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Abstract. This paper describes a framework for modeling Bff&iman pose
from multiple calibrated cameras, which serves has dore part of a player
pose-driven spatial game system. Firstly, by mu#iv volumetric
reconstruction, voxel-based human model is constduSecondly, by applying
a hierarchical approach with a set of heuristiast indirect body model fitting
algorithms are used to fit a predefined human meal¢he reconstructed data,
and based on which human poses are modeled anchtieatig interpreted as
certain control inputs to the game.
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1 Introduction

We address the modeling of 3D human pose, by dittirpredefined articulated and
parameterized body model to the volumetric humaglyltbat is reconstructed from
multiple calibrated video cameras. Our prospedpplication is a player pose-driven
spatial game, a new type of interactive computégreainment. Without attaching any
extra sensors, the players can control the gamatthining body poses in front of a
set of multiple cameras connected to a gaming sysléhe core parts of such a
system are the player pose modeling and semantapietation. For our prospective
spatial game application, real-time algorithms eatthan algorithms that find the
perfect fit are preferred, to avoid unpleasantesystesponse delay. Therefore we use
an indirect body model fitting method with a hietsical approach and common
sense heuristics to increase speed.

Related work. Voxel-based 3D human model reconstruction [1,]ds 3ecently
recognized as a promising and robust method tovezcbuman shape and motion
features, which requires the multiple cameras toddibrated. For fitting a predefined
model to 3D reconstructed data, there are two comapproaches: direct and indirect
methods. The former is to fit sample points of theta to sample points of the
template. To find a correspondence between twodfgieints, several closest point
and optimization algorithms can be used [2, 12 Hiter is to fit the template body
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parts around the volume or surface by finding fempoints like the center of mass or
the use of skin color voxels [3, 11]. Direct matahiis more accurate than indirect
matching, yet for a spatial game as applicationrelsystem response speed depends
significantly on the pose modeling efficiency, iredit matching is the better and
faster solution.

Contribution. We have introduced a number of heuristics such(@susing a
mass seeking box in the torso to keep track ofdhs and to be used as estimate for
the spine, (ii) the use of the spine vector fodifing the neck and check for consistent
head direction, (iii) the use of line fitting fdwe initialization of the shoulders, and the
use of clustering for tracking the shoulders, (it placing of spheres on the
shoulders and elbows for locating the upper arnts lawer arms. In addition, we
have systematically evaluated the efficacy of oaethud.

2 Volume Reconstruction

Camera setup. Our multiple video data are acquired by 4 AVT Markirewire
cameras (640x480, 25fps) mounted on 1.9-meterdsipGamera synchronization is
done by software. Because cameras opposite toathehprovide the same (mirrored)
silhouette, the 4 cameras are setup as shown in1F{teft), so that no camera is
facing directly to any of the others.

Calibration. To specify the correlation between 3D lines in therld and 2D
points in the four camera views, we use the resmedflatlab camera calibration
toolbox [4] and a 6x5 squares checkerboard asratdililm object. The square corner
coordinates are manually marked from the checkedbdmages at different
orientations. With the prior knowledge of the numbad size of the squares on the
checkerboard, the tool box calculates the intringig. 1 middle) and extrinsic
parameters (Fig. 1 right) of a camera for each yviemd align a global (world)
coordinate system for the 4 cameras in this cegainp.

Fig. 1. Camé’ra setugdft) and checkerboard calibrationght).
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Fig. 2. (a) Video, (b) MoG background model, (c) foregrdunmodel,
(d) shadow removal and region merging (red circle)

Background subtraction. For reconstructing the model of a person captimgd
multiple video cameras, first, the person in eades frame needs to be distinguished



from the background and extracted as a foregrouaskri2]. We use the Mixture of
Gaussians (MoG) method [5, 6] of OpenCV [9] for kground subtraction and a
simple shadow removal algorithm [7]. Pixel regi@ms merged according to a set of
criteria: horizontal overlapping, X-distance of i@ts, summed area of merged
regions [8]. See Fig. 2.

