
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3061479, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SPECIAL ISSUE: EGOCENTRIC PERCEPTION 1

Multi-Dataset, Multitask Learning of Egocentric
Vision Tasks

Georgios Kapidis, Student Member, IEEE, Ronald Poppe, Member, IEEE
and Remco C. Veltkamp, Member, IEEE

Abstract—For egocentric vision tasks such as action recognition, there is a relative scarcity of labeled data. This increases the risk of
overfitting during training. In this paper, we address this issue by introducing a multitask learning scheme that employs related tasks as
well as related datasets in the training process. Related tasks are indicative of the performed action, such as the presence of objects
and the position of the hands. By including related tasks as additional outputs to be optimized, action recognition performance typically
increases because the network focuses on relevant aspects in the video. Still, the training data is limited to a single dataset because
the set of action labels usually differs across datasets. To mitigate this issue, we extend the multitask paradigm to include datasets with
different label sets. During training, we effectively mix batches with samples from multiple datasets. Our experiments on egocentric
action recognition in the EPIC-Kitchens, EGTEA Gaze+, ADL and Charades-EGO datasets demonstrate the improvements of our
approach over single-dataset baselines. On EGTEA we surpass the current state-of-the-art by 2.47%. We further illustrate the
cross-dataset task correlations that emerge automatically with our novel training scheme.

Index Terms—Egocentric Vision, Action Recognition, Multi-dataset Training, Multitask Learning

F

1 INTRODUCTION

C LASSIFICATION models for egocentric vision tasks such
as action recognition are predominantly trained using

supervised learning schemes. While action recognition from
first- and third-person videos can be assumed to have a
comparable complexity, labeled datasets for the third-person
perspective, (e.g., [1], [2], [3], [4], [5], [6]) are typically orders
of magnitude larger than egocentric datasets, (e.g., [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]).

While more general egocentric video datasets exist, (e.g.,
[7], [8], [15], [21]), they focus on longer-term activities such
as walking [15], socializing [10], [11], [16] or doing sports
[12]. The recognition of the actions that make up those
activities, such as ‘cut a carrot’ and ‘open the fridge’, re-
quires a more granular analysis over shorter video frag-
ments. Egocentric video datasets that address such action
recognition tasks are homogeneous in terms of the action
domain, recording environment and the recorded actors.
While there is a steady progression in the variation within
the datasets that have been introduced over the years, each
dataset has a focus on a specific task or application.

ADL [9] was one of the first egocentric video datasets
that focused on human activities in indoor environments.
Participants performed daily activities such as cooking and
cleaning in their homes with annotations of the tempo-
ral range of activities, objects used and the locations in
the house [22]. To increase granularity and specialization
in cooking activity recognition, the EGTEA datasets were
introduced [14], [23] where participants followed narrated
recipes for meal preparation in their kitchens. To scale up
the dataset size and remove the use of scripts, the EPIC-
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Kitchens dataset [19] introduced a culturally diverse set of
videos with a large variety of actions and interactions with
cooking ingredients and kitchen-related objects. Additional
modalities such as object presence are predominantly used
both during training and at test time. While the performance
of some detection tasks such as object detection is impres-
sive, the requirement of additional inputs for testing is a
limiting factor.

Obtaining egocentric videos with relevant labels for
various tasks is labor-intensive, and there is a need for
learning schemes that can reduce overfitting without re-
quiring more annotated data. In this paper, we introduce
such a scheme that uses annotations from both related tasks
and related datasets. Using an extended multitask learning
(MTL) scheme, we exploit annotations of related tasks dur-
ing training, while only video data are required for testing.
We base our work on ideas developed in [24], where joint
training with related video recognition tasks such as object,
hand and gaze detection have been shown to improve action
recognition performance. We investigate the concept of task
relatedness [25]. Our premise is that common actions in
different datasets such as ‘cut’ and ‘open’ are associated
by the network and the same neural pathways are reused,
producing efficient and robust multi-purpose models. This
provides an effective and efficient way to utilize additional
training data from diverse sources. We allow for video data
from other datasets to be used in the training process, and
treat the issue of different label sets as additional tasks. Our
novel learning scheme is termed Multi-Dataset, Multitask
Learning (MD-MTL).

To demonstrate the benefits of our approach, we adapt
a 3D-convolutional neural network [26] to include addi-
tional task-specific output layers [24] for the tasks of other
datasets. In MD-MTL, each epoch consists of the data of
the combined training sets, while each batch comprises data
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randomly chosen out of all datasets, to allow for batch
loss calculation that represents the full spectre of available
domains. We also experiment with other batch division
strategies.

We experiment with combinations of data from EPIC-
Kitchens [19], EGTEA Gaze+ [14] and ADL [9] to demon-
strate the effectiveness of our multi-dataset, multitask train-
ing scheme for egocentric action recognition. Specifically,
regarding ADL we investigate the potential improvements
on longer term activity recognition performance by utilizing
the short-term actions from EPIC and EGTEA. Lastly, we
use Charades-EGO [8] to investigate the benefits from asso-
ciated third-person videos in egocentric action recognition.

The contributions of this paper are the following:

• We extend Multitask Learning (MTL) to include
training data from multiple datasets (MD-MTL) with
a simple but effective network modification.

• We introduce a batch formation scheme for on-the-
fly association of dataset-specific samples to dataset-
specific tasks.

• We demonstrate the improvements of MD-MTL in
classification performance for the main action recog-
nition tasks. We also highlight the reuse of the same
pathways for related classes across datasets.

In §2 we review recent advances in video action recog-
nition, multitask learning, and multi-dataset training. In §3
we introduce MD-MTL. In §4 we describe our experiments
and discuss the results in §5. In §6 we conclude the paper.

2 RELATED WORK

We first provide an overview of video action recognition,
with a focus on egocentric action and activity recognition.
In §2.2 we discuss advances in multitask learning and in
§2.3 we review related work on multi-dataset training.

2.1 Video Activity Recognition

Since the introduction of large-scale image [27] and video
[1], [2] datasets, convolutional neural networks (CNNs)
have consistently produced state-of-the-art results [2], [28],
[29], [30], [31], [32], [33], [34], [35], [36] for image and
video recognition tasks. Likewise, CNN-based approaches
have been adopted and adapted to tackle first-person video
understanding [37], [38], [39], [40], [41], [42], [43].

