PERGAMON

Pattern Recognition 35 (2002) 69-80

PATTERN
RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

www_.elsevier.con/locate/patcog

Efficient image retrieval through vantage objects™

Jules Vleugels*, Remco C. Veltkamp

Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, Netherlands

Abstract

We describe a new indexing structure for general image retrieval that relies solely on a distance function giving the
similarity between two images. For each image object in the database, its distance to a set of m predetermined vantage
objects is calculated; the m-vector of these distances specifies a point in the m-dimensional vantage space. The database
objects that are similar (in terms of the distance function) to a given query object can be determined by means of an
efficient nearest-neighbor search on these points. We demonstrate the viability of our approach through experimental
results obtained with two image databases, one consisting of about 5200 raster images of stamps, the other containing
about 72,000 hieroglyphic polylines. © 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights

reserved.

Keywords: Image retrieval; Indexing; Data structure; Matching; Vantage objects

1. Introduction

Recent years have seen a growing interest in develop-
ing effective methods for searching large image data-
bases. While manual browsing may be adequate for
collections of a few hundred images, larger databases
require automated tools for search and perusal. Con-
tent-based image retrieval [1-4] is based on certain char-
acteristics of the images; our particular interest lies in
approaches based on feature extraction [5]. Such
methods perform matching on the contents of the image
itself, by comparing features of the query image with
those of images stored in the database.

In this paper, we present a way of efficiently comparing
the features of a given query image to a large number of
images stored in a database. Our approach works by
mapping database objects onto points in an m-dimen-
sional space, in such a way that points that lie close

*This research was supported by SION project No. 612-21-
201: Advanced Multimedia Indexing and Searching (AMIS).

* Corresponding author. Tel.: + 31-30-2534110; fax: + 31-
30-2513791.

E-mail addresses: jules@cs.uu.nl (J. Vleugels),
remco.veltkamp@cs.uu.nl (R.C. Veltkamp).

together correspond to images with similar features. This
allows us to efficiently retrieve objects that are similar to
a given query object by determining the points that lie
close to the point corresponding to the query image. The
only requisite for our approach is that a similarity dis-
tance function be defined on the database objects.

As an application, we implemented our approach on
two databases. The first consists of about 5200 color
JPEG images of Dutch stamps; we demonstrate that our
algorithm is capable of efficiently retrieving similarly
colored images. The second database contains about
72,000 hieroglyphic polylines, and we show how to effi-
ciently retrieve the hieroglyphics with polylines that are
similar (under translation and rotation) to those of
a given query hieroglyphic.

1.1. Related work

The vantage-object structure we describe in this paper
is a paradigm to store objects in a data structure such
that objects with similar features can be retrieved in an
efficient manner. Lamdan et al. [6] and Wolfson [7]
describe a different paradigm for rigid-object recognition
under different viewing transformations, which they call
geometric hashing. All combinations of the so-called in-
terest points of the database objects are indexed into
a hash table. The interest points of a given query image

0031-3203/01/$20.00 © 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

PII: S0031-3203(00)00120-5

70 J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

are compared to those stored in the database through
a voting mechanism. A drawback of this paradigm lies in
its time and storage bounds: a query with an object
containing m interest points — for example, the number
of vertices for polylines — has a worst-case complexity of
O(m?) , and for n planar objects with m interest points
each the hash table requires O(nm?) storage to achieve
invariance under translation, rotation, and scaling.

An important ingredient to the approach described in
this paper is an algorithm that determines nearest neigh-
bors among a set of high-dimensional points. Several
theoretically efficient solutions [8-11] have arisen from
the computational geometry community, but these algo-
rithms are not always equally efficient in practice.

An early approach is due to Burkhard and Keller [12].
They pose the problem of searching a file containing a set
of keys for the one closest to a given query key, and
present three file structures together with their corre-
sponding search algorithms. Though the term vantage is
not yet coined in their paper, it can be considered one of
the first vantage-based approaches since the set of keys is
clustered into a number of sets according to their distan-
ces from an arbitrary (but fixed) element.

Yianilos [13] considers the problem of finding nearest
neighbors in general metric spaces. He introduces the
vantage-point tree (vp-tree for short) together with asso-
ciated algorithms. (Uhlmann [14] has independently re-
ported the same structure, calling it a metric tree.) The
expected complexity of a vp-tree query is under certain
circumstances O(logn), and in practice it appears to per-
form somewhat better than a k-d tree. The vp-tree is
however not guaranteed to be balanced, so its expected
complexity may not be met for inputs with particular
unfavorable distributions. It should be emphasized that,
despite the similarity in naming, our vantage-object
structure has only little in common with the vantage-
point tree: our vantage-object structure is a data struc-
ture used to store objects for efficient similarity retrieval,
whereas the vp-tree implements nearest-neighbor queries
on point sets. The similarity in naming occurs because
both structures categorize database objects in terms of
their distances from vantage objects. An important differ-
ence is that in the vp-tree a distance calculation is per-
formed for every node visited during a search, of which
there are O(logn) to O(n) in the worst case. In our ap-
proach we first perform a small constant number of
distance calculations, after which only O(logn) simple
coordinate comparisons are required for retrieving the
nearest neighbors. This difference becomes especially im-
portant if the distance function is expensive to compute.

