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Abstract. This paper describes a framework for modeling of 3D human pose 
from multiple calibrated cameras, which serves as the core part of a player 
pose-driven spatial game system. Firstly, by multi-view volumetric 
reconstruction, voxel-based human model is constructed. Secondly, by applying 
a hierarchical approach with a set of heuristics, fast indirect body model fitting 
algorithms are used to fit a predefined human model to the reconstructed data, 
and based on which human poses are modeled and semantically interpreted as 
certain control inputs to the game. 
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1   Introduction 

We address the modeling of 3D human pose, by fitting a predefined articulated and 
parameterized body model to the volumetric human body that is reconstructed from 
multiple calibrated video cameras. Our prospective application is a player pose-driven 
spatial game, a new type of interactive computer entertainment. Without attaching any 
extra sensors, the players can control the game by attaining body poses in front of a 
set of multiple cameras connected to a gaming system. The core parts of such a 
system are the player pose modeling and semantics interpretation. For our prospective 
spatial game application, real-time algorithms rather than algorithms that find the 
perfect fit are preferred, to avoid unpleasant system response delay. Therefore we use 
an indirect body model fitting method with a hierarchical approach and common 
sense heuristics to increase speed. 

Related work. Voxel-based 3D human model reconstruction [1, 2, 3] is recently 
recognized as a promising and robust method to recover human shape and motion 
features, which requires the multiple cameras to be calibrated. For fitting a predefined 
model to 3D reconstructed data, there are two common approaches: direct and indirect 
methods. The former is to fit sample points of the data to sample points of the 
template. To find a correspondence between two sets of points, several closest point 
and optimization algorithms can be used [2, 12]. The latter is to fit the template body 
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parts around the volume or surface by finding feature points like the center of mass or 
the use of skin color voxels [3, 11]. Direct matching is more accurate than indirect 
matching, yet for a spatial game as application where system response speed depends 
significantly on the pose modeling efficiency, indirect matching is the better and 
faster solution. 

Contribution. We have introduced a number of heuristics such as  (i) using a 
mass seeking box in the torso to keep track of the torso and to be used as estimate for 
the spine, (ii) the use of the spine vector for finding the neck and check for consistent 
head direction, (iii) the use of line fitting for the initialization of the shoulders, and the 
use of clustering for tracking the shoulders, (iv) the placing of spheres on the 
shoulders and elbows for locating the upper arms and lower arms. In addition, we 
have systematically evaluated the efficacy of our method. 

2 Volume Reconstruction 

Camera setup. Our multiple video data are acquired by 4 AVT Marlin Firewire 
cameras (640×480, 25fps) mounted on 1.9-meter tripods. Camera synchronization is 
done by software. Because cameras opposite to each other provide the same (mirrored) 
silhouette, the 4 cameras are setup as shown in Fig. 1 (left), so that no camera is 
facing directly to any of the others. 

Calibration. To specify the correlation between 3D lines in the world and 2D 
points in the four camera views, we use the respective Matlab camera calibration 
toolbox [4] and a 6×5 squares checkerboard as calibration object. The square corner 
coordinates are manually marked from the checkerboard images at different 
orientations. With the prior knowledge of the number and size of the squares on the 
checkerboard, the tool box calculates the intrinsic (Fig. 1 middle) and extrinsic 
parameters (Fig. 1 right) of a camera for each view, and align a global (world) 
coordinate system for the 4 cameras in this certain setup. 
   

 
 
 

   

Fig. 1. Camera setup (left) and checkerboard calibration (right). 

 
 
 
 
 

Fig. 2. (a) Video, (b) MoG background model, (c) foreground model,             
(d)  shadow removal and region merging (red circle). 

Background subtraction. For reconstructing the model of a person captured by 
multiple video cameras, first, the person in each video frame needs to be distinguished 



from the background and extracted as a foreground mask [2]. We use the Mixture of 
Gaussians (MoG) method [5, 6] of OpenCV [9] for background subtraction and a 
simple shadow removal algorithm [7]. Pixel regions are merged according to a set of 
criteria: horizontal overlapping, X-distance of regions, summed area of merged 
regions [8]. See Fig. 2. 

