
Closed Object Boundaries

from

Scattered Points

Remco C. Veltkamp

Lecture Notes in Computer Science 885
Springer-Verlag, 1992
ISBN 3-540-58808-6

Contents

Preface iii

1 Introduction 1

1.1 Boundary construction . 2
1.2 Outline of the thesis . 6
1.3 Conventions . 6

2 Geometric graphs 9

2.1 Introduction . 9
2.2 Overview of geometric graphs . 11
2.3 Concluding remarks . 19

3 The -Neighborhood Graph 23

3.1 Introduction . 23
3.2 The (c0; c1)-Graph . 23
3.3 The ([c0; c1]; [c2; c3])-Graph . 26
3.4 Examples . 28
3.5 Complexities . 30
3.6 Concluding remarks . 36

4 Boundary construction 37

4.1 Introduction . 37
4.2 Statement of the problem . 38
4.3 Overview of boundary construction methods 40
4.4 Other work . 43
4.5 Concluding remarks . 44

5 Boundary from the -Graph 45

5.1 Introduction . 45
5.2 Boundary polygon . 46
5.3 Boundary polyhedron . 49
5.4 Hamiltonicity . 52
5.5 Implementation and complexity 56
5.6 Comparison . 58
5.7 Constrained constriction . 60
5.8 Concluding remarks . 61

i

ii

6 Approximation and localization 63

6.1 Introduction . 63
6.2 Error criteria . 65
6.3 Boundary-based intrinsic schemes 67
6.4 Other schemes . 71
6.5 Concluding remarks . 72

7 The intstones 73

7.1 Introduction . 73
7.2 Flintstones in 2D . 73
7.3 Flintstones in 3D . 81
7.4 Hierarchical operations . 89
7.5 Concluding remarks . 90

8 Smooth curves and surfaces 93

8.1 Introduction . 93
8.2 Curves . 94
8.3 Surfaces . 98
8.4 Visual aspects of continuity . 104
8.5 Concluding remarks . 107

9 G1 boundary construction 109

9.1 Introduction . 109
9.2 A G1 boundary curve . 110
9.3 Analysis of surface degree . 113
9.4 Surface normal estimation . 115
9.5 Local schemes . 116
9.6 A cubic three-split scheme . 117
9.7 Towards an adaptive splitting scheme 121
9.8 A cubic six-split scheme . 124
9.9 Concluding remarks . 128

10 Conclusions 129

References 133

Index 141

Preface

This Ph.D. dissertation presents the result of research carried out between 1985
and 1992, �rst at Leiden University as a scienti�c assistant researcher, and later
at CWI (Centre for Mathematics and Computer Science), Amsterdam, as a
researcher on the NFI IIICAD project, funded by NWO (Dutch Organization
for Scienti�c Research) under Grant NF-51/62-514.

The research goal was the development of new methods and techniques for
the construction of closed object boundaries from scattered points in both 2D
and 3D. These points are either synthetic or measured from the boundary of an
existing object.

New results are presented in Chapters 3, 5, 7, and 9. Chapter 3 introduces
`the -neighborhood graph', which provides a geometrical structure on the scat-
tered points. Chapter 5 presents a method to construct a piecewise linear bound-
ary through all given scattered points which is based on the -neighborhood
graph. Chapter 7 introduces `the intstones scheme', a hierarchical approxi-
mation and localization scheme. Chapter 9 presents methods to construct a
smooth piecewise cubic boundary from a piecewise linear one (e.g. resulted from
methods of Chapter 5 or 7).

The material presented in this dissertation has partly appeared before in
other publications. The correspondence between the chapters and publications is
as follows: Chapters 2 and 3: [Veltkamp, 92c], Chapters 4 and 5: [Veltkamp, 89a]
and [Veltkamp, 91], Chapters 6 and 7: [Veltkamp, 90] and [Veltkamp, 92b],
Chapter 8: [Veltkamp, 92d], Chapter 9: [Veltkamp, 92a].

The text of this thesis could never have matured without the suggestions and
constructive criticism of many colleagues, above all my Ph.D. supervisors Jan
van den Bos and Mark Overmars. Arie de Bruin, Nies Huijsmans, Pia Puger,

iii

iv Preface

Roel Stroeker, and Cees Traas made valuable comments on this manuscript.
In addition, Nies Huijsmans played a crucial role in stimulating me at hard
times. Several people contributed to the development of �rst versions of chunks
of software: my colleagues Peter van Oosterom and Rene Pluis, and the students
Timo Koornstra, Roel van der Land, and Jos van Hillegersberg. Paul ten Hagen
made it possible to �nish this research as part of the NFI IIICAD project.
Finally, Desiree Capel helped with the production of the manuscript through
mental support and professional editorial remarks.

1

Introduction

The work described in this thesis deals with the computational processing of
various forms of geometric information, and could therefore be considered re-
search in Computational Geometry. This is correct if the term Computational
Geometry is used in a broad sense, but several authors use this term for more
speci�c subjects. It has been used to label shape recognition on parallel ma-
chines [Minsky and Papert, 69], design and manufacturing of 2D and 3D shapes
[Forrest, 71], the computational aspects of integral and stochastic geometry
[Bernroider, 78], curve and surface modeling [Su and Liu, 89], and combinatorial
and algorithmic issues in discrete geometry [Shamos, 78].

To date, the latter meaning of Computational Geometry is most widely used,
comprising the area that deals with problems concerning points, lines, polygons,
planes, polyhedra, and so on. Applications of discrete Computational Geometry
can be found in computer graphics, computer vision, robot motion planning,
and VLSI design. Of the following chapters, Chapter 2 to 7 fall in the category
of discrete Computational Geometry.

Curve and surface modeling, i.e. continuous Computational Geometry, is
commonly referred to as (curves and surfaces in) Computer Aided Geometric
Design (CAGD). Examples of topics in this �eld are the interpolation and ap-
proximation with B-splines and B�ezier curves and surfaces, and Coons patches
and similar schemes. Applications of CAGD are widely used in the automobile,
aircraft, and ship-building industry. Chapters 8 and 9 fall in the category of
continuous Computational Geometry.

The work of this thesis is more speci�cally concerned with the computa-
tional aspects of geometry with respect to form or shape information, that is,
morphology. Indeed, morphology is closely related to geometry, and thus to

1

2 Introduction

Figure 1.1. 2D boundary points of a chalice, and 3D boundary points of a mask.

Computational Geometry. A computational geometric approach to the analy-
sis of form is called Computational Morphology [Toussaint, 88a]. In particular,
this thesis is about the construction of closed object boundaries from scattered
points.

1.1 Boundary construction

In many applications in geometric modeling, computer graphics, object recogni-
tion, distance map image processing, and computer vision, input data is available
in the form of a set of 2D or 3D coordinates that are points on the boundary
of an object. Such points can be synthetic or measured from the boundary
of an existing object. See Figure 1.1 for an example of a set of 2D points
from the boundary of Uccello's chalice, which serves as the cover picture of the
journal `Computer Aided Geometric Design' [Thoenes, 84], and a collection of
3D points from the boundary of a mask, measured by a laser range system
[Rioux and Cournoyer, 88]. A collection of points, however, is an ambiguous
representation of an object, and can therefore not be used directly in many ap-
plications. It is often essential to have a representation of the whole boundary
available, which is unambiguously de�ning a valid object. The boundary con-
structed from a set of points can for example be used for the initial design of an
artifact, for numerical analysis, or for graphical display.

The way in which the boundary points are acquired may give useful informa-
tion in order to construct the whole boundary, but can also make the construction
method very dependent on the speci�c data source. If it is not known how the
data is obtained or if a single construction method is to be used for data from
various types of sources, no structural relation between the input points may be

1.1 Boundary construction 3

Figure 1.2. Polygonal chalice boundary, and polyhedral mask boundary.

assumed, except that they all lie on the boundary of an object. The order of the
points in the input then provides no information on their topological relation to
each other. In particular, they do not lie on a regular grid, but are scattered
points. This thesis is about the development of new techniques to construct and
manipulate closed boundaries of 2D and 3D objects from scattered points.

The simplest boundary through a set of points is one that consists of linear
segments: line segments for a 2D polygonal boundary, and triangles for a 3D
polyhedral boundary (in 3D, a triangle is the unique polygon that is always
at). Figure 1.2 shows a polygonal and polyhedral boundary of the points from
Figure 1.1. In both the polygonal and the polyhedral boundary, points are con-
nected by edges. Trying all possible boundaries through a given set of points by
considering all edges between points is not feasible because of the combinatorial
explosion of the number of possible solutions. For example in 2D, a boundary
through Nv points must consist of Nv line segments, and there are

�
Nv

2

�
possible

edges. Trying all sets of Nv edges out of
�
Nv

2

�
results in as many as

�

 ��Nv

2

�
Nv

�!

combinations, which is too much to be of practical use. One possible solution
to this problem is to �rst describe some structure of the set of points by a geo-
metric graph, and then derive a boundary from this structure using the inherent
geometric information. This approach is taken in this thesis.

In many real applications, a boundary constructed from a set of points con-
sists of thousands of faces. For example, the constructed boundary of the mask
in Figure 1.2 consists of about three thousand triangles. However, an approx-
imation of the object is often suÆcient. In animation for example, the motion

4 Introduction

Figure 1.3. Polygonal and polyhedral approximations.

blur prohibits the perception of much detail, so that an approximated object is
suÆcient and is also faster to display. A polygonal approximation of the chalice
and a polyhedral approximation of the mask are shown in Figure 1.3.

Localization provides bounding area or volume information. Such informa-
tion is useful for eÆcient operations such as collision detection for robot motion
planning. Because boundaries constructed from experimental data often consist
of many segments, and because a hierarchy of approximations together with lo-
calization information is very eÆcient for many applications, this subject is also
treated in this thesis.

Our goal is to devise a scheme whose de�nition is readily generalized from 2D
to 3D, and is very eÆcient in use. This is not as easily obtained as it may seem,
for many existing methods do not meet these demands. For example, a simple
bounding area for a piece of a polygon is a rectangle. The generalization to 3D
suggests the use of a block, but the intersection test for two blocks may require
thirty-six intersection tests between the sides of the blocks. On the other hand,
the test for intersection of two circles or spheres only requires the calculation of
the distance between the two centers: if the distance is smaller than the sum
of the two radii, there is an intersection. Indeed, circles and spheres are used
as bounding areas and volumes since the early days of geometric modeling and
computer graphics. The application of circles and spheres to the approximation
and localization of polygons and triangular polyhedra in a hierarchical way is
elaborated in this thesis.

Polygonal boundaries are C1-discontinuous at the vertices, exhibiting ab-
ruptly changing directions of the tangent line. Given an ordered set of vertices,
i.e. a polygon, a smoother boundary curve is often desired, consisting of curved
line segments that interpolate the vertices of the straight line segments and are
smoothly connected at the vertices. Analogously, the polyhedral boundaries

1.1 Boundary construction 5

Figure 1.4. Smooth chalice curve and mask surface.

are C1-discontinuous at the edges, where the tangent planes instantly change
orientation. A smoother surface, consisting of curved triangles that interpolate
the at triangles' vertices and are smoothly connected along the edges, is often
desired. For example, esthetic demands apply to car body design, physical
requirements deduced from aerodynamic or hydrodynamic laws apply to aircraft
and ship hull design, and for boundary reconstruction the smoothness demands
are determined by the smoothness of the original boundary. Figure 1.4 shows a
tangent line continuous chalice boundary curve that interpolates the vertices of
the polygonal boundary, and a tangent plane continuous mask boundary surface
that interpolates the triangle vertices of the polyhedral boundary.

Smooth boundaries are most easily constructed by piecewise polynomials.
Three polynomial schemes are most widely used in Computer Aided Geomet-
ric Design, the Coons, B-spline and B�ezier schemes, especially for rectangular
surface patches. Triangular interpolants are dominant in 3D scattered data
interpolation [Barnhill, 85], and the B�ezier formulation for curves naturally gen-
eralizes to a triangular form. (B�ezier curves and surfaces were independently
developed by de Casteljau at the Citro�en and by B�ezier at the Renault automo-
bile company, but de Casteljau's development was never published, so that this
curve and surface scheme was named after B�ezier.) The B�ezier formulation is a
convenient method to describe other polynomial schemes as well as to develop
new schemes.

Because the B�ezier scheme has useful geometrical interpretations, and results
in a piecewise, triangle by triangle, surface representation, the interpolation
methods developed in this thesis are in B�ezier form. The problem treated in
this thesis is the development of a tangent line/plane continuous interpolation
scheme that is local, i.e. only depends on nearby vertices, while keeping the
polynomial degree as low as three. This is easily done for curves, but is more

6 Introduction

involved for surfaces. Indeed, the polynomial degree of tangent plane continuous
triangular surfaces is usually four [Piper, 87] or �ve [Puger and Neamtu, 91].

1.2 Outline of the thesis

Four topics are treated in this thesis: geometric graphs, piecewise linear
boundary construction, hierarchical approximation and localization, and smooth
boundary construction. Chapter 2 introduces some concepts that are used
throughout this thesis, and presents an introduction to geometric graphs. In
particular an overview of geometric graphs that describe some internal or ex-
ternal structure of a set of points is presented. Chapter 3 introduces a new
geometric graph: the -neighborhood graph. The way in which the internal
structure of a set of points is described by the -neighborhood graph is used to
derive the topological relation between the points, assuming that they are on
the boundary of an object.

Chapter 4 states the precise boundary construction problem, motivates the
use of a suitable geometric graph, and gives an overview of existing methods to
solve the problem. In Chapter 5, the -neighborhood graph is used for boundary
construction, which leads to advantages over other methods.

Chapter 6 gives a more detailed explanation of the merits of (hierarchical)
approximation and localization, and an overview of existing schemes. Since the
various methods use approximation error criteria that are closely related to the
methods, several error criteria are introduced as well. Chapter 7 introduces a
new method, the intstones scheme, a scheme for both 2D and 3D, based on
a bounding area/volume de�ned by circles/spheres, which makes this scheme
eÆcient for use in hierarchical operations.

Chapter 8 introduces the relevant concepts for smooth boundaries, like B�ezier
curves and surfaces, and geometric (Gn-) continuity. An obvious way to generate
a smooth boundary curve in 2D is presented in Chapter 9. This chapter further
presents an analysis of the suÆcient and necessary polynomial degree for several
smooth interpolation problems in 3D, and introduces three new schemes for the
construction of a smooth piecewise cubic B�ezier surface.

1.3 Conventions

Throughout this thesis Nv denotes the number of vertices, Ne the number of
edges, and Nt the number of triangles that are considered. All distances are
Euclidean, or L2-, distances.

The notation `2D' means `two-dimensional', or `two-dimensional space', and
likewise for `3D' and `kD'. The word `boundary' is used for a 2D boundary
curve as well as for a 3D boundary surface, and other expressions like `boundary
segment' and `(boundary) simplex' are used in the same way. Many statements
about such elements hold in both the 2D and the 3D situation, so that the
dimensionality is often omitted.

1.3 Conventions 7

To give orders of time and storage complexities, we employ the commonly
used notation of [Knuth, 76]:

Definition 1.1 (Orders of complexity)

�(f(N)) denotes the set of all g(N) such that there exist positive constants c1,
c2, and N0 with c1f(N) � g(N) � c2f(N) for all N � N0,

O(f(N)) denotes the set of all g(N) such that there exist positive constants c
and N0 with jg(N)j � cf(N) for all N � N0,

(f(N)) denotes the set of all g(N) such that there exist positive constants c
and N0 with g(N) � cf(N) for all N � N0,

where N is the size of the input of the problem.
�(f(N)) can be read as `order exactly f(N)', O(f(N)) as `order at most

f(N)', which gives an upper bound, and
(f(N)) as `order at least f(N)',
which gives a lower bound, all three `for large N '.

We can say for example that the worst case time complexity of a given
algorithm is �(f(N)). Note that this is a stronger statement than saying that
for an arbitrary case the time complexity is O(f(N)), which would not imply
that the order exactly f(N) is actually reached.

The de�nitions above refer to `the set of all g(n) : : : ' rather than to `an
arbitrary function g(n) : : : '. The phenomenon of one-way equalities arises here:
O(f(n)) = O(g(n)) actually means O(f(n)) � O(g(n)), i.e. set inclusion. The
use of a one-way equality instead of inclusion for the
-, O-, and �-notation has
become common practice.

8 Introduction

2

Geometric graphs

This chapter presents a number of concepts that will be used throughout this thesis.
After a few elements of general graph theory have been introduced, an overview of
geometric graphs and their interrelationships will be given.

2.1 Introduction

A graph is a structure that allows the representation of the existence of a relation
between elements. Formally, a graph is de�ned as follows:

Definition 2.1 A graph G is a pair (V;E) where V is a non-empty �nite set
of Nv distinct elements v0; : : : ; vNv�1, and E is a set of unordered sets fvi; vjg,
0 � i; j � Nv � 1, i 6= j.

The elements of V are called vertices, the elements of E edges. We will simply
denote an edge fvi; vjg with `vivj '. An edge vivj represents the existence of
a relation between vi and vj . vivj and vjvi mean the same edge; edges are
undirected. If vivj 2 E, then vi and vj are adjacent, or neighbors, and incident
to vivj . Two edges are adjacent if they have a common vertex.

In a spanning graph all vertices are incident to an edge. A graph G = (V;E)
is called empty if E = �, and complete if E is the set of all possible edges. A
graph G0 = (V 0; E0) is called a subgraph of G if V 0 � V and E0 � E. The union
of graphs (V;E) and (W;F) is (V;E) [(W;F) = (V [W;E [F). A path is a
sequence of vertices vi0 : : : vij such that each pair of consecutive vertices is an
edge in the graph. We say that such a path is between vi0 and vij . A closed

9

10 Geometric graphs

path is a sequence of vertices vi0 : : : vij such that vi0 : : : vij is a path and vi0vij
is an edge in the graph. A closed path is a cycle if all its vertices are distinct.
A Hamilton cycle is a cycle containing all vertices of the graph. A graph is
connected if there is a path between every pair of distinct vertices. A graph is
n-connected if there are n di�erent paths between any two distinct vertices, or
equivalently, if the removal of any n� 1 vertices leaves the graph connected. A
graph without cycles is a forest. A tree is a connected graph without cycles. One
vertex of the tree can be denoted as the root.

A graph is called a geometric graph if the vertices represent points in a
Euclidean space, and the edges represent some geometric relation between the
vertices. The length of an edge of a geometric graph is the Euclidean distance
between its two vertices. The length of a geometric graph is the sum of the
lengths of all edges, and the length of a path is the sum of the lengths of the
edges in that path.

A hyper-graph is a generalization of a graph (P(V) is the power set of V ,
the set of all subsets of V):

Definition 2.2 A hypergraph G is a pair (V;E) where V is a non-empty �nite
set of distinct elements, and E is a subset of P(V)nV not containing �.

Let v0; : : : ; vNv
be vertices in an Euclidean space. A polyline is a �nite

ordered sequence of line segments vi0vi1 , vi1vi2 , : : : , vin�1vin , such that vij = vik
if and only if j = k. A polyline of consecutive line segments vi0vi1 , : : : , vin�1vin ,
is denoted by vi0 : : : vin . Every line segment end point is shared by exactly one
or two line segments.

A polygon vi0 : : : vin is a polyline vi0 : : : vin that is closed by segment vinvi0 .
Every line segment end point is shared by exactly two line segments. A poly-
gon is simple if its line segments share no points other than end points. For
compatibility with the generalization to 3D, the edges of a polygon are called
faces.

Polylines and polygons can be uniquely represented by a graph (V;E) where
V is the set of vertices of that polyline or polygon and E the set of edges vivj
that are the line segments. A polyline of Nv vertices has Nv�1 edges; a polygon
has Nv edges. Since every vertex is shared by one or two edges, there is a unique
ordering of edges in a polyline or polygon vi0 : : : vin . A triangle is the unique
polygon of three non-collinear vertices, that is, there is only one set of three
edges joining the three vertices.

A closed polyhedron in 3D is a �nite set of plane polygons such that every
line segment of a polygon is shared by exactly one other polygon, and no subset
of polygons has the same property. Consequently, if line segments of a closed
polyhedron have more than an end point in common, they must coincide and
cannot only partially overlap. An open polyhedron is a connected subset of
polygons of a closed polyhedron. A polyhedron is simple if there is no pair of
non-adjacent polygons sharing a point. The polygons of a polyhedron are called
faces.

2.2 Overview of geometric graphs 11

In the restricted case that the polygon has no through-passages, i.e. it is
topologically equivalent to a sphere, Euler's formula applies: Nv �Ne+Nt = 2.
Since for a closed triangulation 3Nt = 2Ne, it follows that for a polyhedron
of triangles without through-passages Nt = 2Nv � 4 holds. A polyhedron of
triangles can be uniquely represented by a hyper-graph (V; T) where V is the set
of vertices and T the set of triangles vivjvk of the polyhedron. A tetrahedron is
the unique polyhedron of four non-coplanar vertices, that is, there is only one
set of four triangles joining the four vertices.

A simplex or k-simplex is the unique kD structure of k+1 vertices not lying
in a (k � 1)D hyper-plane that joins its vertices by k + 1 (k � 1)-simplices; a 1-
simplex of two vertices is a line segment between these vertices. So, a 2-simplex
is a triangle and a 3-simplex is a tetrahedron.

A graph is depicted by representing a vertex by a dot, and an edge vivj by a
line segment between the dots corresponding to vi and vj . Informally, a graph
is planar if it can be drawn in the plane without crossing edges.

There is an obvious mapping from a hyper-graph (V;E) to a graph (V;E0)
associating all the

�
j
2

�
edges of pairs of vertices in e with each element e =

vi1 : : : vij of E. A hyper-graph can be displayed by depicting the resulting graph.
In the following I will often omit the word `hyper' in terms like hyper-sphere,

hyper-plane, and hyper-graph, when it is clear from the context that these gen-
eralized terms are appropriate.

More about graph theory in general can be found in [Bollob�as, 79], and
graphs in computational geometry in [Mehlhorn, 84], [Edelsbrunner, 87], and
[Preparata and Shamos, 85].

2.2 Overview of geometric graphs

The rest of this chapter is concerned with geometric graphs. Some of the graphs
mentioned in this section are neighborhood graphs (or hyper-graphs). A neigh-
borhood associated with v1, : : : , vn is an open part of the embedding space; its
de�nition depends on the particular graph but is only dependent of v1; : : : ; vn.
A neighborhood graph joins vertices if the associated neighborhood is empty,
that is, if no other vertices lie in the neighborhood. However, in the special case
that a kD neighborhood associated with v1; : : : ; vk is de�ned by a half-space
with its bounding hyper-plane through v1 : : : vk, the closed part of the hyper-
plane bounded by the (k�1)-simplex v1 : : : vk is part of the neighborhood. So, a
neighborhood that is a 3D half-space with its boundary through v1v2v3 is empty
if no other vertices lie in the open half-space, nor inside nor on triangle v1v2v3,
but vertices may lie on the boundary plane outside the triangle.

Some of the neighborhoods are de�ned in terms of discs or balls. A disc is
the closed point set bounded by a circle. A disc is said to touch a vertex if the
bounding circle passes through the vertex. The same applies to the kD analogues
of disc and circle: ball and sphere. Occasionally the radius of a ball is given by
a parameterized expression. In such expressions, x=0 = 1 for x 2 Rnf0g. A
kD ball of in�nite radius touching v1; : : : ; vk is considered a half-space with its

12 Geometric graphs

boundary through v1; : : : ; vk.

2.2.1 Closest Pairs

Definition 2.3 (Closest Pairs (CP)) Let V be a set of vertices in kD. The
Closest Pairs of V is the graph (V;E) with E the set of edges vivj such that
d(vi; vj) � d(vk ; v`) for all vk; v`, vk 6= v`.

Note that there can be more than one edge in the graph, that is, more than
one closest pair. The Closest Pairs graph is generally disconnected. The Closest
Pairs of a set of vertices in kD can be found in �(Nv logNv) time, provided
that the maximum number of vertices joined to each vertex is independent of
Nv [Bentley and Shamos, 76]. This time complexity is optimal.

2.2.2 Nearest Neighbors Graph

Definition 2.4 (Nearest Neighbors Graph (NNG)) Let V be a set of
vertices in kD. The Nearest Neighbors Graph of V is the graph (V;E) with E the
set of edges that joins each vertex vi with one vj satisfying d(vi; vj) � d(vi; vk)
for all vk 6= vi.

Note that the Nearest Neighbors Graph is not unique if there is more than one
vj such that d(vi; vj) � d(vi; vk) for all vk 6= vj . The Nearest Neighbors Graph
is generally disconnected. Since all the pairs of vertices that are each other's
nearest neighbor contain the pairs with the smallest distance of all, CP � NNG.
The Nearest Neighbors Graph in kD can be constructed in �(Nv(logNv)

k�1)
time [Bentley and Shamos, 76], provided that the maximum number of vertices
joined to each vertex is independent of Nv.

2.2.3 Euclidean Minimum Spanning Tree

Definition 2.5 (Euclidean Minimum Spanning Tree (EMST)) Let V be
a set of vertices in kD. A Euclidean Minimum Spanning Tree of V is a spanning
tree of minimum length.

The Euclidean Minimum Spanning Tree need not be unique. In a Euclidean
Minimum Spanning Tree, each vertex must be joined to its nearest vertex, and
thus NNG � EMST, provided that the Nearest Neighbors Graph on the vertex
set is unique. The Nearest Neighbors Graph actually is a minimum spanning
forest, so in the special case that the Nearest Neighbors Graph is connected, it
coincides with the Euclidean Minimum Spanning Tree. In 2D the Euclidean Min-
imum Spanning Tree can be found in �(Nv logNv) time [Shamos and Hoey, 75],
which is optimal, and in higher dimensions in O(N2

v) time [Prim, 57].

2.2.4 In�nite Strip Graph

The In�nite Strip Graph (1-SG) joins two vertices if and only if the associated
in�nite strip is empty [Devroye, 88].

2.2 Overview of geometric graphs 13

Definition 2.6 (Infinite strip) Let v1 and v2 be two vertices in kD. The
in�nite strip is the open space bounded by two parallel (k � 1)D planes through
v1 and v2 perpendicular to v1v2.

The in�nite strip can be considered a neighborhood, although `neighborhood'
suggest locality, while it is in�nite in this case. However, the de�nition is local
in the sense that it only depends on the two vertices.

If no two in�nite strips for di�erent pairs of vertices coincide, the Euclidean
Minimum Spanning Tree must join a pair of vertices whose in�nite strip is empty.
So in non-degenerate cases 1-SG � EMST. Therefore, one can examine each
of the Nv � 1 edges in the Euclidean Minimum Spanning Tree, and check if any
vertex lies in the corresponding in�nite strip. So the In�nite Strip Graph can
be constructed in O(N2

v).

2.2.5 Sphere of Inuence Graph

The Sphere of Inuence Graph was introduced by [Toussaint, 88b] for vertices
in 2D. However, the de�nition is generalized to higher dimensions in a straight-
forward manner:

Definition 2.7 (Sphere of Influence Graph (SIG)) Let V be a set of
vertices in kD. For each vertex v, let rv be the distance to its closest vertex.
The Sphere of Inuence Graph joins two vertices v1 and v2, if and only if the
sphere centered at v1 with radius rv1 and the sphere centered at v2 with radius
rv2 intersect in more than one point.

The Sphere of Inuence Graph may be disconnected. Clearly, each vertex is
joined with its nearest neighbor, so that NNG � SIG.

The 2D Sphere of Inuence Graph can be constructed in �(Nv logNv) time
[Toussaint, 88b], which is optimal. The higher dimensional Sphere of Inuence
Graph can be constructed after computing the Nearest Neighbors Graph (in
order to determine the rv of every vertex v), by examining all the Nv(Nv � 1)=2
pairs of vertices in constant time. So, the higher dimensional Sphere of Inuence
Graph can be constructed in O(N2

v) time.

2.2.6 Relative Neighborhood Graph

The Relative Neighborhood Graph (RNG) joins two vertices if and only if their
relative neighborhood is empty.

Definition 2.8 (Relative neighborhood) Let v1; v2 be two vertices in kD.
The associated relative neighborhood is the interior of the intersection of the two
kD balls centered at v1 and v2 with radius d(v1; v2).

Two vertices v1 and v2 with an empty relative neighborhood are said to be rela-
tively close, i.e. if d(v1; v2) � maxfd(v1; vi); d(v2; vi)g, for all vi 6= v1; v2. In the
original de�nition by [Lankford, 69], the `�' is replaced by a `<', but the former

14 Geometric graphs

de�nition has become common in computational geometry [Toussaint, 80], and
corresponds to our notion of empty neighborhood. It is shown by [Toussaint, 80]
that EMST � RNG.

The Relative Neighborhood Graph can be constructed in �(Nv logNv) time
in 2D [Supowit, 83], and in O(N3

v) time in higher dimensions [Toussaint, 80].

2.2.7 Gabriel Graph

The Gabriel Graph (GG), named after its originator [Gabriel and Sokal, 69],
joins two vertices if and only if their Gabriel neighborhood is empty. It has orig-
inally been de�ned for 2D, but the de�nition is generalized to higher dimensions
in a straightforward way:

Definition 2.9 (Gabriel neighborhood) Let v1; v2 be two vertices in kD.
The Gabriel neighborhood associated with v1 and v2 is the interior of the smallest
kD ball touching v1 and v2.

The Gabriel neighborhood sphere has radius d(v1; v2)=2. Because the Gabriel
neighborhood is contained in the relative neighborhood, it is empty when the
latter is empty, and therefore RNG � GG. The Gabriel Graph has origi-
nally been used for analysis of geographic variation of data (e.g. the cubic
root of the body weight of female red-winged blackbirds in North-America
[Gabriel and Sokal, 69]).

The Gabriel Graph in 2D can be constructed in �(Nv logNv) time, which is
optimal, see [Matula and Sokal, 80]. The higher dimensional Gabriel Graph can
be constructed by brute force in O(N3

v) time.

2.2.8 Convex Hull

I will de�ne the Convex Hull in terms of a hyper-graph, but there are many
other ways.

Definition 2.10 (Convex Hull (CH)) Let V be a set of vertices in kD. The
Convex Hull of V is the hyper-graph (V; F) where F is the set of (k�1)-simplices
vi0 : : : vik such that no other vertices lie in the open half-space at one side of the
hyper-plane through vi0 : : : vik , nor inside nor on simplex vi0 : : : vik .

Informally speaking, Convex Hull is the tightest hull enclosing V , which is
convex indeed. However, in the above de�nition the faces are additionally re-
quired to be simplices. For example in 3D, the faces must be triangles, even if
two adjacent triangles are coplanar and could as well be replaced by a quadri-
lateral. So, the Convex Hull is a polyhedron with triangular faces. Notice that
the half-space in the de�nition can be considered a neighborhood.

The 2D and 3D Convex Hull can be constructed in �(Nv logNv) time,
which is optimal [Preparata and Hong, 77], and the kD Convex Hull, k > 3,

in O(N
bk=2c
v) time [Chazelle, 91], which is also optimal.

2.2 Overview of geometric graphs 15

2.2.9 Delaunay Triangulation

[Vorono��, 08] de�nes a partitioning of space into simplices Li, whose vertices are
a given set of vertices V in kD. This so-called L-subdivision is the combinatorial
geometrical dual (see below) of what is now commonly known as the Voronoi
Diagram, or sometimes closest point Voronoi Diagram. The Voronoi Diagram
consists of cells Ci = fx 2 R

k jd(x; vi) � d(x; vj); for all j 6= ig, i.e. the locus
of all points in space closer (or equally close) to vi than to any other vertex.
Later, the furthest-point Voronoi Diagram has been de�ned as the collection of
cells C 0

i = fx 2 R
k jd(x; vi) � d(x; vj); for all j 6= ig, the locus of points in space

further (or equally far) from vi than from any other vertex.
A de�nition of the L-subdivision given by [Delaunay, 28] and [Delaunay, 34]

de�nes a simplex to be part of the L-subdivision if the ball touching its vertices
is empty. The L-subdivision is now commonly called Delaunay Triangulation
(DT), or sometimes closest point Delaunay Triangulation, and is the dual of the
closest point Voronoi Diagram. The furthest-point Delaunay Triangulation is
the dual of the furthest-point Voronoi Diagram. The Delaunay Triangulation
is the dual of the associated Voronoi Diagram in the sense that each j-simplex
in the Delaunay Triangulation corresponds to a (k � j)-simplex in the Voronoi
Diagram. In particular, the vertices in the Voronoi Diagram correspond to k-
simplices in the Delaunay Triangulation.

In 3D we can call the Delaunay Triangulation a Delaunay tetrahedralization,
but in general kD this subdivision into simplices is still called a triangulation.

In the degenerate case that more than k+1 vertices lie on an empty sphere,
joining all these vertices with each other would generate overlapping simplices.
Instead of doing that, the Delaunay Triangulation arbitrarily joins these vertices
so as to generate non-overlapping simplices that �ll the space enclosed by the
Convex Hull of these vertices. A degenerate Delaunay Triangulation is therefore
not unique.

Apart from degenerate con�gurations, k+1 vertices form a simplex if the ball
touching the vertices is empty. Naturally, this ball touches the vertices of each of
the k+1 (k�1)-simplices that constitute the k-simplex. Those (k�1)-simplices
that are part of two adjacent k-simplices have two such empty balls, and the
balls are the largest empty balls touching the vertices of the (k�1)-simplex. But
also the (k � 1)-simplices that are part of only one k-simplex have two empty
balls, one of which has an in�nite radius. These (k � 1)-simplices are part of
the Convex Hull, so CH � DT. To get an intuitive picture, let k = 3 and read
tetrahedron for k-simplex, and triangle for (k � 1)-simplex.

By the observation above, the Delaunay Triangulation can be de�ned as a
hyper-graph in the following way:

Definition 2.11 (Delaunay Triangulation) Let V be a set of vertices in
kD. The Delaunay Triangulation is the hyper-graph (V; S) with S the set of
(k � 1)-simplices that have two empty balls touching their vertices, such that S
forms non-overlapping k-simplices.

16 Geometric graphs

CP NNG EMST

∞-SG SIG RNG

GG CH DT

Figure 2.1. Some geometric graphs on the same set of vertices.

The interior of the two empty balls is sometimes called the Delaunay neighbor-
hood, but note that this is only de�ned for (k � 1)-simplices in the graph and
not for k arbitrary vertices.

Clearly an empty ball touches the end points of each edge of a (k�1)-simplex
in the Delaunay Triangulation. Conversely, if some ball touching two vertices
v1; v2 is empty, there is also a largest empty ball touching these vertices, which
touches k � 3 other vertices, so that v1v2 is an edge of a (k � 1)-simplex that is
part of the Delaunay Triangulation. So if the Gabriel neighborhood of v1; v2 is
empty, v1v2 is in the Delaunay Triangulation, and therefore GG � DT.

