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PreSim: A 3D photo-realistic environment simulator
for visual AI

Honglin Yuan1 Remco C. Veltkamp1

Abstract—Recent years have witnessed great advancement in
visual artificial intelligence (AI) research based on deep learning.
To take advantage of deep learning, we need to collect a large
amount of data in various environments and conditions. However,
collecting such data is time-consuming and labor-intensive. Apart
from that, developing and testing visual AI algorithms for
multisensory models is expensive and in some cases dangerous
processes in the real world. We present PreSim, a 3D environment
simulator which provides photo-realistic simulations using a
view synthesis module and supports flexible configuration of
multimodal sensors to address both of these issues. For our view
synthesis module we introduce novel depth refinement, adaptive
view selection and layered rendering, to provide realistic imagery.
We demonstrate that PreSim has several advantages: (i) it pro-
vides a photo-realistic 3D environment which allows seamlessly
integrating multisensory models in the virtual world and enables
them to perceive and navigate scenes, (ii) it has an internal
view synthesis module which allows transforming algorithms
developed and tested in simulation to physical platforms without
domain adaption, (iii) it can generate a large amount of data for
vision-based applications, such as depth estimation and object
pose estimation.

Index Terms—Simulation and Animation, Sensor Fusion,
RGB-D Perception

I. INTRODUCTION

RECENT years have witnessed great success of data-
driven methods that use deep networks for computer

vision tasks, such as depth estimation [1] and 6D object pose
estimation [2]. These data-driven methods need a large amount
of data to train and test their models. However, the process
of collecting and labeling data is time-consuming and tedious.
Gradually, the simulated environment is becoming an effective
way to solve these problems, for it can provide amounts of
annotated data for various AI tasks. A major current focus
of environment simulators is to reproduce high-quality free-
viewpoint rendering of real scenes. There are a number of open
source simulators [3] to achieve this goal by parameter settings
of scene details, including geometry, texture, lighting and 3D
modeling of static objects. However, parameter setting is time-
consuming and labor-intensive. Even with precise modeling
and suitable parameter settings, the simulated world still lacks
richness and diversity of the real world. This disadvantage
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Fig. 1: Snapshots from PreSim showing a robot moving in
indoor environments: the left subwindow is a synthesized color
image and the right subwindow is the corresponding depth
map.

may result in the failure of transferring algorithms that are
developed and tested in simulation to physical platforms for
many vision-based tasks, such as object recognition, obstacle
avoidance, and visual navigation. This problem is known as
the reality gap: the discrepancy between synthetic and real
data.

To address this issue, game engines which allow photo-
realistic rendering have been leveraged to build virtual en-
vironments. However, the simulated environment heavily de-
pends on the game engine’s detailed datasets, which makes
it impossible for users to build their own environments with
their own datasets. On the other hand, game engines often use
3D graphics pipelines to provide real-time rendering. Thus, the
rendering time increases linearly with the number of polygons
to be rendered (scene complexity). To achieve real-time perfor-
mance, it requires dedicated hardware and architecture design
for 3D graphics. On the contrary, image based rendering which
can provide real-time realistic imagery does not have these
limitations. It only requires a sparse collection of captured
images and allows a 3D scene to be visualized realistically
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without full 3D reconstruction. This approach has shown high-
quality results in various environments [4]. In addition, the run
time of image based rendering mainly depends on the display
resolution of the output image rather than scene complexity.

Taking advantage of image based rendering, we introduce
PreSim which is a 3D photo-realistic environment simulator
for training and testing AI algorithms, as shown in Fig. 1. We
aim to narrow the reality gap between simulation and reality
by providing huge amounts of photo-realistic virtual RGB-D
views from arbitrary locations for vision-based applications.
The main contributions of our simulator are:
• A photo-realistic 3D virtual environment that provides

users with ground truth poses of the multisensory model and
free-viewpoint color-and-depth image pairs, even in regions
where a global 3D reconstruction of the scene has inaccurate
or missing data.
• A global visualizer providing real-time positions and

whole trajectories of moving sensors, and a global 3D map.
• A sequence controller and recorder components to control

the movement of sensors and store all the required information
for developing AI algorithms.
• A novel view synthesis module built on image based ren-

dering that combines depth refinement, adaptive view selection
and layered 3D warping to lower the rendering complexity and
improve the quality of synthesized images.

