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Shape Descriptors are compact and expressive representations of objects suit-
able for solving problems like recognition, classification, or retrieval of shapes,
tasks that are computationally expensive if performed on huge data sets. Skele-
tal structures are a particular class of shape descriptors, which attempt to
quantify shapes in ways that agree with human intuition. In fact, they repre-
sent the essential structure of objects and the way basic components connect
to form a whole.

In the large amount of literature devoted to a wide variety of skeletal
structures, this Chapter provides a concise and non-exhaustive introduction
to the subject: indeed the first structural descriptor, the medial axis, dates
back to 1967, which means forty years of literature on the topic.

1 Introduction

The main issue in high-level structuring is to extract an abstract description of
the shape that can be more useful for many purposes. For instance, the search
in a data base for an object similar to a query shape can be nearly impossible
if approached comparing bulks of thousand triangles. Conversely, the process
is extremely facilitated when two descriptors of the shapes are compared in-
stead. Of course the performance and the quality of results depends on the
conciseness and on the expressiveness of the description. A shape descriptor



2 S. Biasotti et al.

may be any number, property or function that can be used to discriminate
between shapes. For instance, the edge number can be used to classify poly-
gons. Depending on the application tasks and on the shape domain, usually
more sophisticated descriptors are needed. In this Chapter we introduce and
describe a particular class of shape descriptors, i.e., skeletal structures.

As everybody knows, the word “skeleton” generally indicates the bone
structure of vertebrates; in general, skeleton recalls a support structure (e.g.,
the skeleton of a ship), or the scheme of something (the skeleton of an opera).
Translating the concept in the digital context is not straightforward. Intu-
itively, the skeleton can be defined following two different philosophies: one
privileges the aspect of the skeleton of being a medial structure, i.e., an entity
that always falls inside the shape and is in each point equidistant from the
shape boundary. From this point of view, the skeleton of a planar shape is a
linear graph, and each point on the skeleton is equidistant from the boundary
points of the shape. In the 3D space things change: a cylinder with circular
base sufficiently far from the bases exhibits a linear skeleton, while the skele-
ton of an elongated box is conversely a medial surface, i.e., a two dimensional
sheet, which extents in the longitudinal direction.

From the other point of view, the skeleton can be regarded as the explicit
representation of how the basic components of the shape are glued together to
form a whole. A strictly tubular shape has normally one skeletal line, which
lays medial to the object and acts as a symmetry axis, usually referred to
as a centreline. Furthermore, complex objects formed by the arrangement of
tubular-like components can be abstracted to a collection of centrelines which
split and join, following the object topology.

The definition of skeleton as a medial structure privileges the geometric
aspect of the descriptor. Therefore the skeleton retains a strong correspon-
dence with the shape, so that the boundary can be exactly reconstructed, or
at least approximated, from the information encoded in the skeletal structure.

Conversely, the second paradigm regards the skeleton as an abstract ad-
jacency graph of salient shape features and relies on shape decomposition in
a way that agree with human intuition: recent cognitive research, alongside
with new developments in digital imaging and computer vision, has led to a
growing consensus that decomposition of shapes into their constituent parts
is fundamental to human vision as an early stage of the cognitive process.

Following the previous considerations, a unique formal definition of skele-
ton in the context of digital shapes, i.e., n-dimensional data having a visual
representation, can not be given. In this Chapter we will distinguish between
geometric skeletons, like the medial axis transform, which give a richer encod-
ing of the spatial extent of the shape, and topological skeletons, that dismiss
some geometric information but make explicit higher level properties of the
shape (main features, adjacency relations among parts, number of compo-
nents, holes, ...).

The choice on which descriptor should be preferred relies on the appli-
cation context it must cope with. In a variety of applications it is desirable
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for the skeleton to be linear ( e.g., in medical imaging for vascular narrowing
detection, in computer-aided screening for early detection of polyps, and so
on). Conversely, other applications may require that the skeleton retains a full
correspondence with the shape geometry. This is the case of many CAD/CAM
applications, where medial surfaces are exploited, for instance, for subdivision
of complex solids into simpler pieces for automatic mesh generation and also
for the generation of simpler idealised models such as shells and beams for
stress analysis.

1.1 Overview

An exhaustive review of the existing literature on skeletal structures would
require an effort which is beyond the scope of the Chapter. The goal here is
to provide a selection of the methods that are more relevant for subsequent
applications in shape modelling. For the classes of methods reviewed we will
provide basic definitions and an overview of the structure with respect to
different discrete settings. Comparative remarks and examples of their appli-
cations will also be given. The presentation is organized into two main classes:
geometric skeletons including the medial axis and other medial structures like
bisectors, and skeletons derived from topological structures, possibly enriched
by geometric information to retain a strong correspondence to the shape; the
Reeb graph belongs to this category.

Maybe the best known of geometric skeletal descriptors is the Medial Axis
Transform, (MAT) defined by Blum in the sixties [21]; he first described the
medial axis extraction for a 2D shape by analogy with a fire front which
starts at the boundary of the shape and propagates isotropically towards the
interior. The medial axis is defined by the locations at which the fire fronts
collide.

In the planar case the medial axis is a graph, while for shapes in R
3 the

MAT is a dimensionally heterogeneous entity composed by curves and surface
patches. Small modifications of the input shape can induce large modifications
of its medial axis; nonetheless they do not affect the entire medial axis. Typical
effects for shapes in R

2 are spurious branches that leave the rest of the medial
axis unchanged.

The exact computation of the medial axis is extremely complex in the
domain of freeform shapes. Nonetheless, results exist for computing bisectors
between rational entities exactly. The concept of bisector is strictly related
to the medial axis, but while the medial axis can be computed for a given
object, the bisector involves more entities, being the locus of points equidistant
from two (or more) shapes. We present this approach since bisectors can be
effectively used as primitives to construct the MAT and the Voronoi diagram
of rational curves (see Section 3.2).

Conversely, many approaches have been adopted to implement Blum’s
original definition in the discrete case. Basically, we can distinguish them
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into four categories, depending on the adopted skeletonisation method: skele-
ton extraction from Voronoi diagrams; simulation of the grassfire; topological
thinning; skeleton extraction from distance maps. The medial axis of a planar
curve can be thought of as the Voronoi diagram generalized to an infinite
set of points (the boundary points) [3, 83, 84]. It has been formally shown
[28] that the Voronoi diagram becomes an increasingly precise approximation
of the continuous medial axis as the density of boundary samples increases.
Algorithms which actually try to implement the grassfire process are quite
rare; examples are the straight skeleton, first introduced by [1], and the linear
axis [97]. Thinning and distance map computation can be directly applied to
volumetric discrete representations that are widely used especially in medi-
cal applications: most acquisition techniques produce in fact voxel grids, like
the Computed Tomography or the Magnetic Resonance Imaging. All these
skeletonisation methods are detailed in Section 4.

Concerning topological structures, the Reeb graph was defined much be-
fore the MAT [89], but its potential in shape description has been understood
and formalized later on [94]. Reeb graphs act as a tool for studying shapes
through the evolution and the arrangement of the level sets of a real function
defined over the shape. This fact relies to Morse theory, [80], that studies the
link between the differential properties of a shape and its algebraic topology
(in the sense of the number of connected components, number and type of
holes, etc.). From this point of view, an object can be partitioned into pro-
trusions, holes and other characteristics and can be efficiently represented as
a collection of features with a set of adjacency relations between them. These
facts raise the idea that topology-based descriptors, maybe integrated with
geometric information, are suitable for dealing with the definition of basic
models to represent, generate and manipulate shapes without forgetting the
feasibility and the computational complexity of the problem, [15]. In fact, a
recent work by Goswami et al. [68] exploits topological structures to locate flat
and tubular shaped regions on 3D shapes. Focusing on the level set evolution,
we obtain a discrete description which effectively represents the shape and can
be encoded in a topological graph. Some methods follow this paradigm and
compute skeletons joining the barycentres of adjacent sections [81, 76, 72].

The remainder of this Chapter is organized as follows: the MAT and ge-
ometric skeletons are treated first. In Section 2 the definitions of the main
concepts are given of medial axis, Voronoi diagram, shock graphs and bisec-
tors, while the Reeb Graph definition is shifted to the topological skeleton
Section (5) for a better reading. Techniques that construct an exact repre-
sentation of medial structures for particular classes of shapes are detailed in
Section 3, while approximated methods are described in Section 4. Skeleton
derived from topological structures including the Reeb graph are presented
in Section 5. Finally, some concluding remarks and future developments are
given in Section 6.
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2 Definitions of geometric medial structures

In this Section the concepts of medial axis transform, shock graphs, Voronoi
diagrams and bisectors are introduced. All these entities share the property
of being medial with respect to the shape boundary (medial axis and shock
graphs) or to two or more objects (Voronoi diagrams, bisectors); therefore
they can be referred to as medial structures.

The medial axis transform (MAT) has been introduced by Blum [21] as a
tool in image analysis. To get an intuitive feeling for this concept, consider
starting a grass fire along a curve in the plane. The fire starts at the same
time, everywhere along the curve, and it grows at constant speed in every
direction. The medial axis is the set of locations where the front of the fire
meets itself. Formally, let X be a bounded open subset of the Euclidean k-
dimensional space, R

k. The medial axis, M[X ], is the set of points that have
at least two closest points in the complement of X [78], see Figure 1.

Fig. 1. Medial axis of two planar shapes. In the second example the medial axis is
shown also for the external part of the shape.