For completeness, we mention some of the other near-
est-neighbor data structures with comparable properties
that have been devised with high-dimensional data sets in
mind. The X-tree was introduced by Berchtold et al. [15]
to improve on some shortcomings of the R-tree, espe-
cially for high-dimensional data. The SS-tree of White

and Jain [16] uses bounding spheres for the shape of
minimum bounding regions (MBR) and allows for exact
k-nearest-neighbor queries on high-dimensional data
sets, usually outperforming other structures such as the
R*-tree and the kd-B-tree. While based on the same
idea, the SR-tree (sphere/rectangle tree) introduced by
Katayama and Satoh [17] gains an increase in perfor-
mance by representing MBRs as the intersection of
a bounding sphere and a bounding rectangle. In contrast,
the idea of the TV-tree proposed by Lin et al. [18] is
to refrain from fully defining each MBR. Instead it uses
a so-called telescopic minimum bounding region
(TMBR) that is specified only in a few dimensions — the
so-called active dimensions — and extends infinitely in
all other dimensions. This allows for more efficient stor-
age, since only a few features (for example, coordinates) of
the data needs to be stored. Additional features are used
only when their additional discriminatory power is abso-
lutely necessary.

Alternatively, the nearest-neighbor step of our algo-
rithm can be replaced by a range search: instead of
determining the k nearest neighbors, we could consider
all points that lie within some fixed distance from the
query point. (This is essentially what is achieved by
the distance threshold we introduce in Section 5.3.) There
exists a wealth of literature on range searching [19-217;
recent research has considered the problem of achieving
good asymptotic complexity as well as favorable running
times. The algorithm due to Schwarzkopf and Vleugels
[22,23] has been explicitly designed to — besides being
theoretically efficient — perform well in practice for real-
istic inputs.

1.2. Paper outline

We first describe the notations and conventions used
throughout this paper. Then in Section 3 we describe the
framework of our vantage-object structure. This frame-
work leaves some choices to be filled in for specific
applications. Section 4 describes the test case of retriev-
ing similarly colored images from a database of stamp
raster images using this framework. Another application,
namely that of retrieving images from a collection of
hieroglyphics, is described in Section 5. Finally, we con-
clude the paper and indicate directions of future work in
Section 6.

2. Preliminaries

Let o/ = {A;,...,4,} be a set of n objects. In this
paper, we call a continuous function d:.o/ X /R a
distance function on </ if and only if for all 4;, A;, A € o/
with 1 <i,j,k <n:

(i) d(A4;, A;) = 0 (one-way identity),

J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80 71

(i) d(A4;,A4;) = 0 (positiveness), and
(ii) d(A4;, Ay) < d(A;, Aj) + d(A4;, Ay) (triangle inequal-
ity).

Note that we neither require a distance function to have
the usual identity nor to be symmetric, that is,
d(A;,A;) = 0 does not necessarily imply that 4; = A4;,
and moreover d(4;,A;) need not be equal to d(A4;, 4;).
(When comparing two polylines, for example, one poly-
line may be contained in the other — thus giving a small
value of d — but not vice versa.) We refer to d(A4;, 4;) as
the distance of A; from A;. The distance function defined
by d should closely adhere to our intuitive notion of
resemblance for the results of a query to be perceived as
resembling the query object.

Throughout the paper, a superscripted asterisk * is
used for variables that are related to vantage objects;
a subscripted question mark , applies to query-related
variables.

3. The vantage object structure

Suppose we are given a collection of objects with
a distance measure d defined on them. The idea is to
compute the similarity of each object from some fixed
object, which we call a vantage object. This naturally
imposes on the objects an ordering on decreasing sim-
ilarity to the vantage objects, as illustrated in Fig. 1. The
objects shown at the top are ordered by decreasing sim-
ilarity to the vantage object A* shown at the left. The
query object A, (shown at the bottom) can now be placed
within this ordering by likewise computing its similarity
to the vantage object. Objects with similar features end
up at similar positions within the ordering, thus reducing
similarity matching to a simple nearest-neighbor search.

More formally, consider an object 4; that closely
matches another object 4, — that is, d(4,, A,) is small
— and let A* be some vantage object. Since d satisfies the
triangle inequality d(A*, A,) < d(A*, Ay) + d(A,, A,), we
know that d(A4*, A,) — d(A*, A,) is small as well. In other
words, we can measure the resemblance between 4; and
A, by comparing their distances from 4*. Note that this
correspondence is strictly one way: objects that are sim-
ilar will have similar distances from a vantage object A*,
but objects with similar distances are not necessarily
similar in appearance.!

Given a query object A,, we can thus determine (a
superset of) all similar objects by computing the distance
of 4, from the vantage object A* and selecting all objects

! This is not difficult to see by considering the equivalence to
the natural numbers: even though the distance from 1 to 7 equals
that from 13 to 7, the distance from 1 to 13 is much larger.

T roalo

T R

ay

Fig. 1. A vantage object imposes an ordering on the database
objects.

T3
Ys

Fig. 2. Multiple vantage objects generate multiple orderings.

that achieve similar distance from A*. More formally,
each object A; corresponds to a point p; in the one-
dimensional vantage space defined by A*, in which the
coordinate of p; is given by d(A*, 4;); we return the set
{A;} of objects for which d(A*, A;) is sufficiently small as
possible matches. Two problems may however occur.
For one, as noted above the selection will include objects
that are not similar to A4, but happen to have similar
distance to 4*. Moreover, if the set of objects is large, the
set of objects with similar distance will most likely grow
large as well.