2.2 Overview of geometric graphs 17

The 2D Delaunay Triangulation can be constructed in �(Nv logNv) time,
which is optimal [Lee and Schachter, 80]. According to [Brown, 79], the kD
Delaunay Triangulation can be constructed by computing a particular (k +1)D

Convex Hull, which results in a time complexity of O(N
dk=2e
v), see Section 2.2.8.

Alternatively, denoting the number of (k�1)-simplices withNs, the 2D Delaunay
Triangulation can be constructed in �(Ns logNs) = �(Ne logNe) and the kD
Delaunay Triangulation in O(Ns logNs) time (due to [Seidel, 86]).

The 2D Delaunay Triangulation is used in very many applications because
of its property that it is the triangulation among all possible triangulations
of the same vertex set that maximizes the minimum interior angle of all the
triangles. For example, for the construction of a piecewise functional surface
over a triangulated domain such a property of the triangulation is desirable
in order to avoid numerical problems caused by thin triangles [Lawson, 77],
[Nielson and Franke, 83]. The Delaunay Triangulation is even part of the de�ni-
tion of the surface interpolant developed by [Farin, 90b]. In any tetrahedraliza-
tion, each tetrahedron has planar angles (between two edges of a face), dihedral
angles (between two faces), and trihedral, or solid angles (between three faces).
It is not known if any of the minima of these angles is maximized in the Delaunay
Triangulation.

Figure 2.1 shows examples of the geometric graphs mentioned so far.

2.2.10 �-Shape

The �-Shape and �-Hull were introduced by [Edelsbrunner et al., 83] for vertices
in 2D, but they are straightforwardly generalized to higher dimensions. The
de�nition of the �-Hull is based on the notion of a parameterized generalized
ball:

Definition 2.12 (Generalized ball) Let a be an arbitrary real number. A
generalized ball of radius 1=a is de�ned as a ball of radius 1=a if a > 0, the
complement of a ball of radius 1=(�a) if a < 0, and a half-space if a = 0.

Definition 2.13 (�(a)-Hull) Let V be a set of vertices in kD. The �(a)-Hull
of V is the closure of the intersection of all generalized balls of radius 1=a that
contain V .

The �(a)-Hull is a bounded closed point set in kD space whose boundary consists
of spherical segments of curvature a. The vertices on the boundary of an �(a)-
Hull are called the extreme vertices. Informally speaking, replacing the circular
arcs by line segments (2D), and spherical segments by triangles (3D) gives a
(hyper-)graph, called the �-Shape. This is formalized in the following de�nition:

Definition 2.14 (�(a)-Shape) The �(a)-Shape of a set of vertices V is the
hyper-graph (V;E) with E the set of (k� 1)-simplices joining k extreme vertices
lying on a spherical segment of the boundary of the �(a)-Hull that contains no
other extreme vertices.

18 Geometric graphs

The �(a)-Shape is a subgraph of the closest point Delaunay Triangulation
if a � 0, and a subgraph of the furthest-point Delaunay Triangulation if a � 0
(the �(0)-Shape coincides with the Convex Hull, which is a subgraph of both the
closest and the furthest point Delaunay Triangulation). The time complexities
for constructing the Delaunay Triangulation therefore carry over to the �(a)-
Shape.

2.2.11 �-Skeleton

The �-Skeleton is a parameterized neighborhood graph, introduced for 2D in a
circle-based and a lune-based variant [Kirkpatrick and Radke, 85]. I will denote
them with �c- and �l-Skeleton respectively, or �c(b)- and �l(b)-Skeleton for the
speci�c parameter value b. The corresponding neighborhoods N�c(b) and N�l(b)
are de�ned below. The de�nitions are a slightly modi�ed version of the originals,
in order to normalize the parameter so as to lie between �1 and 1.

Definition 2.15 (Circle-based �-neighborhood N�c(b)) Let v1 and v2 be
two distinct vertices in the plane, and b 2 [�1; 1]. The N�c(b) of v1 and v2 is
de�ned by two discs D1; D2 touching v1 and v2 with radius d(v1; v2)=2(1 � jbj)
such that

if b 6= 0: the centers of D1; D2 lie at opposite sides of v1v2,
if b 2 [�1; 0]: N�c(b) = the interior of (D1 \D2) [interior of v1v2,
if b 2 [0; 1]: N�c(b) = the interior of D1 [interior of D2 [interior of v1v2.

Definition 2.16 (Lune-based �-neighborhood N�l(b)) Let v1 and v2 be
two distinct vertices in the plane, and b 2 [�1; 1]. The N�l(b) of v1 and v2
is

if b 2 [�1; 0]: N�c(b),
if b 2 [0; 1]: the interior of the intersection of the discs that are centered at

v1 + (v2 � v1)=2(1 � b) and v2 + (v1 � v2)=2(1 � b), both having
radius d(v1; v2)=2(1� b).

Note that the open line segment v1v2 is always part of the neighborhood.
The �-Skeleton is a neighborhood graph joining vertices if and only if the

associated �-neighborhood is empty. For special values of the parameter the
�l-Skeletons reduce to particular geometric graphs:

� N�l(0) is equivalent to the Gabriel neighborhood. The �c(0)- and �l(0)-
Skeletons are the Gabriel Graph.

� N�l(
1
2) reduces to the relative neighborhood. The �l(

1
2)-Skeleton is the Rela-

tive Neighborhood Graph.
� The �l(1)-Skeleton reduces to 1-SG.
� The �c(�1)- and �l(�1)-Skeleton are complete graphs if no three vertices are
collinear.
� The �c(1)-Skeleton is the empty graph.

2.3 Concluding remarks 19

.

.

.

.
.
.
.
.

.

.

.

..
.
.
.

.

.

.

.

based:
lune-

based:
circle-

1/2-1/2-1 0 1

Figure 2.2. Overview of the spectrum of �-neighborhoods in 2D.

The spectrum of �-neighborhoods for the whole range of the parameter is illus-
trated in Figure 2.2.

The generalization of N�l(b) to higher dimensions is straightforward for b �
0 (replace the word disc by ball in the de�nition), but a higher-dimensional
N�c(b) could be de�ned in various ways. The �-Skeleton can be used for the
analysis of networks (e.g. the major road network in Saskatchewan, Canada, see
[Kirkpatrick and Radke, 85]).

For b < 0 the �-Skeletons are equal and can be constructed by a naive
brute force algorithm in O(N3

v) time. The �c(b)-Skeleton for b � 0 can be
constructed in O(Nv logNv) time, and the �l(b)-Skeleton, b � 0, in O(N2

v) time,
see [Kirkpatrick and Radke, 85].

2.3 Concluding remarks

The inclusion relations between all geometric graphs mentioned in the previous
section are depicted in Figure 2.3, in which � represents the �-Shape, and �c
and �l represent the �-Skeletons. Table 2.1 lists the best known upper bounds
of the time complexities to construct the graphs, and the references where these
results can be found.

In [Kirkpatrick and Radke, 85] it is said that a geometric graph describes the
internal structure of a set of vertices, when it joins essential neighbors among
the essential vertices. The external structure is described when the graph joins
essential neighbors among the essential extreme vertices. Exactly when vertices
or pairs of vertices are considered essential generally depends on the application,
and when vertices are considered neighbors depend on the de�nition of the graph
or, when appropriate, the neighborhood. The Convex Hull and its parameterized
generalization, the �-Shape, describe aspects of the external structure of a set
of vertices. All other geometric graphs mentioned here describe di�erent aspects
of the internal structure.

The next chapter introduces the -neighborhood graph, which extends the

20 Geometric graphs

2
D

k
D
,
k
�
3

u
p
p
er
b
o
u
n
d

re
fe
re
n
ce

u
p
p
er
b
o
u
n
d

re
fe
re
n
ce

C
P

�
(N
v
lo
g
N
v
)

[B
en
tl
ey
a
n
d
S
h
a
m
o
s,
7
6]

�
(N
v
lo
g
N
v
)

[B
en
tl
ey
a
n
d
S
h
a
m
o
s,
7
6]

N
N
G

�
(N
v
lo
g
N
v
)

[B
en
tl
ey
a
n
d
S
h
a
m
o
s,
7
6]

O
(N
v
(l
o
g
N
v
)k
�
1
)

[B
en
tl
ey
a
n
d
S
h
a
m
o
s,
7
6]

E
M
S
T

�
(N
v
lo
g
N
v
)

[S
h
a
m
o
s
a
n
d
H
o
ey
,
7
5]

O
(N
2 v
)

[P
ri
m
,
5
7]

1
-S
G

O
(N
2 v
)

tr
iv
ia
l

O
(N
2 v
)

tr
iv
ia
l

S
IG

�
(N
v
lo
g
N
v
)

[T
o
u
ss
a
in
t,
8
8
b
]

O
(N
2 v
)

tr
iv
ia
l

R
N
G

�
(N
v
lo
g
N
v
)

[S
u
p
ow
it
,
8
3]

O
(N
3 v
)

[T
o
u
ss
a
in
t,
8
0]

G
G

�
(N
v
lo
g
N
v
)

[M
a
tu
la
a
n
d
S
o
ka
l,
8
0]

O
(N
3 v
)

tr
iv
ia
l

C
H

�
(N
v
lo
g
N
v
)

[P
re
p
a
ra
ta
a
n
d
H
o
n
g
,
7
7]

O
(N
v
lo
g
N
v
+
N

b
k
=
2
c

v

)

[C
h
a
ze
ll
e,
9
1]

D
T

�
(N
v
lo
g
N
v
)

[L
ee
a
n
d
S
ch
a
ch
te
r,
8
0]

O
(N

d
k
=
2
e

v

)

[B
ro
w
n
,
7
9]
+
[C
h
a
ze
ll
e,
9
1]

�
-S
h
a
p
e

�
(N
v
lo
g
N
v
)

[E
d
el
sb
ru
n
n
er
et
a
l.
,
8
3]

O
(N

d
k
=
2
e

v

)

[E
d
el
sb
ru
n
n
er
et
a
l.
,
8
3]

�
c
(b
)-
,
�
l(
b)
-S
k
.,
b
<
0

O
(N
3 v
)

[K
ir
k
p
a
tr
ic
k
a
n
d
R
a
d
k
e,
8
5]

O
(N
3 v
)

tr
iv
ia
l

�
c
(b
)-
S
k
el
.,
b
�
0

O
(N
v
lo
g
N
v
)

[K
ir
k
p
a
tr
ic
k
a
n
d
R
a
d
k
e,
8
5]

n
o
t
d
e�
n
ed

�
l(
b)
-S
k
el
.,
b
�
0

O
(N
2 v
)

[K
ir
k
p
a
tr
ic
k
a
n
d
R
a
d
k
e,
8
5]

O
(N
3 v
)

tr
iv
ia
l

T
ab
le
2
.1
.
T
im
e
co
m
p
le
xi
ti
es
fo
r
g
ra
p
h
co
n
st
ru
ct
io
n
.

2.3 Concluding remarks 21

� �

�
�

��+

?

6
���

��
@
@I
@
@I

66

�
�7
�
�7

Q
Q

QQk
Q

Q
QQk

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
Æ
�

�
�
�
�

�
Æ
�

�
�
�
�

CP NNG

SIG

EMST

1-SG

RNG GG DT

CH

�

�c�l

Figure 2.3. Hierarchy of geometric graphs. Graph1 graph2 denotes graph1 �
graph2, and graph1 � graph2 indicates that the parameterized graph2 reduces to
graph1 for speci�c parameter values.

hierarchy in Figure 2.3. The -neighborhood graph can describe both internal
and external structures of a set of vertices.

22 Geometric graphs

3

The -Neighborhood Graph

This chapter introduces the -Neighborhood Graph, a novel two-parameter geomet-
ric graph. It uni�es a number of geometric graphs such as the Convex Hull, the
Delaunay Triangulation, the Gabriel Graph and the �c-Skeleton, into a continuous
spectrum of geometric graphs that ranges from the empty to the complete graph.

3.1 Introduction

In the computational geometry discipline many old and new geometric tech-
niques are brought together and uni�ed. An example of this is the development
in geometric graphs. A major unifying e�ect in computational geometry was
brought about by the Delaunay Triangulation and its dual Voronoi Diagram.
Old geometric graphs such as the Convex Hull and the Euclidean Minimum
Spanning Tree, and new, parameterized graphs such as the �-Shape and the
�c-Skeleton are intimately related to the Delaunay Triangulation. An even more
general graph is presented in this chapter: the -Neighborhood Graph.

The Delaunay Triangulation can be seen as a neighborhood graph, where
the neighborhood consists of the union of two balls whose radii need not be the
same and may have any size. On the other hand, N�c(b) consists of the union
or intersection of two discs whose radii must be the same, and are controlled by
b. The -Neighborhood Graph is based on the combination of these properties
of the two graphs.

3.2 The (c0; c1)-Graph

The -Neighborhood Graph will be used in Chapter 5 in 2D and 3D only; how-
ever, for reasons of generality it will here be de�ned for arbitrary dimension. In

23

24 The -Neighborhood Graph

the de�nition of the -Neighborhood the following notation is used: for k dis-
tinct vertices v1; : : : ; vk in kD not lying in a (k�2)D plane, r(v1; : : : ; vk) denotes
the radius of the smallest kD ball touching these vertices, i.e. the radius of the
unique (k � 1)D ball touching the vertices. A two-parameter -Neighborhood
N(c0; c1) is de�ned as follows:

Definition 3.1 (-Neighborhood N(c0; c1)) Let v1; : : : ; vk be k distinct
vertices in kD not lying in a (k � 2)D hyper-plane, R the closed part of the
hyper-plane through v1; : : : ; vk bounded by the (k � 1)-simplex v1 : : : vk, and
c0; c1 2 [�1; 1] such that jc0j � jc1j. A N(c0; c1) is de�ned by the kD balls
B0; B1 of radius r(v1; : : : ; vk)=(1� jc0j) and r(v1; : : : ; vk)=(1� jc1j) respectively
and touching v1; : : : ; vk, such that

if c0c1 < 0: the centers of B0; B1 lie on the same side of the hyper-plane
through v1; : : : ; vk,

if c0c1 > 0: the centers of B0; B1 lie on opposite sides of the hyper-plane
through v1; : : : ; vk,

if c1 2 [�1; 0]: N(c0; c1) = the interior of (B0 \ B1) [interior of R,
if c1 2 [0; 1]: N(c0; c1) = the interior of B0 [interior of B1 [interior of R.

Note that the interior of R, the open simplex v1 : : : vk, is always part of the
neighborhood.

Figure 3.1 gives a graphical overview of the whole spectrum of 2D neigh-
borhoods. Note that the de�nition is valid for c1 = 0: since jc0j � jc1j, c0
must also be zero, the radii of both balls are r(v1; : : : ; vk), so that the balls
have the same center and the intersection gives the same result as the union.
For given v1; : : : ; vk and any c0; c1 2 [�1; 1] such that jc0j < jc1j (so c0 6= c1),
there are two N(c0; c1)'s, which are mirror-symmetric with respect to the plane
through v1 : : : vk . The -Graph (c0; c1) joins the vertices if at least one of the
neighborhoods is empty:

Definition 3.2 ((c0; c1) Neighborhood Graph) Let V be a set of vertices
in kD. The (c0; c1)-Graph is the hyper-graph (V; S) with S the set of (k � 1)-
simplices v1 : : : vk such that the N(c0; c1) of v1; : : : ; vk is empty.

I will use `-Graph', `(c0; c1)-Graph' or simply `(c0; c1)' and similar expres-
sions, to denote the appropriate -Neighborhood Graph.

In a 2D -Graph (V;E) the elements of E are edges, joining pairs of vertices.
Associated with an edge v1v2 is a N(c0; c1) de�ned by two discs whose radii
are a scaling factor times the radius of the smallest circle through v1v2, i.e.
r(v1; v2) = d(v1; v2)=2. For special values of c0 and c1 the 2D (c0; c1) reduces
to particular geometric graphs:

� c0 = c1 = 1. The neighborhood is the entire plane except for two half-lines
originating at v1 and v2. If no three vertices are collinear, (1; 1) is an empty
graph.
� c0 = c1 = �1. The neighborhood is the line segment v1v2. If no three vertices
are collinear, then (�1;�1) is the complete graph.

3.2 The (c0; c1)-Graph 25

c
1

c
0

-1 0 1

0

-1

1

Figure 3.1. Overview of the spectrum of 2D neighborhoods N(c0; c1). The neigh-
borhoods drawn are not appropriately scaled, but give an idea of their shape. Rect-
angles denote half-spaces.

� c0 = �1, c1 = 1 and c0 = 1, c1 = �1. In both cases the two half-planes lie
on the same side of the line through v1 and v2 and coincide (more generally,
N(c0;�c0) = N(�c0; c0)). The neighborhood is empty if all other vertices
lie on one side of the line through v1 and v2, or on the line except on line
segment v1v2. That occurs if and only if v1 and v2 lie on the Convex Hull.
Therefore, (�1; 1) and (1;�1) are the Convex Hull.
� c0 = c1. N(c0; c0) = N�c(c0). So, (c0; c0) reduces to the �c-Skeleton.
� c0 = c1 = 0. N(0; 0) is the smallest disc touching v1 and v2, which is the
Gabriel Neighborhood. So, (0; 0) is the Gabriel Graph.

In a 3D -Graph (V; T), the elements of T are triangles joining three vertices.
Associated with a triangle v1v2v3 is aN(c0; c1) de�ned by two balls, whose radii
are a scaling factor times the radius of the smallest sphere through v1, v2, and
v3, i.e. r(v1; v2; v3).

Again for special values of c0 and c1, the kD (c0; c1), k � 3, reduces to
particular graphs: (1; 1) is the empty graph, (�1;�1) is the complete graph,
and (�1; 1) = (1;�1) = CH. Note that the kD Gabriel Neighborhood is the
interior of the smallest ball touching two vertices, whereasN(0; 0) is the interior

26 The -Neighborhood Graph

� �

�
�

��+

?

6
���

��
@
@I
@
@I

66

�
�7
�
�7

Q
Q

QQk
Q

Q
QQk

��
J
J
J
J
JJ]

J
J
J
J
JJ]

�
�

��+
�

�
��+

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
Æ
�

�
�
�
�

�
Æ
�

�
�
�
�

�
�
�
�CP NNG

SIG

EMST

1-SG

RNG GG DT

CH

�

�c�l

Figure 3.2. The hierarchy of geometric graphs in Figure 2.3 extended with the -
Graph. Graph1 graph2 denotes graph1 � graph2, and graph1� graph2 indicates
that the parameterized graph2 reduces to graph1 for speci�c parameter values.

of the smallest ball touching k vertices. So, for k > 2 GG 6= (0; 0). Concerning
the �c-Skeleton, it is not clear how one should de�ne N�c(b) for k > 2. On the
other hand, we could de�ne N�c(b) = N(b; b).

3.3 The ([c0; c1]; [c2; c3])-Graph

So far the -parameters were �xed. We can also consider the largest values of
the -parameters, for which the corresponding neighborhood is still empty. That
is the value for which the ball touches a (k + 1)th vertex, or is either 1 or �1 if
there is no such vertex. This concept is provided by the ([c0; c1]; [c2; c3])-Graph,
de�ned as follows:

Definition 3.3 (([c0; c1]; [c2; c3]) Neighborhood Graph) Let V be a set of
vertices in kD. ([c0; c1]; [c2; c3]) is the hyper-graph (V; S) with S the set of (k�
1)-simplices v1 : : : vk for which the largest values of c

0
0, c

0
1 such that the associated

N(c
0
0; c

0
1) is empty satisfy c00 2 [c0; c1] and c

0
1 2 [c2; c3].

The ([�1; 1]; [0; 1])-Graph joins vertices v1; : : : ; vk in kD if there are two
empty balls of arbitrary radius touching the vertices. This is exactly a de�nition
of the Delaunay Triangulation if no more than k + 1 vertices lie on an empty
ball, see De�nition 2.11 on page 15. If more than k+1 vertices lie on an empty
ball, ([�1; 1]; [0; 1]) forms all possible overlapping (k � 1)-simplices, whereas
the degenerate Delaunay Triangulation arbitrarily forms as much as possible
non-overlapping (k � 1)-simplices.

The relation between the 2D -Graph and the 2D geometric graphs men-
tioned in Section 2.2 is depicted in Figure 3.2.

The -Graph not only describes the internal structure of a set of vertices,
but also aspects of the external structure. For example, the (�1; 1)-Graph
reduces to the Convex Hull. The next section gives an example in which special

3.3 The ([c0; c1]; [c2; c3])-Graph 27

-parameter values give a clear external structure. We will see in Chapter 5 how
the -Graph is used to �nd a boundary through all vertices. This capability
of describing the external structure somewhat contrasts the �l-Skeleton. N�l

is located inside the in�nite strip (Section 2.2.4) of the two vertices (2D). The
resulting graph therefore emphasizes connections between vertices, which makes
it suitable for network analysis. The two balls in N are located aside the k
vertices involved (kD). Especially when N is the union of the balls, the -
Graph is more like (a part of) a tessellation.

γ(−1,1) = γ([−1,1],[1,1]) = CH γ([−1,1],[1/4,1])

γ([−1,1],[0,1]) = DT γ([−1,1],[−1/4,1])

Figure 3.3. A sequence of 2D ([�1; 1]; [c0; 1])'s, successively containing more edges.

28 The -Neighborhood Graph

γ(0.2,0.2) γ(0.1,0.1)

γ(0,0)= GG γ(−0.2,−0.2)

Figure 3.4. A sequence of 2D (c0; c0)'s that are �c-Skeletons.

3.4 Examples

The types of graphs that result from speci�c choices of the parameters are most
clearly demonstrated with 2D graphs. Figures 3.3, 3.4, and 3.5 show 2D -
Graphs on the same set of 20 vertices. Figure 3.6 gives a 2D example with a
clear external structure. Figure 3.7 depicts 3D example graphs.

Figure 3.3 shows a sequence of ([�1; 1]; [c0; 1])-Graphs. For c0 = 1, this
yields the Convex Hull. Decreasing c0 introduces more and more edges in the
graph, until for c0 = 0 the graph coincides with the Delaunay Triangulation.
When c0 gets negative, edges may cross each other, until for c0 = �1 the graph
would be complete (not shown).

The graphs in Figure 3.4 all coincide with a �c-Skeleton. The neighbor-
hoods N(0:2; 0:2), N(0:1; 0:1), N(0; 0), and N(�0:2;�0:2) get successively

3.4 Examples 29

γ([−1,1],[−1,0]) γ([−1/4,1/4],[−1/4,0])

γ([−1,1],[−1,−0.9]) γ([−1,1],[−1,−0.95])

Figure 3.5. A sequence of 2D -Graphs where the neighborhoods consist of inter-
sections of discs.

smaller. The emptiness requirement gets less restrictive, so that more pairs of
vertices are considered neighbors. The (0; 0)-Graph equals the Gabriel Graph.

Figure 3.5 depicts graphs that result when only intersections of discs are
allowed as neighborhood. The ([�1; 1]; [�1; 0]) joins all pairs of vertices that
have no empty ball. It it the complement of the Delaunay Triangulation. In
([� 1

4 ;
1
4]; [�

1
4 ; 0]), the intersections are forced to have a certain minimal width.

On the other hand, ([�1; 1]; [�1;�0:9]) allows only thin neighborhoods. The
edges then join vertices only when there is another vertex close to the edge.
In ([�1; 1]; [�1;�0:95]) the neighborhoods are so thin, that vertices are only
joined if there is another vertex almost on the edge.

Figure 3.6 shows the set of vertices used in [Edelsbrunner et al., 83] to illus-

30 The -Neighborhood Graph

γ(−0.15,0.3)

Figure 3.6. The -Graph on the 2D set of vertices from [Edelsbrunner et al., 83],
exhibiting a clear external structure.

trate the �-Shape. The (�0:15; 0:3)-Graph turns out to give a clear bound-
ary, although internal edges are also present. The �-Shape, designed to give
the boundary of a cluster of vertices, yields a single inner and outer con-
tour on this example set. However, the two -parameters give more freedom
for �nding some external structure than the single parameter �-Skeleton; see
[Kirkpatrick and Radke, 85] for a �-Skeleton on the same set of vertices.

Finally, Figure 3.7 shows projections of two stereo pairs of 3D -Graphs of a
set of 30 vertices. To get a 3D impression, use a stereoscope or place a partition
on the page between the left and right picture, and relax the eyes to let the two
images coalesce to a single one. The 3D (0; 0) joins three vertices with each
other if the smallest ball touching these vertices is empty. The picture of the
(0; 0) only slightly di�ers from a typical 3D Delaunay Triangulation. This is
because three pairwise incident edges of three di�erent triangles in the graph can
give the false impression of forming a fourth triangle. In the example shown,
the (0; 0) consists of 150 triangles, while the Delaunay Triangulation on the
same set of vertices consists of 257 triangles (constituting 248 tetrahedra). The
([� 1

4 ;
1
4]; [

1
2 ;

3
4]) is disconnected, but shows more clearly that the 3D -Graph

consists of triangles.

3.5 Complexities

The following three lemmas tell how -Graphs with speci�c parameter values
are related to each other. The lemmas give cues how to construct an arbitrary
-Graph.

3.5 Complexities 31

γ(0,0)

γ([−1/4,1/4],[1/2,3/4])

Figure 3.7. Two stereo pairs of perspectively projected 3D -Graphs.

Lemma 3.1 Let c0 2 [�1; 1], c1 2 [0; 1], and jc0j � jc1j. Then (c0; c1) is equal
to ([c0; 1]; [c1; 1]).

Proof. Observe that if c1 � 0, then N(c0; c1) � N(c2; c3) for all c2 2 [c0; 1],
c3 2 [c1; 1], jc2j � jc3j, see Figure 3.8. The reasoning is now as follows. Consider
k vertices in kD. If N(c0; c1) is empty, then the largest empty N(c2; c3) must
satisfy c2 2 [c0; 1], and c3 2 [c1; 1]. So each simplex in (c0; c1) is also in
([c0; 1]; [c1; 1]). Conversely, if the largest empty -Neighborhood is N(c2; c3)
with c2 2 [c0; 1], and c3 2 [c1; 1], then N(c0; c1) must be empty. So each simplex
in ([c0; 1]; [c1; 1]) is also in (c0; c1).

Lemma 3.2 Let c0 2 [�1; 1], c1 2 [�1; 0], and jc0j � jc1j. Then (c0; c1) is equal
to ([c0; 1]; [c1; 1]) [([c1; 1]; [jc0j; 1]).

32 The -Neighborhood Graph

(c ,c)0 1

Figure 3.8. Shaded area denotes neighborhoods that contain N(c0; c1), c1 2 [0; 1].

Proof. Observe that if c1 � 0, N(c0; c1) � N(c2; c3) for all c2 2 [c0; 1], c3 2
[c1; 1], jc2j � jc3j. But N(c4;�c4) = N(�c4; c4), speci�cally for c1 � c4 �
c0, and so N(c0; c1) � N(c2; c3) for all c2 2 [c1; 1], c3 2 [jc0j; 1], jc2j � c3
as well, see Figure 3.9. The reasoning is now as follows. Consider k vertices
in kD. If N(c0; c1) is empty, the largest empty N(c2; c3) must satisfy c2 2
[c0; 1], c3 2 [c1; 1], or c2 2 [c1; 1], c3 2 [jc0j; 1]. So each simplex in (c0; c1)
is also in ([c0; 1]; [c1; 1]) [([c1; 1]; [jc0j; 1]). Conversely, if the largest empty
neighborhood is N(c2; c3) with c2 2 [c0; 1], c3 2 [c1; 1], or c2 2 [c1; 1], c3 2
[jc0j; 1], then N(c0; c1) must be empty. So each simplex in ([c0; 1]; [c1; 1]) [
([c1; 1]; [jc0j; 1]) is also in (c0; c1).

Lemma 3.3 ([c0; c1]; [c2; c3]) � ([c4; c5]; [c6; c7]) on all sets of vertices if and
only if [c0; c1] � [c4; c5] and [c2; c3] � [c6; c7].

Proof. Let [c0; c1] � [c4; c5] and [c2; c3] � [c6; c7], and consider a simplex in the
graph ([c0; c1]; [c2; c3]). Its largest empty N(c

0
0; c

0
1) satis�es c00 2 [c0; c1] �

[c4; c5], and c01 2 [c2; c3] � [c6; c7]. That simplex is thus also present in
([c4; c5]; [c6; c7]). Conversely, let ([c0; c1]; [c2; c3]) � ([c4; c5]; [c6; c7]). Every
simplex in ([c0; c1]; [c2; c3]) is also in ([c4; c5]; [c6; c7]) and has a largest empty
N(c

0
0; c

0
1) that satis�es c

0
0 2 [c0; c1] and c00 2 [c4; c5], and also c01 2 [c2; c3] and

c01 2 [c6; c7]. Therefore [c0; c1] � [c4; c5] and [c2; c3] � [c6; c7].

Lemmas 3.1, 3.2, and 3.3 are illustrated in Figure 3.10 by means of the 2D
graphs (14 ;

1
2), (�

1
4 ;

1
4), (0;�

1
4), and (0;� 1

2). By Lemma 3.1, (14 ;
1
2) =

([14 ; 1]; [
1
2 ; 1]) (say G1), and (� 1

4 ;
1
4) = ([� 1

4 ; 1]; [
1
4 ; 1]) (G2). Lemma 3.2

tells (0;� 1
4) = ([0; 1]; [� 1

4 ; 1]) [([� 1
4 ; 1]; [0; 1]) (G3), and (0;� 1

2) =

3.5 Complexities 33

(c ,c)0 1

(c ,|c |)1 0

Figure 3.9. Shaded area denotes neighborhoods that contain N(c0; c1), c1 2
[�1; 0].

([0; 1]; [� 1
2 ; 1]) [([� 1

2 ; 1]; [0; 1]) (G4). According to Lemma 3.3, G1 � G2
� G3 � G4, which is illustrated in the �gure.

The preceding lemmas can be used to derive necessary time complexities for
construction of -Graphs. By Lemma 3.1 and 3.2, any (c4; c5) can be expressed
in terms of graphs of the form ([c0; c1]; [c2; c3]), so that only the latter type of
graphs need to be considered. Time and storage complexities are directly related
to the size of the graph.

The size of a -Graph (V; S) is the number of simplices in S, say M . So
in 2D M = Ne and in 3D M = Nt. For a �xed dimension k, the amount of
space to store a simplex is constant, so the total storage complexity is �(M).
Naturally, the necessary time for construction by any algorithm is at least linear
in M :
(M). For an arbitrary -Graph M is given by the following lemma:

Lemma 3.4 Let V be a set of vertices in kD. The number of (k � 1)-simplices
in an arbitrary ([c0; c1]; [c2; c3]) is bounded by O(Nk

v).

Proof. The upper bound is equal to the number of (k � 1)-simplices in the
complete -Graph, which is O(

�
Nv

k

�
) = O(Nk

v).

In the restricted, but still large, class of cases that [c0; c1] � [�1; 1] and
[c2; c3] � [0; 1], ([c0; c1]; [c2; c3]) consists of much less simplices than stated by
Lemma 3.4, provided that the set of vertices is non-degenerate, i.e. that no empty
ball touches k + 2 vertices.

Lemma 3.5 Let V be a non-degenerate set of vertices in kD, and let [c0; c1] �
[�1; 1] and [c2; c3] � [0; 1]. The number of (k� 1)-simplices in ([c0; c1]; [c2; c3])

is O(N
dk=2e
v =dk=2e!).

34 The -Neighborhood Graph

γ(1/4,1/2) γ(−1/4,1/4)

γ(0,−1/4) γ(0,−1/2)

Figure 3.10. Four -Graphs on the same set of 30 vertices. (14 ;
1
2) � (� 1

4 ;
1
4) �

(0;� 1
4) � (0;� 1

2).

Proof. We know by Lemma 3.3 that ([c0; c1]; [c2; c3]) � ([�1; 1]; [0; 1]), under
the stated conditions. Because V is non-degenerate, ([�1; 1]; [0; 1]) = DT. The
number of (k�1)-simplices in the Delaunay Triangulation is of the same order as
the number of k-simplices in the Delaunay Triangulation, which is equal to the
number of vertices in the Voronoi Diagram, see Section 2.2.9. The maximum

number of vertices in a kD Voronoi Diagram is �(N
dk=2e
v =dk=2e!) [Klee, 80].

Since ([c0; c1]; [c2; c3]) � DT, this is an upper bound for the size of this -
Graph.

Theorem 3.1 Let V be a set of vertices in kD. Any ([c0; c1]; [c2; c3]) of V can

3.5 Complexities 35

be constructed in O(Nk+1
v) time.

Proof. A brute force algorithm takes all the
�
Nv

k

�
possible combinations of k

vertices, considers all the Nv � k other vertices to determine the largest empty
N(c

0
0; c

0
1) in constant time per vertex, and tests whether c00 2 [c0; c1] and c01 2

[c2; c3]. This amounts to O
�
(Nv � k)

�
Nv

k

��
= O(Nk+1

v) time.

If [c0; c1] � [�1; 1] and [c2; c3] � [0; 1] and the set of vertices is non-
degenerate, ([c0; c1]; [c2; c3]) can be constructed much more eÆciently than
stated by Theorem 3.1.

Theorem 3.2 Let V be a non-degenerate set of vertices in kD, and let [c0; c1] �
[�1; 1] and [c2; c3] � [0; 1]. Then ([c0; c1]; [c2; c3]) can be computed in a time

complexity of O(N
dk=2e
v).

Proof. We know by Lemma 3.3 that ([c0; c1]; [c2; c3]) � ([�1; 1]; [0; 1]), under
the stated conditions. Because V is non-degenerate, ([�1; 1]; [0; 1]) = DT.
After constructing the Delaunay Triangulation, the largest empty N(c

0
0; c

0
1) of

each (k � 1)-simplex can be determined in constant time. The test whether
c00 2 [c0; c1], c

0
1 2 [c2; c3] also takes constant time per (k � 1)-simplex. The total

time complexity is therefore bounded by the time to construct the Delaunay

Triangulation, which is O(N
dk=2e
v), see Section 2.2.9.

For the 2D Delaunay Triangulation, O(Nv logNv) is optimal. Whether this
is optimal for the -Graph depends on the parameter values. It is clearly not

optimal when the -Graph reduces to the empty graph. The O(N
dk=2e
v) time

only applies to non-degenerate cases. For example, in the degenerate case that
all vertices lie on an empty kD ball, the graph consists of

�
Nv

k

�
= �(Nk

v) simplices
which must all be generated. In that case any correct algorithm must run in

(Nk

v) time.
One may wonder if in an average case the -Graph can be constructed in

less time than given by the upper bounds in Theorems 3.1 and 3.2. This is true
under certain conditions:

Theorem 3.3 Let V be a non-degenerate set of vertices uniformly distributed
within a kD ball, and let [c0; c1] � [�1; 1] and [c2; c3] � [0; 1]. Then
([c0; c1]; [c2; c3]) can be constructed in O(Nv) expected time.

