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Our aim is to give free-viewpoint photo-realistic rendering of real indoor scenes, using a sparse collection of 

RGB-D image as input. Image based rendering (IBR) is an effective way to achieve both realism and interactivity. 

However, there are several challenges for IBR: misalignment of object boundaries between color-and-depth image 

pairs often leads to ghost contours; projection errors result in the visibility failure; and useless and redundant 

input views often produce blurring images. To address these issues, we propose a pixel-to-pixel multi-view depth 

refinement method to produce pixel-accurate alignment between color-and-depth image pairs, and an adaptive 

view selection approach to avoid choosing redundant or useless input views. Furthermore, we propose a layered 

3D warping to handle occluded elements. These components are designed to work together, reducing visual 

artifacts and providing plausible free-viewpoint synthesized images. The evaluation results indicate that our 

method achieves good performance on a wide variety of challenging scenes and performs best among popular 

IBR algorithms designed for dynamic scenes. 
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. Introduction 

Recent years have witnessed increasing demand on reproducing re-

listic virtual versions of real scenes for many applications, such as 3D

ideo, free-viewpoint television (FTV) and virtual navigation of muse-

ms, libraries and games. One promising approach that provides photo-

ealistic imagery of real scenes is image based rendering (IBR) [1,2] . To

ynthesize a photo-realistic image, IBR performs 3D warping that maps

olor and depth information from a reference view to a novel view with-

ut full 3D reconstruction. It allows users to interactively control their

iewpoints and synthesize novel views from arbitrary positions. Since

he running time of IBR depends mainly on the display resolution, it

oes not require as much computing power as geometry-based view

ynthesis approaches which often require a per-view mesh with more

han a million vertices to render novel views. However, various visual

rtifacts like ghost contours, holes and occlusion often appear in syn-

hesized images produced by IBR. 

Ghost contours are mainly caused by the misalignment of bound-

ries between a color image and its corresponding depth map. There are

lenty of studies to correct misalignment by erasing edge-transitional

egions [3,4] or smoothing depth edges [5] . Nevertheless, these methods

re more likely to introduce new visible artifacts, for they may remove

seful information when erasing misalignment. On the contrary, we in-

roduce a pixel-to-pixel multi-view depth refinement algorithm to take

dvantage of useful information and produce pixel-accurate alignment
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etween color-and-depth image pairs. In addition, our depth refinement

ethod is able to fill missing depth information with the consideration

f photometric and geometric consistency among multiple images. 

Redundant and useless input views often lead to blurry or incomplete

ynthesized images. Previous studies select input images by comparing

ngles or distances between input and target views [6,7] , and use a

xed number of input images for rendering. Therefore, they may fail to

hoose enough input views or choose incorrect and redundant views. In

rder to avoid such cases, we propose a novel view selection method

roviding an adaptive number of well-chosen input views to fill holes

n synthesized images. 

In the blending process, visibility is often solved by the Z-buffer

ethod that only recovers the front-most pixels [8] . However, the Z-

uffer approach fails to solve the visibility problem caused by depth

r projection errors. As a result, when these errors exist, objects in the

oreground may be occluded by objects in the background in the syn-

hesized image. To address this issue, we divide the depth map into

ayers and apply 3D warping to synthesize images on each layer with a

witching median filter to avoid the loss of visible information and over-

moothing. Since layered depths have the ability to represent occluded

lements, our approach is better in dealing with the visibility problem. 

Our main contributions are summarized as follows: 

∙ A novel depth refinement algorithm that respects photo-consistency

nd edge preservation to correct misalignment between color-and-depth

mage pairs and fill missing depth information. 
 2021 

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.optlaseng.2021.106726
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2021.106726&domain=pdf
mailto:h.yuan@uu.nl
https://doi.org/10.1016/j.optlaseng.2021.106726
http://creativecommons.org/licenses/by/4.0/


H. Yuan and R.C. Veltkamp Optics and Lasers in Engineering 147 (2021) 106726 

Fig. 1. Qualitative comparison between simulated images (first column) and 

ground truth images (second column) on datasets of Attic, Study room, Playroom 

and Reading corner. 
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∙ A novel adaptive view selection approach that effectively avoids

electing redundant and useless input views to improve the quality of

ynthesized images and the rendering speed. 

∙ A novel rendering algorithm providing high-quality free-viewpoint

ynthesized images, which is based on layered 3D warping to handle

ccluded elements and lower the rendering complexity. 

We have applied our algorithm on a variety of complex indoor

cenes, as shown in Fig. 1 , demonstrating that our method provides

igh-quality results, and can significantly improve the peak signal to

oise ratio (PSNR) compared to previous works. 

. Related work 

Image based rendering has been an active research area over a long

eriod and a thorough review of it can be found in [9] . Here we only

iscuss approaches that are most closely related to our work. 

.1. Object boundary alignment 

The importance of maintaining the alignment of object boundaries

etween color-and-depth image pairs has been known for many years

10,11] . Zitnick et al. [10] use color oversegment to detect object bound-

ries and then use neighboring Markov Random Filed to reduce artifacts

t these areas. Similarly, Wang et al. [12] , Buyssens et al. [13] and Ortiz-

ayon et al. [14] divide the image into superpixels to preserve depth

iscontinuities and then project each superpixel to a virtual view by a

ocal shape-preserving warping to improve the blending quality. Hed-

an et al. [15] combine two multi-view stereo methods to produce new
2 
epth maps which respect occlusion edges. Penner et al. provide a soft

odel [16] to ensure robustness to depth uncertainty. However, these

pproaches do not consider geometric consistency among input images

nd still suffer from silhouette flattening and inaccurate occlusion edges.