3D voxel reconstruction. The 2D silhouette points obtained by background
subtraction are the projection of a person fromt8R2D. This projection can be seen
as a set of rays or a silhouette cone that contams3D points of the subject. The
logical conjunction of the silhouette cones ofameras results into a visual hull [2]
that estimates of the subject’s 3D shape (Fig\WB. construct this visual hull using
the voxel-based reconstruction method of Kehl 23] resulting in a 3D voxel cloud
model of a human subject. First a cube of voxekh i given depth (resolution) in
millimeters is created. For each pixel of a camémw a lookup table (LUT) is
initialized. To determine the correspondence betvibe pixels of each view and the
voxels in the acquisition space, the center of aaotel is projected onto each view,
and the voxel is added to the LUT correspondinthéopixel it was projected on. For
each foreground image, an XOR operation detectagdsin pixels. If a pixel has
become part of the foreground, the correspondingelgoin the LUT are bitwise
marked as visible for that view. Voxels that aret jp& the visual hull are visible from
all views. They are selected by bitwise comparisbtine LUT’s entries.

Fig. 3. (a) Four camera views, (b) corresponding silh@set{c) voxel reconstruction of
visual hull.

3 Pose Modeling

Human body model. Our goal is to extract pose parameters and not Imode
appearance. Therefore, we adopted a simplified rgeaeticulated model for basic
shape estimation of a human body and used a cothbstete vector [10] to
parameterize the model. It consists of a 10-jok&leton (stick figure) representing
the basic human kinematic structure, based on wthiehtorso, arms, and legs are
modeled as cylinders and the head as a spherelésimfumetric primitives). The
human body parts of the model are defined in @tato body length. See in Fig. 4:
Skeleton (left), combined skeleton and body pamisidle), and bodyarts (right).

Body model fitting approach. We use a fast indirect body model fitting methods
similar to [3] and [11]. Template body parts attefi around the voxel data based on
feature points such as the center of mass, andlsvate then labeled to their



corresponding body parts. The fitting order folloashierarchical approach with
common sense heuristics: Due to its distinguisheaps, first the head is located.
Then the neck and pelvis points are found thatrdete the torso. From the torso the
shoulders can be located, followed by the elbowd hands. In relation to the
shoulders and pelvis, the hips are located, foltbwwsy knees and feet. This
hierarchical approach requires multiple or reodogrrgeneric algorithms for each
body model part. Therefore each fitting module inéalization, estimation, iterative

refinement and validation steps as described irfiat@ving.

Initialization and global tracking. We use anthropometric measurements [3] to
initialize the pose of the person in the scene envtiibe subject is standing straight in a
T-shape pose (Fig. 5). Using and r to denote the length and radius of subsequent
body part, andL.. for the length of the subject’s stature, whichrigialized by the
height of the bounding box during the initializatipose. Hence all the other body
parts can be initialized using.. with the definition from [3]:Red = Lsa 716 ,

Lo = 3Lsat /8, Lear = Lsa /4 3 Liam = Laa /6, Lam = Letat /6, Loign = L /4 . FOr the global
tracking of the body model, a cube with dimensigfsr..)® is placed at the center
of the torsoc. that is determined during initialization. For eafthme, the mass
center of c. is optimized. The cube is large enough to remaithimv the torso
somewhere along the spine, giving a global estimatehere the body is moving to.
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Fig. 4. Human body model Fig. 5. Head initialization and refinement.