II. PREVIOUS WORK

Here we discuss several notable works in environment
simulators and image based rendering that are closely related
to our work.

Simulators. There are many environment simulators, such
as Gazebo [3] and Atari [5], to model and visualize physical
environments. Gazebo [3] is a well-known simulator that uses
high-performance physics engines for rendering of indoor
and outdoor environments. While Gazebo has rich features,
it has limited abilities in creating visually rich environment
of large scale and offer the realistic imagery. It has lagged
behind various advancements in recent rendering techniques
which allow photo-realistic rendering. A different class of
approaches is based on game engines that enable rendering
of photo-realistic camera streams [6], [7]. VRKitchen [6] is
an interactive 3D Virtual environment built on Unreal Engine
4 (UE4). It can provide physically and visually realistic virtual
kitchen environments. Habitat [7] uses Magnum engine to
build photo-realistic virtual environments and provides a mod-
ular library for developing AI tasks (e.g., visual navigation)
in it. However, they are limited by richness of simulated
environments due to their high dependency on the engines.
In contrast, our environment simulator enables users to build
their own environments with their datasets.

More recently, public datasets such as SUNCG and Mat-
terport3D have been used to create virtual environments.
House3D [8] is based on the SUNCG dataset to provide
3D scenes of visually realistic houses. MINOS [9] provides
access to the SUNCG and Matterport3D datasets and allows
for environment configuration by removing or adding objects.
Similar to our work, Gibson Env [10] uses image based

TABLE I: A comparison of PreSim to other environment sim-
ulators. 3D: 3D nature of the rendered scene, Photo-realistic:
photo-realistic rendering, Novel: flexibility to be customized
to other applications and Extendable datasets: permission for
custom datasets.

Simulator 3D Photo-realistic Novel Extendable datasets
Gazebo [3]

√ √ √

Atari [5]
VRKitchen [6]

√ √ √

MINOS [9]
√ √

House3D [8]
√ √

Gibson Env [10]
√ √

Habitat [7]
√ √ √

PreSim (ours)
√ √ √ √

rendering to provide photo-realistic rendering. While the goal
of Gibson Env and our work is similar, Gibson Env requires a
large amount of data to train a view synthesis network to avoid
visual artifacts of synthesized images. A detailed comparison
between our system and other environment simulators is
summarized in Table I.

Image based rendering. A thorough review of image based
rendering methods can be found in [11]. The importance
of maintaining the alignment of object boundaries between
the color image and the depth map has been known in
recent years [12], [13]. Ortiz-Cayon et al. [12] divide the
image into superpixels to preserve object boundaries and then
project each superpixel to the virtual view by a local shape-
preserving warping to improve the blending quality. However,
this approach does not consider photo-consistency and still
suffers from silhouette flattening and inaccurate occlusion
edges. There have been several works [13], [14] that improve
the quality of synthesized images by filling holes. Neverthe-
less, the number of input views are fixed in these methods,
which may lead to hole filling failure when the chosen views
are useless or redundant. Instead, we use an adaptive view
selection method to avoid such case.

In recent years, deep learning methods have been applied
to produce novel views [15]–[17]. Hedman et al. [17] use
a convolutional neural network (CNN) based architecture to
estimate pixel weights for rendering. Flynn et al. [15] directly
use a deep learning method for end-to-end view synthesis.
However, in the current state, the end-to-end view synthesis
methods [15], [16] still suffer from blurring and are not
suitable for small datasets collected from a large range of
viewpoints. In contrast, our view synthesis approach does not
require dense image sets to train the model, and can render
new views that have much larger changes with input views.