The medial axis of a shape captures its connectivity, ignoring local dimen-
sionality. More precisely, a shape and its medial axis are homotopy equivalent
[78, 91, 101]. In R

k, the medial axis has generically dimension k − 1, one
less than the dimension of the space. In the plane, the medial axis is a (one-
dimensional) graph whose branches correspond to regions of the shape it rep-
resents. The MAT of planar polygons consists of straight lines and parabolic
arcs; each convex vertex of the polygon has an edge of the MAT terminating
in it. The MAT structure is very sensitive to noise: the insertion of a new
vertex in the boundary of the shape will cause new edges to appear in the
skeleton. In R

3, it is composed of pieces of surfaces, and is sometimes called a
medial surface. When each point x of the medial axis is weighted with the ra-
dius ρ(x) of the maximal ball centered at x, then we have enough information
to reconstruct the shape. In other words, the medial axis together with the
map ρ provides a reversible coding of shapes. This coding is not necessarily
minimal and some shapes, such as finite union of balls, can be reconstructed
from proper subsets of their weighted medial axes.
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Another medial structure is the shock graph, [75], which is obtained by
viewing the medial axis as the locus of singularities (shocks) generated during
the fire front propagation from the shape boundary. This dynamic view of
the medial axis associates a direction and an instantaneous speed of flow to
each shock point, [67]. In particular, shock points may be classified according
to the number of contact points and to the flow direction, as described in
[66]: source and sink points determine the nodes of the graph while the links
connect source points to sink ones and define the arcs of the graph. In addi-
tion, attributes are associated to the shock graph to store both the intrinsic
geometry of the portion of shape corresponding to a link and the radius and
the flow direction of each node. Analogously to the MAT, the shock graph
structure and the corresponding point classification have been extended to
3D shapes [67]. Also, in this case the shock graph structure contains dimen-
sionally heterogeneous components and it is not a planar graph.

The medial axis and the shock graph differ for the interpretation of the
structure entities rather than for the geometric abstraction they provide. For
example, the shock graph and the MAT of a curve have the same arcs and
nodes, but the shock graph associates also to each arc the growing direction
of the radius of the bi-tangent spheres, see Figure 2(b). In general, we may
consider that the shock graph is a finer partition of the medial axis.

(a) (b)

Fig. 2. The medial axis (a) and the shock graph (b) of two simple curves.

Shock graphs are widely used for image matching, recognition and curve
alignment, therefore methods proposed in literature mainly address the prob-
lem in the bi-dimensional case and the shape is supposed to be a closed curve.

Strictly related to the medial axis is the Voronoi diagram . Given a finite
set of points S in R

k, for each point p in R
k there is at least one point in S

closest to p; a point p may be equally close to two or more points in S. For
each point in S its Voronoi cell is defined as the subset of R

k of points closest
to it than to any other point in S. The union of Voronoi cells of all points in
S is a partition of R

k called Voronoi Diagram corresponding to the set S.
For instance, in the planar case, given two points a and b, the set of points

equidistant from a and b is an infinite line l, the perpendicular bisector of the
segment joining a and b. l represents the boundary between the two infinite
Voronoi cells of a and b (two half-planes).



Skeletal Structures 7

The concept of Voronoi diagram is much correlated to the MAT: indeed
the MAT of a shape can be approximated by the Voronoi diagram of a finite
set of boundary points, as detailed in Section 4.1; on the other hand, while
the MAT is the skeleton of a shape, the Voronoi diagram represents a medial
structure between two or more entities (points or objects).

Indeed the Voronoi diagram definition can be easily generalized to set of
objects: given m different objects O1, ... Om, the Voronoi cell of an object Oi,
(1 ≤ i ≤ m) is defined as the set of points that are closer to the object Oi

than to any other object Oj (1 ≤ j ≤ m)). The bisector of two objects is the
locus of points that are equidistant from the two shapes. The Voronoi cell that
contains all points in space that are closer to some object than to any other
in space is, therefore, formed out of these bisectors. Similarly, the Voronoi
diagram and the medial axis transform are also prescribed by subregions of
these bisectors. Therefore, bisectors can be seen as building blocks for the
MAT and the Voronoi diagram in such cases where a direct computation of
these structures is too complex.

3 Exact representation of medial structures

Indeed, the exact MAT computation was considered for long time affordable
only for polygons [77, 65], and more recently for polyhedra [92, 42]. Recently, a
few researchers have tackled the problem in the context of freeform (piecewise)
rational entities.

Today’ accepted approach for computing the planar arrangements of
freeform geometry approximates the geometry using piecewise lines and arcs,
but this method has noteworthy disadvantages. First, the approach is only an
approximation. Second, it is also erroneous. The MAT of a planar shape en-
closed by two concentric circles is another mean circle in between them. Yet,
by tessellating the two input circles into lines, one introduces numerous C1

discontinuities along these circles. The resulting MAT will consist of numerous
and erroneous edges from the mean circle toward all the C1 discontinuities in
the two boundary circles.

Fortunately, methods exist to compute bisectors of rational entities exactly.
For these reason, new approaches aim at computing bisectors between basic
freeform shapes as building blocks of every Voronoi Diagram or Medial Axis
Transform.

Beyond computing the bisectors between points, lines and arcs in the
plane, the current state-of-the-art not only provides complete answers on when
an analytic bisector exists between rational manifolds in R

n, but also proposes
tractable computational schemes to derive it, as described in Section 3.1.

3.1 Bisectors for freeform shapes

In the following, we will restrict our discussion to rational parametric curves
and surfaces, only. Since the rational representation is fully capable of repre-
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senting all the simple primitives common to the Constructive Solid Geometry
(CSG) modelling technique, such as cones, cylinders, spheres, and torii, we
will focus on this representation. The fundamental question is whether the
bisector between two rational manifolds in R

n is rational, hence retaining a
closure that enables the precise representation of the bisector sheet in the
same geometric modelling environment.

The building blocks of every Voronoi diagram or medial axis transform
computed in the plane or 3-space must include all cases. These include point-
point and point-curve bisectors that are rational in both R

2 and R
3, point-

surface and curve-curve bisectors that are rational in R
3, and curve-surface

and surface-surface bisectors that are not rational in either space. These non
rational curve-curve bisectors in the plane must be differently represented or
approximated and such approximations are considered in [54, 62]. [54] maps
the problem of computing the bisector between two planar curves C(t) and
C(r) to a zero-set-finding problem in the parameter space of the two curves (t,
r). In [62], the planar curve-curve bisector problem is reduced to an envelope
of a continuum of point-curve bisectors. The rational surface bisector cases in
R

3 are considered in [56].
While the bisectors between points, lines, and arcs have been known for

thousands of years, the first real step toward support of freeform geometry
was made by Farouki [61]. He showed that the bisector between a point and
a rational curve in the plane is indeed rational.

Let C(t) = (cx(t), cy(t)) be a rational plane curve and P = (px, py) a point
in the plane. The planar bisector sheet, B(t) = (bx(t), by(t)), could then be
characterized as,

< B(t) − P, B(t) − P > = < B(t) − C(t), B(t) − C(t) >,

< B(t) − C(t), C′(t) > = 0. (1)

The first constraint above merely states that the distance between the
bisector B and point P should equal the distance between the bisector and
curve C(t). The second constraint ensures we measure the distance in an
orthogonal direction to the curve, or in the normal space of C(t). It is simple
to show that the set of Equations (1) is linear in B(t). Hence one can rewrite
Equations (1) as,

[
cx(t) − px cy(t) − py

c′x(t) c′y(t)

] [
bx

by

] [
〈C(t), C(t)〉 − 〈P, P 〉

< C(t), C′(t) >

]
. (2)

Clearly B(t) in Equation (2) has a rational representation, employing the
Cramer rule.

The fact that the number of degrees of freedom equals the number of
constraints is a strong hint that the point-rational curve in the plane has
a rational representation. Generally speaking, the (n − 1)-manifold bisector
between two input manifolds in R

n must satisfy three sets of constraints:
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1. It must be at an equal distance from the two manifolds.
2. It must be in the normal space of the first manifold.
3. It must be in the normal space of the second manifold.

The distance equality 1 is always there and always imposes one constraint.
Constraints 2 and 3 depend on the dimensions of the normal spaces of the
two input manifolds. Interestingly enough, Constraints 1-3 are all linear in
the bisector function. Hence, the number of constraints for bisectors between
zero-, one-, and two-manifolds inputs equal (written as equality constraint
+ first manifold normal space constraints + second manifold normal space
constraints) is listed in Table 1.

Point Curve Surface

Point 1=1+0+0 2=1+0+1 3=1+0+2

Curve 2=1+1+0 3=1+1+1 4=1+1+2

Surface 3=1+2+0 4=1+2+1 5=1+2+2

Table 1. Number of constraints in the bisector computations between points, curves
and surfaces. Constraints are listed as distance constraint plus orthogonality con-
straint(s) to first manifold plus orthogonality constraint(s) to second manifold.

Rational solutions exist whenever the number of constraints, as prescribed
in Table 1, is less than or equal to the number of degrees of freedom of the
bisector, which is always the same as the dimension of the space. Every case
for which the total number of constraints is less than or equal to two has
a rational bisector representation in the plane. The point-point and point-
curve bisectors are both rational in the plane. Further, every case for which
the number of constraints is less than or equal to three has a rational bisector
representation in R

3. Consequently, in R
3, one has a rational representation for

point-point, point-curve [61], curve-curve [55] and point-surface [56] bisector
cases. Interestingly enough, after inspecting Table 1, we can see that the
bisector between two curves is not rational in the plane (R2), yet is rational
in all higher dimensional spaces (Rn, n > 2); specifically it is rational in
R

3. Figure 21 (color plates) shows two examples of rational curve-curve and
point-surface bisectors in R

3.
qui figura a colori con label ”fig − bis − crv − crv” formata da

images/bisectcrvcrveimages/bisectptsrf
If the number of constraints is less than the number of degrees of freedom,

a rational solution still exists. Further readings on these rational cases can be
found in [55].

The following set of constraints is defined for the surface-surface bisector,
B = (bx, by, bz), in R

3:
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0 =
〈
B − S1(u, v),

∂S1(u, v)
∂u

〉
,

0 =
〈
B − S1(u, v),

∂S1(u, v)
∂v

〉
,

0 =
〈
B − S2(s, t),

∂S2(s, t)
∂s

〉
,

0 =
〈
B − S2(s, t),

∂S2(s, t)
∂t

〉
,

0 = 〈B − S1(u, v),B − S1(u, v)〉 − 〈B − S2(s, t),B − S2(s, t)〉 .

