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Abstract

In computational approaches to the study of variation
among folk song melodies from oral culture, both global
and local features of melodies have been used. From a
computational point of view, the representation of a
melody as a vector of global feature values, each
summarizing an aspect of the entire melody, is attractive.
However, from an annotation study on perceived
melodic similarity and human categorization in music it
followed that local features of melodies are most
important to classify and recognize melodies. We
compare both approaches in a computational classifica-
tion task. In both cases, the discriminative power of
features is assessed. We use a feature evaluation criterion
that is based on the performance of a nearest-neighbour
classifier. As distance measure for vectors of global
features, we use the Euclidian distance. For the sequences
of local features, we use the score of the Needleman—
Wunsch alignment algorithm. In each of our compar-
isons, the local features correspond to the global features.
In all cases, it appears that the local approach outper-
forms the global approach in a classification task for
melodies, which indicates that local features carry more
information about the identity of melodies. Therefore,
locality is a crucial factor in modelling melodic similarity
among folk song melodies.

1. Introduction

The question how to automatically determine the
similarity between folk song melodies has a history of
more than a century. In 1900, the Dutch musicologist

Daniel Frangois Scheurleer (1900) posed the question:
‘Welche ist die beste Methode, um Volks- und volkmas-
sige Lieder nach ihrer melodischen (nicht textlichen)
Beschaffenheit lexikalisch zu ordnen?.! To stimulate
response, Scheurleer organized a competition, which
marked the starting point of a long-lasting discussion
about classification systems for folk song melodies. One
of the main reasons to want such a system is the
variability that exists between instances of folk songs as
they are sung from memory. The melodies and the lyrics
of folk songs are learned by imitation and participation
rather than from written sources such as books. In the
course of this oral transmission, changes occur to the
melodies that range from minor alterations to deforma-
tion beyond recognition (Wiora, 1941). Therefore, any
collection of folk song melodies that were gathered
during field-work consists of groups of more or less
related melodies. Later in the century, the concept of tune
family (Bayard, 1950) was introduced to denote such a
group of melodies that are supposed to have a common
‘ancestor’ in the line of oral transmission. The classifica-
tion system Scheurleer envisioned has the aim to order a
collection of folk song melodies such that melodies that
are in the same tune family end up near each other in the
resulting ordering. Important contributors to the discus-
sion were, among others, Ilmari Krohn (1903), Béla
Bartok and Zoltan Kodaly (summarised by Suchoff,
1981), and Wolfgang Suppan and Wiegand Stief (1976).
Features they used to order melodies are, for example,
the number of phrases, the number of syllables in each
phrase, the pitches of the cadence tones of the phrases,

'What is the best method for the lexical ordering of folk and
folklike tunes? (Translation by Nettl 2005, p. 123).
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and so on. As early as in the 1940s, computers were used
to process large collections of melodies. Bronson (1949)
proposed a punch-card system to sort melodies according
to various features. Bronson (1950) introduced a number
of features for British-American folk song melodies. In
decreasing order of importance, these are: (1) final
cadence, (2) mid cadence, (3) first accented note, (4) first
phrase cadence, (5) first accented note of second phrase,
(6) penultimate stress of second phrase, etc. In an
ordering according to these features, melodies from the
same tune family are expected to be close to each other.

Most of the features that are mentioned thus far refer
to specific locations in the melody. In contrast, most of
the work by Steinbeck (1982) on melody groups in the
Essen Folksong Collection (Schaffrath, 1995) is based on
global features that summarize the entire melody in one
value, such as the standard deviation of the pitch, the
average interval size, and so on. For a set of 35 melodies,
Steinbeck was able to cluster melodies into meaningful
groups, such as hymns, children’s songs and hunting
songs, using 13 global features and a hierarchical
clustering algorithm. An experiment with 500 melodies
also led to clusters, but in this case the clusters were more
difficult to characterize musically (Steinbeck, 1982, p.
346).

In a study based on the same corpus, Jesser (1991)
employed global as well as local features. The set of
global features consists of the frequencies of occurrence
of a large number of intervals and duration-ratios (see
Appendix A.2), while the local features include sequences
of accent tones, sequences of cadence tones, form, and
contour. Jesser did not achieve a fully automatic method
to retrieve related melodies (p. 213), but she found
related melodies by issuing a series of search commands
among the feature values of the entire corpus. The tune
family relationships between melodies that Jesser was
able to find were mainly based on the representation of
the melodies as sequences of local features, such as the
sequence of cadence tones or the melodic contour. The
global features did not provide much to the classification
(Jesser, 1991, p. 258).

Zoltan Juhasz’s work is based on a vector representa-
tion of melodic contours (e.g. Juhasz, 2009), which
enables local comparisons between melodies. Eerola,
Jarvinen, Louhivuori and Toiviainen (2001), on the other
hand, evaluate melodic similarity using global features,
and Bohak and Marolt (2009) used global features for
assessing similarity relations between Slovenian folk song
melodies.

In a previous study, we showed that recurring motifs
are important for the classification of tunes into tune
families (Volk & Van Kranenburg, 2012). This conclu-
sion was based on manual annotations by domain
specialists at the Meertens Institute (Amsterdam), which
hosts a large collection of Dutch folk song recordings,
called Onder de groene linde. This prevalence of melodic

motifs leads to the assumption that locality is impor-
tant—perhaps indispensable—for the classification of
melodies, and, consequently, for the (computational)
modelling of similarity relations between melodies.

From a computational point of view, the employment
of global features has the advantage that a melody is
represented in a relatively simple way as a vector of
feature values. Such a representation can be processed by
numerous standard machine learning techniques. There-
fore, if both approaches perform equally well, and if the
aim is merely classification, it might be adequate to use
such a standard approach, even when knowing that local
features seem to play a major role in human assessment
of melodic similarity. On the other hand, if the aim is to
model the way humans relate melodies to each other, a
local approach or a combined approach might be more
suitable. These considerations are relevant for the
research field of Music Information Retrieval, in which
computational processing of music for retrieval purposes
is studied (Downie, 2003). Therefore, the question how
to model both musical content and (similarity) relations
between musical objects is of central importance.

The question whether global or local features can be
used equally well for recognition of melodies is interest-
ing from a cognitive perspective as well. Is it because
global features are more difficult to ‘access’ for humans
that local features seem to be more important for the
recognition of melodies, or do local features actually
provide more information for recognition or classifica-
tion? Though the topic of similarity in music has recently
received substantial attention in music cognition research
(see e.g. two special issues dedicated to this topic in
Musicae Scientiae—Toiviainen, 2007, 2009), this ques-
tion has not yet been studied systematically. For a
broader overview on the relation of our study to the
human assessment of melodic similarity we refer to Volk
and van Kranenburg (2012).

In the current investigation, we compare the suit-
ability of global and local features for discerning the
members of a tune family in a corpus of melodies using a
computational approach.

In a related study, Hillewaere, Manderick and
Conklin (2009) did a similar comparison, taking the
geographical origin as class labels (England, France,
Ireland, Scotland, South East Europe, Scandinavia). In
the current study, we confine to a single tradition (the
Dutch) and we use the tune families as class labels
instead, which directly relates the results of our study to
previous and ongoing research in the area of Folk Song
Research.

The general outline of the article is as follows. Section
2 provides further details on the data set we use and on
the concept of tune family. In Section 3 we present the set
of 88 global features that we use in our study, and we
evaluate the discriminative power of both individual
global features and sets of global features. In Section 4,
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we compare the discriminative power of different sets of
global features with the discriminative power of an
alignment approach that uses corresponding local features,
which was introduced in van Kranenburg (2010). We show
that classification based on local features outperforms
classification based on global features.

