefer and Claridge-Chang, 2012; Steele et al., 2007;
gnor and Branson, 2016; Noldus et al., 2001). Such tools track the

ocations of the rodents in video recordings and provide quanti-
ative measures such as the distance traveled and the time spent
n proximity (Spruijt et al., 1992; Sams-Dodd, 1995; Dell et al.,
014). Recent advances in video analysis have made the tracking
f rodents more robust and accurate (Hong et al., 2015; Pérez-
scudero et al., 2014). This allows us to take the next step and
onsider the automated recognition of specific interactions such
s approaching and following. Although the interaction categories
hat can currently be handled automatically are not as fine-grained
nd large in quantity as the categories that humans are able to
nnotate, automated methods can still support manual annotation
nd reduce labor. For example, by providing a first segmentation
nto these broader categories with high accuracy, the human effort
an be reduced to annotating fine-grained behaviors only in the
elevant video segments instead of the full length of the video.

The automated recognition of interactions typically involves
pplying classification algorithms to a quantified representation
features) of the visual information in the video (Hong et al.,
015; Kabra et al., 2012; Burgos-Artizzu et al., 2012; Giancardo
t al., 2013). The features are derived from the tracked animals
nd may  include velocity and distance. In order to distinguish
etween the different interactions, the parameters in the classifi-
ation algorithms are determined using labeled feature examples.
n this training phase, the classifier learns the similarities among
he examples and thereby creates a model of each interaction. For
nstance, it may  learn that whenever a rat approaches another, it

oves at a certain velocity while the distance between the two
ecreases. It is important how the classifier learns such models.
Please cite this article in press as: Lorbach, M.,  et al., Learning to recogniz
J Neurosci Methods (2017), http://dx.doi.org/10.1016/j.jneumeth.201

 classifier that simply “remembers” the feature values will not
erform well on unseen examples which have slightly different val-
© 2017  Elsevier  B.V.  All  rights  reserved.

ues. Instead, it must generalize from the empirical examples to the
inherent variations of the interaction classes.

Generally, there are two  types of variation in the examples of an
interaction. First, two animals will perform the same interaction
slightly differently every time, for instance, at a slightly different
velocity or from a different starting point. We  consider this the
natural variation of an interaction. Second, there is a systematic
bias in the natural variation that depends on the tested popula-
tion and the environment in which the interactions are observed.
Rats from the tested population, which is characterized by the
genetic background, the age and possibly the progress of a condi-
tion or its treatment, could for example move slower than rats from
another population. The environment, which is often created by the
researcher to study specific behaviors, comprises factors such as the
available space and the presence of hiding places or novel objects
that may  allow or prevent interactions to be performed in certain
ways.

As a consequence, the models learned by the classifier depend
on the distribution of training examples with respect to the sys-
tematic bias. If the bias changes due to modifications to the animal
population or the environment (Schneider and Levine, 2014), the
models could lose their effectiveness.

Therefore, when we evaluate the performance of a trained
classifier, we typically use test examples that follow the same dis-
tribution as the training examples. Both training and test examples
are usually taken from a dataset of video recordings of one specific
experiment (Hong et al., 2015; Kabra et al., 2012; Burgos-Artizzu
et al., 2012; Giancardo et al., 2013; Eyjolfsdottir et al., 2014; Kuehne
et al., 2016). That ensures that the bias is kept constant during eval-
uation and that we  obtain a plausible measure of the performance.

This evaluation scheme becomes critical when we apply the
trained classifier in practice. Beyond the tested experiment setting,
the evaluation is of limited value as it cannot predict the classifier’s
performance in another setting. Given the difficulty of precisely
replicating experiment settings (Crabbe et al., 1999) as well as
appeals to increase experiment heterogeneity (Richter et al., 2009),
we argue for an evaluation of interaction classifiers across settings
and therefore across datasets. Only with cross-dataset evaluation
can we  be confident about the performance of the classifier in prac-
tice (van Dam et al., 2013) and judge to which settings we can apply
it without retraining.