More recently, deep learning-based approaches have been applied

o synthesize virtual views [17–20] . Srinivasan et al. [21] train deep

earning pipelines to predict the local geometry for blending, which is

elpful to avoid boundary misalignment. Flynn et al. [22] learn gradi-

nt descent using multiplane images (MPIs), improving performance on

hallenging scene features such as object boundaries. Ni et al. [23] use

nsupervised learning approach by a forward-backward warping pro-

ess to make full use of geometry consistency, which is also helpful to

chieve boundary alignment between color and depth images. However,

n the current state, these methods still suffer from high computational

osts. Besides, they are not suitable for small datasets collected from a

arge range of viewpoints. 

.2. Hole filling 

There have been a lot of works [3–5] that improve the quality of syn-

hesized images by filling holes. Schmeing et al. [24] use the inpainting

pproach [25] to fill holes. Solh et al. [26] use a hierarchical pyramid-

ike method to detect pixels of holes from lower resolution estimates of

he synthesized image. They then fill holes use background information.

imilarly, Dai et al. [6] also use the hierarchy idea to explore the depth

istribution of neighboring pixels around each hole. Based on the dis-

ribution, they choose a number of pixels from the background and use

hem for hole filling. However, when there is no background informa-

ion available near a hole, these approaches have poor performance. Li

t al. [2] use multiple reference views to fill holes, which has some sim-

larity with ours. Nevertheless, the number of input views used in their

ethod is fixed, which may lead to hole filling failure when the cho-

en view are useless or redundant. Instead, we use an adaptive number

f input views to makes sure the given virtual view can be sufficiently

overed. 

.3. Visibility 

To solve visibility for synthesized images, many blending methods

3,27–29] often use the Z-buffer algorithm. Hedman et al. [15] use

 fuzzy depth test based on Z-buffer to blend multiple images. Dai

t al. [6] defines a threshold to blend images with the similar idea

ike Z-buffer. However, these methods are generally unable to remove

ackground information wrongly appearing in the foreground, which

s caused by projection errors or incorrect depths. Unlike these ap-

roaches, we propose a layered 3D warping approach to resolve visi-

ility, which can effectively reduce the loss of foreground information

nd remove background information that wrongly appears in the fore-

round. 

. Overview 

Our goal is to achieve free-viewpoint rendering even in regions

here a global 3D reconstruction of the scene has missing or inaccu-

ate data for both weak and strong computing power devices. 

High-quality IBR depends on the precise depth values and pixel-

ccurate alignment of object boundaries between color-and-depth image

airs. This is because inaccurate depth values and misalignment often

ead to various visual artifacts, such as ghost contours. Unlike previous

ethods [7,27] , which only aim to correct the misalignment of object

oundaries between color-and-depth image pairs, we aim to correct mis-

lignment and fill missing depth information at the same time. Inspired

y the idea of Patchmatch stereo [30] that in natural stereo pairs rela-

ively large regions of pixels can be modeled by approximately the same

lane, we propose a pixel-to-pixel multi-view depth refinement method

o refine depth maps. With the consideration of photo-consistency and
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Fig. 2. Overview of our algorithm. (a) The input of our method are color-and-depth image pairs. (b) The initial depth maps are refined to achieve better alignment 

between object boundaries of color-and-depth image pairs. (c) Images with small view angles, short distances and large overlaps are chosen as input images. (d) We 

divide the depth map into layers and perform 3D warping on each layer. (e) The synthesized images are blended together. (f) Holes in the synthesized image are 

filled with other input images, generating the final virtual images (g). 
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Fig. 3. Problems in the depth map and refinement results. (a) The background 

color pixel 𝐴 has an incorrect depth and the foreground color pixel 𝐵 mismatches 

the background depth in the transitional region. (b) The incorrect depth and 

misalignment are corrected after depth refinement. 
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dge preservation among multiple images, our approach is able to gen-

rate high-quality depth maps. 

Even with high-quality depth maps, the synthesized image may still

ave holes caused by the lack of input images. However, increasing the

umber of input images is likely to introduce redundant or useless im-

ges. These additional images can sometimes be worse than a number

f well-chosen images, as they may blur synthesized images. Besides,

he more input images are chosen, the more computation time is re-

uired. To overcome these problems, we present an adaptive view se-

ection algorithm which chooses input images based on angles, distances

nd overlaps between two views to avoid selecting useless and redun-

ant images. In the rendering process we use a variable number of input

mages to synthesize the virtual image to lower the rendering complex-

ty and improve the quality of synthesized images. 

When blending input images, the Z-buffer method is often used to

olve visibility. The intuition behind it is that closer objects occlude far-

her objects. However, it is not sufficient to achieve high quality for

BR. To further improve the quality of synthesized images, we divide

he depth map into layers, and then apply the 3D warping on each layer

o produce the virtual image. Furthermore, we present a switching me-

ian filter to fill missing information in the layered synthesized image

o avoid the loss of visible information and over-smoothing problem.

fter that, we blend these virtual images together to produce the final

ynthesized image. 