These five (linear in B) constraints also have seven degrees of freedom:
u, v, s, t, bx, by, bz. Hence, having two more degrees of freedom than con-
straints, the solution space is a two-manifold, the bisector sheet in R

3 (re-
call that the bisector sheet in R

n is an (n − 1)-manifold). One needs to
solve these five equations in seven degrees of freedom – by any means, a
non trivial task. In [58], a special non-linear multivariate solver has been
employed, presented in [59], which supports cases with non-zero dimensional
solution spaces. The solution is given as a dense set of (u, v, s, t, bx, by, bz)
points in R

7. Then, exploiting the given (u, v) parameterisation of S1, a two-
manifold in R

3 is fitted to this data, satisfying the interpolation constraints
of x(u, v) = bx, y(u, v) = by, z(u, v) = bz. The non rational bisector between a
curve and a surface in R

3 is computed using a similar approach. In Figure 22
in the color plates, the solution point set is shown as yellow points on the
fitted bisector sheet in red/magenta.

qui figura a colori con label fig − bis − crv − srf formata da
images/bisectsrfcrveimages/bisectsrfsrf

Clearly, being an approximation, the curve-surface and surface-surface bi-
sectors are further more difficult to compute than their analytic counterparts.
They become even more difficult when the result is numerically unstable –
a not an uncommon case when dealing with bisectors. In many cases, the
bisector sheets introduce poles as they vanish at infinity (see the bisector in
Figure 21 (right)), and cusps, and hence, self-intersections when the bisec-
tor sheet is not regular (see the bisector in Figure 22 (right)). Luckily, many
important cases exist where the bisector between a curve and a surface or
between two surfaces is indeed rational. One notable simple case is the plane-
plane bisector that is another (bisector) plane.

In [57, 86], more special curve-surface and surface-surface rational bisectors
in R

3 are identified. The full details of these results are beyond this survey but
we will describe a few of the approaches that are presented in [57, 86]. The
bisector between a line and a plane in a general position is simply a cone. This
is obvious if the line is orthogonal to the plane but also holds for any non-
coplanar line (see Figure 23 (a) in the color plates). An offset is an operation to
which the bisector is invariant. The bisector between a sphere and any surface
that yields a rational offset could be reduced to a point-surface bisector via
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the simultaneous offset of the sphere and the other surface by the sphere’s
radius (see Figure 23 (b)). The bisector computation between a sphere and a
canal surface that yields a rational offset is reduced to a bisector computation
between a point and rational surface representing the offset of a canal surface.
In Figure 23 (c), the line-sphere bisector is similarly reduced to a cylinder-
point bisector computation, again via an offset operation. Table 2 summarizes
the cases known to be rational, as presented in all above references. As can
be seen from Table 2, pretty much all CSG primitive shapes yield a rational
bisector in R

3 with the exception of the torus, which in most cases has a
rational bisector only in special arrangements.

qui figura a colori con label fig − bis − special formata dai files
images/bisectplnlnimages/bisectcanalimages/bisectlinespr

Point Line Plane Cylinder Sphere Cone Torus

Point Yes Yes Yes Yes Yes Yes Yes

Line Yes Yes Yes Yes Yes Partial

Plane Yes Yes Yes Yes Partial

Cylinder Yes Yes Yes Partial

Sphere Yes Yes Yes

Cone Yes Partial

Torus Partial

Table 2. The existence of rational bisectors between CSG primitives in R
3.

3.2 Exact computation of the medial axis

As noted above, the construction of the Voronoi diagram and MAT for
freeform curves in the plane is more difficult because of the complexity of
the bisectors. Ramamurthy and Farouki [63, 64] implemented an incremental
algorithm in which the bisectors are inserted one by one and the Voronoi di-
agram of the curves is updated after each insertion; the MAT is derived from
the Voronoi diagram and is represented as a piecewise linear approximation
of the actual bisector, computed as the envelope of the point-curve rational
bisectors. Ramanathan and Gurumoorthy [87] implemented a different tracing
algorithm for the construction of the MAT of a freeform shape. This imple-
mentation also approximates the edges of the MAT by computing samples of
bisector points on the edges and interpolating these sample points. Piecewise
linear curves involve the comparison of expressions with two nested square
roots [29]. Efficient and fully robust implementations are few [71]. An exact
algorithm for not-necessarily convex polyhedra in R

3 can be found in [41].
A fairly general class of shapes for which it is possible, in principle, to

compute the medial axis exactly are the semi-algebraic sets . These sets are the
solutions of a finite system of algebraic equations and inequalities. The medial
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axis of such a set is itself semi-algebraic and can be computed with tools from
computer algebra. To describe this, let X be a shape in R

3 whose boundary
is a C1-smooth manifold. We introduce the symmetry set of X , consisting of
the centers of spheres tangent to the boundary of X at two or more points. It
contains all points of the medial axis but also possibly additional points since
the spheres are not constrained to bound balls contained in X . Suppose now
the boundary of X is defined by the algebraic equation f(x) = 0 and 0 is a
regular value of f . It follows that the gradient for all points of the boundary
is non-zero, ∇f(x) �= 0. In this case, the symmetry set is the closure of the
set of points z for which there exists points x and y that satisfy the following
system of algebraic equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(x) = 0,
f(y) = 0,
(x − z) ×∇f(x) = 0,
(y − z) ×∇f(y) = 0,
‖x − z‖2 = ‖y − z‖2,
t‖x − y‖2 = 1.

In the last condition, t is an additional free variable that ensures that x and y
are distinct. If 0 is not a regular value of f , we need to add ∇f(x)∇f(y)s = 1
as yet another equation, with s as a free variable. Finally, the medial axis is
obtained by imposing the additional conditions that ‖u− z‖2 ≥ ‖x− z‖2, for
all points u on the boundary, and z be contained in X . Considering u to be
a new free variable, it is possible to remove points from the solution, namely
the points z for which f(z) < 0 or for which there exists u with f(u) = 0
and ‖u − z‖2 < ‖x − z‖2. This new set is still semi-algebraic since it is the
difference between two semi-algebraic sets.

In [70], the fact that one can express the bisectors of rational curves and the
MAT of rational curves as (semi-) algebraic sets is used to derive an algorithm
that computes the precise Voronoi cells of rational curves in the plane. Using
the precise low degree algebraic formulation offered in [54] to represent the
bisector of two planar curves, trimming conditions based on orientation and
curvature properties are formulated for these bisectors. The trimmed bisectors
are then fed into a lower envelope computation stage in which the Voronoi
cells are precisely extracted. The bisector segments are represented as implicit
B-spline bivariate forms and hence are algebraic. Further, the locations where
adjacent bisectors intersect, and therefore define the corners of the Voronoi
cells, are also representable as a set of algebraic constraints. The end result is
a precise representation of the Voronoi cells of planar rational curves. Figure 3
shows a few examples of precise Voronoi cells of rational curves.

Dutta and Hoffman [51] proposed a scheme to compute the Voronoi dia-
gram and MAT of CSG primitives. As noted above, their results on bisectors
of CSG primitives were partial and, therefore, their work was theoretical and
never implemented. A recent result by Ramanathan and Gurumoorthy [88],
which is based on their work in [87], constructs the MAT of extruded and
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Fig. 3. Three examples of precise Voronoi regions (in gray wide lines) of rational
closed parametric curves. The Voronoi region of one curve (the curve inside the
Voronoi region) is shown in each example.

revolved shapes. In their work, they exploit the fact that the 3D MAT of an
extruded or revolved shape is closely related to the 2D MAT of its creating
section curve. This is the only implementation, as far as we can determine,
that constructs a MAT in R

3 of surfaces that are not polyhedra.
For the complement of a union of balls in R

k, the medial axis can be
derived from the Apollonius diagram of the corresponding spheres or from
convex hulls of finitely many points in R

k+2 [12, 23]. Perhaps surprisingly,
the medial axis of the union of finitely many balls is simpler than that of
the complement. As first described in [5], it is piecewise linear and can be
constructed from the Voronoi diagram of a finite set of points. As discussed
in more detail shortly, the cells of dimension less than k in this diagram may
be interpreted as the medial axis of a punctured Euclidean space, a case that
permits particularly simple exact algorithms. Finally, the MAT of spheres in
R

3 was also recently considered in [74].

4 Approximation of the medial axis

Except for the few cases described in the previous Section, when effectively
computing a medial representation of a shape, we face the problem of ex-
tracting a finite representation of the medial axis. Let M[X ] be the MAT of
the shape X . In most cases, we apply an approximation of M[X ] that may
be either numerical, in the sense that our output is always “near” or exactly
M[X ], or geometric, in the sense that we define new descriptors that are geo-
metrically similar to the skeleton of the shape. The approximation techniques
discussed in Section 4.1 refer to numerical approximations of the medial axis.
These techniques compute the medial axis as a subset of the Voronoi Diagram
of a set of points sampled on the shape boundary. Geometric approximations
of the medial axis are shown in Sections 4.2, 4.3 and 4.4. Such approaches are
classified on the basis of the skeletonisation method adopted, i.e. implemen-
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tation of the grassfire propagation, distance map computation and thinning
.