3.1. Multiple vantage objects

The two problems addressed above can be relieved
by increasing the number of vantage objects. Let
of* ={Af,..., A%} be a set of m vantage objects. As
before, each vantage object imposes a one-dimensional
ordering on the database objects, as illustrated in Fig. 2.
For each object A;, the list of AF contains exactly one
corresponding point p;. Likewise, a query object A, de-
fines m points q;, one for each vantage object. Any object
resembling the query object achieves similar positions in
each of the lists because its distance from each vantage
objects will be similar to that of the query object. Thus we
may consider the object 4; to resemble the query object
only if p; occurs close to ¢; in each of the m lists. Note that
this not only lessens the likelihood of returning an object
that does not resemble the query (but by coincidence
achieves similar distances from the vantage object); it
reduces the number of objects returned as possible
matches as well.

72 J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

In formal terms, each object A4; .o/ corresponds to
a point p; = (xy,...,X,,) in the m-dimensional vantage
space with x; = d(4F, 4;). For a given query object 4, we
compute its distance from each of the m vantage objects;
this likewise defines a point p, = (yy, ..., ym). Next, we
determine all vantage-space points that are sufficiently
close to p,; each of these points corresponds to an object
of o/.

Once again it is not guaranteed that each of the objects
returned is similar to the query object; however, all ob-
jects that are sufficiently similar to A, are correctly re-
turned in this manner. To prove this claim, we consider
two objects A; and A; to be similar if d(4;, 4;) < & and
d(A4;, A;) < ¢ (for some given value of ¢), and define the
object-space neighbors nbors(A,,¢) of A, as the set of
objects A; similar to a query object A,:

IlbOrS(A'],S) = {A, ef | d(A'],A,‘) <EAN d(Ai,A‘]) < 8}.

In contrast, let nbors*(4,,.o*,¢) denote the set of van-
tage-space neighbors of A,, that is, the objects whose
distance from each of the vantage objects differs by at
most ¢ from the corresponding distance of A4,:

nbors*(A,, o/*,¢) = {A; € o |VA* € o/ *:
ld(A*, A;) — d(A*, A)| < &}

Lemma 3.1. The set of vantage-space neighbors of a query
object A, includes its object-space neighbors, that is,
nbors*(4,,.o/*, &) 2 nbors(A4,, ¢).

Proof. Let o/* = {Af,...,A%} be the set of vantage
objects, and A4; an object that is included in nbors(A4-, ¢);
we have |d(A,, A;)| < e For each A*e.o/* the triangle
inequality gives

d(A*, A;) < d(A*, Aq) + d(Aq, A;) < d(A*,A4q) + ¢
<d(A*, A;) — d(A*, Ay) < ¢

and similarly

d(A*, Ay) < d(A*, A;) + d(A;, Ar) < d(A*,A;) + ¢
< d(A*, Ay) — d(A*, A;) < e.

Combining these inequalities gives |d(4*, A4;) —
d(A*, Ay)| < &, proving that A; is included in the set
nbors*(4,,.o/*,¢) as well. [

A similar query among objects thus reduces to a simple
range-searching query among a set of points (see Fig. 3).
To answer such a query, we need only compute the
distance of the query object to the m vantage objects, and
determine the vantage-space points that are sufficiently
close to the resulting query point. The main advantage of
this approach is that the computationally most-expen-
sive step — computing the similarity measure between

Fig. 3. A query among multiple vantage objects corresponds to
range searching in a higher-dimensional space.

the database objects — is performed entirely offline; at
runtime we can deal with points rather than the original
images. The algorithm is summarized below.

Algorithm Retrieval using Vantage Objects

/* preprocessing */

1: forall A; .o/ do

2: forall AF e .o/* do x; <= d(A}, A;) end for
3: Pi<=(X1,..s Xm)

4: end for

~
*

query */
while (true)
A, < a query object
for all AF €.o7* do y; <= d(A}, A,) end for
q<=015sVm)
return {A; €./ ||p; — q| <&}
0: end while

=0 0w

This framework leaves some details to be filled in. For
one, it is defined in terms of some distance function and
a set of vantage objects, both of which depend on the
application at hand. Secondly, we need a means of deter-
mining the points that lie within a distance of ¢ from
a given point. For now, we limit this discussion to men-
tioning that several known solutions [8-11] achieve
O(klogn) query time after O(nlogn) preprocessing, where
k is the number of points retrieved. This gives the follow-
ing result.

Theorem 3.2. Let o/ be a set of n objects, o/, a query
object, and ¢ = 0 a constant, and let T denote the time
required to compute the distance between any two given
objects. For any constant m > 0, we can preprocess </ in
O(mnT + nlogn) time and O(mn) space, such that we can
retrieve the objects A; with d(A,,A;) <e¢ in OmT +
klogn) time, where k is the cardinality of nbors*(A,, .o/ *, ¢).

J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80 73

4. Histogram matching: stamps

We implemented the algorithm described in the pre-
vious section and applied it to the problem of retrieving
images based on color information. For this we used
a collection of 5246 stamps from the Netherlands and
the Dutch colonies, consisting of color JPEG images of
typically about 500 x 500 pixels [24]. The objective is
to retrieve from the database stamps with visual color
resemblance to a query stamp.

To apply the framework to this database, we need to
devise a matching distance function that measures
the distance between two images, and pick a number of
vantage objects for the collection. Additionally, the
framework requires an efficient algorithm to retrieve the
nearest vantage-space neighbor of a given query image.
These issues are addressed in the sections to follow.