Head fitting and tracking. The head center is initialized by computing the
centroid ¢, of the bounding box betwees L« andz = Lw -2* Res and optimized in
a subsequent refinement step (Fig. 5). To estimatihe centroid. of the unlabeled
head voxels within a sphere centered at the heatloi@ of the previous frams, is
computed. Fromc, andc., a displacement vectovy, =c. -c. IS calculated with
magnitude: d, = (Rwa /mw)tna (my Stands for the previous number of marked head
voxels, ms for the current number of unlabeled voxels withive tprevious head
sphere). The new position of the head is set-as;, +v,w.. FOr validation, we look at
the vectorv. between the torso center. andc.: v:=c.-C.. Since the head cannot
move significantly into the torso, and the spina oat bend more than 90 degrees at
the neck, the dot product between the spine vextdrthe head displacement vector
between the previous and current head center cémnategative, otherwise a re-
estimate has to be made fax by relocating the head along with a certain
distance d. . The magnituded. of the previous spine vector ds..v,. The
displacement correction. betweerc.andc, iS: 4. -y.-v.)v.. Using the relocation
distance d. = ds -d., head can be relocated along the spiniec. +v.w. . In Fig. 6 (left
to right): If c. moves into the torso, compute previous spine ntadej compute
displacement magnitude, and relocate head.



Fig. 6. Head validation and relocation.

Torso fitting and tracking. To initialize the torso cylinder, first the necknteid
c.in the cube centered at, with z-value L« -2*Res IS cOmputed. Then the pelvis
centroid ¢, in the bounding box between. + Lug aNd Lar + Lugx + Luw /2, the spine
vector vs =C.-Cs, and pelvis position, -¢, -v.n.. are calculated (Fig. 7). The neck
center is estimated by adding a vector with thersad direction of the spine vector
and the head radiug«: as magnitude to the head centroigl:c, -v.r.. . The pelvis
center is estimated by adding a vector in the sdimextion with the length of the
torso to the neck positiors, ¢, -v.0..- Cn iS refined by placing a sphere with radius
Res ON the estimated position. The center of masshef non-head voxels is
computed.c, is refined by placing the cap of the torso cylinda the neck and the
estimated pelvis position. By fixating the cap esponding to the neck, and
computing the center of mass, the axis of the cylinder can be placed onto The
process is repeated untii has been stabilized. Finally, the voxels withie tbrso
cylinder are marked as torso [3, 11].

Fig. 7. Initialization of neck, pelvis, and torso.

To estimate the torso radius, firstly a 2D binanage is created by projecting the
voxel slices along the spine vector between headnaiddle torso onto the z-plane
while ignoring the head voxels. Least-squaresfittiag is applied to the acquired 2D
point set to determine the orientation of the toiSecondly the voxels between the
middle torso and pelvis are projected onto theangl After the projection, the points
are rotated in line with the orientation of thestmr The maximum x-width and y-
height of the point blob now corresponds to thetlwiahd depth of the torso (Fig. 8),
the average between these two values is then tak&arso diameter.
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Fig. 8. Estimation of the torso radius.




Arml/leg fitting and tracking. To locate the arms, first the shoulder centraid
must be found. The unit vectar, (collinear to the fitted line) is determined by
means of least-squares fitting. The shoulder c&htrcan be computed as:
Car =Ca +VolRew » OF Ca =Cn~V.Rew (Mirrored to the other shoulder). The shouldeiitfs
is then found by placing a sphere with radigs. on the initial estimate of the
shoulder position. The centroid of the torso-markestels and the centroid of the
unmarked voxels within the sphere are computed.ifitial c. is computed as the
point in between both centroids. For estimationtha shoulder location, an outer
cylinder is placed around the torso cylinder frdme heck cap to the waist (Fig. 9
left). Then the unmarked voxels within the outelircler are selected. By applying k-
means clustering on the selected voxels, two aistEarm voxels are found (Fig. 9
right). For refinement, the two neck-to-clusterdegrvectors are projected onto the
upper cylinder cap (neck). The identification oé tehoulders is done based on the
distance between the current and the previous dbolbcations. As validation, the
distance between these locations should not berdhgn a threshold. Otherwise the
displacement of the neck is applied on the prevaéhmilder position to determine the
current shoulder position. Finally, the distancésaen the two shoulders should not
be within a certain range. If so the shoulderssateapart.
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Fig. 9. Estimation of shoulder position. Fig. 10. Estimation of upperléft) and
lower (right) arm direction.