Proof. Under the stated conditions, ([c0; c1]; [c2; c3]) � DT. The Delaunay Tri-
angulation can be computed in �(Nv) expected time [Dwyer, 89] (which is opti-
mal), so that ([c0; c1]; [c2; c3]) can be constructed in O(Nv) expected time.

Again, whether O(Nv) is optimal depends on the values of the -parameters.

36 The -Neighborhood Graph

3.6 Concluding remarks

The -Graph describes the internal structure of a set of vertices, and is capable of
describing the external structure for well-chosen parameter values. The inclusion
hierarchy in 2D CP � NNG � EMST � RNG � GG � DT has been extended:
DT � ([�1; 1]; [c0; 1]), c0 � 0. The -Graph provides a general framework
for describing neighborhood graphs. It uni�es the Convex Hull, the Delaunay
Triangulation, and in 2D also the Gabriel Graph and the �c-Skeleton, into a
continuous spectrum ranging from the empty to the complete graph.

The neighborhood N(c0; c1) is only de�ned for c0; c1 2 [�1; 1], and jc0j �
jc1j. For k vertices in kD and speci�c parameters c0; c1, there can be two such
neighborhoods, which are mirror symmetric in the plane through the k vertices.
The parameters jc0j � jc1j could be used to completely specify the position of
the balls. For example, c0 speci�es `the left', and c1 `the right' sphere (left and
right properly de�ned with respect to the plane through the k vertices). In this
way one could control in which direction the larger ball must lie. However, there
is in general no need to specify a preference of direction.

There are several directions for further research. The most urgent is the de-
velopment of output-sensitive algorithms. We have seen that the -Graph can
be constructed eÆciently if it is a subgraph of the Delaunay Triangulation. Of
course for c1 < 0, the size of the (c0; c1)-Graph is O(N3

v), but an algorithm
having a time complexity that depends on the size of the output can probably
do better than O(N3

v) in most cases. Also for c1 > 0 an output-sensitive algo-
rithm can be pro�table, since the size of the (c0; c1)-Graph may be sub-linear
in Nv. Little is known from stochastic geometry about probabilistic proper-
ties of geometric graphs (some results are known about the Delaunay Trian-
gulation [Miles, 70], the Gabriel Graph, and the Relative Neighborhood Graph
[Devroye, 88]). Results on the expected number of edges in the -Graph may
lead to the development of eÆcient algorithms for the average case.

Another research suggestion is the generalization of -Graphs to sets of
weighted vertices. The idea behind weighted vertices is that a greater weight
has more inuence, e.g. in such a way that vertices are connected more eas-
ily. Stating the latter more formally, the condition to let vertices be neigh-
bors is less restrictive if their weight is greater. One way to model this is
as follows. Let wi 2 R; wi � 0 be the weight of vertex vi. The k vertices
vi0 ; : : : ; vik in kD are neighbors in the weighted (c0; c1) if no vj lies inside
N(c0wi0 : : : wik=wj ; c1wi0 : : : wik=wj), for all j 6= i0; : : : ; ik.

Another generalization is the concept of n--Graphs, analogous to other ge-
ometric graphs, like the n-Relative Neighborhood Graph [Su and Chang, 91].
The n--Graph in kD joins k vertices if the associated -Neighborhood contains
less than n vertices. For both generalizations, the research issues involved are
the development of eÆcient construction algorithms and the examination of ap-
plications. For the weighted -Graph another research topic is the development
of other weighting schemes.

4

Boundary construction

This chapter introduces the problem of constructing a closed object boundary from
a set of scattered points, i.e. sets in which no structural relation between the points
is known. It is demonstrated that geometric graphs, describing geometrical relations
between the points, are useful tools for the construction problem. An overview of
existing solutions and their shortcomings is given.

4.1 Introduction

From this chapter on, I shall consider 2D and 3D objects only. In several ap-
plications in geometric modeling one needs an unambiguous geometric model,
but the initial data is often a set of vertices in 2D or 3D. One such application
is product design, where the points are synthetic, and another application is
object reconstruction, where the points are measured from the boundary of an
existing object. The boundary constructed from the set of points can then for
example be used for the initial design of an artifact, for numerical analysis, or
for graphical display.

Points on the boundary of an object can be obtained in a variety of ways. If a
set of points from a 2D object is given in a sequential order along the boundary,
for example obtained by tracing the boundary, the points form a contour chain
representing the boundary curve. If a set of points from a 3D object is given by
a pile of contours, for example obtained from parallel object cross sections, the
points on pairs of consecutive contours can be joined so as to generate ribbons
of triangles which in turn form a closed boundary surface. However, there are
numerous data sources that do not yield such a clear structural relation between

37

38 Boundary construction

the points in the data set:

� A typical laser range system measures 3D points on the surface of an ob-
ject by emitting a laser beam at certain x; y-coordinates and inferring the
corresponding z-coordinates [Rioux and Cournoyer, 88]. Parts of the surface
can be hidden and become visible only after rotating the object or moving
around it, because of shadowing by self-occlusion [Corby and Mundy, 90]. A
horizontal scan of points will thus generally not yield points that are succes-
sively adjacent on the surface. So, the order in which the points are acquired
provides no adjacency relation.
� 3D coordinates of boundary points can be computed from stereographic im-
ages, for example X-ray images, or from a sequence of images of a moving
object [Shirai, 87]. In both cases the set of calculated coordinates generally
provides no topological relation between the points.

� Image processing techniques for low level computer vision can extract feature
data like object corners from images [Haralick and Shapiro, 92], which can be
converted into 2D coordinates. However, information such as the topological
relation between the points are not obtained by this low level processing.

If there is no structural relation between the points, or no such information is
available because the data source is not known, or if a single boundary construc-
tion method is to be used for data from di�erent sources, no structural relation
between the points may be assumed. The only a priori knowledge is that they
lie on the boundary of an object.

4.2 Statement of the problem

The problem stated so far, \construct an object boundary given a set of bound-
ary points", is ill-stated. To get a better statement we have to make some
restrictions. First of all we restrict the constructed object to have no holes. So,
a 2D object must be bounded by a single contour, it has no inner contour; the
boundary must be topologically equivalent to a circle. A 3D object must be
bounded by a single surface and may not have through-passages (like a torus);
the boundary must be topologically equivalent to a sphere. Furthermore, we
restrict the boundary to be piecewise linear. So, a 2D boundary must consist of
line segments and a 3D boundary of at polygons. Since a triangle is the only
n-gon through n vertices in 3D that is guaranteed to be at, the class of 3D
boundaries is further restricted to consist of triangles.

The 2D boundary construction problem is formally stated as follows:

Boundary Construction 2D Let V be a set of vertices in 2D. Find a simple
polygon through all vertices.

By de�nition, a simple polygon is topologically equivalent to a circle, and
therefore a valid boundary of an object.

Given a graph (V;E), a simple polygon through all vertices and consisting of
edges from E is equivalent to a Hamilton cycle, see page 10. I will occasionally
call a Hamilton cycle a Hamilton polygon.

4.2 Statement of the problem 39

The 3D boundary construction problem is formally stated as follows:

Boundary Construction 3D Let V be a set of vertices in 3D. Find a simple
closed polyhedron of triangular faces through all vertices.

By de�nition, a simple polyhedron is topologically equivalent to a sphere,
and thus a valid object boundary. Given a hyper-graph (V; T) with T a set of
triangles, I will call a simple polyhedron through all vertices and consisting of
faces from T a Hamilton polyhedron. Note that this is not a Hamilton cycle of
edges in 3D.

The boundary construction problems are clearly under-constrained, so that
a solution is not unique. Indeed, a set of vertices is an ambiguous boundary
representation. Some criterion is needed to select the boundary that is consid-
ered the best among all solutions. However, there is no known algorithm that
generates all solutions eÆciently.

A brute force algorithm for 2D, where a boundary must consist of Nv edges,
takes all combinations of Nv edges out of all

�
Nv

2

�
possible edges and tests

whether each of the combinations is a simple polygon through all vertices. This
gives a time complexity of

�

 ��Nv

2

�
Nv

�!
;

which is at least
(NNv
v). In 3D, where a boundary must consist of 2Nv � 4

triangles (see page 11), the analogous algorithm gives a time complexity of

�

 � �
Nv

3

�
2Nv � 4

�!
;

which is at least
(N5Nv
v).

Such brute force approaches are clearly infeasible. It is logical to exploit
some geometric relation between the vertices. In particular we can construct a
geometric graph on the set of vertices and take advantage of the incorporated
geometric property. As a �rst try one can think of a shortest distance property, as
in the Nearest Neighbors Graph. Many edges in the Nearest Neighbors Graph
can be part of a valid boundary, but the shortest distance does not always
suitably correspond with the metric on the object boundary, speci�cally at highly
curved parts. As a result, nearest neighbors need not be consecutive points on
the boundary. This is illustrated in Figure 4.1.

One can also think of other geometric graphs such as the Convex Hull, giving
a rough approximation of a boundary, or the ubiquitous Delaunay Triangulation.
An advantage of the Delaunay Triangulation is that it is a connected graph that
contains not as few joins as the Euclidean Minimum Spanning Tree, and also
not as many as the complete graph. In fact, it contains the maximum number of
non-crossing (k�1)-simplices. However, also a brute force search in the Delaunay
Triangulation for a collection of (k� 1)-simplices that forms a valid boundary is
not feasible. After all, a Delaunay Triangulation in 2D consists of 3Nv�6 edges,

40 Boundary construction

Figure 4.1. Nearest neighbors need not be consecutive along the boundary.

giving a time complexity of �(
�
3Nv�6
Nv

�
) which is
(3Nv). In 3D the maximum

number of triangles in the Delaunay Triangulation is �(N2
v), giving a worst case

complexity of �(
�

N2

v

2Nv�4

�
) which is
(N3Nv

v).
All the brute force approaches described require exponential time. In order

to achieve a polynomial time complexity some heuristic is used that gives a single
boundary. The heuristic must be chosen so as to yield a boundary that is consid-
ered a likely boundary for the given set of vertices, among all possible solutions.
Such heuristic approaches and qualitative descriptions of the visual environment
receive growing interest in the computer vision community [QuaVis, 90].

4.3 Overview of boundary construction methods

In this section I will give an overview of existing methods to �nd a solution to
the boundary construction problems, as stated on pages 38 and 39.

4.3.1 Triangulation growth

Several methods expand some initial triangulation until all vertices are included
in the boundary polyhedron. [Boissonnat, 82] assumes that the object surface
normal and the Gaussian curvature at each vertex is known. The set of vertices is
partitioned into subsets of vertices having the same sign of Gaussian curvature.
Each subset is triangulated separately using the mapping of a vertex vi onto
the so-called Gauss sphere. The image of the vertex is the point v0i on the unit
sphere pointed to by the unit surface normal after translation to the origin.
An intermediate triangulation (initially a single edge) is grown by considering
an edge vivj of the boundary polygon of the triangulation. The vertices in
the vicinity of the edge and not yet in the triangulation are mapped onto the

4.3 Overview of boundary construction methods 41

Gaussian sphere, and the Convex Hull of the image points is constructed. The
Convex Hull triangle v0iv

0
jv
0
k de�nes a new triangle vivjvk.

[Boissonnat, 84a] does not partition the vertices into subsets of equal sign
of the Gaussian curvature. The vertices in the vicinity of the edge are now
projected onto a tangent plane. The vertex that sees the edge under the largest
angle is taken to create a new triangle. Both algorithms have a time complexity
of �(Nv logNv).

[Choi et al., 88] assume that there is a viewpoint from which all vertices on
the original object surface are visible. Surfaces not satisfying the assumption
must be split (apparently manually) into parts that do satisfy the condition, so
that the original object surface must be known in the �rst place. The subsets
of vertices are projected onto a sphere and triangulated such that the mini-
mum angle of all triangles is maximized, which results e�ectively in a Delaunay
Triangulation on the sphere. The time complexity is O(N2

v).
A drawback of all three methods is that additional data (surface normal

and Gaussian curvature), or additional information (a viewpoint from where all
vertices on the surface are visible), must be known.

4.3.2 Minimal area polyhedron

[O'Rourke, 81] proposes the polyhedron of minimal surface area as the most
natural polyhedral boundary of a set of vertices. An argument for this is that
many physical surfaces strive for a situation of minimal tension. Since the tension
over the surface is proportional to its area, the object will adopt a shape with
minimal surface area.

A heuristic algorithm is presented by [O'Rourke, 81], that starts with the
Convex Hull, which is the minimal area polyhedron if all vertices lie on the
Convex Hull. The internal vertices with the smallest value forX

(area new triangles)=(area nearest triangle)

are added to the boundary one at a time, where the `nearest triangle' is the
face in the current polyhedron that is closest to that internal vertex, and the
`new triangles' are the faces that must be created in order to include that vertex
into the new polyhedron. Each time a vertex is included, all pairs of adjacent
triangles vivjvk and vjvkvl will be considered, and ipped into vivjvl and vivkvl
if that decreases the surface area.

No proper time complexity analysis is given, but assuming a constant number
of ips and �(Nv) vertices interior to the Convex Hull, the average case time
complexity would give O(N2

v).
This heuristic algorithm does not guarantee a surface within a �xed error

fraction of the minimal area. Moreover, as shown by [Boissonnat, 84a] the min-
imal area polyhedron can be an unnatural boundary.

42 Boundary construction

Figure 4.2. Example where constriction of the Delaunay Triangulation will get
locked.

4.3.3 Minimal area change constriction

[Boissonnat, 84b] takes the Delaunay Triangulation and starts with the bound-
ary of it, i.e. the Convex Hull. In 2D, edges are repeatedly deleted from the
intermediate boundary, under the condition that the boundary remains a simple
polygon. When a boundary edge vivj is deleted, the adjacent triangle vivjvk
is removed with it, and the inner vertex vk becomes a part of the new bound-
ary, see Figure 4.2. This is repeated until all vertices are incorporated in the
boundary. A similar situation holds in 3D if one triangle of a tetrahedron lies
on the intermediate boundary. But also two triangles of a tetrahedron can lie
on the boundary. When both triangles are deleted, the adjacent tetrahedron is
removed with it, but no new vertices are included in the boundary, since all four
tetrahedron vertices were already on the boundary.

In an attempt to minimize the modi�cation of the current boundary, the
boundary edge or triangle(s) with the smallest value ofP

(area interior faces)�
P
(area boundary faces)P

(area all faces)
(4.1)

is deleted, where in 2D, `face area' means the length of the edge. This expression
yields a small value when the boundary face is small, relative to the inner faces.

Other criteria are possible. For example the maximum distance between faces
and the associated part of the circumscribed circle of the boundary triangle or the
circumscribed sphere of the boundary tetrahedron [Boissonnat, 84a]. However,
this measure is not relative to the size of the triangle or tetrahedron.

The time complexities of this algorithm are O(Nv logNv) in 2D and
O(N2

v logNv) in 3D.
A drawback of this algorithm is that the Delaunay Triangulation constric-

tion process can get locked, as shown in Figure 4.2. After removing the attest
simplices, no more simplices can be deleted without yielding an invalid bound-
ary. The inner-most vertex can then no longer be included into the boundary,
although there exists a closed boundary through all vertices, i.e. a Hamilton

4.4 Other work 43

polygon, in the Delaunay Triangulation. There also exist Delaunay Triangula-
tions with no Hamilton polygon at all. Both problems are solved in Chapter 5.

4.3.4 Shortest Voronoi Skeleton

Also [O'Rourke et al., 87] construct a simple polygon in the Delaunay Triangu-
lation. Since the geometrically combinatorial dual of any triangulated simple
polygon is a tree, the constructed polygon corresponds to a tree in the dual
Voronoi Diagram, called Voronoi tree or Voronoi Skeleton. They argue that a
natural boundary polygon has a short Voronoi tree, which acts as a skeleton or
medial axis. Therefore the minimal length tree in the Voronoi Diagram that
corresponds to a dual Hamilton polygon must be found. This idea can also be
used in 3D, but in both 2D and 3D the method seems to work properly only
for objects with a clear skeleton. Especially in 3D the Voronoi Skeleton is likely
to twist a lot in order to reach all Voronoi vertices (or dual tetrahedra), which
does not naturally correspond to a skeleton and will give unexpected results.
Examples are given in Section 5.6. Note also that the Voronoi vertices, and thus
the vertices of the skeleton, need not lie inside the object.

It is not just the shortest tree in the Voronoi Diagram that must be found,
but the shortest one that corresponds to a dual Hamilton polygon. The only
known algorithm seems to be a trial-and-error algorithm that tries all Voronoi
vertices as seed for a tree growth algorithm, and records the shortest tree. This
leads to a worst-case time complexity of O(N3

v) in 2D, and O(N4
v) in 3D.

4.4 Other work

Many other Computational Morphology tasks are related to, but di�erent from,
�nding a closed boundary through all given points. Some are mentioned in this
section.

Clustering

Much work has been done on �nding a boundary of a set of points in the plane
which generally does not pass through all points. In [Medek, 81], each point has
an associated disc touching its nearest neighbor; the union of all discs de�nes
clusters of points. Clustering is also done by the �-Hull (Section 2.2.10).

[Ahuja, 82] performs clustering by grouping Voronoi cells (Section 2.2.9) hav-
ing similar geometrical properties.

Contour reconstruction from rays

A unique planar contour can be reconstructed from rays [Alevizos et al., 87].
Rays are semi-in�nite curves originating at vertices on the contour, and are
supposed not to intersect the object. They represent for example the direction
from which the points are seen, or the path of a robot arm that has sensed the
point. The unique solution can be found in O(Nv logNv) time.

44 Boundary construction

Contour pile

As mentioned in the introduction of this chapter, a boundary can be constructed
from a pile of (often parallel) contours by joining vertices on adjacent contours so
as to form triangles. [Keppel, 75] generates the polyhedron of maximal volume.
[Fuchs et al., 77] construct the polyhedron of minimal surface area. In contrast
to [O'Rourke, 81], their algorithm is non-heuristic due to the knowledge that
the vertices lie on contours. A volumetric approach based on the Delaunay
Triangulation is presented by [Boissonnat, 88]. There is still research going on
to make methods more general, for example in order to handle a di�erent number
of contours in adjacent section planes [Ekoule et al., 91].

Mathematical Morphology

The Computational Morphology task that we are interested in here should not
be confused with Mathematical Morphology. In Mathematical Morphology ob-
jects are considered a collection of subsets of the embedding space (mostly R2

or Z2). A lattice and a Boolean algebra are de�ned on the set of all subsets
of the embedding space. Morphological operations are de�ned in terms of in-
clusion, union, intersection, and complement, based on logical relations between
neighborly set elements, rather than arithmetic ones. Typical operations are
shrink operations like erosion and thinning, expand operations like dilation and
thickening, and combinations of these like opening and closing [Serra, 86].

It is technically possible to de�ne for example the Delaunay Triangulation
constriction operation as a Mathematical Morphology operation [Veltkamp, 89a],
but that is rather arti�cial because the `vertex objects' are isolated points in the
embedding space.

4.5 Concluding remarks

The boundary construction methods mentioned in Section 4.3 can be catego-
rized into volume-based and surface-based methods. The volume-based ap-
proaches are the Delaunay Triangulation constriction and the Voronoi Skele-
ton algorithms, which are based on an internal structure on the vertices. The
triangulation growth and the minimal polyhedron method are surface-based al-
gorithms, exploiting an external structure on the vertices.

The advantage of volume-based approaches over surface-based ones is that
they are potentially more powerful because the internal structure provides more
information than an external structure, and often contains the external structure
as well.

5

Boundary from the -Graph

This chapter presents a boundary construction method based on the -Graph. The
method is a constriction procedure of the -Graph exploiting the inherent geometric
information. The weaknesses of other methods are met by the exibility of the
-Graph in describing the internal structure of a set of vertices.

5.1 Introduction

The goal of this chapter is to develop a boundary construction algorithm that
gets round the weaknesses of the methods described in Section 4.3. As a starting
point we take the ([�1; 1]; [0; 1]) and assume that the set of vertices is non-
degenerate, i.e. no k+2 vertices lie on an empty ball, so that there are no crossing
(k� 1)-simplices and ([�1; 1]; [0; 1]) = DT. This graph describes some internal
structure of the set of vertices, is connected and contains not as few joins as the
Euclidean Minimum Spanning Tree, but not as many as the complete graph. As
a consequence, no additional data is needed for the construction algorithm, as
in the triangulation grow methods in Section 4.3.1.

Let the boundary of a 2D graph be a simple polygon of edges in the graph
that encloses all vertices and all other edges, and the boundary of a 3D graph
a simple closed polyhedron of triangles in the graph that encloses all vertices
and all other triangles. An arbitrary graph need not have a boundary, but for
example the boundary of any ([�1; 1]; [c0; 1]) is the Convex Hull. Constricting
the boundary of a graph is the process of deleting a boundary face from the
graph, such that a boundary of the new graph is properly de�ned. A -Graph
from which faces are deleted is not a -Graph anymore, but is called a pruned
-Graph.

45

46 Boundary from the -Graph

R

v1

R

v
2

v3

v
1

v
2

v
3

Figure 5.1. Left: -indicator > 0. Right: -indicator < 0.

In order to �nd the boundary of a set of vertices, the ([�1; 1]; [0; 1]) is con-
stricted on the basis of the geometric information incorporated in the graph, as
will be described in Sections 5.2 and 5.3. Situations where the constriction algo-
rithm gets locked or the Delaunay Triangulation contains no Hamilton polygon
or polyhedron is dealt with in Section 5.4. The time complexity of the con-
striction algorithm is analyzed in Section 5.5. In Section 5.6 the results will be
compared with two other methods.

5.2 Boundary polygon

This section is concerned with the construction of a boundary polygon of a set
of vertices in 2D by constricting the ([�1; 1]; [0; 1]) when the set of vertices
is non-degenerate, in which case ([�1; 1]; [0; 1]) = DT. Deletion of an edge of
a boundary of a (pruned) -Graph must keep the boundary a simple polygon.
Thus, deletion is only allowed if the vertex opposite to the edge is not already in
the current boundary. A boundary edge vivj that satis�es this condition is called
removable (with respect to vk). If three edges in the (pruned) ([�1; 1]; [0; 1])
implicitly form a triangle, and one of the edges is a boundary edge, then that
triangle is called a boundary triangle.

The selection of the next removable edge vivj to be deleted is based on the
observation that the interior vertex vk of the boundary triangle vivjvk that has
the largest angle \(vivkvj) has the largest possibility to be seen or sensed from
outside the boundary. Additionally, the change of shape of the boundary is
small, relative to the size of the triangle, but in another way than de�ned in
Section 4.3.3.

To see how the geometric properties of the ([�1; 1]; [0; 1]) can be used in
this selection, observe that each edge has two -values corresponding with the
Delaunay neighborhood. One -value of a boundary edge vivj is associated with
the empty disc passing through the vertices of the boundary triangle vivjvk.
The radius of the disc through vi; vj ; vk is denoted by R(vi; vj ; vk), and is equal
to r(vi; vj)=(1� jc0j) for some c0 2 [�1; 1]. This -value is used in the following
de�nition.

5.2 Boundary polygon 47

Figure 5.2. Boundary construction example in 2D. Top left: 77 vertices. Top
right: the corresponding ([�1; 1]; [0; 1]). Bottom left: ([�1; 1]; [0; 1]) with the
constructed boundary. Bottom right: the constructed boundary.

Definition 5.1 (-indicator) Let vivj be an edge of an intermediate bound-
ary, let vivk and vjvk be edges in the (pruned) -Graph, and let c0 be de�ned by
R(vi; vj ; vk) = r(vi; vj)=(1 � jc0j). The -indicator of vivj with respect to vk is
jc0j if the center of the circle through vi; vj ; vk lies at the same side of vivj as
vk; is �jc0j if the center lies at the other side; and is zero if c0 = 0.

48 Boundary from the -Graph

Figure 5.3. Boundary construction example in 2D. Top left: 37 vertices. Top
right: the corresponding ([�1; 1]; [0; 1]). Bottom left: ([�1; 1]; [0; 1]) with the
constructed boundary. Bottom right: the constructed boundary.

The magnitude of the -indicator is calculated during construction of the
-Graph, and can be stored in it. The sign of the -indicator is positive if vi,
vj , and vk have the same orientation as vi, vj and the circle center C, that is, if

sign([vi � vk; vj � vk]) = sign([vi � C; vj � C]); (5.1)

5.3 Boundary polyhedron 49

where `[]' denotes the determinant.
The more negative the -indicator, the closer vk lies to vivj , and the larger

is angle \(vi; vk; vj), see Figure 5.1. Note that the -indicator is independent
of the size of the triangle. The selection rule based on the -indicator is the
following:

Selection rule Delete the removable boundary edge that has the smallest
-indicator.

This selection criterion combines a local measure (the -indicator) and global
information (the smallest value), and is orientation and scale independent.

Let us now investigate the exact relation between the -indicator ci0
and the angle \(vi; vk; vj). According to the sine rule, sin(\(vi; vk; vj)) =
r(vi; vj)=R(vi; vj ; vk). By de�nition, r(vi; vj)=R(vi; vj ; vk) = 1 � jci0j. If
ci0 � 0, then 1 � ci0 = r(vi; vj)=R(vi; vj ; vk), and if ci0 � 0, then 1 � ci0 =
2 � r(vi; vj)=R(vi; vj ; vk). So, if ci0 � 0, then \(vi; vk; vj) increases when
r(vi; vj)=R(vi; vj ; vk) increases; if ci0 � 0, then \(vi; vk; vj) increases when
2 � r(vi; vj)=R(vi; vj ; vk) increases. The largest value of 1 � ci0 is obtained for
the smallest value of ci0, leading to the selection criterion stated above.

Selection and deletion of a boundary edge is repeated until all vertices are
part of the boundary polygon. The time complexity of the entire constriction
algorithm depends on the way one keeps track of the removable boundary edges
and their value of the -indicator. Implementational and complexity issues are
discussed in Section 5.5.

Figure 5.2 shows the result of the constriction algorithm on a set of vertices
of a chalice, and Figure 5.3 shows the result for a set of vertices of a face pro�le.

5.3 Boundary polyhedron

This section is concerned with the construction of a boundary polyhedron by con-
stricting the ([�1; 1]; [0; 1]) when the set of vertices in 3D is non-degenerate,
so that the triangles in the graph are non-crossing. If four triangles implicitly
form a tetrahedron, and one of the triangles is a boundary triangle, the tetra-
hedron is called a boundary tetrahedron. If Nv > 4, a boundary tetrahedron
can have one, two, or three boundary triangles. Deletion of triangles from the
graph should keep the boundary polyhedron simple. Thus, deletion of three
boundary triangles of a boundary tetrahedron is never allowed, deletion of two
boundary triangles vivjvk, vjvkv` is only allowed if the edge viv` is not already
in the current boundary (in which case they are called removable with respect
to viv`), and deletion of one boundary triangle vivjvk is only allowed if the op-
posite vertex v` is not already in the current boundary (in which case it is called
removable with respect to v`).

Let us �rst consider tetrahedra with exactly one boundary triangle. Anal-
ogous to the 2D case, the selection of the next removable triangle vivjvk to be
deleted is based on the observation that the opposite vertex v` of the tetrahe-
dron vivjvkv` that has the largest solid angle ' has the largest probability to

50 Boundary from the -Graph

v
i

v
j

v
k

v
l

v
l

v
lv

l

Figure 5.4. The solid angle at v` in the left column is larger than in the right column.
Top row: �xed triangle vivjvk. Bottom row: �xed -indicator.

be sensed from outside the boundary. Additionally, the change of shape of the
boundary is then small, relative to the size of the tetrahedron, but in another
way than de�ned in Section 4.3.3.

Each triangle in the (pruned) ([�1; 1]; [0; 1]) has a Delaunay neighborhood
consisting of two empty balls. Let triangle vi; vj ; vk have one ball that passes
through vi; vj ; vk; v`. The radius of this ball is denoted by R(vi; vj ; vk; v`). The
selection rule is again based on the notion of -indicator:

Definition 5.2 (-indicator) Let vivjvk be a triangle of an intermediate
boundary, let vivjv`, vjvkv`, and vivkv` be triangles in the (pruned) -Graph,
and let c0 be de�ned by R(vi; vj ; vk; v`) = r(vi; vj ; vk)=(1�jc0j). The -indicator
of vivjvk with respect to v` is jc0j if the center of the sphere through vi; vj ; vk; v`
lies at the same side of vivjvk as v`; is �jc0j if the center lies at the other side;
and is zero if c0 = 0.

Like in 2D, the magnitude of the -indicator is calculated during construction
of the -Graph, and can be stored in it. The sign of the -indicator is positive if
vi, vj , vk, and v` have the same orientation as vi, vj , vk, and the sphere center
C, that is, if

sign([vi � v`; vj � v`; vk � v`]) = sign([vi � C; vj � C; vk � C]); (5.2)

where again `[]' denotes the determinant.
There is no `3D sine rule' relating the solid angle ' at v` to R(vi; vj ; vk; v`)

and r(vi; vj ; vk). However, ' does depend on how close v` lies to vivjvk rela-
tive to the size of the tetrahedron, and on the shape of vivjvk . Observe that
r(vi; vj ; vk)=R(vi; vj ; vk; v`) is independent of the size of the tetrahedron. As in

5.3 Boundary polyhedron 51

Figure 5.5. Synthetic candlestick object. Top left: 481 vertices in 3D. Top right:
Convex Hull, consisting of 73 vertices and 142 triangles. Bottom row: both bound-
aries consist of 481 vertices and 958 triangles.

2D, if the -indicator ci0 � 0, then r(vi; vj ; vk)=R(vi; vj ; vk; v`) = 1 � ci0, and if
ci0 � 0, then 2 � r(vi; vj ; vk)=R(vi; vj ; vk; v`) = 1 � ci0, provided that vivjvk is
�xed. So, the larger 1� ci0, the larger ', i.e. the wider the solid angle at v`. On
the other hand, if 1� ci0 is �xed and the shape of vivjvk varies, then ' increases
when the area A of vivjvk increases, see Figure 5.4. Since A=R2 is independent
of the size of the tetrahedron, it seems obvious to use a selection criterion based
on both 1 � ci0 and A=R2. However, it appears that using 1 � ci0 alone gives
better results. Indeed, a typical Convex Hull contains many triangles of small
area (see for example Figures 5.5 and 5.6), and they should be deleted to obtain

52 Boundary from the -Graph

a good boundary polyhedron.
Let us now consider a tetrahedron with exactly two boundary triangles. All

four vertices now lie on the boundary, so deletion of the two triangles does not
add a new vertex to the boundary. However, it can result in an extra boundary
tetrahedron, and moreover, deletion of the tetrahedron gives the two vertices
opposite to the boundary triangles `more air', enlarging the probability that they
are sensed from these directions. Because the solid angles at the two vertices
bound two non-overlapping parts of space, it is obvious to sum the values 1� ci0
of both boundary triangles in the selection rule. Since a large value of 1 � ci0
is equivalent to a small value of ci0, the selection rule that captures both the
tetrahedra with exactly one and with two boundary triangles then becomes:

Selection rule Delete those removable triangles (of a single tetrahedron)
that have the smallest sum of -indicators.

Like the selection rule in 2D, this selection criterion combines a local measure
(the -indicator) and global information (the smallest value), and is orientation
and scale independent.

Results of the constriction algorithm are shown in Figures 5.5 and 5.6. Fig-
ure 5.5 shows how a synthetic set of 3D vertices modeling a candlestick is pro-
cessed. Facets that look rectangular are actually two triangles. The bottom
left picture shows the result of the constriction algorithm when stopped as soon
as all points lie on the boundary. In this case, there are still removable trian-
gles. Especially for such arti�cial objects there is no general rule telling how
long to continue the same constriction procedure when already all vertices lie
on the boundary. That decision is typically made interactively by the user. The
right picture shows the resulting object after removing just enough triangles.
Figure 5.6 illustrates the constriction process performed on points from a laser-
range data set of the surface of a mask, measured by [Rioux and Cournoyer, 88].
In this example the algorithm was stopped as soon as all vertices were incorpo-
rated in the boundary.

5.4 Hamiltonicity

As shown in Section 4.3.3, the constriction process may stop without �nding a
Hamilton polygon or polyhedron. Moreover, not every graph contains one. Re-
sults from graph theory on Hamiltonicity apply to Hamilton cycles, not Hamilton
polyhedra. For example, graph theory surveys the conditions a graph should sat-
isfy to contain a Hamilton cycle, or how eÆciently a Hamilton cycle can be found.
A very general result is that a graph contains a Hamilton cycle if every vertex has
at least Nv=2 neighbors [Dirac, 72]. More strict conditions often apply to pla-
nar graphs. For example, every four-connected (and thus �ve-connected) planar
graph is Hamiltonian [Tutte, 77]. A special planar graph is a planar triangula-
tion, which is at least two-connected and at most �ve-connected. A particular
planar triangulation is the 2D Delaunay Triangulation, so that we conclude
that every four- and �ve-connected 2D Delaunay Triangulation is Hamiltonian.

5.4 Hamiltonicity 53

Figure 5.6. Mask reconstructed from laser-range data points. Top left: 1468 scat-
tered vertices. Top right: Convex Hull consisting of 255 vertices and 504 triangles.
Middle left: intermediate boundary, 1019 vertices and 2034 triangles. Middle right:
intermediate boundary, 1337 vertices and 2670 triangles. Bottom left: �nal bound-
ary, 1468 vertices and 2930 triangles. Bottom right: wire frame of the �nal boundary.

54 Boundary from the -Graph

Figure 5.7. Top left: a two-connected non-Hamiltonian Delaunay Triangulation.
Top right: the corresponding ([�1; 1]; [�0:1; 1]). Bottom left: ([�1; 1]; [�0:2; 1]).
Bottom right: ([�1; 1]; [�0:3; 1]). The three -Graphs show the Hamilton cycle
found by our constriction algorithm in fat lines, and the deleted edges in dashed
lines.

For a long time it has been unknown whether or not two- and three-connected
non-degenerate Delaunay Triangulations (and thus ([�1; 1]; [0; 1])'s) are always
Hamiltonian [O'Rourke, 86]. A two-connected counterexample was given by
[Dillencourt, 87], which is shown in Figure 5.7, and a three-connected one by
[Dillencourt, 89]. So, a 2D non-degenerate ([�1; 1]; [0; 1]) need not be Hamil-
tonian, and in any case, the constriction process can be unsuccessful. It seems
to be unknown whether there exist 3D non-degenerate Delaunay Triangulations,
or ([�1; 1]; [0; 1])'s, that do not contain a Hamilton polyhedron. However, also
in 3D the constriction procedure can get locked.