4.1. A matching distance function

To apply the vantage-object framework to our set of
stamp images, we need to provide a distance function
giving the similarity between two images. Our approach
is as follows. We split the HSV information of each image
into three separate histograms: one each for hue, satura-
tion, and value. Each histogram consists of a fixed num-
ber b of bins — 16 in our implementation, but this
number was chosen somewhat arbitrarily and does not
appear crucial.

We measure the similarity between two histograms
H and H' by their difference, given by

b
dH,H') =) |H; — Hil,

i=1

where H; is the fraction (with 0 < H; < 1) of pixels of
H in bin i. Intuitively, this measures the amount of
resemblance between the two histograms: if d(H, H') = 0,
the histograms are identical. It is easily verified that this
distance measure satisfies the properties listed in Section
2: (one-way) identity, positiveness, and the triangle in-
equality. The distance between two histograms can
clearly be computed in O(b) time, where b is the number
of bins in each histogram. (As an alternative we also
considered using the standard histogram-intersection ap-
proach described by Swain and Ballard [25], but their
method was observed not to perform as well for our
particular application.)

This distance function measures the direct resemblance
of two histograms. In terms of, for example, hue informa-
tion, two histograms will achieve a small distance if and
only if the colors in the corresponding images are alike.
In some applications however it could be preferable to
consider the distribution of values over the histogram
rather than the actual histogram. In terms of hue in-
formation, this means that we would consider two images

similar if the hue of one is similar to (but shifted with
respect to) that of the other; in terms of value informa-
tion, two images would thus be considered similar if one
is a darker or lighter copy of the other. The corresponding
distance measure is given by

b
dH,H)= min Y [H; — H{+j moasl-

0<j<b i=1

This remains a subject for future research.

4.2. Choosing vantage objects

Another aspect of our approach is the choice of van-
tage objects. Ideally, the m vantage objects should differ-
entiate the database objects as well as possible. This
means that they should measure different ‘properties’ of
the objects; if the vantage objects are not very different
from one another the distance of an object from each
vantage object will be approximately similar, and little
information is gained by adding the extra vantage objects.

For example, when dealing with hue information it
makes sense for each vantage object to contain dominant
colors that differ from those found in the other vantage
objects. To obtain such a set of objects we picked from
the database an image with well-defined hue, saturation,
and value content, and modified these properties one by
one to obtain a number of vantage objects measuring
distinct image qualities. For the hue content we shifted
the hue component of the original image by multiples of
90°, and similarly varied the saturation and value con-
tents in four discrete steps. This process resulted in the
series of vantage objects shown at the top of Fig. 4. Note
that the first four of these vantage objects impose order
only on the hue content of the images, whereas the next
four vantage objects are used strictly for their saturation
content, and the last four only measure value. We thus
end up with a twelve-dimensional vantage space.

Since the HSV components of an image are indepen-
dent we would combine these 12 vantage objects into
four composite objects, each of which measuring hue as
well as saturation and value. The current approach how-
ever has two advantages: the role of each vantage object
is intuitively clearer, and more important, it provides the
option of weighting the HSV components differently.
For example, the user might specify that he considers hue
the most important property and wishes to retrieve
only images with hue similar to that of the query
images, whereas saturation and value are of subordinate
importance.

4.3. Retrieving nearest neighbors

The problem of determining nearest neighbors among
a set of points is well studied in the field of Computa-
tional Geometry, and several efficient solutions exist

74 J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

[9-11]. Of particular interest is the approximate-near-
est-neighbor algorithm due to Arya et al. [8], who show
that the nearest-neighbor problem can be solved parti-
cularly efficiently if we weaken the problem formulation
to determining approximate nearest neighbors to the
query point. For any query point geR? and constant
e>0, a point peP is a (1 + ¢)-approximation to the
nearest neighbor of ¢ if, for all p’eP, we have
d(p,q) <(1 +¢&)-d(p’,q). A set of n points in R? can be
preprocessed in O(nlogn) time and O(n) storage, such
that given a query point geRY, a constant & > 0, and
a constant integer k > 1, we can compute (1 + ¢)-approx-
imations to the k nearest neighbors of ¢ in O(k log n) time.
Besides being theoretically optimal in the worst case,
their approach has been observed to be very efficient in
practice, even for ¢ = 0.

According to Theorem 3.2, a single query for m van-
tage images among n images thus takes O(mT + klogn)
time, where k is the number of images returned, and T
is the time required to compare any two given images.
For our distance function this is O(mb + klogn) =
O(m + klogn), where b is the (constant) number of bins in
cach histogram.

As a possible postprocessing step, we may explicitly
measure the similarity between the query image and each
of the k images returned by the algorithm; this takes
additional O(kb) = O(k) time, and thus does not influence
the given bound. This postprocessing step has been omit-
ted in the experimental results presented here since our
main goal is to demonstrate the usefulness of the van-
tage-object structure by itself, even without further post-
processing of the query results.

4.4. Experimental results

We implemented the algorithm described in the pre-
vious sections, using an available implementation of the
search algorithm due to Arya et al. [8], on a 400 MHz
Pentium II-based workstation.

Three example queries and their results are shown in
Fig. 4. The first query shows a single stamp from a series
of nearly identical stamps with different nominations,
whereas the second query returns very different stamps
that are nevertheless similar in appearance. The third
query consists of part of an envelope (rotated 90° clock-
wise) with three brightly colored stamps and some black
postage marks on it, and nicely returns only similar
images. The fact that only parts of envelopes (and no
single stamps) are returned can be accounted for by the
dominant presence of the color white in these images.