III. 3D PHOTO-REALISTIC ENVIRONMENT

A. System overview

The architecture of our simulator is shown in Fig. 2.
It is composed of a multisensory model, controllers, scene
datasets, a view synthesis module and a global visualizer.
Our simulator is based on Robot Operating System (ROS)
which has a modular design and can be customized, upgraded
and reused. In the virtual environment, we first import the
point cloud of the real scene, which is generated from a 3D
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Fig. 2: The architecture of our simulator. It shows the main
components of our simulator including a multisensory model,
controllers, datasets, a view synthesis module and a global
visualizer.

reconstruction, into the ROS and show it together with camera
poses of input images in Rviz, a 3D visualizer for the ROS
framework. Then we control the virtual camera’s movement
throughout the virtual world and estimate its 6D pose by ROS
in real time. The estimated pose is then taken as a reference
to select the most similar color-and depth image pairs in a
query input dataset. Next, we use the selected color-and-depth
image pairs to synthesize the virtual view based on our view
synthesis module. At the same time, the whole trajectory of the
moving camera and synthesized color-and-depth image pairs
are logged. In the following, we provide more details on the
individual components of our simulator.

B. View synthesis

Our goal is to build a free-viewpoint photo-realistic envi-
ronment for vision-based tasks. Unlike previous methods that
build the whole virtual environment on perfectly reconstructed
3D geometry, our view synthesis module takes a sparse set
of RGB-D images as the input and produces new color-and-
depth image pairs from arbitrary viewpoints. It consists of
novel depth refinement and view selection steps followed by
a fast rendering process. These components work together to
lower the rendering complexity and improve the quality of
synthesized images.

Depth refinement. Pixel-accurate alignment of object
boundaries between color-and-depth image pairs and accurate
depth values are necessary for high-quality rendering. This is
because inaccurate depth values and misalignment often lead
to various visible artifacts, such as ghost contours. During
offline pre-processing, we introduce a pixel-to-pixel multi-
view depth refinement algorithm to achieve this goal. We
define the matching cost function C(di) as,

C(di) = Cpixel(di) + Cpatch(di), (1)

where Cpixel(di) and Cpatch(di) emphasize photo-consistency
and edge preservation for the depth di of pixel i, respectively.

The photo-consistency Cpixel(di) for the pixel i is measured
by projecting it to other images, where we compare the color
and gradient’s similarities.

Cpixel(di) =
∑
r∈R

λ||xi−xr||1+(1−λ)||5xi−5xr||1, (2)

where xi is the RGB color of the pixel we calculate cost for
in the target image and xr is the resulting RGB color when
the 3D point defined by depth di is reprojected into reference
image r. R is the number of reference images which is selected
by comparing the angle, distance and overlap it has with the
target image. ||xi−xr|| and ||5xi−5xr|| indicate the color
and gradient differences, respectively. λ balances the influence
of color and gradient terms and is empirically set. We set
λ = 0.9 in all the experiments. Such a model has been shown
to be robust to illumination changes and has the advantage of
handling radiometric differences in the input images [18]. For
a target image, we select ten reference color images based on
distances and angles between the target and reference views.
Next, we iteratively project pixels in the target image to the
reference images and only save the cost value of the front-
most pixel. In this way, we are able to avoid obtaining high
cost values for correct depths.

The edge preserving term Cpatch(di) encourages the result-
ing depth map to have pixel-accurate alignment of depth with
its corresponding color image.

Cpatch(di) =
1
N

∑
q∈Wi

e−||xi−xq||1 , (3)

where Wi denotes a small (3 × 3) patch centered on pixel i
and q is the neighbor pixel of i. N is the size of the patch
(3× 3) which is chosen empirically. ||xi − xq|| computes the
L1 norm between the RGB colors of i and q.

In the depth refinement process, we iteratively replace the
depth value at a pixel with the one nearby that has the
lowest matching cost. This is because similar pixels have
low matching costs that are computed with the consideration
of photometric and geometric relationship among pixels. The
iteration starts with the top left pixel and traverses pixels in
row-major order. After reaching the bottom right pixel, another
iteration starts with the opposite direction. Four iterations are
used in our experiments. The propagation is interleaved with
the depth filtering. That is propagating good depth values to
neighbors, if the costs are smaller than those of their neighbors.
After propagation, we filter unusual depths with a weighted
median filter [19] which is guided by the color image. The
depth refinement algorithm is summarized in Algorithm 1.

Algorithm 1 Overview of the depth refinement procedure.