Combining the novelties above, our pipeline works as follows: Dur-

ng offline processing, we employ a pixel-to-pixel multi-view depth

efinement approach to improve the quality of initial depth maps

y generating pixel-accurate alignment of object boundaries between

olor-and-depth image pairs and filling missing depth information (see

ection 4.1 ). During online processing, to avoid blurring images, we se-

ect input images not only based on angles and distances but also on

he overlap between the input and virtual views in the query dataset

see Section 4.2 ). We then apply a layered 3D warping that can better

andle occluded elements to synthesize virtual images (see Section 4.3 ).

inally, we iteratively fill holes in the synthesized image with a variable

umber of input images (see Section 4.2 ). Fig. 2 shows the pipeline of

ur work. 

. Free-viewpoint image based rendering 

.1. Depth refinement 

High-quality depth maps are necessary for consistent rendering.

owever, the depth map generated by 3D sensors often has inaccurate

epth values and seldom aligns object boundaries with its correspond-

ng color image, as illustrated in Fig. 3 (a). There, the background color

ixel 𝐴 is wrongly assigned with a foreground depth value, and in the

ransitional region the color pixel 𝐵 which should be assigned a fore-
3 
round depth value turns to have a background depth value. Fig. 3 (b)

hows the refined depth map we aim to produce, where color pixel 𝐴

nd 𝐵 are assigned with correct depth values. To achieve this goal, we

ropose a pixel-to-pixel multi-view depth refinement approach with the

onsideration of photometric and geometric consistency among pixels.

ur matching cost function 𝐶 is defined as, 

( 𝑖 ) = 𝐶 𝑝𝑖𝑥𝑒𝑙 ( 𝑖 ) + 𝐶 𝑝𝑎𝑡𝑐ℎ ( 𝑖 ) , (1)

here 𝐶 𝑝𝑖𝑥𝑒𝑙 ( 𝑖 ) and 𝐶 𝑝𝑎𝑡𝑐ℎ ( 𝑖 ) emphasize photo-consistency and edge

reservation for the pixel 𝑖 , respectively. 

The photo-consistency 𝐶 𝑝𝑖𝑥𝑒𝑙 ( 𝑖 ) for the pixel 𝑖 is measured by pro-

ecting it to other images, where we compare the color and gradient

imilarities. It is defined by: 

 𝑝𝑖𝑥𝑒𝑙 ( 𝑖 ) = 𝜆C⃗ (x i ) − C⃗ (x r ) + (1 − λ) ▽C⃗ (x i ) − ▽C⃗ (x r ) , (2)

here 𝑥 𝑖 is the pixel we calculate cost for in the target image and 𝑥 𝑟 
s the corresponding pixel of 𝑥 𝑖 in the reference image. 𝐶 ( 𝑥 𝑖 ) and 𝐶 ( 𝑥 𝑟 )
re the RGB components of pixel color 𝑥 𝑖 and 𝑥 𝑟 , respectively. Also,
⃗
 (x i ) − C⃗ (x r ) and ▽C⃗ (x i ) − ▽C⃗ (x r ) indicate the color and gradient dif-

erences, respectively. 𝜆 is a measure parameter. We set 𝜆 = 0 . 9 in all the

xperiments. For a target image, we first base on distances and angles

etween the target and reference views to select reference color images.

he maximum number of selected reference images is ten. Next, we iter-

tively project pixels in the reference image to the target image and only

ave the cost value of the front-most pixel. As it is possible that several

ixels in the reference image can be projected to the same position, all

he projected depth values are needed to be compared. In this way, we

re able to avoid obtaining high cost values for correct depths. 

The edge preserving term 𝐶 𝑝𝑎𝑡𝑐ℎ ( 𝑖 ) encourages the resulting depth

ap to have pixel-accurate alignment with its corresponding color im-
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(a) Distance (b) Angle (c) Overlap
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Fig. 4. View selection pipeline. (a) 𝐴 , 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are input views and 𝑇 

is the target view. We first select a cluster of images which have short distances 

between the target and input views. (b) From the cluster of images, we select 

a subset of images with small angles they have with the target view. (c) Based 

on the overlap between the target and input views, we remove views having no 

overlaps with 𝑇 . 
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 𝑝𝑎𝑡𝑐ℎ ( 𝑑 𝑖 ) = 

1 
𝑁 

∑
𝑞∈𝑊 𝑖 

𝑒 − ⃗C (x i )− ⃗C (x q ) , (3)

here 𝑊 𝑖 denotes a small ( 3 × 3 ) patch centered on pixel 𝑖 which is

hosen empirically and 𝑞 is the neighbor pixel of 𝑖 . 𝑁 is the size of

he patch ( 3 × 3 ). C⃗ (x i ) − C⃗ (x q ) computes the L1 norm between the RGB

olors of 𝑖 and 𝑞. 