Computing a single histogram from a JPEG image
takes 239.7 ms on average, whereas comparing two his-
tograms takes approximately 27.1 ms. For a query image
we first compute its three HSV histograms in approx-
imately 0.72 s. Determining the corresponding vantage-
space point is done by comparing these histograms

against the 12 vantage objects in 325 ms. Finally, the
nearest-neighbor query takes in all practical cases less
than 15 ms. Thus the total time required for a query
amounts to approximately 1 s. For comparison pur-
poses: the brute-force approach of directly comparing the
HSV histograms of the query image against all 5246
database images (assuming their histograms have been
precomputed) takes well over seven minutes.

5. Shape matching: hieroglyphics

To demonstrate that our approach is applicable to
many types of matching problems, we also considered the
problem of image retrieval based not on color informa-
tion but on shape. For this we used a collection of 6845
hieroglyphics with a total of 72,816 polylines [26]. Given
a query hieroglyphic, the objective is to be able to retrieve
similarly shaped hieroglyphics from the collection, that
is, hieroglyphics containing polylines that resemble those
of the query hieroglyphic. The various details that need
to be filled in are considered in the following sections.

5.1. A matching distance function

Arkin et al. [27] describe a matching metric for poly-
gons that is invariant under translation, rotation, and
scaling, is defined for both convex and nonconvex poly-
gons, and can be computed in time O(cic,logeqcy),
where ¢y, ¢, are the numbers of vertices of the respective
polygons. The metric is based on the L, distance between
the turning functions of two polygons. The turning func-
tion ® 4(s) of a polygon measures the angle of the counter-
clockwise tangent as a function of the arc length s,
measured from some reference point O on the boundary
of A. In other words, ® 4(0) is the angle v that the tangent
at the reference point O makes with some reference ori-
entation, for example, the x-axis; ® 4(s) keeps track of the
turning that takes place as one traces the boundary of A4,
increasing with left-hand turns and decreasing with
right-hand turns.

Turning functions are periodic: Ou(s) =
®,(s +)mod 2m, where [is the perimeter length of A.
The turning function ® 4(s) of a polygon A4 is translation
invariant by definition, and becomes ©® 4(s) + o if the
polygon is rotated over o degrees; scaling invariance can
be achieved by normalizing the polygons to a standard
perimeter length of 1. The distance between two turning
functions ®, and Oy is defined as

1
d©,05) = min J 1©.4(s) — Op(s + 1) + o] ds.

0<t<1, 0<a<2n JO

In our approach we essentially use the same metric, with
some slight adaptations to the case of matching polylines
rather than polygons. For one, note that the distance of

12 VANTAGE OBJECTS

J. Vieugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

' Rimd. m. eroen
&l
l: S = =
>
wy
L
o
de rechien

>
a4
L
=2
<

Fig. 4. The vantage images and three example queries together with the 12 best matches.

75

76 J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

a sufficiently short line segment [from any polyline 4 is
zero since [will perfectly match any (longer) line segment
of A. We overcome this problem by enforcing a threshold
on the number of segments of the database polylines;
only polylines with a sufficient number of segments are
considered. Also, we cannot simply scale the polylines to
some unit length because we want to be able to match
portions of a polyline rather than matching a polyline in
its entirety. For example, consider a polyline P and
a longer polyline Q that contains P as a sub-polyline.
Since P occurs in its entirety in Q we want the latter to
perfectly match the former. If we would scale both poly-
lines to some unit length, the (turning functions of the)
polygons would no longer match very well. In other
words, we cannot simply scale the two polylines prior to
matching to achieve scale invariance. At the moment we
do not have a viable alternative to this, which implies
that our implementation is not scale invariant. This
could be overcome by either adapting the above metric
to scale invariance or employing a different distance
function, such as the one proposed by Cohen and Guibas
[28].

Let P and Q be two polylines with lengths Ip and [y,
respectively. In consideration of the above issues we
define the distance d(P, Q) of Q from P as follows. First
compute their turning functions ®p(s) and @4(s). Notice
that (since we are dealing with polylines rather than
polygones) these turning functions are not periodic.
Moreover, their domains Dom(P)=1[0,lp] and
Dom(Q) = [0,1,] — that is, the range over which s varies
— most likely differ. Assuming without loss of generality
that [p > Iy, we define the distance of @y from Op as

d(®P>®Q)

lo
= min J |®p(s + t) — Og(s) + «|ds.

0<t<lp—1p,0<a<2m JO

In words: we shift @, (the shorter of the turning func-
tions) along ®, while keeping track of the minimum area
between the functions; only the portion of ®@p that falls
within the domain of @, is considered in this. In the case
thatlp < Iy, we define d(®p,04) = d(@g,0p) — note that
this implies that our distance function is symmetric. It is
easily verified that this distance function implements
partial polyline matching, and d(P, Q) = 0 if and only if
P occurs in its entirety in Q or vice versa.