Input: Color images I1...IR, and depth maps D1...DR;
Output: Refined depth map D1 for color image I1 ;

1: Calculate photo-consistency cost Cpixel for I1 and edge
preserving cost Cpatch for I1.

2: Calculate matching costs C = Cpixel + Cpatch.
3: Run propagation to update depth map D1 and matching

costs C.
4: Run weighted median filter.

View selection. The quality of synthesized images depends
not only on correcting misalignment between color-and-image
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Fig. 3: Layered depth image based rendering. The input are RGB-D images. Based on depth values, we divide the depth map
into layers. On each layer, we apply 3D warping to synthesize new images. Next, all the synthesized images are blended (

∫
)

to produce color-and-depth image pairs. After that, we use other input images to fill holes in the synthesized image.

pairs [13] or filling holes [14], but also on selecting input
views. Previous studies may choose incorrect or redundant
views based on angles or distances between two views, which
often leads to blurring images. In order to avoid such cases, we
select input images considering not only angles and distances
but also overlaps between two views.

(a) Distance (b) Angle (c) Overlap

T
A

B
C

E F

T
A

B C
(A,B,C,E,T)

Fig. 4: View selection pipeline. (a) A, B, C, D, E, and F are
input views and T is the target view. We first select a cluster of
images having the smallest angles between their view vectors
and that of the target. (c) Based on the overlaps between target
and input views, we remove views having no overlaps with T .

Fig. 4 shows the selection process. Firstly, the distance
between the input and the target views is calculated as shown
in Fig. 4(a), where A, B, C, D, E, F are positions of input
views and T is the target view. Then we rank the calculated
distances and select the top ten images as a local group. From
these local images, angles between the target and input views
are calculated as shown in Fig. 4(b). If the angle is bigger than
θmin which is set to be the camera field of view, we remove
it from the local input image group. Furthermore, in order to
remove views, like A which has a small angle and distance, but
no overlap, we calculate the overlaps (visible parts) between
input and target views by projecting the input images into the
target position. If the overlap is zero, we remove it from the
local image group (Fig. 4(c)). To reduce the computation time
of calculating overlaps, we downsample the input image with
an equal sampling interval and only project sampled pixels
into the target view.

Layered depth image based rendering. We propose to use
layered depth image based rendering to synthesize new color-
and-depth image pairs. The core part of image based rendering

is 3D warping which projects pixels in the reference image
plane to the world coordinate and then reprojects them to the
new position in another image plane using camera intrinsic and
extrinsic matrices. However, when objects in the background
and foreground are projected to the same position, objects in
the foreground may be occluded by objects in the background,
which is caused by incorrect depth information or reprojection
errors. To solve this problem, we evenly divide the depth map
into layers based on the maximum and minimum depth values.
On each layer, we apply 3D warping with corresponding color-
and-depth image pairs to produce new images and then use
a median filter with a 3 × 3 window size to fill missing
information in each new image. After that, we blend these
new images together to produce the final synthesized image.
Since layered depths have the ability to represent occluded
elements, our approach better handles the visibility problem.
We found four layers to be a good trade-off between quality
and speed.

After blending, the synthesized image may be constantly
subjected to holes that are caused by the fixed number of input
views used. To address this issue, we propose an adaptive view
selection approach using a variable number of input images
to fill holes in the synthesized image. We first project a key
image selected based on the angle, distance and overlap it has
with the virtual view, to the virtual position, and then detect
holes in the synthesized image. If the size of the largest hole is
bigger than a threshold (e.g., 0.04% of the whole image), we
then choose another input image to fill holes. We iteratively
run this process until the size of the largest hole is smaller
than the threshold or the number of input views reaches the
maximum which is set to be 10 in our experiments. The whole
view synthesis pipeline is shown in Fig. 3.

C. Multisensory models and controllers

PreSim is designed to investigate the issue of domain trans-
fer from simulation to the real world. Thus, it is important for
the multisensory model to be constantly subject to constraints
of space and physics such as collision and gravity.

Multisensory models. We use Universal Robotic Descrip-
tion Formats (URDF) to describe multisensory models (e.g.,
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humanoid robots). Therefore, the model and its properties can
be configured (e.g., types of sensors). As a demonstrator, we
use the Pepper robot, which is a social humanoid robot from
SoftBank.