Moreover, while techniques based on approximating the Voronoi diagram
and on simulating the grassfire represent continuous methods that manipulate
points with real coordinates (see also Section 4.2), distance maps and thinning
constitute discrete methods: the object is stored as a collection of pixels/voxels
and the resulting skeleton is a connected subset of such pixels/voxels. Working
in the discrete space means that we have to face problems specific to this space,
which are relevant for medial axis extraction and skeletonisation. It is well
known that a different connectivity type has to be used for the shape and for
its complement to avoid topological paradoxa. The connectivity type depends
on which, among the neighbors of a pixel/voxel, are considered as directly
connected to each other. In two dimensions, each pixel p has four neighbors
sharing an edge with p, and other four neighbors sharing a vertex with p. The
4-connectivity considers as directly connected to each other pixels sharing
an edge, while the 8-connectivity considers both kinds of neighbors. In three
dimensions, a voxel v has six neighbors sharing a face with v, twelve neighbors
sharing an edge and eight neighbors sharing a vertex. Three connectivity
types are hence possible: 26-connectivity, when all three kinds of neighbors
are considered, 18-connectivity, when neighbors sharing a face or an edge are
considered, and 6-connectivity, when only the neighbors sharing a face are
considered. If the same connectivity type is used for both the object and
its complement, a closed curve/surface would not divide its complement into
disjoint parts, or an open curve/surface would divide its complement into
disjoint parts. For discrete space in two dimensions, the 8-connectivity and the
4-connectivity are generally adopted for the object (and, hence, its skeleton)
and for its complement, respectively. In three dimensions, the 26-connectivity
and the 6-connectivity are generally used for the object and its complement.
Another problem relevant for skeletonisation is strictly related to the nature of
the discrete space. In correspondence with regions whose thickness is expressed
by an even number of pixels/voxels, the set of centers of maximal balls is 2-
pixel/voxel wide. This means that whenever a discrete solution to medial
axis extraction or skeletonisation is desired, the resulting set can locally be
2-pixel/voxel wide. Alternatively, which is generally regarded as preferable,
the nearly-thin medial axis or skeleton can be reduced to a 1-pixel/voxel
thick set by means of final thinning, but the complete reversibility is lost. We
remark that the loss in object recovery exclusively regards pixels/voxels on the
boundary of the original object. The loss in recovery is generally considered
as acceptable, since the actual belonging of pixels/voxels to the boundary of
an object obtained after acquisition and digitisation of a continuous object is
questionable. We also remark that, in the two-dimensional space, the skeleton
is a union of arcs and curves and reversibility is almost completely guaranteed,
starting from the 1-pixel wide linear skeleton. In turn, in the three-dimensional
space, reversibility is possible only if the so called surface-skeleton, consisting
of surfaces and curves, is computed. For solid objects, i.e., objects having no
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cavities, the surface-skeleton can be furthermore compressed to obtain a linear
shape representation (the so called curve-skeleton. ) In this case, reversibility
is no longer possible. In fact, a large number of centers of maximal balls
is unavoidably removed from the surface-skeleton to reduce it to the curve-
skeleton. In Sections 4.3 and 4.4 we will mainly focus on linear skeletons.

A more detailed analysis of medial axis extraction and skeleton computa-
tion can be found in [31] for objects in the two-dimensional space and in [47]
for the three-dimensional case. Other recent contributions on this topic are
provided in [40, 43].

4.1 Skeletons from Voronoi Diagrams

We have pointed out that the exact computation of the medial axis runs
into obstacles except for certain classes of shapes. Another approach is to
approximate the smooth shape with a discrete one, for which the medial axis
can be computed exactly.

Despite the intuitive correlation between the Voronoi diagram of a set of
points sampling the boundary of a planar shape and its MAT, the formal proof
of the Voronoi diagram convergence to the MAT as the number of samples
goes to infinite has come rather recently [27]. In this Section we introduce
methods that approximate the medial axis of a shape using the Voronoi graph
of points sampling its boundary. The role of these methods is twofold: they
can either compute the MAT on an approximation of smooth shapes or be
applied directly to discrete representations such as triangulations.

In the following we introduce the approximation paradigm; for more details
about the stability and computation of medial axes see [6].

Instability and semi-continuity

We think of M as a transform that maps the shape X to its medial axis,
M[X ]. As emphasized in [78], geometric shapes are usually not known ex-
actly and represented by approximations of one kind or another. For example,
the boundary of a shape may be approximated by a triangulation obtained
by software for surface reconstruction or segmentation. Under these circum-
stances, it would be important that the transform be continuous. In other
words, one should be able to compute an arbitrarily accurate approximation
of the output for a sufficiently accurate approximation of the input. Most
commonly, one would use the Hausdorff distance to quantify the difference
between two inputs and two outputs and this way define what it means for
the transform to be continuous. Unfortunately, the medial axis transform is
not continuous under this notion of distance: small modifications of the input
shape can induce large modifications of its medial axis. This effect is illus-
trated in Figure 5, where we compare the medial axis of an oval on the left
with the medial axis of a set whose Hausdorff distance to the oval is bounded
from above by ε > 0. The difficulty of approximating the medial axis due to
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its instability with respect to the Hausdorff distance is a well-known but until
recently not well-understood problem.

One can observe experimentally that small modifications of a shape do not
affect the entire medial axis. Typical effects for shapes in R

2 are fluctuating
branches that leave the rest of the medial axis unchanged. Similarly, for shapes
in R

3 we notice fluctuating spikes, added to or removed from the otherwise
stable structure. This observation is consistent with the fact that the medial
axis is semi continuous with respect to the Hausdorff distance [79, chapter
11]. To explain this concept, we let A and B be subsets of R

k and write
dH(A | B) supx∈A d(x, B) for the one-sided Hausdorff distance of A from B,
where d(x, B) is the infimum of the Euclidean distances between x and points
y in B. Observe that dH(A | B) < ε if and only if A is contained in the
offset B+ε = {x ∈ R

k | d(x, B) < ε}. The Hausdorff distance between A
and B is dH(A, B)max{dH(A | B), dH(B | A)}. We write Ac and Bc for the
complements of A and B and note that the Hausdorff distance between Ac and
Bc is generally different from that between A and B. Indeed, dH(Ac, Bc) is
forgiving for small islands of A far away from B, while dH(A, B) is forgiving for
small holes of A far away from Bc. With this notation, we are ready to define
the concept of semi continuity. Specifically, a transform T is semi continuous
if for every bounded open subset X ⊆ R

k and for every δ > 0, there exists
ε > 0 such that for every open subset Y of R

k,

dH(Xc, Y c) < ε =⇒ dH(T [X ] |T [Y ]) < δ. (3)

Note that ε depends on X . In words, small Hausdorff distance between the
complements of X and Y implies that T [X ] is contained in a tight parallel
body of T [Y ]. As mentioned earlier, this condition is satisfied for T = M.

Approximation paradigm for the medial axis

The difficulty of computing the medial axis exactly (see Section 3) motivates a
serious look at approximation algorithms. A framework that captures a com-
mon line of attack to approximating the medial axis is sketched in Figure 4.
First, Y that belongs to a class of shapes for which the medial axis can be
constructed exactly is found such that it approximates X . Second, the medial
axis of Y is constructed. Third, the medial axis of Y is pruned to get a subset
P [M[Y ]] ⊆ M[Y ] that approximates the medial axis of X . The composition
of the three steps provides the approximation of the medial axis of X . The
most challenging step in this paradigm is the extraction of a subset P [M[Y ]
of M[Y ] that indeed approximates M[X ]. Recent mathematical results that
rationalize this approach are discussed shortly.

The notion of approximation used in the first step varies between different
implementations of the approximation paradigm. It either means that Y is
the image of X under a small Cm-perturbation [36], or that the Hausdorff
distance between the complements of X and Y is small, as in [35]. Other
notions of approximation are conceivable.
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Fig. 4. An approximation P [M[Y ]] of the medial axis of a shape X can be found
as part of the medial axis of a shape Y approximating X.

Punctured Euclidean spaces

We start by identifying a class of shapes for which the medial axis can be
constructed exactly and efficiently. We obtain shapes in this class by punctur-
ing the k-dimension real space at a discrete set of locations. Equivalently, we
consider the complement of a discrete set of points P in R

k. The medial axis of
this space is the Voronoi graph of P . Algorithms for constructing the Voronoi
graph are well-studied in computational geometry and implementations are
available from the geometric software library CGAL [33]. For a set P of n
points in R

k, the graph can be constructed in time O(n�k/2� + n log n), which
is optimal in the worst case because the graph can consist of a constant times
n�k/2� faces. In most practical applications, the number of faces, F , is much
less and the output-sensitive algorithm in [34] constructs the graph in R

3 in
time O((n + F ) log2 F ). Examples of point sets with provable small Voronoi
graphs are so-called κ-light ε-samples of compact smooth generic surfaces in
R

3, with F = O(n log n) [9], and κ-light ε-samples of polyhedral surfaces in
R

3, with F = O(n) [8]. Such samples will be studied in more detail shortly.
Consider a finite point set P whose Hausdorff distance to the boundary of

a shape X is less than ε and write Vor[P ] for the Voronoi graph of P . Using the
semi continuity of the medial axis expressed in (3), the subset of Vor[P ] inside
X contains an approximation of the medial axis of X . In the approximation
paradigm for medial axes, this subset can be interpreted as part of the medial
axis of a shape Y close to X . Following [35], Y is defined to be the parallel
body X+ε of X minus the points in P ; see Figure 5. Since the Hausdorff
distance between P and the boundary of X is less than ε, the same is true
for the complements of X and the thus constructed space: dH(Xc, Y c) < ε.
In summary, we have M[Y ] ∩ X = Vor[P ] ∩ X .

Pruning the Voronoi graph

We now consider results that focus on the detailed relationship between the
Voronoi graph of a finite point set and the medial axis of the shape whose
boundary the points sample. A sample of the boundary of a shape X is a
finite set of points (exactly and not just approximately) on that boundary.
An ε-sample is a sample whose Hausdorff distance to the boundary of X is
less than ε. In other words, every point of the boundary is less than distance
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Fig. 5. On the left, a shape X and its medial axis. In the middle, a finite set of
points P whose Hausdorff distance to the boundary of X is less than ε and its
Voronoi graph. On the right, X+ε − P and its medial axis.

ε away from a point in the ε-sample. The ε-sample is κ-light if the number of
sample points within distance ε is never more than κ. The ε-sample is noisy
if points are not necessarily on the boundary but at Hausdorff distance less
than ε to the boundary.

An early result on the connection between the Voronoi graph and the
medial axis is due to Brandt [27]. Given a shape in R

2, he takes an ε-sample
on the boundary curve and considers the Voronoi edges and vertices that are
completely contained in the shape; see Figure 6.