2. Data

The data set we work with is the collection Onder de
groene linde, which consists of c¢. 7000 audio recordings
of Dutch folk songs, made during the 1950s until the
1980s by ethnological field-workers Will Scheepers and
Ate Doornbosch (Grijp, 2008). The collection is cur-
rently hosted by the Meertens Institute in Amsterdam,
and accessible through the website of the Dutch Song
Database.” Around 2500 of these recordings were
encoded for computational processing. Next to the
recordings, the collection also contains thousands of
folk songs from written sources.

One of the tasks of the collection specialists of the
institute is to classify the melodies into tune families. The
concept of tune family is of central importance in the study
of folk song melodies. This concept was introduced in the
1950s by Samuel Bayard to denote a group of melody
instances that supposedly ‘descend’ from one single tune
through the process of oral transmission. Later on, an
extension of the concept was proposed by James Cowdery
(1984). He considered other types of melodic relatedness
than having a common ‘ancestor’ for establishing tune
family membership. One of these is melodies being
composed from the same ‘pool’” of motifs. Such a pool of
motifs consists of concrete melodic material that is
available to the folk musician for constructing a melody.

Our collection only contains ‘end points’ in the
process of oral transmission. The full history of a
melody, comprising the ancestral variants, is lost.
Therefore, in practice, the assignment of a recorded tune
to a tune family is done based on similarity relations
between the melodies. As an example of the degree of
variation that can be found among tune family members,
Figure 1 shows incipits of four melodies from the tune
family Soldaat kwam uit de oorlog.

In a previous study, our aim was to understand how
these assignments are established (Volk & Van Kranen-
burg, 2012). We asked the collection specialists to
annotate similarity relations among melodies in a subset
of 360 melodies in 26 tune families: the Annotated
Corpus. Appendix A.1 shows its composition. This subset
was carefully selected such that the kinds of melodic
relations among the 360 melodies are representative for
the kinds of melodic relations among the collection as a
whole. One of our findings was that recurrence of

*http://www.liederenbank.nl

characteristic motifs plays a major role in the classifica-
tion of the melodies, even more so than similarity of
melodic contour or rhythm.

Because the Annotated Corpus is relatively small, we
also employ an additional set of 4470 melodies from
other Dutch tune families. This additional set allows one
to test for scalability: if we find a set of features that
offers enough information to discern tune families within
the Annotated Corpus, we will test whether this set of
features is also appropriate to discern the same tune
families in the large corpus. A positive result would
confirm the validity of the set of features.

Since the assignments of the melodies to the tune
families were done in a careful process by the domain
experts from the Meertens Institute, we consider the
resulting partitioning of the dataset of high quality, such
that it is suitable to test the discriminative power of the
various classification approaches.

3. Melodic classification using global melody
feature sets

In this section we evaluate the usefulness of global
features for the classification of melodies into tune
families. First, we assemble a set of 88 features that have
previously been used in various studies (Section 3.1).
Next, we assess individual features to see whether we can
find features that are discriminative for all tune families
(Section 3.3). Finally, we investigate subsets of features
(Section 3.4). For both single features and subsets of
features, we test the discriminative power for each
individual tune family as well as for all tune families in
the Annotated Corpus. To evaluate the discriminative
power of a feature subset, we need a feature evaluation
criterion, which is presented in Section 3.2.

3.1 The set of global features

We use the following three sets of features that are well
known from the literature:

e 12 features provided by Steinbeck (1982).
e 39 features provided by Jesser (1991).
e 37 rhythm, pitch and melody features implemented in

jSymbolic by McKay (2004).

Steinbeck and Jesser specifically designed their feature
sets to study relations between folk songs within the
Essen Folk Song Collection that are connected through
the process of oral transmission. Because our corpus
consists of such folk song melodies, the evaluation of
these two feature sets is particularly interesting. McKay’s
set was designed as a general purpose feature set for
musicological classification tasks. It contains a number
of features that are not in the sets by Jesser and
Steinbeck.
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Fig. 1. Incipits of four members of the tune family Soldaat. The melodies are identified by their record number in the Dutch Song
Database (http://www.liederenbank.nl). The full melodies and recordings can be accessed by entering the record number in the search

box on the site of the Dutch Song Database.

All features for which absolute pitch is needed (e.g.
Steinbeck’s Mean Pitch) are discarded because the
melodies are represented in various keys. The low-level,
multidimensional features from the set of jSymbolic that
are primarily needed to compute the values of other,
higher-level features are discarded as well. Furthermore,
categorical features and features that have the same value
for all songs have not been included. Thus, we have a set
of 88 features, which we characterize as ‘global’ because
for each feature an entire song is represented by a single
value. The complete list of features with descriptions is
included in Appendix A.2.

Once all 88 feature values have been computed, a song
is represented by a vector of 88 feature values, or,
equivalently, by a point in the 88-dimensional feature
space. The scaling of the values for the different features
with respect to each other influences the distances
between the song-representations in the feature space.
Therefore, it is necessary to normalize the feature values
such that they have comparable scales. For each feature
we scale the values such that they have zero mean and a
standard deviation of 1. This is achieved by subtracting
the original mean and dividing by the original standard
deviation. We do this both for the annotated set and for
the full set separately.

3.2 A feature evaluation criterion

We need a measure to determine the discriminative
power of a single feature, or of a set of features. In
pattern recognition literature, such a measure is called a
‘criterion’. It is commonly used by feature selection
algorithms to find a subset of features that is particularly
suited for a specific classification task. The subset with
the highest criterion value is considered the ‘best’ subset
(see e.g. Webb, 2002, p. 307ff).

The fraction of songs that is correctly classified into
the right tune family using the feature set under
consideration seems a good criterion for the discrimina-
tive power of that feature set. To take this approach, we
need a classification algorithm. For that, we use the
nearest neighbour classification rule: a song is classified
into the tune family of the song that is closest in the
feature space according to the Euclidean distance. This
classification rule performs well if objects (songs) that
belong to the same class (tune family) are close to each
other in the feature space. Therefore, the criterion value
indicates to what extent this is the case for the feature set
under consideration. A feature selection algorithm using
this criterion is expected to select a subset of features
according to which the distances between songs from the
same tune family are small compared to the distances to
members of other tune families.

In most of our experiments, we are interested in
classification of a relatively small set of songs among a
larger collection. In any case, we are not directly
interested in the classification performance for the
additional 4470 songs. The tune families in the Anno-
tated Corpus are selected by the domain specialists to be
representative for the corpus as a whole. The additional
songs just represent the ‘rest of the world’. It is sufficient
to know that they are from other tune families than the
songs in the Annotated Corpus. As a consequence, we
label all 4470 additional songs as ‘Other’, which results in
very asymmetric class sizes. This leads to the following
problem. In the case that most of the additional songs are
classified correctly as ‘Other’, but none of the annotated
songs are classified correctly, the overall classification
accuracy is relatively high. In the extreme case that all
songs in the data set would be classified as ‘Other’, the
success rate would be 4470/4830 = 0.93, while none of the
songs we are interested in would have been classified
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correctly. In our context, this situation constitutes a total
failure, as the criterion should have value zero. We have
to incorporate this selective interest in the criterion.
Therefore, we compute the classification accuracy for the
songs we are interested in and we correct it downwards
for the songs in the rest of the corpus that are classified
incorrectly into one of the tune families of the songs that
we are interested in.

We define the set of songs C as the set of all songs
involved in the experiment, and the subset S C C as the
songs in the tune families in which we are interested. We
denote the set of features for which we want to compute
the criterion with F.