We argue that there is a need for datasets for at least two
purposes: to train classifiers and to evaluate them across experi-
ment settings. Currently, there are only two  rodent social behavior
datasets publicly available for researchers and both focus on mice:
the Caltech Resident-Intruder Mouse dataset (CRIM13) (Burgos-
Artizzu et al., 2012) and the Mice Behavior Analysis dataset
(MBADA) (Giancardo et al., 2013).

Given the increasing interest in rats for studying social behavior
(Veeraragavan et al., 2016; Homberg et al., 2016), we introduce
the first rat social interaction dataset (RatSI).1 It contains 2.25 h
e rat social behavior: Novel dataset and cross-dataset application.
7.05.006

1 http://www.noldus.com/innovationworks/phenorat-dataset.
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pared to tracking only the center point, three-point tracking yields
Fig. 1. Example frames of each behavior in RatSI dataset.

ataset can be used to develop novel interaction classifiers and to
alidate existing ones.

To demonstrate the practical value of the dataset, we use it to
rain a basic classifier for rat social behavior recognition. We  then
valuate the trained classifier on another validation dataset. We
lso give an example of how a systematic bias can influence the
lassifier performance. Considering the animal age as the bias, we
nvestigate how we can adapt the classifier so as to be applicable
cross datasets.

We continue the article with a description of the RatSI dataset.
n Section 3 we introduce the recognition method. We  present the
valuation results in Section 4 and conclude in Section 5.

. Materials: RatSI dataset

We  compiled the dataset from videos and behavior annotations
f a study on a rat model for Spinocerebellar ataxia type 17 (SCA17)
Kelp et al., 2013; Kyriakou et al., 2016).

.1. Video acquisition

The dataset comprises nine videos of a social interaction test
n a controlled open-field environment with two rats. The videos
re recorded from a top-view perspective in a 90 × 90 cm Noldus
henoTyper

®
9000 cage2 with standard top unit (image resolution

04 × 576, 25 fps) without bedding and accessories. Each recording
aptures 15 min  of interactions between different rat pairs. Fig. 1
hows examples of the captured interactions.

The recorded experiments are part of a larger social interac-
ion study adopting the following protocol. Three days before the
Please cite this article in press as: Lorbach, M.,  et al., Learning to recogniz
J Neurosci Methods (2017), http://dx.doi.org/10.1016/j.jneumeth.201

ecordings, the rats were individually introduced to the cage arena
or 20 min. Twenty-four hours before the test, the rats were iso-
ated to stimulate a desire for social interaction. Each rat was then

2 http://www.noldus.com/phenotyper.
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put in the recording cage together with another, unfamiliar rat. The
recordings started with the introduction of the second animal.

2.2. Animals

Naive male rats, 9 months, of two genotypes were used: SCA17
(Kelp et al., 2013) (n = 8) and wild-type-like (Sprague Dawley,
n = 10). Animals were housed in pairs under reversed day-light
cycle conditions and water and food were available ad libitum.
Subjects were housed in type IV cages according to EU welfare reg-
ulations except for the 24 h isolation period prior to social testing
where the animals were housed in type III cages. Testing was per-
formed during the animals’ active (dark) phase. All experiments
were performed after approval of the Ethical Committee for Animal
Experiments of the Radboud University Nijmegen Medical Center
for compliance to ethical standards and use of laboratory animals
according to EU-guidelines.

2.3. Annotation of interactions

Every video frame was  annotated by an expert with one of
nine interaction labels (Peters et al., 2016), described in Table 1.
The annotations are non-overlapping. Note that the interactions
occur with very different frequencies which leads to a non-uniform
distribution of the prior occurrence probabilities. In particular,
the animals perform solitary behavior in the majority (58.6%) of
the frames. Such a skewed distribution is common for behavioral
datasets (Burgos-Artizzu et al., 2012; Giancardo et al., 2013).