Fig. 6. In R
2, vertices and edges lying inside a shape and extracted from the Voronoi

graph of an ε-sample of the boundary approximate the medial axis (courtesy of Attali
and Montanvert [10]).
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Brandt then proves that under some technical conditions on the boundary
curve, the portion of the Voronoi graph defined by these edges and vertices
approximates the medial axis. Amenta and Bern [2] point out that the direct
extension of this result to shapes in R

3 does not hold; see Figure 7. The validity
of the extension is spoiled by the existence of slivers in three-dimensional
Delaunay triangulations, which occur for ε-samples with arbitrarily small ε >
0. Roughly, a sliver is a tetrahedron whose four vertices are almost co-circular.
The location of the Voronoi vertex corresponding to the sliver depends on the
four vertices but is generally unrelated to any feature of the surface and does
not necessarily lie near the medial axis. As a first step to cope with slivers,
Amenta and Bern eliminate all except a few Voronoi vertices they refer to as
poles. Every sample point p generates a Voronoi polyhedron and the vertices
furthest away from p on the two sides of the surface are the poles of p. Clearly,
there are at most 2n poles for a sample of n points. As proved in [3], for a
shape whose boundary is a smooth C1-manifold, the poles tend to the medial
axis of the shape and its complement as ε goes to zero.

Fig. 7. On the left we see a triangulation of the boundary of a shape in R
3. Its

vertices determine a Voronoi diagram whose vertices inside the shape are shown in
the middle. The subset of poles inside the shape is shown on the right.

To extend the result of Brandt to R
3, we need more than just points (the

poles) near the medial axes, we also need to connect them to form a geometric
structure approximating the medial axis. In [3], Amenta, Choi and Kolluri use
simplexes of the (weighted) Delaunay triangulation of the poles. To avoid the
construction of this weighted Delaunay triangulation and connect the poles
directly inside the Voronoi graph, we need to know about its local distance
from the medial axis. Bounds on this distance can be found in [7, 22, 38].
Assuming the boundary of the shape is a smooth C1-manifold and using
these bounds, among other things, Dey and Zhao [44] give an algorithm that
identifies a sub graph of the Voronoi graph that approximates the medial
axis for the Hausdorff distance. We note that the above results are limited
to smooth surfaces and to samples of points that lie on that surface. In [35],
Chazal and Lieutier obtain a similar result but for more general data: shapes
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are bounded open subsets and samples are noisy. They introduce a subset of
the Voronoi graph, called the λ-Voronoi graph , that approximates the medial
axis for a particular sequence of decreasing λ [6]; see Figure 8. Furthermore,
for small enough values of λ, this subset is homotopy equivalent to the shape
[35].

Fig. 8. Two λ-Voronoi graph of the same shape, with λ increasing from left to right,
constructed as a subset of the Voronoi graph of a sample of the boundary.

4.2 Skeleton trough the simulation of the grassfire

Beside methods for the exact computation of a polygon like that proposed in
[77], several approximate variations of the medial axis have been proposed in
the literature. In particular, in this Section we focus on the straight skeleton
and on one of its approximation: the linear axis.

Straight skeleton

Aichholzer and Aurenhammer [1] introduced the straight skeleton, a new type
of skeleton for polygons. It is closely related to the medial axis, being also
based on a wavefront propagation. The wavefront consists of straight line
segments and circular arcs (see Figure 9 (a)) and, as it propagates inwardly,
the breakpoints between consecutive line segments and circular arcs trace the
Voronoi diagram of the polygon. By removing the segments in the diagram
incident to the reflex vertices, we obtain the medial axis, which consists of
straight line segments and parabolic arcs.

To construct the straight skeleton, we let wavefront edges move parallel
to the polygon sides. In contrast to the medial axis, edges incident to a reflex
vertex will grow in length. The front remains a polygon, whose vertices during
the process trace out the skeleton (see Figure 9(b)). As its name suggests, it
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(a) (b)

Fig. 9. Medial Axis (a) vs. Straight Skeleton (b). In (b) the black disk marks a reflex
edge annihilation, while gray disks mark convex edge annihilations. An edge-edge
collision generates the arc between the black box (vertex-edge collision) and a gray
disk (convex edge annihilation)

consists of straight line segments only. It also has a smaller combinatorial
complexity (n−2 internal nodes, with n the number of polygon vertices) than
the medial axis (n + r − 2 nodes, with r the number of reflex vertices).

A straightforward computation of the straight skeleton consists of simu-
lating the sequence of events occurring in the propagation process described
above. Possible edge events are given by intersections of the bisectors of adja-
cent vertices of the current wavefront. If we maintain a priority queue E of all
these events, indexed by the moment in time when they occur, the next edge
event can be detected in constant time. Also after each event occurring in the
propagation, only a constant number of updates in E are necessary. These
updates come from changes in the wavefront at the location of the newly oc-
curred event. The priority queue can be created in O(n log(n)) time, and each
update requires O(log(n)) time, where n is the number of vertices in P . Unlike
for the edge events, the computation of possible split events can not be done
locally. For this purpose we maintain a priority queue S of all pairs (reflex
vertex, wavefront edge), indexed by the moment in time when a split between
them would occur. After each event in the propagation a linear number O(n)
of updates in S are necessary. Thus S can be created in O(nr log(n)) time,
and the updates after each event take O(n log(n)) time, where r is the number
of reflex vertices of P . The straight skeleton S(P ) can thus be computed in
O(nr log(n)) time, and the above algorithm requires O(nr) space.

A faster algorithm that uses more complex data structures can be found
in [60]. It runs in O(n1+ε + n8/11+εr9/11+ε) time with a similar space com-
plexity, where ε is an arbitrarily small positive constant. Eppstein’s algorithm
simulates the sequence of interactions between edges and vertices in the prop-
agation process. If the polygon P is interpreted as the outline of a building’s
groundwalls, the straight skeleton is the projection of a roof over P , whose
facets are all of equal slope. In simulating the events defining the skeleton,
they view time as a third spatial dimension, so that the propagation process
becomes an upward sweep of the roof of the polygon with a horizontal plane.
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A more recent algorithm by Cheng and Vigneron [37] computes the straight
skeleton of a non-degenerate simple polygon in O(n log2 n + r

√
r log r) ex-

pected time. For a degenerate simple polygon, its expected time bound is
O(n log2 n + r17/11+ε).

The Linear Axis

When a simple polygon contains sharp reflex angles with short incident edges,
its straight skeleton gives counterintuitive results (see the left column of Fig-
ure 11). In [97], Tanase and Veltkamp introduce the linear axis. It is based on
a linear wavefront propagation like the straight skeleton, but the discrepancy
in the speed of the points in the propagating wavefront, though never zero,
can decrease as much as wanted.

More formally, let {v1, v2, . . . , vn} denote the vertices of a simple polygon
P and let κ = (k1, k2, . . . , kn) be a sequence of natural numbers. If vi is a
convex vertex of P , ki = 0, and if it is a reflex vertex, ki ≥ 0. Let Pκ(0) be
the polygon obtained from P by replacing each reflex vertex vi with ki + 1
identical vertices, the end points of ki zero-length edges, which will be referred
to as the hidden edges associated with vi. The directions of the hidden edges
are chosen such that the reflex vertex vi of P is replaced in Pκ(0) by ki + 1
“reflex vertices” of equal internal angle.

Then, the linear axis Lκ of P , corresponding to a sequence κ of hidden
edges, is the trace of the convex vertices of the linear wavefront Pκ in the
above propagation process. Lκ is a subset of the straight skeleton of Pκ(0);
it is sufficient to remove the bisectors traced by the reflex vertices of the
wavefront (see Figure 10 (a)). If each reflex vertex vj of internal angle greater
than 3π/2 has at least one associated hidden edge (kj ≥ 1), then Lκ is a
connected graph. This is because only bisectors incident to reflex vertices of
P are removed from the straight skeleton of Pκ(0) in order to obtain Lκ.

Obviously, the larger the number of hidden edges, the better the linear axis
approximates the medial axis. A thorough analysis of the relation between the
number of the inserted hidden edges and the quality of this approximation is
given in [97]. They introduce the notion of ε-equivalence between two skele-
tons. Nodes in the two skeletons are clustered based on a proximity criterion,
and the ε-equivalence between the two skeletons is defined as an isomorphism
between the resulting graphs with clusters as vertices. This allows to compare
skeletons based on their main topological structure, ignoring local details. In
[97], an algorithm is given for computing the number of hidden edges for each
reflex vertex such that the resulting linear axis is ε-equivalent to the medial
axis. The whole linear axis computation takes linear time for polygons with
a constant number of nodes in any cluster. There is only a limited category
of polygons not having this property. Implementation results suggest that in
practice only a few hidden edges are necessary to yield a linear axis that is
ε-equivalent to the medial axis.
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(a) (b)

Fig. 10. (a) The linear axis in the case when one hidden edge is inserted at each
reflex vertex. A linear wavefront is drawn in dotted line style; the dashed lines are
the bisectors that are not part of the linear axis. (b) The linear offset (solid line)
of a reflex vertex with 3 associated edges is made of 5 line segments tangent to the
uniform offset (dotted line) of this vertex.

4.3 Skeletons based on topological thinning

Thinning refers to the process of removing pixels or voxels from a discretised
object in an attempt to whittle the object down in topological fashion to
a more simple representation consisting of connected, unit-wide pathways of
pixels or voxels. This process, applied to elongated objects characterized by
nearly constant thickness (e.g., printed or hand-written characters, line draw-
ings, blood vessels, or branching patterns of air passageways in the lungs),
leads to a set of lines centered within the object and retaining the relevant
structural and shape information of the object. For this reason, the main focus
of thinning is the preservation of topology, with the primary purpose being to
aid in the identification of a basic structure.