When varying c0 2 [�1; 0], ([�1; 1]; [c0; 1]) gives a whole spectrum of -
Graphs. For a c0 suÆciently smaller than c1 < 0, ([�1; 1]; [c0; 1]) contains more
(k � 1)-simplices than ([�1; 1]; [c1; 1]), implicitly forming more overlapping k-
simplices, see Figure 5.7 for k = 2. So, for a c0 suÆciently small, ([�1; 1]; [c0; 1])
is Hamiltonian. After all, ([�1; 1]; [�1; 1]) is the complete graph (except when
k + 1 vertices are linear dependent).

The ([�1; 1]; [c0; 1]), c0 2 [�1; 0), can be used for constriction in the fol-
lowing way. First of all, notice that the boundary of the ([�1; 1]; [c0; 1]) is the
Convex Hull. Now consider a 2D ([�1; 1]; [c0; 1]) and a boundary edge v1v2
as in Figure 5.8, with boundary triangles v1v2v3, v1v2v4, and v1v2v5. In this

5.4 Hamiltonicity 55

v1

v2

v4

v5

v3

Figure 5.8. Boundary edge in a 2D ([�1; 1]; [c0; 1]), c0 2 [�1; 0).

example, the -indicator with respect to v3 is smaller than those with respect to
v4 and v5. If v1v2 is selected for deletion because it has the smallest -indicator
of all removable boundary edges, the edges v2v4 and v2v5 must also be deleted
in order to let the pruned -Graph have a properly de�ned boundary. If v1v2 is
not removable with respect to v3 but is removable with respect to v4, and v1v2
is selected for deletion due to the -indicator with respect to v4, then v1v3 and
v2v5 must be deleted. In general, if boundary edge vivj is deleted due to the
-indicator with respect to vk, any edge crossing vivjvk must also be deleted.

A 3D ([�1; 1]; [c0; 1]), c0 2 [�1; 0), is constricted in the analogous way. For
a c0 small enough, the -Graph will contain more triangles than ([�1; 1]; [0; 1]),
which implicitly form overlapping tetrahedra. If a boundary triangle vivjvk is
removed due to the -indicator with respect to a vertex v`, any triangle crossing
vivjvkv` must also be removed. We see that any ([�1; 1]; [c0; 1]) can be used
for constriction. For a c0 small enough, the graph will be Hamiltonian, and the
process will not get locked.

There is no way of telling in advance for which value of c0 the graph
([�1; 1]; [c0; 1]) will be Hamiltonian, or constriction will not get stuck. It is pos-
sible though to start constriction of ([�1; 1]; [0; 1]) and adaptively add (k� 1)-
simplices of a ([�1; 1]; [c0; 1]), �1 � c0 < 0, when necessary. This adaptive
augmentation will generally be more eÆcient than constricting ([�1; 1]; [c0; 1])
from the start. On the other hand, the smallest -indicator of boundary faces in a
([�1; 1]; [c1; 1]) can be smaller than in a ([�1; 1]; [c0; 1]) for �1 � c1 < c0 < 0,
providing better choices for deletion. This is illustrated in Figure 5.7, where
some of the extra boundary triangles have larger angles at the interior vertex.
Indeed, constriction of ([�1; 1]; [�0:3; 1]) gives a di�erent Hamilton polygon
than ([�1; 1]; [�0:2; 1]) and ([�1; 1]; [�0:1; 1]), although ([�1; 1]; [�0:1; 1]) is
already Hamiltonian.

56 Boundary from the -Graph

Constrict ()
f graph Graph; // (pruned) -Graph

(k � 1)-simplex Face, NewFace; // 2D: edge; 3D: triangle
int Nbv ; // number of boundary vertices
heap Heap;

1. Construct--Graph (Graph);
2. Nbv = InitialBoundary (Graph, Heap);
3. while (Nbv < Nv && Heap != �)

f
4. Face = Root (Heap);
5. if (Removable (Face))

f
6. Nbv += Delete (Face, Graph);
7. for (each NewFace on the boundary)
8. if (Removable (NewFace)) Insert (NewFace, Heap);

g
g

9. ReportBoundary (Graph);
g

Algorithm 5.1. Constriction algorithm.

5.5 Implementation and complexity

The complexity of the constriction algorithm depends on the implementation,
and in particular on the data structures. In 2D the -Graph is edge-based, so the
edges are stored explicitly. The edges incident to a vertex are ordered around
that vertex. In 3D the -Graph is triangle-oriented and so the triangles are
stored explicitly. Edges are also stored explicitly, and the triangles incident to
an edge are ordered around that edge.

With these data structures, both triangles and edges can be addressed in con-
stant time, in particular to check whether they lie on an intermediate boundary.
Given a boundary face in a pruned ([�1; 1]; [0; 1]), the -indicator can be com-
puted in constant time. Given a boundary face in a pruned ([�1; 1]; [c0; 1]),
c0 < 0, the smallest -indicator can be calculated in O(m) time, where m is the
number of faces incident to the boundary face, which is O(Nv).

In order to keep track of the boundary faces and their -indicators, they are
stored in a heap structure sorted on increasing -indicator value. In 2D, the root
of the heap contains the boundary edge that has the smallest -indicator, in 3D
it contains the boundary triangles of a single tetrahedron that have the smallest
sum of -indicators. Fetching the boundary face and revalidating the heap takes
O(n logn) time for a heap of n elements. In order to keep the heap of size O(Nv)
in the case of a ([�1; 1]; [c0; 1]), c0 < 0, only the smallest -indicator or sum of
-indicators of each boundary face is stored, not the values of the overlapping
simplices.

5.5 Implementation and complexity 57

Having mentioned the basics, Algorithm 5.1 shows the constriction algorithm
in pseudo C-language code. The heap is initially �lled with the removable faces
on the Convex Hull and their -indicator value (line 2); the boundary vertices,
edges, and (in 3D) triangles are marked to lie on the boundary, to facilitate
the test whether a face is removable. As long as not all the vertices are on the
boundary and the heap is not empty (line 3), the face in the root of the heap is
taken (line 4), involving revalidating the heap. Although each face is removable
at the time it is inserted into the heap, the check in line 5 is necessary since a
face can have become unremovable due to deletion of other faces. If deletion is
allowed, then the face is deleted (line 6), involving the deletion of overlapping
faces in the case of a ([�1; 1]; [c0; 1]), c0 < 0, in order to get an unambiguous
boundary. If necessary, the new boundary vertex, edges, and triangles (in 3D),
are marked and Nbv is incremented when appropriate. Each new boundary face
(line 7) is inserted into the heap with its -indicator value, if its removal is
allowed (line 8). The �nal boundary can be extracted from the graph (line 9),
if desired.

Let us analyze the time complexity of the algorithm for �ve di�erent cases:
the worst case in 2D and 3D for both ([�1; 1]; [0; 1]) and ([�1; 1]; [c0; 1]), c0 <
0, and the expected case. Note that the while-loop is executed O(Nv) times in
2D to include all vertices into the boundary, but O(N2) times in 3D, because
boundary faces can be removed without adding vertices to the boundary. In
the expected case, only the ([�1; 1]; [0; 1]) is necessary. The results are listed
below, where for line 3 and 7 the number of iterations is given:

worst case exp. case
2D 3D 2D and 3D

line ([�1; 1][0; 1]) ([�1; 1][< 0; 1]) ([�1; 1][0; 1]) ([�1; 1][< 0; 1]) ([�1; 1][0; 1])
1 �(Nv logNv) O(N2

v
) O(N2

v
) O(N3

v
) O(Nv)

2 �(Nv logNv) O(N2
v
) O(Nv logNv) O(N2

v
) O(Nv logNv)

3 O(Nv)� O(Nv)� O(N2
v
)� O(N2

v
)� O(Nv)�

4 O(logNv) O(logNv) O(logNv) O(logNv) O(logNv)
5 �(1) �(1) �(1) �(1) �(1)
6 �(1) �(1) �(1) �(1) �(1)
7 �(1)� O(Nv)� �(1)� O(Nv)� �(1)�
8 O(logNv) O(logNv) O(logNv) O(logNv) O(logNv)
9 �(Nv) �(Nv) �(Nv) �(Nv) �(Nv)
tot O(Nv logNv) O(N2

v
logNv) O(N2

v
logNv) O(N3

v
logNv) O(Nv logNv)

All storage complexities are dominated by the size of the -Graph, which is
given by Lemmas 3.4 and 3.5.

For practical cases, the use of ([�1; 1]; [0; 1]) is predominant, resulting in
a worst-case time complexity of O(Nv logNv) for 2D and O(N2

v logNv) for 3D.
Note, however, that the latter complexity stems from the worst possible situ-
ation, i.e. the number of triangles in the -Graph is O(N2

v). In terms of the
number of triangles Nt, line 1 takes O(Nt logNt) (see Section 2.2.9), and the it-
eration over line 3 is performed O(Nt) times, resulting in a total of O(Nt logNt)
worst case time complexity.

58 Boundary from the -Graph

Figure 5.9. Left: set of vertices from [O'Rourke et al., 87]. Middle: shortest Voronoi
Skeleton result. Right: constriction result.

Algorithm 5.1 has been implemented in C. The constriction process takes
about four seconds on a Sun SparcStation 1+ for the mask data set of Figure 5.6.
The ([�1; 1]; [0; 1]) on that set of vertices consists of 18274 triangles, forming
8633 tetrahedra.

5.6 Comparison

Once we have the -Graph constriction algorithm, the minimal area change
constriction of the Delaunay Triangulation and the Voronoi Skeleton method
(see Section 4.3) are easily implemented, because both methods are based on
the Delaunay Triangulation, that is, the ([�1; 1]; [0; 1]). It turns out that in
2D all three methods often give the same result. A set of vertices that gives
di�erent results, taken from [O'Rourke et al., 87], is shown in Figure 5.9. We
see that if the original object is very curled, it is not likely that the vertices are
sensed from some distance of the object, and the -indicator provides no proper

Figure 5.10. Comparing three methods on a set of vertices from a bottle's surface.
Left: -indicator method. Middle: minimal area change method. Right: Voronoi
Skeleton method.

5.6 Comparison 59

Figure 5.11. Comparing three methods on the candlestick (left column) and mask
(right column) data set. Top: -indicator method. Middle: minimal area change
method. Bottom: Voronoi Skeleton method.

60 Boundary from the -Graph

heuristic. Conversely, if the original object does not have a clear skeleton, the
Voronoi Skeleton method uses the wrong heuristic. For all other example sets of
vertices from [O'Rourke et al., 87], the constriction algorithms give intuitively
expected boundaries.

In 3D the three methods give considerably di�erent results. The minimal
area change constriction is sometimes inclined to sculpture its way into the object
because the boundary triangles are deleted in the wrong order, see Figure 5.10
(middle). Even if the resulting boundary is reasonable, it is less smooth than
the constriction result based on the -indicator: see Figure 5.11, right column.

The shortest Voronoi Skeleton method is not suitable for many 3D objects,
because there often is no clear 3D object skeleton, or at least not one that
corresponds to a Voronoi Skeleton. Figures 5.10 and 5.11 show examples of this
phenomenon. Although all vertices lie on the resulting boundary, the body of
the object is not �lled properly.

The Voronoi Skeleton algorithm is much slower than the other two, because
the grow procedure is performed for each Voronoi vertex as a seed. The minimal
area change constriction is slightly slower than the -indicator-based constric-
tion, because the former algorithm needs to calculate Expression 4.1 for each
boundary simplex while the latter algorithm must calculate the determinants in
Equation 5.1 or 5.2, which is computationally cheaper.

5.7 Constrained constriction

We have assumed that no relations between the vertices, such as connectivity
along the boundary, is known in advance. If such relations are known for all
vertices, a more powerful boundary construction method could be used, exploit-
ing the additional information. However, in the case that only a small number
of connectivity relations are known, we would like the constriction algorithm
to respect these connections. For example, an expert might know that certain
connections must exist in experimental data, or a designer may demand speci�c
connections when specifying vertices of an artifact.

To be more precise, assume that a collection F of faces are known to be
part of the boundary. The faces of F that are not part of the -Graph used
for constriction are added to the graph; this augmented -Graph is used in the
following constrained constriction algorithm, which is not allowed to delete any
of the faces from F .

The constrained constriction works as follows. The faces from F are never
removable and therefore never put into the heap of removable boundary faces.
However, a face from F is not only unremovable when it lies on an intermediate
boundary, but may also not be deleted from the graph if it crosses a boundary
triangle (2D) or boundary tetrahedron (3D). Consider �rst the 2D case that
an edge vjv` from F crosses a boundary triangle vivjvk whose boundary edge
vivj is selected for deletion, see Figure 5.12. Normally, the deletion of vivj
involves the deletion of vjv` from the graph, but vjv` must remain in the graph.
Instead, vivj and the -indicator with respect to vk is deleted from the heap,

5.8 Concluding remarks 61

v i v j

vk
v l

v l

vk

v i v j

vm

Figure 5.12. Constrained constriction: the bold edge (left) and the bold triangle
(right) may not be deleted.

and to prevent reinsertion, vivk is deleted from the graph. If viv` is not already
present, it is inserted into the graph, so that vivjv` is a boundary triangle. If
vivj is removable with respect to v`, it is inserted into the heap together with the
-indicator with respect to v`. In one of the next iterations, vivj may be deleted
from the graph and the heap, and bring vjv` into the boundary. However, a
constrained constriction may get locked if vjv` is not yet in the boundary and
vivj has become unremovable. Note that apart from vjv`, other edges may
cross vivjvk as well; however, that does not e�ect the constrained constriction
presented above.

The analogous 3D situation is depicted at the right in Figure 5.12, where
vivjvk is a boundary triangle and vjvkvm a triangle from F . Normally, the
deletion of vivjvk involves the deletion of vjvkvm, but vjvkvm must remain in
the graph. Instead, vivjvk and the -indicator with respect to v` is deleted from
the heap, and to prevent reinsertion into the heap, vivjvk is also deleted from the
graph. If vivjvm and vivkvm are not already present, they are inserted into the
graph, so that vivjvkvm is a boundary tetrahedron. If vivjvk is now removable
with respect to vm, it is inserted into the heap together with the -indicator
with respect to vm. Like in 2D, a constrained constriction may get locked when
vjvkvm is not yet in the boundary but has become unremovable. Apart from
vjvkvm other triangles may cross vivjvkv` as well, but that does not e�ect the
constrained constriction.

The triangles at the back of the mask in Figure 5.6 where prevented from
deletion by constrained constriction.

5.8 Concluding remarks

In this chapter, the geometric information contained in the -Graph is used to
construct a closed piecewise linear object boundary through scattered points.
The -Graph on the set of points is successively constricted until the boundary
of the pruned -Graph is a proper object boundary, passing through all vertices.
While constriction of the Delaunay Triangulation may stop without having found
a Hamilton polygon or polyhedron, the parameters of the -Graph provide the

62 Boundary from the -Graph

exibility to �nd a proper boundary. The selection of the boundary faces to
remove is based on the combination of a local measure (the -indicator), and
global information (the minimum value). This criterion yields good looking
boundaries, compared to the minimal area change and the Voronoi Skeleton
algorithm. Our constriction algorithm is easily extended so as to prevent the
deletion of a priori known boundary faces.

It is not widely acknowledged that construction methods based on a geomet-
ric graph (such as the Delaunay Triangulation, Voronoi Diagram, or -Graph)
are generally not consequent. That is, if the constructed boundary of a vertex
set V is B and a new vertex that lies on B is added to V , the new boundary
need not be B. This results from the fact that in general the geometric graph
of the new vertex set does not contain all the edges or triangles of the graph on
V , in particular those of the boundary segments of B.

Another interesting case is the behavior of the algorithm when the vertices
are distributed arbitrarily dense over a known object boundary. The object
boundary segments then become arbitrarily small. When the limit is reached,
the -indicator of each segment is one, but the -indicator of intermediate bound-
ary segments is smaller than one. So, the object boundary segments are never
removed, and therefore the constructed boundary is the known object boundary.

The result of our constriction process is a pruned graph. A resulting pruned
([�1; 1]; [0; 1]) implicitly de�nes a triangulation of the interior of the object.
A pruned ([�1; 1]; [c0; 1]), c0 < 0, can easily be pruned further to obtain a
triangulation of the interior. Such a triangulation of the interior can be used to
calculate properties such as the volume and mass of the object.

We have seen that an object skeleton need not be a good tool to construct a
boundary, but conversely the triangulation or tetrahedralization of the pruned
-Graph always provides some skeleton of the object, see Section 4.3.4.

The vertices are assumed to lie on the boundary of an object without holes,
but an inner contour or surface can be handled separately. The triangulation
of the interior of the outer boundary does not correspond with the body of the
object anymore, but for the calculation of some properties the value correspond-
ing to the inner boundary can be subtracted from the result corresponding to
outer boundary. The case of objects with handles is considered diÆcult, and is
a possible subject of further research.

6

Approximation and localization

This chapter introduces the problem of (hierarchical) approximation and localization
of polygonal and polyhedral objects, and presents several approximation error criteria.
An overview of existing boundary-based intrinsic schemes as well as some other work
on approximation and localization are given.

6.1 Introduction

Two facilities are often used for eÆcient manipulation of complex polygonal or
polyhedral objects consisting of many faces: approximation and localization,
which can both be performed hierarchically. The purpose of both techniques is
to avoid unnecessary processing of much detail.

If the vertices of the polygon or polyhedron lie on a regular grid, �nding
an approximation or localization is a simpler task than for an arbitrary vertex
connectivity structure, or topology. For example [Schmitt and Gholizadeh, 86]
provide an eÆcient approximation scheme for triangular polyhedra whose ver-
tices lie on a regular grid. In the following we will only consider approximation
and localization schemes for arbitrary topologies.

Approximation

It is not always necessary to process an object in full detail. To obtain quick
approximate results an approximation of the object may often be used. If the
approximation object consists of much fewer faces than the original object, the
processing is usually much faster.

63

64 Approximation and localization

For example, the interactive manipulation of a 3D object requires real time
display. During animated rotation, an approximation object allows faster display
without much loss of reality. When a �xed viewpoint is chosen, the object can
be displayed in full detail again. Another example is the perspective display of
far away objects in 3D that are mapped to only few pixels. The details of the
object are then not visible, and an approximation of the object suÆces, see also
[Clark, 76].

Another reason for using levels of approximation is that features of an ob-
ject can be classi�ed by following the features through successively more coarse
approximations of the object. This way of feature classi�cation is used in object
recognition.

Localization

Localization provides information about the position of the object, or the bound-
ary of the object, by means of a set of bounding volumes that together contain
(the boundary of) the object. If the bounding volumes allow eÆcient testing,
operations such as point location and intersection tests can be performed eÆ-
ciently. For example, if two objects are both known to lie in a sphere, the objects
cannot intersect if the spheres do not intersect, which can be eÆciently tested.

Hierarchy

Both approximation and localization can be performed at several levels of detail.
If the successive levels are such that a segment at one level is re�ned at the
next level, there is a hierarchy of successively more detailed levels. A hierarchy
is naturally stored in a tree data structure, where the root contains the most
coarse level of approximation, and the sons of a node represent the re�nement
of the parent at the next level of approximation. Algorithms operating on the
hierarchy try to solve their task at the root. If that is not possible, the algorithm
proceeds at successively more detailed levels.

If approximation and localization are combined, the bounding volumes are as-
sociated with an approximation face, and localize the part of the object that
is approximated by that face. The advantages of approximation, localization,
and a hierarchy can be combined into a single scheme. This is illustrated by the
following example. A point-in-polygon or point-in-polyhedron test determines
whether a given point X is internal to a given polygon or polyhedron P . One
way to decide this is to count the number of intersections between P and any
half-line originating from X , see e.g. [Preparata and Shamos, 85]. If X is not on
P , it is internal to P if the number of intersections is odd, and external other-
wise. In order to count the number of intersections, one has to test the half-line
against each boundary segment of P .

This test can be performed more eÆciently if we can use an approximation
of P that yields the same answer to the test as P itself. The next lemma tells
when the approximation of a part of P does not a�ect the inclusion test.

6.2 Error criteria 65

Lemma 6.1 Let B be a part of P , A an approximation of B connected with
the rest of P without cracks, and F a bounding volume containing A and B.
If X is external to F , then X is internal/external to P if and only if X is
internal/external to P with B replaced by A.

Proof. If X is external to F , then X does not lie between A and B. Therefore,
the replacement does not change the result of the inclusion test.

The hierarchical point location test starts at the root of the tree by testing if
X is external to the bounding volume. If so, it is also external to P . Otherwise
the algorithm proceeds at the next level. If X lies outside a bounding volume,
the approximation segment at that level can be used to perform the location
test. Otherwise the algorithm proceeds locally at the next level.

Schemes for approximation and localization can be classi�ed into volume-based
and boundary-based methods. The former models represent the object's en-
closed volume, the latter ones represent the boundary of the object. Another
classi�cation can be made into domain-dependent models and intrinsic models.
Domain-dependent methods are based on a decomposition of the embedding
space according to a prede�ned grid. The intrinsic schemes are based on the
shape of the object. These two orthogonal classi�cations give four possible com-
binations.

An advantage of intrinsic schemes over domain-dependent ones is the inde-
pendence of the orientation of the object. If an object is aÆnely transformed,
the approximation and the bounding volumes are transformed in the same way
in the case of an intrinsic scheme, whereas a domain-dependent representation
has to be constructed again from scratch. This thesis concerns boundary con-
struction and manipulation, so therefore we are interested in boundary-based
schemes. More speci�cally, we want a hierarchical approximation and localiza-
tion scheme that has a uniform de�nition in 2D and 3D, and bounding areas
and volumes that allow eÆcient testing.

Section 6.2 presents some approximation error criteria, which provide a mea-
sure for expressing how good an approximation is. Section 6.3 gives an overview
of existing boundary-based intrinsic schemes, and Section 6.4 gives examples of
other schemes.

6.2 Error criteria

The error of an approximation can be de�ned in several ways. For the approxi-
mation of an arbitrary arc-length parameterized plane curve C(t) by an arbitrary
arc-length parameterized approximation curve Ca(t), a possible measure for the
error is the maximum distance between points on the curves at corresponding
parameter values: maxt d(C(t); Ca(t)). If C(t) is not an arbitrary curve but a
polyline vp : : : vs, the maximum error always occurs at one of the vertices. If ad-
ditionally the approximation curve is a line segment g, the above approximation

66 Approximation and localization

Figure 6.1. The error in a hierarchical approximation may increase.

error becomes

max
p�i�s

d(vi; g): (e1)

A variation is obtained by considering the distance to the line through g instead
of g itself:

max
p�i�s

d(vi; line(g)): (e2)

In a hierarchy of approximations the successive levels contain more and more
vertices. However, in the case that the vertices of the approximation polyline
must be vertices of the original, the error of successive approximations need not
decrease uniformly towards zero, and may even increase, see Figure 6.1.

The above error criteria are extended to 3D in a straightforward manner: the
line segment g in Error (e1) is replaced by a triangle, and line(g) in Error (e2)
is replaced by plane(g), the plane through triangle g.

Since the bounding volumes in a boundary localization scheme form a cov-
ering of the boundary, it can also be regarded as an approximation, having
an associated error. In general, the de�nition of the approximation error of a
covering depends on the speci�c bounding volumes. I will con�ne myself to men-
tioning two examples that are considered by [Imai and Iri, 88]. The �rst one is
a covering of planar polylines by so-called strips:

Definition 6.1 (Strip) A strip that covers vp; : : : ; vs is the minimum area
rectangle containing vp; : : : ; vs with two sides parallel to the line through vp and
vs.

Figure 6.2 shows a strip covering a polyline, and two smaller strips covering
parts of the polyline. Note that the sides of the strip need not pass through vp
and vs. A strip has two widths w1 and w2 that are the distances from the line
through vp and vs to the parallel sides of the rectangle. The error associated
with a single strip, say strip i, is de�ned as (wi;1 + wi;2)=2, and the error of
approximation of a polyline by m strips is

max
1�i�m

(wi;1 + wi;2)=2: (e3)

Another covering can simply be made with the minimum area rectangle contain-
ing vp; : : : ; vs. The width w of this rectangle is the length of the smallest side.

6.3 Boundary-based intrinsic schemes 67

w
1

w
2

Figure 6.2. Strips covering a polyline.

The associated approximation error of a single rectangle i is wi=2, and the error
of approximation of a polyline by m rectangles is

max
1�i�m

wi=2: (e4)

Note that the Errors (e3) and (e4) are approximation errors, not localization
errors. A bounding volume just bounds the position of something. Naturally,
the smaller the bounding volume, the tighter the localization, but one cannot
speak of a localization error.

6.3 Boundary-based intrinsic schemes

Optimal approximation

The min-# approximation problem for a polygonal curve in the plane is the
problem of �nding an approximation polygon with the minimal number of ver-
tices and with the error within a given bound. The min-� problem is the prob-
lem of �nding an approximation polygon with the minimal error and a given
number of vertices. Algorithms for both optimality problems are discussed by
[Imai and Iri, 88]. The time complexities of the best available algorithms are as
follows:

error criterion min-# min-�
(e1) O(N2

v logNv) O(N2
v (logNv)

2)
(e2) O(N2

v logNv) O(N2
v logNv)

(e3) O(N2
v logNv) O(N2

v logNv)
(e4) O(Nv logNv) O(MvNv(logNv)(log(Mv=Nv)))

in which Mv is the number of vertices in the approximation polygon.
These complexities apply to a single approximation. A sequence of suc-

cessively more detailed approximations requires the iterative application of the
algorithm. However, in general this yields no hierarchy of approximations, and
is computationally expensive.

No eÆcient algorithms seem to be available for these optimality problems
in 3D. In order to avoid excessive time complexities, all the following schemes

68 Approximation and localization

exploit some heuristic. They provide no solution to the min-# or min-� problem,
but are meant to give a good approximation within an acceptable processing
time.

Iterative end point �t

The iterative end point �t method for approximating plane polylines is described
in [Duda and Hart, 73]. It starts with connecting two initial end points. If
Error (e1) is less than a chosen bound, the iteration is �nished. Otherwise, the
vertex that determines the error is connected with the two end points, yielding
two new line segments. The process is repeated for the new line segments. This
method is also known, especially in the cartography community, as the Douglas{
Peucker algorithm, after [Douglas and Peucker, 73].

The time complexity for a hierarchical approximation up to the most detailed
level is �(Nv logNv), which is optimal [Hershberger and Snoeyink, 92].

Strip tree

The strip tree [Ballard, 81] is a binary tree that stores all intermediate strips
associated with the approximation segments resulting from the iterative end
point �t method algorithm. The root of the strip tree contains the strip covering
all the points. The sons are each root of a subtree covering vp; : : : ; vq and
vq ; : : : ; vs, where vq is a vertex selected by the iterative end point �t method.
The construction of the strip tree stops when Error (e3) is within a chosen bound.
Apparently two di�erent error criteria are used: (e1) to select a new point to
construct a strip, and (e3) to decide to stop. Obviously, the time complexity is
equal to that of the iterative end point �t algorithm.

A variant of the strip tree is the Binary Line Generalization (BLG) tree
[Oosterom and Bos, 89], used for Geographic Information System applications.
In the BLG tree the node containing a vertex vq does not store the corresponding
strip, but the distance to line segment vpvs.

Arc tree

The arc tree [G�unther, 88] is a balanced binary tree for representing a hierarchy
of approximations of arbitrary plane curves. Let a curve C with length l be
parameterized by its arc length fraction t 2 [0; 1]. Then the length of the curve
from C(0) to C(t0) is t0l. The j-th approximation consists of 2j line segments.
Line segment i connects the points C(i=2j) and C((i+1)=2j), and is the approx-
imation of the arc of C between C(i=2j) and C((i + 1)=2j), which has length
l=2j. The hierarchy of successive approximations is stored in a binary tree.

The sequence of polygonal approximations converges uniformly towards C(t)
with respect to Errors (e1) and (e2). The following nice property is advanta-
geous for a hierarchical point location test and for intersection operations. The
arc between C(i=2j) and C((i + 1)=2j) is contained in the ellipse whose focal
points are the two end points of the arc. At a higher resolution the number
of bounding ellipses increases, but their total area decreases, thus providing a
better localization.

6.3 Boundary-based intrinsic schemes 69

Figure 6.3. 3D iterative extreme point �t algorithm. Left: triangle 3-split and vertex
for 2-split. Middle: subsequent triangle 2-split. Right: overall hierarchy tree.

Despite its elegance, the arc tree has several drawbacks. Because the param-
eterization by arc length does not generalize to surfaces in 3D, the arc tree has no
higher-dimensional equivalent. Computing intersections of bounding ellipses in
order to perform hierarchical intersection operations is expensive. Finally, in this
thesis we are concerned with the approximation of a polygonal curve C. In that
case, the points C(i=2j) need not be vertices of polygon C. A variant scheme, the
polygon arc tree, breaks each line segment approximating polyline vi : : : vi+n into
two ones approximating vi : : : vi+dn=2e and vi+dn=2e : : : vi+n, respectively. Obvi-
ously, this need not be a good approximation. Moreover, Errors (e1) and (e2)
need not decrease uniformly anymore.

The time complexity for building the polygon arc tree is �(Nv logNv) in the
best case, and O(N2

v) in the worst case.

Delaunay pyramid

The Delaunay pyramid [DeFloriani, 89] is a representation of a sequence of 2D
Delaunay Triangulations. The Delaunay pyramid is used to represent terrain
surfaces, where a height attribute is associated with data points (also called
2 12D surfaces). All the triangulations are done in the plane. Starting with
an initial Delaunay Triangulation, a number of data points is added to obtain
a more accurate terrain surface approximation. The corresponding Delaunay
Triangulation is the next one in the sequence. Such a sequence of Delaunay
Triangulations together with a set of links describing the successive changes in
the triangulation constitute the Delaunay pyramid. Since all triangulations are
done in the plane, this scheme is unsuited to represent closed boundaries of 3D
objects.

The best case and the expected case time complexity to build the Delaunay
pyramid is �(Nv). The worst case complexity is O(N2

v).

3D iterative extreme point �t

A 3D analogue of the 2D iterative end point �t approximation, which I shall
call the 3D iterative extreme point �t, is presented by [Faugeras et al., 84]. The
algorithm starts with a single triangle approximating the whole polyhedron. It
then �nds a closed path of edges in the polyhedron that contains the three
vertices of the �rst triangle. This path divides the polyhedron into two open
polyhedra. The algorithm now iterates as follows. Given a triangle and an open

70 Approximation and localization

T

Figure 6.4. Prism.

polyhedron that is approximated by this triangle, the vertex in the polyhedron
having the largest distance to the triangle is connected to the three triangle
vertices, giving three new triangles.

If the triangles are always split into three new ones, the new triangles get
more and more elongated, and the edges remain in all next levels of approxima-
tion. Therefore, after each iteration that splits triangles into three triangles an
iteration follows that splits each pair of new triangles that have an old edge in
common at a vertex on the associated path, see Figure 6.3. In that way, each
of these triangles is split into two. Elongated triangles thus cannot always be
avoided, but they are removed at a next level of approximation.

The approximating triangles are naturally stored in a hierarchy tree with
alternating levels of nodes having three and two children.

The time complexity for a hierarchical approximation up to the most de-
tailed level depends on which vertices lie furthest from the approximation trian-
gle. The best case complexity is O(Nv(logNv)

2), the worst case complexity is
O(N2

v logNv).

Prism tree

The prism tree [Ponce and Faugeras, 87] is a localization scheme that stores
bounding volumes of the open polyhedra approximated by the 3D iterative ex-
treme point �t algorithm. The bounding volumes are truncated pyramids which
are called prisms by [Ponce and Faugeras, 87]:

Definition 6.2 (Prism) Let T be an approximation triangle and P the ap-
proximated open polyhedron. The prism is a truncated pyramid consisting of �ve
faces: a top, a bottom, and three sides. The top and the bottom are triangles
parallel to T . The sides are quadrilaterals parallel to the three bisector planes
of T and its three neighboring approximation triangles. With orientation of the
faces thus determined, the prism is the smallest truncated pyramid containing
P .

Analogous to the sides of the strips, the prism sides parallel to the bisector planes
need not pass through the edges of the triangle, see Figure 6.4.

6.4 Other schemes 71

Not T itself, but the truncated pyramid bounding P is stored in a node of
the tree. A level in the tree corresponds to a collection of truncated pyramids
enclosing the boundary, rather than to an approximation polyhedron.

Obviously, the time complexity is equal to that of the 3D extreme point �t
algorithm.

6.4 Other schemes

For comparison, this section gives a few examples of schemes that are not
boundary-based or intrinsic.

Delaunay tree

The kD Delaunay tree [Boissonnat and Tellaud, 86] stores all temporary k-
simplices resulting from the incremental construction of the Delaunay Trian-
gulation of the vertices of the object. The resulting tree is a hierarchical
volumetric representation that allows fast point location. The Delaunay tree
itself is not an object representation. In order to use it for that purpose, all the
object faces should belong to the Delaunay Triangulation of the set of vertices.
Additionally, the simplices inside and outside the object need to be determined.
To use the Delaunay tree for representing approximations is even harder. In
that case, the order in which the points are added must correspond to successive
approximations.

Sphere decomposition

The sphere decomposition method by [O'Rourke and Badler, 79] is volume-
based, intrinsic, and non-hierarchical. The method selects boundary vertices,
and then �ts spheres passing through these vertices. The union of the spheres
need not completely cover the whole object. Therefore, these spheres cannot be
used as bounding volumes. Moreover, the representation is not hierarchical. In
order to yield a good approximation of the shape of the object, many overlapping
spheres are needed.

Quadtree and octree

All previous schemes are intrinsic. The quadtree [Samet, 84] and the octree
[Meagher, 82] are domain-dependent representations. They are hierarchical and
volume-based.

The quadtree starts with an initial rectangle containing a plane polygon. This
rectangle is symmetrically split into four equally sized subrectangles, and each
subrectangle is recursively subdivided if it is not completely inside or outside
the polygon. The recursion stops when the rectangles have some prede�ned
minimum size. All rectangles are labeled with `empty', `full', or `partly �lled'.

Of course the quadtree is not limited to polygonal objects, but can be used
for arbitrarily de�ned objects. The union of the full rectangles as well as the
union of both the full and partly �lled rectangles form an approximation of the

72 Approximation and localization

interior of the object. The union of both the full and partly �lled rectangles also
forms a bounding volume.

The octree is analogously de�ned for 3D objects, subdividing parallelepipeds
into eight equally sized subparallelepipeds. Since both representations subdivide
according to a prede�ned grid, they do not take into account the shape of the ob-
ject. For arbitrary polygonal or polyhedral objects, only extensive subdivisions
give good approximations.