The annotated interactions are related to either the trajecto-
ries of the animals such as Approaching and Following, or a contact
category such as Allogrooming and Nape attacking. To distinguish
between the fine-grained contact interactions automatically, we
require additional information from features other than the animal
trajectories (Lorbach et al., 2015), for example image features. What
features are best suited for this task is yet an open research question
(Robie et al., 2017). To facilitate such research we  make the anno-
tations of all interactions available online. Here we use a restricted
set of annotations in which we  have merged Allogrooming, Nape
attacking, Pinning and Social nose contact into one common Contact
class. The Contact class groups interactions that are not easily dis-
tinguished by the classifier on basis of only trajectory features. If
a fine-grained categorization is required in the behavior analysis,
the interactions classified as Contact can be annotated manually
afterwards.

2.4. Tracking and features

The animal locations and body point positions have been
tracked throughout the videos using Noldus EthoVision3 XT 12
with a customized rat identification algorithm. The algorithm uses
appearance differences (here reinforced by black markers) to dis-
tinguish and maintain the identities up to a few errors which we
correct manually afterwards. Note that the identification algorithm
is still under development to facilitate marker-less identification
and is therefore not included in the official EthoVision XT 12 ver-
sion. We  track three points on the rat body: the nose, the center of
body mass, and the tail-base (see Fig. 2a for an illustration). Com-
e rat social behavior: Novel dataset and cross-dataset application.
7.05.006

a more detailed pose representation and improves the recogni-
tion accuracy (Dell et al., 2014; Lorbach et al., 2015; Decker and
Hamprecht, 2014).

3 http://www.noldus.com/ethovision.

dx.doi.org/10.1016/j.jneumeth.2017.05.006
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Table 1
Description of the behavior classes, their prior probability regarding the frame count p and the number of events m.

Allogrooming Grooming another rat’s fur p = 0.047 m = 105

Approaching Moving towards another rat in a straight line p = 0.075 m = 355
Following Chasing another, moving rat within a tail length distance p = 0.093 m = 259
Moving  away Moving away from another rat in a straight line p = 0.044 m = 387
Nape  attacking Snout or oral contact directed at neck region, possibly with biting/pulling fur in that region p = 0.01 m = 85
Pinning  Actively restrain another rat on its back p = 0.006 m = 8

n) 
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Social  nose contact Non-incidental nose-body contact (e.g. inspectio
Solitary  Any activity not directed at another rat 

Other  Any interaction not covered by another category

The feature set that we derive from each animal’s trajectory
s described in Fig. 2. The set is based on previous work in the
eld (Kabra et al., 2012; Burgos-Artizzu et al., 2012; Eyjolfsdottir
t al., 2014). Static pose information is represented by the distances
etween the three body points (dcc, dnn, dnt), the head orientation in
elation to the other rat’s position (�), and the relative orientation
f the pair (ϕ). Dynamic information is captured by two body point
elocities (vc , vn) as well as the change of distance and orientation
etween consecutive video frames. For details on the features we
efer to Appendix A.

In the considered interactions, the two rats often take on dif-
erent roles. For example, one rat approaches while the other is
eing approached. This asymmetry is information that the classifier
annot use because the role is unknown beforehand and thus not
ncoded in the features. In fact, the order of the rats in the feature
ector is arbitrary (i.e., first features of rat A, then of rat B or vice
ersa). To make the classifier invariant to the order, we aggregate
he features across animals. We  take the minimum, the maximum
nd the absolute difference of all features except those that are
lready invariant to the order (center and nose point distances and
he relative orientation). The final feature vector of one frame has
4 elements.