Solutions for different grid types such as the rectangular, the triangular
and the hexagonal grid have been proposed. Rosenfeld [90] provides a list of
over 160 papers on thinning; note, however, that the vast majority of these pa-
pers deal with the problem in two dimensions. Ideally, thinning is an isotropic
compression process. Since compression takes place from all directions at the
same rate, its implementation by means of a parallel algorithm is a natural
choice. Actually, both parallel and sequential algorithms have been developed
and the literature includes a huge number of papers on this subject (for a
survey of two-dimensional thinning algorithms, see e.g. [46]). In parallel al-
gorithms, the processing done at each iteration is a function of the object
resulting from the previous iteration only. In sequential algorithms, the ele-
ments are processed one after another and are updated in terms both of the
object resulting from the previous iteration, and of the modifications pro-
duced so far in the current iteration. Thus, the structure of the set resulting
from a sequential algorithm depends on the order in which pixels/voxels are
processed. Sometimes, spurious branches appear in a particular order of pro-
cessing, but do not appear in a different order. End-point detection criteria
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Fig. 11. A comparison of the straight skeleton (left column), the medial axis (middle
column), and the linear axis (right column). The skeletons are drawn in solid line
style. The dashed lines in the medial axis figures are the Voronoi edges, which are
not part of the medial axis. The dashed lines in the linear axis figures represent the
bisectors traced by the reflex vertices of the wavefront, which are not part of the
linear axis. In these examples, the linear axis is isomorphic with the medial axis
(ε = 0).

have great importance in this case, to guarantee isotropic object compression
and to avoid unwanted shortening of branches in the resulting set.

Topologically oriented thinning consists of repetitive testing and subse-
quently deletion of pixels or voxels on the boundary of the object, whenever
their removal does not alter the topology of the thinned shape. However, as
said above, in order the resulting set reflects the geometrical structure of the
object, removal operations should be combined with suitable preservation cri-
teria to avoid non isotropic object compression and unwanted shortening of
branches in the resulting representation. Practically, in correspondence with
every significant protrusion of the object, a branch is expected to be found
in the thinned shape. To correctly map protrusions with branches, the tip
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of each protrusion should be identified and an element in correspondence of
each tip (i.e. the end-point of a branch) should be preserved from removal.
Unfortunately, most of the existing thinning algorithms do not ensure that
the previous correspondence between tips of protrusions and end-points al-
ways holds, so their performance is likely to become unacceptable when a
wide repertory of objects is to be processed. This behaviour is imputable to
the fact that removal occurs during a ’blind’ sequential process, that uses the
property satisfied by the end-points in the resulting set, i.e. the property of
having only one neighbor in the skeleton branch, as a criterion to detect the
end-points during thinning. This may cause end-points to be originated or not,
depending on the order in which the chosen sequence of removal operations
is applied to the object’s elements. To overcome this problem, the boundary
configurations that are assumed to be sufficiently significant to originate end-
points, should be identified at the beginning of each iteration of the object
compression process, before applying the removal operations. In the opposite
case, the sequential way of examining and deleting elements would change
the geometry of the neighbourhood the elements are embedded in and may
allow the creation of spurious end points, as well as an excessive shorten-
ing of significant branches. Effective criteria to correctly identify the tips and
mark therein the elements, which will be the end points in the resulting thin
set, can be based on the distance of boundary elements from the interior of
the object at each iteration of thinning. Boundary subsets including elements
whose distance from the interior of the object overcomes a given threshold are
preserved from removal, as they correspond to significantly elongated object
protrusions [30]. Alternatively, effective criteria can be based on the selection
and preservation from removal of all centers of maximal balls in the distance
map of the object. In fact, in correspondence with the tip of an object protru-
sion, a maximal ball of the object exists, whose boundary fits the boundary
of the object protrusion for a (wide) connected portion. The center of such a
maximal ball can be selected as the endpoint of the branch corresponding to
the protrusion(for more details, see next Section).

Topological thinning guarantees connected skeletons; on the other hand,
topological thinning does not obligatory produce perfectly thinned output (i.e.
one-pixel/voxel-wide paths) since there exist arrangements of pixels/voxels
which cannot be further eroded, unless altering object’s topology. A 2D ex-
ample is the lace-shaped object shown in Figure 12, whose border pixels are
all non-removable. The alternative approach is based on distance map com-
putation.

4.4 Skeletons from distance maps

Like thinning, skeletonisation based on distance maps is especially suitable
for image processing and pattern recognition, and in general for the analysis
of discrete objects represented by grids of pixels or voxels. While thinning is
mainly suited to elongated objects, distance map based skeletonisation is also
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Fig. 12. A lace-shaped 2D object that cannot be reduced to one-pixel wide subset.

suited to objects that are not elongated as well as to objects that have variable
thickness, and provides a representation including also surfaces/branches orig-
inating from significant convexities of the boundary of the objects. Distance
map based skeletonisation is more directly related to the Blum’s notions of a
symmetric point and a growth process. In fact, in the distance map the cen-
ters of the maximal balls can be easily detected and assigned to the skeleton.
The detection of the remaining pixels/voxels necessary to guarantee that the
skeleton has the same homotopy type as the object is also an easy task, due to
the structure provided by the distance map to the portion of space occupied
by the object. Differently from iterative thinning, which requires a number of
iterations proportional to the object thickness and, hence, a generally large
number of scans of the image when sequential computers are used, distance
map based skeletonisation requires a small number of scans, independent of
object thickness. Distance map based skeletonisation directly identifies and
marks on the distance map of the object the elements that are recognized as
belonging to the skeleton, due to the local configuration they are embedded
in. The set of elements detected on the distance map includes all the centers of
maximal balls (which implies skeleton reversibility), is symmetrically placed
within the object and has the same topology as the object. This set is likely
to be 2-element wide, in correspondence with object parts characterized by a
thickness expressed by an even number of elements. To obtain the unit-wide
skeleton, a final thinning, based on topology preserving removal operations, is
necessary. We point out that in the three-dimensional case, the skeleton com-
puted by means of the distance map is actually a surface-skeleton. For solid
objects, the surface-skeleton can be furthermore compressed to a linear struc-
ture, the curve-skeleton, by using an iterative thinning, based on topology
preserving removal operations, see e.g. [96]. The so obtained curve-skeleton,
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though providing a significant representation of the object’s shape, does no
longer allow object recovery.

In the distance map, each object point is labeled with its distance to the
nearest background point. The distance of an element measures the length of
a shortest path from that element to the background, where the path con-
sists of elements linked to each other according to the selected connectivity
type. Good approximations to the Euclidean distance are obtained by using
weighted distances, where suitable integer weights are employed to compute
the contribution given to the length of the path by the elements, depending
on their relative positions (see, e.g., [24, 25]).

Ridges of the distance map are expected to belong to the skeleton, since
they are centrally located within the object. Almost all the elements of a ridge
are centers of maximal balls. As such, they can be identified by comparing the
distance label of the element z at hand with the distance label of its neighbors,
since this is equivalent to comparing the radii of the balls centered on z and
on its neighbors. The extrema of a ridge, which are not necessarily centers of
maximal balls, can be identified by taking into account that they are placed
in saddle configurations. Their detection can be accomplished by counting for
each element z, the number of components consisting of neighbors of z with
distance labels larger than or equal to the distance label of z, and the number
of components of neighbors of z with distance labels smaller than the distance
label of z, respectively. Slopes connecting the ridges in the distance map are
also expected to belong to the skeleton, to guarantee that the skeleton has
the same homotopy type as the object. These linking elements can be found
by growing, from the already detected skeletal elements, connecting paths
according to the increasing value of the gradient in the distance map. For
skeletonisation in the three-dimensional space, besides the linking elements
necessary to guarantee skeleton connectedness, also further voxels necessary
to prevent the creation of spurious tunnels have to be assigned to the surface
skeleton. Roughly speaking, a distance map based skeletonisation algorithm
includes three steps:

- distance map computation;
- identification of ridges and slopes;
- reduction of the set of ridges and slopes to unit width.

Obviously different skeletons are obtained depending on the chosen dis-
tance function. A number of algorithms can be found in the literature, each
of which tailored to a specific distance function (as an example, see [4, 45, 48]
for the two-dimensional case, and [49], for the three-dimensional case). Al-
though all distance map based skeletonisation algorithms follow more or less
the above scheme, ad hoc rules are often used (for instance to identify the
centers of the maximal balls, or to obtain skeleton connectedness through the
linking elements), which apply only to the specific distance case.

An important post-processing step is devoted to skeleton simplification [26]
and pruning [45, 95]. Simplification is done in the three-dimensional case only,
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to remove from the surface-skeleton short peripheral curves, whose presence
would only make the curve-skeleton structure unnecessarily complex. Pruning
is done both in three and in two dimensions and should not be simply regarded
as an optional step for a skeletonisation algorithm. In fact, pruning is useful
to get rid of superfluous noisy branches and is indispensable to make the
linear skeleton stable under object rotation, by eliminating those branches
whose presence in the skeleton depends on object orientation. In turn, a post-
processing aimed at improving skeleton aesthetics by removing zigzags mostly
created by final thinning, can also be performed to favour the use of the
skeleton for shape analysis.

In figure 13, the skeleton of an object in the two-dimensional space is
shown, which has been computed according to different distance functions.
Namely, the Manhattan distance d(1, 2) , the chessboard distance d(1, 1) ,
the weighted distance d(3, 4) , which assigns weights 3 and 4 to the steps in
the path via the edge-neighbors and the vertex-neighbors respectively, and
the weighted distance d(5, 7, 11), which also consider as possible neighbors
along the path pixels that can be reached with the knight move in the game
of chess and assigns weights 5, 7 and 11 to the steps via edge-, vertex- and
knight-neighbors along the path. In each row, from left to right, the nearly
thin skeleton, the unit-wide skeleton and the skeleton resulting after pruning
non significant peripheral branches are shown.

In figure 14, a 3D object, its surface skeleton, computed according to D6,
and the curve skeleton obtained by furthermore compressing the surface skele-
ton by the algorithm [96] are shown. As said before, in the three-dimensional
case only the surface skeleton is reversible.

5 Skeletons from topological structures

Methods grouped in this Section have in common the property of coding
the evolution and the arrangement of the level set curves of a real, at least
continuous, function defined on the shape. The most popular representative
of this class of descriptors is the Reeb graph [89].