This distance function however does not satisfy the
triangle inequality. Consider the polylines shown in Fig. 5:
since an exact copy of P; occurs in P, we have
d(Py,P,)=0, and similarly d(P,,P3)=d(P5,P,)=0.
P, and P; however differ considerably and therefore
d(Py,P3) >0, which violates the triangle inequality
d(Py, P3) < d(Py,P,) + d(P,, P3). Since the proof Lemma
3.1 relies on this property to hold our current approach is
not guaranteed to be complete — that is, it may miss

AYA

P P, Ps

Fig. 5. Three polylines for which the distance function violates
the triangle inequality.

possible matches to a query. Nevertheless, the experi-
mental results to be presented in Section 5.4 indicates that
in practice this violation does not render our approach
useless. It is interesting to speculate on the reasons for this.
A possible factor is that the triangle inequality will usually
hold for objects that occur in practice — the example of
Fig. 5 is highly artificial. Moreover, the inequality need
only hold for objects similar to the query object: the proof
to Lemma 3.1 considers objects 4; such that d(4,, 4;) < ¢
and d(4;,A,) <& We consider this a topic for future
research.

Omitting details about the implementation of the above
distance function, we state that our matching algorithm
runs in identical T = O(c; ¢, logc;c,) time for two poly-
lines, with ¢y, ¢, as before. This brings the entire prepro-
cessing step for n polylines with m vantage polylines to
O(mnc?logc), where ¢ is the maximum number of seg-
ments to a single polyline; this is O(mn) if we consider
¢ a constant. (In the hieroglyphics database, c is about 400.
While this may seem a relatively high number, the average
number of segments is much lower: about 14.2) By The-
orem 3.2, this yields a bound on retrieving the k nearest
neighbors of a query polyline among n polylines of
O(mc?logc + klogn) = O(m + klogn), where m is the
number of vantage polylines, and ¢ the (constant) max-
imum number of segments to a polyline. The (intentionally
unimplemented) postprocessing step of explicitly compar-
ing the query polyline to each of the k polylines returned
by the algorithm, as discussed in Section 4.3, takes addi-
tional O(kc?logc) = O(k) time and therefore does not in-
fluence this bound.

5.2. Choosing vantage objects

As discussed in Section 4.2, the vantage objects should
measure different properties of the database objects.
A possible way to ensure that each vantage point adds
relevant discriminating power is by choosing the vantage
points such that they lie maximally far apart. Computing
the k furthest among a set of points, however, is an
exponential problem. We resort to the following heuristic
algorithm instead. First, choose an initial vantage object
— polyline, in our case — A% at random. Next, repeatedly
pick the next vantage object A¥ by maximizing the min-
imum distance to the previously chosen vantage objects
A%, ..., A¥ 1. While the vantage objects thus chosen will

J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80 77

probably not be maximally far apart, they will at least
constitute a set that is spread out well.

An additional concern lies with the complexity of the
vantage objects. Even though our approach was devised
to require only few runtime distance calculations, still
performance could be impaired if we pick exceptionally
complex vantage objects for which the distance function is
difficult to compute.

As for the number of vantage polylines we should
choose, there is a clear trade-off: fewer polylines will return
more non-relevant polylines as answers to a query, where-
as more polylines increase the dimension of the search
space and, therefore, the time required to answer a query.
Some comparisons for both different values of m and
different vantage objects are given in Section 5.4.

5.3. Matching entire hieroglyphics

So far, our algorithm description focused on matching
single polylines. The hieroglyphics in our database how-
ever consists of several — on average about 14 — separate
polylines. Therefore, we need to devise a strategy to com-
bine the results for multiple polylines into a single result
for each hieroglyphic.

Given a query hieroglyphic consisting of h polylines, we
perform h separate queries — one for each polyline. The
polylines returned by these queries are grouped according
to the hieroglyphic they are part of; this gives a certain
number of matching polylines for each hieroglyphic. Next,
the hieroglyphics should be presented to the user in a way
that reflects their resemblance to the query hieroglyphic.
The most effective way would be to explicitly measure
their distance from the query polygon. As mentioned
before, for the purpose of this paper we refrain from doing
so because we want to demonstrate that our vantage-
object retrieval algorithm already provides a relevant or-
dering of the query results. Therefore we sort the hiero-
glyphics matched using the following simple heuristics.
The more polylines of a given hieroglyphic match closely
— that is, within the distance threshold — with a polyline
of the query hieroglyphic, the better we consider the hiero-
glyphic to match the query. We sort hieroglyphics with an
identical number of matching polylines according to in-
creasing maximum distance of any of the matched poly-
lines from the corresponding query polyline.

Note that it is not a priori clear how many nearest
neighbors we want to retrieve for each query point, since
the grouping by hieroglyphic is not done until after the
retrieval step. We chose to use a threshold on the max-
imum distance of each vantage-space point from the query
point; the polylines for which this distance does not exceed
the threshold are returned as answers to the queries. Note
that this is functionally equivalent to using an axis-parallel
range search (with the query range centered at the query
point) instead of a nearest-neighbor query.

5.4. Experimental results

We implemented the algorithm described in this
section on the same 400 MHz Pentium II-based work-
station. As in the application to stamps we use the approx-
imate-nearest-neighbor algorithm due to Arya et al. for
determining the nearest vantage-space neighbors of a
query point.

Some typical queries for m = 6 vantage points, along
with the hieroglyphics returned and the vantage polylines
used, are shown in Fig. 6. Note that the most complicated
of the vantage polylines consists of 39 segments, thus
ensuring efficient distance calculations (see Section 5.2).
For these queries, we set the minimum number of seg-
ments that a polyline should consist of to three — in other
words, only polylines that define at most a single angle are
ignored in the matching process. The three queries in-
crease in detail. The first one consists of a simple shape
that recurs in numerous hieroglyphics; all query results
contain a copy of the shape — more or less, as the
hieroglyphics have been digitized by hand. The second
query is more specific, and as a result we get some matches
that contain an exact copy of the query bird, followed by
a number of hieroglyphics that contain similarly shaped
birds. The last query shown contains a shape that is
unique within in the database, and the query results re-
semble the query object to various degree. (Note that the
intuitive resemblance seems to gradually decrease with the
ranking.)