6.5 Concluding remarks

In this thesis we are interested in boundary construction and manipulation, and
therefore in boundary-based approximation and localization schemes. Further-
more, intrinsic schemes, unlike domain-dependent ones, are independent of the
orientation of the object. The boundary-based intrinsic schemes mentioned in
this chapter are summarized in the following table, showing whether the scheme
is 2D or 3D (2 12D for the Delaunay pyramid), and whether the scheme is an
approximation scheme (A), a localization scheme (L), and/or hierarchical (H):

scheme reference 2D 3D A L H
optimal appr. [Imai and Iri, 88] + +
2D �t [Duda and Hart, 73] + + +
strip tree [Ballard, 81] + + +
arc tree [G�unther, 88] + + + +
Delaunay pyr. [DeFloriani, 89] + + +
3D �t [Faugeras et al., 84] + + +
prism tree [Ponce and Faugeras, 87] + + +
intstones Chapter 7 + + + + +

The intstone scheme, to be presented in the next chapter, is also included
for comparison. As indicated in the table, it is a scheme for hierarchical approx-
imation and localization in both 2D and 3D. More speci�cally, it has a uniform
de�nition in 2D and 3D, and bounding areas and volumes that allow eÆcient
testing operations.

Approximation of digitized curves is often used to remove digitization errors
and smooth the curve [Ray and Ray, 92]. Here, we assume that all vertices are
correct and lie on a closed object boundary. At the level of full detail all vertices
must be present and the topology must be the same as the original one.

7

The intstones

This chapter presents a new scheme for hierarchical approximation and localization of
closed polygonal and polyhedral objects without holes. The bounding volumes, called
intstones, are de�ned by discs in 2D and balls in 3D. This makes the intstones
storage eÆcient, and operations on intstones computationally cheap.

7.1 Introduction

The goal of this chapter is to develop a hierarchical approximation and local-
ization scheme whose de�nition is naturally generalized from 2D to 3D, and
is computationally eÆcient for hierarchical operations such as intersection and
point-in-object tests. This chapter introduces the intstone scheme, so called
because of the shape of the bounding areas. The approximation algorithms are
based on the de�nitions of the bounding area and volumes which are composed
of discs or balls, respectively. These algorithms and their time complexities are
presented in Sections 7.2 and 7.3. Section 7.4 presents how the intstone scheme
can eÆciently be used for hierarchical operations, in particular point-inclusion
and intersection operations.

7.2 Flintstones in 2D

In this section we consider the approximation and localization of a closed 2D
polygon v0 : : : vNv�1. The approximation algorithm is based on the way the lo-
calization of a part of the closed polygon, an open polyline vp : : : vs, is performed.

73

74 The intstones

b

a1 a2

b

a1
a2

R<0 R>0

Figure 7.1. Disc D(a1; a2; b) with signed radius.

7.2.1 Localization

The de�nition of the bounding area is based on the notion of a disc with a signed
radius:

Definition 7.1 (Disc with signed radius) Let a1, a2 and b be points not
lying on one line. The radius of the disc D(a1; a2; b) touching these points is
negative if the center of the disc and b lie at opposite sides of the line through
a1 and a2, and positive otherwise.

This de�nition is illustrated in Figure 7.1.

Definition 7.2 (�-operator) Let B1 and B2 be two balls with signed radii
RB1

and RB2
, respectively. The �-operator is de�ned as

B1 �B2 =

8>>><
>>>:
B1 \B2 if RB1

; RB2
< 0, or

RBi
< 0, RBj

> 0, jRBi
j > RBj

, i; j = 1; 2, i 6= j;

B1 [B2 if RB1
; RB2

> 0, or

RBi
< 0, RBj

> 0, jRBi
j < RBj

, i; j = 1; 2, i 6= j:

This de�nition is illustrated in Figure 7.2. The de�nition may look unnecessary
complex, but is used to make the de�nition of the bounding area simple.

The half-plane that contains point c and whose boundary passes through a1
and a2 is denoted by H(a1; a2; c). A half-plane can be considered as a disc with
a radius of �1.

The bounding area, called intstone, that is the basis of the approximation
algorithm is de�ned in terms of discs with signed radii and the �-operator:

7.2 Flintstones in 2D 75

R > 0

R > 0

| |

| |

R > 0

R > 0

R < 0

R < 0
1B

2B

1B

2B

R < 0

R < 0

R

R

R >

R <

1B

1B

1B

2B

2B

1B

2B

2B

Figure 7.2. B1 �B2.

Definition 7.3 (Flintstone) Let P = vp : : : vs, and let vq be a vertex of
P such that D(vp; vs; vq) contains all vertices lying in H(vp; vs; vq). If P �
H(vp; vs; vq), then the intstone F of P is de�ned as F (P) = D(vp; vs; vq) \
H(vp; vs; vq), otherwise F (P) = D(vp; vs; vq) �D(vp; vs; vr), where vr is a ver-
tex of P not lying in H(vp; vs; vq) and such that D(vp; vs; vr) contains all vertices
in H(vp; vs; vr).

Informally, the intstone is the smallest intersection or union of two discs
touching vp and vs that contains vp : : : vs. The de�nition is illustrated in Fig-
ure 7.3 for the case that the intstone is an intersection of two discs or a disc
and a half-plane. It is easily veri�ed that P � F (P), so that F (P) is indeed a
bounding area for P .

qv

vp

vr

vs vp

qv

vs

Figure 7.3. 2D intstone. Left: F (P) = D(vp; vs; vq) � D(vp; vs; vr). Right:
F (P) = D(vp; vs; vq) \H(vp; vs; vq).

76 The intstones

v

v
0

v

v

v

v

v

v

v
v

v

1

2

3

4

5

6
7

8

910

Figure 7.4. Top left: smallest bounding disc and zeroth order approximation. Top
right: intstone of v6 : : : v0. Bottom: �rst and second order approximation.

Note that such a vertex vq always exists. After all, there exists a disc touching
vp and vs that contains all vertices of P in H(vp; vs; vi) for some p < i < s. The
smallest possible one touches at least one vertex vj , p < j < s. We call one of
these vertices vq . Symmetrically, if not all vertices of P lie in H(vp; vs; vq), then
also the vr in the de�nition exists.

7.2.2 Approximation

The hierarchical approximation of a closed polygon of Nv vertices starts with
the calculation of the smallest bounding disc (SBD), that is, the smallest disc
that contains all vertices. This disc touches at least two vertices, say vi and vj ,
i < j. If more than two vertices lie on the boundary of the smallest bounding
disc, we take two vertices that are farthest apart. Edge vivj is the zeroth order
approximation of the polygon, dividing it into two polylines vivi+1 : : : vj and
vjvj+1 : : : vi (here and in the rest of Section 7.2 the indices are taken modulo
Nv).

For the next level in the hierarchy of approximations, let us consider a poly-
line P = vp : : : vs. The approximation depends on the intstone F (P). If F (P)
= D(vp; vs; vq) \ H(vp; vs; vq), then P is approximated by the edges vpvq and
vqvs. If F (P) = D(vp; vs; vq) �D(vp; vs; vr) and if the radius of D(vp; vs; vq) is
larger than the radius of D(vp; vs; vr), then P is approximated by the edges vpvq

7.2 Flintstones in 2D 77

v
0

v

v

v v

vvv

v v v

6

4 10

2 5

1 3

8

7 9

Figure 7.5. Flintstone tree of example in Figure 7.4.

and vqvs, otherwise by vpvr and vrvs. Notice that the radii of D(vp; vs; vq) and
D(vp; vs; vr) are signed.

An edge vpvs is not subdivided if p+1 = s, in which case this edge is in the
original polygon. In order to construct the complete hierarchy, the iteration is
performed until all vertices are contained in the approximation polygon, which
then coincides with the original one. By de�nition, an edge vpvp+1 has no
intstone. Figure 7.4 gives a simple example of a polygon and the approximation
of level zero, one, and two.

If there exists a disc touching vp and vs that contains vp+1 : : : vs�1, then the
`�' in the de�nition of the intstone is a `\'. By construction of the approx-
imation, each approximated polyline is contained in a disc. So, all intstones
are the intersection of two discs or a disc and a half-plane. In particular the
degenerate case that a intstone is the union of a half-plane and a disc simply
cannot occur. That would be the case if a vertex vi, p < i < s, lies on the line
through vp and vs and outside the line segment vpvs, but by construction of the
approximation, this never happens. The shape of the intersection of two discs
gave rise to the name `intstone'.

A binary tree is a natural data structure to store the hierarchical approxi-
mation. The root, level zero of the tree, contains vertices vi and vj . The left
subtree stores vertices vi+1; : : : ; vj�1 such that the symmetric or in�x order
traversal yields the successive vertices of the polygon. The right subtree stores
vertices vj+1; : : : ; vi�1 analogously. A level-` approximation simply corresponds
to the levels 0; : : : ; ` of the tree. Figure 7.5 shows the complete hierarchy tree
of the example in Figure 7.4.

The bounding areas are stored as follows. The root stores the smallest bound-
ing disc. A node containing vertex vq at level `, ` � 1, of the tree, contains
D(vp; vs; vq) and D(vp; vs; vr), where vp is the predecessor and vs the successor
of vq at approximation level `. For example, the node containing v2 in Figure 7.5

78 The intstones

Flintstones2 ()
f bool Completed = FALSE;

compute SBD(vi; vj); // smallest bounding disc
store vi, vj , and SBD in root;
while (!Completed)
f

Completed = TRUE;
for (each segment vpvs approximating P , p+ 1 < s) // segment to be

split
f

Completed = FALSE;
determine F (P);
if (F (P) == D(vp; vs; vq) \H(vp; vs; vq))
store vq , D(vp; vs; vq), and D(vp; vs; vr) in new node;

else // F (P) is D(vp; vs; vq)�D(vp; vs; vr)
if (R(D(vp; vs; vq)) > R(D(vp; vs; vr)))
store vq , D(vp; vs; vq), and D(vp; vs; vr) in new node;

else
store vr, D(vp; vs; vq), and D(vp; vs; vr) in new node;

g
g

g

Algorithm 7.1. 2D intstone tree construction algorithm.

stores D(v0; v4; v2) and D(v0; v4; v3).
I shall call the approximation and localization scheme `intstone scheme',

and the tree that stores the hierarchy of approximations and bounding volumes
a `intstone tree', also in 3D.

The algorithm to construct the complete intstone tree is summarized in
Algorithm 7.1 in pseudo C-language code. The time complexities for the best
and worst case and the storage complexity are given by the following theorems.

Theorem 7.1 (Time complexity) The best case time complexity to construct
the complete intstone tree in 2D is �(Nv logNv). The worst case complexity
in 2D is O(N2

v).

Proof. The smallest bounding disc can be found in �(Nv) time [Megiddo, 83].
Two vertices on the boundary of the disc that are farthest apart can be found
in �(Nv logNv) [Preparata and Shamos, 85]. Finding the new vertex to be in-
cluded in the approximation polygon can be done in O(n) time for a polyline of
n segments, by testing the vertices sequentially.

In the best case, the polygon is split into equally sized parts, giving dlogNve
iterations. The i-th iteration then treats 2i polylines of size Nv=2

i. The best

7.2 Flintstones in 2D 79

case time complexity is thus

�(Nv) + �

0
@dlogNveX

i=0

2i(Nv=2
i)

1
A = �(Nv logNv):

In the worst case a polyline of n segments is split into one polyline of size
one and another of size n� 1. The worst case time complexity is therefore

�(Nv) +O(

NvX
i=1

i) = O(N2
v):

Theorem 7.2 (Storage complexity) The storage complexity of the com-
plete intstone tree in 2D is �(Nv).

Proof. The intstone tree stores each vertex exactly once. The root stores two
vertices, all other nodes store one vertex, so that there are Nv � 1 nodes. The
intstone tree thus requires �(Nv) storage space.

7.2.3 Adaptive approximation

The approximation algorithm described in the previous section replaces each
edge in the current approximation by two new edges, unless the edge cannot
be re�ned. One can apply this procedure a �xed number of times, or stop the
iteration when the approximation polygon is within a speci�ed error bound with
respect to a chosen criterion. However, the error of one part of the approximation
polygon can be very di�erent from another part. This is clearly visible in Fig-
ure 7.6, showing the original polygon (the outer border of the mainland of The
Netherlands, Belgium, and Luxembourg) with the zero-order level of approxima-
tion, and two other levels of approximation. Some parts of the approximation
polygon exhibit much more detail than other parts. The approximation algo-
rithm can overcome this unevenness by only re�ning an edge if the error of that
edge (rather than the whole polygon) is larger than a given bound. Such an
algorithm is called adaptive.

In principle, any error criterion can be used. An approximation error tailored
to a covering by intstones is based on the two widths associated with a intstone
(illustrated in Figure 7.7):

Definition 7.4 (Widths of flintstone) Let P = vp : : : vs have an associ-
ated intstone F (P) = D(vp; vs; vq) \ D(vp; vs; vr) or F (P) = D(vp; vs; vq) \
H(vp; vs; vq). Let m1 be the point on D(vp; vs; vq) at the same side of edge
vpvs as vq that has the largest distance w1 to vpvs. Let c1 be the center of
D(vp; vs; vq), R1 its radius, r1 = d(vp; vs)=2, and h1 the distance between c1 and
vpvs, i.e. h1 = d(vp; vs)=2. If R1 > 0, then w1 = R1 + h1, if R < 0, then
w1 = �(R1+h1). If F (P) = D(vp; vs; vq)\D(vp; vs; vr), then w2 is analogously
de�ned with respect to D(vp; vs; vr), and if F (P) = D(vp; vs; vq) \H(vp; vs; vq),
then w2 = 0.

80 The intstones

Figure 7.6. Top row: original polygon together with the zeroth order (left) and
fourth order (right) approximation. Bottom row: higher order approximation of 59
edges (left) and adaptive approximation of 60 edges (right).

7.3 Flintstones in 3D 81

vp vs

vq

m
1

1
c

1
R

1
w

1
h

1
r

vp v
s

v
q

m
1

1
c

1
R

1
w

1
h

1
r

Figure 7.7. Width w1 = R1 + h1 if R1 > 0 (left), w1 = �(R1 + h1) if R1 < 0
(right).

Note that the zero width associated with H(vp; vs; vq) agrees with the interpre-
tation that the half-plane is a disc with a radius of �1. Verbally, the widths
of a intstone are the largest distances between the boundaries of the discs and
the line through vp and vs.

The covering approximation error of a single intstone, say intstone i, is
now de�ned as maxfwi;1; wi;2g. The error of approximation of a polyline by m
intstones is

max
1�i�m

maxfw1; w2g: (e5)

The adaptive approximation in Figure 7.6 is constructed using this error crite-
rion.

The tree representation of an adaptive approximation is a subgraph of the
tree of the non-adaptive approximation of the same level. An adaptive approxi-
mation polygon generally consists of fewer edges than a non-adaptive one of the
same level of approximation. Alternatively, an adaptive approximation polygon
generally is of a higher approximation level than a non-adaptive one of about the
same number of edges, usually resulting in a better approximation, i.e. a smaller
approximation error. This is illustrated in Figure 7.6 at the bottom row: the
adaptive approximation and the non-adaptive one have about the same number
of edges, but the adaptive approximation has a smaller error and is of a higher
approximation level.

7.3 Flintstones in 3D

In this section we consider the approximation and localization of a 3D closed
simple polyhedron of genus zero, that is, without holes. The approximation
algorithm is based on the way the localization of a part of the closed polyhedron,
which is an open polyhedron, is performed.

82 The intstones

vs
vs

vp
vp

vq
vq

vr

vt vt

Figure 7.8. 3D intstones.

7.3.1 Localization

The de�nition of the bounding volume is based on the notion of a ball with a
signed radius. B(a1; a2; a3; b) denotes the ball touching a1; a2; a3; b with a signed
radius, de�ned analogously to De�nition 7.1. The �-operator for balls with a
signed radius is precisely de�ned by De�nition 7.2. The half-space containing c
and whose boundary passes through a1, a2, and a3, is denoted byH(a1; a2; a3; c).
A half-space can be considered as a ball with a radius of �1. Before presenting
the approximation algorithm, the basic bounding volume, intstone, must be
de�ned:

Definition 7.5 (Flintstone) Let P be an open polyhedron, and vp, vs, and
vt three distinct vertices on the closed boundary of P . Let vq be a vertex of P
such that B(vp; vs; vt; vq) contains all vertices lying in H(vp; vs; vt; vq). If P �
H(vp; vs; vt; vq), then the intstone F of P is de�ned as F (P) = B(vp; vs; vt; vq)\
H(vp; vs; vt; vq), otherwise F (P) = B(vp; vs; vt; vq) � B(vp; vs; vt; vr), where vr
is a vertex of P not in H(vp; vs; vt; vq) such that B(vp; vs; vt; vr) contains all
vertices in H(vp; vs; vt; vr).

Note that, analogous to the 2D situation, such a vq always exists, and also a
vr if not all vertices of P lie in H(vp; vs; vt; vq). This de�nition is illustrated
in Figure 7.8 for the case that the intstone is an intersection of two balls or a
ball and a half-space. It is easily veri�ed that P � F (P), so F (P) is indeed a
bounding volume for P .

7.3.2 Approximation

The hierarchical approximation of a closed polyhedron starts with the calculation
of the smallest ball that touches at least three vertices, say vi, vj , and vk, and
contains all vertices. Such a ball always exists, but need not be the smallest
bounding ball, which may touch only two vertices.

The three shortest paths of edges in the polyhedron running between vi and
vj , vj and vk, and between vk and vi, divide the closed polyhedron into two

7.3 Flintstones in 3D 83

v

vt

vv

q

sp

v

vt

v

q

sp v

Figure 7.9. Triangle vpvsvt is split into three at a point inside the polyhedral surface.

open polyhedra. Triangle vivjvk is the zeroth order approximation of the closed
polyhedron.

At all next levels of the hierarchical approximation we consider an open
polyhedron P of more than three vertices, and three distinct vertices vp, vs, and
vt on the boundary of P . If F (P) = B(vp; vs; vt; vq) \ H(vp; vs; vt; vq), then P
is approximated by the three triangles vpvqvs, vqvsvt, and vpvqvt. If F (P) =
B(vp; vs; vt; vq)�B(vp; vs; vt; vr) and if the (signed) radius of B(vp; vs; vt; vq) is
larger than the radius of B(vp; vs; vt; vr), P is approximated by vpvqvs, vqvsvt,
and vpvqvt, as illustrated in Figure 7.9. Otherwise P is approximated by vpvrvs,
vrvsvt, and vpvrvt.

At all levels of approximation there is an open polyhedral part of the original
polyhedron associated with each approximation triangle vpvsvt. The boundary
polygon of that open polyhedron consists of the three shortest paths between
vp, vs, and vt. Note that each pair of these paths may partly coincide, especially
near vp, vs, or vt.

If the triangles are always split into three new ones as described above, the
new triangles become more and more elongated, because each time the angles at
the vertices are divided. Moreover, the edges are retained in all next levels, which

Figure 7.10. Schematic splitting at sides.

84 The intstones

v
p

v
p

v
s v

s

Figure 7.11. Two neighboring triangles are split at their common side.

will generally not lead to a good approximation. To avoid too thin triangles, the
angle is not split if it is less than some chosen value. In that case the triangle is
split at two sides, as in Figure 7.10 (middle). A triangle can also have two angles
that are too small to be split, in which case the triangle is split at one side, as in
Figure 7.10 (left). If a triangle is split at a side, its neighboring triangle sharing
that side should also be split at the same point, in order to prevent cracks in
the approximation polyhedron. A triangle can thus be forced to split, even if it
has no small angles. Therefore, a triangle can also split at all three sides, into
four new triangles as illustrated in Figure 7.10 (right).

Because a triangle can be forced to split at a side by its neighbors, the e�ect
of splitting at a side propagates through the current approximation polyhedron.
Therefore, all edges in the current approximation polyhedron that must be split
should be determined �rst. Only then it is known how the splitting of all triangles
should be done.

The position where a side should be split is at a vertex on the shortest path
between the end points, which is part of the boundary polygon of the open
polyhedron that is approximated by the triangle. The vertex where the split is
performed is the one that gives the smallest di�erence between the lengths of
the new sides. If the shortest path consists of a single edge, there is no such
vertex, and the split is not performed. So, no new vertices are introduced. Such
a split of a triangle into two new ones, together with its neighboring triangle, is
shown in Figure 7.11. As stated before, two paths may partly coincide, which
may a�ect the result of the splitting. For if the vertex where a side is split is
part of two paths, then degenerate triangles will result. This, however, causes
no problem, since the degenerate triangles can simply be recognized by their
coalescing vertices.

The re�nement iteration is repeated until no approximated open polyhedron
contains interior vertices, and the shortest paths between the vertices of all
approximation triangles consist of single edges. This is the most detailed level
of approximation. By de�nition, the approximation triangles at the lowest level
have no intstone.

At an almost �nal approximation level, the approximation may locally be not
very accurate. Look for example at Figure 7.12 (note that the dashed lines do

7.3 Flintstones in 3D 85

A D

E

B

C

Figure 7.12. Triangle ABC approximates original triangles, drawn with dashed lines.

not denote the way of triangle re�nement, but represent the original triangles).
A possible sequence of splittings is represented in the following table, which lists
for each of the successive approximating triangles: (i) the shortest paths between
its vertices, (ii) the vertices and original triangles that it approximates, and (iii)
into which triangles it is re�ned.

triangle shortest paths approximates split into
ABC AB, BEC, CDA vert: A;B;C;D;E ABD, BCD

tr: ABE, ADE, CDE
ABD AB, BED, DA vert: A;B;D;E ABE, ADE

tr: ABE, ADE
BCD BEC, CD, DEB vert: B;C;D;E CDE, BDE

tr: CDE
BDE BE, ED, DEB

So triangle BCD is split into CDE and BDE, but the latter one approximates
a void part of the polyhedron. Triangles that do not approximate a part of the
polyhedron have coalescing shortest paths between their vertices, which is easily
tested. Such triangles are discarded from the approximation. In that case, an
approximation triangle can be re�ned into only one new triangle, while in the
normal case it has two to four children.

Because no new vertices are introduced when splitting a triangle at a side,
the shortest paths consist of edges of the original polyhedron. And because
triangles that do not approximate a part of the polyhedron are discarded, all
the �nal approximating triangles coincide with the original triangles. So, at the
most detailed level of approximation the original polyhedron is recovered.

In order to avoid inaccurate approximations at an almost �nal level, like
illustrated above, the split procedure must take the triangulation topology into
account, not only the geometry.

If there exists a ball touching vp, vs, and vt and containing P , then the `�'
in the de�nition of the intstone is a `\'. If no sides of this triangle are split,
the open polyhedra associated with the new triangles are also contained in a
single ball. However, if one or more sides are split, these polyhedra need not
be contained in a single ball. So, unlike the 2D case, intstones in 3D are not
always the intersection of two balls or a ball and a half-space, but may also be

86 The intstones

Flintstones3 ()
f bool Completed = FALSE;

compute BB-3(vi; vj ; vk); // bounding ball touching 3 vertices
store vi, vj , vk and BB-3 in root;
while (!Completed)
f

Completed = TRUE;
for (each vpvsvt approximating a P of more than 3 vertices)
f

Completed = FALSE;
determine the sides to split;

g
for (each vpvsvt approximating a P of more than 3 vertices)
f

split triangle;
divide P accordingly;
create children of vpvsvt and store new triangles and their intstones;

g
g

g

Algorithm 7.2. 3D intstone tree construction algorithm.

the union of two balls. As a result, the intstone can degenerate to the union of a
half-space and a ball. That will be the case when a vertex vi of the approximated
open polyhedron lies in the plane through the vertices vp, vs, and vt, and outside
the triangle vpvsvt. In many data sets obtained from experimental applications
no four vertices are coplanar, so that this problem does not arise. By contrast,
many synthetic data sets contain groups of four coplanar vertices, such as the
candlestick object in Figure 5.5 and the bottle in Figure 5.10.

In 2D the intstone tree stores vertices, while the edges of successive approx-
imations are implicitly de�ned. There is no simple analogous scheme in 3D that
implicitly represents the triangles. They are therefore stored explicitly. The root
contains the center and radius of the ball bounding the whole polyhedron. The
two sons of the root contain vi, vj and vk, approximating the open polyhedra P1
and P2, and the centers and signed radii of the balls that de�ne the intstones.
All nodes except the root can have up to four sons, which are constructed as
described above.

The algorithm to build the complete intstone tree is summarized in Algo-
rithm 7.2 in pseudo C-language code. The time complexities of the algorithm for
the best and worst case, and the storage complexity are given by the following
theorems.

7.3 Flintstones in 3D 87

Theorem 7.3 (Time Complexity) The best case time complexity to construct
the complete intstone tree in 3D is O(Nv(logNv)

2). The worst case complexity
in 3D is O(N2

v logNv).

Proof. The smallest bounding ball is found in �(Nv) time [Megiddo, 83]. In
3D, this ball may touch only two vertices. Finding a third vertex such that the
ball touching these three vertices contains them all, may take another O(Nv)
time. Finding the new vertex to be included in the approximate polyhedron can
be done in O(n) time for a polyhedron of n vertices. Both operations can simply
be performed by successively testing all candidates. Finding a shortest path in
a polyhedron of n vertices takes �(n logn) time [Dijkstra, 59].

In the best case, the open polyhedron is split into equally sized parts, giving
�(logNv) iterations. A polyhedron is split into at most four parts, but the order
of complexity is not a�ected if we let the total number of polyhedra at the i-th
iteration be 2i. The best case complexity is therefore

�(Nv) +O

0
@dlogNveX

i=0

2i((Nv=2
i) log(Nv=2

i))

1
A = O

0
@dlogNveX

i=0

Nv((logNv)� i)

1
A

= O

0
@Nv

dlogNveX
i=0

i

1
A = O(Nv(logNv)

2):

In the worst case the number of vertices of the polyhedron to be approximated
decreases by one at each iteration. The worst case time complexity is therefore

�(Nv) +O

NvX
i=1

i log i

!
= O

0
@ NvX

i=Nv=2

i log i

1
A = O(N2

v logNv):

Theorem 7.4 (Storage complexity) The storage complexity of the com-
plete intstone tree in 3D is �(Nt).

Proof. Almost all internal nodes have two to four children, only at the lowest lev-
els triangles are possibly re�ned into one new triangle, so that only O(Nv) nodes
have one child. Because the leaves of the tree contain the original Nt triangles,
there are �(Nt) internal nodes. The total storage space is thus �(Nt).

7.3.3 Adaptive approximation

The approximation error of a intstone covering in 3D is again Error (e5), i.e.
maxfw1; w2g, and the widths are de�ned in complete analogy to the 2D case:

88 The intstones

Figure 7.13. Top: polyhedral object of 2930 triangles (from Figure 5.6). Mid-
dle: adaptive intstone approximation of 89 triangles. Bottom: adaptive intstone
approximation of 277 triangles.

7.4 Hierarchical operations 89

Definition 7.6 (Widths of flintstone) Let an open polyhedron P have a
intstone F (P) = B(vp; vs; vt; vq)\B(vp; vs; vt; vr) or F (P) = B(vp; vs; vt; vq)\
H(vp; vs; vt; vq). Let m1 be the point on B(vp; vs; vt; vq) at the same side of
segment vpvsvt as vq that has the largest distance w1 to vpvsvt. Let c1 be the
center of B(vp; vsvt; vq), R1 its radius, r1 = r(vp; vs; vt), and h1 the distance
between c1 and vpvsvt. If R1 > 0, then w1 = R1+h1, if R < 0, then w1 = �(R1+
h1). If F (P) = B(vp; vs; vt; vq)\B(vp; vs; vt; vr), then w2 is analogously de�ned
with respect to B(vp; vs; vt; vr), and if F (P) = B(vp; vs; vt; vq)\H(vp; vs; vt; vq),
then w2 = 0.

The r(vp; vs; vt) in this de�nition is the radius of the disc touching vp, vs, vt,
as in the de�nition of the -neighborhood, see page 24. The zero width associated
with H(vp; vs; vt; vq) agrees with the interpretation that the half-space is a ball
with a radius of �1.

Figure 7.13 shows an example of a polyhedral object and two adaptive int-
stone approximations using this error criterion.

7.4 Hierarchical operations

Section 6.1 described the use of a hierarchical approximation and localization
for an eÆcient point location test: if the query point is not inside the intstone
of an approximation face, the test is not a�ected by the replacement of that
part of the polygon/hedron by the approximation. Testing whether a point X
is internal to a intstone amounts to calculating the distances between X and
the centers of the balls. If F is the intersection of two balls and both distances
are less than the corresponding radii of the balls, X is internal to the intstone.
If F is the union of two balls (in 3D only), and one of the distances is less than
the radius of the corresponding ball, X lies inside the intstone.

Another operation that can eÆciently be performed hierarchically is the inter-
section of two polygons or polyhedra. Detection and computation of polygonal
or polyhedral intersections are fundamental problems in hidden surface elimi-
nation, motion planning, and linear programming. The intstone scheme can
be exploited as follows. The hierarchical intersection algorithm �rst tests if the
bounding balls at the roots intersect. If they don't, then neither do the objects
themselves. Otherwise the algorithm proceeds with the next level of the deepest
subtree and the same level of the other (sub)tree, testing all pairs of bounding
volumes for intersection. This process locally continues for those pairs that in-
tersect, and stops for those that don't. When intstones at the lowest level are
tested and found to intersect, the original boundary faces themselves are tested.

If intstone F is de�ned by balls B1 and B2, and intstone G by balls C1

and C2, the following combinations can occur:

1. F = B1 \ B2, G = C1 \ C2,

2. F = B1 [B2, G = C1 [C2,

3. F = B1 \ B2, G = C1 [C2.

90 The intstones

In these situations, F and G intersect in the following corresponding situations:

1. B1 \ C1 6= � ^ B2 \ C1 6= � ^B1 \ C2 6= � ^ B2 \ C2 6= �,

2. B1 \ C1 6= � _ B2 \ C1 6= � _B1 \ C2 6= � _ B2 \ C2 6= �,

3. (B1 \ C1 6= � ^ B2 \ C1 6= �) _ (B1 \ C2 6= � ^ B2 \ C2 6= �).

For 2D balls (discs), only situation 1 can occur.
Testing whether two balls intersect amounts to comparing the distance be-

tween their centers with the sum of the radii. If the distance is larger, they do
not intersect, otherwise they do intersect.

For intersection detection, the algorithm can stop as soon as a single inter-
section is detected. In order to actually compute the intersection, the iteration
must be continued until all intersecting boundary faces are found, and then the
actual intersection must be computed. After computing the intersections of the
polygons or polyhedra, the solid object that is the intersection, union, or di�er-
ence of the two objects can be determined in a manner similar to the methods
described by [G�unther, 88] and [Ponce and Faugeras, 87].

For both the point location and the intersection algorithm, the basic opera-
tion is the computation of the distance between two points. This is very simple
and computationally cheap. Especially in 3D this is very eÆcient compared to
other localization schemes. For example a point-in-prism test needs to consider
�ve faces, and a prism{prism intersection requires twenty-�ve polygon{polygon
intersections.

In 2D, the localization by ellipses in the arc-tree scheme was found to be
eÆcient, compared to other schemes [Dominguez and G�unther, 91]. The point-
in-intstone test is as cheap as a point-in-ellipse test, which requires the distances
of the point to the two focal points of the ellipse. However, the intersection of
two ellipses is not as simple as the intersection of two intstones. It should
be noted though, that the performance of such hierarchical operations not only
depends on the eÆciency of calculations with a single bounding volume, but also
on the quality of localization for the whole object.

7.5 Concluding remarks

The intstone scheme has some advantages over other boundary-based schemes:
it is hierarchical, an approximation as well as a localization scheme, and the
bounding volumes are eÆcient in storage and for computations.

Clearly, the intstone of a polyline vp : : : vs is a -neighborhood of vp and vs
for two appropriate parameters, and the intstone of an open polyhedron is a
-neighborhood of three vertices vp, vs, and vt, for two appropriate parameters.
However, the purpose of a intstone is to provide a bounding area or volume
containing all vertices in the polygon or polyhedron, while the purpose of the
-neighborhood is to test emptiness of that area or volume.

In interactive applications, vertices may be dynamically added to the polygon
or polyhedron that must be approximated. The intstone approximation must

7.5 Concluding remarks 91

then be dynamically adapted by traversing the intstone tree and �nding the
�rst intstone that does not anymore contain the new vertex. The subtree rooted
by the corresponding node must then be rebuilt.

Even if the original object is a simple polygon or polyhedron (informally, the
boundary does not intersect itself), the intstone approximation need not be
simple. Especially at the �rst few approximation levels the polygon or polyhe-
dron may cut itself. At higher levels of approximation, however, this will rarely
happen. All approximation schemes in Section 6.3 except the Delaunay pyra-
mid, which can only be used for 2 12D polyhedra, su�er from the same problem.
A future research direction is the development of a hierarchical approximation
and localization scheme that always yields simple approximation polygons or
polyhedra when the original is simple.

The time complexity for the intstone tree construction is the same as for
many of the schemes described in Section 6.3. Testing for point inclusion and
intstone intersection is done by calculating distances between points, which is
computationally cheaper than the calculations on bounding volumes of many
other schemes. For simplicity and eÆciency of storage and computations a half-
space in the de�nition of a intstone can be represented by a ball of large radius.
In order to compare the eÆciency of the intstone scheme with the eÆciency of
other methods, those should also be implemented and applied to the same data
sets. Such a comparison is done by [Dominguez and G�unther, 91] between the
arc tree, the strip tree, and approximation and localization by the B�ezier scheme
(introduced in the next chapter). Extending the comparison with the intstone
scheme is a possible subject of future research.

92 The intstones

8

Smooth curves and surfaces

This chapter gives an introduction to spline curves and surfaces, the B�ezier for-
mulation for these, and the notion of geometric continuity. Some consequences of
geometric continuity regarding visual aspects are then derived.

8.1 Introduction

In the previous chapters the constructed object boundaries are all piecewise
linear, i.e. a polygon in 2D and a closed polyhedron of triangles in 3D. For
esthetic purposes or physical requirements a smooth boundary is often desired.
An inherently smooth boundary that has a continuously changing tangent line
or plane cannot consist of linear segments, but must consist of curved pieces:
curve segments for a boundary in 2D, and surface segments, or patches, for a
boundary in 3D. One particularly useful way of representing curves and surfaces
is the B�ezier formulation, because of the geometrically meaningful de�nition. We
will use B�ezier curves and surfaces for the construction of smooth boundaries.
There are several types of smoothness, or continuity, for curves and surfaces,
and this chapter introduces some of them.

Section 8.2 treats representations of curves, in particular B�ezier curves, and
notions of continuity of curves. Section 8.3 does the same for surfaces. Some
visual aspects of continuity are discussed in Section 8.4. A more elaborated
treatment of these subjects is given by [Veltkamp, 92d].

93

94 Smooth curves and surfaces

8.2 Curves

8.2.1 Fundamentals

A curve in functional form is a scalar function f : R ! R. A curve in para-
metric form is a vector-valued function P : R ! R

k , k � 2, each coordinate
component being a function of the parameter: P (t) = (P 1(t); : : : ; P k(t))T ,
tmin � t � tmax, for a curve in kD. Parametric curves have some advantages
over functional curves, for example they are independent of a particular coor-
dinate frame. Another advantage is their capability to represent closed curves,
which is important for our purpose, the construction of closed boundaries. In
the following we only deal with parametric curves.