In principle, topological graphs give an abstract representation of the shape
structure, with no information about the geometric embedding. Nevertheless,
salient geometric information can be extracted from the shape and attached
to the skeleton, thus obtaining a representation that is not only topological
but retains also a geometric correspondence with the original shape. In this
Section we overview the most popular techniques for constructing skeletons
from topological structures related to level sets, distinguishing them in two
main classes: those that derive from wave-like expansion techniques and those
that more explicitly refer to the Reeb graph definition. Contour trees, a specific
kind of Reeb Graphs for scalar fields, are treated in [19].
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Fig. 13. From top to bottom, skeletons computed by using d(1,2), d(1,1), d(3,4)
and d(5,7,11). From left to right, the nearly thin skeleton, the unit-wide skeleton
and the skeleton resulting after pruning non significant peripheral branches.

5.1 Methods based on wavefront propagation

Algorithms belonging to this category compute each level set of a continuous
function defined over the paradigm of a wave that originates in one point and
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(a) (b) (c) (d) (e) (f)

Fig. 14. A 3D object, a), its surface-skeleton computed according to D6, b), the sim-
plified surface-skeleton, c), the nearly thin curve-skeleton, d), the unit-wide curve-
skeleton, e) and the pruned-curve-skeleton, f).

propagates isotropically with respect to a given function f in each direction
on the surface. Points belonging to the same wave-front are characterized by
the same function value by construction, and therefore define a level set of f .

The construction of the Level Set Diagrams from triangulated polyhedra
proposed in [76] uses Euclidean distances for wave propagation [14]. In practice
the wave traversal associates to each vertex of a triangle mesh the Euclidean
length of the minimal path from that point and a source point. In particular,
at the starting point the value of the wave traversal is zero. Each successive
wave is a sub-complex and a subset of the link of the previous one. The wave
propagation process continues until all vertices of the mesh have been selected
using the Dijkstra algorithm for finding the paths of minimum length. The
wave traversal may be also defined as a distance function. The seed point to
start the wave propagation is automatically selected using a heuristic, which
works well on elongate tubular shapes. In this case, skeletal lines obtained with
different source points are very similar and the resulting skeleton is invariant
under rotation, translation and scaling. Anyway, the choice of only one source
point determines a privileged “slicing direction”, which can lead to the loss of
some features if the object is not tubular shaped (like the horse ears in figure
15(b)).

An extension of the approaches in [14] and [76] to non-zero genus surfaces
has been presented in [72]. In this case, the evaluation of the measuring func-
tion, the mesh characterization (based on local criteria) and the construction
of the graph are performed at the same time using the Djikstra’s algorithm.
The independence on the object position makes this representation suitable to
quadrangulate a surface. A similar extension to volume models with through
holes has been presented by Wood et al. [103]; there, the graph is implicitly
stored for generating high quality semi-regular and multi-resolution meshes
from distance volumes. Also in this case, the object topology is achieved by
considering a wavefront-like propagation from a seed point, [13] (see figure
16). The calculation of the isosurfaces is obtained by applying the Dijkstra’s
algorithm; this makes this approach unavailable for non-uniform scaling.
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(a) (b) (c)

Fig. 15. Isolevels (a) and the centreline (b,c) of the horse as computed as described
in [76].

Fig. 16. Simulation of the wave-front propagation in [103].

Finally, a multi-resolution curvature evaluation is introduced in [82] to
locate seed points which are sequentially linked by using the natural topo-
logical distance on the simplicial complex (see figure 17(a,b)). More precisely,
once computed the approximated Gaussian curvature for the mesh vertices,
for each high curvature region Ri, i = 1, . . . , n, a representative vertex pi is
selected.

Starting at the same time from all representative vertices, waves made
of vertices of increasing neighbourhoods are computed in parallel until the
whole surface is covered (see figure 17(c)), in a way similar to the wave-
traversal technique [13]. Waves growing from different seed points will collide
and join where two distinct protrusions depart, thus identifying a branching
zone; self-intersecting waves can appear expanding near handles and through
holes. A skeleton is drawn according to the wave expansion: terminal nodes
are identified by the representative vertices, while union or split of topologi-
cal rings give branching nodes. Arcs are drawn joining the center of mass of
all rings (see figure 17(d)). This curvature-based graph graph is invariant to
translation, rotation and scaling. On the other hand, if the curvature evalua-
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tion process does not recognize at least one feature region, e.g. surfaces with
constant curvature value as spheres, this approach is not meaningful for ex-
tracting a description of the shape. Finally, this curve-line representation has
at least as many cycles as the number of holes of the surface; however, some
unforeseen cycles may appear in correspondence of the wavefront collisions.

qui figura a colori con label ”reebikkia” formata da images/pipeline−
curveskel

5.2 Methods based on the Reeb graph

In the general case, the Reeb graph [89] of a n-dimensional manifold M under
a mapping function f is defined as a quotient space, which identifies the levels
sets of f . More formally: let f : M → R be a real valued function on a compact
manifold M . Then, the Reeb graph of M with respect to f is the quotient
space of M × R defined by the equivalence relation “∼”, which states that
(P, f(P )) ∼ (Q, f(Q)) iff:

1. f(P ) = f(Q);
2. P , Q are in the same connected component of f−1(f(P )).

Under the hypotheses that M is smooth and the function f is Morse and
simple (i.e., its critical points have different values of f), Reeb demonstrated
that the quotient space is a finite and connected simplicial complex of dimen-
sion 1, i.e., it is made of a connected collection of vertices and edges. The
counter-image of each vertex is a singular connected component of the level
sets of f , and the counter-image of an edge is homeomorphic to the topologi-
cal product of one connected component of the level sets by R [89]. Under the
same hypotheses, the number of cycles of the Reeb graph is an upper bound
of the number of loops β1(M) on the manifold [39].

Even if the Reeb graph definition holds in any dimension, in this Chapter
we mainly focus our attention to surfaces (bi-dimensional manifolds) embed-
ded in R

3. In the graph representation a node is defined for each creation,
merging, split or deletion of a contour, that is, to topological changes affect-
ing the number of connected components in the counter-image of f . Each arc
joins two successive critical levels in their own component. If an arc connects
two nodes, n1 and n2, then the topology of isolevels on M between the levels
n1 and n2 does not change along the connected component of M joining the
corresponding points [69].

From a computational point of view, a centreline representation of the
abstract graph may be obtained associating to each contour its centroid; thus
providing a geometric embedding of the structure. In this way, the structure
roughly sketches the shape, even if some points of the skeletal structure may
lye outside the shape. In addition, other geometric entities related to the
contour form may be stored in each node so that the original shape may be
approximately reconstructed from such a structure.
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In figure 18(a) the points drawn on the manifold represent the equivalence
classes of a closed surface with respect to the height function highlighted. In
figure 18(b) the Reeb’s quotient space is represented as a traditional graph,
where the equivalence classes are grouped into arcs.

(a) (b)

Fig. 17. A surface, (a), and its Reeb graph representation with respect to the height
function, (b).

From the application point of view, the properties of the Reeb graph
strongly depend on those of the function f and the “best” choice for the
function f depends on the application context. For a detailed overview on
possible choices of the function f and their application in Computer Graphics
we refer to [20].

Firstly introduced in Computer Graphics by Shinagawa et al. [94], Reeb
graphs have initially been limited to Morse height functions. Methods for
extracting Reeb-like graphs have been proposed in [94, 93, 98, 32, 73, 11, 85,
72, 39, ?, 102]. In this Section we focus on methods for constructing the Reeb
graph representation of closed surfaces.

A first algorithm, proposed by Shinagawa et al. [93], automatically con-
structed the graph from surface contours generated by the height function.
The extraction algorithm automatically generates the graph arcs relative to a
one-to-one correspondence between cross section consisting of only one con-
tour at first. Then the graph is completed using some heuristics based on a
weight function and a priori knowledge on the surface genus. Main drawbacks
of this algorithm are the need of a priori knowing the genus of the surface and
the fact that this procedure is limited to contour levels of the height func-
tion [93]. In addition, since information on the shape between two consecutive
cross sections is necessarily lost, the frequency of the contours of the surface
is critical; therefore, a reasonable computation of the graph requires a high
number of surface slices and it is time and space consuming (O(n2), where n
represents the total number of vertices of the scattered contours).

The method proposed by Hilaga et al. in [73] provides a multi-resolution
Reeb graph representation of triangle meshes which is independent of the
object topology. The construction of the graph begins with the extraction of
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the graph at the finest resolution desired, then adjacency rules are used to
complete the multi-resolution representation in a fine-to-coarse order. First
of all, the domain of the mapping function is divided into a set of intervals.
Second, triangles whose image under f lies in two intervals are subdivided so
that the image of every triangle belongs to only one interval. Third, triangle
sets, that is a connected component of triangles whose images belong to the
same interval, are calculated. A node of the graph is associated to each triangle
set. Then, arcs are detected by checking the region adjacency of triangle sets.
The graph extraction is computed in O(n + m) operations, where n and m
represent, respectively, the number of triangles of the original mesh and those
inserted during the subdivision phase. In Figure 19 an example of the Reeb
graph construction method proposed in [73] is shown; in this case the domain
of f is subdivided into 4 intervals. The contour insertion in 19(b) determines
a set of mesh regions that correspond to the graph nodes 19(c), while their
adjacency originates the arcs of the graph 19(d).