Taking the above considerations into account, we
define the following criterion:

 pr(SSF) (S, F)
HESE) = o C.S.F) S|+ /n(C.S. )’

where 1pr(S,F)=1tp(S,F)/|S| the true positive rate, with
tp(S,F) the number of true positives and [S| the
number of songs in S, and fpr(C,S,F)=/p(C,S,F)/|S|
the false positive rate, where fp(C,S,F) is the number
of false positives. In this context, true positives are
those songs in S that have another song from the same
tune family as the nearest neighbour, and false
positives are those songs not in S that have a song
from a tune family present in S as nearest neighbour,
but do not belong to that tune family. Since #pr(S,F) €
[0,1] and fpr(C,S,F)>0, J(C,S,F) € [0,1]. If C does not
contain additional songs with respect to S, fp(C,S,F) is
zero, and thus J(C,S,F)= p(S,F)/|S|, which is the
nearest neighbour leave-one-out success rate. If, on the
contrary, C does contain additional songs with respect
to S, then J is the nearest neighbour leave-one-out
success rate for the songs in S corrected by the false
positives among the additional songs in C. The value
of the criterion is a lower bound for the classification
performance on the songs in S. A higher value for J
indicates better class separability, since both the classes
we are interested in can be separated and there is little
or no interference from other classes.

Suppose, as an example, that we are interested in the
discriminative power of a certain feature set F for all of
the 26 tune families (360 songs) of the Annotated Corpus
among the entire corpus of 4830 songs. Then, S consists
of the 360 songs of the Annotated Corpus and C consists
of all 4830 songs. Suppose that we have a classifier that
classifies 90 songs from the Annotated Corpus (S)
correctly and that also classifies 300 songs that are not
in S into one of the classes (tune families) that are in S.
Then the total number of incorrectly classified songs is
270 4300 =570, and thus, the total number of correctly
classified songs is 4260. Therefore, the leave-one-out
success rate for the whole data set is 4260/4830=0.88.
This seems a good result, but it is heavily biased by the

asymmetric class sizes: the class ‘Other’ contains 4470
songs, while the typical size of the classes in S is in the
order of 10 songs. In our example, only 90 songs in S
have been correctly classified. Therefore a success rate of
90/360 = 0.25 would better reflect the performance we are
interested in. Still, for the discriminative power of the
feature set that was used by the classifier, this is not the
right value, since 300 other songs were classified into
classes that are in S. Therefore we correct the success rate
of 0.25 using the definition of the criterion:

90
J(C,S,F) = 30 _ —0.14.
1 +3%

As another example, suppose that we are interested in the
discriminative power of a certain feature set F for the
melodies of tune family called Ruiter 1 among the other
melodies in the Annotated Corpus. Then, S consists of
the 27 melodies from Ruiter 1 and C consists of the 360
songs of the Annotated Corpus. Suppose, all 27 melodies
from Ruiter 1 are correctly classified as Ruiter I using the
nearest-neighbour rule, but also four melodies from
other tune families are classified as Ruiter 1. Then the
criterion value is:

27
J(C,S,F) = 142r—7i =0.87.
27

In our experiments, S will either contain the songs from a
single tune family or the songs from all 26 tune families
in the Annotated Corpus, and C will either contain the
songs of the Annotated Corpus, or the full corpus of
4830 songs. In all cases, we label the songs in S with their
respective tune family and the other songs in C with
‘Other’.

As explained, the main idea of this criterion is to take
false positives into account and ‘penalize’ for those. We
defined a false positive as the case in which a song in C,
but not in S has a song from S as nearest neighbour.
However, in the case that the ‘query’ song belongs to a
tune family of which only one member is present in the
corpus, it is not possible to have a song from the same
tune family as nearest neighbour, and consequently, in
terms of similarity, it might be correct to find a song from
S as nearest neighbour. Since there are 1460 ‘single’
songs in the large set, this is an effect to be aware of. Still,
we label the case that we find a song from S as nearest
neighbour as a false positive, since it implies that the
‘query’ song is more similar to a song in S than to the
‘rest of the world’, which affects the discriminability of
the tune families in S. Thus, with respect to this
phenomenon, the criterion value gives a pessimistic
estimation of the discriminative power of a feature set.

An implementation-specific advantage of this criterion
is the efficiency of computation. We use the implementa-
tion of the nearest neighbour classifier as is provided in
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the Matlab toolbox PRTools.> This toolbox offers a
function (testk) that computes the leave-one-out
success rate for an entire data set by only a few
matrix operations instead of computing the error
separately for each song and averaging afterwards.
Rewriting this function to return the value of our
criterion is straightforward. Fast computation of the
criterion value is especially important for finding the
optimal subset of features, which has a very large
solution space.

3.3 Evaluation of individual global features

The main question of this subsection is: which of the
single features are discriminative for which tune families?
Furthermore, it is interesting to find out whether there
are single features that are discriminative for all or many
tune families, since such features could possibly be
related to basic properties of melodic variability among
melodies from oral tradition.

3.3.1 Method

For each of the individual 26 tune families, we
compute for each of the 88 features the value of the
criterion, both for the small dataset of 360 songs and
for the large dataset of 4830 songs. Thus, S consists
subsequently of the songs of the tune family under
consideration, C consists either of the 360 songs from
the Annotated Corpus or of all 4830 songs, and F
consists subsequently of each single feature. In all of
these cases we have a two-class classification problem.
This results in a total of 26 88« 2=4576 different
criterion values.

Besides this, we also compute the discriminative
power of each single feature for all 26 classes from the
Annotated Corpus as a whole, resulting for each feature
in a 27-class classification problem. In this case, S
contains all 360 songs from the Annotated Corpus.
Again we do this both for the small and for the large data
set. In the former case C consists of the 360 songs from
the Annotated Corpus and in the latter case of all 4830
songs. Thus, for the small data set, we find the leave-one-
out accuracy of the nearest neighbour classifier. The
criterion value for the large data set indicates to what
extent the annotated songs can still be recognized among
thousands of other songs.

3.3.2 Results

The ten highest of the 4576 criterion values for the
individual features and tune families are shown in Table
1, along with the tune families for which the features are
discriminative. To compare scalability, the criterion

3http://www.prtools.org (accessed 1 June 2011).

value for the large data set is included as well. For all
other combinations of features and tune families, the
criterion value for the small set is less than 0.5.

In all cases, the discriminative power of the features
decreases dramatically for the large data set. Overall,
the highest criterion value for the large data set for
individual tune families and features is 0.2857 for tune
family Nood and feature FractionHalfDuration (which
is not shown in Table 1). Four out of the eight songs
of this tune family have been classified correctly using
this single feature, while six songs from other tune
families were erroneously classified as Nood. Inspection
of the melodies shows that the rhythmic ratios of 1:2
and 2:1 are very common in this tune family indeed, as
the incipit in Figure 2 shows. Apparently, there are
only very few other melodies in the large corpus that
show such a high occurrence rate of this rhythmical
pattern.

For the separability of all 26 classes, we find that
for the small data set the highest value of the criterion
is 0.175, which occurs three times, namely for the
features Melodic Thirds (14), DurationLineCorrespon-
dence (49), and aminthird (53). For the large data set,
the highest criterion value is 0.0217 for the features
Amount of Arpeggiation (1) and Size of Melodic Arcs
(32). These values are too low to justify further
inquiry.

Both for single tune families and for the 26 tune
families together, the majority of the cases yield criterion
value zero. In these cases, none of the songs has a song
from the same tune family as its nearest neighbour for
the feature under consideration.

Table 1. The 10 features with the highest criterion value for the
small dataset of 360 songs. The criterion value for the full
dataset is also shown.