In the depth refinement process, we first select pixels that need to be

odified based on the cost value. If the cost value of pixel 𝑝 is bigger

han the average cost of a ( 𝑛 × 𝑛 ) patch centered on it, we search the

atch to find the lowest cost (pixel 𝑞) in the patch. This is because cor-

ect depth values have low matching costs that are computed with the

onsideration of photometric and geometric relationships among pixels.

ext, we replace the depth and cost of 𝑝 with 𝑞’s, for spatial neighbor-

ng pixels are likely to have similar depth values. We run this process

ntil all the pixels are compared. The comparison process is interleaved

ith the depth refinement. That is propagating good depth values to

eighbors, if the costs are smaller than those of their neighbors. 

After propagation, we filter unusual depths with a weighted me-

ian filter [31] which is guided by the color image. We set 𝑛 = 3 in
ll the experiments. The depth refinement algorithm is summarized

n Algorithm 1 . 

lgorithm 1 Overview of the depth refinement procedure. 

nput: Color images 𝐼 1 …𝐼 𝑁 

, patch size 𝑛 × 𝑛 and depth maps 𝐷 1 …𝐷 𝑁 

.

utput: Refined depth map 𝐷 1 for color image 𝐼 1 . 

1: Calculate photo-consistency cost 𝐶 𝑝𝑖𝑥𝑒𝑙 ( 𝑝 ) in 𝐼 1 and edge preserving

cost 𝐶 𝑝𝑎𝑡𝑐ℎ ( 𝑝 ) in 𝐼 1 . 
2: Calculate matching cost 𝐶( 𝑝 ) = 𝐶 𝑝𝑖𝑥𝑒𝑙 ( 𝑝 ) + 𝐶 𝑝𝑎𝑡𝑐ℎ ( 𝑝 ) . 
3: if (matching cost 𝐶( 𝑝 ) > average cost of patch P ( 𝑛 × 𝑛 ) centered on

𝑝 then 

4: for pixel 𝑞 𝑖 ∈ patch 𝑃 do 

5: Find 𝑞 𝑖 with the lowest matching cost 𝐶( 𝑞 𝑖 ) and replace the

depth and matching cost of 𝑝 with 𝑞 𝑖 ’s. 

6: Run weighted median filter. 

.2. View selection 

A large number of works (e.g., [3–5] ) improve the quality of syn-

hesized images by correcting misalignment or filling holes. However,

ess attention has been paid to select input views, which is also impor-

ant for improving the quality of synthesized images. Previous studies

ay choose incorrect or redundant views based on angles or distances

etween two views, which often leads to blurry synthesized images. In

rder to avoid choosing such input views, we select views not only con-

idering angles and distances but also overlaps between two views. 

Fig. 4 shows the selection process. Firstly, the distance between the

nput and the target views is calculated as shown in Fig. 4 (a), where 𝐴 ,

, 𝐶, 𝐷, 𝐸, 𝐹 are input views and 𝑇 is the target view. The distance
4 
etween the input and target views is defined by: 

𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑖 ) = ‖𝑂 𝑡 − 𝑂 𝑖 ‖, (4)

here 𝑂 𝑡 and 𝑂 𝑖 are the centers of target view 𝑡 and input view 𝑖 , re-

pectively. 

Then we rank the calculated distances and select the top ten images

s a local group. From these local images, angles between the target and

nput views are calculated: 

𝑛𝑔𝑙𝑒 ( 𝑖 ) = arccos ( 
⃖⃖⃗𝑛 𝑡 ⋅ ⃖⃖⃗𝑛 𝑖 ‖ ⃖⃖⃗𝑛 𝑡 ‖ ⋅ ‖ ⃖⃖⃗𝑛 𝑖 ‖ ) , (5)

here ⃖⃖⃗𝑛 𝑡 and ⃖⃖⃗𝑛 𝑖 are the view directions of target view 𝑡 and input view

 , respectively. 

If the angle is bigger than the field of view of the camera capturing

nput images, we get rid of it from the local input image group as shown

n Fig. 4 (b). 

Furthermore, in order to remove views, like 𝐴 which has a small

ngle and distance, but no overlap with the target view, we calculate

he overlap between input and target views. If the overlap is zero, we

emove it from the local image group ( Fig. 4 (c)). To reduce the com-

utation time of calculating overlaps, we downsample the input image

ith an equal sampling interval and only project sampled pixels into the

arget view. In this way, the computation time can be reduced depend-

ng on the sampling interval. In our experiment, all the depth images

ave the same world coordinate system. 

The target virtual image is synthesized by locally blending the input

mages. However, directly blending all images is time-consuming. So

hat, we use a variable number of input images to produce the virtual

mage. We first project an input image which is selected based on our

iew selection approach in the input image group to the virtual position,

nd then detect the holes in the virtual image. If the size of the largest

ole is bigger than a threshold (e.g., 0 . 04% of the whole image), we then

hoose another input image to fill holes. We iteratively run this process

ntil the largest hole has been sufficiently covered. 

.3. Layered 3D warping 

The whole pipeline of our layered 3D warping is described in Fig. 5 .

he core part of IBR methods is 3D warping. It projects textures and

epth information from a reference image plane to new positions in

he target image plane using the corresponding camera’s intrinsic and

xtrinsic matrices. 