Integrated controllers. We provide a set of practical
controllers including joint state and navigation controllers to
reduce the controlling complexity for the model’s dynamic
motions. The joint state controller is used to control the behav-
iors of joints of the model, including changing the pitch, roll
and yaw angles. Our navigation controller allows controlling
the model by directly sending movement commands. We also
provide data recorders that allow saving all the data required
by learning-based approaches. An example of a multisensory
model and its trajectory is shown in Fig. 5.

Fig. 5: The demonstrator model and its trajectory. Green points
and red lines are positions and view directions of input views,
small white squares and short pink lines are real-time positions
and view directions of the virtual camera and the long line is
the whole trajectory of the virtual camera.

IV. EXPERIMENTAL RESULTS

A. Evaluation of view synthesis

We evaluate PreSim on seven static datasets including our
three own datasets (Study room, Table1 and Table2), four
datasets (Attic, Dorm, Playroom, Reading corner) from [4],
and two dynamic datasets (Ballet and Breakdancers) from [20].
There are less than 220 color-and-depth image pairs in the
seven static datasets that contain black and texture-less objects
(e.g., white walls and writing boards), reflective objects (e.g.,
bottles and lights) and objects with small geometric details.
Each of the two dynamic datasets contains dancing people
with a sequence of 100 color-and-depth image pairs, captured
by eight static cameras which are positioned along an arc at
20-degree intervals.

Overall performance. We randomly choose a color image
from the initial captured dataset as our ground truth image and
then use other images to synthesize the chosen image. Fig. 6
shows some examples of synthesized color images and their
corresponding ground truth images. Synthesizing one image
(1280 × 720) takes 500 − 600ms on a computer with 6-core
Intel Core i7 8700 3.19Ghz CPU. Even though [17] is faster
than our approach which achieves 30 FPS, [17] is based on
a GPU while our method is free from the GPU. From Fig.
6 we can see that our proposed method is able to provide
high-quality synthesized images.

In order to quantitatively evaluate the free-viewpoint depth
maps generated by PreSim, we also randomly choose a depth

map from the initial captured dataset as our ground truth map
and then use other depth maps to synthesize it. The root mean
squared error (RMS) meters (lower is better) and average
log10 error (lower is better) [21] are used to evaluate the
rendered depth maps, and the experimental results are reported
in Table II. As we can see, our approach achieves better
performance on the static datasets. For static scenes, the error
is mainly caused by initial captured depth maps. However, for
the dynamic scene, it is more challenging, as it has more noise
which is hard to be synthesized by input depth maps and the
synthesized map has more errors in object boundaries when
projecting input depth maps into the novel view.

TABLE II: Quantitative evaluation of rendered depth maps on
different datasets.

Table1 Attic Playroom Dorm Breakdancers
RMS 0.426 0.472 0.483 0.501 2.419
log10 0.047 0.060 0.063 0.069 0.146

Comparison with other methods. We compare our method
with state-of-the-art learning-based algorithms on Table1, Ta-
ble2 and Study room datasets. The images in Table1 and
Table2 are captured with a sufficient range of motion around
different objects, as both datasets are designed for 6D object
pose estimation. Study room is collected with sparsely cap-
tured images aiming to cover the whole room. The peak signal-
to-noise ratio (PSNR) (higher is better) is used to evaluate
image quality. Table III summarizes the quantitative evaluation
results.

TABLE III: The PSNR comparison with different algorithms.

Methods Average PSNR over 100 images (dB)
Table1 Study room Table2

SM [22] 22.05 10.54 21.22
LLFF [16] 24.16 13.21 25.40
NeRF [23] 37.98 20.43 37.81

Ours 31.30 26.59 32.06

As we can see, even though the result of NeRF [23] is better
compared to other methods on Table1 and Table2, our method
achieves the best performance on Study room. This is because
Table1 and Table 2 are densely sampled, while Study room is
a sparse image set. It indicates that our method is more robust
to the scene captured sparsely. Besides, our approach is free
from training and can provide plausible synthesized images.