As the final step we reduce feature noise that may  have been
ntroduced during the tracking and propagated through above com-
utations. We  smooth the sequence of feature values over time
Please cite this article in press as: Lorbach, M.,  et al., Learning to recogniz
J Neurosci Methods (2017), http://dx.doi.org/10.1016/j.jneumeth.201

sing a moving average over five surrounding frames (two before
nd two after).

ig. 2. Features extracted from tracked body points. Asymmetric features are unified
o  one common value per rat pair.
p = 0.103 m = 506
p = 0.586 m = 484
p = 0.036 m = 196

3. Method: rat interaction recognition

We  now turn to the recognition method and its evaluation in a
cross-dataset classification task. Our interaction classifier models
interactions as Gaussian distributions of the features. To be able
to capture more interaction variations, we allow the classifier to
model each interaction using multiple Gaussian distributions. The
distributions are combined in Gaussian Mixture Models (GMM).

During the training phase, the classifier determines the param-
eters of the models using the Expectation Maximization algorithm
(Dempster et al., 1977). This yields a set of n model parameters {�1,
. . .,  �n} per interaction class. In addition to the parameters of the
Gaussian distributions, we  need to determine the number of dis-
tributions in each mixture model and an optional constraint that
constrains the covariance matrices of the Gaussians to be diago-
nal. The latter simplifies the models and decreases the time needed
for training. We  find the settings that yield the highest accuracy
automatically using cross-validation.

To predict the discrete interaction label ŷ of a feature vector x
extracted from an unseen video frame, the classifier computes the
probability of the data point given the model parameters for each
class, �i, and returns the class with the highest probability:

ŷ = arg maxip
(
x|�i

)
. (1)

Note that we intentionally neglect the information of how often a
particular interaction has occurred during training (the prior prob-
ability) to prevent biased predictions in test sets with different
interaction occurrence ratios.

3.1. Validation dataset

The evaluation of our recognition method is performed on
another Validation dataset. The Validation set is similar to RatSI
as it also contains videos from an open-field social interaction test
and the same interactions are annotated by an expert (Peters et al.,
2016). The experiments however were performed in a different lab-
oratory. The rats are also younger (5 weeks instead of 9 months)
and thus smaller, quicker and they engage frequently in dynamic
playing interactions. The Validation set contains 400 annotated
segments from five videos (50 per interaction class) with a total
duration of 12.5 min. The interactions occur with different fre-
quencies and durations than in RatSI. The locations of the rats were
tracked with Noldus EthoVision XT 11. Tracking and identity errors
were corrected manually.

3.1.1. Animals
One group of ten naive wild-type-like (Sprague Dawley) males,

5 weeks, were used in an social interaction test with the same
protocol as described in Section 2.1. The experiments were per-
e rat social behavior: Novel dataset and cross-dataset application.
7.05.006

formed in adherence to the legal requirements of Dutch legislation
on laboratory animals (WOD/Dutch “Experiments on Animals Act”)
and were reviewed and approved by an Animal Ethics Committee
(“Lely-DEC”).

dx.doi.org/10.1016/j.jneumeth.2017.05.006
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result as it demonstrates that classifiers are not necessarily bound
to one experiment setting. With more elaborate techniques we  may

Table 2
Per interaction recognition performance for within-dataset (w), cross-dataset (c)
and adaptation (a) experiments

Class RatSI Validation

w c a w c a

Approaching 0.43 0.35 0.41 0.61 0.59 0.62
ARTICLESM-7732; No. of Pages 7
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.2. Experiments

We  perform three experiments to evaluate three aspects of our
nteraction classifier. First, we assess whether the classifier is able to
ecognize interactions in the same experiment setting as it has been
rained on (Within-data). Second, we assess whether the classifier
eneralizes to other settings by evaluating its performance on the
alidation dataset (Cross-dataset). Third, we examine whether we
an neutralize the differences between the two experiment settings
y adapting the distribution of the feature values (Adaptation). We
se the restricted annotation set for our experiments.

.2.1. Within-dataset
The within-dataset evaluation is performed in a 3-fold cross-

alidation scheme. That is, we split the dataset into three parts
three videos each) and then train the classifier on two  parts and

easure its performance on the remaining part. This is repeated
uch that we evaluate the performance on all three parts once. We
utomatically determine the best classifier settings by performing

 cross-validated model selection on the two training parts (with
our training videos, two test videos and three repetitions).

