
 Volumetric Modeling of 3D Human Pose from
Multiple Video

Berend Berendsen1*, Xinghan Luo2, Wolfgang Hürst2, Remco C. Veltkamp2

1 Department of Mediamatics, Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

2 Department of Information and Computing Sciences, Utrecht University
Padualaan 14, De Uithof, 3584CH Utrecht, The Netherlands

B.J.Berendsen@tudelft.nl, {xinghan, huerst, remco.veltkamp}@cs.uu.nl

Abstract. This paper describes a framework for modeling of 3D human pose
from multiple calibrated cameras, which serves as the core part of a player
pose-driven spatial game system. Firstly, by multi-view volumetric
reconstruction, voxel-based human model is constructed. Secondly, by applying
a hierarchical approach with a set of heuristics, fast indirect body model fitting
algorithms are used to fit a predefined human model to the reconstructed data,
and based on which human poses are modeled and semantically interpreted as
certain control inputs to the game.

Keywords: Volume reconstruction, model fitting, tracking, pose semantics.

1 Introduction

We address the modeling of 3D human pose, by fitting a predefined articulated and
parameterized body model to the volumetric human body that is reconstructed from
multiple calibrated video cameras. Our prospective application is a player pose-driven
spatial game, a new type of interactive computer entertainment. Without attaching any
extra sensors, the players can control the game by attaining body poses in front of a
set of multiple cameras connected to a gaming system. The core parts of such a
system are the player pose modeling and semantics interpretation. For our prospective
spatial game application, real-time algorithms rather than algorithms that find the
perfect fit are preferred, to avoid unpleasant system response delay. Therefore we use
an indirect body model fitting method with a hierarchical approach and common
sense heuristics to increase speed.

Related work. Voxel-based 3D human model reconstruction [1, 2, 3] is recently
recognized as a promising and robust method to recover human shape and motion
features, which requires the multiple cameras to be calibrated. For fitting a predefined
model to 3D reconstructed data, there are two common approaches: direct and indirect
methods. The former is to fit sample points of the data to sample points of the
template. To find a correspondence between two sets of points, several closest point
and optimization algorithms can be used [2, 12]. The latter is to fit the template body

* Work done while at the Department of Information and Computing Sciences,

Utrecht University.

parts around the volume or surface by finding feature points like the center of mass or
the use of skin color voxels [3, 11]. Direct matching is more accurate than indirect
matching, yet for a spatial game as application where system response speed depends
significantly on the pose modeling efficiency, indirect matching is the better and
faster solution.

Contribution. We have introduced a number of heuristics such as (i) using a
mass seeking box in the torso to keep track of the torso and to be used as estimate for
the spine, (ii) the use of the spine vector for finding the neck and check for consistent
head direction, (iii) the use of line fitting for the initialization of the shoulders, and the
use of clustering for tracking the shoulders, (iv) the placing of spheres on the
shoulders and elbows for locating the upper arms and lower arms. In addition, we
have systematically evaluated the efficacy of our method.

2 Volume Reconstruction

Camera setup. Our multiple video data are acquired by 4 AVT Marlin Firewire
cameras (640×480, 25fps) mounted on 1.9-meter tripods. Camera synchronization is
done by software. Because cameras opposite to each other provide the same (mirrored)
silhouette, the 4 cameras are setup as shown in Fig. 1 (left), so that no camera is
facing directly to any of the others.

Calibration. To specify the correlation between 3D lines in the world and 2D
points in the four camera views, we use the respective Matlab camera calibration
toolbox [4] and a 6×5 squares checkerboard as calibration object. The square corner
coordinates are manually marked from the checkerboard images at different
orientations. With the prior knowledge of the number and size of the squares on the
checkerboard, the tool box calculates the intrinsic (Fig. 1 middle) and extrinsic
parameters (Fig. 1 right) of a camera for each view, and align a global (world)
coordinate system for the 4 cameras in this certain setup.

Fig. 1. Camera setup (left) and checkerboard calibration (right).

Fig. 2. (a) Video, (b) MoG background model, (c) foreground model,
(d) shadow removal and region merging (red circle).

Background subtraction. For reconstructing the model of a person captured by
multiple video cameras, first, the person in each video frame needs to be distinguished

from the background and extracted as a foreground mask [2]. We use the Mixture of
Gaussians (MoG) method [5, 6] of OpenCV [9] for background subtraction and a
simple shadow removal algorithm [7]. Pixel regions are merged according to a set of
criteria: horizontal overlapping, X-distance of regions, summed area of merged
regions [8]. See Fig. 2.