Egocentric action recognition has seen incremental im-
provements over the years with the prominent works of [9],
[14], [37], [38], [40], [44], [45], [46], [47]. Originally, feature-
based techniques [37], [48], [49], [50] were developed to ex-
plicitly model and capitalize on the inherent characteristics
of first-person videos such as motions [37], [45], [48], [50],
[51], [52], ego-motion [37], [49], [53], human gaze [37], [52],
[53], [54], [55] and the presence and movement of hands [9],
[37], [44], [49], [55] and objects [9], [37], [44], [49], [55].

The wide use of CNNs in third-person vision was fol-
lowed by their extensive application in egocentric action
and activity recognition [16], [21], [38], [40], [41], [56]. Earlier
approaches handled CNN features as an additional modal-
ity to handcrafted features [49] or as a feature combination
mechanism on previously extracted egocentric features [16].

Fully convolutional approaches viewed action recognition
as a learning-based problem with CNNs being used as
appearance [24], [57] and motion [58] feature extractors.
More data hungry methods used multi-stream deep net-
works that utilized optical flow alongside RGB images as
input modalities [21], [38], [59], [60], [61] to be able to
focus on motion. In [61], [62] optical flow was employed
to detect salient regions, which were cropped from the
original RGB frames and were given to the network as a
second, more focused RGB stream. Other input modalities
have been employed including depth [7], [41], egocentric
cues comprising hand [63], [64], [65] and object regions [64],
[66], [67], head motions [63] and gaze-based saliency maps
[63], [65], sensor-based modalities [15], [56], [59] and sound
[43], [68], [69]. In [38], [40] object and hand localization and
segmentation were intermediate learning steps that forced
the network to focus on important egocentric cues prior to
action prediction.

Explicit attention modeling mechanisms are increasingly
common in egocentric video action recognition [14], [54],
[55], [65], [66], [70], [71], [72], [73], [74], [75], [76], [77]
to influence the network towards focusing on the sig-
nificant spatio-temporal features of videos. Self-attention
approaches do not require additional data but learn the
spatial or temporal importance of input video frames with
carefully designed attention layers [70], [73], [75], [76] or
dynamically weigh the importance of input modalities [71].
In [14], [54], [65], [72], [77], gaze supervision was explicitly
required to construct attention maps to weigh the last layer’s
features before classification. Shen et al. [65] used hand
segmentation masks in addition to gaze to regulate attention
onto informative frames. Finally, in [66] motion- and object-
based features extracted from past frames were forwarded
to an attention mechanism that effectively combined them
with the present and selected the most relevant information
to represent the ongoing action. In our work, we model
video action and activity recognition with 3D-CNNs to
jointly model spatio-temporal features without requiring
additional input modalities.

2.2 Multitask Learning

Caruana [25] was one of the first to show the benefits of
multitask learning by assigning multiple tasks to be solved
jointly by a single model. Recently, this concept has found
successful application in image and video understanding
tasks [78], [79], [80], [81], [82], [83], [84], [85]. Misra et al. [78],
investigated the number of task-specific layers that should
stem from the backbone network to find the optimal setup
to train task dualities, pairing segmentation with surface
normal prediction and object detection with attribute classi-
fication. In [83], video captioning with action prediction and
action performance quality were combined as separate task
outputs. In [79], an object detection scheme was proposed
where action labels were predicted for each detected object
in addition to the object class. In [82], human pose was used
prior to action recognition in an intermediate, secondary
task. In our work, all task outputs are parallel and do not
affect each other, apart from sharing the backbone network.

Another promising direction in multitask learning is
adaptive training. In [80], in every training iteration the
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gradients were scaled per task to find an optimal solution
to be backpropagated, whereas in [85], network parameters
were randomly selected to be either task-specific or shared
across tasks. In [81], an attention mechanism was applied
to weigh each layer’s activations according to the specified
task and in [84] task-specific attention was modulated at
the channel level. In this work, we treat all tasks equally to
assess the effects of the varied dataset distributions and the
complementarity of tasks in the learning process.

In the egocentric activity recognition domain, Yan et al.
[52] considered the activities performed by each individual
participant as separate tasks where the objective was to
cluster common activities among participants without su-
pervision. In [38] an object detection and an action classifi-
cation task were combined after two separate streams were
individually trained. In [73] the action classifier was used
to bias the classification output of the verb and noun parts
of the action label. In [14], [72] the networks were trained
to produce gaze maps as intermediate tasks which were
applied to the final activations to weigh the action output
accordingly. We follow the structure from [24] where a single
network was trained on multiple tasks including classifica-
tion, hand detection, and gaze prediction and extend it to
handle tasks originating from different datasets.

2.3 Multi-dataset Training

Multi-dataset or multi-domain learning is related to transfer
learning in the sense that we wish to utilize data from
numerous sources in order to optimize the learning process.
Usually, this is unfeasible due to the lack of universally com-
patible annotations that capture all tasks across datasets [86].
Thus, multi-dataset training refers to the combination of
diverse data sources concurrently during training to jointly
optimize the gradients of a multitask loss from the tasks
of all datasets [87], [88]. Kokkinos [88] proposed UberNet
to tackle the tasks of boundary, semantic boundary and
saliency estimation, surface normal prediction, segmenta-
tion and object detection in a single network. The lack of
a dataset with annotations for all tasks led to a gradient
accumulation update rule that only updated gradients for a
task when enough samples had been seen for it. However, it
risked memory constraints from maintaining task-specific
gradients until the threshold was met. Additionally, the
gradient updates for the main block may not be represen-
tative of all the tasks in each training step, affecting the
statistics in the batch normalization layers [89]. To allevi-
ate this issue, [90] proposed training on interleaved mini-
batches per dataset and the use of group normalization [91]
to facilitate network convergence. The main difference in
our approach is that we create mixed batches that enable
the network to grasp information across datasets on every
training iteration.

Chong et al. [92] jointly modeled human attention with
separate output layers for gaze and saliency estimation.
Each layer branched-off from a single backbone that was
trained with mixed batches. There were as many backprop-
agation steps per batch as the number of available output
layers, which could negatively affect training of the back-
bone as in [88]. Guo et al. [93] proposed several approaches
to combine datasets for human pose estimation including
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Fig. 1. We adapt the MTL network structure from [24] to accommodate
the tasks from a range of datasets within a single network. In (a)
the network combines task-specific output layers by aggregating the
gradients from each output. In (b) we extend the structure by further
attaching task-specific layers for the additional tasks in the new datasets.

the unification of datasets towards a single prediction task,
transfer learning between datasets in a sequence, and a
multitask scheme to jointly supervise each dataset’s output
poses. Of the latter, outputs were eventually combined with
a voting mechanism. This approach used fully compati-
ble datasets, from a task perspective, making task fusion
feasible. We also investigate mapping related tasks across
datasets.