Fig. 6 shows the projection process. Let 𝑝 1 = [ 𝑢, 𝑣, 1] 𝑇 be a pixel point

n the image plane 𝐶 1 . 𝑃 1 is projected into the world coordinate system

t 𝑃 = [ 𝑋, 𝑌 , 𝑍, 1] 𝑇 . The relationship between 𝑃 and 𝑝 1 can be defined

y left camera’s intrinsic matrix 𝐾 1 , rotation matrix 𝑅 1 and translation

atrix 𝑇 1 : 

𝑝 1 ≅ 𝑀 𝑃 
̃
 ≅ 𝑀 𝑀 

+ + 𝑝 1 , 
(6) 

here 𝑀 = 𝐾 1 [ 𝑅 1 |𝑇 1 ] . ≅ is transformed in metric positions using the Z

oordinate position of 3D object point in the camera coordinate system.

urthermore, 𝑃 is projected into the image plane 𝐶 2 at the pixel position

 ̃2 = [ 𝑢 ′, 𝑣 ′, 1] 𝑇 , which is calculated by 

 ̃2 ≅ 𝑀 

′ ∗ 𝑃 , (7)

here 𝑀 

′ = 𝐾 2 [ 𝑅 2 |𝑇 2 ] . 𝐾 2 , 𝑅 2 and 𝑇 2 represent the intrinsic, rotation

nd translation matrices of the right camera. 

However, the projection errors caused by 3D warping or incorrect

epth information often lead to background information wrongly appear

n the foreground, as shown in Fig. 7 . 

To solve this problem, we evenly divide the depth image into layers

ased on the maximum and minimum depth values. Fig. 8 shows an

xample of the layered depth maps. On each layer, we apply 3D warping

ith corresponding color-and-depth image pairs to produce new images

nd then employ a switching median filter to remove unusual pixels in

ach new image. 
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Fig. 5. Layered 3D warping. The input are color-and-depth image pairs. Based on the maximum and minimum depth values, the depth map is divided into layers. 

On each layer, we apply 3D warping to synthesize the new image. A switching median filter is applied to fill missing information in these images. After that, all the 

filtered images are blended to produce the color-and-depth image pairs. 

Fig. 6. 3D warping. A point 𝑃 1 in the image plane 𝐶 1 is projected to a world 

point 𝑃 and then 𝑃 is projected to another image plane 𝐶 2 at position 𝑃 2 . 

Fig. 7. Problems caused by 3D warping in the synthesized image. 

Fig. 8. The layered depth maps. A depth map is evenly divided into layers based 

on the maximum and minimum depth values. 
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A median filter [32] is often used to filter unusual pixels in the pro-

ected image, for the distribution of these pixels has similar character-

stics as salt-and-pepper noise. However, the traditional median filter

s implemented uniformly across the whole image and tends to modify

oth noisy and good pixels at the same time. As a result, the filtered

mages are more likely to lose some details such as edges and small tex-

ures. Unlike the median filter, our switching median filter only refines

ixels that have unusual information and is able to avoid smoothing over

mages. The switching median filter for pixel 𝑃 𝑖,𝑗 is defined as follows:

 𝑖,𝑗 = 

{ 

𝑚𝑒𝑑𝑖𝑎𝑛 
{ 

𝑃 ′
𝑖 + 𝑢,𝑗+ 𝑣 |( 𝑢, 𝑣 ) ∈ 𝑊 

} 

if 𝑃 𝑖,𝑗 ∈ 𝑆 

𝑃 𝑖,𝑗 otherwise 
, (8)

here 𝑚𝑒𝑑𝑖𝑎𝑛 is the traditional median filter and 𝑃 ′
𝑖 − 𝑢,𝑗− 𝑣 is a pixel in

he median kernel, 𝑊 = { ( 𝑢, 𝑣 ) | − ( 𝑁 + 1)∕2 ≤ ( 𝑢, 𝑣 ) ≤ ( 𝑁 + 1)∕2 } , 𝑁 is

he size of the median kernel and 𝑆 is a cluster of chosen pixels. If 𝑃 𝑖,𝑗 
s equal to zero and more than half of the pixels centered on 𝑃 𝑖,𝑗 are

on-zeros, we consider 𝑃 𝑖,𝑗 belong to 𝑆. 

After performing the switching median filter, we blend these new

mages together to produce the final synthesized images. We found four

ayers to be a good trade-off between quality and speed. 

.4. Imperfections of IBR and solutions 

In this section, we explain the imperfections of IBR and summarize

he solution for each of them. There are four basic problems in IBR, that

re ghost contours, cracks, occlusion, and holes. 

Ghost contour. The ghost contour is mainly caused by the edge mis-

lignment of object boundaries between a color image and its corre-

ponding depth map. Object edges in the color image always contain
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Fig. 9. Example results of synthesized images from different scenes (left to right): Office, Dorm, Playroom, Reading corner, Attic. 

Fig. 10. Qualitative comparison between Local Light Field Fusion [36] (first 

and third columns) and our approach (second and fourth columns) on five 

datasets. 
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Table 1 

Quantitative evaluation of rendered depth maps on different datasets. 

Lab Reading corner Playroom Dorm Breakdancers 

RMS 0.401 0.454 0.468 0.499 2.301 

𝑙𝑜𝑔 10 0.043 0.058 0.061 0.063 0.137 
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i  
ransitional pixels, while edges in its related depth map do not have

uch transitional regions. After projection, the transitional areas of the

mage are split and appear various visual artifacts. 