.2.2. Cross-dataset
For the cross-dataset validation, we determine the GMM  set-

ings and train the classifier using the same 3-fold cross-validated
odel selection scheme. Since the performance is now evaluated

n the Validation dataset, we use all RatSI videos for training.

.2.3. Adaptation
To examine whether some of the differences in the experiment

ettings can be neutralized, we aim to remove the systematic bias
as introduced in Section 1) from the feature values.

We employ a simple technique that scales the values of each
eature such that the fifth-percentile value is −1 and the 95th-
ercentile value is 1. Using the percentiles instead of the minimum
nd maximum values increases the tolerance against outliers and
kewed class priors. After independently scaling the training and
alidation sets, we repeat the cross-dataset experiment.

To illustrate how training sets with different properties (e.g.
xperiment setting, number of examples) can affect the perfor-
ance, we repeat all three experiments in reverse order, i.e., using

he Validation set for training, and RatSI for validation.

.2.4. Performance metric
The performance is measured per class by the F1-score. The

1-score is the harmonic mean of the precision (true positive pre-
ictions divided by total number of positive predictions) and recall
cores (true positive predictions divided by the number of actual
ccurrences). The class scores range from 0, with no correct pre-
ictions, to 1 for the correct prediction of all examples. To obtain

 single measure of performance for the classifier, we average the
1-scores over all interaction classes leading to a final score in the
ange from 0 to 1. Averaging over classes as opposed to the total
umber of frames (equivalent to the ratio of correct frames) assigns
qual importance to all interaction classes and prevents the score
rom being biased by the most-occurring interactions. Hence it is
etter suited for behavior datasets with interactions that occur with
ifferent frequencies.

. Results
Please cite this article in press as: Lorbach, M.,  et al., Learning to recogniz
J Neurosci Methods (2017), http://dx.doi.org/10.1016/j.jneumeth.201

We  report the performance of our interaction recognition
ethod in Fig. 3. In the within-dataset experiment, we  achieve a F1-

core of 0.52 (±0.03) on RatSI and 0.68 (±0.06) on Validation. When
rained on RatSI and evaluated on Validation, the level of accuracy
Fig. 3. Recognition performance (average F1-score) with s.e. for cross-validated
within-dataset experiment.

is maintained (0.69). After adapting the features, the score even
slightly improves to 0.72.

In reversed training direction (Validation → RatSI), the F1-score
of 0.52 drops by 11.5% to 0.46 in the cross-dataset experiment. The
drop is compensated fully by applying the feature adaptation (0.54).

The results show that RatSI is a suitable dataset for training
social interaction classifiers. The score achieved on the Valida-
tion set (0.69) is in the same order as reported in related work
on similar datasets (Burgos-Artizzu et al., 2012; Giancardo et al.,
2013; Eyjolfsdottir et al., 2014). Note the relatively low perfor-
mance for Moving away of 0.26 (see Table 2) which is partly caused
by confusions with the Solitary class. These occur because inciden-
tal movements away from another animal are typically classified as
Moving away, whereas the human annotator only decided for Mov-
ing away if the event succeeded another interaction such as Contact.
Our frame-based classifier does not take such context information
into account yet.

While the classifier trained on RatSI generalizes well to Val-
idation, training on the Validation dataset is not optimal as is
evident from the declined performance on RatSI. This illustrates
the necessity to validate classifiers on other datasets. The decline
in accuracy is presumably caused by the limited size of the Valida-
tion set (12.5 min  compared to 135 min  in RatSI). It further contains
interaction variations that are more specific to young rats such as
Following at high velocity. The high velocity does not translate well
to the older, slower rats in RatSI, leading to a biased classifier and
consequently to a decreased accuracy for Following: from 0.53 to
0.25.