3D voxel reconstruction. The 2D silhouette points obtained by background 
subtraction are the projection of a person from 3D to 2D. This projection can be seen 
as a set of rays or a silhouette cone that contains the 3D points of the subject. The 
logical conjunction of the silhouette cones of all cameras results into a visual hull [2] 
that estimates of the subject’s 3D shape (Fig. 3). We construct this visual hull using 
the voxel-based reconstruction method of Kehl et al. [2], resulting in a 3D voxel cloud 
model of a human subject. First a cube of voxels with a given depth (resolution) in 
millimeters is created. For each pixel of a camera view a lookup table (LUT) is 
initialized. To determine the correspondence between the pixels of each view and the 
voxels in the acquisition space, the center of each voxel is projected onto each view, 
and the voxel is added to the LUT corresponding to the pixel it was projected on. For 
each foreground image, an XOR operation detects changes in pixels. If a pixel has 
become part of the foreground, the corresponding voxels in the LUT are bitwise 
marked as visible for that view. Voxels that are part of the visual hull are visible from 
all views. They are selected by bitwise comparison of the LUT’s entries. 
 

      

Fig. 3. (a) Four camera views, (b) corresponding silhouettes, (c) voxel reconstruction of  
visual hull. 

3   Pose Modeling 

Human body model. Our goal is to extract pose parameters and not model 
appearance. Therefore, we adopted a simplified generic articulated model for basic 
shape estimation of a human body and used a combined state vector [10] to 
parameterize the model. It consists of a 10-joint skeleton (stick figure) representing 
the basic human kinematic structure, based on which the torso, arms, and legs are 
modeled as cylinders and the head as a sphere (simple volumetric primitives). The 
human body parts of the model are defined in relation to body length. See in Fig. 4:  
Skeleton (left), combined skeleton and body parts (middle), and body parts (right).  

Body model fitting approach. We use a fast indirect body model fitting methods 
similar to [3] and [11]. Template body parts are fitted around the voxel data based on 
feature points such as the center of mass, and voxels are then labeled to their 
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corresponding body parts. The fitting order follows a hierarchical approach with 
common sense heuristics: Due to its distinguished shape, first the head is located. 
Then the neck and pelvis points are found that determine the torso. From the torso the 
shoulders can be located, followed by the elbows and hands. In relation to the 
shoulders and pelvis, the hips are located, followed by knees and feet. This 
hierarchical approach requires multiple or reoccurring generic algorithms for each 
body model part. Therefore each fitting module has initialization, estimation, iterative 
refinement and validation steps as described in the following. 

Initialization and global tracking. We use anthropometric measurements [3] to 
initialize the pose of the person in the scene while the subject is standing straight in a 
T-shape pose (Fig. 5). Using L and R to denote the length and radius of subsequent 
body part, and statL for the length of the subject’s stature, which is initialized by the 
height of the bounding box during the initialization pose. Hence all the other body 
parts can be initialized using statL  with the definition from [3]: 16/stathead LR ≈ , 

8/3 stattorso LL ≈ , 4/statcalf LL ≈ , 6/statfarm LL ≈ ,  6/statarm LL ≈ ,   4/statthight LL ≈ . For the global 
tracking of the body model, a cube with dimensions 3)*2( torsoR  is placed at the center 
of the torso sC  that is determined during initialization. For each frame, the mass 
center of sC  is optimized. The cube is large enough to remain within the torso 
somewhere along the spine, giving a global estimate of where the body is moving to. 

 
 
 
 

   
   

Fig. 4. Human body model   Fig. 5. Head initialization and refinement. 

Head fitting and tracking. The head center is initialized by computing the 
centroid hC  of the bounding box between statLz =  and headstat RLz *2−=  and optimized in 
a subsequent refinement step (Fig. 5). To estimatehC , the centroid ulC of the unlabeled 
head voxels within a sphere centered at the head centroid of the previous framehpC is 
computed. From ulC  and hC , a displacement vector ulhpd CCV −= is calculated with 
magnitude: ulhpheadm mmRd ⋅= )/(  ( hpm stands for the previous number of marked head 
voxels, ulm for the current number of unlabeled voxels within the previous head 
sphere). The new position of the head is set as: mdhph dVCC ⋅+=