3D voxel reconstruction. The 2D silhouette points obtained by background
subtraction are the projection of a person from 3D to 2D. This projection can be seen
as a set of rays or a silhouette cone that contains the 3D points of the subject. The
logical conjunction of the silhouette cones of all cameras results into a visual hull [2]
that estimates of the subject’s 3D shape (Fig. 3). We construct this visual hull using
the voxel-based reconstruction method of Kehl et al. [2], resulting in a 3D voxel cloud
model of a human subject. First a cube of voxels with a given depth (resolution) in
millimeters is created. For each pixel of a camera view a lookup table (LUT) is
initialized. To determine the correspondence between the pixels of each view and the
voxels in the acquisition space, the center of each voxel is projected onto each view,
and the voxel is added to the LUT corresponding to the pixel it was projected on. For
each foreground image, an XOR operation detects changes in pixels. If a pixel has
become part of the foreground, the corresponding voxels in the LUT are bitwise
marked as visible for that view. Voxels that are part of the visual hull are visible from
all views. They are selected by bitwise comparison of the LUT’s entries.

Fig. 3. (a) Four camera views, (b) corresponding silhouettes, (c) voxel reconstruction of
visual hull.

3 Pose Modeling

Human body model. Our goal is to extract pose parameters and not model
appearance. Therefore, we adopted a simplified generic articulated model for basic
shape estimation of a human body and used a combined state vector [10] to
parameterize the model. It consists of a 10-joint skeleton (stick figure) representing
the basic human kinematic structure, based on which the torso, arms, and legs are
modeled as cylinders and the head as a sphere (simple volumetric primitives). The
human body parts of the model are defined in relation to body length. See in Fig. 4:
Skeleton (left), combined skeleton and body parts (middle), and body parts (right).

Body model fitting approach. We use a fast indirect body model fitting methods
similar to [3] and [11]. Template body parts are fitted around the voxel data based on
feature points such as the center of mass, and voxels are then labeled to their

(a)

(b)

(c)

corresponding body parts. The fitting order follows a hierarchical approach with
common sense heuristics: Due to its distinguished shape, first the head is located.
Then the neck and pelvis points are found that determine the torso. From the torso the
shoulders can be located, followed by the elbows and hands. In relation to the
shoulders and pelvis, the hips are located, followed by knees and feet. This
hierarchical approach requires multiple or reoccurring generic algorithms for each
body model part. Therefore each fitting module has initialization, estimation, iterative
refinement and validation steps as described in the following.

Initialization and global tracking. We use anthropometric measurements [3] to
initialize the pose of the person in the scene while the subject is standing straight in a
T-shape pose (Fig. 5). Using L and R to denote the length and radius of subsequent
body part, and statL for the length of the subject’s stature, which is initialized by the
height of the bounding box during the initialization pose. Hence all the other body
parts can be initialized using statL with the definition from [3]: 16/stathead LR ≈ ,

8/3 stattorso LL ≈ , 4/statcalf LL ≈ , 6/statfarm LL ≈ , 6/statarm LL ≈ , 4/statthight LL ≈ . For the global
tracking of the body model, a cube with dimensions 3)*2(torsoR is placed at the center
of the torso sC that is determined during initialization. For each frame, the mass
center of sC is optimized. The cube is large enough to remain within the torso
somewhere along the spine, giving a global estimate of where the body is moving to.

Fig. 4. Human body model Fig. 5. Head initialization and refinement.

Head fitting and tracking. The head center is initialized by computing the
centroid hC of the bounding box between statLz = and headstat RLz *2−= and optimized in
a subsequent refinement step (Fig. 5). To estimatehC , the centroid ulC of the unlabeled
head voxels within a sphere centered at the head centroid of the previous framehpC is
computed. From ulC and hC , a displacement vector ulhpd CCV −= is calculated with
magnitude: ulhpheadm mmRd ⋅=)/((hpm stands for the previous number of marked head
voxels, ulm for the current number of unlabeled voxels within the previous head
sphere). The new position of the head is set as: mdhph dVCC ⋅+=

∧ . For validation, we look at
the vector sV between the torso center sC and hC : shs CCV −= . Since the head cannot
move significantly into the torso, and the spine can not bend more than 90 degrees at
the neck, the dot product between the spine vector and the head displacement vector
between the previous and current head center cannot be negative, otherwise a re-
estimate has to be made for hC by relocating the head along sV with a certain
distance rld . The magnitude sd of the previous spine vector is ssps VVd

∧
⋅= . The

displacement correction cd between sC and spC is: sspsc VVVd
∧

⋅−=)(. Using the relocation
distance csrl ddd −= , head can be relocated along the spine: rlssh dVCC ⋅+=

∧ . In Fig. 6 (left
to right): If hC moves into the torso, compute previous spine magnitude, compute
displacement magnitude, and relocate head.

 Fig. 6. Head validation and relocation.