As mentioned, the bulk of the computations are per-
formed during the preprocessing steps. For each polyline
in the database we need to compute the corresponding
vantage-space point, which involves computing its dis-
tance from each of the vantage polylines. From experi-
ments we learned that for our data set the distance
measure takes 23.3 ms on average to compute. It follows
that comparing all 72,816 polylines against a single poly-
line takes approximately 28 min, and consequently the
preprocessing step of computing the vantage-space points
for m = 6 vantage objects takes approximately 2 h and
48 min. When we want to add polylines to the database,
this computation need only be performed for the polylines
to be added. Finally, the time required for building the
nearest-neighbor data structure depends on the number
m of vantage objects but is, for example, only slightly
higher than three seconds for m = 10. Moreover, this step
has to be performed only when the image database changes.

The query time in turn is low due to the intensive
preprocessing steps. For a query we first have to compute
its vantage-space coordinates by computing its distance
from the vantage objects, which in our application takes
6 x23.3 ms ~ 140 ms. Next, we need to determine the
nearest neighbors of the corresponding point. The time
required for this depends on the distance threshold but
does not exceed 10 ms for all practical values of e. Thus
the total time for a query is approximately 150 ms.

78

<)

QUERY

J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

6 VANTAGE OBJECTS

& N + v

RESULTS

<

<t
<a
®
N

&
-
D A

7

kL

Fig. 6. The vantage objects use

NS
e P e | &

BeulBe w0] 3P dx
SEabh PP O\ Y

matnd PP 40

)
I+
2
B
By,
N
k2
@
i

b B >

kL
f
iy,

o

For comparison purposes, we also implemented a triv-
ial algorithm using the same implementation of the
matching algorithm. To find the database polylines sim-
ilar to a given query polyline, we compute the distance of

to define the vantage space, an

12k

s, 5% B2 oA b
Do 5 g 520 2)

o
(e

three example queries along with their 30 best matches.

Table 1
Comparison for different numbers of vantage points and dis-
tance thresholds

each polyline in the collection from the query and take m Ii: 0.05 i: 0.10 i: 025 i: 050 i: 1.00

the best-matching one. Answering a query for a single
polyline this way is identical to computing the distance 1 3312 6387 15010 24944 < 30000
from a vantage polyline, and therefore also takes almost 2 76.8 244 1261 3833 11692
half an hour. To match an entire query hieroglyphic this 3 8.8 54.2 375 1182 4742
time should be multiplied by the number of polylines the 4 3.0 18.4 195 817 3021
hieroglyphic contains. 6 1.2 82 71.8 483 1911
Another issue is the number of vantage objects. 8 L0 32 46.8 215 1338
10 1.0 1.2 34.8 164 1073

Table 1 summarizes the number k of results returned for
different values of m and ¢, where m is the number of
vantage points and ¢ is the distance threshold. The over-
all tendency is that the number of results quickly grows if
we use less vantage points, which means that more (pos-
sibly expensive) postprocessing will be required to pres-

ent the results in some meaningful order. Finally, another
benefit of using more vantage points is that the relevance
of the query results appears to be much better for a larger
number of vantage points.

J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80 79

6. Conclusions

We presented an indexing structure for general image
retrieval that relies solely on a distance function giving
the similarity between two images, and demonstrated
that it can be used to efficiently determine histogram-
and shape-based image similarity. An important advant-
age of our structure is that a query requires only a small
constant number of distance calculations between
database objects; other approaches usually perform at
least O(logn) such calculations. This becomes especially
beneficial if the similarity measure is expensive to com-
pute.

Although the viability of our approach was demon-
strated only for two specific cases — retrieving raster
images of stamps, and vector images depicting hiero-
glyphics — its potential is still more general. In fact, our
indexing structure applies to any set of images for which
a similarity distance function can be defined. Since al-
most all distance calculation are performed during an
offline preprocessing step, another advantage of our ap-
proach is that it does not rely on the distance function
being cheap and/or easy to compute; a query requires
only a small number — typically 10 or less — of distance
calculations. If sufficient preprocessing time is available,
one can therefore use an elaborate (and possibly expen-
sive) distance function with desirable properties such as
robustness against noise, blurrings, cracks, and deforma-
tions [29].

Future work includes implementing a number of stan-
dard approaches against which to compare our imple-
mentation, as our current experimental results provide
comparisons only against a straightforward brute-force
approach.

References

[1] V.E. Ogle, M. Stonebraker, Chabot: retrieval from a rela-
tional database of images, IEEE Comput. 28 (1995) 40-48.

[2] A. Pentland, R.W. Picard, S. Sclaroff, Photobook: tools for
content-based manipulation of image databases, Proceed-
ings of the SPIE: Storage and Retrieval for Image and
Video Databases 11, Vol. 2185, 1994, pp. 34-47.

[3] W. Niblack, R. Barber, W. Equitz, M. Glasman, D. Pet-
kovic, P. Yanker, C. Faloutsos, G. Taubin, The QBIC
project: querying images by content using color, texture
and shape, Storage Retrieval Image Video Databases 1908
(1993) 173-187.