∧ . For validation, we look at 
the vector sV  between the torso center sC  and hC : shs CCV −= . Since the head cannot 
move significantly into the torso, and the spine can not bend more than 90 degrees at 
the neck, the dot product between the spine vector and the head displacement vector 
between the previous and current head center cannot be negative, otherwise a re-
estimate has to be made for hC  by relocating the head along sV  with a certain 
distance rld . The magnitude sd  of the previous spine vector is ssps VVd

∧
⋅= . The 

displacement correction cd  between sC and spC is: sspsc VVVd
∧

⋅−= )( . Using the relocation 
distance csrl ddd −= , head can be relocated along the spine: rlssh dVCC ⋅+=

∧ . In Fig. 6 (left 
to right): If hC  moves into the torso, compute previous spine magnitude, compute 
displacement magnitude, and relocate head. 



 
 
 
 

   

 Fig. 6. Head validation and relocation. 

Torso fitting and tracking. To initialize the torso cylinder, first the neck centroid 
nC in the cube centered at hC with z-value headstat RL *2−  is computed. Then the pelvis 

centroid pC in the bounding box between thightcalf LL + and 2/torsothightcalf LLL ++ , the spine 
vector sns CCV −= , and pelvis position torsosnp LVCC ⋅−=

∧  are calculated (Fig. 7). The neck 
center is estimated by adding a vector with the reversed direction of the spine vector 
and the head radius headR  as magnitude to the head centroid: headshn RVCC ⋅−=

∧ . The pelvis 
center is estimated by adding a vector in the same direction with the length of the 
torso to the neck position: torsosnp LVCC ⋅−=

∧ . nC  is refined by placing a sphere with radius 
headR  on the estimated position. The center of mass of the non-head voxels is 

computed. pC  is refined by placing the cap of the torso cylinder on the neck and the 
estimated pelvis position. By fixating the cap corresponding to the neck, and 
computing the center of mass tC , the axis of the cylinder can be placed onto tC . The 
process is repeated until tC  has been stabilized. Finally, the voxels within the torso 
cylinder are marked as torso [3, 11]. 
 

 

Fig. 7. Initialization of neck, pelvis, and torso. 

To estimate the torso radius, firstly a 2D binary image is created by projecting the 
voxel slices along the spine vector between head and middle torso onto the z-plane 
while ignoring the head voxels. Least-squares line fitting is applied to the acquired 2D 
point set to determine the orientation of the torso. Secondly the voxels between the 
middle torso and pelvis are projected onto the z-plane. After the projection, the points 
are rotated in line with the orientation of the torso. The maximum x-width and y-
height of the point blob now corresponds to the width and depth of the torso (Fig. 8), 
the average between these two values is then taken as torso diameter. 

 

Fig. 8. Estimation of the torso radius. 

   



Arm/leg fitting and tracking. To locate the arms, first the shoulder centroid shC  
must be found. The unit vector oV

∧  (collinear to the fitted line) is determined by 
means of least-squares fitting. The shoulder centroid can be computed as: 

torsoonsh RVCC ⋅+=
∧ , or torsoonsh RVCC ⋅−=

∧  (mirrored to the other shoulder). The shoulder position 
is then found by placing a sphere with radius armR  on the initial estimate of the 
shoulder position. The centroid of the torso-marked voxels and the centroid of the 
unmarked voxels within the sphere are computed. The initial shC  is computed as the 
point in between both centroids. For estimation of the shoulder location, an outer 
cylinder is placed around the torso cylinder from the neck cap to the waist (Fig. 9 
left). Then the unmarked voxels within the outer cylinder are selected. By applying k-
means clustering on the selected voxels, two clusters of arm voxels are found (Fig. 9 
right). For refinement, the two neck-to-cluster-center vectors are projected onto the 
upper cylinder cap (neck). The identification of the shoulders is done based on the 
distance between the current and the previous shoulder locations. As validation, the 
distance between these locations should not be larger than a threshold. Otherwise the 
displacement of the neck is applied on the previous shoulder position to determine the 
current shoulder position. Finally, the distance between the two shoulders should not 
be within a certain range. If so the shoulders are set apart. 