A more related approach to ours [94] considered con-
catenating output layers for cross-dataset classification, but
without leveraging the possible class similarities through-
out tasks. Alternatively, [95] performed inter-dataset exper-
iments on EPIC-Kitchens and EGTEA Gaze+, but only on
the subset of common classes. Our approach is different
in that we construct a single model that fully encapsulates
both datasets. Lastly, [96] considered explicit task outputs
for face attribute classification, with mixed batches across
datasets and masked losses, while attempting to diversify
the learned manifold by adding a domain adaptation output
to discriminate the datasets during training. In contrast, we
focus on unifying the learned representations.

3 METHODOLOGY

In this section we describe the extension of a single task net-
work to multitask (MTL) (§3.1), and subsequently describe
our process to adapt it to multiple datasets (MD-MTL) (§3.2).
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Fig. 2. Mixed-batch loss approximation. A batch is subsampled for each
task. The loss from each task layer is averaged over its dataset’s sam-
ples. Task-specific losses are passed through their respective layers.

3.1 Multitask Network Structure

We adopt the multitask network with task-specific output
layers (MTL) from [24]. It comprises a 3D-CNN backbone
feature extractor [26] that receives a short video clip and
outputs spatio-temporal features after the last convolutional
layer. We prefer 3D-CNNs because they can handle mo-
tion information from the temporal structure of the video
without requiring an additional optical flow input. Recent
approaches to capture motion from RGB, e.g. [35], [69], are
promising developments to further acquire temporal motion
features but these are out of scope for this work. Fig. 1a
shows the MTL network with task-specific layers.

In our MTL setting we define a set of tasks T with a
distinct task-specific output layer for its respective results.
Formally, for each task t ∈ T we define an output function
ft(g(x); θt), with g(x; θs) the shared block, θt the task-
specific parameters, θs the shared parameters from g and x
the network input. Each task-specific layer comprises a dis-
tinct loss function designed to accommodate the type of task
it represents. We use classification and coordinate regression
tasks. Classification tasks consist of a fully connected layer.
Their inputs are the activations of g(x), followed by an av-
erage pooling operation to reduce the temporal dimension,
and their outputs are the per-class probabilities. To train
classification tasks we use the categorical cross-entropy loss.

We use coordinate regression tasks in our experiments
(see §4) to find egocentric hand locations and estimate gaze.
These are implemented with the numerical coordinate re-
gression layer, introduced in [97], to predict a coordinate for
every two input frames and extended in [24] to handle 3D
feature volumes as input. The coordinate regression layer
begins with a 3D convolution. The 3D output is split along
the temporal dimension with each slice Z being passed
to a Differential Spatial to Numerical Transform (DSNT)
layer [97] to produce a coordinate for each. In the DSNT
layer, each slice is passed through a softmax activation to

produce a 2D probability distribution Ẑ that represents the
abstract location; the final (x, y) coordinate is taken as the
probability distribution’s expectation for each dimension. To
train the coordinate regression layer we utilize the DSNT
loss which is defined as the Euclidean distance between
the predicted (cp) and the ground truth (cgt) coordinate
regularized with the Jensen-Shannon divergence to smooth
the gradients around the prediction with a factor λ = 0.5.
Analytically, the DSNT loss function is given in Equation 1:

Lcoord = λLeuc(cp, cgt) + (1− λ)JS(Ẑ ‖ N (cgt, σ
2)). (1)

3.2 Multi-dataset Network Adaptation
Our extension from single- to multi-dataset training (MD-
MTL) requires two modifications. The first is to append task-
specific layers for the tasks of the additional datasets and the
second is to adapt the training process to accommodate for
the induced variation in the mixed training batches.

We handle the additional tasks in the way we would
treat any added task from the initial dataset, i.e., we add
task-specific layers to the shared network block that produce
a distinct output, independent of the other tasks. Similar to
the single-dataset MTL network, each output layer in MD-
MTL utilizes its own loss function for training. A visualiza-
tion of this extension is given in Fig. 1b.

We need to accommodate for the fact that no samples
within a mixed batch have labels associated with all the
available tasks, since each subset corresponds to a distinct
dataset. Our strategy is to leverage the process of averaging
the loss across a batch, which is commonly employed when
training neural networks with mini-batches.

The premise is that for a batch of size B the loss is
calculated B times and averaged to provide an approxima-
tion of a B-sized mini-batch. Loss averaging is not possible
when batches assimilate different datasets and tasks. In this
case, we subsample each batch based on its origin dataset i
and produce an effective batch per dataset of size bi. Then,
we calculate each task’s loss for the appropriate samples
only, zeroing out those that were forwarded through a task-
specific layer for which there is no available label. The
losses are then averaged over the size of the effective batch
bi and gradients for each task-specific layer are calculated
with respect to the dataset tasks’ losses. Once the per-task
gradient approximation is handled, they are accumulated
before being backpropagated through g. Consequently, all
tasks are contributing into training the shared network block
regardless of the number of samples that were taken from
each dataset. We visualize this process in Fig. 2.

Multi-dataset training with mixed batches (instead of
interleaved batches or alternating datasets sequentially) al-
lows the network to gather gradients from samples rep-
resenting the full range of available datasets in a single
training step. Hence, the direction of the gradient will not
be representative of one dataset as in single dataset training.
Instead, it will be biased by all datasets in a ratio defined by
the sampling process during batch formulation. We permute
all datasets and allow the imbalance to be induced in the
network. Due to the similarities of datasets in our experi-
ments, we expect mixed batches to contain complementary
information and prevent divergence in training. Indeed, we
see in §4.1 evidence of improved performance when the
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datasets are related and deterioration when they represent a
different domain. In the supplemental material we visualize
and discuss the progression of the training losses.

4 EXPERIMENTS

First we discuss the datasets we experimented with and the
training and evaluation settings. In §4.1 we analyze the ex-
periments with egocentric datasets and in §4.3 we delve into
a task mapping scheme to capitalize on the semantic class
relationships. In §4.2 and §4.4 we analyze the mechanics
of MD-MTL models to demonstrate the correlations across
tasks from different datasets and in §4.5 we focus on the
extension for datasets between first and third-person vision.
In §4.6 we experiment with additional batch formation
strategies. Finally, in §4.7 we provide a comparison with the
state-of-the-art on EPIC-Kitchens and EGTEA Gaze+.