In Fig. 7 we compare our view synthesis method to Local
Light Field Fusion (LLFF) [16] which also uses layered depth
images. As we can see, while some unavoidable artifacts
are visible in both methods, our approach provides generally
sharper details and less noticeable artifacts.

In Table IV, we also compare our method with state-of-
the-art algorithms which are designed for dynamic datasets.
We use two reference images to synthesize a new image on
ballet and breakdancers datasets. We can see that our algorithm
performs the best on both datasets.

Effect of depth refinement. Fig. 8 shows example results
of our depth refinement algorithm on different datasets. We
can see that our method can significantly improve the quality
of depth maps.
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(a) (b) (c) (d) (e) (f)

Fig. 6: Qualitative comparison of synthesized images ((a), (c) and (e)) with ground truth images ((b), (d) and (f)). The input
images are in the first row.

Fig. 7: Qualitative comparison of Local Light Field Fusion
[16] (first and second columns) with our approach (third and
fourth columns).

TABLE IV: The PSNR comparison with different algorithms.

Methods Average PSNR over 100 images (dB)
Ballet Breakdancers

VSRS [24] 30.23 31.17
Liu [25] 32.52 33.33
Dai [26] 32.55 31.77

Loghman [27] 30.36 31.64
Ours 33.41 33.61

We compare our depth refinement approach with the guided
filter [28], a popular edge-preserving smoothing filter. We
compare the average PSNR over 100 frames, as shown in Table
V. While both approaches are able to improve the quality of
synthesized images, our approach achieves better performance
in various scenes.

Effect of adaptive view selection. The quality of synthe-
sized images is influenced by the quantity of correct input
images used. We compare hole sizes of synthesized images
using different input views in Table VI. The number of input

Fig. 8: The visualization results of depth refinement on Read-
ing corner and Attic datasets.

TABLE V: The PSNR comparison between guided filter and
our depth refinement.

Average PSNR over 100 images (dB)
guided filter [28] ours

Attic 29.39 33.29
Dorm 29.82 33.73
Ballet 28.85 33.44
Breakdancers 30.29 33.89
Reading corner 28.53 31.77

views used by previous approaches is fixed, which often results
in big holes in the synthesized image (see Table VI), for the
chosen views are not guaranteed to cover the whole virtual
view. In contrast, our method with a variable number of input
images can reduce the hole size significantly, especially when
the virtual view is substantially different from input views.
For example, for the Dorm dataset, the hole size is reduced
by 18.05% and 5.82% compared to approaches with two and
three input views, respectively. This is because the captured
images in the Dorm dataset are sparser than those in the other
datasets.

TABLE VI: Hole size comparison of the synthesized image
using different input views. The hole size is defined by the
percentage of missing pixels in the whole image.

Hole size (%)
1 view 2 views 3 views variable views (ours)

Attic 50.07 10.31 2.26 0.01
Dorm 60.19 18.35 5.85 0.03
Ballet 50.16 3.15 1.93 0.02
Playroom 45.96 10.51 6.21 0.03
Breakdancers 47.89 2.15 1.21 0.01
Reading corner 23.12 10.49 1.18 0.02

Effect of layered 3D warping. Fig. 9 shows some snapshots
of synthesized images with and without layered 3D warping on
two dynamic datasets which are more challenging than static
ones. We can see that the background pixels are adequately re-
moved and replaced by correct foreground pixels after layered
3D warping. In Fig. 10 we compare our method to the Z-buffer
method [25] which is a commonly used approach to solve
visibility problem. We can see that our layered 3D warping
consistently improves the PSNR through all the testing frames.

B. Validation tasks

Depth estimation. Recently, deep learning methods have
been used to predict depth maps for their corresponding color
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(a) Ballet (b) Breakdancers

Fig. 9: Synthesized images without (first and third column)
and with (second and fourth column) layered 3D warping on
Ballet and Breakdancers datasets.
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Fig. 10: The PSNR comparison with layered 3D warping and
Z-buffer on each frame.

images. However, collecting real-world data is a tedious and
labor intensive process. Compared with datasets produced
by real-world data, synthesizing such a dataset requires less
hardware, time and human labor while it is more likely to
result in better quality. Taking advantage of PreSim, we use
it to generate depth datasets which can be used as training
data for learning-based depth estimation algorithms. We train
DenseDepth [21], a popular network architecture for depth
prediction on 30000 synthesized and 218 captured images.
Then we test the trained model with color images that are
never seen during training. Fig. 11(a) visualizes an example
of the depth prediction on our testing dataset.