To address this challenge, we refine the initial depth map by cor-

ecting the misalignment of boundaries between color-and-depth image

airs and filling missing depth information (see Section 4.1 ). In addition,

hen blending projected images, we detect big holes in the projected
6 
mage and dilate these holes with several pixels, which is also useful to

emove ghost contours. 

Cracks. Due to the miss-focus and non-integer index problems, the

nput pixel is usually not projected to a point at an integer position.

fter resampling, there may be more than one value in a position, while

here are no values in other positions, which results in crack artifacts in

he projected image. 

The median filter is often used to remove cracks. However, tradi-

ional median filter often leads to the over-smoothing problem, which

akes images lose small details. We introduce the switching median

lter that only filters pixels among cracks to avoid above issues (see

ection 4.3 ). 

Occlusion. When objects in the background and foreground are pro-

ected to the same position, objects in the foreground may be occluded

y objects in the background, which is caused by the incorrect depth in-

ormation. Besides, objects that are supposed to show correctly can also

e occluded due to the projection errors. The Z-buffer approach is the

ost commonly used method to address these problems. However, it is

ot sufficient to generate high-quality synthesized images, since there

re still many background pixels appearing in the foreground after ap-

lying this approach, especially for dynamic scenes. 

To address this problem, we combine the layered 3D warping and

witching median filter to synthesize new images (see Section 4.3 ). The

ayered depth map has the ability to represent geometry of occluded

lements and the switching median filter can reduce the loss of visi-

le information. These two components are designed to work together,

iving high-quality performance. 

Holes. Unobserved regions will lead to holes in synthesized images.

oreover, the fixed number of input views used by traditional view

ynthesis methods is not guaranteed to cover the whole virtual view,

hich results in holes during rendering. 

Unlike previous algorithms using a fixed number of input images,

e use an adaptive number of images to fill holes in the synthesized

mage (see Section 4.2 ). Our adaptive view selection approach makes
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Table 2 

The PSNR comparison with different algo- 

rithms. 

Methods 

the average PSNR over 100 

images (dB) 

Lab Study room 

SM [20] 21.39 10.76 

LLFF [36] 23.18 14.10 

NeRF [37] 37.65 21.03 

Ours 33.10 27.85 

Table 3 

The PSNR comparison with different algo- 

rithms. 

Methods 

the average PSNR over 100 

images (dB) 

Ballet Breakdancers 

VSRS [38] 30.23 31.17 

Liu [7] 32.52 33.33 

Dai [6] 32.55 31.77 

Loghman [39] 30.36 31.64 

Ours 33.40 33.59 

Table 4 

Rendering speed comparison with differ- 

ent algorithms. 

Methods 

the average rendering time 

per frame (second) 

Ballet Breakdancers 

Liu [7] 0.30 0.31 

Li [2] 1.03 1.029 

Ours 0.28 0.30 
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ure the given virtual view can be sufficiently covered, which avoids

ig holes in the synthesized image. At the same time, our approach is

ble to limit the input views used for rendering. This helps to avoid

lurry synthesized images and improve the rendering speed. 

. Experimental results 

We evaluate the proposed approaches on seven static datasets includ-

ng our three own datasets (Study room, Office and Lab), four datasets

Attic, Dorm, Playroom, Reading corner) from [15] , and two dynamic

atasets (Ballet and Breakdancers) from [33] . There are less than 220

olor-and-depth image pairs in the seven static datasets. The depth im-

ges in these datasets are calculated using a unique world coordinate

ystem and the intrinsic and extrinsic parameters are estimated at the

ame time. Each of the two dynamic datasets contains a sequence of 100

olor-and-depth image pairs, captured by eight static cameras which

re positioned along an arc at 20-degree intervals. Like the seven static

atasets, the depth images in the two dynamic datasets are also calcu-

ated by a unique world coordinate system and the intrinsic and extrinsic

arameters are also known. 

.1. Overall performance 

We randomly choose an image from the initial captured dataset as

ur ground truth image and then use the other images to synthesize the

hosen image. Fig. 1 shows some examples of synthesized images and

heir corresponding ground truth images. Fig. 9 shows some additional

ynthesized images. From Fig. 1 and Fig. 9 we can see that the proposed

ethod is able to provide high-quality synthesized images. 

We use root mean squared error (RMS) meters (lower is better) and

verage log10 error (lower is better) [34] to quantitatively evaluate the

ynthesized depth maps. 

𝑀𝑆 = 

√ 

1 
𝑛 

∑𝑛 
𝑝 ( 𝑦 𝑝 − 𝑦̂ 𝑝 ) 2 . (9)

 𝑜𝑔 10 = 

1 
𝑛 

∑𝑛 
𝑝 |𝑙 𝑜𝑔 10 ( 𝑦 𝑝 ) − 𝑙𝑜𝑔 10 ( ̂𝑦 𝑝 ) |. (10)

We also randomly choose a depth map from the initial captured

ataset as our ground truth map and then use other depth maps to syn-

hesize it. The average number of input depth maps we use is four. The

xperimental results are summarized in Table 1 . From Table 1 we can

ee that our approach achieves better performance on the static datasets.

or example, compared with the RMS of Breakdancers dataset (2.301),

he RMS of Reading corner dataset is 0.401, which is relatively small

rror among popular depth evaluation approaches [35] . 