J for J for

Tune family Feature small set large set

Herderinnetje FractionEqualDurations 0.8182 0.0800

(47)
Herderinnetje FractionHalfDuration 0.7692 0.0500
(46)
Maagdje Melodic Octaves (13) 0.7273 0.0256
Maagdje aoctave (62) 0.7273 0.0299
Meisje Most Common Melodic  0.6875 0.0488
Interval Prevalence
(17
Halewijn 2 Polyrhythms (26) 0.6667 0.1404
Lindeboom daugfourth (69) 0.6667 0.2667
Lindeboom Melodic Tritones (15) 0.5000 0.0800
Meisje aminseventh (60) 0.5000 0.2273
Halewijn 2 Number of Moderate 0.5000 0.1765

Pulses (21)




Global and local features of folk songs 7

=g f* —t . — 1’ ll'  m— 1
y o - T i) e — | —— = e = ! 1
— [& ) r L r Il IrJ 1 1 1 Iil | I ]
Komt vrien -den staat eens stil Hoor wat ik u mel - den wil Hoe een
H 4 o = - - . - n .-
K v 1 — ¥ = Py f  d—— >
%} t - ! 1 = I ¥ : H s
die - naar van Gods - kerk Ver - brak  zijn mees - ter - werk

Fig. 2. Beginning of a representative song from the tune family Nood.

3.3.3 Conclusion

From these results we conclude that none of the
individual features is ‘strong’ enough to discriminate all
26 tune families. The features that to some extent are
discriminative for a single tune family are not discrimi-
native for other tune families. Furthermore, we conclude
that the results for the Annotated Corpus are not
scalable: the features that are discriminative for tune
families within the Annotated Corpus are not discrimi-
native for the same tune families within the large data set.
Apparently, there is quite some interference among the
tune families concerning the values of individual features.
Hence, to model similarity relations between tunes from
oral tradition, employment of single features is not
sufficient. Higher-dimensional approaches are needed.
Therefore, in the next section, we evaluate sets of global
features.

3.4 Evaluation of sets of global features
3.4.1 Method

To find sets of features that separate the tune families,
we perform forward floating feature selection (Pudil,
Novoviciva, & Kittler 1994).* Starting with an empty
feature subset, this algorithm successively adds or
removes one feature in order to optimize the criterion.
At the end, the subset yielding the highest criterion value
is returned.

Again, we do this both for each individual tune family
and for all 26 tune families from the Annotated Corpus
together. In the former case S consists of the songs from
the tune family under consideration and in the latter case
S consists of all songs from the Annotated Corpus. In
both cases, during feature selection, C consists of the 360
songs from the Annotated Corpus. Because of the
infeasibly long computation time for the large set, we
perform the feature selection only for the small data set.
To test for scalability, we also compute the criterion
value for the large set, using the feature subset that was
selected for the small set.

*We use the Matlab-implementation of PRTools (http://
www.prtools.org, accessed 1 June 2011).

3.4.2 Results

Table 2 shows for each tune family the indices of the
selected features, and the value of the criterion for that
set for both the small and the large corpus.

For almost all individual tune families the feature
subset with the highest criterion value contains less than
10 features, while 62 out of the 88 features are
represented in at least one of the selected feature sets.
The most common feature is STBFractionStressed (44),
which, however, occurs in only six of the 26 subsets.
There are two features that occur five times, four features
that occur four times, 12 features that occur three times,
17 features that occur two times, and 26 features that
occur in only one of the selected subsets.

As in the previous experiments, the global feature
approach is not scalable. For most tune families that
have a high criterion value for the small data set, the
value for the large set is very low. The extreme case is
observed for the tune families Nood and Stil. Apparently,
in these cases there is a lot of interference from tune
families that are not in the Annotated Corpus. The only
tune family for which a moderate performance has been
obtained for the large data set is Meisje. Most of the
features in the specific subset for Meisje are related to
occurrence rates and sizes of intervals. This relates to the
observation that most of the songs in tune family Meisje
start with an upbeat of an ascending minor seventh or an
ascending octave. An example is provided in Figure 3.
Given the current results, this seems a relatively
unique feature for this tune family among the rest of
the corpus.

The selection procedure for separability of all 26
classes returns a feature subset of size 60 for the small
data set, with a criterion value of 0.8194. The criterion
value for the same feature subset using the large data set
is 0.3402, which shows that there is quite some confusion
between tune families from the Annotated Corpus and
tune families in the rest of the large corpus, in the sense
that a relatively high number of melodies from other tune
families have a member from the Annotated Corpus as
nearest neighbour.

Figure 4 shows the criterion values for selected
optimal feature subsets of increasing size, for subsets of
size 1 to 30. For feature subsets with more than around
nine features, larger feature subsets only result in
marginal improvement of the criterion value. The biggest
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Table 2. The selected feature subset with the highest criterion value for the small dataset of 360 songs. The
criterion value for the full dataset is also shown. Only for tune family Ruiter 2, more than 10 features are

selected. For this tune family only the first 10 features are shown.

Tune family

Selected feature subset

J for small set

J for large set

Heer 58 59 60 84 0.3810 0.0625
Jonkheer 414 20 37 38 60 0.8333 0.0769
Ruiter 2 161528354459 67 78 86 0.7778 0.1154

Maagdje 313 0.8000 0
Dochtertje 37597179 0.4118 0.0962
Lindeboom 823 69 0.8889 0.2414
Zoeteliefjes 3644 5478 87 1.0000 0.2692
Ruiter 1 24 38 53 70 82 84 0.6667 0.3158
Herderinnetje 47 87 1.0000 0.1000
Koopman 68 70 0.6842 0.0795
Meisje 2345131617 4160 1.0000 0.6471
Vrouwtje 944 48 49 84 0.9167 0.1739
Femmes 45 51 59 81 0.7143 0.0800
Halewijn 2 926 0.7273 0.2162
Halewijn 4 22 28 35 37 87 0.6667 0.1905
Stavoren 153345 84 0.7778 0.0769
Zomerdag 27 39 66 67 0.7895 0.0909
Driekoningenavond 9 44 57 59 68 87 0.8462 0.2500
Stad 7 132336 55 1.0000 0.4000

Stil 42324347175 1.0000 0
Schipper 712 17 47 54 58 70 0.9333 0.4000

Nood 10 17 27 46 49 1.0000 0
Soldaat 61649 71 0.6111 0.2041
Bruidje 29 44 49 84 1.0000 0.0556
Verre 8253542 0.7647 0.0400
Boom 410 24 27 39 42 44 66 70 0.7895 0.2963
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Een meis-je van acht-tien jaren Een meis-jevanacht-tien ja-ren

Fig. 3. Beginning of a representative song from the tune family Meisje.

o o
(22} L2
=

e
e

Criterion Value

10 15 20 25 30
Number of Selected Features

Fig. 4. Criterion values for feature subsets of various sizes for
the Annotated Corpus.

improvements are reached for subsets of one, two and
three features. The selected subset of three features
contains FractionStressed (44), dminthird (66) and
numlines (87). Interestingly, these three features are
aspects of different dimensions of melodic similarity:
meter, pitch and form.

3.4.3 Conclusion

Although discriminative subsets of features can be found
for the Annotated Corpus, we conclude from these
results that no feature subset can be found that is
discriminative for all tune families in the large corpus.
Nevertheless, some tune families can be better distin-
guished than others. Furthermore, we observe a large
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Sequence of local intervals:

6 0 +23 0 +6 0 -6
Global features:

prime: 0.461538
aminsecond: 0
amajsecond: 0.0769231
aminthird: 0
amajthird: 0
afourth: 0
aaugfourth: 0

f) 4 . i | | :
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afifth:
aminsixth:
amajsixt:
aminseventh:
amajseventh:
aoctave:

0.0769231
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Fig. 5. Representation of a melody as sequence of local melodic intervals (directly below the notes, in base-40 encoding) and as set of
several global features from the set of Jesser (inventory of ascending melodic intervals).

diversity among the specific feature subsets that have
been selected for the individual tune families. There is not
even a single feature that is present in a substantial
number of selected subsets. It seems that, taking a global
feature approach, one has to design separate models for
each of the individual tune families.