Datasets We design multi-dataset experiments on ego-
centric video datasets EPIC-Kitchens [19], EGTEA Gaze+
[14] and ADL [9], all of which capture activities performed
in homes from the first-person perspective. EGTEA Gaze+
consists of scripted meal preparation activities, whereas
EPIC promotes action variability by encouraging partici-
pants to behave consistently to their routines. Videos from
both datasets take place in kitchens, ensuring homogeneous
locations, and consist of specialized and related sets of short
duration actions such as ‘open’, ‘close’ and ‘cut’. ADL is less
specific in terms of environments and actions, capturing a
predefined set of daily living activities occurring throughout
the participants’ homes, performed in an unscripted man-
ner. These annotations represent temporally longer activities
such as ‘washing dishes’ or ‘watching tv’, which makes it
harder to represent the whole activity in the short video
segments that are used as input to the network. Hence,
content-wise, EPIC and EGTEA are suitable candidates for
our task- and dataset-relatedness experiments in order to
estimate the possible benefits of joint training. On the other
hand, the more varied context of ADL allows us to investi-
gate whether our multi-dataset training approach can adapt
to a more diverse domain within a single model.

Furthermore, we perform experiments on the Charades-
EGO [8] dataset. It comprises a joint collection of first and
third-person videos. For each third-person video there is an
associated egocentric one, recorded by the same participant
for the same activities and environment. This allows re-
searchers to model the association between the two video
perspectives. Our aim is not to capture the inter-video
associations but to examine if a model trained on contrasting
perspectives can be efficiently applied to both, simultane-
ously. Table 1 lists the datasets and their characteristics.

Following [24] we also leverage hand location predic-
tions. They have been found to improve classification per-
formance when included as additional tasks in a multitask
setting, due to the implicit focus on the salient regions. For
the annotations, we synthesize the left and right hand loca-
tion coordinates for each frame of ADL, EGTEA, and EPIC-
Kitchens using the hand detection algorithm presented in
[64]. As shown in [24], these synthetic hand annotations lead
to accurate hand detection models.

Training and evaluation settings For all experiments
we use a Multi-Fiber Network (MFNet) [26] pretrained on

TABLE 1
List of datasets and their characteristics. We emphasize on the sizes of

the classification tasks

Name ADL EGTEA EPIC CH-EGO
Videos fpv fpv fpv fpv/3rd
Participants 20 32 32 112
Scripted partially yes no yes
Labels
Actions 18 106 2513 157
Verbs - 19 125 33
Nouns - 53 352 38
Locations 8 [22] kitchen kitchen 16

Other objects gaze, recipes, objects, narrationshand segm. narrations

Kinetics-400 [1] as the backbone feature extractor. It acts
as the initial structure upon which task-specific layers are
attached. Our choice is justified by the fact that it comprises
a 3D CNN structure, able to capture spatio-temporal infor-
mation without the need for an optical flow stream, with
a significantly lower number of parameters (∼8M), for a
depth similar to a 3D ResNet-50 (∼47M). We train all models
with triangular cyclical learning rate [98] oscillating from
0.0005 to 0.005 and back within 20 epochs. Our training cycle
is repeated three times, (i.e., 60 epochs) unless otherwise
stated. We use stochastic gradient descent for optimization,
with Nesterov momentum (0.9) and weight decay (0.0005).
The input for training is a sequence of 16 frames uniformly
sampled from a 32-frame window randomly chosen to rep-
resent the action segment for an epoch. The selected frames
are scaled to 256× 256 and randomly cropped to 224× 224.
Additionally, we perform color augmentations and flip the
sequence horizontally with a 50% chance. Even though it
is counter-intuitive to train a hand detector that identifies
left and right hands with random video flipping, early
experiments showed that it does not affect hand estimation.
Lastly, we use batch size of 32 for both single and multi-
dataset experiments, for comparison purposes.

To evaluate an action segment, we select 16 frames from
a 32-frame window around the clip’s temporal center. We
resize to 256×256 and use the 224×224 center crop. The in-
dicated performances are derived from the best performing
weights for the action task, acquired with early stopping.

4.1 Multi-dataset Experiments on EPIC, EGTEA, ADL

Single dataset baselines In the single dataset (SD) MTL
setup in [24] the trainable tasks for EPIC are action, verb,
and noun classification and left/right hand location pre-
diction (EALL). For EGTEA, gaze estimation is added to
the set of trainable tasks (GALL). ADL annotations describe
long-term activities with the addition of indoor locations
from [22] (AALL). For EPIC, training and validation are
performed on the custom train/val splits from [24], namely
26,375 action segments from participants 1-29 are used for
training and the remaining 2,095 for validation, with the
exception of videos withheld by the dataset authors for
testing. The latter denote scenarios on seen (S1) and unseen
(S2) kitchens. S1 consists of videos from participants that
also have a number of videos in the training set, whereas
in S2 all participant videos are excluded from the training
set. S1 and S2 are evaluated on the EPIC-Kitchens server.
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On EGTEA we use the first split provided by the dataset
authors which consists of 8,299 training and 2,022 validation
segments and for ADL we train on the videos of participants
1-6 (111 clips) and validate for participants 7-20 (198 clips).
We report the SD baselines in Table 2.

TABLE 2
SD-MTL Top1/Top5 accuracy (%) for actions (A), verbs (V) and nouns
(N) for EPIC and EGTEA (reported from [24]) and for activities (A) and

locations (L) for ADL for the best performing weights on (A)

Model Top1 (A-V-N/A-L) Top5 (A-V-N/A-L)
EALL (EPIC) 19.29 48.9 27.27 35.39 78.18 47.85
GALL (EGTEA) 68.99 79.08 79.03 91.74 99.26 96.39
AALL (ADL) 64.65 72.22 88.38 96.97

4.1.1 EPIC-Kitchens Analysis
We now turn to multi-dataset learning (MD-MTL). We in-
crementally add new datasets and their tasks to be trained
alongside EPIC. The multi-dataset (MD) experiments are
named after the included tasks, so EALL+GALL contains all
tasks of the SD EPIC experiment (EALL) and all tasks from
the SD EGTEA experiment (GALL). We also perform an MD
experiment only on the action tasks for the two datasets
(EA+GA) to show the effect of the missing classification
and coordinate regression tasks in the MD-MTL setting. In
Table 3(a) we compare models containing EPIC-Kitchens in
the training set.