.2. Comparison with other methods 

In Fig. 10 we compare our method to Local Light Field Fusion (LLFF)

36] which also uses layered depth maps to synthesize images. Since

LFF is designed for static datasets containing large overlaps, we only

ompare it on our static datasets with small changes. As we can see,

LFF suffers from the same limitation as other deep learning-based view

ynthesis methods, as images synthesized by LLFF are blurry. In contrast,

ur approach can provide sharp synthesized images for various scenes. 

In order to quantitatively evaluate the synthesized color images, we

ompare our method with state-of-the-art learning-based algorithms on

tatic datasets including Lab and Study room datasets. Lab is a dense

mage set and Study room is a sparse image set. The peak signal-to-

oise ratio (PSNR) is used to evaluate image quality, where a higher

SNR value means a better image quality. The experimental results are

iven in Table 2 . 

As can bee seen from Table 2 , compared with learning-based ap-

roaches, our method achieves better performance on Study room. The

esults indicate that our approach is more robust to scenes consisting
7 
f sparsely captured images. Besides, our approach is free from training

nd can provide plausible synthesized images. 

We also compare our method with state-of-the-art algorithms which

re suitable for dynamic datasets. We use two reference images to syn-

hesize a new image on the Ballet and Breakdancers datasets. The com-

arison results are given in Table 3 . We can see that our algorithm per-

orms the best for both datasets. 

To evaluate the rendering speed, we compare our method with the

tate-of-the-art approaches on the two dynamic datasets. Table 4 sum-

arizes the rendering speed comparison results. It can be seen that our

pproach achieves the best performance. 

.3. Effect of depth refinement 

Fig. 11 shows the PSNR comparison with and without our depth

efinement method on different datasets. As we can see, our proposed

pproach consistently improves the PSNR through all the testing frames.

With the refined depth map, the growth of PSNR in the Ballet dataset

s the larger. This is because the number of misalignment between the

olor image and the depth map, and imprecise depth values in the Ballet

ataset is more than those in the other datasets. After the depth refine-

ent, these issues are solved, resulting in the increased PSNR. 

Fig. 12 (a) visualizes the depth refinement results on several datasets.

e can see that our pixel-to-pixel multi-view depth refinement method

s able to improve the quality of the depth map by filling missing depth

nformation or refining incorrect depth values. Fig. 12 (b) shows the

lignment process where a foreground color pixel 𝐴 in the object bound-

ry is wrongly assigned a background depth value 𝐴 1 , and after the

epth refinement, this value is replaced with the correct foreground

epth value 𝐴 2 in the refined depth map. 
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Fig. 11. The PSNR comparison with and without depth refinement on each 

frame. 

Table 5 

The PSNR comparison between the guided filter and our 

depth refinement approach. 

the average PSNR over 100 images (dB) 

guided filter [40] ours 

Attic 29.39 33.28 

Dorm 29.82 33.71 

Ballet 28.85 33.43 

Office 30.37 34.31 

Lab 30.61 33.21 

Playroom 29.44 33.53 

Study room 27.87 31.75 

Breakdancers 30.29 33.89 

Reading corner 28.53 31.78 

 

g  

m  

a  

c  

i

5

 

w  

a  

t  

o  

a  

o  

t  

Fig. 12. Example results after depth refinement. (a): The visualization results 

of depth refinement on different datasets (top to bottom): Reading corner, Ballet 

and Attic. (b): An example showing the misalignment between the foreground 

color 𝐴 and background depth 𝐴 1 is corrected by our depth refinement, where 

𝐴 1 is replaced with the correct foreground depth 𝐴 2 . The color and depth in- 

tensities are obtained along the horizontal red line in the Attic dataset in (a). 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 6 

Hole size comparison of synthesized images using different numbers of 

input views. The hole size is defined by the percentage of missing pixels 

in the whole image. 

Hole size(%) 

1 view 2 views 3 views ours (adaptive views) 

Attic 50.07 10.31 2.26 0.01 

Dorm 60.19 18.35 5.85 0.03 

Ballet 50.16 3.15 1.93 0.02 

Office 31.13 2.51 1.33 0.01 

Lab 35.19 3.24 2.67 0.02 

Playroom 45.96 10.51 6.21 0.03 

Study room 60.19 20.15 7.82 0.02 

Breakdancers 47.89 2.15 1.21 0.01 

Reading corner 23.12 10.49 1.18 0.02 
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w  
Furthermore, we compare our depth refinement algorithm with the

uided filter [40] , which is designed to produce edge-preserving depth

aps. We use the color image as the guided image and compare the

verage PSNR over 100 frames, as shown in Table 5 . It can be seen that

ompared with guide filter, our approach achieves better performance

n various scenes. 