Torso fitting and tracking. To initialize the torso cylinder, first the neck centroid
nC in the cube centered at hC with z-value headstat RL *2− is computed. Then the pelvis

centroid pC in the bounding box between thightcalf LL + and 2/torsothightcalf LLL ++ , the spine
vector sns CCV −= , and pelvis position torsosnp LVCC ⋅−=

∧ are calculated (Fig. 7). The neck
center is estimated by adding a vector with the reversed direction of the spine vector
and the head radius headR as magnitude to the head centroid: headshn RVCC ⋅−=

∧ . The pelvis
center is estimated by adding a vector in the same direction with the length of the
torso to the neck position: torsosnp LVCC ⋅−=

∧ . nC is refined by placing a sphere with radius
headR on the estimated position. The center of mass of the non-head voxels is

computed. pC is refined by placing the cap of the torso cylinder on the neck and the
estimated pelvis position. By fixating the cap corresponding to the neck, and
computing the center of mass tC , the axis of the cylinder can be placed onto tC . The
process is repeated until tC has been stabilized. Finally, the voxels within the torso
cylinder are marked as torso [3, 11].

Fig. 7. Initialization of neck, pelvis, and torso.

To estimate the torso radius, firstly a 2D binary image is created by projecting the
voxel slices along the spine vector between head and middle torso onto the z-plane
while ignoring the head voxels. Least-squares line fitting is applied to the acquired 2D
point set to determine the orientation of the torso. Secondly the voxels between the
middle torso and pelvis are projected onto the z-plane. After the projection, the points
are rotated in line with the orientation of the torso. The maximum x-width and y-
height of the point blob now corresponds to the width and depth of the torso (Fig. 8),
the average between these two values is then taken as torso diameter.

Fig. 8. Estimation of the torso radius.

Arm/leg fitting and tracking. To locate the arms, first the shoulder centroid shC
must be found. The unit vector oV

∧ (collinear to the fitted line) is determined by
means of least-squares fitting. The shoulder centroid can be computed as:

torsoonsh RVCC ⋅+=
∧ , or torsoonsh RVCC ⋅−=

∧ (mirrored to the other shoulder). The shoulder position
is then found by placing a sphere with radius armR on the initial estimate of the
shoulder position. The centroid of the torso-marked voxels and the centroid of the
unmarked voxels within the sphere are computed. The initial shC is computed as the
point in between both centroids. For estimation of the shoulder location, an outer
cylinder is placed around the torso cylinder from the neck cap to the waist (Fig. 9
left). Then the unmarked voxels within the outer cylinder are selected. By applying k-
means clustering on the selected voxels, two clusters of arm voxels are found (Fig. 9
right). For refinement, the two neck-to-cluster-center vectors are projected onto the
upper cylinder cap (neck). The identification of the shoulders is done based on the
distance between the current and the previous shoulder locations. As validation, the
distance between these locations should not be larger than a threshold. Otherwise the
displacement of the neck is applied on the previous shoulder position to determine the
current shoulder position. Finally, the distance between the two shoulders should not
be within a certain range. If so the shoulders are set apart.

Fig. 9. Estimation of shoulder position. Fig. 10. Estimation of upper (left) and
lower (right) arm direction.

To locate the elbows, an estimate of the direction of the upper arm is made by
placing a sphere next to the shoulder shC with radius armL centered at

)(armtorsosrsr RRVC −⋅=
∧ , where nshsr CCV −= . Then, the centroidedC of unmarked voxels is

computed (Fig. 10 left). On edC , another sphere of radius armL∗5.0 is place to refine
edC . By the direction from shC to edC and the magnitude of armL , the elbow position
eC can be estimated as: armeshe LVCC ⋅+=

∧ , where shede CCV −= . As last refinement step, a
sphere with the radius of armR is placed on eC to re-compute the centroid. If no
voxels are found within radiusarmR , then the radius will be enlarged until a centroid is
found. As validation, eC is compared to the previous elbow position. If their distance
is larger than a threshold, the previous displacement of the elbow is applied. In the
last step, the voxels within the upper arm cylinder are marked.

Similarly, the hand position is found by placing a sphere next to the elbow (in the
opposite direction of the upper arm) with a radius of farmL∗5.0 centered at

)(farmarmsrhesrh RLVCC −⋅+=
∧ , where shesrh CCV −= (Fig 10 right). The centroid of the unmarked

voxels within the sphere is then computed to find the middle of forearm. By the
direction from eC to the found centroid and the magnitude offarmL , the hand position
is estimated as farmhdehd LVCC ⋅+=

∧ , where ehddhd CCV −= . Similarly to the elbow centroid
refinement, a sphere with radius farmR is placed on hdC and the centroid of unmarked

voxels is computed. Finally the voxels within the forearm cylinder are marked as a
hand.