TABLE 3
EPIC, EGTEA, and ADL MD-MTL task combinations. An overview for

all classification tasks appears in the supplemental material

Tasks Top1 Top5 Top1 S1 Top1 S2
EALL 19.29 35.91 29.73 17.86
EA+GA 18.15 35.93 24.35 17.04
EALL+GALL 19.69 36.68 26.69 17.17
EALL+GALL+AALL 18.29 34.15 24.17 15.84

(a) EPIC-Kitchens: Top1/Top5 (%) action classification accuracy on
the validation set and Top1 on the S1 and S2 test sets

Tasks Top1 Top5 Mean cls acc.
GALL 68.99 91.74 61.40
EA+GA 69.78 93.37 62.31
EALL+GALL 70.38 93.08 62.61
EALL+GALL+AALL 69.34 92.63 60.87

(b) EGTEA Gaze+: Top1/Top5 (%) and mean class accuracy
(%) for the action classification task on test split 1

Tasks Top1 Top5 Mean cls acc.
AALL 64.65 88.38 56.10
EALL+GALL+AALL 58.08 86.87 43.61

(c) ADL: Top1/Top5 (%) and mean class accuracy (%) for the
activity classification task on the validation set

EA+GA For this experiment we trained only on the 2,513
and 125 action classes of EPIC and EGTEA, respectively. We
achieve a similar level of overfit on the validation set but re-
sults on both test sets are below the SD baselines, especially
for S1. This highlights the importance of the additional tasks
to regularize training and enhance the information acquired
by the network when they are present, verifying [24] about
the merits of MTL, also in an MD setting.

EALL+GALL We proceed to integrate actions, verbs,
nouns and hands from EPIC and actions, verbs, nouns,

hands and gaze from EGTEA. The additional tasks offer
a noticeable improvement on action classification for EPIC
over the SD baseline on the validation set. This shows that
the network is able to fit both training sets simultaneously
and that there is potential benefit from our approach if ap-
plied on a larger scale. However, we also observe a decline
in test set S1 performance. We highlight that performance on
S2 is not as affected as in S1. The reason is that the additional
tasks from EGTEA prohibit the network from overfitting on
EPIC, resulting in a larger performance drop on the seen
kitchens. The model’s generalization capability to unseen
data is less affected, manifesting relatively robust results on
S2.

EALL+GALL+AALL The addition of the ADL action and
location tasks reaches the limit of the learning capability
of our model. The domain shift that occurs from the long
unstructured activity videos prohibits convergence to the
same minimum for EPIC. Thus, test performance also drops.

4.1.2 EGTEA Gaze+ Analysis
We now evaluate the EGTEA tasks of the previous models.
Table 3(b) summarizes the results on the action task.

EA+GA In this experiment we train only on the EGTEA
and EPIC action tasks. Performance improves from the SD
baseline (+0.79% Top1, +0.91% mean class accuracy). This
already shows the benefit from using MD-MTL. We are
improving on EGTEA without adding data specifically for
it, but only train jointly with a related task from a different
dataset.

EALL+GALL Similar to EPIC, using all available classi-
fication tasks together with the coordinate regression layers
further improves performance. It is +1.39% in Top1 and
+1.21% in mean class accuracy up from the SD baseline
and +0.60% and +0.29%, respectively, from EA+GA. This
is another case of the benefits from using MTL to utilize not
only the additional relevant data, but all the learnable tasks.

EALL+GALL+AALL Adding data and tasks from the
ADL dataset worsens action classification performance on
the EGTEA tasks. Since EGTEA has a larger window for
improvement, the decline due to ADL is not as strong as
for the EPIC tasks and the SD baseline is still surpassed.
However, the effects of the domain shift are evident. The
training loss for the action task is higher (bottom graph in
Fig. 1 of the supplemental material) illustrating the difficulty
to assimilate actions from the highly variable locations of
ADL with the kitchen environments of EGTEA.

4.1.3 ADL Analysis
To train on ADL EALL+GALL+AALL we add one more
learning cycle to the model and train for 80 epochs, to ac-
commodate for the diverse distribution of the ADL dataset.
Results on ADL are presented in Table 3(c).

EALL+GALL+AALL Following the results on EPIC and
EGTEA, the three-dataset model is unable to reach the single
dataset baseline of ADL. This result verifies the previous
conclusion that additional datasets without a related data
distribution can hurt performance.

4.2 Weight Correlations
In this section we analyze the learned classification weights
in MD networks. We measure the correlations between
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Fig. 3. Correlations for classification weights across tasks in multi-
dataset model EALL+GALL (Zoom in for best view)

weights for the task pairs of actions, verbs and nouns.
We find that positive correlations arise in the classification
weights across tasks for classes with similar semantic inter-
pretations. This is an important finding that demonstrates
the ability of the network to capitalize on the relationships of
the data without additional supervision. We highlight some
examples in Fig. 3. We show correlations for classes with the
same name, e.g., ’take’ in both EGTEA and EPIC (r = 0.52),
but also on classes with similar semantic meaning, e.g.,
’tomato’ in EGTEA correlates with ’heart’ (r = 0.43) in
EPIC which refers to a tomato’s interior, with second best
the correlation with the actual ’tomato’ class (r = 0.38).
Correlation values are higher across action tasks, possibly
due to their stricter nature in having to associate both the
correct verb and the correct noun class. For example, the
verb and noun constituents for ’divide/pull apart onion’
correlate with ’peel’ and ’onion’ in EPIC with r = 0.26
and 0.37 respectively, whereas the correlation with action
’peel onion’ is r = 0.50. This means that the model is more
certain about the combination of features it requires when
classifying a full action class instead of having to assess it as
the union of a verb and a noun. In the following section we
investigate a way to further exploit the associative ability of
the network by mapping these classes into the same task.