.4. Effect of view selection 

The quality of synthesized images is influenced by the quantity of

ell-chosen input images. We compare the hole sizes of synthesized im-

ge using different numbers of input views in Fig. 13 and Table 6 . For

raditional methods, the number of input views is fixed, such as two

r three, which does not guarantee to cover the whole virtual view. As

 result, big holes often appear in the synthesized image. In contrast,

ur method with a variable number of input images is able to reduce

he hole size significantly. The average number of input views we use is
8 
our. For example, for the Study room dataset, the hole size is reduced

y 20 . 13% , and 7 . 80% compared to methods with two and three input

iews, respectively. This is because the captured images in Study room

ataset are very sparse. If the virtual view is substantially different from

he input images, the synthesized image produced by the fixed number

f input images may still have large holes. 

.5. Effect of layered 3D warping 

Fig. 14 shows the PSNR comparison results between layered 3D

arping and Z-buffer on two dynamic datasets that are more challenging
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Fig. 13. Synthesized images by one view (first column), two views (second column), three views (third column) and adaptive views (fourth column) on different 

datasets. 
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Fig. 14. The PSNR comparison between layered 3D warping and Z-buffer on each frame. 
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Table 7 

The PSNR comparison between the median filter and switching me- 

dian filter on different datasets. 

the average PSNR over 100 images (dB) 

median filter [32] ours (switching median filter) 

Attic 31.57 33.28 

Dorm 30.12 33.71 

Ballet 31.15 33.43 

Office 30.63 34.31 

Lab 31.11 33.21 

Playroom 30.64 33.53 

Study room 29.57 31.75 

Breakdancers 31.91 33.89 

Reading corner 29.67 31.78 

o  

c  

c  
han static ones. We can see that our layered 3D warping consistently

mproves the PSNR through all the testing frames. 

The effectiveness is also demonstrated by Fig. 15 which shows some

napshots of synthesized images with our layered 3D warping on dif-

erent datasets. As can be seen, the background pixels are adequately

emoved and replaced by correct foreground pixels after the layered 3D

arping. 

We introduce the switching median filter to fill missing information

n layered synthesized images. Compared with the traditional median

lter, the main advantage of our switching median filter is to avoid over-

moothing. To verify its effectiveness, we compare the average PSNR

ver 100 frames with the median filter [32] , as shown in Table 7 . It

an be seen that our approach achieves better performance in different

cenes. 

.6. Effect of multi-layered depth maps 

To verify the necessity of depth processing in the view synthesis

ramework, in Table 8 we calculate the average PSNR over 100 frames
9 
n several datasets. The traditional image based rendering, the method

ombing image based rendering and depth refinement, and the approach

ombining IBR and layered 3D warping are referenced as IBR, IBR_DR
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Fig. 15. Synthesized images with (first) and without (second) layered 3D warping on different datasets. 

0 2 4 6 8
Number of depth layers

26

28

30

32

34

P
S

N
R

 (
dB

) Attic
Office1
Dorm
Playroom
Student room
Reading corner

Fig. 16. Performance with different numbers of layered depth maps. 
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Fig. 17. The rendering speed of our method with different numbers of layered 

depth maps. 
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Fig. 18. The typical limitations of our approach: artifacts caused by incorrect 

depth maps. 

Table 8 

Quantitative evaluation of the synthesized image in terms 

of PSNR with different approaches. 

the average PSNR over 100 images (dB) 

IBR IBR_DR LIBR LIBR_DR 

Attic 27.99 32.50 31.45 33.28 

Dorm 26.89 33.12 31.62 33.71 

Ballet 25.43 33.17 33.05 33.49 

Office 28.13 33.21 31.33 34.31 

Lab 29.19 30.24 30.21 33.21 

Playroom 27.96 29.52 30.21 33.53 

Study room 28.12 30.22 29.45 31.75 

Breakdancers 26.52 33.26 33.53 33.67 

Reading corner 23.12 25.16 27.84 31.78 

5

 

n  

l  

l  

f

6

 

w  
nd LIBR respectively. The LIBR_DR is the algorithm combing depth re-

nement, and layered 3D warping. 

From Table 8 we can see that using IBR_DR or LIBR alone improves

he performance as they are able to better process depth information,

nd the combined method LIBR_DR performs best. 
10 
.7. Quality and time efficiency 

The qualitative comparison of synthesized images with different

umbers of depth layers is shown in Fig. 16 . We can see that more depth

ayers will improve the PSNR of synthesized images. However, more

ayers will also increase the computation time, as shown in Fig. 17 . We

ound four layers to be a good trade-off between quality and speed. 

. Conclusion 

In this paper we have proposed a novel view synthesis frame-

ork that first refines depth maps by correcting misalignment of ob-
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ect boundaries between color-and-depth image pairs and filling miss-

ng depth information. We then divide the depth map into layers and

ntroduce a fast rendering algorithm combining an adaptive view selec-

ion approach and a layered 3D warping to synthesize high-quality free-

iewpoint virtual images. The experimental results demonstrate that the

uality of synthesized images is improved significantly with refined and

ayered depth maps. Since the rendering time of our proposed algorithm

nly depends on the display resolution of synthesized images, it can be

sed in various applications such as mobile phones and virtual environ-

ent [41] . However, some limitations are worth noting. If the object

as a large range, it will be divided into different layers, which could

e further optimized. Besides, when the depth map produced by the

epth camera has too much missing information, the synthesized image

enerated by our method shows various artifacts, as shown in Fig. 18 .

herefore, new methods are required to generate high-quality depth im-

ges for scenes with texture-less or reflective objects. 
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