[4] P.M. Kelly, T.M. Cannon, D.R. Hush, Query by image
example: the CANDID approach, Proceedings of the
SPIE: Storage and Retrieval for Image and Video
Databases 11, Vol. 2420, 1995, pp. 238-248.

[5] R. Mehrotra, J.E. Gary, Similar-shape retrieval in shape
data management, IEEE Comput. 28 (1995) 57-62.

[6] Y. Lamdan, J.T. Schwartz, H.J. Wolfson, Geometric
hashing: a general and efficient model-based recognition

scheme, Proceedings of the International Conference on
Computer Vision, 1988, pp. 238-249.

[7] H.J. Wolfson, Model-based object recognition by geomet-
ric hashing, Proceedings of the First European Conference
on Computer Vision, 1990, pp. 526-536.

[8] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman,
A. Wu, An optimal algorithm for approximate nearest
neighbor searching, Proceedings of the Fifth ACM-
SIAM Symposium on Discrete Algorithms, 1994,
pp. 573-582. An implementation is available from
http:/www.cs.umd.edu/ ~mount/ANN.

[9] J.L. Bentley, K-d trees for semidynamic point sets, Pro-
ceedings of the Sixth Annual ACM Symposium on Com-
puter Geometry 1990, pp. 187-197.

[10] K.L. Clarkson, Nearest neighbor queries in metric spaces,
Proceedings of the 29th Annual ACM Symposium on
Theory and Computation, 1997, pp. 609-617.

[11] J. Kleinberg, Two algorithms for nearest-neighbor search
in high dimension, Proceedings of the 29th Annual ACM
Symposium on Theory and Computation 1997,
pp. 599-608.

[12] W.A. Burkhard, R.M. Keller, Some approaches to best-
match file searching, Commun. ACM 16 (4) (1973)
230-236.

[13] P.N. Yianilos, Data structures and algorithms for nearest
neighbor search in general metric spaces, Proceedings of
the Fourth ACM-SIAM Symposium on Discrete Algo-
rithms, 1993, pp. 311-321.

[14] J.K. Uhlmann, Satisfying general proximity/similarity
queries with metric trees, Inform. Process. Lett. 40 (1991)
175-179.

[15] S. Berchtold, D.A. Keim, H.-P. Kriegel, The X-tree: An
index structure for higher dimensional data, Proceedings
of the 22th VLDB Conference, 1996, pp. 28-39.

[16] D.A. White, R. Jain, Similarity indexing with the SS-tree,
Proceedings of the 12th IEEE International Conference on
Data Engineering, 1996, pp. 516-523.

[17] N.Katayama, S. Satoh, The SR-tree: an index structure for
high-dimensional nearest neighbor queries, SIGMOD 97,
1997, pp. 369-380.

[18] K.I. Lin, H.V. Jagdish, C. Faloutsos, The TV-tree: an index
structure for higher dimensional data, VLDB J. 4 (1994)
517-542.

[19] J. Matousek, Efficient partition trees, Discrete Comput.
Geom. 8 (1992) 315-334.

[20] J. Matousek, Range searching with efficient hierarchical
cuttings, Discrete Comput. Geom. 10 (2) (1993) 157-182.

[21] B. Chazelle, E. Welzl, Quasi-optimal range searching in
spaces of finite VC-dimension, Discrete Comput. Geom.
4 (1989) 467-489.

[22] O. Schwarzkopf, J. Vleugels, Range searching in low-den-
sity environments, Inform. Process. Lett. 60 (1996)
121-127.

[23] J. Vleugels, On fatness and fitness—realistic input models
for geometric algorithms, Ph.D. Thesis, Department of
Computer Science, University of Utrecht, Utrecht, The
Netherlands, 1997.

[24] Software Generation, Collect-A-ROM: Postzegels Neder-
land en overzee, 1996.

[25] M.J. Swain, D.H. Ballard, Color indexing, Int. J. Comput.
Vision 7 (1991) 11-32.

80 J. Vleugels, R.C. Veltkamp | Pattern Recognition 35 (2002) 69-80

[26] The Extended Library, Centre for Computer-Aided Egyp- [28] S.D. Cohen, L.J. Guibas, Partial matching of planar poly-
tological Research, Faculty of Theology, Utrecht Univer- lines under similarity transformations, Proceedings of the
sity, Utrecht, the Netherlands. http:/www.ccer.theo. Eighth ACM-SIAM Symposium on Discrete Algorithms,
uu.nl/ccer/extlib.html January 1997, pp. 777-786.

[27] EMM. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kedem, [29] M. Hagedoorn, R.C. Veltkamp, A robust affine invariant
J.S.B. Mitchell, An efficiently computable metric for com- metric on boundary patterns, Int. J. Pattern Recognition
paring polygonal shapes, IEEE Trans. Pattern Anal. Artif. Intell. 13 (1999) 1151-1164.

Mach. Intell. 13 (3) (1991) 209-216.

About the Author—JULES VLEUGELS received his Ph.D. degree in Computer Science from Utrecht University in 1998. He has
worked on motion planning and computational geometry, focusing on realistic input models for geometric algorithms. His current
research interests as a postdoc at Utrecht University include data structures for content-based image retrieval.

About the Author—REMCO C. VELTKAMP is Assistant Professor at Utrecht University. He has worked on surface reconstruction,
approximation, spline modeling, and constraint-based 00 graphics. His current research focuses on shape algorithmics, the application
of Computational Geometry in computer vision and shape processing, and the application of shape matching in content-based image
retrieval. Aspects like algorithmic design and experimental verification play an important role in his work.