4.3 EPIC & EGTEA with Task Mapping

In many cases, the datasets have partly overlapping label
sets for some tasks. In this experiment we reduce the
output layers of the network by mapping similar tasks
across datasets. We combine the verb and noun classification
tasks of EPIC and EGTEA and the hand coordinate layers.
We leave the action layers and the gaze unchanged. Our
aim is to connect the verb and noun tasks as much as
possible while training the action tasks independently. This

effort resembles the merged labels technique in [94]. Our
approach differs in that we manually map the semantically
similar verb and noun classes of EGTEA to EPIC since the
majority of its labels are identical or synonyms. There are
rare cases where an EPIC label needs to be assigned to mul-
tiple EGTEA labels. For example, verb classes ’wash’ and
‘clean/wipe’ are both assigned to EPIC’s ‘wash’ and noun
classes that represent containers such as ’tomato container’
and ’bread container’ are assigned to ‘package’. This task
combination scheme is less naive compared to our earlier
MD approach. The downsides are that we are not able to
properly evaluate the verb and noun tasks of EGTEA due
to the many-to-one class assignments and that an almost
direct mapping across tasks is not always feasible. The task
mapping model is trained for 80 epochs (referred to as Verb-
Noun Mapping).

Verb-Noun Mapping results for EPIC are presented in
Table 4(a). Action recognition performance is similar to the
naive MD approach but with a significant increase in verb
and noun classification as well as in Top1 on the EPIC
test sets. In fact, with task mapping, the model is able to
generalize as well as with the SD model on the S2 test
set. This improvement shows that MD-MTL has an even
greater potential when secondary tasks of the datasets can
be combined explicitly.

Task mapping also proves beneficial for the action recog-
nition task of EGTEA as shown in Table 4(b). Verb-Noun
Mapping is +0.99% from the previous best (EALL+GALL:
70.38%) and +2.38% from the SD baseline (GALL: 68.99%).
Next, we present an additional experiment on SD EGTEA
with its initial weights pretrained on the SD EPIC model
EALL. It improves +1.09% from the SD model pretrained
on Kinetics, but is still lower than both naive MD (-0.30%)
and MD with task mapping (-1.29%). This shows that MD-
MTL networks can capitalize on the additional data advan-
tageously over transfer learning, while keeping the tasks of
the initial dataset functional and potentially improved.

TABLE 4
Mapping EGTEA verb-noun tasks on EPIC

Model A V N S1 A S2 A
EALL+GALL 19.69 45.99 25.65 26.69 17.17
Verb-Noun Mapping 19.68 48.33 28.32 28.1 17.86

(a) EPIC-Kitchens: Top1 (%) action (A), verb (V), noun (N) accuracy
on the validation set and Top1 for actions on S1-S2 test sets

Model Top1 Top5 Mean cls acc.
GALL 68.99 91.74 61.40
GALL pretrained on EPIC 70.08 92.63 62.66
EALL+GALL 70.38 93.08 62.61
Verb-Noun Mapping 71.37 92.78 62.23

(b) EGTEA Gaze+: Top1/Top5 and mean class accuracy (%) for
actions on test split 1

4.4 Task Affinities
The task mapping approach from §4.3 enhances the corre-
lations across actions, while fixing some inaccurate cases of
the previous model. For example, correlation for the ’cut
carrot’ action increases from r = 0.56 to r = 0.66 and for
’peel onion’ from r = 0.50 to r = 0.54. Notably, for the
latter, the second best correlated action to ’divide/pull apart
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onion’ from the first model is ’peel potato’ with r = 0.44
which drops to r = 0.37. This suggests that the model is
now better able to tell apart the two objects.

To further demonstrate the correlated outputs we com-
pare the performance of the EGTEA SD model (GALL)
against the EGTEA verb and noun tasks of the EALL+GALL

MD model on the EPIC validation split for the samples
that comprise mapped classes. This corresponds to 1,677
samples for verbs and 1,107 for nouns. Table 5 shows Top1
and mean class accuracy for the mapped verbs and nouns.
The improvement of the MD model is consistent over SD,
achieving +12.46% and +7.16% on the two metrics for verbs
and +16.35% and +5.98% for nouns. This increase demon-
strates the generalization ability of MD-MTL for samples
that do not belong in the data distribution for which the
tasks are trained for. Finally, in Fig. 4 we visualize the
normalized confusion matrices for these experiments. In
Fig. 4a we observe fewer errors for verbs such as ’turn on’
and ’turn off’ and the performance of highly represented
classes such as ’cut’, ’open’ and ’close’ increases. Similarly
for nouns, in Fig. 4b, we see that the SD model (left) tends
to classify a number of samples as ’condiment container’
which is largely fixed in the MD case (right). Generally, most
noun classes have significant improvements.

TABLE 5
Comparison between SD and MD-MTL on the mapped verbs and
nouns. Evaluating the EGTEA tasks on the EPIC validation split

Model Top1 (%) Mean cls acc. (%)
Mapped Verbs
GALL 32.68 13.98
EALL+GALL 45.14 21.14
Mapped Nouns
GALL 9.40 6.86
EALL+GALL 25.75 12.84

4.5 Multi-dataset Experiments on Charades-EGO

We perform experiments on Charades-EGO to explore the
associative ability of tasks when applied on data from
different perspectives and the potential for performance
improvements in the MD-MTL setting. We split the dataset
into its first- and third-person constituents and treat them
as two separate datasets. Consequently, we have two sub-
datasets, charego1 and charego3, with the same classifica-
tion tasks. We produce action segments from the video level
annotations. This results in 33,099/9,148 action segments for
charego1 and 34,269/9,386 for charego3 for training and val-
idation, respectively. In Table 6 we report video level mean
Average Precision (mAP) following [8] and Top1/Top5 ac-
curacy for the action task. The performance of the remain-
ing classification tasks can be found in the supplemental
material. We train three models in total. An SD model
for charego1 for actions, verbs and nouns (C1ALL), an SD
model for charego3 for the same tasks (C3ALL) and the MD
combination with both sets of tasks (C1ALL+C3ALL).

Validation on charego1 shows that MD training provides
a marginal improvement over the SD baseline on the video
level mAP. This shows the benefit to the first-person tasks
when using the third-person videos to train their distinct
tasks in the MD setting. An interesting insight arises from
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(a) Mapped verb confusion matrices; left EGTEA SD, right EGTEA MD
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(b) Mapped noun confusion matrices; left EGTEA SD, right EGTEA MD

Fig. 4. Confusion matrices for mapped verbs (a) and mapped nouns (b)
from the EGTEA tasks on the EPIC validation split.