To prove the effectiveness of our simulator, we also test
the trained model on a popular depth dataset, NYUDv2 [29].
Fig. 11(b) shows an example of the depth prediction result.
We can see that knowledge learned from our simulated data

(a) Our testing dataset

(b) NYUDv2 testing dataset

Fig. 11: Qualitative results of depth prediction from
DenseDepth [21]. The first column is the color image, the
second column is the predicted depth map, and the third
column is the ground truth map.

TABLE VII: Quantitative evaluation of the depth prediction in
terms of RMS meters.

Dataset Attic Dorm Playroom Reading corner NYUDv2
With PreSim 0.411 0.435 0.427 0.449 0.791

Without PreSim - - - - -

can be transferred to real-world data in terms of accuracy,
which indicates that our datasets can bridge the gap between
simulation and reality. It is also verified by Table VII, where
we evaluate the performance of depth prediction quantitatively
based on the RMS meters. As can be seen, the model trained
on real captured images fails, which is caused by the small
size of the real captured data, while the model trained on
synthesized data achieves good performance.

6D object pose estimation. We generate a benchmark
dataset using our simulator for 6D object pose estimation.
Based on our dataset, we organized the Shape Retrieval Chal-
lenge benchmark on 6D object pose estimation (https://yhldrf.
github.io/Datasets.github.io/). The goal of this benchmark is
to investigate how different state-of-the-art pose estimation
approaches perform in terms of various object properties,
including shapes, sizes, textures, changing light conditions,
and occlusion.

TABLE VIII: The 6D pose estimation accuracy in terms of
ADD.

Banana biscuit box chips can cookie box
With PreSim 0.82 0.89 0.68 0.65

Without PreSim - - - -

(a) Qualitative evaluation of 6D pose estimation on the synthesized dataset

(b) Qualitative evaluation of 6D pose estimation on the real captured
dataset

Fig. 12: Examples of 6D pose estimation results for different
objects (banana, biscuit box, chips can, and cookie box) with
DenseFusion [2].

The DenseFusion network [2] is trained with 500 syn-
thesized and 180 captured RGB-D images, respectively, and
then tested with real captured images. The performance is
evaluated by the average distance metric (ADD) (see Table
VIII). A predicted pose is considered to be correct if ADD
calculated with this pose is less than 10% of a model diameter.
In Fig. 12 we also visualize estimation results. As shown
in this evaluation, the model trained on real data also fails
and the model trained on synthesized data provides accurate
poses. It comes to the same conclusion as the depth estimation
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experiments: knowledge learned from our synthesized dataset
can be successfully transferred to real-world data without
domain constraints.

V. CONCLUSION

We propose PreSim, a 3D photo-realistic environment sim-
ulator to develop vision-based algorithms for AI research.
By leveraging a variety of indoor environment datasets and
augmenting the data through a novel view synthesis module,
we provide a large amount of data including photo-realistic
color-and-depth image pairs with ground truth 6D poses. The
generated data can be used for training and testing data-driven
approaches for various AI applications such as depth estima-
tion and 6D object pose estimation. Experiments demonstrate
that our simulator narrows the reality gap between the virtual
environment and the real scene. Thus, vision-based algorithms
developed in the simulation can be transferred to real physical
platforms without domain adaption.

Limitations and future work. Our depth refinement
and view synthesis approaches are limited by the quality of
the initial capture. If the captured depth map has too much
missing information, our method is likely to introduce visual
artifacts. For example, if less than 50% depth information
of a transparent object is captured, PreSim is unable to
generate accurate synthesized images for it. Besides, even
though our trajectories used for synthesizing data contain a
variety of movements like that of a person collecting data, new
approaches are required to analyze the influence of different
trajectory generation strategies on synthesizing data that is
used for training depth/pose prediction networks.
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