In the next section, we incorporate local features in
our investigation.

4. Comparison of global and local features

In this section we compare the global feature approach
that was investigated in the previous section, with a
local approach, in which a song is represented as a
sequence of local feature values. In the local approach,
the time-order of melodic events is preserved and local
comparison of melodies is possible. In all our compar-
isons, we choose local and global features that are
directly related.

We perform the comparisons between the local and
the global approach separately for pitch related features
and rhythm related features. The respective local features
are pitch intervals and duration ratios. In the first case, a
note is represented by the melodic interval with the
preceding note. In the second case, the note is
represented by its duration divided by the duration of
the preceding note. As an illustration, Figure 5 shows the
representation of the same melody both as sequence of
local pitch intervals in base-40 encoding (see Hewlett,
1992) and as vector of (several) global features from
Jesser’s interval inventory. This example shows a direct
relation between the local and global features.

In the global approach, we compute the distance
between two melodies as the Euclidian distance between
the two corresponding vectors of feature values. Since

the same set of global features is used for both melodies,
these two vectors have the same size and correspond
directly to each other. For the local approach we need
another way to compute the distance between two
melodies. In most cases, the sequences of local feature
values of two melodies differ in length. These sequences
are not directly comparable. Therefore, we use sequence
alignment to compute the distance between the two
sequences of local feature values. We take the extent to
which an alignment can be computed as a measure of the
similarity between the sequences. This will be further
explained in Section 4.2.2. As soon as the distances
between the songs are available, we can apply the nearest
neighbour rule, and we can compute the value for the
feature evaluation criterion that was defined in Section
3.2. This allows us to compare the classification
performances of the global and local approaches.

4.1 Comparisons

We perform five comparisons, in which the melodies are
represented by different kinds of features:

(1) Global: vector of interval features; Local: sequence
of local intervals (Section 4.3.1).

(2) Global: vector of interval features and derived pitch
features; Local: sequence of local intervals (Section
4.3.2).

(3) Global: vector of duration-ratio features; Local:
sequence of local duration-ratios (Section 4.3.3).

(4) Global: vector of duration-ratio features; and
derived global rhythmic features; Local: sequence
of local duration-ratios (Section 4.3.4).

(5) Global: All global features; Local: sequence of

local pitch, metric, and structure features (Section
4.3.5).
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For comparisons 1 and 3, the local and global features
correspond directly, while comparisons 2 and 4 include
less closely related global features. The motivation for
these five comparisons is to have both ‘fair’ comparisons
(1 and 3) and comparisons in which the full available
potential of the methods is used (2, 4, and 5). Table 3
shows the composition of each subset of global features,
along with the global features that were selected by the
feature selection algorithm.

4.2 Method
4.2.1 Method for global features

For each of the five sets of global features we perform
forward floating feature selection (Pudil et al., 1994) in
the same way as is described in Section 3.4. As a measure
for the classification performance of the global feature
subset under consideration, we compute the value of the
criterion that was presented in Section 3.2. Just as before,
we do this both for the Annotated Corpus and for the
large corpus of 4830 melodies. In the former case, C
consists of the melodies of the Annotated Corpus, and in
the latter case, C consists of all 4830 melodies. In both
cases, S consists of the melodies of the Annotated
Corpus. The results of the feature selection are shown in
Table 3.

4.2.2 Method for local features

For the comparison of two sequences of local melodic
events, we use the Needleman—Wunsch—Gotoh align-
ment algorithm (Needleman & Wunsch, 1970; Gotoh,
1982). Needleman and Wunsch (1970) proposed an
algorithm that finds an optimal alignment of two entire
sequences of symbols. The quality of an alignment is
measured by the alignment score, which is the sum of the
alignment scores of the individual symbols. We interpret
this alignment score as a similarity measure for melodies.
Because these similarity values can easily be converted
into distances, we can apply the nearest-neighbour

classification rule, and, therefore, we can compute the
value of our criterion, which allows for direct compar-
ison between the local and global approach.

The Needleman—Wunsch algorithm takes two se-
quences of symbols, which we denote with x : xy,...,
Xipooos Xpoand y 1 yi,..., V..., Yy Symbol x; can either
be aligned with a symbol from sequence y or with a gap.
Both operations have a score, respectively the similarity
score and the gap score. The gap score is mostly
expressed as penalty, i.e. a negative score. The optimal
alignment and its score are found by filling a matrix D
recursively according to:

D(li 17]7 1) +S(X,,y,),
D(i_laj)_ya (1)
D(iaj_ 1) -7

D(i,j) = max

where S(x;, y;) is the similarity scoring function, y is the
gap penalty, D(0, 0)=0, D(i, 0) = —iy, and D(0, j)= —jy.
D(i, j) contains the score of the optimal alignment up to
x; and y; and therefore, D(m, n) contains the score of the
optimal alignment of the complete sequences. If needed,
the alignment itself can be obtained by tracing back from
D(m, n) to D(0, 0); the algorithm has both time and space
complexity O(nm).

The similarity scoring function, S(x;, y;) reflects to
what extent we want the symbols x; and y; to be aligned.
It allows for incorporation of domain knowledge, which
in our case is musical knowledge. We will define various
functions in Section 4.3. All functions return values in
the range [— 1, 1].

In our modelling, we use an extension of the algorithm
proposed by Gotoh (1982), which employs an affine gap
penalty function without loss of efficiency. In this
approach, the extension of a gap gets a lower penalty
than its opening. We take a gap opening penalty of 0.8
and a gap extension penalty of 0.2. Thus, the opening of
a gap is preferred over a bad match, and the continuation
of a gap is relatively ‘cheap’.

Since songs are notated in different keys, the similarity
measure should be transposition invariant. To achieve

Table 3. For each comparison, this table shows all involved global features and the subset of those features that has been selected by
the floating feature selection algorithm. The indices refer to the list in Appendix A.2.

Comparison Global features

Selected global features

1. Interval features  50-80
2. Pitch features

3. Duration-ratio

features 45-47 81-86
4. Rhythm features 4 9 21-23 34 35 36 44-49 81-86
5. All features 1-88

1-3 5-8 10-20 24 25 27-33 37-43 48 50-80 88

55 68 50 53 59 66 51 70 54 60 67 69 65 64 62 75 56 71
37810 1324 2528 29 33 38 39 40 43 48 52 53 54 55 56 58
59 60 62 65 66 68 69 70 75 77 78 80

45 47 81-86

4353644 46 47 49 82 84

2-15 20 24-31 3546 48-51 53-55 54 55 57-59 64-68
70-72 78 81-84 87 88




Global and local features of folk songs 11

this, a pitch histogram for both melodies is created that
indicates for each pitch the total duration of all
occurrences of that pitch in the entire song. Then the
shift at which the normalized histograms have maximal
intersection is computed. This can be interpreted as the
interval with which the one melody should be transposed
in order to compare it to the other. Applying this shift
before computing the similarity score of two symbols
ensures transposition invariance.

Since the score of an alignment depends on the length
of the sequences, normalization is needed to compare
different alignment scores. The alignment of two long
songs results in a much higher score than the alignment
of two short songs. Therefore, we divide the alignment
score by the length of the shortest sequence. Thus, an
exact match results in score 1, which is the maximal
score. The normalized alignment score can be used as a
measure for the similarity of two songs. The scores are
converted into distances by taking one minus the
normalized score.

Our approach is not unlike the approach of
Hanna, Ferraro and Robine (2007), but more specifi-
cally aimed at folk song melodies. Our approach has
already been shown to perform well for the collection
under consideration (both for the small and the
large corpus), as reported in van Kranenburg (2010,
Chapter 6).