TABLE 6
Action recognition performance on charego1 and charego3, the 1st and

3rd person splits of Charades-EGO, respectively. SD models are
trained on all tasks (actions, verbs, nouns) of their split. The MD model
is trained on the combination of the tasks of both splits. Results in %

Validation on charego1 Validation on charego3
Model Top1 Top5 mAP Top1 Top5 mAP
C1ALL (SD) 7.05 24.21 21.90 3.55 14.70 12.30
C3ALL (SD) 3.61 15.40 14.70 8.15 27.02 20.40
C1ALL (MD) 7.01 24.69 22.10 6.79 22.85 18.20
C3ALL (MD) 5.81 21.75 20.10 8.12 26.04 20.00

evaluating on the first-person data using the respective
C3ALL tasks of the MD model. Recognition performance
is worse when compared to the egocentric tasks, however
it is significantly higher from the charego3 SD network.
This shows that the network learns to associate the internal
representations of classes that co-exist in different tasks
and reuses them across perspectives (also confirming the
findings of §4.2 and §4.4 in this setting).

Similar insights can be inferred from the results of the
third-person video split of Charades-EGO. In this experi-
ment, the SD model exhibits marginally better mAP than
the MD model, but the correlation property across tasks of
different perspectives is still present. The first-person tasks
of C1ALL+C3ALL have +5.9% higher mAP from the SD
C1ALL model when evaluated on charego3.

4.6 Batch Formation Strategies
The mixed batch (MB) formation strategy described in §3.2
is not the only way to load data in the MD-MTL network.
To further demonstrate the ability of our batch formation
strategy to allow optimal generalization across datasets,
we compare against two alternative strategies: interleaved
batches (IB) and interleaved datasets (ID). In interleaved
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batches, in every iteration a dataset is selected at random
and the input to the network consists of data only from
this dataset. In interleaved datasets, batch composition is the
same, but each dataset’s training set is fully processed before
data from the remaining datasets are seen. In either case, the
network sees the complete training set of every dataset per
epoch. We experiment on the EALL+GALL tasks for every
batch strategy, using the same training hyperparameters
defined in §4. In Table 7 we summarize our results.

TABLE 7
Comparison across batch formation strategies mixed (MB), interleaved
batches (IB), and interleaved datasets (ID) on the task combinations of

EPIC and EGTEA

Top1 (%) Top5 (%)
Strat. Actions Verbs Nouns Actions Verbs Nouns
MB 19.69 45.99 25.65 36.68 78.37 50.67
IB 20.11 47.76 29.99 37.78 78.84 51.24
ID 17.91 48.42 23.26 33.57 78.18 45.94

(a) Results on EPIC-Kitchens

Top1 (%) Mean cls acc. (%)
Strat. Actions Verbs Nouns Actions Verbs Nouns
MB 70.38 80.57 79.03 62.61 80.02 73.55
IB 65.43 79.72 74.83 55.31 77.21 65.95
ID 69.68 80.86 78.64 61.31 81.59 72.13

(b) Results on EGTEA Gaze+

The three strategies have different effects on the perfor-
mance. Interleaved batches outperform mixed batches on
EPIC, albeit with a strong performance drop for EGTEA. A
possible reason is that the size difference of the datasets (the
training set of EPIC is almost three times larger than that of
EGTEA) does not allow the network to equally capture fine-
grained features from EGTEA. When using the interleaved
datasets strategy, we see a significant performance drop for
EPIC, with EGTEA being more robust. This is the result of
the order with which datasets are seen on every epoch. In
our ID experiment, the training set of EPIC is always seen
first and EGTEA follows in every epoch. Information that is
acquired in the beginning of an epoch is partly “unlearned”
when the second dataset is seen. Mixed batches (MB) appear
to perform somewhat more consistently. However, the mod-
est differences between the strategies suggest that MD-MTL
performs favorably over single-dataset MTL, independent
of the choice of batch formation strategy.

4.7 State-of-the-art Comparison

EPIC-Kitchens In Table 8 we compare against the state-of-
the-art on the S1 and S2 test sets of EPIC-Kitchens. Our
method shows competitive performance, however a number
of methods have improved accuracy. One reason is the ad-
ditional input data that most of these methods employ. For
example, the top performing approach [86] utilizes a much
larger network (118M parameters) and is pretrained on a
video dataset about 3k times larger than Kinetics-400 (IG-
Kinetics-65M). Interestingly, with Kinetics-400 pretraining
on a network eight times larger than ours (R(2+1)D-34, 64M
parameters) they perform -1.30% lower on S1 and -1.06%
on S2 Top1 actions. Furthermore, a number of methods
include optical flow, object and audio input streams which
tend to leverage separate networks for each modality. We

highlight [43] which outperforms us with their full model
but when only the RGB stream is utilized we show a +7.75%
improvement. The remaining approaches do not offer an
ablation with only the RGB stream, therefore we cannot
compare directly. We note [36] that only use RGB input and
are +2.32% better on S2. Their model uses feature gating
to encode temporal information forward and backward in
time with a 2D network backbone. Applying this in our 3D
network is an interesting direction for future work.

EGTEA Gaze+ Only a number of the aforementioned
works provide action recognition results on EGTEA Gaze+.
We compare against methods that utilize RGB and optical
flow in Table 9. Despite the enhanced input, we are able to
outperform all of them with significant margins. The previ-
ous state-of-the-art on split 1 of EGTEA Gaze+ [24] achieves
68.99% Top1 and 61.40% mean class accuracy, which we
surpass by 1.39% and 1.21% with MD-MTL and by 2.38%
and 0.83% with MD-MTL with task mapping, respectively.
Furthermore, using MD-MTL the performance on the aver-
age of the three splits of EGTEA Gaze+ improves from [77]
by 2.47% on Top1 and 2.88% on mean class accuracy despite
the absence of optical flow in our method.

5 DISCUSSION

In this work we introduced an effective batch scheme that
comprises samples from multiple datasets and associates
them with their respective tasks during training. This ap-
proach manifests a trade-off between acquiring the optimal
estimation of the gradient direction from a batch from a
single data distribution and the need to accommodate the
presence of samples from multiple datasets in every train-
ing iteration. Essentially, we expect the network to find a
minimum along a variety of manifolds which can be costly
for optimization, and even not possible if the dataset distri-
butions are incompatible. We found that EPIC and EGTEA
show improvements in their validation sets which indicates
that the scheme of multi-dataset training is potentially ben-
eficial when semantically related datasets are combined. At
the same time it is practical in terms of producing outputs
that reflect tasks from multiple domains without sacrificing
accuracy. However, the inclusion of ADL showcases the
possible pitfalls of adding a dissimilar dataset. We also
observed performance improvements when applying the
multi-dataset training scheme on a combination of first-
and third-person videos on Charades-EGO. This shows that
a difference in video perspectives does not prohibit the
network from learning a shared representation when other
aspects of the datasets such as the environment and the
performed actions are related.