A simple feature adaptation technique however is able to com-
pensate for this age difference and restores the accuracy to the level
of the classifier trained on the same dataset. This is a promising
e rat social behavior: Novel dataset and cross-dataset application.
7.05.006

Contact 0.58 0.57 0.65 0.94 0.95 0.96
Following 0.53 0.25 0.51 0.58 0.66 0.66
Moving away 0.26 0.24 0.24 0.44 0.49 0.53
Solitary 0.80 0.87 0.86 0.84 0.77 0.84

dx.doi.org/10.1016/j.jneumeth.2017.05.006
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e able to handle more pronounced variations such as different
pecies.

. Conclusion

We  introduced the first publicly available rat social interaction
ataset, RatSI. The dataset is suitable for training rat interaction
ecognition methods as well as for validating methods trained
n other datasets. The dataset can be used to study the tempo-
al aspects of rat interactions and how these may  improve the
ecognition performance. We encourage the development of new
utomated methods and the use of the presented method for com-
arison.

We further illustrated the importance of cross-dataset evalu-
tions considering the different experiment settings encountered
n practice. We  showed that behavior variations induced by the
xperiment setting, for example the animal age and its effect on
he velocity, can lead to reduced performance.

Through the performed cross-dataset evaluation, we were able
o identify and neutralize the behavioral variation from our valida-
ion dataset, and could thus improve the classification performance.
he fact that we  were able to achieve this improvement with a sim-
le scaling technique demonstrates the potential of cross-dataset
pplication of interaction classifiers.

Developing more sophisticated methods for adapting to behav-
or variations will not only enhance our understanding of rodent
nteractions, it could also enable us to apply automated measuring
ools across species and to longitudinal studies of diseases.
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ppendix A. Trajectory features

The features that we introduced in Section 2.4 are derived from
he tracked body point locations over time. Each feature is com-
uted for every frame of a given video. We  enumerate the animals
nd indicate the identity in a subscript together with specific body
oint (c for center point, n for nose point, t for tail-base point). For
xample, the center point of rat 1 measured in frame t is �p1,c(t).
or the sake of clarity we omit the frame identifier (t) unless it is
ecessary to distinguish between values of different frames.

.1 Distance

We  measure three distances between the two animals, namely
etween the center points, between the nose points, and between
he nose point and the tail-base point. All distances are Euclidean
istances, indicated by || · ||2.

cc =
∣
∣
∣
∣�p1,c − �p2,c

∣
∣
∣
∣2

(A.1)
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nn =
∣
∣
∣
∣�p1,n − �p2,n

∣
∣
∣
∣2

(A.2)

nt =
∣
∣
∣
∣�p1,n − �p2,t

∣
∣
∣
∣2

(A.3)
Fig. A4. The relative position of one rat with respect to the head orientation of the
other.

A.2 Velocity

The velocities of the center and the nose points are estimated
by the positional difference between two consecutive frames. To
standardize velocity across different video frame rates, we  divide
by the time interval covered by the two  frames: ı = 1/fps, where fps
is the video frame rate:

vc(t) =
∣
∣
∣
∣�pc(t) − �pc(t − 1)

∣
∣
∣
∣2
/ı (A.4)

vn(t) =
∣
∣
∣
∣�pn(t) − �pn(t − 1)

∣
∣
∣
∣2
/ı. (A.5)

A.3 Relative orientation

We  measure the relative orientation between the rats as the
angle between their head directions. The head vector of rat j is �pj,cn,
j ∈ {1, 2}, pointing from the center point to the nose point. The
relative orientation is the absolute angle between the head vectors
of the two  rats:

ϕ =
∣
∣∠

(�p1,cn, �p2,cn
)∣∣ . (A.6)

A.4 Relative position

The relative position captures where in an animal’s environment
the other animal is (e.g., in front, behind, next to). We  designed this
feature to be invariant to the distance between the animals and to
be symmetric with respect to the side (left/right). It is calculated as
cos� , where � is the angle between the animal’s head vector �pj,cn
and the line connecting both animals’ center points �dcc as illustrated
in Fig. A4.
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