With the distances that are computed by the alignment
algorithm, we compute the criterion value. We do this
both for the Annotated Corpus only, and for the full set
of 4830 melodies.

4.3 Features for the comparisons

In the following, we describe the five subsets of global
features as introduced in Section 4.1, along with the local
features and the specific similarity scoring functions for
each of the five comparisons.

4.3.1 Comparison 1: Interval features

The subset of global features that is directly related to the
intervals between the consecutive notes consists of the
interval features as defined by Jesser: features 50-80 (see
Appendix A.2). Each of these features measures the
occurrence-rate of a certain interval.

The subset of interval features that is most discrimi-
native for the Annotated Corpus as obtained by the
floating selection algorithm is shown in Table 3.

For the local approach we take sequences of intervals
between the successive pitches. Therefore, in this case, we
have a perfect correspondence between the information
used for the global features and for the alignment. We
represent pitches in base-40 encoding (see Hewlett, 1992).
As the similarity scoring function for the alignment
algorithm we use:

[ 1 if melint (x;) = melint (y;),
Sinterval (Xi; ;) = { —1 if melint(x;) # melint (J’;)a @)

where melint(x;) = p(x;) — p(x; _ ) is the melodic interval
between x; _ ; and x; for i > 1, in which p(x) is the pitch of
S}’mb01 X. Sinterval(Xos y/) = Sintervai(Xi, yO) = 1, which allows
for alignment of the first symbols of the respective
sequences.

4.3.2 Comparison 2: Pitch features

The subset of global pitch features consists of all interval
features used in comparison 1 along with a number of
higher-level pitch-based features from the sets of Jesser,
Steinbeck and jSymbolic as shown in Table 3.

For the local approach, again, we take sequences of
intervals between the successive pitches, using the same
similarity scoring function Sj,erval-

4.3.3 Comparison 3: Duration-ratio features

The subset of duration-ratio features consists of features
that relate to the relative lengths of the notes (see Table
3). Jesser’s features relate the duration of the note to the
shortest duration in the melody, while Steinbeck’s
features relate the duration of a note to the duration of
the preceding note.

For the local approach we take the sequence of du-
ration-ratios. The duration-ratio of a note is the duration
of the note as a fraction of the duration of the preceding
note. The similarity scoring function is defined as:

1 ifdr(x)= dr(y))
Saratio (Xi, Vj) = { —1 ilfdr(x,-) # dr(?’_,‘)’ ®)

where dr(x;) =d(x;)/d(x;_,), the ratio between the dura-
tions d(x;) and d(x;_1) of x;and x;_; for i > 1, and Sgpaiio
(XOa y/) = Sdratio (xi» yO) =1

4.3.4 Comparison 4: Rhythmic features

The subset of rhythmic features contains the duration-
ratio features along with other, higher-level, rhythmic
features as shown in Table 3.

For the local approach, again, we take the sequence
of duration-ratios using the same scoring function
Sdrati0~

4.3.5 Comparison 5: All features

For the comparison using all features, we take the full
available potential of both approaches.

For the global approach, we take all global features
as well as the optimal subset that was found by the
floating selection algorithm among the full set of
global features.
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For the local approach, we use three types of features:
pitch, metric weight and phrase-position. The pitch is the
base40-representation of the pitch of the note. The metric
weight is obtained using the Inner Metric Analysis (IMA)
(see Volk, 2008), which computes a metric weight for
each note solely based on the onset times of the notes
instead of the notated meter. The phrase-position of a
note is the scaled onset time of the note within a melodic
phrase, such that the onset time of the first note of the
phrase gets value 0 and the onset time of the last note of
the phrase gets value 1. Thus, a melody is represented as
a sequence of triplets. For each note, we have three
feature values, which we can use in the similarity scoring
function.

For each of the three local features, we define a
separate similarity scoring function, which we, in the end,
combine to get one similarity score to be used in the
alignment algorithm. The definitions of these similarity
scoring functions will now be presented.

The pitch-based similarity scoring function measures
the difference in pitch height between a note in the first
song and a note in the second song. The larger the
difference, the lower the resulting similarity score.

1 — int(x;,y;) i it v) <2
swentson) = {155 SR

in which int(x, y)=|p(x)—p(y)| mod 40. A perfect fifth
has value 23 in base-40 encoding. Thus, all intervals up to
a perfect fifth get a positive similarity score and all larger
intervals are considered a bad match.

We define the scoring function that uses the metric
weights of the notes as computed by IMA as follows:
Sima (xi,77) = 1= 2|w(xi) — w(y))|. (5)
Here, w(x) denotes the metric weight of note x, scaled
into the interval [0, 1]. For scaling, all weights are divided
by the greatest weight in the song. For the free
parameters in the IMA-algorithm (p and /) we take the
values that are mostly used: p=2, /=2 (e.g. in Volk,
2008).
To use the information of phrase boundaries that is
present in our data set, we use a scoring function based
on the horizontal position of the notes within the phrase:

Sphrpos(xiayj) =1- 2‘phr(xi) fphr(y_,»)’, (6)

in which phr(x) € [0,1] is a linear mapping of the
horizontal position of symbol x between the onset of the
first note and the onset of the last note of the phrase into
the interval [0,1].

To get one similarity score, these three similarity
scores are combined. We want alignments in which the
aligned symbols are similar in all dimensions. Therefore,
we multiply the individual scores:

/combination(xi’yj) = H S;c(xﬁyi)? (7)
k=1

in which S}(x;,y;) = %(S/((xi,y,) + 1), which is Si(x; »))
scaled into the interval [0,1]. The final score Scombination 1S
S combination Scaled into [—1, 1] back again. This scoring

Table 4. Criterion values for the various configurations, both for the small set consisting of the Annotated Corpus and for the large set

consisting of the Annotated Corpus among 4470 other melodies.

Comparison Features Jmall Jarge
1 global interval features 0.52 0.20
selected interval features 0.59 0.20

local interval sequence 0.92 0.60

2 global pitch features 0.67 0.28
selected pitch features 0.74 0.29

local interval sequence 0.92 0.60

3 global duration-ratio features 0.38 0.09
selected duration-ratio features 0.39 0.08

local duration-ratio sequence 0.74 0.33

4 global rhythm features 0.49 0.12
selected rhythm features 0.55 0.13

local duration-ratio sequence 0.74 0.33

5 global all features 0.74 0.32
selected features 0.82 0.34

local pitchband, IMA, phrasepos. 0.99 0.73
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function was shown to be very successful in van
Kranenburg (2010, Chapter 6).

4.4 Results and conclusions

Table 4 shows the criterion values for each of the five
comparisons that were presented in Section 4.1, for both
the local and the global approach.

In all comparisons, the performance for the large data
set is considerably lower than for the small data set, both
for the global and local approaches. Apparently, none of
the tune families from the Annotated Corpus is completely
isolated from the additional melodies in the large data set.

For the small data set, the selected subsets of global
features yield better performance than the full feature sets.
This is the case in all five comparisons. However, this
improvement is as good as absent for the large data set.

The pitch-related features from comparisons 1 and 2
lead to better performances than the rhythm-related
features from comparisons 3 and 4, both in the local and
global approaches. Nevertheless, the criterion value for
the alignment of duration-ratio sequences for the large
corpus (0.33) can be considered quite high concerning the
size of the total corpus: even among several thousands of
other melodies, the rhythm of the melodies seems to
provide enough information to classify a substantial part
of the 360 annotated melodies correctly. But, purely
rhythmic features are clearly not suitable to provide a
basis for a classification method that is employable in a
folk song research context.