One particular type of parametric curve is the polynomial curve:

P (t) = p0 + p1t+ p2t
2 + : : :+ pnt

n; (8.1)

for some �nite integer n � 0, the degree of the polynomial curve, and
p0; : : : ; pn 2 R. The coeÆcients pi are vectors whose coordinate components
are the coeÆcients for each coordinate function. The number of coeÆcient vec-
tors, n + 1, is the order of the polynomial. Polynomial curves are often used
because they are easy to handle, for example for evaluation and the calculation
of derivatives.

In Equation (8.1) the curve is represented as a linear combination of the
so-called power basis functions 1, t1, : : : , tn. We can also use other polynomial
basis functions Bn

i (t):

P (t) =

nX
i=0

piB
n
i (t): (8.2)

The Bn
i are often called blending functions and the pi weights or control points.

The derivative of a curve is a vector, the derivatives are taken component-
wise. The i-th derivative of a curve P (t) is denoted P (i)(t). To avoid possible
problems with the parameterization of the curve, we assume in the rest of this
thesis that the �rst derivative vector of all curves is not equal to the null-vector:
P (1)(t) 6= 0. Such a curve and its parameterization are called regular.

A piecewise polynomial curve is de�ned segment by segment. The parameter
range is then partitioned into subranges: tmin = t0 < t1 � : : : tm = tmax, where
ti are �xed parameter values. The curve is de�ned for each subrange: P (t) =
Pi(t), for ti � t < ti+1. We are usually interested in positionally continuous
piecewise curves:

lim
t"ti

Pi(t) = Pi+1(ti);

as in Figure 8.1, but that is not always necessary.
The parameter subranges can be transformed so as to provide a local

parameter u, umin � u � umax, for example the normalized range [0; 1]:

8.2 Curves 95

t min t maxt 1 t m−1t 2

Figure 8.1. Piecewise curve.

u = (t � ti)=(ti+1 � ti), ti+1 6= ti. The curve Pi(t) can then be reparame-
terized into ~Pi(u) = Pi(t(u)), umin � u � umax. In the previous example
t(u) = ti + u(ti+1 � ti). In the general case, the local parameter ranges are
independent of each other, so the ranges may be disconnected or overlap.

The word spline is an East Anglian dialect word, denoting a metal or wooden
strip, bent around pins to form an esthetically pleasing shape. It was observed
that under gentle bending the shape corresponds to a piecewise cubic polynomial
function having continuous �rst and second derivatives. In the context of math-
ematical curves a spline can be of any polynomial degree. The theory of splines
originates from approximation theory. Spline approximation in its present form
�rst appeared in a paper by Schoenberg, who developed methods for the smooth
approximation of empirical tables [Schoenberg, 46]. In approximation theory a
spline of order n + 1 is generally de�ned as a piecewise polynomial of degree
n that is everywhere Cn�1-continuous (see Section 8.2.2 for Cn-continuity). In
geometric modeling it is sometimes desired to model discontinuities on purpose,
so that the continuity requirement in the de�nition is left out:

Definition 8.1 (Polynomial spline) A polynomial spline function is a
piecewise polynomial function, and a polynomial spline curve is a curve whose
components are polynomial spline functions.

We are interested in the continuity of spline curve segments P (u), umin �
u � umax and Q(w), wmin � w � wmax, at points P (u0) and Q(w0) on the
curves, in particular at the end points P (umax) and Q(wmin).

8.2.2 Continuity

Parametric continuity is the classical notion of continuity of functions in anal-
ysis: if a function is n times continuously di�erentiable, or more exactly, the
derivatives exist and are continuous, then the function is n-th order parametric
continuous. Applying this concept to curves, we get the following de�nition:

96 Smooth curves and surfaces

(1)

P(u)

Q(v)

P
(1)Q

Figure 8.2. Two curve segments joining with derivatives of same direction but
di�erent magnitude.

Definition 8.2 (Parametric continuity) Two curves P (u) and Q(w) are
n-th order parametric continuous, n � 0, at u0 and w0, if and only if P (i)(u0) =
Q(i)(w0), i = 0; : : : ; n.

Parametric continuity of order n is denoted Cn. Positional discontinuity
is denoted C�1; C0-continuity is de�ned as positional continuity. Note that a
one-segment polynomial curve of arbitrary degree as given by Equation (8.1) is
C1.

Two curve segments need not have the same derivative vector at their joint
in order to have the same tangent line, as illustrated in Figure 8.2. Similarly,
they need not be C2 in order to have the same normal curvature (de�ned below).
A crucial observation here is that derivatives depend on the parameterization
while the tangent line and curvature depend on the shape of the spline and
are independent of parameterization, i.e. they are intrinsic. In order to base
the notion of continuity on intrinsic aspects of the curve, we can follow two
approaches: take a closer look at the e�ects of parameterizations (algebraic
approach) or take the intrinsic notions like tangent and curvature as a starting
point (di�erential geometric approach).

Since parametric continuity depends on the parameterization, one possibility
for an intrinsic notion of continuity is to avoid any dependency on a speci�c
parameterization. This leads to an algebraic de�nition of continuity called geo-
metric continuity:

Definition 8.3 (Geometric continuity) Curves P (u) and Q(w) are n-th
order geometric continuous at u0 and w0, if and only if there exists a regular
reparameterization u = u(~u) such that ~P (~u) and Q(w) are Cn at ~P (~u0) and
Q(w0), where ~P (~u) = P (u(~u)), and ~u0 is such that u(~u0) = u0.

Geometric continuity of order n is denoted by Gn or GCn, and is also called vi-
sual continuity. The term visual continuity was �rst used by [Farin, 82b], and the

8.2 Curves 97

p
0

p

p p

1

n−1 n 0
=q q1

q
n−1

n
q

Figure 8.3. G1-continuity conditions for two B�ezier segments.

term geometric continuity by [Barsky and Beatty, 83]. However, the concepts of
geometric continuity were already exploited by, for example, [Geise, 62].

The direction of the tangent line is determined by the tangent vector, the
normalized derivative vector T1(u) = P (1)(u)=kP (1)(u)k, which has unit length.
Two curves need not have the same derivative vector in order to have the same
tangent vector, as was illustrated in Figure 8.2. The normal curvature vector is
de�ned as

T2(u) = T
(1)
1 =�1(u);

where �1(u) is a scalar such that kT2(u)k = 1; �1(u) is called the (scalar)
curvature.

First and second order geometric continuity can alternatively be de�ned as
follows:

Definition 8.4 (G1- and G2-continuity) Two curves P (u) and Q(w) are
G1-continuous at u0 and w0, if and only if their tangent vectors coincide, and
G2-continuous if and only if additionally their normal curvature vectors and
scalar curvatures coincide.

Note that a common tangent line is not suÆcient for G1-continuity, since the
tangent vectors must additionally have the same direction. In other words, the
two curves must have the same orientation, otherwise they join with a sharp
cusp.

8.2.3 B�ezier segments

A well known example of blending functions in Equation (8.2) are the Bernstein
polynomials, named after [Bernstein, 12]:

Bn
i (u) =

�
n

i

�
ui(1� u)n�i; 0 � u � 1: (8.3)

The resulting curve is the B�ezier curve, or segment, of degree n.
The B�ezier formulation is often used because of the geometrical signi�cance

of the control points, unlike the polynomial coeÆcients in Equation (8.1). It is

98 Smooth curves and surfaces

D

x

y
z

P(s,t)

s

t

Figure 8.4. Mapping from a parameter domain to a surface.

readily veri�ed that P (0) = p0 and P (1) = pn, so that the curve interpolates
the �rst and last control points. The derivative has the following form:

P (1)(u) = n

n�1X
i=0

(pi+1 � pi)B
n�1
i (u):

In particular P (1)(0) = n(p1 � p0) and P (1)(1) = n(pn � pn�1), so that the
tangent vector at P (0) lies on the line through p0 and p1 and the tangent vector
at P (1) lies on the line through pn�1 and pn.

Let us consider two B�ezier segments P with control points pi and Q with
control points qi, and a common end point, say P (1) = Q(0), so that pn = q0.
As is just shown, the tangent vector at P (1) has direction pn � pn�1 and the
tangent vector at Q(0) has direction q1 � q0. So, for the two tangent vectors to
have the same direction, pn�1, pn = q0 and q1 should be collinear, see Figure 8.3.

8.3 Surfaces

8.3.1 Fundamentals

A surface in functional form is a scalar function f : R2 ! R. A surface P in
parametric form is de�ned component-wise, each coordinate component being a
function of two parameters, i.e. they are bivariate functions. The parameters are
allowed to range over some arbitrarily shaped region D � R2 : P (s; t) : D ! R

k ,
k � 3. Thus in particular, the parameter domain need not be rectangular, see
Figure 8.4. In its most general form, the parameter domain may have an arbi-
trary topology with disconnected pieces and holes. Such a cut out (trimmed o�)
domain corresponds to a so-called trimmed surface. Such trimmed surfaces often
result from the intersection of two curved surfaces, for example in Constructive
Solid Geometry (CSG) modeling, see e.g. [M�antyl�a, 88]. The domain over which
the surface is de�ned is then modi�ed, while the coordinate component functions
are left unchanged [Casale, 87].

A polynomial surface of total degree n has the following form:

P (s; t) =
X

i+j�n

pi;js
itj ; i; j 2 N;

8.3 Surfaces 99

with pi;j 2 R. A piecewise polynomial surface P (s; t) is de�ned patch by patch.
The parameter domain is then partitioned into sub-domains, which can be trans-
formed so as to provide local parameters for each patch. A polynomial spline
surface is a piecewise polynomial surface.

The i-th partial derivative with respect to s and the j-th with respect to t is
denoted P (i;j)(s; t):

P (i;j)(s; t) =
@i+jP

@si@tj
(s; t)

Note that P (i;j)(s; t) is a vector. To avoid possible problems with the parame-
terization of a surface P (s; t), we assume in the following that the �rst partial
derivatives P (1;0)(s; t) and P (0;1)(s; t) exist, and are linear independent. The
surface and its parameterization are then said to be regular.

The �rst order partial derivatives are a special case of a directional derivative,
which is de�ned as follows:

Definition 8.5 (Directional derivative) The directional derivative at sur-
face point P (s0; t0) in the direction d = (ds; dt) in the parameter space, is

rdP (s0; t0) = lim
h!0

P (s0 + hds; t0 + hdt)� P (s0; t0)

h
:

The partial derivatives are obtained in the direction of the axes of the parameter
space: r(1;0)P (s0; t0) = P (1;0)(s0; t0), and r(0;1)P (s0; t0) = P (0;1)(s0; t0).

We are interested in the continuity of spline surfaces P (s; t) and Q(u;w), in
particular along a common curve or edge.

8.3.2 Continuity

Analogous to curves, parametric continuity for surfaces is based on the equality
of derivatives:

Definition 8.6 (Parametric continuity) Surfaces P (s; t) and Q(u;w) are
Cn-continuous at points (s0; t0) and (u0; w0), if and only if P (i;j)(s0; t0) =
Q(i;j)(u0; w0), i+ j = 0; : : : ; n.

The surfaces are Cn along a common curve if they are Cn at each point on that
curve. C�1 denotes positional discontinuity.

Note that two surfaces need not have the same �rst order partial deriva-
tives in order to have the same tangent plane. As with curves, the deriva-
tives depend on the parameterization while the tangent plane does not. More-
over, on closed surfaces singularities occur where the derivative of the surface
is not de�ned. For an example see Figure 8.5, which shows a closed piece-
wise triangular surface P , together with a global parameterization and a par-
tial local parameterization. Corresponding points in the parameter domain and
the surface are indicated; the global domain is `folded' so as to join the Di

100 Smooth curves and surfaces

2

A C DA

B D

A C

B

B

A

C

D

A

B C

D D

D

1

3

s
t

s
t

s
t

s
t

Figure 8.5. Closed surface (top left) with a global parameterization (top right), and
a partial local parameterization (bottom row).

to point D on the surface. Taking the derivative at P (A) in the directions
D1 � A and D2 � A in the global parameterization, it follows from De�ni-
tion 8.5 that rD1�AP (A) 6= rD2�AP (A) (in fact if D1 � A = A � D2 then
rD1�AP (A) = �rD2�AP (A), see also [Herron, 85]). By contrast, the deriva-
tive at the closed surface requires rD1�AP (A) = rD2�AP (A). One might think
that a local parameterization solves the problem, but a parameterization of patch
(A;B;C) as shown in Figure 8.5, determines rB�AP (A) and rC�AP (A) which
imply the parameterization for patch (A;B;D) as shown, which in turn deter-
mines rD�AP (A). But the parameterization of (A;B;C) also implies the pa-
rameterization of patch (A;C;D) as shown. The resulting rD�AP (A) conicts
with the previous one. Thus, in both the global and the local parameteriza-
tion the derivative is not properly de�ned, while the tangent planes may still be
coincident at common patch boundaries.

Again we can take an algebraic and a di�erential geometry approach in or-
der to base the notion of continuity on intrinsic aspects of the surface. Anal-
ogous to curves, geometric continuity can be de�ned algebraically as follows
[DeRose and Barsky, 85]:

Definition 8.7 (Geometric continuity) Two surfaces P (s; t) and Q(u;w)
are Gn-continuous at (s0; t0) and (u0; w0) if and only if there exist regular repa-
rameterizations s = s(~s; ~t) and t = t(~s; ~t), such that ~P (~s; ~t) and Q(u;w) are
Cn-continuous at ~P (~s0; ~t0) and Q(u0; w0), where ~P (~s; ~t) = P (s(~s; ~t); t(~s; ~t)), and

8.3 Surfaces 101

~s0 and ~t0 are such that s(~s0; ~t0) = s0 and t(~s0; ~t0) = t0.

Note that the reparameterization may be di�erent at another point P (s1; t1),
otherwise we would again run into trouble with closed surfaces.

The di�erential geometry approach to de�ne geometric continuity is based
on the surface tangent plane and curvatures. Just as we considered the tangent
line of a curve we now consider the tangent plane of a surface. The tangent plane
at P (s0; t0) is spanned by the derivative vectors P (1;0)(s0; t0) and P

(0;1)(s0; t0).
The tangent plane is normal to the surface normal vector

N(s0; t0) =
P (1;0)(s0; t0)� P (0;1)(s0; t0)

kP (1;0)(s0; t0)� P (0;1)(s0; t0)k
; (8.4)

where `�' denotes the vector or cross product. The tangent planes at P (s0; t0)
and Q(u0; w0) coincide if and only if P (1;0)(s0; t0), P

(0;1)(s0; t0), Q
(1;0)(u0; w0),

and Q(0;1)(u0; w0) are coplanar.
However, analogous to curves, a common tangent plane is not suÆcient for

G1-continuity, since the surfaces must have the same orientation, i.e. the same
unit normal vector. Otherwise they join with a sharp ridge.

Theorem 8.1 (G1-continuity) Two surfaces are G1-continuous at a point if
and only if their unit normal vectors at that point coincide.

Second order geometric continuity is based on curvature. For any direction
d in the tangent plane at P (s0; t0), the plane through d and N(s0; t0) intersects
P (s; t) in a curve. The normal curvature of this curve is the normal curvature of
the surface in the direction of d: �d(s0; t0). Unless �d(s0; t0) is the same in all
directions, there are two directions d1 and d2 in which �d(s0; t0) takes the max-
imum and minimum values: the principal curvatures �1(s0; t0) and �2(s0; t0),
respectively.

Theorem 8.2 (G2-continuity) Two surfaces are G2-continuous at a point if
and only if their normal vectors and their principal curvatures at that point
coincide.

8.3.3 B�ezier triangles

In the de�nition of B�ezier triangles, the so-called barycentric coordinates are
often used as parameters, because of the symmetric form of the resulting de�-
nition. Let us �rst rewrite the univariate Bernstein polynomial Bn

i (u) given in
Equation (8.3) into:

Bn
i;j(t; u) =

n!

i!j!
tiuj ; i+ j = n; i; j 2 N; (8.5)

where t and u are the barycentric coordinates on an arbitrary closed interval
[a; b]. Any value c in R can be uniquely expressed in terms of barycentric co-
ordinates with respect to any closed interval: c = ta + ub. Note that this is

102 Smooth curves and surfaces

x

y

z
p
3,0,0

p

p

p

p

p

p

p

p
p

0,3,0

0,0,3 2,1,0

1,2,0

1,1,1

0,1,2
0,2,1

2,0,1

1,0,2

Figure 8.6. Left: B�ezier control polyhedron. Right: corresponding cubic B�ezier
patch.

equivalent to c = a+ u(b� a). Regarding t and u as weights of a and b, c is the
center of gravity, or barycenter. Hence the term barycentric coordinates.

Analogously, any point D in the plane can be uniquely expressed in barycen-
tric coordinates (t; u; w) with t+ u+ w = 1, relative to three ordered points A,
B, and C that are not collinear: D = tA+uB+wC. Note that this is equivalent
to D = A+ u(B �A) +w(C �A). Barycentric coordinates are treated in more
detail by [Farin, 86] and [Farin, 90a].

Analogous to the univariate Bernstein polynomials over an interval, the Bern-
stein polynomials of degree n over a non-degenerate triangle (A;B;C) are de�ned
by

Bn
i;j;k(t; u; w) =

n!

i!j!k!
tiujwk; i+ j + k = n; i; j; k 2 N;

where t, u, and w, with t+ u+ w = 1, are barycentric coordinates with respect
to (A;B;C). The Bernstein polynomials form a basis for all polynomials of total
degree n over that triangle. That is, every polynomial function f : (A;B;C)! R

of degree n can be written in the form

f(t; u; w) =
X

i+j+k=n

pi;j;kB
n
i;j;k(t; u; w); pi;j;k 2 R:

The polynomial function f describes a surface over the domain triangle (A;B;C).
A surface patch in this form is called a B�ezier patch, and the scalars pi;j;k are
called B�ezier ordinates. Such a patch is a function and cannot have an arbi-
trary shape in 3D. In particular, it cannot be used for interpolation of arbitrary
scattered data in 3D, or form a closed surface.

A parametric B�ezier triangle in arbitrary dimension is de�ned component-
wise:

P (t; u; w) =
X

i+j+k=n

pi;j;kB
n
i;j;k(t; u; w);

8.3 Surfaces 103

dP P = dc
Q

c Q

Figure 8.7. Tangent plane continuity is achieved if rcP , rdP = rdQ, and rcQ
are coplanar.

where pi;j;k are points in the embedding space, and are called control points,
forming an open control polyhedron. See Figure 8.6 for a control polyhedron and
the corresponding cubic B�ezier patch. Note that a parametric patch is de�ned
without explicit reference to a domain triangle. An extensive presentation of
triangular B�ezier patches is given by [Farin, 86].

The B�ezier formulation is often used because of the geometrical signi�cance
of the control points. For instance,

P (t; u; 0) =
X

i+j+k=n

pi;j;kB
n
i;j;k(t; u; 0) =

X
i+j=n

pi;j;0B
n
i;j(t; u);

which is a univariate B�ezier curve. The patch is thus a curved triangle interpo-
lating pn;0;0, p0;n;0, and p0;0;n, having B�ezier curve edges, see Figure 8.6.

The di�erence between two barycentric coordinates de�nes a direction in the
parameter space. The derivative in the direction d = (d1; d2; d3), d1+d2+d3 = 0,
is given by

rdP (t; u; w) = n
X

i+j+k=n�1

(d1pi+1;j;k + d2pi;j+1;k + d3pi;j;k+1)B
n�1
i;jk (t; u; w):

(8.6)

Let us consider two patches P with control points pi;j;k and Q with control
points qi;j;k, having a common edge. Without loss of generality we may assume
that P (t; u; 0) = Q(t; u; 0). The tangent plane of P along P (t; u; 0) is spanned by
any two derivative vectors having di�erent directions, for example the directions
d = (0; 1; 0) � (1; 0; 0) = (�1; 1; 0) and c = (0; 0; 1) � (1; 0; 0) = (�1; 0; 1).
The derivative vector rdP is actually the tangent vector of P (t; u; 0). Since
P (t; u; 0) = Q(t; u; 0), we also have rdP = rdQ. So, the tangent plane of Q
spanned by rdQ and rcQ coincides with the tangent plane of P if and only if
rcQ, rdQ = rdP , and rcP lie in the same plane. That is,

[rdP;rcP;rcQ] = 0; (8.7)

where `[]' denotes the determinant. Such a situation is depicted in Figure 8.7.
Necessary and suÆcient conditions on the control points are derived from this

104 Smooth curves and surfaces

constraint by [DeRose, 90]. Note again that Equation 8.7 is weaker than the
condition for G1-continuity, since the orientation of the tangent plane (direction
of the normal vector) is not determined here.

Using Equation (8.6) we get rdP = rdQ = n(K �M), rcP = n(L�M),
and rcQ = n(R�M), where

M =
X

i+j=n�1

pi+1;j;0B
n�1
i;j;0 (t; u; 0);

K =
X

i+j=n�1

pi;j+1;0B
n�1
i;j;0 (t; u; 0);

L =
X

i+j=n�1

pi;j;1B
n�1
i;j;0 (t; u; 0); and

R =
X

i+j=n�1

qi;j;1B
n�1
i;j;0 (t; u; 0):

(8.8)

M , K, L, and R are functions of t, since u = 1� t. We see that rdP , rcP , and
rcQ are all of degree (n� 1).

The requirement that the determinant in Equation (8.7) equals zero amounts
to

(R�M) = �(t)(K �M) + �(t)(L�M): (8.9)

Solving �(t) and �(t) shows that they are rational polynomial functions having a
numerator and denominator of degree n� 1 at most. An equivalent formulation
for Equation (8.9) is thus the following tangent plane continuity condition:

E(t; u)(K �M) + F (t; u)(L�M) +G(t; u)(R�M) = 0; t+ u = 1; (8.10)

where E, F , and G are polynomials having at most degree n� 1.
The edge that P and Q have in common may be degenerate, that is, of lower

degree than the patch itself. Also the two patches may be of di�erent degree.
So, the degrees of rdP , rcP , and rcQ can all be di�erent. The degrees of E,
F , and G, and the necessary and suÆcient conditions on the control points are
derived by [Liu and Hoschek, 89].

8.4 Visual aspects of continuity

Geometric continuity conditions for curves with application to insole shape de-
sign are described by [Manning, 74]. G2-continuity seems to be suÆcient for a
visually smooth appearance of the curve. A discontinuity in the curvature can
be detected by a practised eye, but it seems that higher order discontinuity is
not visible.

The visual aspects of surfaces are much more complicated, since the sur-
face contour, its texture, contrast, and illumination, are all involved, see
[Koenderink, 90]. Here, I will discuss one aspect of illumination: reection lines.

8.4 Visual aspects of continuity 105

N

L

R

E
θ θ φ

Figure 8.8. Point light source reection geometry.

Let us see how continuity between surface patches a�ects the specular reec-
tion of a linear light source. Consider �rst an illumination model with a point
light source. For any point on the surface, N is the surface normal, L is the unit
vector in the direction of the light, R is the unit reection vector, and E is the
unit vector in the direction of the viewpoint, the eye, see Figure 8.8. A mirror
reects light from direction L only in the direction R. Glossy surfaces exhibit
specular reection by scattering light anisotropically. The empirical model for
the specular reection of glossy surfaces described by [Phong, 75] assumes that
maximum specular reection occurs when the angle � between R and the eye
vector E is zero, and falls o� sharply as � increases.

Now, given a linear light source LL(t), the shape of the reection curve
LL�(t) depends on the shape of the surface. If the surface is G1-continuous,
the tangent vectors of LL�(t) at both sides of the patch boundary lie in the
surface tangent plane, but need not be collinear, see Figure 8.9. So, G1 surfaces
generally show a reection line that is not G1-continuous.

Conversely, let us now assume that LL�(t) is G1-continuous, as well as the
surface itself. Let V be the view point (position of the eye) such that the angle

LL*(t)

Figure 8.9. G1 surface with a reection curve LL�(t) that is not G1.

106 Smooth curves and surfaces

N

LL*(t)

V

EL

LL(t)

Figure 8.10. Linear light source reection geometry with � = 0.

between E and R is zero, then

E(t) =
V � LL�(t)

kV � LL�(t)k

and

L(t) =
LL(t)� LL�(t)

kLL(t)� LL�(t)k
:

A necessary and suÆcient condition for a point LL�(t) to be a reection point
is (see Figure 8.10):

N(t) � (E(t)� L(t)) = 0; (8.11)

where N(t) is the surface normal along the reection curve, and `�' the dot or
scalar product of two vectors. Di�erentiation of Equation (8.11) with respect to
t gives

N (1)(t) � (E(t) � L(t)) +N(t) � (E(1)(t)� L(1)(t)) = 0: (8.12)

This holds if both terms of the sum are zero, so that either N (1)(t) = 0, which
means that the reection curve is lically linear, or N (1)(t) is perpendicular to
(E(t)�L(t)), which whould imply that the point is in the shadow. Otherwise, if
not both terms of the sum are zero, then since the surface is G1-continuous, N(t)
is continuous, and since we assume that LL�(t) is G1-continuous, E(t), E(1)(t),
L(t), and L(1)(t) are also continuous. So, apart from the special cases, Equa-
tion (8.12) only holds when N (1)(t) is continuous. This implies that the surface
curvature is continuous. A G1 reection curve thus implies a G2-continuous
surface, except for special cases.

On the other hand, G2-continuity of the surface does not imply satisfaction
of Equation (8.12), and so Equation (8.11) need not hold. Therefore, a G2-
continuous surface need not imply a G1 reection curve.

8.5 Concluding remarks 107

If the angle � between E and R is larger than zero, the same e�ect is visible,
except for a sharp fallo� in the reected light intensity.

8.5 Concluding remarks

This chapter has introduced representations for curves and surfaces, in particular
the B�ezier formulation, and the notions parametric and geometric continuity. I
have shown that derivatives at closed surfaces exhibit singularities for piecewise
parameterization in addition to the case for global parameterization, so that
parametric continuity is not even properly de�ned.

I have related geometric continuity to illumination, and have shown in par-
ticular that a G1 surface need not give a G1 reection curve, and on the other
hand, a G1 reection curve implies that the surface is G2. So, the surface can
be visually inspected without explicitly computing curves of constant curvature
along the surface, or other surface features [Higashi et al., 90]. Incorporating a
linear light source into the illumination model gives surface continuity informa-
tion for free. However, algorithms interpolating the surface normal vector, like
Phong shading, may introduce artifacts [Foley et al., 90].

Perception of (dis)continuity of a surface depends not only on the surface
itself but also on the illumination, in a computer model as well as in the physical
world. The term `visual continuity' for what has been de�ned as Gn-continuity
is therefore inappropriate.

108 Smooth curves and surfaces

9

G1 boundary construction

This chapter is concerned with the construction of a G1-continuous object boundary.
For 2D, a straightforward construction of a closed piecewise cubic B�ezier curve
passing through given vertices with prescribed tangent vectors is presented. For 3D,
an analysis of the total degree required to solve several interpolation problems using
polynomial patches is given. The attention is then focused on the construction of a
closed piecewise triangular cubic B�ezier surface, that interpolates given vertices with
prescribed normal vectors. In order to get suÆcient degrees of freedom to de�ne the
control points, a triangle three-split, a two-split and a six-split scheme are developed.
The split into six sub-triangles results in a surface that is G1-continuous as well as
visually pleasing.

9.1 Introduction

We can distinguish several scattered data interpolation problems, depending on
the input data and the continuity requirements. In each case our purpose is to
construct a smooth closed boundary through the vertices.

In 2D, the input must at least consist of the topology of a set of vertices
along the boundary, i.e. an ordering. This is equivalent to a closed polygon, for
example obtained by a reconstruction (Chapter 5) or polygonal approximation
algorithm (Chapter 7). Additional data at the vertices can be the tangent line
or derivative vectors. Usual continuity requirements are G1- or G2-continuity
everywhere at the curve.

In 3D, the input must at least consist of the topology of a set of vertices

109

110 G1 boundary construction

along the boundary, i.e. a triangulation of the vertices. This is equivalent to a
closed polyhedron of triangular facets, for example obtained by a reconstruction
(Chapter 5) or polyhedral approximation algorithm (Chapter 7). Additional
data at the vertices can be the (unit) surface normal, tangent vectors (direction
of derivatives) of the patch edges, or derivative vectors (tangent and magni-
tude) of the edges. Data along the edges are for example surface normals, cross
edge derivatives and curvatures. Usual continuity requirements are G1- or G2-
continuity everywhere at the surface.

In this chapter we will consider the interpolation of the vertices of the polyhe-
dron by triangular patches. I shall refer to the interpolation of vertex positions
as the P-interpolation problem, to position and surface normal at the vertices
as the PN-interpolation problem, to position and patch edge tangent vector as
the PT-interpolation problem, and to position and patch edge derivative vector
as the PD-interpolation problem. Note that PN-interpolation not only requires
a common tangent plane of all patches incident to a vertex, but also the same
orientation of that tangent plane. A surface that satis�es the PN-interpolation
requirements is G1-continuous at the vertices. In order to be G1-continuous at
every point on the surface, the patches should be G1 themselves, and should
join G1-continuously at the edges. Note further that PT-interpolation does not
denote the interpolation of the tangent plane, but rather the tangent vectors
along the patch edges, which is more restrictive.

The rest of this chapter is organized as follows. Section 9.2 gives a sim-
ple and obvious way to construct a G1-continuous boundary curve. Section 9.3
presents an analysis of the required polynomial degree for the various interpola-
tion problems in 3D, not found in the literature. Section 9.5 gives an overview of
existing local methods for the PN-interpolation problem. Section 9.6 introduces
a new solution that is cubic and based on the splitting of a triangle into three
sub-triangles, and Section 9.7 describes how the triangle splitting can be made
adaptive, that is, dependent on the geometry of the triangulation. Section 9.8
presents a scheme that splits a triangle into six sub-triangles, and Section 9.9
gives some concluding remarks.

9.2 A G1 boundary curve

Consider a sequence of vertices v0; : : : ; vNv�1 in the plane that has to be in-
terpolated. A polygon through the vertices is a linear interpolation with only
C0-continuity. Our purpose is to construct a closed G1 curve through the ver-
tices. This is done in the following way. First we estimate the tangent vector at
each vertex, then we construct a G1 curve that interpolates vertices and tangent
vectors.

Let us denote the tangent vector at vi with Ti. This tangent line can be
estimated by weighting the vectors (vi�vi�1)=kvi�vi�1k and (vi+1�vi)=kvi+1�
vik and normalize the sum:

1. Weight by length: take (vi � vi�1) + (vi+1 � vi), giving vi+1 � vi�1, and
normalize to unit length. The reasoning behind this method is that the larger

9.2 A G1 boundary curve 111

of the segments vi�1vi and vivi+1 corresponds to a larger part of the curve,
and should a�ect the tangent vector most.

2. Weight uniformly: take (vi� vi�1)=kvi� vi�1k+(vi+1� vi)=kvi+1� vik, and
normalize to unit length.

3. Weight by inverse length: take (vi � vi�1)=kvi� vi�1k
2+ (vi+1 � vi)=kvi+1�

vik
2, and normalize to unit length. The idea of this method is that a close

neighboring vertex knows more about the local curve tangent and should have
a larger weight than the far vertex.

All these methods only take into account the neighboring vertices vi�1 and vi+1.
Other methods could be applied that use more vertices and for example estimate
the tangent line by a least-squares �t. The analogue of method 1 for surface
normal estimation has been reported to work well, see Section 9.4; therefore
method 1 is used here.

In order to get a closed G1 curve we construct a B�ezier segment between
each pair of consecutive vertices. Let us consider the degree n B�ezier segments
P between vi�1 and vi, and Q between vi and vi+1 (in this subsection the
indices are considered modulo Nv). In order to interpolate the vertices, we must
set p0 = vi�1, pn = q0 = vi, and qn = vi+1. For the derivative vectors P

(1)(1)
and Q(1)(0) to be collinear, pn�1 and q1 must lie on the line through Ti, denoted
by T linei. If T linei�1 intersects T linei, and T linei intersects T linei+1, we can
set n = 2, p1 to T linei�1 \ T linei, and q1 to T linei \ T linei+1. The resulting
B�ezier segments are then completely de�ned, and have collinear tangent vectors.
All other segments are de�ned in the same way, so that a closed quadratic curve
is constructed. However, with only tangent line continuity the tangent vectors
can still have opposite directions, which gives sharp cusps, i.e. not G1-continuity.

In order to ensure G1-continuity we need more degrees of freedom. This is
obtained by using one more control point, so that we get cubic B�ezier segments.
Now we must set p0 = vi�1, p3 = q0 = vi, and q3 = vi+1, to interpolate
the vertices. The control points p1 and p2 are determined by the following
heuristic method, which gives good results in many practical cases. Vertex p3 is
orthogonally projected onto T linei�1, giving p

�
3. Control point p1 is then set to

p0+(p�3 � p0)=3. Analogously, p2 = p3+(p�0 � p3)=3, where p
�
0 is the orthogonal

projection of p0 onto T linei. All other segments are de�ned in the same way,
so that a closed cubic curve is constructed. The curve is G1-continuous at vi if
P (1)(1) and Q(1)(0) have the same direction, which is the case when p�3 and q�0
lie at opposite sides of vi on T linei. This condition is satis�ed for many sets of
vertices whose successive tangent lines do not change direction wildly. In other
cases, the tangent line at a vertex should be changed in order for the projection
method above to work properly.

Figure 9.1 shows an example of this algorithm to construct a G1-continuous
curve, using method 1 to estimate the tangent line.

Cubic curves are necessary and suÆcient to achieve even G2-continuity, see
[Farin, 82b] and [B�ohm, 85].

112 G1 boundary construction

Figure 9.1. Vertices and linear interpolation (above), and the constructed B�ezier
control polygon and G1 curve (below).

9.3 Analysis of surface degree 113

M0

M2

M0

M

M

0

M2

1

3

R 2

0R

R 1

L

L 1

L 2

0 R 0

1M

R 1

L

L 1

Figure 9.2. Control points involved for G1 connection of two quadratic (left) and
cubic (right) patches.

9.3 Analysis of surface degree

A polyhedron is a linear interpolation of the vertices with only C0-continuity.
One may wonder what polynomial degree is necessary for the various G1 in-
terpolation problems PN, PT, and PD. It has been shown by [Piper, 87] that
degree four is suÆcient for the PD problem. He has further shown by means of
a counterexample, but not by analysis, that degree three is not always suÆcient.
In this section I present an analysis of the required polynomial degree for the
various interpolation problems in 3D.

Let us consider the G1-continuity conditions for two B�ezier patches P and
Q that have a common edge, say P (u; v; 0) = Q(u; v; 0). The control points
involved in the G1 connection of two patches are shown in Figure 9.2. To simplify
notation, we denote pi;j;0 = qi;j;0 with Mi (middle column of control points),
pi;j;1 by Li (left), and qi;j;1 by Ri (right).