1

0.75

0.25

0.5

0

1

0.75

0.25

0.5

0

11

0.75

0.25

0.5

0

0.75

0.25

0.5

0

n4

n3

n2

n0

n1

n4

n3

n2

n0

n1

(a) (b) (c) (d)

Fig. 18. Pipeline of the Reeb graph extraction in [73]. (b)

In [39] a method that performs also for non-orientable surfaces with or
without boundaries, such as the Klein’s bottle, has been proposed. Basic as-
sumption of this approach is that the mapping function is Morse, thus critical
points have pairwise different function values. Critical points are detected
analysing the star of each vertex and non-simple critical points are simplified
using the approach proposed in [53]. Once critical points have been identified,
all vertices of the model are processed according the increasing value of the
function f and the evolution of level sets is tracked. Since operations are done
edges the complexity of the algorithm is O(nlog(n)), where n is the number of
edges of the complex. An extension of this method has been proposed in [52]
to analyse the evolution of the Reeb graph when the mapping function varies
with time. In this case a point at infinity is added to make the space topolog-
ically equivalent to the 3-sphere so that the Reeb graph will be equivalent to
a tree. Evolution with time of the graph is coded using a Jacobi curve that
collects the birth-death points. Once a Reeb graph is computed, it is updated
when an event occurs and stored in a data structure that code the entire evo-
lution. Finally the computational cost of this approach, O(N + En), depends
on the number N of simplexes of the triangulation of the space-time data, the
upper number n of simplexes at a time t and the amount E of birth-death
and interchange events.
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The approach proposed in [11, 17, 16] extracts a Reeb graph-like repre-
sentation, called an Extended Reeb graph representation both from a surface
with or without boundary through a finite set of contour levels of a given
mapping function f . Since the contour levels decompose a surface S into a set
of regions, the behavior of their boundaries is used TO detect critical areas
and TO classify them as maximum, minimum and saddle areas. The char-
acterization is performed by analysing the number of border components of
each region and the values of the function f around them [11]. Critical areas
correspond to nodes of the graph. Then arcs between nodes are constructed
through an expansion process of the critical areas, in two phases: first arcs
from minima/maxima to saddle areas, then the remaining links between sad-
dle areas are inserted. In Figure 20 the main steps of the ERG extraction
process are depicted; in Figure 20(a) to each critical area is associated a node;
Figure 20(b) represents how the maximum (resp. the minimum) is connected
to another critical area and the corresponding partial graph representation; fi-
nally, Figure 20(c) shows how the expansion process continues until the graph
is completed.

qui figura a colori con label ”algo” formata da images/algostep− 1
On the basis of the ERG representation, a further extension of the domain

of the Reeb graph to unorganized point clouds of 3D scan data has been
proposed in [100]. The assumption on the point clouds is that they represent
a human body. The limitation that the original data are not organized in a
polygonal mesh is overcome assuming that the Euclidean distance among a
point p and its closest point q, is smaller than a given threshold ε, d(p, q) < ε.
Point sets whose sampling is sufficiently fine are connected in a discrete sense.
Therefore, level sets are defined as points that share the same value of the
mapping function and are connected in the discrete sense. The resulting graph
is called the Discrete Reeb Graph (DRG).

Finally, the method proposed in [102] has been proposed for topologically
simplifying and repairing regularly sampled 3D grids of scalar values. That
is a volumetric model in which each grid cube has 8 neighbor grid points. In
this case, the data are swept with a set of parallel planes generating a set of
slices, which are the sets of grid cubes bounded by two adjacent isosurfaces.
Each connected component of a slice is called ribbon. The contours are given
by the intersection of the isosurfaces the slicing plane. In particular, the graph
described in this approach is called augmented Reeb graph because it codes
also geometric information for each contour and each ribbon. Contour nodes in
the graph correspond to a distance function traversal of the surface, and cycles,
in addition to the geometric information stored in the ribbons, correspond to
handles. The traversal is analyzed at discrete z intervals of the volumetric
grid along the boundary of a distance function. Therefore, the planar slices
are used as an ordered traversal through the slices an may be processed out-
of-core of the volume data. Both ribbons and contours correspond to nodes of
the Reeb graph while their adjacency is coded in the edges. To avoid that a
handle is completely contained within a ribbon, the Euler characteristic of each
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isosurface component is computed and the sweep is locally refined. In this way
the topology of the volume is completely coded and, in each interval, there is
the correspondence of the Reeb graph structure with its Euler characteristic.

6 Conclusions and future developments

In this Chapter we have briefly sketched a wide variety of skeletal structures
defined in Computer Graphics and Computer Vision. As discussed through-
out the Chapter, there is one main structure often referred to as the skeleton,
the medial axis transform, and a huge quantity of very similar skeletons that
exhibit some (often very small) modifications. Being the MAT unfortunately
hard to be computed in the general case and unstable to small perturba-
tions of the shape, a large number of variations of the MAT were introduced:
some of them are just approximations of the MAT for facilitating the skele-
ton computation (e.g. MAT computation through Voronoi diagrams), while
others come from different definitions and present different properties. A few
descriptors are able to represent the exact medial axis for a small category of
input shapes, like the bisectors of parametric curves and surfaces.

In the 3D case the distinction between the MAT and others skeletal struc-
tures becomes more evident: in fact, while the MAT in 3D is essentially a
medial surface, in many applications a linear skeleton may be preferable. This
is the case of path planning for medical applications in which a linear skele-
ton, as far as possible from the shape boundary, is needed, maybe to plan
the inspection of a human organ [99]. The definitions and properties of these
linear 3D skeletons depend mostly on the input data type: for discrete rep-
resentations like collection of voxels, distance maps and thinning techniques
are used; wave-front propagation and level set approaches are preferred in the
continuum case.

With reference to the properties that should characterize a descriptor, we
highlight that all the skeletal structure described in this Chapter provide a
dimensional reduction of the original representation. From the storage point
of view the MAT (and the shock graph) gives a representation which is also
invertible, thus paying in terms of spatial and computational costs. Bisectors
(that may be seen as an over set of the medial axis) provide the most complete
information among the structures considered in this work, but, in practice,
their effective computation is limited to a few classes of models. Linear struc-
tures, like centrelines provided by thinning or distance maps computations,
provide a very compact and concise representation of the shape, even in case
of 3D data; unfortunately loosing the invertibility property. Nevertheless, as
all medial representations, discrete centrelines satisfy the property of being
always inside (centrality) the shape, which made them popular in applications
related to shape animation, deformation and retrieval.

Other structures that are defined on the basis of a real function, like Reeb
graphs, capture the topology of the shape. They can always be represented as
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graphs, eventually enriched with additional geometric attributes, but they are
only able to approximate the original dataset. Depending on the application
context, the flexibility in the choice of the functions makes these descriptors
tunable to different application domains. In particular, there is a growing
interest on the definition of functions that do not depend on the (geometric)
embedding of the shape, like the so-called Laplacian eigenvalues [50].

In every application context, the choice of the most suitable skeleton must
cope with efficiency and expressive power of the representation, and we tried
to underline these aspects in the Chapter. Provided that a function, which is
independent of object rigid transformations, is suitable for recognition tasks,
the Reeb graph it could be anyway preferable to the MAT, which is usually
complex (in terms of number of nodes and edges) and is unstable to small
perturbations of the shape, thus giving very different skeletons also for similar
shapes. Therefore, the relatively simple but topologically effective structure
of these descriptions has suggested a large use of them in shape matching and
retrieval tasks.

About the stability of the representation we observe that bisectors, me-
dial axes and shock graphs intrinsically depend on small shape modifications.
Nevertheless, as discussed in Section 4.1, this problem has been partially over-
come with pruning strategies that are stable under small shape perturbations.
Discrete centrelines derived from thinning or distance maps are usually robust
to small shape variations.

As far as computational issues are concerned, in table 3 we briefly sum-
marize the complexity of the algorithms described in the Chapter.

In particular, we point out that the complexity of the bisectors may be
expressed in terms of degree of the parametric representation. In particular,
given two polynomial parametric curves in the plane of degree m, the bisector
curve is represented as an implicit function of degree 4m−2. For example, for
two cubic curves (m = 3), the bisector is represented as an implicit of degree
10. Hence, the Voronoi cells and diagrams of cubic curves could be represented
as subregions of degree 10 implicits.

To conclude, we would like to emphasize that skeletal structures will play a
fundamental role in the development of specific tools for the (future) semantic
annotation of shapes, or shape parts, according to the concepts formalised by
a domain ontology. In fact, the computation of a skeleton and the extraction of
features automatically provide a way for decomposing a shape into significant
parts, which may be further analysed and annotated.

1 For point sets with provable small Voronoi graph, F is reasonably small: F =
O(n log n) [9] or F = O(n) [8].

2 Once a set of seed points has been recognized, the complexity of the skeleton
extraction is linear in the number of mesh vertices but an accurate evaluation of
the high curvature points has quadratic cost.
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Summary

Approach Description Costs

[33] Voronoi graph O(n[ k
2 ]) + n log n

[34] Voronoi graph O((n + F ) log2 F )1

[77] Medial axis of a polygon O(n log n

Discrete skeleton 2D images O(n2)

Discrete skeleton 3D images O(n3)

[1] Straight skeleton O(nr log n)

[60] Straight skeleton O(n1+ε + n8/11+εr9/11+ε)

[37] Straight skeleton O(n log2 n + r
√

r log r)

[97] Linear Axis O(n)

[76, 72] Centerline O(n log(n))

[103] Centerline O(n log(n))

[81]2 Centerline O(n)

[93, 94] Reeb graph O(n2)

[73] Reeb graph O((n + m))

[11, 16] Reeb graph O(max(m + n, n log(n)))

[39] Reeb graph O(n log(n))

[102] Reeb graph O(n log(n))

Table 3. Classification of the methods for skeleton extraction. Symbols: n represent
the number of vertices or points or pixels (voxels); m the number of vertices inserted
in the mesh during an eventual contouring phase; e the number of edges in the
neighborhood tree, r is the number of reflex vertices.
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Fig. 19. Curve-curve (left) and point-surface (right) bisector examples in R
3. The

curve-curve bisector (in red) on the left is between a horizontal circle and a vertical
line (in yellow). The point-surface bisector (in blue) on the right is between a torus
(in magenta) and a point at its centre (in yellow). This bisector has two sheets that
extend all the way to infinity.

Fig. 20. Curve-surface (left) and surface-surface (right) approximations to the bi-
sector sheets (in red/magenta) in R

3. The dense solution point set is shown as yellow
points.
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(a) (b) (c)

Fig. 21. The bisector sheets (in red/magenta) of a plane and a line (a), a sphere
and a canal surface (b), and a line and a sphere (c).

(a) (b) (c) (d)

Fig. 22. (a) Vertex classification based on Gaussian curvature, (b) high curvature
regions are highlighted; (c) topological rings expanded from centers of high curvature
regions (d) resulting skeleton.

(a) (b) (c)

Fig. 23. The recognition of the critical areas (a), the expansion of maxima and
minima (b) and the complete graph.