In §4.3 we trained an SD model on EGTEA where we
used weights pretrained on EPIC for initialization. Even
though EPIC-Kitchens is not as large as the video datasets
that are usually employed for pretraining video recogni-
tion models, (e.g., [1], [2]) we expected that the similarity
between the source and the target domain would prove
beneficial, and it did. We also showed that our multi-dataset
approach outperforms pretraining, while retaining all tasks.

We showed in §4.2 and §4.4 that MD training drives
classification layers to reuse feature sets for similar classes
across tasks. This is an important element of these models,
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TABLE 8
State-of-the-art comparison on EPIC-Kitchens. A = Actions, V = Verbs, N = Nouns, F = optical flow, AU = audio, O = objects/object features, TO =

object features at various temporal locations, ED = Pretraining on very large scale external datasets, VN Mapping = Verb-Noun Mapping

Test S1 (Seen kitchens) Test S2 (Unseen kitchens)
Top1 (%) Top5 (%) Top1 (%) Top5 (%)

Method Modalities Params A V N A V N A V N A V N
TSN [19] RGB+F 20.2M 20.54 48.23 36.71 39.79 84.09 62.32 10.89 39.40 22.70 25.26 74.29 45.72
EF [43] RGB 11M 19.86 45.68 36.80 41.89 85.56 64.19 10.11 34.89 21.82 25.33 74.56 45.34
R(2+1)D-34 [86] RGB 64M 26.80 59.10 38.00 46.10 87.40 62.70 16.80 48.40 26.60 31.20 77.20 50.40
LSTA [73] RGB+F 82M 30.33 59.55 38.35 49.97 85.77 61.49 16.63 47.32 22.16 30.39 77.02 43.15
VN Mapping RGB 10M 28.10 55.62 38.04 49.38 86.39 62.69 17.86 46.57 25.74 36.26 77.60 51.86
MTL [24] RGB 10M 29.73 56.00 40.15 50.95 87.06 64.07 17.86 45.99 26.25 35.68 77.98 50.19
VFS [68] RGB+F+AU 218M 29.13 44.64 30.64 49.71 76.41 59.39 18.40 38.37 15.23 35.64 75.15 39.84
RU [71] RGB+F+O 52.6M 33.06 56.93 43.05 55.32 85.68 67.12 19.49 43.67 26.77 37.15 73.30 48.28
GSM [36] RGB 13M 33.45 59.41 41.83 - - - 20.18 48.28 26.15 - - -
EF [43] RGB+F+A 32.6M 36.66 66.10 47.89 58.62 91.28 72.80 20.97 54.46 30.39 39.40 81.23 55.69
LFB [66] RGB+TO 201.2M 32.70 60.00 45.00 55.30 88.40 71.80 21.20 50.90 31.50 39.40 77.60 57.80
SAP [99] RGB+O 198.6M 34.80 63.20 48.30 55.90 86.10 71.50 23.90 53.20 33.00 40.50 78.20 58.00
AV-SF [69] RGB+SF+AU 38.5M 35.90 65.70 46.40 57.80 89.50 71.70 24.00 55.80 32.70 43.20 81.70 58.90
R(2+1)D [86] RGB+ED 118M 34.50 65.20 45.10 53.80 87.40 67.80 25.60 57.30 35.70 42.70 81.10 58.70

TABLE 9
Action recognition accuracy on EGTEA Gaze+. Refer to Table 8 for the

used abbreviations and number of parameters

Split 1 Avg. Splits 1-3
Method Modalities Top1 Mean cls Top1 Mean cls
Li et al. [14] RGB+F - 47.71 - -
MCN [72] RGB+F 55.63 - - -
RU [71] RGB+F+O - - 60.20 -
ego-rnn [70] RGB+F 62.17 - 60.76 -
LSTA [73] RGB+F - - 61.86 -
SAP [99] RGB+O 64.10 - 62.70 -
STAM [77] RGB+F 68.60 60.54 65.97 57.02
MTL RGB 68.99 61.40 65.70 57.60
MD-MTL RGB 70.38 62.61 68.44 59.90
VN Mapping RGB 71.37 62.23 - -

as it occurs without additional supervision, i.e., we do not
specify which labels across datasets are related. Our experi-
ments show that this is a typical phenomenon in MD-MTL.
It also reinforces the basic concept of multitask learning that
related tasks, even from varied sources, support each other
by affecting the shared parameters.

However, class correlations are not so strong to suggest
full reuse of features for the same classes. This leads to two
distinct observations. First, the capacity of a network when
trained for a single dataset is not fully utilized. We showed
that the underlying weights can be adapted to accommo-
date additional information. Hence, whatever minimum is
reached with SD training does not necessarily correspond
to an optimal exploitation of the millions of parameters of
modern neural network architectures. Instead, our exper-
iments show that their capacity is larger than SD fitting
initially suggests. Second, adaptive training mechanisms
that substitute hard parameter sharing, such as explicit task-
attention mechanisms [81], [84] or implicit weight assign-
ment to tasks [85] are simulating larger network capacity not
by inducing better associations among the shared weights,
which MD-MTL seems to be achieving, but by establishing
mechanisms to mask noisy features that otherwise find their
way to the task-specific prediction layers. We believe a soft
parameter sharing mechanism is a promising way forward
for MD-MTL as the two concepts are complementary.

6 CONCLUSION

In this work we introduced a deep learning training scheme
that allows a single network to assimilate tasks from diverse
datasets and tasks simultaneously. By combining samples
across datasets within every batch, we effectively approxi-
mate having individual batches per dataset on every train-
ing iteration. We applied our scheme in the context of
egocentric action classification, on EPIC-Kitchens, EGTEA
Gaze+ and ADL datasets and the first- and third-person
splits of Charades-EGO. Our results show that multi-dataset
multitask (MD-MTL) training offers consistent improve-
ments to classification tasks across datasets when the un-
derlying data distributions are related. Furthermore, we
demonstrated that networks acquire similar representations
for semantically similar classification tasks without being
instructed to do so. Results on EPIC-Kitchens show that
our method is able to compete with the state-of-the-art. On
EGTEA Gaze+ we outperform more complex networks, sur-
passing the state-of-the-art by 2.47%. We highlight that MD-
MTL is an efficient technique to combine data from multiple
sources without sacrificing the distinctive characteristics of
one dataset in order to classify on another.
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