Quadratic case. For quadratic patchesM , K, L, and R (given by Equation (8.8))
are: M = tM0+uM1, K = tM1+uM2, L = tL0+uL1, and R = tR0+uR1. The
functions E, F , and G are at most linear: E(t; u) = e0t+e1u, F (t; u) = f0t+f1u,
and G(t; u) = g0t + g1u. Since u = 1 � t, we see that E(t; u) = t(e0 � e1) + e1
reduces to a constant if e0 = e1, and likewise for F and G.

Substitution of M , K, L, R, E, F , and G into the tangent plane continuity
condition Equation (8.10) yields t2C0 + tuC1 + u2C2 = 0, with coeÆcients Ci

as given below. Since this equation must hold for all t+ u = 1, C0, C1, and C2

should all be zero:

C0 = e0(M1 �M0) + f0(L0 �M0) + g0(R0 �M0) = 0;

C1 = e1(M1 �M0) + e0(M2 �M1) + f1(L0 �M0) + f0(L1 �M1) +

g1(R0 �M0) + g0(R1 �M1) = 0;

C2 = e1(M2 �M1) + f1(L1 �M1) + g1(R1 �M1) = 0:

(9.1)

114 G1 boundary construction

If e0 6= e1, f0 6= f1, or g0 6= g1, that is, if E, F , and G do not all degenerate to
constant functions, then this set of equations is independent.

Equation (9.1) is a set of three vector equations, comprising nine scalar equa-
tions. For a whole surface of Ne edges we therefore have 9Ne equations. In the
P-problem, only the control points M0 andM2 of each edge are known. Control
point M1 and the coeÆcients ei, fi, gi, i = 0; 1 are then unknown. Since the
control points consist of three coordinates, there are 9Ne unknowns. So there
is in general a solution to the P-problem. However, since Equation (9.1) is not
linear in the unknowns, the solution need not be unique. In any case, there
are no degrees of freedom left to interpolate prescribed normals, tangents, or
derivatives. We conclude that degree two is necessary and in general suÆcient
for the P-problem, but not suÆcient for the PN-, PT-, and the PD-problem.

Cubic case. For cubic patches M , K, L, and R (given by Equation (8.8)) are:
M = t2M0+2tuM1+u

2M2,K = t2M1+2tuM2+u
2M3, L = t2L0+2tuL1+u

2L2,
and R = t2R0+2tuR1+u

2R2. The functions E, F , and G are at most quadratic:
E(t; u) = e0t

2 + e1tu + e2u
2, etc. Since u = 1 � t, we see that E(t; u) =

t2(e0� e1+ e2)+ t(e1� 2e2)+ e2 reduces to a linear function if e0� e1+ e2 = 0,
and to a constant if additionally e1 � 2e2 = 0.

Substitution of M , K, L, R, E, F , and G into the tangent plane continuity
condition Equation (8.10) now gives t4C0+ t3uC1+ t2u2C2+ tu3C3+u4C4 = 0,
with

C0 = e0(M1 �M0) + f0(L0 �M0) + g0(R0 �M0) = 0; (9.2a)

C1 = e1(M1 �M0) + 2e0(M2 �M1) + f1(L0 �M0) +

2f0(L1 �M1) + g1(R0 �M0) + 2g0(R1 �M1) = 0;
(9.2b)

C2 = e2(M1 �M0) + 2e1(M2 �M1) + e0(M3 �M2) +

f2(L0 �M0) + 2f1(L1 �M1) + f0(L2 �M2) +

g2(R0 �M0) + 2g1(R1 �M1) + g0(R2 �M2) = 0;

(9.2c)

C3 = 2e2(M2 �M1) + e1(M3 �M2) + 2f2(L1 �M1) +

f1(L2 �M2) + 2g2(R1 �M1) + g1(R2 �M2) = 0;
(9.2d)

C4 = e2(M3 �M2) + f2(L2 �M2) + g2(R2 �M2) = 0: (9.2e)

If e0�e1+e2 6= 0, f0�f1+f2 6= 0, and g0�g1+g2 6= 0, i.e. if E, F , and G do
not all degenerate to linear functions, then this set of equations is independent.

Equation (9.2) is a set of �ve vector equations, or �fteen scalar equations. For
a whole surface of Ne edges and Nt triangles we therefore have 15Ne equations.
Considering �rst the P-problem, only the control pointsM0 andM3 of each edge
are known. Control points M1 and M2 and the coeÆcients ei, fi, gi, i = 0; 1; 2
are unknown, and for each triangle the control point L1 is also unknown. So,
there are 15Ne+3Nt unknowns. However, for a closed triangulation 3Nt = 2Ne.
This results in a total of 15Ne equations in 17Ne unknowns, so that in general
there is more than one solution.

The PN-problem prescribes that the control points M1 and M2 lie in given

9.4 Surface normal estimation 115

tangent planes at the vertices M0 and M3, respectively (apart from the tangent
plane orientation). This results in 2Ne additional equations, giving a total of
17Ne equations in 17Ne unknowns. So in general there is a solution to the
PN-problem, and if E, F , and G do not degenerate to linear functions, this
solution is unique. In that case, however, there are no degrees of freedom left to
interpolate prescribed tangents or derivatives. We conclude that degree three is
generally necessary and suÆcient for the PN-problem, but not suÆcient for the
PT- and PD-interpolation problem.

[Piper, 87] has shown that degree four is necessary and suÆcient for the PD-
interpolation problem of two patches, but analogous to the previous analysis it
is easily veri�ed that it also applies to a whole surface. Consequently, also for
the PT-problem degree four is suÆcient, and necessary as well, as shown above.

The results of this section are summarized in the following table, giving
the necessary and suÆcient polynomial degrees for the considered interpolation
problems:

2 3 4
P +
PN +
PT +
PD +

9.4 Surface normal estimation

In the rest of this chapter only the PN-interpolation problem is considered. First,
the surface normals at the vertices must be estimated, then we construct a G1

surface that interpolates the vertices and the surface normals. Analogously to
the tangent vector of a curve, the normal vector at a vertex vi can be estimated
by weighting the unit normals of all the incident triangles, and normalize the
sum:

1. Weight by area. For each triangle, take the cross-product of two di�erent
vectors between its vertices. This vector is normal to the triangle, and its
magnitude is twice the triangle area. Sum the vectors, and normalize to unit
length. The idea of this method is that the larger triangles correspond to a
larger part of the surface, and should a�ect the orientation of the tangent
plane most.

2. Weight uniformly. Divide the cross-products by twice the area of the triangle
so as to give unit normals. Then normalize the sum.

3. Weight by inverse area. Divide each unit normal by the area of the triangle,
then normalize the sum. The reasoning behind this method is that a close
neighboring vertex knows more about the local surface normal and should
have a larger weight than far away vertices.

All these methods only take into account the vertices adjacent to vi. Other
methods could be applied that use more vertices, and for example estimate the

116 G1 boundary construction

Figure 9.3. Schematic representation of a three-split of a cubic B�ezier triangle.

tangent plane by a least-squares �t. It has been reported that preliminary results
indicate that estimation method 1 is the most accurate method [Sloan, 91], and
is the one used here.

9.5 Local schemes

Although degree three is suÆcient for a solution to the PN problem to exist, it is
a global solution, resulting from a large set of equations involving all the control
points. Local schemes are preferred because they are simpler, computationally
cheaper, and allow local changes of vertex position and normal.

In order to achieve local solutions to the PN-interpolation problem we need
more degrees of freedom to choose the control points so as to obtain G1-
continuity. There are three well known strategies to get more degrees of freedom:
blending of patches, raising the degree of the polynomial patch from three to
four, and patch subdivision. Blended patches are composed of a sum of patches
giving an interpolating result, and a correction term to make the patch G1. How-
ever, the correction term is a rational polynomial. Blending methods are applied
by for example [Herron, 85], [Nielson, 87], and [Hagen and Pottmann, 88].

Raising of the polynomial degree of the patch is performed by [Farin, 83],
[Piper, 87], [Jensen, 87], [Puger and Neamtu, 91], and [Schmitt et al., 91].
Some of these methods introduce a degeneracy: [Farin, 83] and [Jensen, 87]
let the edge of the patch be of actual degree three (as a result the connec-
tion to cubic rectangular patches is straightforward, see [Farin, 82a]), while
[Puger and Neamtu, 91] and [Schmitt et al., 91] contract some of the interior
control points into one.

General patch subdivision splits a patch into several patches that together
have the same shape as the original one. Subdivision algorithms for B�ezier tri-
angles are given by [Goldman, 83]. The so-called Clough{Tocher triangle split-
ting scheme (named after [Clough and Tocher, 65]) subdivides a triangular patch
P (t; u; w) at the surface point P (13 ;

1
3 ;

1
3) into three new triangles. The parent

triangle is referred to as the macro triangle, the three new ones as micro tri-
angles. See Figure 9.3 for a schematic representation of a three-split of a cubic
B�ezier triangle.

9.6 A cubic three-split scheme 117

The Clough{Tocher split has been used for cubic functional surfaces in �nite-
element analysis, see [Strang and Fix, 73], and later for quartic parametric sur-
faces in scattered data interpolation by [Farin, 83]. The triangle split has two
e�ects: the number of control points is increased, and the interpolation con-
straints apply to only one edge of the micro triangle, the one that coincides
with the macro triangle edge. At the interior edges no interpolation data is
prescribed, and only G1-continuity is required. Consequently, the control points
that are not incident to a macro triangle edge in the control polyhedron, can
be moved freely without a�ecting interpolation and continuity along the macro
triangle edges.

This three-split scheme is applied by [Farin, 83], [Piper, 87], and [Jensen, 87]
to quartic B�ezier patches in order to achieve a local solution to the PN-
interpolation problem. In the following section I will show that a cubic three-split
scheme generally provides enough degrees of freedom to solve the PN-problem
locally.

9.6 A cubic three-split scheme

Let a set of vertices be given, as well as their topology (a triangulation) and
surface normals at the vertices. The notation used and the control point lay-out
and naming are illustrated in Figure 9.4. Let us consider the macro triangle
edge between M0 and M3, and let E, F , and G be linear: E(t; u) = e0t + e1u,
F (t; u) = f0t+ f1u, G(t; u) = g0t+ g1u. The tangent plane continuity condition
Equation (8.10) then becomes t3C0 + t2uC1 + tu2C2 + u3C3 = 0, with

C0 = e0(M1 �M0) + f0(L0 �M0) + g0(R0 �M0) = 0; (9.3a)

C1 = e1(M1 �M0) + 2e0(M2 �M1) + f1(L0 �M0) + 2f0(L1 �M1) +

g1(R0 �M0) + 2g0(R1 �M1) = 0;
(9.3b)

C2 = 2e1(M2 �M1) + e0(M3 �M2) + 2f1(L1 �M1) + f0(L2 �M2) +

2g1(R1 �M1) + g0(R2 �M2) = 0;
(9.3c)

C3 = e1(M3 �M2) + f1(L2 �M2) + g1(R2 �M2) = 0: (9.3d)

The algorithm consisting of the following six steps splits each macro triangle
into three cubic micro triangles, and sets the B�ezier control points so as to satisfy
the tangent plane continuity condition along all the generated B�ezier patch edges,
that is, all the micro triangle edges.

Step 1. First, we construct cubic macro triangles P , interpolating the given
vertices. To this end, p3;0;0, p0;3;0, and p0;0;3 are set to the vertices of a given
triangle.

Step 2. Control point p2;1;0 is set as follows: p0;3;0 is projected onto the tangent

118 G1 boundary construction

M

M

M

M

L R

RL

L
R

Z

X

Y W

X

W

W

Y

Y

X

step1

step4

step 5

step 6

step 2 and 3

p3,0,0

p

p

p2,1,0

0,3,0

1,2,0

0,2,1p

2,0,1p

0

00

1

1

12

22

3

1

11

2

2

2

3

3

3

p1,1,1

Figure 9.4. Control points used in the three-split scheme.

plane at p3;0;0 giving a point p
�
0;3;0, then

p2;1;0 = p3;0;0 + (p�0;3;0 � p3;0;0)=3:

Control points p1;2;0, p0;2;1, p0;1;2, p2;0;1, and p1;0;2 are set in a symmetrical way.

Step 3. Following [Farin, 83], p1;1;1 is set to as follows:

p1;1;1 = (p2;1;0 + p1;2;0 + p2;0;1 + p1;0;2 + p0;2;1 + p0;1;2)=4� (p3;0;0 + p0;3;0 + p0;0;3)=6:

We now have a surface interpolating the vertices and normals, but it is not yet
tangent plane continuous.

Step 4. Each macro triangle is split at P (13 ;
1
3 ;

1
3) into three micro triangles by

B�ezier patch subdivision. For each macro triangle edge the control points Mi,
i = 0; 1; 2; 3 are computed and remain �xed. R0 is set to

1
3 (p3;0;0+p2;1;0+p2;0;1),

and L0, L2, and R2 are set analogously.

9.6 A cubic three-split scheme 119

Step 5. Control points L1 and R1 have to be set such that the tangent plane
continuity condition Equation (8.10) is satis�ed. Since Mi, i = 0; 1; 2; 3, and
Li, Ri i = 0; 2 are known by now, Equations (9.3a) and (9.3d) determine the
coeÆcients ei, fi, and gi, i = 0; 1, up to a constant factor, so that we can
arbitrarily set e0 = e1 = 1. The unknowns L1 and R1 are constrained by (9.3b)
and (9.3c). Rewriting gives:

2f0L1 + 2g0R1 = 2f0M1 + 2g0M1 � e1(M1 �M0)� 2e0(M2 �M1)

� f1(L0 �M0)� g1(R0 �M0);

2f1L1 + 2g1R1 = 2f1M1 + 2g1M1 � 2e1(M2 �M1)� e0(M3 �M2)

� f0(L2 �M2)� g0(R2 �M2):

(9.4)

If this pair of equations is independent, it uniquely determines L1 and R1. Tan-
gent plane continuity is then achieved across the macro triangle edges.

Step 6. In order to get tangent plane continuity across the edges of the micro
triangles we set the control points Y1, Y2, Y3, and Z from Figure 9.4 as follows
(see [Farin, 83]):

Y1 = (W1 +X1 +X2)=3;

Y2 = (W2 +X2 +X3)=3;

Y3 = (W3 +X3 +X1)=3;

Z = (Y1 + Y2 + Y3)=3:

Correctness of this algorithm is proved by the following theorem.

Theorem 9.1 Steps 1 to 6 above construct an overall tangent plane continuous
surface.

Proof. By construction (Step 5), the macro triangle edges satisfy Equation (9.3),
and are thus tangent plane continuous. In Step 4, W3 (= R0) is set to

1
3 (p3;0;0+

p2;1;0+p2;0;1), and in Step 6, Y3 is set to
1
3 (W3+X1+X3), and Z to 1

3 (Y0+Y1+Y2).
This makes the patch tangent plane continuous along the micro triangle edge
between p3;0;0 and Z, since Equation (8.10), when applied to this edge, is satis�ed
for constant values of E(t; u), F (t; u), and G(t; u). The other two edges are
treated in a symmetrical way in Steps 4 and 6. Because the same constants are
used for the other two edges, there is no conict in setting Z.

The surface is thus tangent plane continuous along all triangle edges. Since
cubic B�ezier triangles are internally C2-continuous, the whole surface is tangent
plane continuous.

Essentially the same scheme of splitting triangles into three sub-triangles has
been described by [Cottin and Damme, 90], but is independently derived here.

Analogous to the construction of cubic G1 curves, in order to achieve a
continuously changing unit normal vector (G1-continuity), the orientation of the
tangent plane must be properly de�ned at every point on the common edge of

120 G1 boundary construction

Figure 9.5. Result of the three-split scheme. Left: macro triangle B�ezier control
points before splitting. Right: �nal control points of all micro triangles.

two adjacent triangles, in addition to the tangent plane continuity condition.
Only when both conditions are met, the surface is G1-continuous. The tangent
plane orientation will be properly de�ned if f0 and g0 in Equation (9.3a) (and
also f1 and g1 in (9.3d) have opposite signs. This condition is satis�ed for many
sets of vertices whose neighboring normal vectors directions do not change wildly.
In other cases, the normal vector at a vertex should be altered in order for the
projection in Step 2 to result in opposite signs of f0 and g0. A detailed analysis
on this is presented by [Cottin and Damme, 90].

We see that a three-split gives suÆcient degrees of freedom to construct a
tangent plane continuous surface of cubic patches. The tangent plane continuity
along the macro triangle edges is enforced by setting the control points L1 and
R1 so as to satisfy Equation (9.4). It turns out, however, that the resulting
position of L1 and R1 is often far away from their previous position. Apparently
L1 and R1 often have enough room to satisfy Equation (9.4) only when the
plane through M1, M2, L1, and R1 is very tilted (with respect to its previous
orientation). Although the surface tangent plane is then continuous along the
common edge, the surface oscillates wildly in such cases. Even if the surface
tangent plane additionally has a continuous orientation, i.e. the surface is G1-
continuous, it does not give a visually smooth impression.

This is illustrated in Figure 9.5, showing the result of the algorithm applied
to the triangular polyhedral surface of the bottle in Figure 5.10 (left). The image
at the left shows the B�ezier control points of the macro triangles before splitting.

9.7 Towards an adaptive splitting scheme 121

step1

step4

step 2 and 3

p3,0,0

p

p

p2,1,0

0,3,0

1,2,0

0,2,1p

2,0,1p

Z

X1

W1

Y1

X2

W2Y2

X3 Y3

W3

p1,1,1

M0

M1

M3

0L 0R

M
R

R
L2

L1
1

2

2

W

X4

4
Y

step 5

4

Figure 9.6. Control points used in the two-split scheme.

The right image depicts the �nal control points, i.e. when the resulting surface
is tangent plane continuous.

The reason for this unsatisfactory result is that Equation (9.4) imposes too
strict constraints on L1 and R1. This could be avoided if there were additional
degrees of freedom that could be used to select a solution that is optimal in some
sense. Such a solution is presented in Section 9.8.

9.7 Towards an adaptive splitting scheme

Another disadvantage of the three-split is that very thin triangles can emerge.
This may cause numerically instable computations.

We can subdivide a thin macro triangle into two micro triangles instead of
three, by creating a new edge from one vertex to a point on the opposite edge.
The neighboring macro triangle at the side of the split edge should also be
subdivided. Figure 9.6 shows a schematic representation of a two-split of two
cubic B�ezier triangles.

Let us consider two patches P and Q such that P (t; u; 0) = Q(t; u; 0), which
are each split into two micro triangles, while the four neighboring macro triangles
incident to the other edges are split into three micro triangles. Steps 1 to 3 are

122 G1 boundary construction

the same as in the preceding section. The patches then interpolate the (macro
triangle) vertices and normals, but are not yet tangent plane continuous. That
is achieved by a two-split scheme in the following steps.

Step 4. The two macro triangles are split at P (12 ;
1
2 ; 0) and Q(12 ;

1
2 ; 0) into four

micro triangles by B�ezier patch subdivision. The control points M0, M1, L0,
and R0 are computed and remain �xed. By symmetry, there are four sets of
these control points: one for each inner micro triangle edge.

Step 5. Let E, F , and G be constant: E(t; u) = e, F (t; u) = f , and G(t; u) = g.
The tangent plane continuity condition, Equation (8.10), then yields t2C0 +
tuC1 + u2C2 = 0, with

C0 =e(M1 �M0) + f(L0 �M0) + g(R0 �M0) = 0; (9.5a)

C1 =e(M2 �M1) + f(L1 �M1) + g(R1 �M1) = 0; (9.5b)

C2 =e(M3 �M2) + f(L2 �M2) + g(R2 �M2) = 0: (9.5c)

Since M0, M1, L0, and R0 are known, Equation (9.5a) determines the con-
stants e, f , and g.

Let us call the unknown control points Xi; Yi, i = 1; : : : ; 4 and Z, as illus-
trated in Figure 9.6. We need to set these control points so as to achieve tangent
plane continuity across the four inner micro triangle edges. Equations (9.5b)
and (9.5c) for these four edges together gives:

ei(Yi �Wi) + fi(Xi�1 �Wi) + gi(Xi �Wi) = 0; (9.6a)

ei(Z � Yi) + fi(Yi�1 � Yi) + gi(Yi+1 � Yi) = 0; (9.6b)

for i = 1; : : : ; 4, and i�1 and i+1 taken modulo 4. This results in eight equa-
tions in nine unknowns. This set of equations in general has a solution. There
are even enough degrees of freedom to choose a `best' solution, by optimizing a
suitable object function. For example, minimizing

4X
i=1

kXi �Xold
i k+

4X
i=1

kYi � Y old
i k+ kZ � Zoldk;

where Zold is the value of Z just before Step 5, and likewise for Xi and Yi, gives a
solution to Equation (9.6) that is close to the old con�guration of control points.
This is considered good, since the old values were chosen in a sensible way.

The four micro triangles are now tangent plane continuously connected to
each other, but must also be tangent plane continuously connected to the four
neighboring patches at the four outer edges of the two macro triangles. However,
the inner control points of the micro triangles have already been �xed in the
previous step. Therefore Step 5 of the three-split scheme must be adapted
when used in combination with the two-split scheme. Let us consider one such
outer edge, and switch again to the notation of Figure 9.2. We have seen that
choosing E, F , and G to be linear uniquely determines control points L1 and

9.7 Towards an adaptive splitting scheme 123

R1 by Equation (9.4). If, say, L1 has already been �xed by a two-split step
(L1 thus corresponds to a control point Xi above), there are not enough degrees
of freedom to solve R1, since it is over-determined by Equation (9.4). Instead,
we let E, F , and G be quadratic, which gives the most general constraints of
Equation (9.2). We let e0 = e1 = e2, f0 = f1 = f2, and g0 = g1 = g2, so that
Equation (9.2) reduces to:

C0 = e0(M1 �M0) + f0(L0 �M0) + g0(R0 �M0) = 0; (9.7a)

C1 = e0(M1 �M0) + 2e0(M2 �M1) + f0(L0 �M0) +

2f0(L1 �M1) + g0(R0 �M0) + 2g0(R1 �M1) = 0;
(9.7b)

C2 = e0(M1 �M0) + 2e0(M2 �M1) + e0(M3 �M2) +

f0(L0 �M0) + 2f0(L1 �M1) + f0(L2 �M2) +

g0(R0 �M0) + 2g0(R1 �M1) + g0(R2 �M2) = 0;

(9.7c)

C3 = 2e0(M2 �M1) + e0(M3 �M2) + 2f0(L1 �M1) +

f0(L2 �M2) + 2g0(R1 �M1) + g0(R2 �M2) = 0;
(9.7d)

C4 = e0(M3 �M2) + f0(L2 �M2) + g0(R2 �M2) = 0: (9.7e)

Equations (9.7a) and (9.7e) imply:

area(M0;M1; L0)

area(M0;M1; R0)
=

area(M3;M2; L2)

area(M3;M2; R2)
=
g0
f0
:

An algorithm to set Mi, i = 0; : : : ; 4, L0, L2, R0, and R1 so as to satisfy this
ratio is given by [Farin, 83]. CoeÆcients e0, f0, and g0 are then determined
up to a common factor, so that we can arbitrarily set e0 = 1. Subtracting
Equation (9.7a) from (9.7b) (or (9.7e) from (9.7d)) gives:

2e0(M2 �M1) + 2f0(L1 �M1) + 2g0(R1 �M1) = 0;

from which we can determineR1 because all other variables are known. Note that
Equation (9.7c) is automatically satis�ed: (9.7c)=(9.7a)+(9.7d)=(9.7b)+(9.7e).

So far, it has been essential that the two two-split triangles have four three-
split triangles as neighbors. The triangles that are split into two can therefore not
be chosen arbitrarily. Furthermore, the two-split triangles should be constructed
before the three-split triangles, because L1 in Step 6 (corresponding to a Xi in
Step 5) must be known �rst.

To be able to adaptively choose which pairs of macro triangles are to be split
into two, independently of the neighboring macro triangles, it should be possible
to achieve tangent plane continuity when two or three sides of a triangle are
split. This is indeed possible, and in fact gives even more degrees of freedom,
but symmetry is lost and the determination of the control points gets a bit
awkward.

124 G1 boundary construction

9.8 A cubic six-split scheme

In the previous section we saw that the two-split scheme gives enough degrees of
freedom to apply an optimization criterion to the solution of the tangent plane
continuity constraints on the control points. We have also seen in Section 9.6
that such an optimization is important in order to avoid very distorted control
point con�gurations, which result in tangent planes that are too tilted to be
esthetically pleasing. However, the two-split as presented in Section 9.7 cannot
be applied to all macro triangles.

A triangle split that provides suÆcient degrees of freedom for optimization
to be applied to all macro triangles is a split into six micro triangles. Figure 9.7
shows a schematic representation of a six-split of two adjacent cubic B�ezier
triangles, and the control point naming used in this section.

Let us consider the micro triangle edge between M0 and M3, and choose
E, F , and G constant: E = e, etc. The tangent plane continuity condition,
Equation (8.10), then is t2C0 + tuC1 + u2C2 = 0, with C0, C1, and C2 given by
Equation (9.5), i.e.

C0 =e(M1 �M0) + f(L0 �M0) + g(R0 �M0) = 0; (9.8a)

C1 =e(M2 �M1) + f(L1 �M1) + g(R1 �M1) = 0; (9.8b)

C2 =e(M3 �M2) + f(L2 �M2) + g(R2 �M2) = 0: (9.8c)

An alternative formulation but equivalent condition is the following:

~e1(M0 �M1) + ~f1(L0 �M1) + ~g1(R0 �M1) = 0; (9.9a)

~e1(M1 �M2) + ~f1(L1 �M2) + ~g1(R1 �M2) = 0; (9.9b)

~e1(M2 �M3) + ~f1(L2 �M3) + ~g1(R2 �M3) = 0: (9.9c)

Equations (9.9b) and (9.9c) in terms of Xi, Yi, and Z, and applied to the
four edges together, become

~ei(Wi � Yi) + ~fi(Xi � Yi) + ~gi(Xi+1 � Yi) = 0; (9.10a)

~ei(Yi � Z) + ~fi(Yi�1 � Z) + ~gi(Yi+1 � Z) = 0; (9.10b)

with i = 0; : : : ; 3. For i = 0, Equation (9.10a) can be written as

~ei(Qi �Ni) + ~fi(Pi�1 �Ni) + ~gi(Pi �Ni) = 0: (9.11a)

For tangent plane continuity along the whole micro triangle edge between Z
and O, the following condition must also hold:

~ei(O �Qi) + ~fi(Qi�1 �Qi) + ~gi(Qi+1 �Qi) = 0: (9.11b)

Similar conditions apply to the edges corresponding to N2, Q2 and N4, Q4.
For i = 0; 2; 4 the ~ei will be given the same value, say h, and likewise ~fi = k,
and ~gi = ` for i = 0; 2; 4. Equation (9.11) thus becomes

h(Qi �Ni) + k(Pi �Ni) + `(Pi+1 �Ni) = 0; (9.12a)

h(O �Qi) + k(Qi�1 �Qi) + `(Qi+1 �Qi) = 0: (9.12b)

9.8 A cubic six-split scheme 125

p3,0,0

p

p

p2,1,0

0,3,0

1,2,0

0,2,1p

2,0,1p

p1,1,1

M0

M1

M3

0L
0R

L2

L1 R1

R2

M2

Z
X1

W1

Y1
X2

W2
Y2

X3

Y3

W3

W0Y0

X0

step4

step 2 and 3

step 5

step1

step 6

step 7

O0N

N1

N2

N3

N4

N5

1P

P0
P2

P3

P4
P5

3QQ0

Q1

Q2

Q4
Q5

1K

K0

Figure 9.7. Control points used in the six-split scheme.

For i = 1; 3; 5 similar conditions must be satis�ed, but the constants may be
di�erent, say a, b, and c:

a(Qi �Ni) + b(Pi �Ni) + c(Pi+1 �Ni) = 0; (9.13a)

a(O �Qi) + b(Qi�1 �Qi) + c(Qi+1 �Qi) = 0: (9.13b)

With i = 1, Equation (9.13) applies to the edge betweenM0 and O. In order
to achieve tangent plane continuity along this whole micro triangle edge, the
following condition must also hold:

a(N1 �M0) + b(K0 �M0) + c(K1 �M0) = 0: (9.14)

126 G1 boundary construction

For the edges associated with N3 and N5 analogous conditions must hold.
The algorithm consisting of the following seven steps splits each macro tri-

angle into six cubic micro triangles, and sets the B�ezier control points so as to
satisfy the tangent plane continuity condition along all the generated Brezier
patch edges, i.e. all the micro triangle edges.

Step 0. Before calculating anything, choose a suitable value for b, for example
b = 1

2 , and set a = 1 and c = b. Set h (= ~e0 = ~e2 = ~e4) to 1, and k (= ~f0 =
~f2 = ~f4) and ` (= ~g0 = ~g2 = ~g4) to �(2b+ 1)=(3b+ 2).

Steps 1 to 3 of the construction algorithm are the same as in Sections 9.6 and 9.7.
The patches then interpolate the macro triangle vertices and normals, but are
not yet tangent plane continuous. That is achieved in the following steps.

Step 4. All macro triangles P (t; u; w) are split at P (13 ;
1
3 ;

1
3), P (12 ;

1
2 ; 0),

P (12 ; 0;
1
2), and P (0; 12 ;

1
2) into six micro triangles as illustrated in Figure 9.7.

Now M0, M1 (= K0), and K1 are known. Compute N1 by Equation (9.14), and
N3 and N5 analogously.

Step 5. Compute ~e1, ~f1, and ~g1 from Equation (9.9), and ~ei, ~fi, and ~gi, i =
3; 5, analogously. All ~ei, ~fi, ~gi, i = 0; : : : ; 5 are now known. Calculate Z and
Y0; : : : ; Y3, by minimizing

3X
i=0

kYi � Y old
i k+ kZ � Zoldk;

under the constraints of Equation (9.10b) with i = 0; : : : ; 3 (Y old
i and Zold

are the values of Yi and Z resulting from Step 4). Compute X0; : : : ; X3 by
minimizing

3X
i=0

kXi �Xold
i k;

under the constraints of Equation (9.10a) with i = 1; 3 (Xold
i is the value of Xi

resulting from Step 4).

Step 6. All Pi and Ni are known by now. Compute Q0, Q2, and Q4 by Equa-
tion (9.12a) with i = 0; 2; 4. Set O = (Q0 +Q2 +Q4)=3.

Step 7. Compute Q1, Q3, and Q5 by Equation (9.13a) with i = 1; 3; 5.

It is not immediately clear that the above algorithm gives an overall tangent
plane continuous surface. This is proved by the following theorem:

Theorem 9.2 Steps 0 to 7 above construct an overall tangent plane continuous
surface.

9.8 A cubic six-split scheme 127

Figure 9.8. Left: input triangulations. Right: G1-continuous surfaces resulting from
the six-split scheme.

Proof. By construction (Step 5) the micro triangle edges between p3;0;0 and Z,
and between p0;3;0 and Z satisfy Equation (9.8). The surface is thus tangent
plane continuous along these edges.

The edges incident to O satisfy the tangent plane continuity condition Equa-
tion (8.10) if there is no conict around O, that is, if both Equation (9.12b)
for i = 0; 2; 4, and Equation (9.13b) for i = 1; 3; 5 are satis�ed. The crux
of the algorithm is that both conditions are automatically satis�ed by set-
ting O to (Q0 + Q2 + Q4)=3 and by the special relation between b and k:
k = �(2b+ 1)=(3b+ 2). Incidentally, O is also equal to (Q1 +Q3 +Q5)=3.

The surface is thus tangent plane continuous along all triangle edges. Since

128 G1 boundary construction

cubic B�ezier triangles are internally C2-continuous, the whole surface is tangent
plane continuous.

Remember from the three-split algorithm (Section 9.6) that in order to
achieve a continuously changing unit normal vector (G1-continuity), the ori-
entation of the tangent plane must be properly de�ned at every point on the
common edge of two adjacent triangles, in addition to the tangent plane con-
tinuity condition. The tangent plane orientation will be properly de�ned if f
and g in Equation (9.8) have opposite signs. This condition is satis�ed for many
sets of vertices whose neighboring normal vectors direction do not change wildly.
In other cases, the normal vector at a vertex should be altered in order for the
projection in Step 2 to result in opposite signs of f and g.

Figure 9.8 shows the result of applying the above algorithm on two polyhedral
surfaces constructed in Chapter 5: the bottle shown at the left in Figure 5.10, and
the mask depicted at the bottom row, right, in Figure 5.6. The six-split scheme
has extra degrees of freedom compared to the three-split scheme of Section 9.6.
This allows minimizing the displacement of control vertices in Step 5 above, so
that the surface does not oscillate as wildly as with the three-split scheme, which
was demonstrated in Figure 9.5.

9.9 Concluding remarks

In this chapter, three-split schemes have been derived. The three-split scheme of
subdividing a B�ezier triangle into three micro triangles provides enough degrees
of freedom to construct a G1-continuous surface in a local way, but the resulting
surface may wildly oscillate. The two-split scheme can be used in combination
with the triangle three-split to avoid very elongated micro triangles. The six-
split algorithm also avoids elongated micro triangles, and provides additional
degrees of freedom that are used to avoid wild oscillation of the surface.

The constants b in Step 0 and 1
3 in Step 3 of the six-split scheme determine

the magnitudes of the derivative vectors of the surface in the direction of N1

and M1, respectively. Making the constant variable does not a�ect the tangent
plane continuity of the surface. Rather, the constants become parameters that
act like tension parameters at the vertices of the macro triangle.

The algorithms presented in Sections 9.6, 9.7, and 9.8 all have a time complex-
ity O(Ne) = O(Nt). This is clear from the iterations over the macro triangles
and their edges, and the relation between the number of triangles and edges:
3Nt = 2Ne.

A G1-continuous surface generally looks smooth, but its appearance depends
on the illumination. As has been derived in Chapter 8, the reection of a lin-
ear light source on a G1-continuous surface need not be G1. For G2-continuity
more control points are needed than we have used here. This means that ra-
tional polynomial patches [Hagen and Pottmann, 88] or higher degree patches
[Hogervorst and Damme, 92] must be used in order to keep the scheme local.

10

Conclusions

The main results of the research described in this thesis are summarized below.

Chapter 3. The -neighborhood graph is a new parameterized geometric
graph. By its two parameters, a whole family of geometric graphs is
de�ned, ranging from the empty to the complete graph. For particular
choices of the parameters, the -graph reduces to known graphs such as
the Convex Hull, the Gabriel Graph, the �c-Skeleton, and the Delaunay
Triangulation. The -graph uni�es these graphs into a continuous spec-
trum.