 
 

 
 
 
 

Fig. 9. Estimation of shoulder position.            Fig. 10. Estimation of upper (left) and 
lower (right) arm direction. 

To locate the elbows, an estimate of the direction of the upper arm is made by 
placing a sphere next to the shoulder shC  with radius armL  centered at 

)( armtorsosrsr RRVC −⋅=
∧ , where nshsr CCV −= . Then, the centroidedC of unmarked voxels is 

computed (Fig. 10 left). On edC , another sphere of radius armL∗5.0  is place to refine 
edC . By the direction from shC  to edC  and the magnitude of armL , the elbow position 
eC  can be estimated as: armeshe LVCC ⋅+=

∧ , where shede CCV −= . As last refinement step, a 
sphere with the radius of armR  is placed on eC  to re-compute the centroid. If no 
voxels are found within radiusarmR , then the radius will be enlarged until a centroid is 
found. As validation, eC  is compared to the previous elbow position. If their distance 
is larger than a threshold, the previous displacement of the elbow is applied. In the 
last step, the voxels within the upper arm cylinder are marked. 

Similarly, the hand position is found by placing a sphere next to the elbow (in the 
opposite direction of the upper arm) with a radius of farmL∗5.0  centered at 

)( farmarmsrhesrh RLVCC −⋅+=
∧ , where shesrh CCV −=  (Fig 10 right). The centroid of the unmarked 

voxels within the sphere is then computed to find the middle of forearm. By the 
direction from eC  to the found centroid and the magnitude offarmL , the hand position 
is estimated as farmhdehd LVCC ⋅+=

∧ , where ehddhd CCV −= . Similarly to the elbow centroid 
refinement, a sphere with radius farmR  is placed on hdC  and the centroid of unmarked 



voxels is computed. Finally the voxels within the forearm cylinder are marked as a 
hand. 

To locate the legs, we use a similar approach as locating the arms.  
Pose semantics. Depending on the specific game, the body pose can now be 

represented as a 5-tuple BodyPose = {left leg, right leg, left arm, right arm, torso}, 
where the legs and arms pose can have values {up, side, down}, and the torso pose 
can have values {up, forward}. For example, a Y-pose can be modeled as {down, 
down, up, up, up}, denoting a 'yes' input to the game, and a bowing pose can be 
modeled as {down, down, down, down, forward}, denoting exiting the game. 

4   Evaluation and Conclusion 

In order to evaluate the performance of our approach, we applied the body model 
fitting and pose modeling to three video sequences of different persons moving and 
performing several poses: two Asians (female and male) and one Caucasian (male). 
Assessment is done by subjective observation. From the initialization of the body 
model until the end of the sequence, one out of every twelve frames is evaluated with 
respect to the positions of head, torso, upper and lower arms. The position of the 
skeletal bone is verified in relation to the voxel and video data. If a bone fits onto the 
body part, it is marked as a good fit. If a bone is not exactly in but only up to half off, 
the supposed position is marked as a fair fit. In all other cases, it is marked as a poor 
fit. The evaluation of the first video sequence containing the Caucasian male is 
illustrated in Fig. 11 (left). For these frames, body model fitting works very well with 
almost completely correct matching for everything besides the lower arms. Errors 
there can be explained by: ‘sticky’ arms while the arms are very close to the torso and 
stick to it instead of fitting onto the voxel data corresponding to the lower arms; 
‘float’ upper arm caused by voxels between the head and the arm; holes in voxel 
cloud; subject’s long hair etc. The overall fitting evaluation for all three video 
sequences is illustrated in Fig. 11 (right). 

  
                        

Fig. 11. Example video (left) and overall evaluation (right). 

  In this paper we described a framework for modeling of 3D human pose from 
multiple calibrated cameras (and pose semantics interpretation) as the core part of a 
spatial gaming system. By using more robust multi-view based 3D pose modeling, 



our work opens the way to a more accurate semantics-level understanding of human 
poses. 

For future work, body part constraints can be applied within the validation part of 
the algorithms to avoid impossible poses or movements of body parts. The evaluation 
can be extended by testing on more subjects. The framework will be extended to the 
multi-person case where mutual body occlusion and proximity must be handled. 
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