The only case in which the global approach shows
success is on the small corpus, when the optimal subset of
all features is used. However, the performance drops
considerably for the large corpus.

In all cases, the results show that the alignment
approach is both more accurate and better scalable. The
reported criterion values in comparison 5 (0.99 and 0.73
for the small and large sets respectively) indicate that this
approach is useful for classification of melodies from oral
tradition.

5. General conclusions

In this paper, we studied two approaches to classify melodies
from Dutch oral tradition according to tune family
membership. In the global approach, a melody is represented
as a vector of values of global features, each of which
summarizes an aspect of the entire melody. The classification
is performed according to the nearest-neighbour rule using
the Euclidian distance between vectors of global feature
values. In the local approach, a melody is represented as
sequence of local melodic events (such as pitches and
duration ratios), and the classification is also performed
according to the nearest-neighbour rule using the score of
the alignment of two sequences as a similarity measure.

First, we evaluated the discriminative power of a large
number of global melodic features for a set of melodies
belonging to various tune families. We evaluated both
individual global features and sets of global features. Next,
we compared the classification performances of the global
approach with the performances of a local approach, in
which alignment of sequences of local features was used to
determine the similarity between melodies.

We performed all tests with a small data set of 360
melodies, as well as with a large data set of 4830
melodies, in which the 360 melodies of the small data set
are embedded. Thus, we can evaluate the classification
performances with respect to scalability.

From the evaluation of individual features in Section
3.3, we conclude that there is no single global feature that
is discriminative for all tune families. Only for the small
data set, a few features have discriminative power for
specific tune families.

The contents of the selected feature subsets in Section
3.4 show for each tune family which subset of global
features is optimally discriminative. The selected sets
differ to a large extent. The most common feature in all
selected subsets has been selected for only 6 out of 26
tune families. This indicates that, concerning global
features, each tune family is distinct from the rest of the
corpus in a specific way. Therefore, it seems necessary to
design separate models for the classification of the
various tune families. In general, even the discovered
optimal subsets do not lead to convincing classification
performance for the large data set.

In all experiments with global features, success rates
decrease considerably for the larger data set. This
indicates that the global feature approach for recognition
of melodies can only be taken if the data set contains a
small set of tune families. This confirms the trend that
was observed by Steinbeck (1982), who obtained mean-
ingful results for a set of 35 melodies, but not for a set of
500 melodies.

In the comparisons we made in Section 4, the local,
alignment-based, approach outperformed the global
approach in all cases. The alignment approach is also
better scalable: for the large data set, reasonable
classification results could be obtained. This result is
in accordance with the conclusions of both Jesser
(1991) and Hillewaere et al. (2009). Both were able to
get better retrieval or better classification results using
local events and local features, rather than global
features. However, the classification task in the current
study is more difficult. Instead of classifying a
heterogeneous collection of songs by country, as
Hillewaere et al. did, we classify tune families within
a single tradition. The Essen collection used by Jesser
was sampled from a large variety of sources from
different countries and regions, periods and types of
sources and is therefore also far more heterogencous
than our data set.
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In a previous study (Volk & Van Kranenburg, 2012) we
found for the same corpus that recurring, characteristic
motifs are important for recognizing melodies. There are
many kinds of motifs: a rhythmic figure, an uncommon
interval, a leap, a syncopation, and so on. The current
results suggest that it is not possible to grasp the
discriminative power of motifs in only a few global
features. This is an important shortcoming of the
approach based on global features. Therefore, for the
next steps in the research on automatic classification of
melodies from oral tradition, a local approach is indis-
pensable. Unlike early adaptors of computational meth-
ods, such as Bronson (1949), Steinbeck (1982), and Jesser
(1991), we are currently able to employ computationally
much more demanding methods due to the advances in
computer hardware and computer science during the last
few decades, which allows for more detailed representa-
tions of music and for comparisons between melodies that
involve more complex algorithms. Another next step
would be to explore a hybrid approach in which both local
and global elements of melodies are used.

Asa general conclusion we state that the global features
that are known from recent computational studies are of
limited use for the retrieval of related folk song melodies
from a large database. Good results are only obtained for a
few tune families within a small corpus. Using the local
approach, we obtained good results for a large corpus, as
well. Therefore, to design models of relations between
melodies from oral culture, local melodic phenomena are
indispensable. Given the fact that most of the Dutch
melodies are in a Western tonal idiom, we expect this
conclusion to apply to Western folk songs in general.
Nonetheless, it would be a relevant next step to involve
melodies from other traditions as well.

This conclusion confirms choices that were made in
early Folk Song Research. Among others, Krohn (1903),
Barték and Kodaly (see Suchoff, 1981), and Suppan and
Stief (1976) all used sequences of local melodic events to
order their respective collections of melodies. Although
from a computational perspective the use of global
features has advantages, the local approach must be
preferred from a musicological point of view.

The local approach has not exhaustively been
explored in the current study. We confined ourselves to
a representation of melodies as a series of notes. A
representation of a melody as a sequence of motifs seems
a promising next step. Therefore, in future work, we will
focus on similarity relations between melodies that are
based on shared melodic motifs.
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Appendix A
A.1 Tune families in the annotated corpus
Tune family
(short) Tune family (long) Size
Heer Daar ging een heer 1 16
Jonkheer Daar reed een jonkheer 1 12
Ruiter 2 Daar was laatstmaal een ruiter 2 17
Maagdje Daar zou er een maagdje 10
vroeg opstaan 2
Dochtertje Een Soudaan had een dochtertje 1 13
Lindeboom Een lindeboom stond in het dal 1 9
Zoeteliefjes En er waren eens twee zoeteliefjes 16
Ruiter 1 Er reed er eens een ruiter 1 27
Herderinnetje Er was een herderinnetje 1 11
Koopman Er was een koopman rijk 17
en machtig
Meisje Er was een meisje van 15
zestien jaren 1
Vrouwtje Er woonde een vrouwtje al 12
over het bos
Femmes Femmes voulez vous éprouver 13
Halewijn 2 Heer Halewijn 2 11
Halewijn 4 Heer Halewijn 4 11
Stavoren Het vrouwtje van Stavoren 1 8
Zomerdag Het was laatst op een zomerdag 17
Driekoningenavond Het was op een 12
driekoningenavond 1
Stad Ik kwam laatst eens in de stad 18
Stil Kom laat ons nu zo stil niet zijn 1~ 11
Schipper Lieve schipper vaar me over 1 15
Nood O God ik leef in nood 8
Soldaat Soldaat kwam uit de oorlog 17
Bruidje Vaarwel bruidje schoon 11
Verre Wat zag ik daar van verre 1 15
Boom Zolang de boom zal bloeien 1 18
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A.2 The set of global features
The following features from the feature set of McKay (2004) are included in the set of global features that is used in this

thesis.

Index Feature Description as given by McKay (2004)

1 Amount of Arpeggiation Fraction of horizontal intervals that are repeated notes, minor
thirds, major thirds, perfect fifths, minor sevenths, major
sevenths, octaves, minor tenths or major tenths.

2 Average Melodic Interval Average melodic interval (in semi-tones).

3 Chromatic Motion Fraction of melodic intervals corresponding to a semi-tone.

4 Combined Strength of Two Strongest Rhythmic Pulses The sum of the frequencies of the two beat bins of the peaks
with the highest frequencies.

5 Direction of Motion Fraction of melodic intervals that are rising rather than falling.

6 Distance Between Most Common Melodic Intervals Absolute value of the difference between the most common
melodic interval and the second most common melodic
interval.

7 Dominant Spread Largest number of consecutive pitch classes separated by
perfect Sths that accounted for at least 9% each of the notes.