Chapter 5. The geometric information contained in the -graph is used to
construct a closed piecewise linear object boundary from scattered points.
The -graph on the set of points is successively constricted until the bound-
ary of the pruned -graph is a proper object boundary, passing through all
the vertices. While constriction of the Delaunay Triangulation may stop
unsuccessfully, the parameters of the -graph provide the exibility to �nd
a boundary through all the vertices. The use of the geometric informa-
tion in the -graph by means of the -indicator results in good looking
boundaries.

Chapter 7. The intstone scheme is both an approximation and a localization
scheme, and is hierarchical. This scheme can be applied to the constructed
polygonal or polyhedral boundaries. Its de�nition is based on discs or
balls, which makes the representation storage eÆcient, and hierarchical
operations, for example intersections, computationally cheap.

Chapter 9. Given a polygonal boundary with (estimated) tangent vectors at
the vertices, or a closed polyhedral surface with normal vectors at the

129

130 Conclusions

vertices, a G1-continuous piecewise cubic B�ezier boundary is constructed
in a local way. The six-split algorithm to subdivide a B�ezier triangle into
six micro triangles avoids thin triangles, and provides suÆcient degrees of
freedom to apply an optimization in order to prevent severe oscillations of
the G1-continuous surface.

Care has been taken to introduce new concepts that naturally generalize
from 2D to 3D. This is exhibited by the de�nition of the -graph, the deletion
rule in the constriction algorithm, and the de�nition of the intstone scheme.
(Chapter 9 introduced a new solution to the problem of interpolating vertices
and surface normal vectors rather than a new concept.)

The major new algorithms introduced in this thesis have been implemented in
C or C++, and their graphical results are shown in the successive chapters. The
graphics rendering has been implemented on a variety of workstation platforms:

� IBM's RT with the 5080 graphics device, programmed in its assembly
language [Veltkamp, 87].

� the RT with the Megapel graphics device, programmed in PHIGS;

� Sun's Sun3 with the TAAC-1 graphics device, programmed in C;

� Sun's SparcStation 1+ with the apE environment, software for visualiza-
tion from the Ohio State University supercomputer center, `programmed'
visually;

� the Iris 4D VGX of Silicon Graphics, with their visualization software
Explorer, also `programmed' visually.

The pictures that show the 2D results of the algorithms and the 3D stereographic
-neighborhood graph in Figure 3.7 are made with Adobe's Postscript. The rest
of the pictures that show the 3D results are made by screen dumps. Because
the implementation of the algorithms and the visualization took place on such
di�erent platforms, the various software modules are separate and have not been
integrated.

Ideally, the algorithms should be interactive, so that the user can:

� adapt the parameters of the -graph, and dynamically add vertices to the
graph,

� control the deletion of boundary tetrahedra when all vertices already lie
on the boundary, and indicate boundary segments that may not be deleted
in the constrained constriction procedure,

� adapt the level of approximation and the maximum approximation error
in the intstone scheme, or dynamically add vertices to the objects being
approximated,

� alter the `tension' parameters in Steps 0 and 2 of the six-split scheme,

Conclusions 131

and the programs should show the result immediately. Except for the optimiza-
tion step in the six-split scheme, all the algorithms themselves are fast enough to
do this, even for large data sets. It is the data transfer from or to the computer's
hard-disc or the graphics board that may be the bottleneck. Although the steer-
ing of the algorithms can be done interactively, the whole boundary construction
process is far less interactive than the approach taken by [Veltkamp, 85]. There,
3D boundaries are constructed by interactively deforming primitive objects, such
as tubes and sphere-like objects, so as to �t the given data. These deformable
objects are represented by B-spline surfaces and are deformed by high level op-
erators such as `squeeze' and `bend', which internally operate on the B-spline
control points.

Possible future research directions are mentioned at the end of Chapters 3,
5, 7, and 9. Several topics treated in these chapters can be combined to yield
other research directions:

� The boundary construction procedure presented in Chapter 5 constricts the
Convex Hull until the boundary of the -graph passes through all vertices.
All the intermediate boundaries can be considered approximations of the
�nal boundary. All these approximations lie outside the �nal boundary.
The opposite of a constriction process is a swell process, which starts with a
polygon or polyhedron and expands these until all the vertices are included,
in such a way that none of the vertices lie in the interior of the polygon or
polyhedron. The intermediate boundaries are then approximations lying
inside the �nal boundary. The inner and outer approximations together
de�ne a bounding area or volume of the boundary.

� Another research subject is the combination of approximation and the
construction of a smooth boundary. We can construct curved boundary
segments that interpolate part of the given vertices and approximate the
rest of the vertices, and re�ne those segments whose approximation error is
too large. A similar approach is taken by [Schmitt et al., 86] for rectangular
patches on a regular grid, while our application has an arbitrary topology
with triangular patches.

132 Conclusions

References

[Ahuja, 82] N. Ahuja. Dot pattern processing using Voronoi neighborhoods.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(3),
1982, 336 { 343.

[Alevizos et al., 87] P. D. Alevizos, J. D. Boissonnat, and M. Yvinec. An optimal
o(n logn) algorithm for contour reconstruction from rays. In Proceedings of
the 3rd ACM Symposium on Computational Geometry, ACM Press, 1987, 162
{ 170.

[Ballard, 81] D. H. Ballard. Strip trees: a hierarchical representation for curves.
Communications of the ACM, 24(5), 1981, 310 { 321.

[Barnhill, 85] R. E. Barnhill. Surfaces in computer aided geometric design: a
survey with new results. Computer Aided Geometric Design, 2, 1985, 1 { 17.

[Barnhill and B�ohm, 83] R. E. Barnhill and W. B�ohm (editors). Surfaces in
Computer Aided Geometric Design, North-Holland, 1983.

[Barsky and Beatty, 83] B. A. Barsky and J. C. Beatty. Local control of bias and
tension in beta-splines. ACM Transactions on Graphics, 2(2), 1983, 109 { 134.

[Bentley and Shamos, 76] J. L. Bentley and M. I. Shamos. Divide-and-conquer
in multidimensional space. In Proceedings of the 8th Annual Symposium on
Theory of Computing, 1976, 220 { 230.

[Bernroider, 78] G. Bernroider. The foundation of computational geometry:
theory and application of the point-lattice-concept within modern structure
analysis. In R. E. Miles and J. Serra (editors), Geometrical Probability and
Biological Structures, Springer-Verlag, 1978, 153 { 170.

[Bernstein, 12] S. Bernstein. D�emonstration de th�eor�eme de Weierstrass fonde�e
sur le calcul des probabilit�es. Harkov Soobs. Matem ob-va, 13(1{2), 1912.

[B�ohm, 85] W. B�ohm. Curvature continuous curves and surfaces. Computer
Aided Geometric Design, 2, 1985, 313 { 323.

133

134 Conclusions

[B�ohm and Farin, 83] W. B�ohm and G. Farin. Letter to the editor. Computer
Aided Design, 15(5), 1983, 260 { 261.

[Boissonnat, 82] J.-D. Boissonnat. Representation of objects by triangulating
points in 3-D space. In Proceedings of the 6th International Conference on
Pattern Recognition, 1982, 830 { 832.

[Boissonnat, 84a] J.-D. Boissonnat. Geometric structures for three-dimensional
shape representation. ACM Transactions on Graphics, 3(4), 1984, 266 { 286.

[Boissonnat, 84b] J.-D. Boissonnat. Representing 2D and 3D shapes with the
Delaunay triangulation. In Proceedings of the 7th International Conference
on Pattern Recognition, 1984, 745 { 748.

[Boissonnat, 88] J.-D. Boissonnat. Shape reconstruction from planar cross
sections. Computer Vision, Graphics, and Image Processing, 44, 1988, 1 { 29.

[Boissonnat and Tellaud, 86] J.-D. Boissonnat and M. Tellaud. A hierarchical
representation of objects: the Delaunay tree. In Proceedings of the 2nd ACM
Symposium on Computational Geometry, ACM Press, 1986, 260 { 268.

[Bollob�as, 79] B. Bollob�as. Graph Theory, An Introductory Course. Springer-
Verlag, 1979.

[Brown, 79] K. Q. Brown. Voronoi diagrams from convex hulls. Information
Processing Letters, 9(5), 1979, 223 { 228.

[Casale, 87] M. S. Casale. Free-form surface modelling with trimmed surface
patches. IEEE Computer Graphics & Applications, 7(1), 1987, 33 { 43.

[Chazelle, 91] B. Chazelle. An optimal convex hull algorithm and new results
on cuttings. In Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science, IEEE Computer Society Press, 1991, 29 { 38.

[Choi et al., 88] B. K. Choi, H. Y. Shin, Y. I. Yoon, and J. W. Lee. Triangulation
of scattered data in 3D space. Computer Aided Design, 20(5), 1988, 239 { 248.

[Clark, 76] J. H. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10), 1976, 547 { 554.

[Clough and Tocher, 65] R. W. Clough and J. L. Tocher. Finite element
sti�ness matrices for analysis of plates in blending. In Proceedings of the
Conference on Matrix Methods in Structural Mechanics, Air Force Institute
of Technology, Wright-Patterson A. F. B., Ohio, 1965.

[Corby and Mundy, 90] N. R. Corby and J. L. Mundy. Applications of range
image sensing and processing. In R. C. Jain and A. K. Jain (editors), Analysis
and Interpretation of Range Images, Springer-Verlag, 1990, 255 { 272.

[Cottin and Damme, 90] C. Cottin and R. van Damme. 3D reconstruction of
closed objects by piecewise cubic triangular B�ezier patches. Technical Report
885, University of Twente, Enschede, The Netherlands, 1990. To be published
in J. C. Mason and M. G. Cox (editors), Mathematics of Surfaces III.

[DeFloriani, 89] L. DeFloriani. A pyramidal data structure for triangle-based
surface description. IEEE Computer Graphics & Applications, 9(2), 1989, 67
{ 80.

[Delaunay, 28] B. Delaunay. Sur la sph�ere vide. In Proceedings of the Inter-
national Congress on Mathematics (Toronto 1924), Volume 1, University of
Toronto Press, 1928, 695 { 700.

Conclusions 135

[Delaunay, 34] B. Delaunay. Sur la sph�ere vide. Izvestija Akademii Nauk
S.S.S.R. Otdelenie Matematiceskich i Estestvennych Nauk (Bulletin
de l'Acad�emie des Sciences de l'URSS, VII S�erie, Classe des Sciences
Math�ematiques et Naturelles), 1934, 793 { 800.

[DeRose and Barsky, 85] T. DeRose and B. A. Barsky. An intuitive approach
to geometric continuity for parametric curves and surfaces. In N. Magnenat-
Thalmann and D. Thalmann (editors), Computer-Generated Images { The
State of the Art, Springer-Verlag, 1985, 159 { 175.

[DeRose, 90] T. D. DeRose. Necessary and suÆcient conditions for tangent
plane continuity of B�ezier surfaces. Computer Aided Geometric Design, 7,
1990, 165 { 179.

[Devroye, 88] L. Devroye. The expected size of some graphs in computational
geometry. Computers & Mathematics with Applications, 15(1), 1988, 53 {64.

[Dijkstra, 59] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematik, 1, 1959, 269 { 271.

[Dillencourt, 87] M. B. Dillencourt. A non-Hamiltonian, nondegenerate Delau-
nay triangulation. Information Processing Letters, 25(3), 1987, 149 { 151.

[Dillencourt, 89] M. B. Dillencourt. An upper bound on the shortest exponent
of inscribable polytopes. Journal of Combinatorial Theory, Series B, 46(1),
1989, 66 { 83.

[Dirac, 72] G. A. Dirac. On Hamiltonian circuits and Hamiltonian paths.
Mathematische Annalen, 197, 1972, 57 { 70.

[Dominguez and G�unther, 91] S. Dominguez and O. G�unther. Performance
analysis of three curve representation schemes. In H. Bieri and H. Noltemeier
(editors), Computational Geometry { Methods, Algorithms and Applications,
Proceedings of the International Workshop on Computational Geometry
CG'91, Bern, Switzerland, Volume 553 of Lecture Notes in Computer
Science, Springer-Verlag, 1991, 37 { 56.

[Douglas and Peucker, 73] D. H. Douglas and T. K. Peucker. Algorithms for
the reduction of the number of points required to represent a digitized line
or its caricature. The Canadian Cartographer, 10(2), 1973, 112 { 122.

[Duda and Hart, 73] R. O. Duda and P. E. Hart. Pattern Classi�cation and
Scene Analysis. John Wiley & Sons, 1973.

[Dwyer, 89] R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear
expected time. In Proceedings of the ACM Symposium on Computational
Geometry, ACM Press, 1989, 326 { 333.

[Edelsbrunner, 87] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer-Verlag, 1987.

[Edelsbrunner et al., 83] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On
the shape of a set of points in the plane. IEEE Transactions on Information
Theory, IT-29(4), 1983, 551 { 559.

[Ekoule et al., 91] A. B. Ekoule, F. C. Peyrin, and L. Odet. A triangulation
algorithm from arbitrary shaped multiple planar contours. ACM Transactions
on Graphics, 10(2), 1991, 182 { 199.

[Farin, 82a] G. Farin. A construction for visual C1 continuity of polynomial

136 Conclusions

surface patches. Computer Graphics and Image Processing, 20(3), 1982, 272
{ 282.

[Farin, 82b] G. Farin. Visually C2 cubic splines. Computer Aided Design, 14(3),
1982, 137 { 139.

[Farin, 83] G. Farin. Smooth interpolation to scattered 3D data. In
[Barnhill and B�ohm, 83], 43 { 63.

[Farin, 86] G. Farin. Triangular Bernstein-B�ezier patches. Computer Aided
Geometric Design, 3(2), 1986, 83 { 127.

[Farin, 87] G. Farin (editor). Geometric Modeling: Algorithms and New Trends,
SIAM, 1987.

[Farin, 90a] G. Farin. Curves and Surfaces for Computer Aided Geometric
Design, 2nd edition. Academic Press, 1990.

[Farin, 90b] G. Farin. Surfaces over Dirichlet tessellations. Computer Aided
Geometric Design, 7, 1990, 281 { 292.

[Faugeras et al., 84] O. D. Faugeras, M. Hebert, P. Mussi, and J. D. Boissonnat.
Polyhedral approximation of 3-D objects without holes. Computer Vision,
Graphics, and Image Processing, 25, 1984, 169 { 183.

[Foley et al., 90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics: Principles and Practice, 2nd edition. Addison-Wesley, 1990.

[Forrest, 71] A. R. Forrest. Computational geometry. In Proceedings of the
Royal Society London A., 1971, 187 { 195.

[Fuchs et al., 77] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface
reconstruction from planar contours. Communications of the ACM, 20(10),
1977, 683 { 702.

[Gabriel and Sokal, 69] K. R. Gabriel and R. R. Sokal. A new statistical
approach to geographic variation analysis. Systematic Zoology, 18, 1969, 259
{ 278.

[Geise, 62] G. Geise. �Uber ber�uhrende Kegelschnitte einer ebenen Kurve.
Zeitschrift f�ur Angewandte Mathematik und Mechanik, 42(7/8), 1962, 297 {
304.

[Goldman, 83] R. N. Goldman. Subdivision algorithms for B�ezier tri-
angles. Computer Aided Design, 15(3), 1983, 159 { 166. See also
[B�ohm and Farin, 83].

[G�unther, 88] O. G�unther. EÆcient Structures for Geometric Data Manage-
ment, Volume 337 of Lecture Notes in Computer Sciences. Springer-Verlag,
1988.

[Hagen and Pottmann, 88] H. Hagen and H. Pottmann. Curvature continuous
triangular interpolants. In T. Lyche and L. L. Schumaker (editors), Math-
ematical Methods in Computer Aided Geometric Design (conference held in
Olso, Norway, 1988), Academic Press, 1988, 373 { 384.

[Haralick and Shapiro, 92] R. M. Haralick and L. G. Shapiro. Computer and
Robot Vision, Volume 1. Addison-Wesley, 1992.

[Herron, 85] G. Herron. Smooth closed surfaces with discrete triangular
interpolants. Computer Aided Geometric Design, 2(4), 1985, 297 { 306.

[Hershberger and Snoeyink, 92] J. Hershberger and J. Snoeyink. Speeding up

Conclusions 137

the Douglas-Peucker line simpli�cation algorithm. In Proceedings of the 5th
International Symposium on Spatial Data Handling, IGU Commission on
GIS, Charleston, South Carolina, 1992, 134 { 143.

[Higashi et al., 90] M. Higashi, T. Kushimoto, and M. Hosaka. On formulation
and display for visualizing features and evaluating quality of free-form
surfaces. In C. E. Vandoni and D. A. Duce (editors), Eurographics '90,
North-Holland, 1990, 299 { 309.

[Hogervorst and Damme, 92] B. J. Hogervorst and R. van Damme. Degenerate
polynomial patches of degree 11 for almost GC2 interpolation over trian-
gles. In Proceedings of the 3rd International Conference on Algorithms for
Approximation, Oxford, U.K., 1992.

[Imai and Iri, 88] H. Imai and M. Iri. Polygonal approximations of a curve {
formulations and algorithms. In [Toussaint, 88a], 71 { 86.

[Jensen, 87] T. Jensen. Assembling triangular and rectangular patches and
multivariate splines. In [Farin, 87], 203 { 220.

[Keppel, 75] E. Keppel. Approximating complex surfaces by triangulation of
contour lines. IBM Journal of Research and Development, 19(1), 1975, 2 { 11.

[Kirkpatrick and Radke, 85] D. G. Kirkpatrick and J. D. Radke. A framework
for computational morphology. In G. T. Toussaint (editor), Computational
Geometry, Elsevier Science Publishers, 1985, 217 { 248.

[Klee, 80] V. Klee. On the complexity of d-dimensional Voronoi diagrams.
Archiv der Mathematik, 34, 1980, 75 { 80.

[Knuth, 76] D. E. Knuth. Big omicron and big omega and big theta. SIGACT
News, 8(2), 1976, 18 { 24.

[Koenderink, 90] J. J. Koenderink. Solid Shape. MIT Press, 1990.
[Lankford, 69] P. M. Lankford. Regionalization: theory and alternative
algorithms. Geographical Analysis, 1(2), 1969, 169 { 212.

[Lawson, 77] C. L. Lawson. Software for C1 surface interpolation. In J. R. Rice
(editor), Mathematical Software III, Academic Press, 1977, 161 { 194.

[Lee and Schachter, 80] D. T. Lee and B. J. Schachter. Two algorithms for
constructing the Delaunay triangulation. International Journal of Computers
and Information Science, 9(3), 1980, 219 { 242.

[Liu and Hoschek, 89] D. Liu and J. Hoschek. CG1 continuity conditions be-
tween adjacent rectangular and triangular B�ezier surface patches. Computer
Aided Design, 21(4), 1989, 194{200.

[Manning, 74] J. R. Manning. Continuity conditions for spline curves. The
Computer Journal, 17(2), 1974, 181 { 186.

[M�antyl�a, 88] M. M�antyl�a. An Introduction to Solid Modeling. Computer
Science Press, 1988.

[Matula and Sokal, 80] D. W. Matula and R. R. Sokal. Properties of Gabriel
graphs relevant to geographic variation research and the clustering of points
in the plane. Geographical Analysis, 12, 1980, 205 { 222.

[Meagher, 82] D. Meagher. Geometric modeling using octree encoding.
Computer Graphics and Image Processing, 19, 1982, 129 { 147.

[Medek, 81] V. Medek. On the boundary of a �nite set of points in the plane.

138 Conclusions

Computer Vision, Graphics, and Image Processing, 15, 1981, 93 { 99.
[Megiddo, 83] N. Megiddo. Linear time algorithms for linear programming in R3

and related problems. SIAM Journal on Computing, 12(4), 1983, 759 { 776.
[Mehlhorn, 84] K. Mehlhorn. Data Structures and Algorithms 2: Graph
Algorithms and NP-Completeness. Springer-Verlag, 1984.

[Miles, 70] R. E. Miles. On the homogeneous planar Poisson point process.
Mathematical Biosciences, 6, 1970, 85 { 127.

[Minsky and Papert, 69] M. Minsky and S. Papert. Perceptrons: An Introduc-
tion to Computational Geometry. MIT Press, 1969.

[Nielson, 87] G. M. Nielson. A trans�nite, visually continuous, triangular
interpolant. In [Farin, 87], 235 { 246.

[Nielson and Franke, 83] G. M. Nielson and R. Franke. Surface construction
based upon triangulations. In [Barnhill and B�ohm, 83], 163 { 177.

[Oosterom and Bos, 89] P. van Oosterom and J. van den Bos. An object-oriented
approach to the design of geographic information systems. Computers &
Graphics, 13(4), 1989, 409 { 418.

[O'Rourke, 81] J. O'Rourke. Polyhedra of minimal area as 3D object models. In
Proceedings of the International Joint Conference on Arti�cial Intelligence,
1981, 664 { 666.

[O'Rourke, 86] J. O'Rourke. The computational geometry column. Computer
Graphics, 20(5), 1986, 232 { 234.

[O'Rourke and Badler, 79] J. O'Rourke and N. Badler. Decomposition of
three-dimensional objects into spheres. IEEE Pattern Analysis and Machine
Intelligence, PAMI-1(3), 1979, 295 { 305.

[O'Rourke et al., 87] J. O'Rourke, H. Booth, and R. Washington. Connect-the-
dots: a new heuristic. Computer Vision, Graphics, and Image Processing,
39, 1987, 258 { 266.

[Puger and Neamtu, 91] P. Puger and M. Neamtu. Geometrically smooth
interpolation by triangular Bernstein{B�ezier patches with coalescent control
points. In P. J. Laurent, A. L. M�ehaut�e, and L. L. Schumaker (editors),
Curves and Surfaces, Academic Press, 1991, 363 { 366.

[Phong, 75] B. T. Phong. Illumination for computer-generated pictures.
Communications of the ACM, 18(6), 1975, 311 { 317.

[Piper, 87] B. R. Piper. Visually smooth interpolation with triangular B�ezier
patches. In [Farin, 87], 221 { 233.

[Ponce and Faugeras, 87] J. Ponce and O. Faugeras. An object centered
hierarchical representation for 3D objects: the prism tree. Computer Vision,
Graphics, and Image Processing, 38(1), 1987, 1 { 28.

[Preparata and Hong, 77] F. P. Preparata and S. J. Hong. Convex hulls of
�nite sets of points in two and three dimensions. Communications of the
ACM, 20(2), 1977, 87 { 93.

[Preparata and Shamos, 85] F. P. Preparata and M. I. Shamos. Computational
Geometry, an Introduction. Springer-Verlag, 1985.

[Prim, 57] R. C. Prim. Shortest connection networks and some generalizations.
Bell Systems Technical Journal, 36, 1957, 1389 { 1401.

Conclusions 139

[QuaVis, 90] AAAI-90 workshop on qualitative vision. 1990.
[Ray and Ray, 92] B. K. Ray and K. S. Ray. An algorithm for polygonal approxi-
mation of digitized curves. Pattern Recognotion Letters, 13(7), 1992, 489 { 496.

[Rioux and Cournoyer, 88] M. Rioux and L. Cournoyer. The NRCC three-
dimensional image data �les. Technical Report CNRC 29077, National
Research Council Canada, 1988.

[Samet, 84] H. Samet. The quadtree and related hierarchical data structures.
ACM Computing Surveys, 16(2), 1984, 187 { 260.

[Schmitt and Gholizadeh, 86] F. Schmitt and B. Gholizadeh. Adaptive poly-
hedral approximation of digitized surfaces. Proceedings of the SPIE { The
International Society for Optical Engineering, 595, 1986, (Proceedings of the
SPIE Conference Computer Vision for Robots, Cannes, France, December
1985), 101 { 108.

[Schmitt et al., 86] F. J. M. Schmitt, B. Barsky, and W.-H. Du. An adaptive
subdivision method for surfaces from sampled data. Proceedings SIGGRAPH
'86, Computer Graphics, 20(4), 1986, 179 { 188.

[Schmitt et al., 91] F. J. M. Schmitt, X. Chen, and W.-H. Du. Geometric
modeling from range image data. In F. H. Post and W. Barth (editors),
EUROGRAPHICS'91, 1991, 317 { 328.

[Schoenberg, 46] I. J. Schoenberg. Contributions to the problem of approx-
imation of equidistant data by analytic functions. Quarterly of Applied
Mathematics, 4, 1946, Part A: 45 { 99, Part B: 112 { 141.

[Seidel, 86] R. Seidel. Constructing higher-dimensional convex hulls at loga-
rithmic cost per face. In Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, ACM Press, 1986, 404 { 413.

[Serra, 86] J. Serra. Introduction to mathematical morphology. Computer
Vision, Graphics, and Image Processing, 35, 1986, 283 { 305.

[Shamos, 78] M. I. Shamos. Computational Geometry. PhD thesis, Department
of Computer Science, Yale University, New Haven, Connecticut, 1978.

[Shamos and Hoey, 75] M. I. Shamos and D. Hoey. Closest point problems.
In Proceedings of the 16th Annual IEEE Symposium on Foundations of
Computer Science, IEEE, 1975, 151 { 162.

[Shirai, 87] Y. Shirai. Three-Dimensional Computer Vision. Springer-Verlag,
1987.

[Sloan, 91] K. Sloan. Surface normal (summary). Usenet comp.graphics article,
1991.

[Strang and Fix, 73] G. Strang and G. Fix. An Analysis of the Finite Element
Method. Prentice-Hall, 1973.

[Su and Liu, 89] B.-Q. Su and D.-Y. Liu. Computational Geometry | Curve
and Surface Modeling. Academic Press, 1989.

[Su and Chang, 91] T. Su and R. Chang. Computing the k-relative neighbor-
hood graph in the Euclidean plane. Pattern Recognition, 24, 1991, 231 { 239.

[Supowit, 83] K. J. Supowit. The relative neighbourhood graph with an applica-
tion to minimum spanning trees. Journal of the ACM, 30(3), 1983, 428 { 447.

[Thoenes, 84] C. Thoenes. Uccello's chalice. Computer Aided Geometric

140 Conclusions

Design, 1, 1984, 97 { 99.
[Toussaint, 80] G. T. Toussaint. The relative neighbourhood graph of a �nite
planar set. Pattern Recognition, 12(4), 1980, 261 { 268.

[Toussaint, 88a] G. T. Toussaint (editor). Computational Morphology { A Com-
putational Geometric Approach to the Analysis of Form. North-Holland, 1988.

[Toussaint, 88b] G. T. Toussaint. A graph theoretical primal sketch. In
[Toussaint, 88a], 229 { 260.

[Tutte, 77] W. T. Tutte. Bridges and Hamiltonian circuits in planar graphs.
Aequationes Mathematicae, 15, 1977, 1 { 33.

[Veltkamp, 85] R. C. Veltkamp. An interactive solid modeling approach to
three-dimensional reconstruction. Master's thesis, Leiden University, Leiden,
The Netherlands/IBM Scienti�c Center, Paris, France, 1985.

[Veltkamp, 87] R. C. Veltkamp. RT/PC { 5080 Interface Reference Manual.
Leiden University, Leiden, The Netherlands, 1987.

[Veltkamp, 88] R. C. Veltkamp. The -neighbourhood graph for computational
morphology. In Proceedings of Computing Science in the Netherlands '88,
Utrecht, The Netherlands, 1988, 451 { 462.

[Veltkamp, 89a] R. C. Veltkamp. 2D and 3D computational morphology on the
-neighborhood graph. Acta Stereologica, 8(2/2), 1989, 595 { 600.

[Veltkamp, 89b] R. C. Veltkamp. A divide-and-conquer algorithm to compute
the 3D Delaunay triangulation. In P. M. G. Apers, D. Bosman, and J. van
Leeuwen (editors), Computing Science in the Netherlands '89, Utrecht, The
Netherlands, 1989, 463 { 480.

[Veltkamp, 90] R. C. Veltkamp. The intstone representation and approxi-
mation scheme. In A. J. van de Goor (editor), Computing Science in the
Netherlands '90, Utrecht, The Netherlands, 1990, 485 { 498.

[Veltkamp, 91] R. C. Veltkamp. 2D and 3D polygonal boundary reconstruc-
tion with the -neighborhood graph. Technical Report CS-R9116, CWI,
Amsterdam, The Netherlands, 1991.

[Veltkamp, 92a] R. C. Veltkamp. Closed G1-continuous cubic B�ezier surfaces.
Technical Report CS-R9226, CWI, Amsterdam, The Netherlands, 1992.

[Veltkamp, 92b] R. C. Veltkamp. The intstones: hierarchical approximation
and localization (extended abstract). In Abstracts of the 8th European
Workshop on Computational Geometry (CG'92), 12/13 March 1992, Utrecht,
The Netherlands, Technical Report RUU-CS-92-10, Utrecht University,
Utrecht, The Netherlands, 1992, 69 { 72.

[Veltkamp, 92c] R. C. Veltkamp. The -neighborhood graph. Computational
Geometry, Theory and Applications, 1(4), 1992, 227 { 246.

[Veltkamp, 92d] R. C. Veltkamp. Survey of continuities of curves and surfaces.
Computer Graphics Forum, 11(2), 1992, 93 { 112.

[Vorono��, 08] G. Vorono��. Nouvelles applications des param�etres continus �a la
th�eorie des formes quadratiques. Deuxi�eme m�emoire | Recherche sur les
parrall�elo�edres primitifs, Introduction et premi�ere partie. Journal f�ur die
reine und angewandte Mathematik, 134, 1908, 198 { 287.

Index

2D 6
3D 6
3D iterative extreme point �t 69
�-operator 74, 82

adaptive approximation 79, 87
adjacent 9
�-Hull 17, 43
�-Shape 17
approximation 3, 63

adaptive 79, 87
intstone 76, 82
optimal 67

arc-tree 68, 91
augmented -graph 60

ball 11
generalized 17
with signed radius 82

barycentric coordinates 101
Bernstein polynomial 97, 101
�-Skeleton 18

circle-based (�c) 18, 25, 26
lune-based (�l) 18, 27

B�ezier curve 97
B�ezier ordinate 102
B�ezier scheme 5, 91, 97, 102
B�ezier triangle 102

blackbird 14
blending function 94
BLG-tree 68
boundary 6, 38

of a graph 45
smooth 5, 93

boundary construction problem 38, 39
boundary polygon 46
boundary polyhedron 49
boundary segment 6
boundary tetrahedron 49
boundary triangle 46
boundary-based 65, 67

Closest Pair (CP) 12
clustering 43
complete graph 9, 45
Computational Geometry 1
Computational Morphology 2, 43, 44
Computer Aided Geometric Design

(CAGD) 1, 2, 5
connected 10

n-connected 10, 52
constriction

constrained 60
of -graph 45, 58
minimal area change 42, 58

141

142 Index

continuity
geometric 96, 97, 100, 101
parametric 96, 99
visual 96

contour 43
control point 94, 102
control polyhedron 102
Convex Hull (CH) 14, 27, 39, 41, 45,

51
covering 66, 79, 87
curvature

normal curvature vector 97, 101
principal 101
scalar curvature 97

cycle 10
Hamilton 10

Delaunay neighborhood 16, 46, 50
Delaunay pyramid 69, 91
Delaunay tree 71
Delaunay Triangulation (DT) 15, 39,

42, 71
closest point 15
degenerate 15, 26
furthest point 15

derivative
directional 99, 103
partial 99

derivative vector 94
disc 11

smallest bounding disc (SBD) 76
with signed radius 74

dual 15

edge 9
Euclidean Minimum Spanning Tree

(EMST) 12, 39, 45
Euler's formula 11
external structure 19, 27

face 10
intstone 75, 77, 82

approximation 76, 82
width 79, 89

intstone scheme 72
intstone tree 77, 78, 86

forest 10

G1-continuity 97, 109, 110, 119, 127
(c0; c1) neighborhood graph 24
([c0; c1]; [c2; c3]) neighborhood graph

26
Gabriel Graph (GG) 14, 18, 25
geometric continuity 96, 100, 101
geometric graph 3, 10
-graph 24, 26

augmented 60
pruned 45, 62
weighted 36

-indicator 47, 50
graph 9

complete 9, 18, 24, 25
empty 9, 18, 24, 25
geometric 3, 10
hyper-graph 10
neighborhood graph 11
spanning 9
subgraph 9

Hamilton cycle 10, 38
Hamilton polygon 38, 42, 52
Hamilton polyhedron 39, 52
hierarchy 4, 64
hyper-graph 10, 11

In�nite Strip Graph (1-SG) 12, 18
internal structure 19, 26
intrinsic 65, 67
iterative end point �t 68

L2-distance 6
least-squares �t 111, 116
localization 4, 64, 74, 82
L-subdivision 15

macro triangle 116
Mathematical Morphology 44
micro triangle 116
minimal area change constriction 41,

58
minimal area polyhedron 41

Ne 6

Index 143

Nearest Neighbors Graph (NNG) 12,
39

neighborhood 11
�c 18
�l 18
Delaunay 16
empty 11
Gabriel 14
 24
graph 11
relative 13

neighbors 9
normal curvature vector 97
normal curvature 101
normal vector 101
Nt 6
Nv 6

O-notation 7

-notation 7
octree 71

parametric continuity 95, 96, 99
partial derivative 99
patch 99

B�ezier 102
degenerate 104

path 9
shortest 82

PD-interpolation 110
piecewise 94, 95, 99, 107
P-interpolation 110
PN-interpolation 110
polygon 10

Hamilton 38, 42, 43, 46, 52
simple 10, 46, 91
closed 10, 73
control 97

polyhedron
Hamilton 39, 52
of minimal area 41
open 10, 82
closed 10, 81
control 102
simple 10, 49, 91

polyline 10

power basis 94
principal curvature 101
prism 70
prism tree 70
pruned -graph 45, 62
PT-interpolation 110

quadtree 71

reection line 104, 128
regular parameterization 94, 96, 99,

100
Relative Neighborhood Graph (RNG)

13, 18
removable triangle 49
removable edge 46
reparameterization 94, 96, 100

scalar curvature 97
scattered data points 2, 5, 102, 109,

117
selection rule 49, 52
simplex 11
sine rule 49, 50
singularity 99
skeleton 43, 62
smooth boundary 4, 93
spanning 9, 12
specular reection 105
sphere decomposition 71
Sphere of Inuence Graph (SIG) 13
spline 95, 99
split

Clough-Tocher 116
intstone scheme 83
six-split 124
three-split 116, 117
two-split 121

stereo 31, 38
stochastic geometry 1, 36
strip tree 68, 91
strip 66, 68
subgraph 9
surface-based 44

�-notation 7

144 Index

tangent line 97
continuity 5, 97, 109

tangent plane 101
continuity 5, 104, 110, 118, 119,

126
orientation 103, 110, 115

tangent vector 97, 110
total degree 98
tree 10
triangulation growth 40

vertex 9
visual continuity 97, 107
volume-based 44
Voronoi Diagram (VD) 15, 43

closest point 15
furthest point 15

Voronoi Skeleton 43, 58
Voronoi tree 43