To locate the elbows, an estimate of the directbrihe upper arm is made by
placing a sphere next to the shouldex with radius L.. centered at
Co =Va{Run ~Rem) » WhEre vs =Ca-C.. Then, the centroid. of unmarked voxels is
computed (Fig. 10 left). Orta , another sphere of radiussOL.~ iS place to refine
Ca . By the direction fromc. to ca and the magnitude of.., the elbow position
c. can be estimated asg;-c..+v.0.., Where v. =C« -C«. AS last refinement step, a
sphere with the radius ok.. is placed onc. to re-compute the centroid. If no
voxels are found within radiws., then the radius will be enlarged until a centrigid
found. As validation,c. is compared to the previous elbow position. lirtléstance
is larger than a threshold, the previous displaceé the elbow is applied. In the
last step, the voxels within the upper arm cylinaier marked.

Similarly, the hand position is found by placinghere next to the elbow (in the
opposite direction of the upper arm) with a radiob osoL.. centered at
Con = Co +V an{Lam — Ruem) » WNET@ Van =Ce -Cs (Fig 10 right). The centroid of the unmarked
voxels within the sphere is then computed to fihd tniddle of forearm. By the
direction from c. to the found centroid and the magnitude af the hand position
is estimated a%., =c.+Vuiwn, Where v =Cna -C.. Similarly to the elbow centroid
refinement, a sphere with radius... is placed oncw and the centroid of unmarked



voxels is computed. Finally the voxels within tlerelarm cylinder are marked as a
hand.

To locate the legs, we use a similar approachaifg the arms.

Pose semantics. Depending on the specific game, the body pose ntam be
represented as a 5-tuple BodyPose = {left leg,trigd, left arm, right arm, torso},
where the legs and arms pose can have values ifig, down}, and the torso pose
can have values {up, forward}. For example, a Yeaan be modeled as {down,
down, up, up, up}, denoting a 'yes' input to thengaand a bowing pose can be
modeled as {down, down, down, down, forward}, démpeexiting the game.

4  Evaluation and Conclusion

In order to evaluate the performance of our apgrpae applied the body model
fitting and pose modeling to three video sequemdedifferent persons moving and
performing several poses: two Asians (female antéyrend one Caucasian (male).
Assessment is done by subjective observation. Rtmninitialization of the body
model until the end of the sequence, one out ofyetveclve frames is evaluated with
respect to the positions of head, torso, upperlan@r arms. The position of the
skeletal bone is verified in relation to the voael video data. If a bone fits onto the
body part, it is marked as a good fit. If a bonaas exactly in but only up to half off,
the supposed position is marked as a fair fit.llmther cases, it is marked as a poor
fit. The evaluation of the first video sequence taoring the Caucasian male is
illustrated in Fig. 11 (left). For these framesdpanodel fitting works very well with
almost completely correct matching for everythingsides the lower arms. Errors
there can be explained by: ‘sticky’ arms while #nmns are very close to the torso and
stick to it instead of fitting onto the voxel datarresponding to the lower arms;
‘float’ upper arm caused by voxels between the haad the arm; holes in voxel
cloud; subject’'s long hair etc. The overall fittireyaluation for all three video
sequences is illustrated in Fig. 11 (right).
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Fig. 11. Example videol&ft) and overall evaluatiorright).

In this paper we described a framework for madglof 3D human pose from
multiple calibrated cameras (and pose semantiesprétation) as the core part of a
spatial gaming system. By using more robust midiwbased 3D pose modeling,



our work opens the way to a more accurate semaeties understanding of human
poses.

For future work, body part constraints can be agublvithin the validation part of
the algorithms to avoid impossible poses or movamehbody parts. The evaluation
can be extended by testing on more subjects. Hmefwork will be extended to the
multi-person case where mutual body occlusion andipity must be handled.
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