To locate the legs, we use a similar approach as locating the arms.
Pose semantics. Depending on the specific game, the body pose can now be

represented as a 5-tuple BodyPose = {left leg, right leg, left arm, right arm, torso},
where the legs and arms pose can have values {up, side, down}, and the torso pose
can have values {up, forward}. For example, a Y-pose can be modeled as {down,
down, up, up, up}, denoting a 'yes' input to the game, and a bowing pose can be
modeled as {down, down, down, down, forward}, denoting exiting the game.

4 Evaluation and Conclusion

In order to evaluate the performance of our approach, we applied the body model
fitting and pose modeling to three video sequences of different persons moving and
performing several poses: two Asians (female and male) and one Caucasian (male).
Assessment is done by subjective observation. From the initialization of the body
model until the end of the sequence, one out of every twelve frames is evaluated with
respect to the positions of head, torso, upper and lower arms. The position of the
skeletal bone is verified in relation to the voxel and video data. If a bone fits onto the
body part, it is marked as a good fit. If a bone is not exactly in but only up to half off,
the supposed position is marked as a fair fit. In all other cases, it is marked as a poor
fit. The evaluation of the first video sequence containing the Caucasian male is
illustrated in Fig. 11 (left). For these frames, body model fitting works very well with
almost completely correct matching for everything besides the lower arms. Errors
there can be explained by: ‘sticky’ arms while the arms are very close to the torso and
stick to it instead of fitting onto the voxel data corresponding to the lower arms;
‘float’ upper arm caused by voxels between the head and the arm; holes in voxel
cloud; subject’s long hair etc. The overall fitting evaluation for all three video
sequences is illustrated in Fig. 11 (right).

Fig. 11. Example video (left) and overall evaluation (right).

 In this paper we described a framework for modeling of 3D human pose from
multiple calibrated cameras (and pose semantics interpretation) as the core part of a
spatial gaming system. By using more robust multi-view based 3D pose modeling,

our work opens the way to a more accurate semantics-level understanding of human
poses.

For future work, body part constraints can be applied within the validation part of
the algorithms to avoid impossible poses or movements of body parts. The evaluation
can be extended by testing on more subjects. The framework will be extended to the
multi-person case where mutual body occlusion and proximity must be handled.

Acknowledgments. This research has been supported by the GATE (Game Research
for Training and Entertainment) project, funded by the Netherlands Organization for
Scientific Research (NWO) and the Netherlands ICT Research and Innovation
Authority (ICT Regie).

References

1. Moeslund, T. B., Hilton, A., and Krüger, V. A survey of advances in vision-based human
motion capture and analysis. International Journal of Computer Vision and Image
Understanding. No. 104, pp. 90–126 (2006)

2. Kehl, R., Bray, M., and Gool, L. V. Markerless full body tracking by integrating multiple
cues. In PHI’05 Workshop in Conjunction with ICCV05 (2005)

3. Michoud, B., Guillou, E., and Bouakaz, S. Real-time and markerless 3D human motion
capture using multiple views. In 2nd Human Motion Workshop (2007)

4. Bouguet, J.-Y. Camera calibration toolbox for matlab (2007),
 http://www.vision.caltech.edu/bouguetj/calib_doc/
5. KaewTraKulPong, P., and Bowden, R. An improved adaptive background mixture model

for real-time tracking with shadow detection. In 2nd European Workshop on Advanced
Video-based Surveillance Systems (2001)

6. Stauffer, C., and Grimson, W. E. L. Adaptive background mixture models for real-time
tracking. In CVPR 1999, pp. 2246–2252 (1999)

7. Porikli, F. Human body tracking by adaptive background models and meanshift analysis. In
IEEE International Workshop on Performance Evaluation of Tracking and Surveillance
(2003)

8. McKenna, S. J., Jabri, S., Duric, Z., Rosenfeld, A., and Wechsler, H. Tracking groups of
people. Computer Vision and Image Proceedings of AMDO02, Springer-Verlag, pp. 104–
118 (2002)

9. Intel Open Source Computer Vision Library,
 http://www.intel.com/technology/computing/opencv/

10. Thalmann, D., and Magnenat-Thalmann, N. Handbook of Virtual Humans. John Wiley &
Sons (2004)

11. Miki, I., Trivedi, M. M., Hunter, E., and Cosman, P. C. Human body model acquisition and
motion capture using voxel data. In Proceedings of AMDO02, Springer-Verlag, pp. 104–
118 (2002)

12.Tollmar, K., Demirdjian, D., and Darrell, T. Gesture + play exploring full-body navigation
for virtual environments. In Proceedings of Computer Vision and Pattern Recognition for
Human Computer Interaction (2003)