8 Duration of Melodic Arcs Average number of notes that separate melodic peaks and
troughs in any channel.

9 Harmonicity of Two Strongest Rhythmic Pulses The bin label of the higher (in terms of bin label) of the two
beat bins of the peaks with the highest frequency divided by
the bin label of the lower.

10 Interval Between Strongest Pitch Classes Absolute value of the difference between the pitch classes of
the two most common MIDI pitch classes.

11 Interval Between Strongest Pitches Absolute value of the difference between the pitches of the two
most common MIDI pitches.

12 Melodic Fifths Fraction of melodic intervals that are perfect fifths.

13 Melodic Octaves Fraction of melodic intervals that are octaves.

14 Melodic Thirds Fraction of melodic intervals that are major or minor thirds.

15 Melodic Tritones Fraction of melodic intervals that are tritones.

16 Most Common Melodic Interval Melodic interval with the highest frequency.

17 Most Common Melodic Interval Prevalence Fraction of melodic intervals that belong to the most common
interval.

18 Most Common Pitch Class Prevalence Fraction of Note Ons corresponding to the most common
pitch class.

19 Number of Common Melodic Intervals Number of melodic intervals that represent at least 9% of all
melodic intervals.

20 Number of Common Pitches Number of pitches that account individually for at least 9% of
all notes.

21 Number of Moderate Pulses Number of beat peaks with normalized frequencies over 0.01.

22 Number of Relatively Strong Pulses Number of beat peaks with frequencies at least 30% as high as
the frequency of the bin with the highest frequency.

23 Number of Strong Pulses Number of beat peaks with normalized frequencies over 0.1.

24 Pitch Class Variety Number of pitch classes used at least once.

25 Pitch Variety Number of pitches used at least once.

26 Polyrhythms Number of beat peaks with frequencies at least 30% of the
highest frequency whose bin labels are not integer multiples
or factors (using only multipliers of 1, 2, 3, 4, 6 and 8) (with
an accepted error of 4+ /—3 bins) of the bin label of the peak
with the highest frequency. This number is then divided by
the total number of beat bins with frequencies over 30% of
the highest frequency.

27 Range Difference between highest and lowest pitches.

(continued)
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Appendix A.2 (Continued).

Index Feature Description as given by McKay (2004)

28 Relative Strength of Most Common Intervals Fraction of melodic intervals that belong to the second most
common interval divided by the fraction of melodic
intervals belonging to the most common interval.

29 Relative Strength of Top Pitch Classes The frequency of the 2nd most common pitch class divided by
the frequency of the most common pitch class.

30 Relative Strength of Top Pitches The frequency of the 2nd most common pitch divided by the
frequency of the most common pitch.

31 Repeated Notes Fraction of notes that are repeated melodically.

32 Size of Melodic Arcs Average melodic interval separating the top note of melodic
peaks and the bottom note of melodic troughs.

33 Stepwise Motion Fraction of melodic intervals that corresponded to a minor or
major second.

34 Strength of Second Strongest Rhythmic Pulse Frequency of the beat bin of the peak with the second highest
frequency.

35 Strength of Strongest Rhythmic Pulse Frequency of the beat bin with the highest frequency.

36 Strength Ratio of Two Strongest Rhythmic Pulses The frequency of the higher (in terms of frequency) of the two
beat bins corresponding to the peaks with the highest
frequency divided by the frequency of the lower.

37 Strong Tonal Centers Number of peaks in the fifths pitch histogram that each

account for at least 9% of all Note Ons.

The following features from the feature set of Steinbeck are included in the set of global features that is used in this
thesis.

Index Feature Description (page numbers refer to Steinbeck, 1982)

38 StdPitch Standard deviation of the pitch (p. 156ff).

39 Ambitus Difference between the highest and lowest pitch in the melody (p. 155).

40 MeanlInterval Mean of the size of the intervals. The intervals between the phrases are not
taken into account (p. 165ff).

41 StdInterval Standard Deviation of the size of the intervals (p. 165ff).

42 ChangingDirection The fraction of the intervals that cause a change of direction (p. 149f).

43 MeanSteepness The steepness is the deviation in pitch between two turning points divided by
the duration. This feature is the mean of these steepnesses (p. 173ff).

44 FractionStressed The sum of durations that start on a stressed beat as fraction of the total

duration (p. 178fY).

45 FractionDottedDuration The fraction of transitions between pitches that has duration quotient 3:1 (p.
152f1).

46 FractionHalfDuration The fraction of transitions between pitches that has duration quotient 2:1 or
1:2 (p. 152f).

47 FractionEqualDurations The fraction of transitions between pitches that has duration quotient 1:1 (p.
152fF).

48 PitchLineCorrelation The correlation of the pitch contours of the individual lines. For each line the
maximum of the correlations with the other lines is taken. Of these values
the mean is computed (p. 2991ff, p. 93).

49 DurationLineCorrespondence Similarity of the sequence of durations. This is computed in the same way as

the previous feature, but instead of correlation the fraction of durations that
corresponds is taken (p. 299ff).
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The following features from the feature set of Jesser (1991) are included in the set of global features that is used in this

Peter van Kranenburg et al.

thesis.

Index Feature Description

50 prime fraction of the melodic intervals that is a prime.

51 aminsecond fraction of the melodic intervals that is an ascending minor second.

52 amajsecond fraction of the melodic intervals that is an ascending major second.

53 aminthird fraction of the melodic intervals that is an ascending minor third.

54 amajthird fraction of the melodic intervals that is an ascending major third.

55 afourth fraction of the melodic intervals that is an ascending perfect fourth.

56 aaugfourth fraction of the melodic intervals that is an ascending augmented fourth.
57 afifth fraction of the melodic intervals that is an ascending perfect fifth.

58 aminsixth fraction of the melodic intervals that is an ascending minor sixth.

59 amayjsixth fraction of the melodic intervals that is an ascending major sixth.

60 aminseventh fraction of the melodic intervals that is an ascending minor seventh.

61 amajseventh fraction of the melodic intervals that is an ascending major seventh.

62 aoctave fraction of the melodic intervals that is an ascending perfect octave.

63 ahuge fraction of the melodic intervals that is larger than an ascending octave.
64 dminsecond fraction of the melodic intervals that is a descending minor second.

65 dmajsecond fraction of the melodic intervals that is a descending major second.

66 dminthird fraction of the melodic intervals that is a descending minor third.

67 dmajthird fraction of the melodic intervals that is a descending major third.

68 dfourth fraction of the melodic intervals that is a descending fourth.

69 daugfourth fraction of the melodic intervals that is a descending augmented fourth.
70 dfifth fraction of the melodic intervals that is a descending perfect fifth.

71 dminsixth fraction of the melodic intervals that is a descending minor sixth.

72 dmayjsixth fraction of the melodic intervals that is a descending major sixth.

73 dminseventh fraction of the melodic intervals that is a descending minor seventh.

74 dmajseventh fraction of the melodic intervals that is a descending major seventh.

75 doctave fraction of the melodic intervals that is a descending perfect octave.

76 dhuge fraction of the melodic intervals that is larger than a descending octave.
77 astep fraction of the melodic intervals that is an ascending step.

78 aleap fraction of the melodic intervals that is an ascending leap.

79 dstep fraction of the melodic intervals that is a descending step.

80 dleap fraction of the melodic intervals that is a descending leap.

81 shortestlength shortest duration such that all durations are a multiple of this shortest duration, except for triplets.
82 doublelength fraction of the notes with duration of twice the shortest duration.

83 triplelength fraction of the notes with duration of three times the shortest duration.
84 quadruplelength fraction of the notes with duration of four times the shortest duration.
85 dotted fraction of the notes that is dotted.

86 triplets fraction of the notes that belongs to a triplet.

87 numlines number of lines.

88 numpitchclasses number of distinct pitch classes.




